@inproceedings{HartmannManaraStarketal., author = {Hartmann, J{\"u}rgen and Manara, Jochen and Stark, Thomas and Arduini, Mariacarla and Ebert, Hans-Peter and Knopp, Kevin and Shandy, Amir}, title = {Non-contact detection of the adhesive properties of ceramic coatings for high temperature applications using infrared thermography; Transactions}, publisher = {SMiRT-26}, address = {Berlin/Potsdam}, language = {en} } @inproceedings{HartmannManaraStarketal., author = {Hartmann, J{\"u}rgen and Manara, Jochen and Stark, Thomas and Zipf, Matthias and Arduini, Mariacarla and Ebert, Hans-Peter and M{\"u}ller, Michael and M{\"o}ller, F. and Kr{\"u}ger, U. and Schmidt, F. and Knopp, Kevin and Lenski, Philipp and Z{\"a}nglein, Marc and Ochs, Dennis and Shandy, Amir}, title = {Non-contact detection of the adhesion properties of ceramic based thermal barrier coatings by determining the surface temperatures using thermography}, address = {Venedig (Italien)}, language = {en} } @article{HartmannKnoppShandyetal., author = {Hartmann, J{\"u}rgen and Knopp, Kevin and Shandy, Amir and Winterstein, Achim and Arduini, Mariacarla and Hemberger, Frank and Vidi, Stephan and Manara, Jochen and M{\"u}ller, Michael}, title = {Thermophysikalische Charakterisierung von W{\"a}rmed{\"a}mmschichten}, series = {tm - Technisches Messen}, volume = {88}, journal = {tm - Technisches Messen}, number = {12}, publisher = {Oldenbourg Wissenschaftsverlag}, doi = {10.1515/teme-2021-0074}, abstract = {Die Effizienzsteigerung moderner Gasturbinen erfordert die stetige Anhebung der Betriebstemperatur. Die derzeitigen Brenngastemperaturen liegen mit {\"u}ber 1400 °C signifikant {\"u}ber der kritischen Temperatur der verwendeten Turbinenst{\"a}hle. Zur Gew{\"a}hrleistung der Betriebssicherheit werden die Turbinenschaufeln neben Aktivk{\"u}hlung durch Beschichtung mit thermischen Schutzschichten, sogenannten thermal barrier coatings (TBC), gesch{\"u}tzt. Da es sich bei den TBC um Keramikschichten handelt, ist f{\"u}r die Erh{\"o}hung der Haftfestigkeit das Aufbringen eines Haftvermittlers (Verbindungsschicht) notwendig. Da die Eigenschaften d{\"u}nner Schichten stark von den Eigenschaften des Bulkmaterials abweichen k{\"o}nnen und zudem von der Herstellungsmethode beeinflusst werden, ist eine Untersuchung der thermischen und infrarot-optischen Eigenschaften der tats{\"a}chlichen Schichtstrukturen unumg{\"a}nglich, insbesondere im Hochtemperaturbereich. Hierf{\"u}r wurden Proben des reinen Tr{\"a}gerstahls, des Tr{\"a}gerstahls mit Haftvermittlerschicht und des kompletten Schichtsystems aus Tr{\"a}gerstahl, Haftvermittlerschicht und W{\"a}rmed{\"a}mmschicht verschiedener Dicken hergestellt und mittels Laser-Flash-Methode untersucht. Die Auswertung erfolgte dabei analytisch, ausgehend von der Tr{\"a}gerstahl-Einschichtprobe, {\"u}ber die Zweischicht- und Dreischichtsysteme. Vervollst{\"a}ndigt wurden diese Untersuchungen durch infrarot-optische Charakterisierungen, mit denen sich die W{\"a}rmeausbreitung durch die Schichtsysteme beschreiben l{\"a}sst. Zusammen mit den Laser-Flash Messungen erlaubt dies eine sp{\"a}tere Quantifizierung der einzelnen, bei Keramiken auftretenden, W{\"a}rmetransportmechanismen.}, language = {de} } @article{KnoppShandyManaraetal., author = {Knopp, Kevin and Shandy, Amir and Manara, Jochen and Vidi, Stephan and Hartmann, J{\"u}rgen}, title = {Metrologische Apparaturen zur Messung thermophysikalischer Materialeigenschaften bei sehr hohen Temperaturen im EU-Projekt Hi-TRACE}, series = {FHWS Science Journal}, volume = {5}, journal = {FHWS Science Journal}, number = {2}, issn = {2196-6095}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:863-opus-20046}, pages = {83 -- 92}, abstract = {Industriezweige wie die Glas-Industrie, die Kraftwerkstechnik sowie die Luft- und Raumfahrttechnik m{\"u}ssen kontinuierlich neue Methoden entwickeln, sowie bestehende Verfahren optimieren, um in ihren Bereichen wettbewerbsf{\"a}hig zu sein bzw. neue Anforderungen an Umwelt- und Klimaschutz zu erf{\"u}llen. Dies beinhaltet oft die Entwicklung neuer Materialien, die leichter zu fabrizieren sind und sowohl mechanisch als auch thermisch h{\"o}heren Belastungen standhalten. F{\"u}r die genannten Industriezweige sind Prozesse mit hohen Betriebstemperaturen bis zu 3.000 °C kennzeichnend und damit ist die Kenntnis von Materialeigenschaften bei diesen extremen Temperaturen von großer Bedeutung. Auch wenn es bereits einige Messapparaturen f{\"u}r die Bestimmung von thermophysikalischen Materialdaten bei hohen Temperaturen gibt, muss die R{\"u}ckf{\"u}hrung dieser auf die SI Basiseinheiten gew{\"a}hrleistet werden, um die Zuverl{\"a}ssigkeit der gemessenen Daten f{\"u}r die Anforderung der genannten Branchen sicherzustellen. Diese Aufgabe ist das Ziel des EMPIR-(European Metrology Programme for Innovation and Research) Projektes Hi-TRACE [1]. Hi-TRACE zielt darauf ab, Referenzapparaturen und neue Methoden f{\"u}r die Messung von thermophysikalischen Materialeigenschaften, (thermische Diffusivit{\"a}t, spezifische W{\"a}rme, Emissionsgrad und Schmelztemperatur) sowie der Haftung von Schichten {\"u}ber 1.000 °C zu bestimmen.}, language = {de} } @inproceedings{HartmannLenskiOchsetal., author = {Hartmann, J{\"u}rgen and Lenski, Philipp and Ochs, Dennis and Shandy, Amir and Winterstein, A. and Versch, Alexander and Schiffler, Andreas}, title = {Thermische Prozess{\"u}berwachung f{\"u}r additive Fertigungsverfahren}, address = {Berlin}, language = {de} }