TY - JOUR A1 - Wehnert, Kira-Kristin A1 - Ochs, Dennis A1 - Schmitt, Jan A1 - Hartmann, Jürgen A1 - Schiffler, Andreas T1 - Reducing Lifecycle Costs due to Profile Scanning of the Powder Bed in Metal Printing T2 - Procedia CIRP 98 N2 - First time right is one major goal in powder based 3D metal printing. Reaching this goal is driven by reducing life cycle costs for quality measures, to minimize scrap rate and to increase productivity under optimal resource efficiency. Therefore, monitoring the state of the powder bed for each printed layer is state of the art in selective laser melting. In the most modern approaches the quality monitoring is done by computer vision systems working with an interference on trained neural networks with images taken after exposure and after recoating. There are two drawbacks of this monitoring method: First, the sensor signals - the image of the powder bed - give no direct height information. Second, the application of this method needs to be trained and labeled with reference images for several cases. The novel approach presented in this paper uses a laser line scanner attached to the recoating machine. With this new concept, a direct threshold measure can be applied during the recoating process to detect deviations in height level without prior knowledge. The evaluation can be done online during recoating and feedback to the controller to monitor each individual layer. Hence, in case of deviations the location in the printing plane is an inherent measurement and will be used to decide which severity of error is reported. The signal is used to control the process, either by starting the recoating process again or stopping the printing process. With this approach, the sources of error for each layer can be evaluated with deep information to evaluate the cause of the error. This allows a reduction of failure in the future, which saves material costs, reduces running time of the machine life cycle phase in serial production and results in less rework for manufactured parts. Also a shorter throughput time per print job results, which means that the employee can spent more time to other print jobs and making efficient use of the employee’s work force. In summary, this novel approach will not only reduce material costs but also operating costs and thus optimize the entire life cycle cost structure. The paper presents a first feasibility and application of the described approach for test workpieces in comparison to conventional monitoring systems on an EOS M290 machine. Y1 - 2021 UR - https://opus4.kobv.de/opus4-fhws/frontdoor/index/index/docId/1934 UR - 10.1016/j.procir.2021.01.175 VL - 98 SP - 684 EP - 689 PB - Elsevir ER -