TY - JOUR A1 - Wilhelm, Markus A1 - Lotter, Frank A1 - Scherdel, Christian A1 - Schmitt, Jan T1 - Advancing Efficiency in Mineral Construction Materials Recycling: A Comprehensive Approach Integrating Machine Learning and X-ray Diffraction Analysis T2 - buildings N2 - In the context of environmental protection, the construction industry plays a key role with significant CO2 emissions from mineral-based construction materials. Recycling these materials is crucial, but the presence of hazardous substances, i.e., in older building materials, complicates this effort. To be able to legally introduce substances into a circular economy, reliable predictions within minimal possible time are necessary. This work introduces a machine learning approach for detecting trace quantities (≥0.06 wt%) of minerals, exemplified by siderite in calcium carbonate mixtures. The model, trained on 1680 X-ray powder diffraction datasets, provides dependable and fast predictions, eliminating the need for specialized expertise. While limitations exist in transferability to other mineral traces, the approach offers automation without expertise and a potential for real-world applications with minimal prediction time. Y1 - 2024 UR - https://opus4.kobv.de/opus4-fhws/frontdoor/index/index/docId/5603 UR - https://nbn-resolving.org/urn:nbn:de:bvb:863-opus-56030 VL - 14 IS - 2 PB - MDPI ER -