TY - JOUR A1 - Ochs, Dennis A1 - Wehnert, Kira-Kristin A1 - Hartmann, Jürgen A1 - Schiffler, Andreas A1 - Schmitt, Jan T1 - Sustainable Aspects of a Metal Printing Process Chain with Laser Powder Bed Fusion (LPBF) T2 - Procedia CIRP N2 - Production companies are getting more and more aware of the relevancy of energy costs and the environmental impact of their manufactured products. Hence, the knowledge about the energy intensity of new process technologies as metal printing becomes increasingly crucial. Therefore, data about the energy intensity of entire process chains allow a detailed assessment of the life cycle costs and environmental impact of metal printed parts. As metal printing with Laser Powder Bed Fusion (LPBF) is applied from rapid prototyping to serial manufacturing processes more and more, sustainability data are useful to support a valid scale-up scenario and energetic improvements of the 3D-printing machinery as well as peripheral aggregates used in the process chain. The contribution aims to increase the transparency of the LPBF process chain in terms of its energy consumption. Therefore a generalized model to assess sustainability aspects of metal printed parts is derived. For this purpose, the LPBF process chain with the essential pre-, main- and post-processes is evaluated regarding its energy intensity. Here, the sub-processes, for example wet and dry cleaning of the printer, sieving of the metal powder or sand-blasting of the part are analyzed as well as the main printing process. Based on the derived experimental data from an installed, industry-like process chain, a model is created, which tends to generalize the experimental findings to evaluate other metal printed parts and process chain variants in terms of their energy intensity. Y1 - 2021 UR - https://opus4.kobv.de/opus4-fhws/frontdoor/index/index/docId/1933 UR - 10.1016/j.procir.2021.01.163 VL - 98 SP - 613 EP - 618 PB - Elsevir ER -