
d3.js and its potential in data
visualization

Creating a diagram showcase using ukrainian refugee data

Luis Rothenhäusler

20202459

Bachelorarbeit

Fachbereich Informatik
und Medien

Technische Hochschule Brandenburg

1. Betreuerin: Prof. Julia Schnitzer

2. Betreuer: Prof. Alexander Peterhänsel

Brandenburg, den 29.08.2022

Bearbeitungszeit: 07.07.2022 - 01.09.2022

Brandenburg, den 29.08.2022

Ich, Luis Frederick Rothenhäusler, Student im Studi-
engang Applied Computer Science der Technischen Hochschule
Brandenburg, versichere an Eides statt, dass die vorliegende Ab-
schlussarbeit selbstständig verfasst und nicht mit anderen als
den angegebenen Hilfsmitteln erstellt wurde. Sie wurde in dieser
oder ähnlicher Form noch keiner Prüfungskommission vorgelegt.

Luis Frederick Rothenhäusler

Abstract - German

Diese Arbeit gibt einen Einblick sowie eine Einschätzung eines Code-basierten
Werkzeuges zur Datenvisualierung, der d3js bibliothek für JavaScript. Es
werden nicht nur das Potential, sondern auch die Vor- und Nachteile evaluiert.
Weiterhin wird eine Einschätzung gegeben, wann der Einsatz dieses Werkzeuges
sinnvoll ist. Um diese Einschätzungen treffen zu können, werden einige Di-
agramme, bezüglich der aktuellen Flüchtlichgssituation, die aufgrund des
bewaffneten Ukrainekonfilktes besteht, erstellt. Dafür werden zunächst die
nötigen Grundlagen erklärt. Dies umfasst sowohl Daten und Datentypen,
als auch Diagramme und deren Aufbau. Abschließend werden die erstellten
Diagramme, sowie d3js im Diskussionsteil ausgewertet.

Da d3js in reinem JavaScript implementiert ist, lässt es sich problem-
los mit anderen Frameworks kombinieren. Der Fokus von d3js liegt auf der
schnellen und einfachen Manipulation von Elementen im Document Object
Model. d3js ist jedoch kein Werkzeug, mit dem in wenigen Zeilen Quell-
code ganze Diagramme erstellt werden können. Vielmehr müssen sowohl die
einzelnen Elemente eines Diagrammes, wie auch deren Position und Ausse-
hen händisch definiert werden. Das ermöglicht ein Höchstmaß an Kontrolle
über das Aussehen und Verhalten der Diagramme. Es ist jedoch auch zeitin-
tensiv und führt eventuell zur Implementation unübersichtlicher Diagramme.
Gepaart mit der hohen initialen Lernkurve kann die Nutzung von d3js nur
in speziellen Fällen, welche die volle Kontrolle über Aussehen und Verhalten
von Diagrammen benötigen, empfohlen werden.

III

Contents

1 Introduction 1

2 Basics 3
2.1 Data . 3

2.1.1 Categorical . 5
2.1.2 Numeric . 5

2.2 Diagrams . 6
2.2.1 Introduction . 6
2.2.2 Marks and Channels 7

2.3 D3.js . 9
2.3.1 Selections . 10
2.3.2 Data Joins . 11
2.3.3 General Update Pattern 12
2.3.4 Scales . 14
2.3.5 Plugins . 15

3 Implementation 16
3.1 Data sets . 17
3.2 Diagrams . 19

3.2.1 Diagram selection . 19
3.2.2 Data acquisition . 20
3.2.3 Initialization . 20
3.2.4 Render . 23

3.3 Showcase . 34
3.3.1 Layout . 35
3.3.2 Data Updates . 35

4 Discussion 37
4.1 Diagrams . 37
4.2 D3 . 38

IV

5 Conclusion 41

A Appendix 46
A.1 Bar Chart - JavaScript . 46
A.2 Donut Chart - JavaScript . 51
A.3 Tree Map - JavaScript . 56
A.4 Sankey Graph - JavaScript . 62
A.5 Circle Graph - JavaScript . 67
A.6 Area Graph - JavaScript . 73

V

1. Introduction

The postmodern world produces huge amounts of data every second. Ana-
lyzing this data can lead to better-informed decision-making in every sector.
Yet the wast amounts of gathered data is often hard to comprehend with the
human mind. Data visualization is about finding ways to represent this data
in visually appealing and easily comprehendible ways [1]. Doing this quickly,
ideally instant, to always be up to date can be crucial. While it is possible
to create data visualizations manually, it is common to use computer tools
to help in their creation.

There are many tools available to help with the creation of diagrams for
data visualization. Some of these tools have a graphical-user-interface, like
Excel [2] or SPSS [3]. Other tools are code based, like R [4] or the Matplotlib
[5] library for Python. As the requirements for data visualization projects
can vary, it is often not easy to decide which tool best suits ones needs.
Especially if one has no prior experience and is unfamiliar with the potential
of the tools available. Yet knowing when to use which tool can be greatly
beneficial for all parties involved. Therefore this thesis will be a deep dive
into the broad possibilities of one of these code based tools, the ’d3.js’(D3)
library for JavaScript. Knowing its potential, as well as the strengths and
weaknesses of the tool can be greatly beneficial when deciding if it is the right
tool for the job. Whilst there is a lot of information and examples on how
to use D3, the available information makes use of a variety of code styles
and different versions of D3. This makes it hard to properly evaluate the
possibilities of D3 as a data visualization tool without using it.

To evaluate D3 and its possibilities there are three main questions that
will be investigated in this thesis. What is the potential of D3 in data visu-
alization? What are the advantages and disadvantages of using D3? When
should D3 be used? To be able to evaluate these questions and get a better
understanding of D3, a showcase of several different diagrams is created and
evaluated throughout this thesis. This showcase is created using and visual-
izing refugee data of the currently ongoing Ukraine conflict. A live version
of the showcase can be found at ”https://styxoo.github.io/”.

1

https://styxoo.github.io/

Chapter 1. Introduction

This thesis is not a comparison of D3 to other data visualization tools.
It also does not evaluate different types of diagrams in their effectiveness
of conveying data. Furthermore this thesis does not offer a comprehensive
performance test of D3, as creating a testing framework, defining test param-
eters and creating a consistent test environment would go beyond the scope
of this thesis.

All the theoretical background as well as the core concepts of D3, which
are necessary to understand and follow along with this thesis, are described
in chapter 2. Afterwards, in chapter 3, the refugee data, the implementation
of each of the diagrams, as well as the showcase are described in detail.
In chapter 4, the resulting diagrams are discussed and the initial questions
about D3s potential and limitations evaluated. Finally, a conclusion is drawn
in chapter 5.

2

2. Basics

In this chapter, all concepts, technologies and required backgrounds for un-
derstanding this thesis, as well as the diagrams implementations, are ex-
plained. First, data and data types are described in section 2.1. Second,
diagrams, their use and how they are structured are described in section 2.2.
Last, in section 2.3, D3 as the tool to create diagrams is described and its
core concepts explained.

2.1 Data

As data is the main content of each data visualization effort, this section gives
an introduction to data and data types. While this section only provides a
general introduction to data, the specific data used in this thesis is introduced
in section 3.1.

Since ancient times, humans have recorded data. Recording the ins and
outs of available resources and other administrative record-keeping were one
of the driving factors behind the conceptualization of writing [6]. With the
introduction of computers the amounts of gathered data have grown dras-
tically. Nowadays vast amounts of data are gathered across all aspects of
life. According to Statista, the total amount of data created, consumed and
stored by 2020 was already at 64.2 zettabytes and is projected to reach about
180 zettabytes by 2025 [7].

The vast amounts of data gathered in databases are often hard to com-
prehend and evaluate with the human mind. They are also unwieldy to
present in the often limited space of articles, dashboards or other informa-
tive purposes. Therefore data visualization (Figure 2.1) is used to turn these
data sets, collections of data points, into diagrams. These diagrams can
easily be shown in more limited spaces, as well as allow for a quick general
understanding and overview of the provided data.

Data is commonly preprocessed before turning it into diagrams. Depend-
ing on the data set and the desired result, this can mean different things.

3

Chapter 2. Basics

Figure 2.1: Data visualization describes the process of turning raw
data into visual representations. There can be a multitude or possible
representations for a data set.

4

Chapter 2. Basics

One might want to remove excess information from the data set, which is
not necessary for the representation. On the other hand, additional data can
be added by evaluating the existing data points. These could for example
be the median of values or grouping of certain value ranges [8]. It is im-
portant to note that this preprocessing can happen with specific intentions
in mind. While it is only supposed to make the representations easier and
more concrete, it can be abused to make data align with desired results or
to create a certain emphasis. This thesis is not too concerned with this, as
the possibilities of D3 are independent of the validity and completeness of
the presented data.

Even though data comes from a huge variety of sources and can express
a plethora of things, there are only four different types of data [9]. They are
split into two categories: categorical and numerical data. Each category has
two subtypes. In the following each of the types of data are explained.

2.1.1 Categorical

Categorical or qualitative data is information collected in groups. It is often
of descriptive nature. Whilst the values can be represented in numbers, like
grades, they do not allow for arithmetic operations. Yet as it is possible to
count the data points, it is possible to find the mode. The mode is the most
frequently occurring value.

The two sub-types of categorical data are nominal and ordinal data. Each
of them is described below.

Nominal data is mostly descriptive in nature. Values have no relation to
each other and have no inherited order. Examples are the ’Country of origin’,
’Color of paint’ or ’Brand of car’.

Ordinal data is also descriptive, yet the data does have a internal order.
For example different dates each describe a day, but one day also comes after
another. Grades also have an internal order, as one grade is better then
another. Whilst ordinal data has an ordering, the order is not necessarily
equidistant. Due to its internal order, it is possible to find the median. The
median is the value where half the values in the data set are higher and the
other half of the values are lower.

2.1.2 Numeric

Numeric or quantitative data is all data expressed in numbers, where numbers
do not represent categories. It allows for arithmetical operations and can be

5

Chapter 2. Basics

split into discrete and continuous data.

Discrete data can only take certain defined values. This usually means
whole numbers to represent things that can not be split up further. Discrete
data is usually countable. Examples are the ’Number of Refugees’ or ’Tickets
sold’.

Continuous data can be measured. It can have any real number as value.
Therefore fractions are possible as well. For example when measuring the
temperature, or the length or weight of an object.

2.2 Diagrams

This section first provides a brief introduction to diagrams, containing an
overview of the history of diagrams, where they can be found and what their
potential is. How diagrams are constructed using marks and channels, as
well as what needs to be considered while doing so, is described afterwards
in section 2.2.2.

2.2.1 Introduction

Using graphical representations to convey data has been done by humans
since the earliest cave paintings. In the 18th century William Playfair con-
ceptualized the bar and column charts, as well as pie and donut charts [10].
Since then, diagrams have only become more common. Nowadays one con-
stantly comes across diagrams in everyday life. They can be commonly found
across all kinds of reports, information campaigns or newspapers [11]. They
can also be found as part of user-interfaces in machinery or control systems.
This is not only due to the fact that diagrams allow the representation of
a lot of data in limited space. They can also represent the data in a more
attractive ways. Additionally, data seen in diagrams is easier to remember,
as ”The human brain is more able to identify and comprehend relationships
and patterns if data is encoded into visual forms.”[12].

With the frequency of diagrams in use every day, some diagrams are, in-
tentionally or not, inaccurately representing data. Due to the huge potential
diagrams offer for the perception of data, this should be carefully considered.
Edward Tufte introduced the lie factor for evaluating how accurately data is
shown [13]. It is defined as the effect size in the diagram over the effect size
in the data. Most sources of skewed representations of data can be prevented

6

Chapter 2. Basics

by using zero baselines, equidistant axes, accurate scaling when using areas
and value adjustments for monetary values to contradict inflation influences.

Yet the selection of which diagram should be used to visualize which data
set is not trivial. Mostly there are several possible diagram choices for any
given data set. Furthermore there is a plethora of diagrams already in use
and anyone can create entirely new diagrams to suit their needs. Yet the
vast majority of use cases can be covered by one of the more commonly
known diagram types, like bar and column charts, pie and donut charts and
line charts [14]. Due to their popularity, high-level tools like Excel or Plotly
[15] provide support for these diagrams out-of-the-box [16]. More specialized
diagrams might use combinations or variations of other diagram types. Other
diagrams are specifically created for only one specific visualization.

2.2.2 Marks and Channels

Whilst there are countless types of diagrams, most diagrams use a combina-
tion of marks and channels to present data. Marks are used for entries in
the diagram. The three possible marks are points, lines and areas. Channels
describe the way specific marks encode data. While there is no definitive list
of channels, the most commonly used channels are position, size, color and
texture. The position in 2D can be split into the x- and y-positions. The
color can be split into hue and luminescence. Each mark should use at least
one channel to encode data. Otherwise it does not convey any information.
For example in fig. 2.2 lines are being used as marks for each of the seven
entries. It might seem like areas are used, yet the thickness of the line, and
therefore the bar, only serves visual understanding and holds no relevant in-
formation. The lines use three channels to encode data. The y-position is
used to represent the categorical data of which country. The hue of the bar
encodes the same data. This is a bit redundant, as the country is already
encoded. Yet the hue makes it easy to follow along when data is changing
and bars are shifting positions. The size, in this case length, of the bar en-
codes the discrete data of how many refugees have crossed into this country.
In fig. 2.3 areas are used as marks. Just like in the previous example the hue
encodes the country and the size encodes the refugee count.

All marks can be used with all channels. But not all data types should
be represented by all channels. For example nominal data should not be
encoded using the size channel. The different sizes would lead to a perceived
order, which does not exist in nominal data. As the channels all differ in
their appearance they are also not equally good in adequately representing
the data types. Therefore it is important to consider which channels are
chosen to represent the given data types. According to a study by Jock

7

Chapter 2. Basics

Figure 2.2: This bar chart uses lines as marks. Each bar is a single
line mark. The first line mark is highlighted in cyan. The thickness
has no relevance other than making the line visible. Each mark uses
three channels to encode data. They are highlighted in red. The
y-position and the hue are used to encode the country. The size of
the line, aka the length, corresponds to the number of refugees.

Figure 2.3: This tree map uses areas as marks. A representative mark
has been highlighted in cyan. The areas use the size and hue channels
to encode data. The size corresponds to the number of refugees, while
the hue corresponds to the country.

8

Chapter 2. Basics

Mackinlay from 1986, the position channels can always be considered the
strongest channels, no matter which marks are combined with them [17].
The combination of marks and channels should be considered carefully. If
chosen poorly it can lead to undermine the purpose of the diagram of easily
presenting data to a viewer.

Another factor which plays a role here, is the data-ink ratio described by
Tufte [13]. It describes the ratio of ink necessary for representing data over
the total ink necessary for the diagram. The idea is to draw only what is
necessary for showing the data, as this is the main purpose of a diagram.
Whilst a lot of diagrams are digital nowadays and therefore do not require
ink, diagrams should still try to get as close as possible to a data-ink ratio
of one. The lower the data-ink ratio drops, the harder it gets for a viewer to
see and comprehend the relevant data.

As some viewers might not be able to perceive the whole range of colors,
choosing a color scale should also be carefully considered. Besides using
colors which retain a high contrast even with color blindness, they should
also be perceptually uniform. This means having similar hues for values
close together, and more distinctively different hues for values further apart,
while also having a consistent rate of change in the hue. This is especially
important when trying to encode quantitative data using the hue channel.

2.3 D3.js

While there are many ways to turn data into diagrams, this thesis is about
the potential of D3. Therefore this section introduces D3 by elaborating
what it is and how it works.

”D3.js is a JavaScript library for manipulating documents based on data.
D3 helps you bring data to life using HTML, SVG, and CSS.”[18]. The
name D3 is short for data-driven documents. The D3 library was originally
created by Mike Bostock and is published under the BSD-3-Clause open-
source license. It is about 350kB in size. As it is fully implemented in
JavaScript, it does not require a specific framework and can therefore be
easily integrated into all kinds of web-based projects. Whilst D3 is not
limited to using SVG, the visualization created using D3 mostly rely on
SVG elements for their implementation.

D3 is not a high-level API for creating out-of-the-box visualizations. In-
stead, ”[it] allows you to bind arbitrary data to a Document Object Model,
and then apply data-driven transformations to the document.”[18], there-
fore making Document-Object-Model(DOM) manipulation easier and less
tedious. The DOM represents the structure of an HTML in memory and of-

9

Chapter 2. Basics

fers scripts the possibility of accessing and modifying the represented HTML.
D3 also provides helper functions like scales, to decrease the amount of math-
ematical equations needed to convert from the data range to the necessary
coordinates in the desired visualization.

There are three main concepts that make up the core of D3. Selections,
data joins and the general update pattern. All three concepts are working
closely together. Whilst selections can be used without data joins and the
general update pattern, these two aspects both rely on selections. Data joins
can also be used without explicitly using the general update pattern. Usually
all three of these concepts are used consecutively. First, a selection is created.
This selection is then used to create a data join. Finally, the behaviors of
the general update pattern are defined for this data join. In the following
all three of the core concepts of D3, as well as scales and D3’s plugins are
explained.

2.3.1 Selections

A selection contains references to one or more DOM elements. These ref-
erences are organized in groups. There are two functions in D3 to create a
new selection: d3.select("selector") and d3.selectAll("selector").
Both functions require a selector for identifying the appropriate elements.
The selectors are defined in the ”W3C Selectors API” [19] and function like
CSS selectors. Whilst select only selects a single element, the first element
matching the selector, selectAll selects all elements which match the se-
lector. It is important to note, that select also propagates the existing
information of this node, whilst selectAll does not. Selections can also
be extended or shrunken by adding or removing groups, or by combining
multiple selections. select and selectAll can also be called on elements
of an already existing selections. The selector will then assume the existing
element as root for its selection process.

It is possible to directly access DOM elements through the selections.
The respective DOM elements are linked in the groups which make up the
selection. But usually this is not required, as there are predefined functions
for easily modifying properties for all elements referenced in a selection. This
includes the modification of attributes and styles of DOM-elements, as well
as event handling.

A selection is required before a data join can be made. How this is
achieved is described in the following section.

10

Chapter 2. Basics

2.3.2 Data Joins

Figure 2.4: A representation of how data joins are created. A se-
lection, consisting of DOM-elements, as well as the data need to be
present first. The data join then combines the two. The identifier
function is needed if the diagram is supposed to be able to update
and can be specified when creating the data join. As a result the
data is matched to the applicable DOM-elements using the identifier
function.

Data joins are the second key feature of D3. They bind a specific data
point to a specific DOM element. To create a data join, one has to first create
a selection of elements. These are the elements one wants to match to specific
data points. The data join is then created by calling the .data(dataSet)

function on the selection. It takes a data set, an array of objects where each
object represents a single data point, as parameter. This will bind the data
points to the applicable elements in the selection. This is achieved by using
an identifier function. This identifier function is called for each data point
in the provided data set. The default identifier function returns the index
of the current data point in the data set. If one wants to create diagrams
which can respond to data changes over time, as is the case in this thesis,
this is not a reliable identification. When data points are removed or added
in arbitrary locations, the index will not match the elements it previously

11

Chapter 2. Basics

did. Therefore a custom identifier function can be specified, as seen in figure
2.4. This function is passed as the optional second parameter of the data
function. It will be called for each data point in the data set and has to
return some value which will be used as the ID. This ID is saved on the
element the data point was matched to. Every time the data set is updated,
the data join and its underlying selection need to be called again.

As seen in fig 2.5, it can be that the number of data points does not match
up with the number of elements to represent them. When there is no element
matched to a certain data point, D3 will create an empty placeholder element
for this data point instead. What happens to the placeholder elements is
defined in the general update pattern.

2.3.3 General Update Pattern

The general update pattern is another core concept of D3. Every time a data
join is created or updated, it can be made use of. The general update pattern
differentiates between three different cases: enter, update and exit. For each
of these cases a sub-selection is created by the data join. For each of these
three sub-selections the behavior can be defined. As sub-selections are just
selections themselves, they will be referred to as such henceforth. The first
selection is the enter selection. It corresponds to the magenta elements in fig
2.5. All the placeholders created by the data join for data points without a
matching element are in here. In the behavior for the enter selection, usually
a corresponding element is created as the first step. Adding elements includes
providing enough attributes to the elements, for them to be appropriately
matched the next time the data join is called. Often these elements serve
as the marks representing data points in the diagram. When creating an
element which is a mark in a diagram, providing appropriate attributes and
styles corresponds to using the desired channels for data encoding.

All the elements which are already linked to a data point and therefore
identified correctly using the identifier function, make up the update selec-
tion. They are marked in cyan in fig 2.5. Specifying the behavior of the
update selection allows the diagram to react to changing data by moving ex-
isting elements or changing their appearance to accommodate for other new
or removed elements.

The last selection, the exit selection, is made up of all the elements pre-
viously matched to a data point, for which the corresponding data point has
been removed from the data set. They are marked in orange in fig 2.5. The
behavior of the exit selection is by default defined to remove the respective el-
ements. The exit behavior can be defined if a more visually pleasing removal
of elements is desired, like fading out before deleting.

12

Chapter 2. Basics

Figure 2.5: A representation of the possible cases when creating data
joins. In the top left, the data join was able to match all data points
to an element of the provided selection. Those cases are marked in
cyan. In the top right, there are data points but no elements in
the provided selection. Therefore they are matched to placeholder
elements. These cases are marked in magenta. In the bottom left,
the provided selection is filled with elements, but their previously
matched data points have been removed. These cases are marked in
orange. The bottom right shows that all three previously mentioned
cases can exist in a single data join. For each of the three cases, the
general update pattern can have different behavior specified.

13

Chapter 2. Basics

When the goal is to create only static diagrams, which are only initially
created from data, it is enough to define the behavior for the enter selection,
as all data points will be matched up with a placeholder element when first
creating the data join. Here the identifier function is also not important, as
the created element will not need to change over time and therefore does not
need to be appropriately matched by the data join. But if diagrams should be
able to react to data changes and update their appearance, like in this thesis,
it is important to define the update behavior as well as a proper identifier
function, so elements are always matched with the same data points. It is also
important to provide elements, which are created in the enter behavior, with
enough information that the next time the data joins underlying selection is
called, the newly added elements are selected as well.

2.3.4 Scales

Scales are a way to convert between two data ranges, like the scale factor of
maps and model-kits. All scales require a domain and a range. The domain
describe the input values, the range where they should map to. There are
three types of scales: scales with continuous domain and range, like the
example above, scales with categorical or discrete domain and range and
scales with a continuous domain and a categorical or discrete range. The
reason why categorical and discrete are always mentioned together, is due
to the implementation of scales. As the domain and range in discrete and
categorical cases can always be represented as an array filled with a set
number of entries, there is no difference in the array consisting of strings or
integers.

An example for scales with continuous domain and categorical range is
converting percentages of correct answers in a test, continuous data, to the
appropriate grade, categorical, more specifically ordinal data. An example
for a scale with a categorical domain and range is sorting mail. Depending
on the destination town of a letter, it will be sorted into a specific box for
further processing. It is noteworthy that scales with continuous domain and
range can be used in reverse as well.

While all scales require a domain, some scales can dynamically create
their domain as they are being used. Each new value used for querying the
scale is added to the domain if it is not included yet.

As most diagrams created with D3 are created as SVG, the scales provided
by D3 are, in this thesis, mostly used to convert from the range of available
data to the coordinate space in which elements should be drawn.

14

Chapter 2. Basics

2.3.5 Plugins

D3 provides the most used, general functionalities in the core library. Yet
there are many plugins which can be loaded to add functionalities for more
specific use-cases. Plugins needs to be loaded additionally to the core library.
This thesis makes use of the Sankey plugin [20], to draw the Sankey graph.

As D3 is an open-source project, the plugins available are not all created
by the creator of D3, Mike Bostock. Instead a majority is created by the
community using D3.

15

3. Implementation

In the following sections the process of creating the diagrams and the show-
case are described. Understanding the implementations of the diagrams is
important to be able to evaluate the possibilities, as well as the advantages
and disadvantages of working with D3. There are several parts to the process
of creating the diagrams and the showcase. At first the data sets to be rep-
resented are selected. In most real world usages, this is already given when
having to create data visualizations. Afterwards, section 3.2.1lists not only
the implemented diagrams, but also why they have been selected. In section
3.2.2 and following, their implementation and usage of D3 is described. Fi-
nally, in section 3.3, the showcase, as well as how data updates are realized,
are described.

The implementation uses the currently latest version of D3, version 7.6.1.
The JavaScript code uses exclusively arrow functions which have been intro-
duced in ECMAScript6, the specification which JavaScript is build upon[21].
The implementations live version at ”https://styxoo.github.io/” has
been successfully tested using the following operating systems, browsers and
versions:

1. Windows 10:

(a) Opera - version 90.0.4480.54

(b) Microsoft Edge - version 104.0.1293.70

2. Pop! OS 22.04 LTS:

(a) Firefox - version 103.0

(b) Chromium - version 104.0.5112.101

3. MacOS 12.4:

(a) Safari - version 15.5

16

https://styxoo.github.io/

Chapter 3. Implementation

Besides the usual code comments, all the code files created for this thesis
are commented to highlight and show the working and functionality of D3
and how it is used. As not every section of code is described in this chapter,
the comments provide additional help to readers trying to understand the
implementations of the diagrams. Furthermore it helps developers interested
in adapting the diagrams implementations for their own use.

3.1 Data sets

This section introduces the data sets used in the creation of the diagrams of
this thesis. Not only does this section provide an explanation why the specific
data sets have been chosen, but also explains the preprocessing which has
been done and how it was achieved.

As different data types allow for different representations and require
varying parts of D3, the data used in this thesis has been specifically chosen
to contain both types of categorical as well as numeric data. As there are
no differences in the implementation of discrete and continuous data, only
discrete data is used.

All data used for the creation of the diagrams in this thesis originates from
the UNHCR Ukraine refugee situation page [22]. ”UNHCR stands for United
Nations High Commissioner for Refugees, also known as the UN Refugee
Agency. It was created in 1950 to help millions of Europeans who had fled
or lost their homes during the Second World War. Today, UNHCR protects
and assists millions of displaced and stateless people around the world.”[23]
This thesis makes use of three data sets. The first data set is about the
total cumulative border crossings from Ukraine per day [24] and is in JSON
format. The other two data set are about the border crossings into countries
featured in the refugee response plan and about border crossings into other
neighboring countries [22]. They were extracted directly as CSVs. While
all data references border crossings from Ukraine and not refugees directly,
the UNHCR states that ”[they do] not count border crossings of individuals
from bordering countries leaving Ukraine to return home (i.e. Romanians
returning to Romania), nonetheless among those forced to flee Ukraine are
also Ukrainian nationals with dual citizenship”[25]. Therefore this thesis
will henceforth refer to the fleeing individuals that crossed the borders as
refugees. The refugees per country cover a time span between february 24th
2022 up until august 16th 2022[22]. The refugees per day cover the time from
february 24th 2022 until july 17th 2022[24].

As the situation in the Ukraine is still ongoing, it is hard to acquire ac-
curate refugee data. This is also mentioned on the UNHCR situation page,

17

Chapter 3. Implementation

were it is stated that ”Statistics are compiled mainly from data provided
by authorities. While every effort has been made to ensure that all sta-
tistical information is verified, figures represent an estimate. Triangulation
of information and sources is performed on a continuous basis. Therefore,
amendments to figures may occur, including retroactively.”[22].

To keep the implementations of the diagrams as simple as possible data
preprocessing is done as the data is loaded from their respective files, to make
it align with the internally used data structure. Therefore two data loader
JavaScript files have been created. The first JavaScript file, the country-
DataLoader.js reads both csv files containing information about the refugees
crossing into neighboring countries. Both files are then combined to one data
array containing an object, with properties for country and refugees, for each
data entry. The second data loader, the dailyDataLoader.js, reads the JSON
file containing information about the total refugees per day. This JSON file
contains a lot of filler data repeating http request headers, timestamps in
both unix and YYY-MM-DD format and a brief description of the Ukraine
situation as well as the data. Therefore the data loader strips all unneces-
sarily information away and produces a single array. This array contains an
object, with properties for date and refugees, for each data entry. A section
of both of the resulting data arrays can be seen in table 3.1. Both data load-
ers are accessed either by the respective data services which pass the data
to the applicable diagrams, or by the diagrams directly. The data services,
countryDataService.js and dailyDataService.js, are used by the showcase to
fill the data tables in the showcase and pass along any manual data changes
done in these tables to the applicable diagrams.

Country Refugees

Poland 5439431
Russian Federation 2197679
... ...
Belarus 16689

Date Refugees

Feb 24, 2022 79209
Feb 25, 2022 179525
... ...
Jul 19, 2022 9567033

Table 3.1: A preview of the two data arrays after preprocessing. The
left table contains the refugees per country. The right table shows
the cumulative refugees per day. Each entry in the table corresponds
to one object in the appropriate data array. Each object has two
properties, according to the headers of the tables. The dates in the
right table are JavaScript date objects. They are shortened here for
readability.

Together both resulting data sets contain most of the data types. The

18

Chapter 3. Implementation

number of refugees, which can be found in both data sets, is a discrete
attribute. The countries in one data set are a nominal attribute. The date
in the other data set is a ordinal attribute instead.

3.2 Diagrams

The following sub-sections are about selecting and implementing each dia-
gram. As there are countless ways to show the selected data sets, a selection
of diagrams was made first. Afterwards the implementations common fea-
tures are explained, before providing more details of the specific implemen-
tations of each diagram.

3.2.1 Diagram selection

Two major aspects are taken into the account for selecting the diagrams.
Primarily, they should all require different functionalities of the D3 library.
This ensures that this thesis actually tests the broad possibilities of D3. To
achieve this, four diagrams have been chosen to show the refugees per country
data set. A bar chart, a donut chart, a tree map and a Sankey diagram. For
the data set showing the total amount of refugees over time, a circle graph and
an area graph have been chosen. Secondly, the created diagrams should be
realistically usable. This means that they should be usable by for example
news agencies or on the UNHCR website, as there is no point in creating
unnecessarily complex and unusable visualizations.

The bar chart was chosen for implementation due to its simplicity and
minimal amount of D3 functions needed. As it mostly relies on simple rect
and text SVG tags, it provides a good starting point for learning D3. Ad-
ditionally, it is a frequently occurring diagram. Especially considering that
column charts only differ in the orientation, but are functionally the same.
The bar chart was chosen over a column chart, as the horizontal orientation
of the bar chart allows the viewer to read the country name and the number
of refugees in one line. The main reason for choosing the donut chart was its
use of the specific D3 functions for creating pie and donut charts. The donut
chart was chosen over a pie chart for it’s compact form while still allowing
some additional information to be shown in the center. It is also used to
present custom attribute tweens for animations. The usage of D3s tree map
functions was the main reason for choosing the tree map. Additionally it
offers a good example for including CSS styling tricks, a tooltip and event-
handling using D3. Both the tree map and Sankey diagram also provide an
insight into working with hierarchical data structures. The Sankey diagram

19

Chapter 3. Implementation

was additionally chosen to present the usage of D3 plugins. The circle graph
was chosen to show more D3 scales, as well as the possibilities of using scales
to create custom legends. Lastly, the area graph uses more basic D3 func-
tions for rendering lines and areas. These have not been used before, but can
prove quite powerful when creating diagrams showing trends over time.

Whilst all diagrams are presented in one showcase, each diagrams is imple-
mented to work standalone. This makes the comparison between diagrams,
as well as evaluating the effort needed to create them easier. It also allows
for easier adaptation if one were to use one of the diagrams as a template.
Therefore all diagrams are implemented independently, using three parts: a
HTML, a CSS and a JavaScript file. The HTML loads the D3 library and
the applicable data loader in the header. This data loader is only used when
the diagram is accessed directly. This can be done by clicking the diagram
in the showcase. The body of the HTML consists of a SVG tag where the
diagram will be drawn, and a script tag which loads the JavaScript file. The
CSS defines the general styling of the diagram which is not dependent on the
input data. The main part of the implementation is done in the Javascript
section.

The JavaScript implementation follows a general pattern. At first there is
a initialization section (3.2.3) which is run once as the diagram is loaded. It
is followed by a render function (3.2.4) which is responsible for drawing and
updating the diagram. As there is no point in drawing a diagram without
data, the process of how the diagram is provided the data to show is described
next.

3.2.2 Data acquisition

Each diagram has two possible ways to acquire data. This is due to the
fact that they are implemented to be shown in the showcase, but also work
standalone. Each diagram will first check if there is a data service available.
This is true if the diagram is loaded in the showcase. If a data service
is available, the diagram will register itself with the data service for data
and data updates (Figure 3.1). Otherwise the diagram will access the data
loader directly (Figure 3.2). This will only provide data once, as the diagram
is loaded.

3.2.3 Initialization

All things which are independent of the data are done during the initialization
of a diagram. It starts with setting some core variables. A reference to the
SVG tag, which will be used as the container for the diagram, is made. It

20

Chapter 3. Implementation

Figure 3.1: This flowchart describes the behavior when loading the
showcase and when data is updated. As registering with the data
service and loading the data happens simultaneously, the data service
returns the latest available data to the diagram when it registers for
data updates. This prevents issues which might occur due to timing.

is followed by a margin definition for all four sides, where the margin of our
diagram content in relation to the container size is defined. The resulting
values for contentHeight and contentWidth, which are used as space to
draw the diagram, are saved.

Afterwards, there are a few SVG group elements added to the SVG con-
tainer. Adding elements is achieved by calling .append(’elementName’) on
an existing element. In the first case, this element is the previously stored
reference to the SVG container. As the append command returns the newly
created element, it can be directly stored in a variable for later reference. It
can also be provided with attributes and styles via method chaining. The
group elements added here provide a general hierarchy for different aspects of
the diagram. Listing 3.1 demonstrates how this works for the bar chart. Hav-
ing a proper structure in place makes working with selections easier, helps
with human readability of the SVGs content and makes debugging using the
browsers inspector faster. As SVG elements are drawn on top of each other
depending on their hierarchical order, this can also be used to mimic layers
as they would be used in drawing applications. This general hierarchy is
only created to a level which is independent of the provided data and differs
depending on the type of diagram. For example the bar chart has separate
groups for the axes and the content, see listing 3.2, while the circle diagram
has groups for the background legend and the content.

21

Chapter 3. Implementation

Figure 3.2: This flowchart describes the behavior when loading a
diagram directly. As the diagram is unable to register with a data
service, it will request the data directly from the data loader.

1 const diagramGroup = SVG.append(’g’)

2 .attr(’transform ’, ‘translate(${margin.left},${
margin.top }) ‘);

3
4 const xAxisParentGroup = diagramGroup.append(’g’)

5 .attr(’id’, ’xAxis ’)

6
7 const yAxisParentGroup = diagramGroup.append(’g’)

8 .attr(’id’, ’yAxis ’)

9
10 const contentParentGroup = diagramGroup.append(’g’)

11 .attr(’id’, ’content ’)

Listing 3.1: JavaScript code to create the hierarchy as used in the
bar chart. The first line adds a new group element to the main
SVG container using the append command. The newly added group
element is saved in a constant for later references. Furthermore in line
two an attribute is added to the new group element using the attr

command and method chaining. It moves the group element from
the left and top to allign with the margin definition. In each of the
lines four, seven and ten, another group element is added. They are
added to the previously created group element. They are all stored
in constants for later reference and are provided with ID’s for easier
identification and debugging.

22

Chapter 3. Implementation

1 <svg>

2 <g transform=translate (118 ,20)>

3 <g id="xAxis"></g>

4 <g id="yAxis"></g>

5 <g id="content"></g>

6 </g>

7 </svg>

Listing 3.2: The HTML structure which results from the JavaScript
code in listing 3.1. The resulting tree structure clearly separates the
different aspects of the diagram. Using a hierarchical approach makes
not only later selections easier, but also increases human readability
and simplifies debugging.

If there are data independent scales, they are defined next. A common
example here is a color scale for nominal values. It is used in all diagrams
showing the refugees per country. When queried, it will return a new color
from the provided range for each new query value. This scale does not require
a predefined domain. Instead it is dynamically defined and extended with
each new value querying the scale. It is important to note that when the
predefined color list runs out of new colors, it starts reusing the same color
list from the beginning.

1 const colors = d3.scaleOrdinal(d3.schemeDark2);

Listing 3.3: Definition of the data independent color scale.
d3.schemeDarkv2 is a predefined list of color values which is used
as the range of the scale.

If there are any static elements, they are also defined in the initialization.
For example the tooltip used by the tree map or the center text fields in
the donut chart. Even though the data which these fields are supposed to
show is not yet known, these fields are persistent and can therefore already
be created here.

Finally any general helper functions are also defined here. Both diagrams
about the cumulative refugees per day make use of a date conversion function,
which produces a nicely formatted date string from a JavaScript date object.
The resulting strings are in the form of mmm-DD, for example Feb-07 or
Jun-15.

3.2.4 Render

Following the initialization section is the render function. The render func-
tion is responsible for drawing and updating the diagram. The render func-

23

Chapter 3. Implementation

tion is called once in the beginning and every time the data set changes. The
render function covers all data dependent tasks, including the implementa-
tion of the data joins and general update pattern. As the implementation of
the render function greatly varies between the diagrams, all common features
are described first. Afterwards the specifics for each diagram are described.
If there are helper functions or constants required by the render function
they are defined first.

As all the diagrams make use of transitions for animations, a transition
is defined with a duration of 1500 milliseconds. This transition is later called
for each element which should be animated. Defining the transition here
allows for all later calls to not only take the same amount of time without
having to change the duration in more than one position, but also to reuse
the same transition instance.

Scales

The data dependent scales in this thesis are mostly used to calculate the
coordinate position and sizing of elements in the diagrams. The bar chart
for example defines two scales, a linear scale to find appropriate x-coordinates
and a band scale for the y-coordinates of each bar. As these scales domains
depend on the value range of the provided data set, it is necessary that they
are redefined with every render call.

Data Joins

After the scales are defined, the data joins are created. While some diagrams,
like the bar chart, only use a single data join (see A.1 line 110), other dia-
grams, like the circle graph, make use of several data joins (see A.5 lines 106
and 173). Usually this is in accordance to how many independent parts the
diagram consists of. The circle graph uses one data join for the size legend
in the background and to update the circle showing the current data as well
as the text showing the current number of total refugees.

As all diagrams in this thesis can react to data changes, they have a
custom identifier function. For the refugees per country data set in this
thesis, the identifier function is d => {return d.country}.

When a data join is initially created, or when data points are added, there
is not a sufficient amount of elements in the selection to pair them with data
entries. D3 will therefore create empty placeholders for these elements. To
make these placeholders become a part of the DOM, the .join() function
is added after the data() call. There are two ways to use the join function.
One can either pass a string which will result in adding a matching tag to the

24

Chapter 3. Implementation

DOM, or define functions for the general update pattern. When using the
simple string method, the attributes and style for each new element can then
be defined by method chaining. This approach is reasonable for diagrams
that do not need to react to data changes. As all diagrams in this thesis
implement the full extent of the general update pattern to be able to react to
changing data and use the full potential of D3, the second approach is used.

General Update Pattern

When the join function is called, instead of passing a single string as pa-
rameter, three functions can be passed as parameters. These three functions
correspond to the three cases of the general update pattern and describe
their respective behavior. Each of the three functions has one input param-
eter, corresponding to the respective sub-selection. In the enter function an
element is added to the DOM. In the update function existing elements are
updated to accommodate for data changes and therefore possibly removed
or newly added elements as well. In the exit function elements are removed.
As this is the default behavior, the exit function definition can be omitted if
no extra behavior is desired. All three functions run on all the elements of
the appropriate sub-selection.

The enter function adds the applicable element to the SVG. Therefore the
first part of the enter function is usually an .append(string) call. The string
describes the tag which will be added to the DOM. Afterwards the applicable
styles, attributes and sub-elements are added. This can be achieved with the
.attr("attributeName", "value"). While styles can be added with the
.style("property", "value") function, the same can be achieved more
cleanly by predefining styles in the CSS and adding applicable classes to the
element. The selector used to define the current data join, should be able
to match the newly created element as well. Therefore enough attributes
need to be provided. This is important when the selection is recreated for
updating the diagram. When positioning and sizing a new or existing element
the scales are used to compute the applicable coordinate space.

The update function is necessary when the diagram should be able to
react to data changes. It is usually similar to the enter function, in that it
adjusts the positioning and sizing of the elements according to the possibly
changes scales.

The exit function is defined by default to simply remove the applicable
elements. The diagrams is this thesis do not specify a more complex exit
behavior.

All three functions can make use of animations and transitions to improve
their feel. The diagrams created for this thesis only animate the enter and

25

Chapter 3. Implementation

update behavior. Why animations are useful and how they are implemented
is described in the following section.

Animations

Animations can improve the feel, appeal and readability of diagrams. When
a diagram is updated due to data changes, it is easier to understand and see
the changes when for example bars in a bar chart shift to their new positions,
instead of a seemingly entirely different diagram popping up. The animations
allow the viewer to keep track of the existing entries and visually follow any
changes. For example the growth or shrinking of the length of a bar in a bar
chart. Animations can also be used when initially drawing the diagram, to
guide viewer attention.

Animating elements in D3 is achieved by using transitions. Transitions
are called on elements using the call() function. A transition requires a
duration and can also be provided with a delay and an easing function to
improve the feel. The duration and delay are both in milliseconds. Animating
numerical or color values is very easy with transitions. It is only required to
call the attribute or style with the target value and the transition function
will calculate and show interpolated frames. This makes it very fast and easy
to animate for example positioning or sizing of elements.

Instead of using the default behaviors for numbers and colors or when
trying to animate other values like SVG paths, a tween function can be de-
fined using attrTween or styleTween. Both tweens need to return a function
which will be invoked for each frame of the animation, with a time value be-
tween 0 and 1, depending on the frame. The returned function must itself
return a value, which is applied to the desired style or attribute every frame.
In this thesis custom tweens are only specifically defined to animate SVG
path tags in the donut chart (see listing 3.5).

Bar Chart

The bar chart, as well as the following implementations of the donut chart,
the tree map and the Sankey graph all make use of the dataset containing
the number of refugees per country they fled to.

The bar charts first defines two scales, the xScale as well as the yScale
(see A.1 lines 70ff). The xScale is a linear scale to convert from a domain
of the refugees [0, HighestNumberOfRefugeesInAnyCountry] to a range of
the available space [0, contentWidth]. This allows to find the appropriate
x-coordinate for any number of refugees. It is used to draw each bar to its
appropriate length. The yScale converts from any given country to a y-

26

Chapter 3. Implementation

position using a scale band. Therefore the domain is defined by providing an
array of all possible countries and the range is [0, contentHeight]. This allows
the proper height positioning of each bar using the resulting y-coordinate.

The bar chart also makes use of axes. The y-axis shows the countries,
while the x-axis shows the amount of refugees. D3 has predefined functions
to create axes from scales. An axis in D3 consists of many ticks. By default
each tick has a label and a small line indicating its position. Furthermore
there is a start and end line to indicate the whole domain. The bar chart
removes all the domain lines for styling reasons. The tick lines for the y-axis
are also removed, as they are unnecessary here. The tick lines of the x-axis
are extended to cover the whole diagrams height. This is done to have a
proper reference to read out the bars length.

1 const xAxisTickFormat = number =>

2 d3.format(’.2s’)(number)

3 .replace(’0.0’, ’0’);

4
5 const xAxis = d3.axisBottom(xScale)

6 .tickFormat(xAxisTickFormat)

7 .tickSize(-contentHeight);

8
9 xAxisParentGroup.call(xAxis)

10 .attr(’transform ’, ‘translate (0,${contentHeight
}) ‘)

11 .select(’.domain ’)

12 .remove ();

Listing 3.4: The x axis implementation of the bar chart. The first
constant defines the tick format. The provided ’.2s’ means that each
number will be convert to have two significant digits. As the zero
value is therefore represented as ”0.0” to match the previous rule
of two significant digits, it is simply replaced by ”0”. The second
constant defines the function creating the axis. The previous tick
format is passed here. Furthermore the tickSize is set to the height
of the diagram. This way the initially small tick lines now cover the
whole height of the diagram and allow for easier and more accurate
readouts. Finally the xAxisParentGroup element, which is part of
the permantent hierarchical structure of the bar chart, calls the xAxis
function. This adds the Axis to the diagram. As a last step the
domain lines are selected and removed for styling reasons. (Section
from A.1 lines 91ff)

Each bar in the bar chart is composed of a SVG rect for the bar itself and
a text field as the label with the precise amount of refugees. The rect and

27

Chapter 3. Implementation

text are both children of one group element with the bar class as attribute.
Due to this structure, the bar chart only requires a single data join. The
required selector matches all group elements with the bar class. In the enter
sub-selection of the general update pattern, first a new group element with
the bar class is added. Afterwards a rect as well as a text are added to the
newly created group element. The rect is filled with the appropriate color by
calling the color scale. Both elements are positioned and sized accordingly
using the previously defined scales. The x-position of the text as well as
the width of the rect are initialized with a zero value. These two values are
animated using a transition, to reach their actual values. This way new bars
always build themselves up from the left side. The text field usually tries to
stick to the inner right side of the rect. In cases where there is not enough
space available to the left, as the bar is shorter than the number to show,
the text is placed to the right of the rect.

Elements in the update sub-selection are resized in the width and text
value if the number of refugees for this country or the range of the xScale

changed. They might also be repositioned and resized in height, as new
countries are added, or old ones removed from the data set. All resizing is
done using the transition for smooth animation of the changes. Elements in
the exit selection are simply removed.

Donut chart

As the donut chart shows the total amount of refugees in the center, this
value is computed first. This is achieved using the d3.sum(data, d =>

d.refugees) function (see A.2 line 115). It creates the sum of all entries
in the data, using the refugees field for each entry. After calculating this
value, the appropriate text field is updated to contain the new number.

As each section of the donut chart is made up of a path element, D3
provides two functions to generate pie and donut charts. The d3.pie()

function calculates the appropriate start and end angle of each data point
(see A.2 lines 112ff). A padding angle has also been specified for some spacing
between the sections of the diagram. The d3.pie() function returns a new
object which holds a reference to our original data, additionally to the new
sections information.

The d3.arc() function is set up with an inner and an outer radius (see
A.2 lines 127ff). Having an inner radius of zero generates a pie chart, whereas
an inner radius greater than zero, like in this instance, creates a donut chart.
The d3.arc() function which is set up here is later used in the general update
pattern to generate SVG path objects from the pie pieces containing the start
and end angles of each section.

28

Chapter 3. Implementation

As each section of the donut chart is made up of a path element nested
inside a group element, the selector for the data join matches all group ele-
ments with the arc class. The data join is then created using the previously
created pie object. In the enter selection of the general update pattern, the
parent group element is created first and provided with the arc class. Af-
terwards a path element is added to this group element. This path element
is colored according to the color scale. Drawing the actual arc piece is done
using an attribute tween. This animates the donut chart to smoothly fill it-
self in the beginning. The implementation of this initial animation is almost
same as the one seen in 3.5 for updating the arc sections. The only difference
lies in the two interpolate functions using zero as initial value instead of
the respective previousStartAngle and previousEndAngle, as these two
values are not assigned yet.

Lastly the path elements are registered to two callbacks, mouseover and
mouseout using D3s .on() function (see A.2 lines 171 and 178). Both these
events are used to show and update the appropriate text in the center of the
donut chart. The effect which creates an outline around the currently hovered
over path element is not linked to these events, but instead is achieved by
CSS styling.

As the update behavior of the donut chart consists only of updating
the paths, it is fully described in listing 3.5. The exit behavior removes
appropriate sections.

29

Chapter 3. Implementation

1 // The core of the donut animation is defined here.

2 const animate = (nodes , index , d, i, j) => {

3 nodes[index]. previousStartAngle = d.startAngle;

4 nodes[index]. previousEndAngle = d.endAngle;

5
6 return time => {

7 d.startAngle = i(time);

8 d.endAngle = j(time);

9 return arc(d);

10 };

11 };

12
13 [...]. call(update => update.transition(t)

14 // The update animation for the donut pieces is

specified here.

15 .attrTween(’d’, (section , index , nodes) => {

16 const interpolateStartAngle = d3.interpolate

(nodes[index]. previousStartAngle ,

section.startAngle);

17 const interpolateEndAngle = d3.interpolate(

nodes[index]. previousEndAngle ,

section.endAngle);

18
19 return animate(nodes , index , section ,

interpolateStartAngle ,

interpolateEndAngle);

20 }));

Listing 3.5: The implementation of the arc update animations. As the
core of the animation is used by the enter and the update behavior,
it is defined first. The new values for start and end angle are stored
on the node itself. This needs to be done to be able to reference these
values again for the next update, as the previous angles will not be
accessible through the pie object after regenerating it for an update.
Finally the function which is called for each frame of the animation
is defined and returned. This function first interpolates the start and
end angle values using the passed interpolation functions and the time
value. This time value is in the range of zero to one, depending on
how far along the animation is. These newly interpolated angles
define the start and end angle of the pie piece, which is then
turned into a path element by calling the arc function for this pie
piece. As the interpolate functions interpolateStartAngle and
interpolateEndAngle differ for the enter and update behavior, they
are defined in the respective sections. They are passed into the core
animate function. (Section from A.2 lines 132ff and 186ff)

30

Chapter 3. Implementation

Tree map

As the tree map is intended to work with hierarchical data, it requires all
data points to have a link to their parent data point. There is only one
data point without a link to a parent, which serves as the root element.
As the refugees per country data set is not in hierarchical structure, this
is simulated first. Therefore a dummy object is added to the data array.
Using the d3.stratify() command turns the data set into a tree object by
connecting each data point to a parent, in this case the dummy object (see
A.3 line 108ff). The dummy element has no parent and serves as the root
of the tree object. After removing the dummy element from the data again,
the sum of refugees in the tree object is calculated. Using the d3.treemap

command and providing it with information about the available space and
padding between elements, it provides the trees leafs with their relevant size
and position information (see A.3 line 124ff).

The general update pattern adds a rect for each leaf of the tree ob-
ject before styling it appropriately and animating its size and position. The
mouseover, mousemove and mouseout events are registered for showing, up-
dating and hiding the tooltips content and position, as the mouse moves over
a rect in the tree map. The update selection smoothly moves and resizes
the rects when applicable, while the exit selection removes them.

Sankey diagram

The Sankey diagram consists of nodes and links. Therefore these two arrays
are constructed first. Each node represents one country. The links describe
the flow of values, in this case refugees, between nodes. This is achieved by
providing a source node, a target node and the value at the target node. To
be able to show a flow from the Ukraine to the other countries, the Ukraine is
added as a node. All countries from the data set are added as nodes. There
is also a link from the Ukraine node created for every country. The resulting
arrays are provided to the d3.sankey() function (see A.4 line 73ff). This
function is not part of the default D3 namespace. Instead it is added by
additionally importing the Sankey package in the Sankey diagrams HTML
page header. The d3.sankey() function adds additional information to the
nodes and links allowing for appropriate placement of the according elements.
It also adds all the links’ values to create a source value for the Ukraine node.

The Sankey diagram makes use of two data joins. The first one links the
nodes to appropriate group elements. During the enter behavior, each group
elements is filled with a rect and a text element. The rect represents a
node in the Sankey diagram and is sized according to the number of refugees

31

Chapter 3. Implementation

and styled according to the country using the color scale. To make the color
scale consistent with the other diagrams, the Ukraine node is provided with
a fixed color. This prevents the Ukraine node from querying the color scale
and creating inconsistency with the other diagrams which do not contain
a representation for the Ukraine. The text label contains the name and
amount of refugees per country. It is placed next to the appropriate rects.
This can be on the left or rights side, depending on the x-position of the
rects. If the rect is in the left half of the diagram the label is right, if the rect
is in the right half the label is left. Both rect and text make use of transitions
to smoothly build up the diagram. The text also makes use of a small delay
to the transition by using the .delay(100) function (see A.4 line 124).

The second data join takes care of the links. They are matched to path
elements. Each path is styled to match the country it leads to. The required
SVG path is created using the d3.sankeyLinkHorizontal() command (see
A.4 line 149). As the resulting path is only a single line, the stroke-width

attribute corresponds to the width of the link. The links are also animated
using the transition. When initially appearing, the links are provided with
a delay before fading into existence after the nodes have settled in their
positions. The update behavior makes sure that the links are smoothly tran-
sitioned to their necessarily position and the width adjusted as needed.

Circle graph

The circle graph, as well as the area graph described in the following section
both make use of the data set about the cumulative refugees per day.

The circle graph makes use of two data dependent scales. A time scale
is created using d3.scaleQuantize() (see A.5 line 85ff). It is used for con-
verting the time slider value to an actual date. As the time slider value
provides a value between zero and one, this domain is mapped to the range
of available dates in the data set. The second scale is used to get the correct
radius of the circle. Because the area of the circle corresponds to the number
of refugees, it is important to not scale the radius linearly. This would lead
to circle areas which do not represent the correct number of refugees. Scal-
ing the radius linearly would introduce a lie-factor higher than one. In fact,
due to the relation between a linear change in radius and a change which
keeps the area consistent, the lie factor increases, the higher the amount of
refugees is. To avoid this, a d3.scaleSqrt() is used (see A.5 line 90). The
domain is set to [0, HighestNumberOfTotalRefugees] and the range to [0,
contentHeight/2]. This scale is also used for drawing the background legend.
This is achieved by getting the ticks of the scale and saving the appropriate
values in an array. This array is rendered in circles using the first data join.

32

Chapter 3. Implementation

This data join draws and updates a circle and a text label for each tick.
As the actual content of the diagram does not draw one mark per data

point, the refugee number for only one data entry is shown at a time. The
time scale is used to determine which is the currently selected date from the
time value, provided by the slider, in the range of zero to one. The resulting
date is used to get the corresponding data for that date from the data set.
This allows the diagram to reuse only use one circle and one text label in
its representation. Therefore the second data join also looks a bit different.
Instead of linking actual data, an array with an arbitrary single entry is
linked to the selection. Without this single element, D3 would not draw the
circle, as it assumes that there is no data to show. The identifier function
also always returns the same value, no matter what data was linked. This
makes sure that the same circle element is matched by the selector on each
render call, as to not draw a new circle every time the diagram is supposed
to update. The circle and text are both created and styled using the data
which was found for the current date.

Area graph

The area graph makes use of the same time scale as the circle graph. Addi-
tionally it uses a linear scale for the y-axis and a scale band for the x-axis.
The y-axis represents the number of refugees, while the x-axis shows the
days. Both axes are added to the diagram in the same way as is done in the
bar chart. As showing all days on the x-axis would be too dense, the values
are filtered and only 15 equidistant days are shown. This is achieved by using
JavaScript filter function for arrays and specifying a custom filter which
is to be evaluated for each entry in the domain of the x-axis scale band (see
A.6 line 126).

The main content of the area graph consists of two parts. One part shows
the area, while the other one is the date line showing the current date. The
area and the line following along the top of the area, the top-line, are two
separate path elements. Their definition can be seen in listing 3.6. Because
the area and line both cover the whole range of data at once, the data join,
which creates and updates them, uses the same single element dummy data
as the circle graph. When creating or updating the line and area, the whole
data set is passed to the respective functions.

33

Chapter 3. Implementation

1 const line = d3.line ()

2 .x(d => xScaleWithOffset(d.date))

3 .y(d => yScale(d.refugees));

4
5 const area = d3.area ()

6 .x(d => xScaleWithOffset(d.date))

7 .y1(contentHeight)

8 .y0(d => yScale(d.refugees));

Listing 3.6: The first constant defines the function for creating the
top-line of the area graph. This is achieved by specifying functions
for x- and y-values. D3 uses them to calculate the position of each
point on the line. Using the arrow functions here applies this for each
entry of the data set which is passed as a parameter when calling this
function. When the function is called and a data set is provided,
by calling line(data), the line is constructed by calculating the
according x- and y-positions for every data point. Defining and
creating the area works in similar fashion. Yet there are two y-
positions for each x-position. y0 is the bottom of the shape, while y1
is the top. Switching the definition of y0 and y1 results in a reversed
direction of the SVG path describing the outline of the shape. The
d3.area() function allows for a huge variety of shapes. Yet it is
not possible to create concave ends on the right or left side of the
shape, assuming left and rigth are oriented horizontally. Of course
the created shape can be rotated and oriented using all possible SVG
tags and attributes. (Section from A.6 lines 144ff)

The date line is made up of three elements. A circle element rides on the
top line of the area, a vertical line to indicate the current day on the x-axis
and a text label to show the days refugee value. All three parts are simply
created and updated in the second data join. This data join makes use of
the same kind of dummy data as seen in the previous data join and the circle
graph.

3.3 Showcase

To bring all the diagrams together, a showcase has been created. In addition
to containing the diagrams, it also allows for manually modifying the data
used to create the diagrams. The layout of the showcase as well as how data
can be modified are described in the following sections.

34

Chapter 3. Implementation

3.3.1 Layout

The showcase is split into two main sections. The first section is about
the refugees per neighbor country they crossed into. The second section is
about the cumulative refugees over time. As all diagrams in one section
represent the same data set it allows for an easy visual comparison. While
the left side of each of the two section holds all the diagrams, the right side
contains information regarding the diagrams, as well as a possibility to view
and change data. The information area always tries to stick to the top of the
screen, as long as space is available.

The information area of the first section shows a legend first. This legend
is implemented using D3 and reacts to data changes like the diagrams do.
The information area of the second section contains a time slider. This is
used to select the current date which the circle and area graph take into
account.

The showcase loads each of the diagrams into a separate iframe tag with
a consistent aspect ratio. As the diagrams are set up to use all available
space in the provided container, the showcase makes sure to size the iframe
containers appropriately. When a diagram is loaded in the showcase, it also
registers with the applicable data service. This allows the data service to
update the diagram as the data is changed, as is described in the following
section.

3.3.2 Data Updates

Each section of the showcase has a table which allows for data manipulation.
These tables are hidden when the showcase is loaded. They can be shown by
ticking the appropriate ’Show Data’ checkbox. Rows of data can be modified,
added or removed here. The data changes here are not persistent and are
therefore not saved in the original data files. While the correctness of the
initial data is not guaranteed, arbitrarily changing the data entries obviously
falsifies the shown data. Changes in the data are registered by the respective
data service when a data update is triggered. Data updates are triggered
automatically as soon as any data is changed or rows are added or removed
while the ’Auto Update’ checkbox is ticked. This is the default case. If
one wants to change more data points before a update is triggered, the auto
update option can be deselected and the manual ’Update Data’ button used
instead. When a update is triggered, the data service creates a new data
set from the data in the table and passes it along to the applicable diagrams
when calling their render function to update.

For this thesis it is important to be able to modify the data, as one of

35

Chapter 3. Implementation

the core features of D3 tested in this thesis is reacting to changes in data.
This manual style of modifying data is probably not so common in real world
applications. Yet it is easy to replace these manual data changes to regular
API calls or other automatically updating data sources. As the source of
the data changes does not matter for the functionality of D3, the manual
approach chosen here is sufficient in demonstrating the possibilities of D3 in
reacting to changing data.

36

4. Discussion

The discussion evaluates the results of this thesis. Therefore it is split into
two parts. The first part, section 4.1, is about the diagrams and comparing
them to each other. Section 4.2 contains the second part of the discussion
and tries to answer the initial questions about the potential of D3 in data
visualization.

4.1 Diagrams

The first four diagrams show the data about the refugees by country crossed
into. While the underlying data is the same, the resulting diagrams are quite
different from each other. The donut chart and tree map make it immediately
obvious, that almost half of all refugees went to Poland. While this is hard
to guess from the bar chart without a ruler or calculator, the vertical spacing
of the nodes in the Sankey diagram also does not make this obvious. Only
the donut chart and the Sankey diagram allow the viewer to immediately see
the total amount of refugees. While the bar chart and tree map also contain
this information, they would require the viewer to calculate it themselves,
defeating the purpose of data visualization. The Sankey diagram and bar
chart directly show all the numbers of refugees per country. This information
can be found in the donut chart and tree map as well, but only by using the
mouse to inspect the diagrams more closely. This can be a struggle when
trying to get more precise data about the refugees which went to Belarus,
as their amount is so small, that these two diagrams hardly show Belarus
at all. While the shown legend is universally true, both the Sankey diagram
and the bar chart also directly show the names of the countries, making
comprehension of the data more easy. The Sankey diagram is also the only
diagram which conveys the flow from the Ukraine to the other countries. The
other diagrams only achieve this through context, not in their actual graphic.

When data is updated, all four diagrams smoothly transition to their new
states. This makes the changes quite easy to follow and pleasant to look at.

37

Chapter 4. Discussion

The tree map can sometimes be a bit confusing, as the different rectangles
can shift across each other.

The two diagrams showing the cumulative refugees per day, are quite
different from each other. While the circle graph actually only ever shows
the value for a single day, the area graph shows the whole extend of the
data with an extra indicator for the current day. Due to the scaling of the
radius in the circle diagram it can also be quite hard to read the number
of refugees from the legend, especially for smaller values. The area graph
does a much better job of not only consistently showing not the number of
refugees on the selected day, but also the development of the refugee count
over time. Therefore it struggles with accurately showing the current date.
This is easier in the circle chart, as it is simply displayed at the bottom.

When data is updated, the circle graph can be completely unaffected.
Only when the data for the currently selected day is changed, or the size
legend adjusts itself, changes can be seen. Because of the way that the
functions used to create the line and area of the area graph work, the updates
of the area graph are only easy to follow when values are adjusted. When
days are added and removed it is hard to follow along, due to how the line
and area are created by D3.

4.2 D3

The tree initial questions presented which this thesis tries to answer were:
What is the potential of D3 in data visualization? What are the advantages
and disadvantages of using D3? When should D3 be used? All three of
these questions will be evaluated and discussed separately in the following
discussion, beginning with the question of what D3s potential is.

Looking at the created showcase, D3 can obviously be used to create
many different types of diagrams. Looking at the examples found online, D3
has their own showcase of projects, makes this even more apparent. From
simple bar and pie charts, over visualizing hierarchical data using tree maps
or Sankey diagrams, like the ones created for this thesis, all the way to
map based diagrams using various projections[26], physics enabled bubble
graphs[27] and pseudo 3D animations[28]. Of course D3 can also be used
to created animations which do not necessarily serve data visualization pur-
poses, like the tadpoles example[29]. Due to D3’s low level approach, fast
speed, and the general update pattern, D3 can be used to create all visualiza-
tions one can imagine and have them react to data changes in real time. As
D3 is built around simple DOM manipulation, it can also be used for other
use cases. One can create HTML tables and populate them with data. One

38

Chapter 4. Discussion

can make small animations to add visually appealing aspects to a website.
Or maybe one can adapt the scales for their own needs of converting data.
But what are the advantages an disadvantages of D3?

When working in a web environment, it is always easy to start using D3.
Its independence from any framework and its pure JavaScript implementa-
tion, make it possible to include D3 in any web-based project. On the other
hand, if one is not already working on a web-based project but still wants
to use D3, one has to deal with all the additional overhead of working with
a web technology stack. Whilst importing the D3 library is really easy, the
initial learning curve is everything but easy. Without first internalizing the
core concepts of D3 and SVG, it is impossible to make any kind of visualiza-
tion. While this is true for any framework or technology, the concept of the
data joins and the general update pattern seem especially abstract. Yet it is
crucial to understand it when a diagram is supposed to react to data changes.
While learning the basics of D3 is quite a big hurdle, it can be broken down
by first creating only static diagrams. This can be achieved without a deeper
understanding of the general update pattern. While D3s low-level approach
is cumbersome to comprehend initially, it actually allows D3 to be very flex-
ible. In addition, while there are a lot of examples and tutorials, they are
often too complex to understand as a beginner, or use varying versions of
D3 or JavaScript styles. Besides some functionalities of D3 being obsolete
in newer versions, the different styles of JavaScript can be additionally con-
fusing when the developer is not familiar with the evolution of JavaScript.
Once one understands how D3 works, it can be quite fast to create basic
diagrams. Once one properly understands the general update pattern and
selections, it is also not too difficult to react to data changes. Yet trying to
animate diagrams can become tricky. It depends on the elements which are
used and which attributes need to be animated. As all elements have to be
manually specified, one has full control over the appearance and behavior of
the diagrams. This allows D3 to adapt to any existing style guides, yet is also
very time consuming. It also allows creating diagrams with a high lie-factor
or a bad data-ink ratio. This risk can be mitigated using a more high-level
library. High-level libraries also allow for the automatic creation of legends,
instead of having to create them manually as was done in this thesis.

Another concern might be the performance of D3 when dealing with many
marks in a diagram. Therefore the limits of smooth animation of the bar
chart and the tadpoles example[29] were briefly tested. Of course these re-
sults vary from device to device. In this case, it was possible to smoothly
animate up to approximately 1200-1300 tadpoles. The bar chart is harder
to evaluate. The singular bars approach, and partially pass, the limits of a
singular pixel in thickness, and therefore their visibility on the screen, with

39

Chapter 4. Discussion

this number of entries in the diagram. While this thesis does not provide
a proper performance test and comparison with other visualization libraries
performances, it can be safely assumed that performance will not be an issue
for most diagrams.

So when should one use D3? This depends on the task at hand. If the
goal is to create some diagrams as a one time job, D3 is unnecessarily com-
plex. Tools like Excel can easily excel here. Even when working with a web
project, D3 is probably too complex. Most developers will find all necessarily
functionality using libraries like Chart.js[30] or the Plotly JavaScript library,
which is actually built on top of D3 to offer a more high level approach to
data visualization. Both these open-source libraries allow creating some of
the most common diagrams without having to learn all the quirks of D3. Yet
if someone is to create a custom visualization or wants more fine control over
all aspects of a diagram, D3 can handle it. Nevertheless, due to the high
initial learning curve getting into D3 can only be recommended when the
creating custom visualizations, which high level libraries can not provide.

40

5. Conclusion

While D3 is an immensely powerful tool, learning and understanding the core
concepts of D3 took a surprisingly long time. While there are many exam-
ples, the inconsistencies in D3 versions as well as JavaScript versions were
quite confusing. Having never worked with D3 and only having very limited
experience with JavaScript, it took a fairly long time to get used to both.
Even now, if I was tasked to create some simple diagrams, I would proba-
bly use a more high-level library. Unless, the desired diagrams require the
full potential of D3. A few parts have been especially cumbersome. While
animating updates with transitions is usually easy, creating a smooth ani-
mation for the donut chart took longer than expected. Having to work with
the custom attribute tweens and storing information on the DOM element
itself, made this even more confusing. Yet this was in part due to my lacking
proficiency in working with JavaScript and the differences between function
declarations using arrow functions and the function keyword. I was also un-
able to animate the area graph in a way where the date line follows the line
along the top of the area. Furthermore it would be nice if the date line would
be draggable using the mouse. This is something which can most certainly
be done. But not by me in the time span of creating this thesis. Creating
the right selections and sub-selections when implementing the general update
pattern also is not always easy. While drawing a diagram initially is usually
an easily achievable feat, making sure that update behavior reuses existing el-
ements is sometimes tricky. The widespread use of D3 at least helped finding
information on common issues, which was very helpful for bug fixing.

While the implementation doesn’t differ for using discrete and continuous
data, it would still have been nice to show this in an actual example. Another
interesting aspect which is not explored by this thesis, is working with maps
and projections. A map could also have easily shown the refugee streams.

Due to the currentness of the data, the UNHCR was updating their sit-
uation page as well. On of the effects of this was that the terminology they
used changed from initially mentioning refugees, to later solely mentioning
border crossings. This can actually still be seen when looking at the raw

41

Chapter 5. Conclusion

data JSON file, which contains the cumulative number of refugees per day.
It contains a description clearly mentioning the data being about refugees.
As the diagrams and showcase were implemented before writing the text for
this thesis, the renaming was glossed over, as all the created work would have
to be redone. This is also why the code files always mention refugees.

Finally, while it was interesting to work with D3 and get to know its
immense potential, it is devastating to see that, yet again, millions of people
have been displaced by unnecessary violence and aggression.

42

Bibliography

[1] M. Sadiku, A. E. Shadare, S. M. Musa, C. M. Akujuobi, and R. Perry,
“Data visualization,” International Journal of Engineering Research
And Advanced Technology (IJERAT), vol. 2, no. 12, pp. 11–16, 2016.

[2] “Microsoft excel spreadsheet software: Microsoft 365,” ac-
cessed:20.08.2022. [Online]. Available: https://www.microsoft.com/
en-us/microsoft-365/excel

[3] “Spss software,” accessed:28.08.2022. [Online]. Available: https:
//www.ibm.com/analytics/spss-statistics-software

[4] “The r project for statistical computing,” accessed:20.08.2022. [Online].
Available: https://www.r-project.org/

[5] “Matplotlib - visualization with python,” accessed:20.08.2022. [Online].
Available: https://matplotlib.org/

[6] W. M. Senner, The origins of writing. U of Nebraska Press, 1991.

[7] “Total data volume worldwide 2010-2025,” May 2022, ac-
cessed:22.08.2022. [Online]. Available: https://www.statista.com/
statistics/871513/worldwide-data-created/

[8] S. Garćıa, J. Luengo, and F. Herrera, Data preprocessing in data mining.
Springer, 2015, vol. 72.

[9] N. Henze, Grundbegriffe der deskriptiven Statistik, 13th ed. Springer
Berlin, 2021, p. 21.

[10] B. I. U. Dur, “Analysis of data visualizations in daily newspapers
in terms of graphic design,” Procedia-Social and Behavioral Sciences,
vol. 51, pp. 278–283, 2012.

[11] S. H. Utt and S. Pasternak, “Update on infographics in american news-
papers,” Newspaper Research Journal, vol. 21, no. 2, pp. 55–66, 2000.

43

https://www.microsoft.com/en-us/microsoft-365/excel
https://www.microsoft.com/en-us/microsoft-365/excel
https://www.ibm.com/analytics/spss-statistics-software
https://www.ibm.com/analytics/spss-statistics-software
https://www.r-project.org/
https://matplotlib.org/
https://www.statista.com/statistics/871513/worldwide-data-created/
https://www.statista.com/statistics/871513/worldwide-data-created/

Bibliography

[12] W. S. Cleveland, The elements of graphing data. Wadsworth Publ. Co.,
1985.

[13] E. Tufte and O. Katter, “The visual display of quantitative informa-
tion,” Professional Communication, IEEE Transactions on, vol. PC-27,
06 1984.

[14] J. Lankow, J. Ritchie, and R. Crooks, Infographics: The power of visual
storytelling. John Wiley & Sons, 2012.

[15] “Plotly javascript open source graphing library,” accessed:27.08.2022.
[Online]. Available: https://plotly.com/javascript/

[16] “Available chart types in office,” accessed:22.08.2022.
[Online]. Available: https://support.microsoft.com/en-us/office/
available-chart-types-in-office-a6187218-807e-4103-9e0a-27cdb19afb90

[17] J. Mackinlay, “Automating the design of graphical presentations of rela-
tional information,” Acm Transactions On Graphics (Tog), vol. 5, no. 2,
pp. 110–141, 1986.

[18] M. Bostock, “Data-driven documents,” accessed:31.03.2022. [Online].
Available: https://d3js.org/

[19] A. v. Kesteren and L. Hunt, accessed:31.03.2022. [Online]. Available:
https://www.w3.org/TR/selectors-api/

[20] “D3/d3-sankey: Visualize flow between nodes in a directed
acyclic network.” Sep 2019, accessed:22.08.2022. [Online]. Available:
https://github.com/d3/d3-sankey

[21] “Ecmascript 6: New features: Overview and comparison,”
accessed:27.08.2022. [Online]. Available: http://es6-features.org/
#ExpressionBodies

[22] UNHCR, “Operational data portal,” accessed:18.08.2022. [Online].
Available: https://data2.unhcr.org/en/situations/ukraine

[23] ——, “Frequently asked questions,” accessed:27.08.2022. [Online].
Available: https://www.unhcr.org/frequently-asked-questions.html#
whatdoesUNHCRstandfor

[24] ——, “Refugees per day,” accessed:23.07.2022. [Online].
Available: https://data.unhcr.org/population/get/timeseries?
widget id=336969&sv id=54&population group=5460&frequency=
day&fromDate=1900-01-01

44

https://plotly.com/javascript/
https://support.microsoft.com/en-us/office/available-chart-types-in-office-a6187218-807e-4103-9e0a-27cdb19afb90
https://support.microsoft.com/en-us/office/available-chart-types-in-office-a6187218-807e-4103-9e0a-27cdb19afb90
https://d3js.org/
https://www.w3.org/TR/selectors-api/
https://github.com/d3/d3-sankey
http://es6-features.org/#ExpressionBodies
http://es6-features.org/#ExpressionBodies
https://data2.unhcr.org/en/situations/ukraine
https://www.unhcr.org/frequently-asked-questions.html#whatdoesUNHCRstandfor
https://www.unhcr.org/frequently-asked-questions.html#whatdoesUNHCRstandfor
https://data.unhcr.org/population/get/timeseries?widget_id=336969& sv_id=54&population_group=5460&frequency=day&fromDate=1900-01-01
https://data.unhcr.org/population/get/timeseries?widget_id=336969& sv_id=54&population_group=5460&frequency=day&fromDate=1900-01-01
https://data.unhcr.org/population/get/timeseries?widget_id=336969& sv_id=54&population_group=5460&frequency=day&fromDate=1900-01-01

Bibliography

[25] ——, “Explanatory note,” accessed:18.08.2022. [Online]. Available:
https://data.unhcr.org/en/documents/details/91338

[26] J. Davies, accessed:24.08.2022. [Online]. Available: https://www.
jasondavies.com/maps/transition/

[27] S. Carter, “Four ways to slice obama’s 2013 bud-
get proposal,” Feb 2012, accessed:24.08.2022. [Online]. Avail-
able: https://archive.nytimes.com/www.nytimes.com/interactive/
2012/02/13/us/politics/2013-budget-proposal-graphic.html

[28] J. Davies, “Sphere spirals,” accessed:24.08.2022. [Online]. Available:
https://www.jasondavies.com/maps/sphere-spirals/

[29] M. Bostock, “Tadpoles,” Sep 2020, accessed:24.08.2022. [Online].
Available: https://observablehq.com/@mbostock/tadpoles

[30] “Chart.js,” accessed:27.08.2022. [Online]. Available: https://www.
chartjs.org/

45

https://data.unhcr.org/en/documents/details/91338
https://www.jasondavies.com/maps/transition/
https://www.jasondavies.com/maps/transition/
https://archive.nytimes.com/www.nytimes.com/interactive/2012/02/ 13/us/politics/2013-budget-proposal-graphic.html
https://archive.nytimes.com/www.nytimes.com/interactive/2012/02/ 13/us/politics/2013-budget-proposal-graphic.html
https://www.jasondavies.com/maps/sphere-spirals/
https://observablehq.com/@mbostock/tadpoles
https://www.chartjs.org/
https://www.chartjs.org/

A. Appendix

A.1 Bar Chart - JavaScript

1 /**

2 * This script was created as part of a bachelor thesis.

3 * For more information , visit: https: // github.com/StyxOo/

styxoo.github.io

4 * Author: Luis Rothenh ä usler

5 * Last edit: 25th August 2022

6 *

7 * This file contains the JavaScript implementation of the

bar-chart.

8 */

9
10 /**

11 * In this first section , some data independent constants

are defined.

12 */

13 // This creates a reference to the SVG container on the

HTML page. This will contain the whole diagram.

14 const svg = d3.select(’#mainFrame ’)

15 .attr(’height ’, innerHeight)

16 .attr(’width ’, innerWidth);

17
18 // The margin definition for the diagram. The content is

padded from the sides using the margins.

19 const margin = {

20 top: 20,

21 right: 20,

22 bottom: 20,

23 left: 118

24 };

25
26 // contentWidth and contentHeight store the available

coordinate space for the content of the diagram.

27 const contentWidth = innerWidth - margin.left -

margin.right;

46

Appendix A. Appendix

28 const contentHeight = innerHeight - margin.top -

margin.bottom;

29
30 /**

31 * This section defines the hierarchy of the diagram.

32 * This makes later selections and debugging in the

browser inspector easier.

33 */

34 const diagramGroup = svg.append(’g’)

35 .attr(’transform ’, ‘translate(${margin.left},${
margin.top }) ‘);

36
37 const xAxisParentGroup = diagramGroup.append(’g’)

38 .attr(’id’, ’xAxis ’);

39
40 const yAxisParentGroup = diagramGroup.append(’g’)

41 .attr(’id’, ’yAxis ’);

42
43 const contentParentGroup = diagramGroup.append(’g’)

44 .attr(’id’, ’content ’);

45
46 /**

47 * This section defines the color scale used to color

elements according to their country.

48 * It can be defined here , as it is independent of the

data

49 */

50 const colors = d3.scaleOrdinal(d3.schemeDark2);

51
52 /**

53 * The render function is defined here.

54 * It is called to initially draw the diagram , as well

every time the data changes and the diagram should

update.

55 */

56 const render = data => {

57 console.log(’Rendering bar chart ’);

58
59 /**

60 * The following defines the transition which is used

for all animations.

61 */

62 const t = svg.transition ()

63 .duration (1500);

64
65 /**

66 * Here all the required scales , which are dependent

on the data , are defined.

67 */

47

Appendix A. Appendix

68 // The xScale is used to convert from the number of

refugees to the applicable x coordinate.

69 // It is also used while creating the x-axis legend.

70 const xScale = d3.scaleLinear ()

71 .domain ([0, d3.max(data , d => d.refugees)])

72 .range([0, contentWidth])

73 .nice();

74
75 // The yScale is used to convert country to the

applicable y coordinate.

76 // It is also used while creating the y-axis legend.

77 const yScale = d3.scaleBand ()

78 .domain(data.map(d => d.country))

79 .range([0, contentHeight])

80 .padding (0.2);

81
82 /**

83 * This section is responsible for creating the x and

y axes of the bar-chart.

84 */

85 // This creates the y-axis from the scale and adds it

to the diagram. It also removes the domain and tick

lines.

86 yAxisParentGroup.call(d3.axisLeft(yScale))

87 .selectAll(’.domain , .tick line’)

88 .remove ();

89
90 // This defines the function responsible for

formatting the x-axis ticks.

91 const xAxisTickFormat = number =>

92 d3.format(’.2s’)(number)

93 .replace(’0.0’, ’0’);

94
95 // This creates the x-axis taking the formatting into

account. Also tick lines will be drawn over the

whole diagram.

96 const xAxis = d3.axisBottom(xScale)

97 .tickFormat(xAxisTickFormat)

98 .tickSize(-contentHeight);

99
100 // This adds the x-Axis to the diagram , positions it

accordingly and removes the domain lines.

101 xAxisParentGroup.call(xAxis)

102 .attr(’transform ’, ‘translate (0,${contentHeight })
‘)

103 .select(’.domain ’)

104 .remove ();

105
106 /**

48

Appendix A. Appendix

107 * This is where the actual content of the diagram is

drawn.

108 * Therefore , a data-join is created and the behavior

of the general update pattern is specified.

109 */

110 contentParentGroup.selectAll(’g .bar’).data(data , d =>

{return d.country })

111 .join(

112 // This describes the behavior of the enter

sub-selection of the general update

pattern.

113 enter => {

114 // A group element is added for a new bar

115 const bar = enter.append(’g’)

116 .attr(’class ’, ’bar’)

117
118 // The rectangle is added to the bar. It

is styled , positioned and animated.

119 bar.append(’rect’)

120 .attr(’width ’, 0)

121 .attr(’height ’, yScale.bandwidth ())

122 .attr(’y’, d => yScale(d.country))

123 .attr(’fill’, d => colors(d))

124 .call(enter => enter.transition(t)

125 .attr(’width ’, d => xScale(

d.refugees)));

126
127 // The text is added to the bar. It is

provided the refugee value , as well as

positioned and animated.

128 bar.append(’text’)

129 .text(d => d.refugees)

130 .attr(’class ’, ’barText ’)

131 .attr(’text-anchor ’, ’end’)

132 .attr(’dy’, ’0.32em’)

133 .attr(’y’, d => yScale(d.country) +

yScale.bandwidth ()/2)

134 .attr(’x’, 0)

135 .call(enter => enter.transition(t)

136 .attr(’x’, d => {

137 // If the rectangle is too

small , the text is placed

to the right of it

138 const scaleValue = xScale(

d.refugees);

139 return (scaleValue - 60 > 0) ?

scaleValue - 10 : 60;

140 }));

141 },

49

Appendix A. Appendix

142 // This describes the behavior of the update

sub-selection of the general update

pattern.

143 update => {

144 // The rectangle is selected and updated

in position and size.

145 update.select(’rect’)

146 .call(update => update.transition(t)

147 .attr(’width ’, d => xScale(

d.refugees))

148 .attr(’height ’, yScale.bandwidth ()

)

149 .attr(’y’, d => yScale(d.country))

);

150
151 // The text is selected and updated in

value and position

152 update.select(’text’)

153 .text(d => d.refugees)

154 .call(update => update.transition(t)

155 .attr(’y’, d => yScale(d.country)

+ yScale.bandwidth ()/2)

156 .attr(’x’, d => {

157 const scaleValue = xScale(

d.refugees);

158 return (scaleValue - 60 > 0) ?

scaleValue - 10 : 60;

159 }));

160 },

161 // This describes the behavior of the update

sub-selection of the general update

pattern.

162 // Applicable elements are simply removed.

This is also the default behavior and doesn

’t need specification.

163 exit => exit.remove ()

164);

165 };

166
167 /**

168 * This section tries to subscribe to the

country-data-service for data updates.

169 * The diagram will not work without the

country-data-service.

170 */

171 try {

172 parent.registerCountryDiagramRenderCallback(render);

173 console.log(’Could successfully subscribe to the

country-data-service for data updates. ’);

50

Appendix A. Appendix

174 } catch (e) {

175 console.log(’Could not subscribe to the

country-data-service for data updates. ’ +

176 ’Data is loaded directly. ’);

177
178 loadCountryData(render)

179 }

A.2 Donut Chart - JavaScript

1 /**

2 * This script was created as part of a bachelor thesis.

3 * For more information , visit: https: // github.com/StyxOo/

styxoo.github.io

4 * Author: Luis Rothenh ä usler

5 * Last edit: 25th August 2022

6 *

7 * This file contains the JavaScript implementation of the

donut-chart.

8 */

9
10 /**

11 * In this first section , some data independent constants

are defined.

12 */

13
14 // This creates a reference to the SVG container on the

HTML page. This will contain the whole diagram.

15 const svg = d3.select(’#mainFrame ’)

16 .attr(’height ’, innerHeight)

17 .attr(’width ’, innerWidth);

18
19 // The margin definition for the diagram. The content is

padded from the sides using the margins.

20 const margin = {

21 top: 20,

22 right: 20,

23 bottom: 20,

24 left: 20

25 };

26
27 // contentWidth and contentHeight store the available

coordinate space for the content of the diagram.

28 const contentWidth = innerWidth - margin.left -

margin.right;

29 const contentHeight = innerHeight - margin.top -

margin.bottom;

30

51

Appendix A. Appendix

31 // The radius of the donut is set to use as much space as

available.

32 const radius = d3.min ([contentHeight /2, contentWidth /2]);

33
34 /**

35 * This section defines the hierarchy of the diagram.

36 * This makes later selections and debugging in the

browser inspector easier.

37 */

38 const diagramGroup = svg.append(’g’)

39 .attr(’transform ’, ‘translate(${margin.left},${
margin.top }) ‘);

40
41 const contentParentGroup = diagramGroup.append(’g’)

42 .attr(’id’, ’content ’)

43 .attr(’transform ’, ‘translate(${contentWidth /2},${
contentHeight /2}) ‘);

44
45 const diagramParentGroup = contentParentGroup.append(’g’)

46 .attr(’id’, ’diagram ’);

47
48 /**

49 * This section adds all the necessary text fields for

showing the total refugees ,

50 * as well as the refugees for the currently hovered over

country.

51 */

52 // The following adds the text to display when no section

is hovered over.

53 const totalTextGroup = contentParentGroup.append(’text’)

54 .attr(’id’, ’totalTextGroup ’)

55 .attr(’display ’, true);

56
57 totalTextGroup.append(’tspan ’)

58 .text(’So far a total of’)

59 .attr(’dy’, ’-2.3em ’)

60 .attr(’x’, 0);

61
62 const totalTextSpan = totalTextGroup.append(’tspan ’)

63 .text(’TotalNumberHere ’)

64 .attr(’class ’, ’important ’)

65 .attr(’dy’, ’1.3em’)

66 .attr(’x’, 0);

67
68 totalTextGroup.append(’tspan ’)

69 .text(’refugees have fled’)

70 .attr(’dy’, ’1.1em’)

71 .attr(’x’, 0);

72

52

Appendix A. Appendix

73 totalTextGroup.append(’tspan ’)

74 .text(’Ukraine ’)

75 .attr(’class ’, ’important ’)

76 .attr(’dy’, ’1.3em’)

77 .attr(’x’, 0);

78
79 // The following adds the text to display if a section is

hovered over.

80 const currentTextGroup = contentParentGroup.append(’text’)

81 .attr(’id’, ’currentTextGroup ’)

82 .attr(’display ’, ’none’);

83
84 const currentNumberTextSpan = currentTextGroup.append(’

tspan ’)

85 .text(’CurrentNumberHere ’)

86 .attr(’class ’, ’important ’)

87 .attr(’dy’, ’-0.5em ’)

88 .attr(’x’, 0);

89
90 currentTextGroup.append(’tspan’)

91 .text(’refugees have fled to’)

92 .attr(’dy’, ’1.1em’)

93 .attr(’x’, 0);

94
95 const currentCountryTextSpan = currentTextGroup.append(’

tspan ’)

96 .text(’DestinationCountryHere ’)

97 .attr(’class ’, ’important ’)

98 .attr(’dy’, ’1.3em’)

99 .attr(’x’, 0);

100
101 /**

102 * This section defines the color scale used to color

elements according to their country.

103 * It can be defined here , as it is independent of the

data

104 */

105 const colors = d3.scaleOrdinal(d3.schemeDark2);

106
107 /**

108 * The render function is defined here.

109 * It is called to initially draw the diagram , as well

every time the data changes and the diagram should

update.

110 */

111 const render = data => {

112 console.log(’Rendering pie chart ’);

113
114 // The total refugees are calculated and the according

53

Appendix A. Appendix

center text is updated.

115 const totalRefugees = d3.sum(data , d => d.refugees);

116 totalTextSpan.text(‘${totalRefugees }‘);
117
118 /**

119 * This section defines all helper functions and

constants necessary for creating the diagram.

120 */

121 // The pie function generate start and end angles for

each data-point.

122 const pie = d3.pie ()

123 .value(d => d.refugees)

124 .padAngle (0.015)(data);

125
126 // The arc functions is used to convert pie sections

into SVG paths.

127 const arc = d3.arc ()

128 .innerRadius(radius * .6)

129 .outerRadius(radius);

130
131 // The core of the donut animation is defined here.

132 const animate = (nodes , index , d, i, j) => {

133 nodes[index]. previousStartAngle = d.startAngle;

134 nodes[index]. previousEndAngle = d.endAngle;

135
136 return time => {

137 d.startAngle = i(time);

138 d.endAngle = j(time);

139 return arc(d);

140 };

141 };

142
143 /**

144 * The following defines the transition which is used

for all animations.

145 */

146 const t = svg.transition ()

147 .duration (1500);

148
149 /**

150 * This is where the actual content of the diagram is

drawn.

151 * Therefore , a data-join is created and the behavior

of the general update pattern is specified.

152 */

153 diagramParentGroup.selectAll(’g .arc’).data(pie , d =>

{return d.data.country })

154 .join(

155 // This describes the behavior of the enter

54

Appendix A. Appendix

sub-selection of the general update

pattern.

156 enter => {

157 // A group and a child path element are

added and styled.

158 enter.append(’g’)

159 .attr(’class ’, ’arc’)

160 .append(’path’)

161 .attr(’fill’, d => colors(d.data))

162 .call(enter => enter.transition(t)

163 // The initial animation for the

donut pieces is specified here.

164 .attrTween(’d’, (section , index ,

nodes) => {

165 const interpolateStartAngle =

d3.interpolate (0,

section.startAngle);

166 const interpolateEndAngle =

d3.interpolate (0,

section.endAngle);

167
168 return animate(nodes , index ,

section ,

interpolateStartAngle ,

interpolateEndAngle);

169 }))

170 // The behaviour on the mouseover

event is specified to update the

center text accordingly.

171 .on(’mouseover ’, (e, d) => {

172 currentNumberTextSpan.text(

d.data.refugees)

173 currentCountryTextSpan.text(

d.data.country)

174 currentTextGroup.attr(’display ’, ’

true’)

175 totalTextGroup.attr(’display ’, ’

none’)

176 })

177 // The behaviour on the mouseover

event is specified to update the

center text accordingly.

178 .on(’mouseout ’, () => {

179 currentTextGroup.attr(’display ’, ’

none’)

180 totalTextGroup.attr(’display ’, ’

true’)

181 });

182 },

55

Appendix A. Appendix

183 // This describes the behavior of the update

sub-selection of the general update

pattern.

184 update => {

185 update.select(’path’)

186 .call(update => update.transition(t)

187 // The update animation for the

donut pieces is specified here.

188 .attrTween(’d’, (section , index ,

nodes) => {

189 const interpolateStartAngle =

d3.interpolate(nodes[index

]. previousStartAngle ,

section.startAngle);

190 const interpolateEndAngle =

d3.interpolate(nodes[index

]. previousEndAngle ,

section.endAngle);

191
192 return animate(nodes , index ,

section ,

interpolateStartAngle ,

interpolateEndAngle);

193 }));

194 }

195);

196 };

197
198 /**

199 * This section tries to subscribe to the

country-data-service for data updates.

200 * The diagram will not work without the

country-data-service.

201 */

202 try {

203 parent.registerCountryDiagramRenderCallback(render);

204 console.log(’Could successfully subscribe to the

country-data-service for data updates. ’);

205 } catch (e) {

206 console.log(’Could not subscribe to the

country-data-service for data updates. ’ +

207 ’Data is loaded directly. ’);

208
209 loadCountryData(render)

210 }

A.3 Tree Map - JavaScript

56

Appendix A. Appendix

1 /**

2 * This script was created as part of a bachelor thesis.

3 * For more information , visit: https: // github.com/StyxOo/

styxoo.github.io

4 * Author: Luis Rothenh ä usler

5 * Last edit: 25th August 2022

6 *

7 * This file contains the JavaScript implementation of the

tree-map.

8 */

9
10 /**

11 * In this first section , some data independent constants

are defined.

12 */

13 // This creates a reference to the SVG container on the

HTML page. This will contain the whole diagram.

14 const svg = d3.select(’#mainFrame ’)

15 .attr(’height ’, innerHeight)

16 .attr(’width ’, innerWidth);

17
18 // The margin definition for the diagram. The content is

padded from the sides using the margins.

19 const margin = {

20 top: 20,

21 right: 20,

22 bottom: 20,

23 left: 20

24 };

25
26 // contentWidth and contentHeight store the available

coordinate space for the content of the diagram.

27 const contentWidth = innerWidth - margin.left -

margin.right;

28 const contentHeight = innerHeight - margin.top -

margin.bottom;

29
30 /**

31 * This section defines the hierarchy of the diagram.

32 * This makes later selections and debugging in the

browser inspector easier.

33 */

34 const diagramGroup = svg.append(’g’)

35 .attr(’transform ’, ‘translate(${margin.left},${
margin.top }) ‘);

36
37 const contentParentGroup = diagramGroup.append(’g’)

38 .attr(’id’, ’content ’);

39

57

Appendix A. Appendix

40 const treemapParentGroup = contentParentGroup.append(’g’)

41 .attr(’id’, ’treeMapParent ’);

42
43 /**

44 * This draws a background rectangle for the tree-map.

45 */

46 contentParentGroup.append(’rect’)

47 .attr(’id’, ’contentBackground ’)

48 .attr(’x’, 0)

49 .attr(’y’, 0)

50 .attr(’width ’, contentWidth)

51 .attr(’height ’, contentHeight)

52 .attr(’fill’, ’none’);

53
54 /**

55 * This section creates and hides the tooltip ,

56 * which is used to display information about the

currently hovered over country.

57 */

58 // A secondary small SVG created and added to the body.

59 const tooltip = d3.select("body")

60 .append(’svg’)

61 .attr(’height ’, 50)

62 .attr(’width ’, 400)

63 .attr(’id’, ’tooltip ’)

64 .style(’position ’, ’absolute ’)

65 .style(’z-index ’, 10)

66 .classed(’hidden ’, true);

67
68 // The tooltips background is styled here.

69 const background = tooltip.append(’rect’)

70 .attr(’height ’, 50)

71 .attr(’width ’, 100)

72 .attr(’rx’, 10)

73 .attr(’ry’, 10);

74
75 // The tooltips text field is created here.

76 const tooltipText = tooltip.append(’text’)

77 .attr(’y’, 20)

78 .attr(’x’, 5)

79 .text(’Some text’);

80
81 /**

82 * This section defines the color scale used to color

elements according to their country.

83 * It can be defined here , as it is independent of the

data

84 */

85 const colors = d3.scaleOrdinal(d3.schemeDark2);

58

Appendix A. Appendix

86
87 /**

88 * The render function is defined here.

89 * It is called to initially draw the diagram , as well

every time the data changes and the diagram should

update.

90 */

91 const render = data => {

92 console.log(’Rendering tree map’);

93
94 /**

95 * This section is responsible for the required

preprocessing of the data ,

96 * as the tree-map is intended to work with

hierarchical data.

97 */

98 // A dummy parent object is created here. It’s

necessary for simulating hierarchical data.

99 const parent = {

100 "country": "Dummy Parent",

101 "refugees": 0

102 };

103
104 // Adds the dummy parent to the data.

105 data.push(parent);

106
107 // This turns the data provided into a hierarchical

data structure.

108 const root = d3.stratify ()

109 .id(d => {return d.country })

110 .parentId ((d) => {

111 if (d.country === ’Dummy Parent ’)

112 return undefined

113 else

114 return ’Dummy Parent ’

115 })(data);

116
117 // The dummy parent is removed from the data again , as

it is no longer needed.

118 data.pop ();

119
120 // The total amount of refugees is calculated here.

121 root.sum(d => {return d.refugees });

122
123 // The data is converted into leaves used to draw the

tree-map.

124 d3.treemap ()

125 .size([contentWidth , contentHeight])

126 .padding (4)(root);

59

Appendix A. Appendix

127
128 /**

129 * The following defines the transition which is used

for all animations.

130 */

131 const t = svg.transition ()

132 .duration (1500);

133
134 /**

135 * This is where the actual content of the diagram is

drawn.

136 * Therefore , a data-join is created and the behavior

of the general update pattern is specified.

137 */

138 treemapParentGroup.selectAll(’rect’).data(root.leaves

(), d => {return d.data.country })

139 .join(

140 // This describes the behavior of the enter

sub-selection of the general update

pattern.

141 enter => {

142 // A rect is added for a leaf of the

tree-map. It is positioned , styled and

animated.

143 enter.append(’rect’)

144 .attr(’x’, 0)

145 .attr(’y’, ‘${contentHeight }‘)
146 .attr(’width ’, 0)

147 .attr(’height ’, 0)

148 .attr(’fill’, d => colors(d.data))

149 .call(enter => enter.transition(t)

150 .attr(’x’, d => { return d.x0; })

151 .attr(’y’, d => { return d.y0; })

152 .attr(’width’, d => { return d.x1

- d.x0; })

153 .attr(’height ’, d => { return d.y1

- d.y0; }))

154 // The mouseover event is specified to

show the tooltip and update its

text accordingly.

155 .on(’mouseover ’, (e, d) => {

156 tooltip.classed(’hidden ’, false)

157 tooltipText.text(‘${d.data.country
}\ nRefugees : ${d.data.refugees
}‘)

158 const textWidth = tooltipText.node

().getBBox ().width

159 background.attr(’width ’, textWidth

+ 10)

60

Appendix A. Appendix

160 })

161 // The mousemove event is specified to

update the tooltips position

accordingly.

162 .on(’mousemove ’, e => {

163 const position = d3.pointer(e)

164 tooltip.style("top", (position

[1]+0)+"px");

165 if (position [0] > contentWidth /2)

{

166 const rect = tooltip.select(’

rect’)

167 const width = rect.attr(’width

’)

168 tooltip.style("left", (

position [0] - width + 10) +

"px");

169 } else {

170 tooltip.style("left", (

position [0] + 35) + "px");

171 }

172 })

173 // The mouseout event is specified to

hide the tooltip.

174 .on(’mouseout ’, () => {

175 tooltip.classed(’hidden ’, true)

176 })

177
178 },

179 // This describes the behavior of the update

sub-selection of the general update

pattern.

180 update => {

181 // The applicable rects are animated to

resized and repositioned.

182 update.call(update => update.transition(t)

183 .attr(’x’, d => { return d.x0; })

184 .attr(’y’, d => { return d.y0; })

185 .attr(’width’, d => { return d.x1

- d.x0; })

186 .attr(’height ’, d => { return d.y1

- d.y0; }))

187 }

188);

189 };

190
191 /**

192 * This section tries to subscribe to the

country-data-service for data updates.

61

Appendix A. Appendix

193 * The diagram will not work without the

country-data-service.

194 */

195 try {

196 parent.registerCountryDiagramRenderCallback(render);

197 console.log(’Could successfully subscribe to the

country-data-service for data updates. ’);

198 } catch (e) {

199 console.log(’Could not subscribe to the

country-data-service for data updates. ’ +

200 ’Data is loaded directly. ’);

201
202 loadCountryData(render)

203 }

A.4 Sankey Graph - JavaScript

1 /**

2 * This script was created as part of a bachelor thesis.

3 * For more information , visit: https: // github.com/StyxOo/

styxoo.github.io

4 * Author: Luis Rothenh ä usler

5 * Last edit: 25th August 2022

6 *

7 * This file contains the JavaScript implementation of the

sankey-diagram.

8 */

9
10 /**

11 * In this first section , some data independent constants

are defined.

12 */

13 // This creates a reference to the SVG container on the

HTML page. This will contain the whole diagram.

14 const svg = d3.select(’#mainFrame ’)

15 .attr(’height ’, innerHeight)

16 .attr(’width ’, innerWidth);

17
18 // The margin definition for the diagram. The content is

padded from the sides using the margins.

19 const margin = {

20 top: 20,

21 right: 20,

22 bottom: 20,

23 left: 20

24 };

25
26 // contentWidth and contentHeight store the available

62

Appendix A. Appendix

coordinate space for the content of the diagram.

27 const contentWidth = innerWidth - margin.left -

margin.right;

28 const contentHeight = innerHeight - margin.top -

margin.bottom;

29
30 /**

31 * This section defines the hierarchy of the diagram.

32 * This makes later selections and debugging in the

browser inspector easier.

33 */

34 const diagramGroup = svg.append(’g’)

35 .attr(’transform ’, ‘translate(${margin.left},${
margin.top }) ‘);

36
37 const contentParentGroup = diagramGroup.append(’g’)

38 .attr(’id’, ’content ’);

39
40 const linksParentGroup = contentParentGroup.append(’g’)

41 .attr(’id’, ’links ’);

42
43 const countriesParentGroup = contentParentGroup.append(’g’

)

44 .attr(’id’, ’countries ’);

45
46
47 /**

48 * This section defines the color scale used to color

elements according to their country.

49 * It can be defined here , as it is independent of the

data

50 */

51 const colors = d3.scaleOrdinal(d3.schemeDark2);

52
53 /**

54 * The render function is defined here.

55 * It is called to initially draw the diagram , as well

every time the data changes and the diagram should

update.

56 */

57 const render = data => {

58 console.log(’Rendering sankey ’);

59
60 /**

61 * This section is responsible for the required

preprocessing of the data ,

62 * as the sankey-graph is intended to work with

hierarchical data.

63 */

63

Appendix A. Appendix

64 // The nodes and links necessary for creating a sankey

diagram are created from the provided data.

65 const nodes = [{ name: ’Ukraine ’}];

66 const links = [];

67 for (const d of data) {

68 nodes.push ({name: d.country });

69 links.push ({ source: ’Ukraine ’, target: d.country ,

value: d.refugees });

70 }

71
72 // The sankey function adds information to the data

allowing the nodes and links to be drawn.

73 d3.sankey ()

74 .nodeId(d => d.name)

75 .nodeAlign(d3.sankeyJustify)

76 .size([contentWidth , contentHeight])({nodes , links

});

77
78 /**

79 * The following defines the transition which is used

for all animations.

80 */

81 const t = svg.transition ()

82 .duration (1500);

83
84 /**

85 * This is where the actual content of the diagram is

drawn.

86 * Therefore , two data-joins are created and their

behavior of the general update pattern is

specified.

87 */

88 // The first data join is used to draw the nodes of

the sankey graph.

89 countriesParentGroup.selectAll(’g .country ’).data(

nodes , d => {return d.name })

90 .join(

91 // This describes the behavior of the enter

sub-selection of the general update

pattern.

92 enter => {

93 // A new group element is added for each

country

94 const country = enter.append(’g’)

95 .attr(’class ’, ’country ’);

96
97 // The rect representing the country is

created , positioned , sized , styled and

animated.

64

Appendix A. Appendix

98 country.append(’rect’)

99 .attr(’x’, 0)

100 .attr(’y’, d => d.y0)

101 .attr(’width ’, 0)

102 .attr(’height ’, d => d.y1 - d.y0)

103 .attr(’fill’, d => {

104 // To be consistent with the other

diagrams , the Ukraine does not

query the color scale.

105 if (d.name === ’Ukraine ’) {

106 return ’#0057B8’;

107 } else {

108 return colors(d);

109 }

110 })

111 .call(enter => enter.transition(t)

112 .attr(’x’, d => d.x0)

113 .attr(’width’, d => d.x1 - d.x0));

114
115 // The label text is added , provided with

the appropriate text , positioned ,

styled and animated.

116 country.append(’text’)

117 .text(d => ‘${d.name }: ${d.value}‘)
118 .attr(’x’, 0)

119 .attr(’y’, d => (d.y0 + d.y1)/2 + 5)

120 .attr(’text-anchor ’, d => d.x0 <

contentWidth /2? ’start’ : ’end’)

121 .attr(’opacity ’, ’0%’)

122 .call(enter => enter.transition(t)

123 .attr(’x’, d => d.x0 <

contentWidth /2? d.x1 +10 :

d.x0-10))

124 .call(enter => enter.transition(t).

delay (100)

125 .attr(’opacity ’, ’100%’));

126 },

127 // This describes the behavior of the update

sub-selection of the general update

pattern.

128 update => {

129 // The countries ’ rectangle is animated to

resize and reposition

130 update.select(’rect’).call(update =>

update.transition(t)

131 .attr(’height ’, d => d.y1 - d.y0)

132 .attr(’y’, d => d.y0));

133
134 // The countries ’ text label is animated

65

Appendix A. Appendix

to reposition and update its value.

135 update.select(’text’).call(update =>

update.transition(t)

136 .attr(’y’, d => (d.y0 + d.y1)/2 + 5))

137 .text(d => ‘${d.name }: ${d.value}‘);
138 }

139)

140
141 // The second data-join is used to draw the links

between the nodes.

142 linksParentGroup.selectAll(’path’).data(links , d => {

return [d.source.name , d.target.name]})

143 .join(

144 // This describes the behavior of the enter

sub-selection of the general update

pattern.

145 enter => {

146 // A path is added for each link. It is

also styled and animated.

147 enter.append(’path’)

148 // D3 constructs the appropriate SVG

path from the information available

in the link.

149 .attr(’d’, d3.sankeyLinkHorizontal ())

150 .attr(’stroke ’, d => colors(d.target))

151 // The stroke-width represents the

width of the link and depends on

the data.

152 .attr(’stroke-width ’, ({width }) =>

Math.max(1, width))

153 .attr(’fill’, d => colors(d.target))

154 .attr(’opacity ’, 0)

155 .call(enter => enter.transition(t).

delay (500)

156 .attr(’opacity ’, ’50%’));

157 },

158 // This describes the behavior of the update

sub-selection of the general update

pattern.

159 update => {

160 // The SVG paths are recalculated and the

width adjusted.

161 update.call(update => update.transition(t)

162 .attr(’d’, d3.sankeyLinkHorizontal ())

163 .attr(’stroke-width ’, ({width }) =>

Math.max(1, width)));

164 }

165);

166 };

66

Appendix A. Appendix

167
168 /**

169 * This section tries to subscribe to the

country-data-service for data updates.

170 * The diagram will not work without the

country-data-service.

171 */

172 try {

173 parent.registerCountryDiagramRenderCallback(render);

174 console.log(’Could successfully subscribe to the

country-data-service for data updates. ’);

175 } catch (e) {

176 console.log(’Could not subscribe to the

country-data-service for data updates. ’ +

177 ’Data is loaded directly. ’);

178
179 loadCountryData(render)

180 }

A.5 Circle Graph - JavaScript

1 /**

2 * This script was created as part of a bachelor thesis.

3 * For more information , visit: https: // github.com/StyxOo/

styxoo.github.io

4 * Author: Luis Rothenh ä usler

5 * Last edit: 25th August 2022

6 *

7 * This file contains the JavaScript implementation of the

sankey-diagram.

8 */

9
10 /**

11 * In this first section , some data independent constants

are defined.

12 */

13 // This creates a reference to the SVG container on the

HTML page. This will contain the whole diagram.

14 const svg = d3.select(’#mainFrame ’)

15 .attr(’height ’, innerHeight)

16 .attr(’width ’, innerWidth);

17
18 // The margin definition for the diagram. The content is

padded from the sides using the margins.

19 const margin = {

20 top: 20,

21 right: 20,

22 bottom: 30,

67

Appendix A. Appendix

23 left: 20

24 };

25
26 // contentWidth and contentHeight store the available

coordinate space for the content of the diagram.

27 const contentWidth = innerWidth - margin.left -

margin.right;

28 const contentHeight = innerHeight - margin.top -

margin.bottom;

29
30 // The factor by which the legend values should be divided

for easier readability

31 const legendScaleFactor = 100000;

32
33 /**

34 * This section defines the hierarchy of the diagram.

35 * This makes later selections and debugging in the

browser inspector easier.

36 */

37 const diagramGroup = svg.append(’g’)

38 .attr(’transform ’, ‘translate(${margin.left},${
margin.top }) ‘);

39
40 const legendParentGroup = diagramGroup.append(’g’)

41 .attr(’id’, ’legend ’);

42
43 const contentParentGroup = diagramGroup.append(’g’)

44 .attr(’id’, ’content ’);

45
46 // This text is added to inform about the scaling of the

legend.

47 legendParentGroup.append(’text’)

48 .text(’* scale in 100 ,000 refugees ’)

49 .attr(’class ’, ’description ’)

50 .attr(’x’, contentWidth)

51 .attr(’y’, contentHeight);

52
53 /**

54 * This section defines a helper functions necessary for

creating the diagram.

55 */

56 // This function converts a JavaScript date object into a

string of the style Feb-07 or Jun-15.

57 const dateToDisplay = date => {

58 const day = date.getDate ();

59 const month = date.toLocaleString(’default ’, { month:

’short ’ });

60
61 let dayString = day;

68

Appendix A. Appendix

62 if (day < 10) {

63 dayString = ’0’ + dayString;

64 }

65 return [month , dayString].join(’-’);

66 }

67
68 /**

69 * The render function is defined here.

70 * It is called to initially draw the diagram , as well

every time the data changes and the diagram should

update.

71 */

72 const render = (data , time01 = 0) => {

73 console.log(’Rendering circle chart ’);

74
75 /**

76 * The following defines the transition which is used

for all animations.

77 */

78 const t = svg.transition ()

79 .duration (1500);

80
81 /**

82 * Here all the required scales , which are dependent

on the data , are defined.

83 */

84 // The time scale is used to convert between the time

value of [0, 1], to the actual date.

85 const timeScale = d3.scaleQuantize ()

86 .domain ([0, 1])

87 .range(data.map(d => d.date));

88
89 // The radius scale provides the appropriate radius

for a given number of refugees.

90 const radiusScale = d3.scaleSqrt ()

91 .domain ([0, d3.max(data , d => d.refugees)])

92 .range ([0, contentHeight / 2]);

93
94
95 /**

96 * This section is responsible for drawing the

background size legend of the diagram.

97 * This is achieved using a data-join and specifying

the general-update-behavior.

98 */

99 // The ticks are extracted from the time scale.

100 const ticks = radiusScale.ticks (10).filter(d => d !==

0);

101 let tickData = [];

69

Appendix A. Appendix

102 for (let i = 0; i < ticks.length; i++) {

103 tickData.push ({ id: i, value: ticks[i] });

104 }

105 // A data-join is responsible for drawing the ticks.

106 legendParentGroup.selectAll(’g’).data(tickData , d => {

return d.id })

107 .join(

108 // This describes the behavior of the enter

sub-selection of the general update

pattern.

109 enter => {

110 // A group is added and styled for each

tick.

111 const tick = enter.append(’g’)

112 .attr(’opacity ’, ’0%’)

113 .call(enter => enter.transition(t)

114 .attr(’opacity ’, ’75%’));

115
116 // Each tick is provided a circle , which

is positioned and sized appropriately

117 tick.append(’circle ’)

118 .attr(’cx’, contentWidth / 2)

119 .attr(’cy’, d => contentHeight -

radiusScale(d.value))

120 .attr(’r’, d => radiusScale(d.value))

121 .attr(’class ’, ’legend ’);

122
123 // Each tick also provided with a text

label to show the quantity.

124 tick.append(’text’)

125 .text((d, i) => {

126 let value = d.value /

legendScaleFactor;

127 if (i === tickData.length - 1) {

128 value += ’*’;

129 }

130 return value;

131 })

132 .attr(’dy’, ’-0.1em ’)

133 .attr(’x’, contentWidth / 2)

134 .attr(’y’, d => contentHeight - 2 *

radiusScale(d.value));

135 },

136 // This describes the behavior of the update

sub-selection of the general update

pattern.

137 update => {

138 // The circle for each tick is animated to

change position and size accordingly.

70

Appendix A. Appendix

139 update.select(’circle ’).call(update =>

update.transition(t)

140 .attr(’cy’, d => contentHeight -

radiusScale(d.value))

141 .attr(’r’, d => radiusScale(d.value)))

;

142
143 // The text label value is updated and its

position change animated.

144 update.select(’text’)

145 .text((d, i) => {

146 let value = d.value /

legendScaleFactor;

147 if (i === tickData.length - 1) {

148 value += ’*’;

149 }

150 return value;

151 })

152 .call(update => update.transition(t)

153 .attr(’y’, d => contentHeight - 2

* radiusScale(d.value)));

154 }

155 ,

156 // This describes the behavior of the exit

sub-selection of the general update

pattern.

157 exit => {

158 // Each element is faded out using

animations , before being removed.

159 exit.call(exit => exit.transition(t)

160 .attr(’opacity ’, ’0%’))

161 .remove ();

162 }

163)

164
165
166 /**

167 * This is where the actual content of the diagram is

drawn.

168 * Therefore , a data-join is created and the behavior

of the general update pattern is specified.

169 */

170 // The current date is found using the time scale.

171 const unixTime = timeScale(time01)

172 const datum = data.find(d => d.date === unixTime)

173 contentParentGroup.selectAll(’g .content ’).data ([0],

() => [0])

174 .join(

175 // This describes the behavior of the enter

71

Appendix A. Appendix

sub-selection of the general update

pattern.

176 // This behavior is used only for the first

time the diagram is drawn.

177 enter => {

178 // A group element is added

179 const content = enter.append(’g’)

180 .attr(’class ’, ’content ’)

181
182 // A circle is added , positioned , sized ,

styled and animated accordingly.

183 content.append(’circle ’)

184 .attr(’cx’, contentWidth / 2)

185 .attr(’cy’, contentHeight)

186 .attr(’r’, 0)

187 .attr(’fill’, ’red’)

188 .attr(’opacity ’, ’50%’)

189 .call(enter => enter.transition(t)

190 .attr(’cy’, () => contentHeight -

radiusScale(datum.refugees))

191 .attr(’r’, () => radiusScale(

datum.refugees)))

192
193 // A text is added to the bottom and

provided with the correct value of

refugees.

194 content.append(’text’)

195 .attr(’x’, contentWidth / 2)

196 .attr(’y’, contentHeight + 17)

197 .text(datum.refugees + ’ refugees by ’

+ dateToDisplay(datum.date));

198
199 },

200 // This describes the behavior of the update

sub-selection of the general update

pattern.

201 update => {

202 // The circle is animated to update in

position and size.

203 update.select(’circle ’)

204 .call(update => update.transition(t)

205 .attr(’cy’, () => contentHeight -

radiusScale(datum.refugees))

206 .attr(’r’, () => radiusScale(

datum.refugees)));

207
208 // The text value is updated

209 update.select(’text’)

210 .text(datum.refugees + ’ refugees by ’

72

Appendix A. Appendix

+ dateToDisplay(datum.date));

211 }

212)

213 };

214
215 /**

216 * This section tries to subscribe to the

daily-data-service for data updates.

217 * The diagram will not work without the

daily-data-service.

218 */

219 try {

220 parent.registerDailyDiagramRenderCallback(render);

221 console.log(’Could successfully subscribe to the

daily-data-service for data updates. ’);

222 } catch (e) {

223 console.log(’Could not subscribe to the

daily-data-service for data updates. ’ +

224 ’Data is loaded directly. ’);

225
226 loadDailyData(render)

227 }

A.6 Area Graph - JavaScript

1 /**

2 * This script was created as part of a bachelor thesis.

3 * For more information , visit: https: // github.com/StyxOo/

styxoo.github.io

4 * Author: Luis Rothenh ä usler

5 * Last edit: 25th August 2022

6 *

7 * This file contains the JavaScript implementation of the

sankey-diagram.

8 */

9
10 /**

11 * In this first section , some data independent constants

are defined.

12 */

13 // This creates a reference to the SVG container on the

HTML page. This will contain the whole diagram.

14 const svg = d3.select(’#mainFrame ’)

15 .attr(’height ’, innerHeight)

16 .attr(’width ’, innerWidth);

17
18 // The margin definition for the diagram. The content is

padded from the sides using the margins.

73

Appendix A. Appendix

19 const margin = {

20 top: 20,

21 right: 20,

22 bottom: 30,

23 left: 70

24 }

25
26 // contentWidth and contentHeight store the available

coordinate space for the content of the diagram.

27 const contentWidth = innerWidth - margin.left -

margin.right

28 const contentHeight = innerHeight - margin.top -

margin.bottom

29
30 /**

31 * This section defines the hierarchy of the diagram.

32 * This makes later selections and debugging in the

browser inspector easier.

33 */

34 const diagramGroup = svg.append(’g’)

35 .attr(’transform ’, ‘translate(${margin.left},${
margin.top }) ‘);

36
37 const xAxisParentGroup = diagramGroup.append(’g’)

38 .attr(’id’, ’xAxis ’)

39
40 const yAxisParentGroup = diagramGroup.append(’g’)

41 .attr(’id’, ’yAxis ’)

42
43 const contentParentGroup = diagramGroup.append(’g’)

44 .attr(’id’, ’content ’)

45
46 contentParentGroup.append(’g’)

47 .attr(’id’, ’dateLine ’)

48
49 /**

50 * This section defines a helper functions necessary for

creating the diagram.

51 */

52 // This function converts a JavaScript date object into a

string of the style Feb-07 or Jun-15.

53 const dateToDisplay = date => {

54 const day = date.getDate ();

55 const month = date.toLocaleString(’default ’, { month:

’short ’ });

56
57 let dayString = day;

58 if (day < 10) {

59 dayString = ’0’ + dayString;

74

Appendix A. Appendix

60 }

61 return [month , dayString].join(’-’);

62 }

63
64 /**

65 * The render function is defined here.

66 * It is called to initially draw the diagram , as well

every time the data changes and the diagram should

update.

67 */

68 const render = (data , time01 = 0) => {

69 console.log(’Rendering circle chart ’)

70
71 /**

72 * The following defines the transition which is used

for all animations.

73 */

74 const t = svg.transition ()

75 .duration (1500);

76
77 /**

78 * Here all the required scales , which are dependent

on the data , are defined.

79 */

80 // The time scale is used to convert between the time

value of [0, 1], to the actual date.

81 const timeScale = d3.scaleQuantize ()

82 .domain ([0, 1])

83 .range(data.map(d => d.date))

84
85 // The y scale is used to calculate a y coordinate

from a given refugee number.

86 const yScale = d3.scaleLinear ()

87 .domain ([0, d3.max(data , d => d.refugees)])

88 .range ([contentHeight , 0])

89 .nice();

90
91 // The x scale is used to calculate a x coordinate

from a given date.

92 const xScale = d3.scaleBand ()

93 .domain(data.map(d => d.date))

94 .range ([0, contentWidth])

95 .padding (0.2);

96
97 // this is used to offset the calculated x positions ,

so they align to the center of a date-line.

98 // As the scale is a scaleBand , they would otherwise

be offset slightly to the left.

99 const xScaleWithOffset = d => {

75

Appendix A. Appendix

100 return xScale(d) + xScale.bandwidth () / 2

101 }

102
103 /**

104 * This section is responsible for creating the x and

y axes of the area-graph.

105 */

106 // The y-axis is created from the scale. Additionally ,

the tick size is specified to cover the whole

background.

107 const yAxis = d3.axisLeft(yScale)

108 .tickSize(-contentWidth)

109
110 // The y-axis is added to the diagram , but the domain

lines are removed.

111 yAxisParentGroup.call(yAxis)

112 .selectAll(’.domain ’)

113 .remove ();

114
115 // This defines the function responsible for

formatting the x-axis ticks.

116 const xAxisTickFormat = date =>

117 dateToDisplay(date)

118
119 // This specifies the modulo value to be used , so that

the resulting axis has 15 ticks.

120 const tickModulo = Math.floor(data.length / 15)

121
122 // This creates the x-axis. The values are filtered so

only 15 values appear.

123 const xAxis = d3.axisBottom(xScale)

124 .tickFormat(xAxisTickFormat)

125 .tickSize(-contentHeight)

126 .tickValues(xScale.domain ().filter ((d, i) => {

return !(i % tickModulo) }))

127
128 // The x-axis is added to the diagram , positioned to

the bottom and has its domain line removed.

129 xAxisParentGroup.call(xAxis)

130 .attr(’transform ’, ‘translate (0,${contentHeight })
‘)

131 .select(’.domain ’)

132 .remove ();

133
134 // All x-axis labels are moved a small bit further

towards the bottom.

135 xAxisParentGroup.selectAll(’text’).attr(’transform ’, ‘

translate (0,${10}) ‘)
136

76

Appendix A. Appendix

137
138 /**

139 * This section defines more helper functions

necessary for creating the diagram.

140 * As these require the scales , they are defined here.

141 */

142
143 // This function creates a SVG line for a dataset ,

where each points x and y values are calculated as

defined.

144 const line = d3.line ()

145 .x(d => xScaleWithOffset(d.date))

146 .y(d => yScale(d.refugees));

147
148 // This function creates a SVG line enclosing an area

for a dataset.

149 // Each x, as well as the higher and lower y positions

values are calculated as defined.

150 const area = d3.area ()

151 .x(d => xScaleWithOffset(d.date))

152 .y0(contentHeight)

153 .y1(d => yScale(d.refugees));

154
155 /**

156 * This is where the actual content of the diagram is

drawn. This consists of an area and a line atop.

157 * Therefore , a data-join is created and the behavior

of the general update pattern is specified.

158 * The enter behavior is only executed once , as the

diagram is loaded.

159 */

160 contentParentGroup.selectAll(’g .areaGroup ’).data ([0],

() => [0])

161 .join(

162 // This describes the behavior of the enter

sub-selection of the general update

pattern.

163 enter => {

164 // A group is added for hierarchical

purposes.

165 const areaParent = enter.append(’g’)

166 .attr(’class ’, ’areaGroup ’)

167
168 // The area is drawn in the diagram.

169 areaParent.append(’path’)

170 .attr(’class ’, ’area’)

171 .attr(’d’, area(data))

172
173 // The top-line is drawn above the area in

77

Appendix A. Appendix

the diagram.

174 areaParent.append(’path’)

175 .attr(’class ’, ’topLine ’)

176 .attr(’d’, line(data))

177
178 },

179 // This describes the behavior of the update

sub-selection of the general update

pattern.

180 update => {

181 // The area is recreated and transitions

to the new path.

182 update.select(’.area’)

183 .call(update => update.transition(t)

184 .attr(’d’, area(data)))

185
186 // The top-line is recreated and

transitions to the new path.

187 update.select(’.topLine ’)

188 .call(update => update.transition(t)

189 .attr(’d’, line(data)))

190 });

191
192 /**

193 * This section is responsible for the date-line. It

is drawn and updated using a data-join.

194 * The enter behavior is only executed once , as the

diagram is initially drawn.

195 */

196 // Using the time scale , the current date is found.

197 const unixTime = timeScale(time01)

198 const datum = data.find(d => d.date === unixTime)

199
200 contentParentGroup.selectAll(’g .dateLine ’).data ([0],

() => [0])

201 .join(

202 // This describes the behavior of the enter

sub-selection of the general update

pattern.

203 enter => {

204 // A group element is added for the

date-line.

205 const dateLine = enter.append(’g’)

206 .attr(’class ’, ’dateLine ’)

207 .attr(’transform ’, ‘translate(${
xScale.bandwidth () / 2},0) ‘)

208
209 // The circle which intersects the

date-line and top-line is added ,

78

Appendix A. Appendix

positioned and sized.

210 dateLine.append(’circle ’)

211 .attr(’class ’, ’dateLineDot ’)

212 .attr(’cx’, xScale(datum.date))

213 .attr(’cy’, yScale(datum.refugees))

214 .attr(’r’, 6)

215
216 // The line is added to the date-line.

217 dateLine.append(’line’)

218 .attr(’class ’, ’dateLineLine ’)

219 .attr(’x1’, xScale(datum.date))

220 .attr(’x2’, xScale(datum.date))

221 .attr(’y1’, yScale(datum.refugees))

222 .attr(’y2’, contentHeight)

223
224 // The text showing the current refugee

number is added above the date-line.

225 dateLine.append(’text’)

226 .attr(’class ’, ’dateLineText ’)

227 .text(datum.refugees)

228 .attr(’x’, xScale(datum.date))

229 .attr(’y’, yScale(datum.refugees) -

10)

230 },

231 // This describes the behavior of the update

sub-selection of the general update

pattern.

232 update => {

233 // The circle is transitioned to its new

position.

234 update.select(’circle ’).call(update =>

update.transition(t)

235 .attr(’cx’, xScale(datum.date))

236 .attr(’cy’, yScale(datum.refugees)))

237
238 // The line is shifted and adjusted in

length.

239 update.select(’line’).call(update =>

update.transition(t)

240 .attr(’x1’, xScale(datum.date))

241 .attr(’x2’, xScale(datum.date))

242 .attr(’y1’, yScale(datum.refugees)))

243
244 // The text value is updated and

repositioned.

245 update.select(’text’).call(update =>

update.transition(t)

246 .text(datum.refugees)

247 .attr(’x’, xScale(datum.date))

79

Appendix A. Appendix

248 .attr(’y’, yScale(datum.refugees) -

20))

249 }

250)

251 };

252
253 /**

254 * This section tries to subscribe to the

daily-data-service for data updates.

255 * The diagram will not work without the

daily-data-service.

256 */

257 try {

258 parent.registerDailyDiagramRenderCallback(render);

259 console.log(’Could successfully subscribe to the

daily-data-service for data updates. ’);

260 } catch (e) {

261 console.log(’Could not subscribe to the

daily-data-service for data updates. ’ +

262 ’Data is loaded directly. ’);

263
264 loadDailyData(render)

265 }

80

	Introduction
	Basics
	Data
	Categorical
	Numeric

	Diagrams
	Introduction
	Marks and Channels

	D3.js
	Selections
	Data Joins
	General Update Pattern
	Scales
	Plugins

	Implementation
	Data sets
	Diagrams
	Diagram selection
	Data acquisition
	Initialization
	Render

	Showcase
	Layout
	Data Updates

	Discussion
	Diagrams
	D3

	Conclusion
	Appendix
	Bar Chart - JavaScript
	Donut Chart - JavaScript
	Tree Map - JavaScript
	Sankey Graph - JavaScript
	Circle Graph - JavaScript
	Area Graph - JavaScript

