@article{MoellmannVollmer2004, author = {M{\"o}llmann, Klaus-Peter and Vollmer, Michael}, title = {Kochen mit Zentimeterwellen: Die Physik der Haushaltsmikrowelle}, series = {In: Physik in unserer Zeit 35 (2004) 1, 38-44}, journal = {In: Physik in unserer Zeit 35 (2004) 1, 38-44}, doi = {10.1002/piuz.200401032}, pages = {38 -- 44}, year = {2004}, abstract = {Die Physik der Haushaltsmikrowelle ist erstaunlich reichhaltig: Sie umfasst die Erzeugung von Mikrowellen in Magnetrons, Wellenleiter und Resonatoren f{\"u}r elektromagnetische Felder, die dielektrische Relaxation bei der Orientierungspolarisation von Wasser, und die Eindringtiefe elektromagnetischer Wellen in Materie. Eine Absch{\"a}tzung der Bedingungen f{\"u}r Multiphotonenionisation und Dissoziation zeigt, dass Haushaltsmikrowellen Speisen chemisch nicht ver{\"a}ndern k{\"o}nnen.}, language = {de} } @article{KreibigVollmer2003, author = {Kreibig, Uwe and Vollmer, Michael}, title = {Spektroskopie von Nanopartikeln}, series = {In: Praxis der Naturwissenschaften - Physik in der Schule 52 (2003) 4, 24-28}, journal = {In: Praxis der Naturwissenschaften - Physik in der Schule 52 (2003) 4, 24-28}, pages = {24 -- 28}, year = {2003}, language = {de} } @article{NiehusMoellmannTrulletal.2003, author = {Niehus, Christina and M{\"o}llmann, Klaus-Peter and Trull, Thomas and Vollmer, Michael}, title = {Umweltanalytik mit Atomabsorptions- und Fourier-Transform-Infrarot- Spektroskopie}, series = {In: Praxis der Naturwissenschaften - Physik in der Schule 52 (2003) 4, 29-36}, journal = {In: Praxis der Naturwissenschaften - Physik in der Schule 52 (2003) 4, 29-36}, pages = {29 -- 36}, year = {2003}, language = {de} } @article{KarstaedtMoellmannPinnoetal.2001, author = {Karst{\"a}dt, Detlef and M{\"o}llmann, Klaus-Peter and Pinno, Frank and Vollmer, Michael}, title = {There is more to see than eyes can detect : visualization of energy transfer processes and the laws of radiation for physics education}, series = {In: The Physics Teacher 39 (2001), 371-376}, journal = {In: The Physics Teacher 39 (2001), 371-376}, pages = {371 -- 376}, year = {2001}, language = {en} } @inproceedings{VollmerMoellmannKarstaedt1999, author = {Vollmer, Michael and M{\"o}llmann, Klaus-Peter and Karst{\"a}dt, Detlef}, title = {Lecture Demonstrations with Liquid Nitrogen}, series = {In: Proceedings / ICPE-GIREP International Conference Hands on Experiments in Physics Education [Medienkombination] : Duisburg - Germany, August 23 - 28, 1998 / ed. Gernot Born ... - Duisburg : Didaktik der Physik, Univ. - 1999 ISBN 3-00-004409-4}, booktitle = {In: Proceedings / ICPE-GIREP International Conference Hands on Experiments in Physics Education [Medienkombination] : Duisburg - Germany, August 23 - 28, 1998 / ed. Gernot Born ... - Duisburg : Didaktik der Physik, Univ. - 1999 ISBN 3-00-004409-4}, year = {1999}, language = {en} } @inproceedings{Vollmer2004, author = {Vollmer, Michael}, title = {Infrared thermal imaging for physics education : visualization of physical phenomena}, series = {In: Proceedings of the GIREP Intern. Conf. on Physics in new fields and modern applications, held August 5 - 9, 2002, in Lund, Sweden. - Lund, 2004}, booktitle = {In: Proceedings of the GIREP Intern. Conf. on Physics in new fields and modern applications, held August 5 - 9, 2002, in Lund, Sweden. - Lund, 2004}, year = {2004}, language = {en} } @article{VollmerMoellmann2013, author = {Vollmer, Michael and M{\"o}llmann, Klaus-Peter}, title = {Das Splittern nach dem Schuss (Rasante Physik)}, series = {In: Physik in unserer Zeit 44 (2013) 5, 251-252}, journal = {In: Physik in unserer Zeit 44 (2013) 5, 251-252}, doi = {10.1002/piuz.201390089}, pages = {251 -- 252}, year = {2013}, abstract = {Rohe Eier sind, zwischen Daumen und Zeigefinger gehalten, sehr stabil. Das gilt auch f{\"u}r kugelf{\"o}rmige Christbaumkugeln. Mit solchen Feiertagsutensilien lassen sich interessante physikalische Experimente zur Inkompressibilit{\"a}t von Fl{\"u}ssigkeiten anstellen - und mit Hochgeschwindigkeitskameras studieren.}, language = {de} } @article{Vollmer2013, author = {Vollmer, Michael}, title = {Jenseits unserer Wahrnehmung : Mit W{\"a}rmebildkameras im Infraroten sehen}, series = {In: Physik-Journal 12 (2013) 8/9, 47-51}, journal = {In: Physik-Journal 12 (2013) 8/9, 47-51}, pages = {47 -- 51}, year = {2013}, abstract = {Die visuelle menschliche Wahrnehmung in andere Spektralbereiche zu erweitern - daf{\"u}r gibt es viele, technisch sogar recht einfache M{\"o}glichkeiten. Insbesondere die Infrarotkameras haben sich f{\"u}r Wellenl{\"a}ngen unter 15 µm zu hervorragenden quantitativen Messinstrumenten entwickelt. Zum Einsatz kommen sie in der Grundlagen- und angewandten Forschung sowie zunehmend auch in der Lehre der Physik auf Hochschul- und Schulniveau.}, language = {de} } @article{VollmerMoellmann2013, author = {Vollmer, Michael and M{\"o}llmann, Klaus-Peter}, title = {Die M{\"u}nze im W{\"u}rfelturm (Rasante Physik)}, series = {In: Physik in unserer Zeit 44 (2013) 4, 200-201}, journal = {In: Physik in unserer Zeit 44 (2013) 4, 200-201}, doi = {10.1002/piuz.201390066}, pages = {200 -- 201}, year = {2013}, abstract = {Hinter manchem vermeintlichen Zaubertrick versteckt sich einfache Physik. Das entzieht den Tricks aber nicht ihre Faszination. Im Gegenteil. Ein gutes Beispiel ist das folgende R{\"a}tsel, das sowohl auf Kindergeburtstagen als auch auf Partys mit Erwachsenen erfolgreich eingesetzt werden kann. Hochgeschwindigkeits-Aufnahmen erm{\"o}glichen die physikalische Analyse.}, language = {de} } @article{VollmerMoellmann2013, author = {Vollmer, Michael and M{\"o}llmann, Klaus-Peter}, title = {Zerst{\"a}uben großer Wassertropfen (Rasante Physik),}, series = {In: Physik in unserer Zeit 44 (2013) 3, 149-150}, journal = {In: Physik in unserer Zeit 44 (2013) 3, 149-150}, doi = {10.1002/piuz.201390049}, pages = {149 -- 150}, year = {2013}, abstract = {In der Natur kommen Wassertropfen in verschiedenen Gr{\"o}ßen vor. Kleine Tr{\"o}pfchen von etwa 10 μm sind {\"u}blich in Nebel und Wolken, w{\"a}hrend Regentropfen bis zu 5 mm Durchmesser erreichen k{\"o}nnen. Gr{\"o}ßere Tropfen k{\"o}nnen oszillieren, w{\"a}hrend kleinere im Allgemeinen kugelf{\"o}rmig sind. Offensichtlich k{\"o}nnen Wassertropfen nicht beliebig groß werden. Welche Faktoren beschr{\"a}nken die m{\"o}gliche Gr{\"o}ße?}, language = {de} }