@incollection{VollmerMoellmann2013, author = {Vollmer, Michael and M{\"o}llmann, Klaus-Peter}, title = {The Allure of Multicolored Images - Building Thermography Examined Closely}, series = {In: Renewable energy : sustainable concepts for the energy change / ed. by Roland Wengenmayr and Thomas B{\"u}hrke. - 2. ed., [completely rev. and updated]. - Weinheim : Wiley-VCH, 2013. - S. 145 - 147 ISBN 978-3-527-41187-0}, booktitle = {In: Renewable energy : sustainable concepts for the energy change / ed. by Roland Wengenmayr and Thomas B{\"u}hrke. - 2. ed., [completely rev. and updated]. - Weinheim : Wiley-VCH, 2013. - S. 145 - 147 ISBN 978-3-527-41187-0}, isbn = {978-3-527-41187-0}, year = {2013}, language = {en} } @article{VollmerMoellmann2013, author = {Vollmer, Michael and M{\"o}llmann, Klaus-Peter}, title = {Thermodynamics of gases: combustion processes, analyzed in slow motion}, series = {In: Physics Education 48 (2013) 1, 22-27}, journal = {In: Physics Education 48 (2013) 1, 22-27}, pages = {22 -- 27}, year = {2013}, language = {en} } @article{VollmerMoellmann2012, author = {Vollmer, Michael and M{\"o}llmann, Klaus-Peter}, title = {Surface temperatures of the Moon: measurements with commercial infrared cameras}, series = {In: European Journal of Physics 33 (2012), 1703-1719}, journal = {In: European Journal of Physics 33 (2012), 1703-1719}, pages = {1703 -- 1719}, year = {2012}, language = {en} } @article{VollmerMoellmann2012, author = {Vollmer, Michael and M{\"o}llmann, Klaus-Peter}, title = {Hochgeschwindigkeitskameras im Physikunterricht}, series = {In: Der mathematische und naturwissenschaftliche Unterricht : MNU 65 (2012) 6, 349-355}, journal = {In: Der mathematische und naturwissenschaftliche Unterricht : MNU 65 (2012) 6, 349-355}, pages = {349 -- 355}, year = {2012}, language = {de} } @article{VollmerMoellmann2012, author = {Vollmer, Michael and M{\"o}llmann, Klaus-Peter}, title = {Tropfen auf dem kalten Wein}, series = {In: Physik in unserer Zeit 43 (2012) 5, 252-253}, journal = {In: Physik in unserer Zeit 43 (2012) 5, 252-253}, doi = {10.1002/piuz.201290081}, pages = {252 -- 253}, year = {2012}, abstract = {Viele kennen die leidvolle Erfahrung: Beim Fr{\"u}hst{\"u}ckstisch gießt man einen Schuss Milch in den Kaffee, und prompt spritzt eine kleine Font{\"a}ne aus der Tasse, und ein Tropfen landet - hier gilt Murphys Gesetz fast immer - auf dem frisch angezogenen Hemd oder mit etwas Gl{\"u}ck nur auf der Tischdecke. Man kann dieses Ph{\"a}nomen unter kontrollierten Bedingungen mit Hochgeschwindigkeits-Kameras analysieren und interessante Physik hinter den Spritzern aufsp{\"u}ren.}, language = {de} } @article{VollmerMoellmann2012, author = {Vollmer, Michael and M{\"o}llmann, Klaus-Peter}, title = {Raindrops keep falling on my head}, series = {In: Physik in unserer Zeit 43 (2012) 4, 200 - 201}, journal = {In: Physik in unserer Zeit 43 (2012) 4, 200 - 201}, doi = {10.1002/piuz.201290063}, pages = {200 -- 201}, year = {2012}, abstract = {Fallende Tropfen oszillieren zwischen zigarren- und pfannkuchen{\"a}hnlichen Formen. Das hat praktische Konsequenzen f{\"u}r moderne Methoden der Niederschlagsbestimmung, da Regenradarger{\"a}te als Eingangsparameter die statische Gleichgewichtsform der Tropfen zugrunde legen. Deshalb muss man auch deren dynamisches Verhalten kennen. Mit Hochgeschwindigkeitsvideos l{\"a}sst sich dieses sehr gut beobachten.}, language = {de} } @article{VollmerMoellmann2012, author = {Vollmer, Michael and M{\"o}llmann, Klaus-Peter}, title = {Auf der Spur von Kohlendioxid : CO2-Nachweis mit Infrarotkameras}, series = {In: Physik in unserer Zeit 43 (2012) 4, 181-185}, journal = {In: Physik in unserer Zeit 43 (2012) 4, 181-185}, doi = {10.1002/piuz.201201306}, pages = {181 -- 185}, year = {2012}, abstract = {Mit kommerziellen Infrarotkameras lassen sich bereits seit einigen Jahren erfolgreich ausgew{\"a}hlte Gase qualitativ nachweisen. Voraussetzung ist ein thermischer Kontrast des Gases zum Hintergrund. Laboruntersuchungen haben gezeigt, dass auch CO2 ohne Probleme nachweisbar ist. Im Labor k{\"o}nnen bei Hintergrundtemperaturen von nur 35 °C minimale Gasvolumenstr{\"o}me von 1ml/min, entsprechend 0,5 m3/Jahr, detektiert werden, was Anwendungen beispielsweise im Bereich der CCS-Technologie m{\"o}glich erscheinen l{\"a}sst.}, language = {de} } @article{VollmerMoellmann2012, author = {Vollmer, Michael and M{\"o}llmann, Klaus-Peter}, title = {Lorentz-Pendel in der Gl{\"u}hbirne}, series = {In: Physik in unserer Zeit 43 (2012) 2, 96-97}, journal = {In: Physik in unserer Zeit 43 (2012) 2, 96-97}, doi = {10.1002/piuz.201290031}, pages = {96 -- 97}, year = {2012}, abstract = {Die Lorentz-Kraft auf bewegte Ladungen im Magnetfeld l{\"a}sst sich auf unterschiedliche Weise demonstrieren. Ein beeindruckendes Beispiel ist die wechselstromdurchflossene Wendel einer Gl{\"u}hlampe, die in einem zeitlich konstanten Magnetfeld schwingt. Mit einer Hochgeschwindigkeitskamera kann man diese schnelle Bewegung zeitaufgel{\"o}st darstellen.}, language = {de} } @article{VollmerMoellmann2012, author = {Vollmer, Michael and M{\"o}llmann, Klaus-Peter}, title = {Feynmans R{\"a}tsel der brechenden Spaghetti}, series = {In: Physik in unserer Zeit 43 (2012) 1, 46-47}, journal = {In: Physik in unserer Zeit 43 (2012) 1, 46-47}, doi = {10.1002/piuz.201290006}, pages = {46 -- 47}, year = {2012}, abstract = {Wenn man eine ungekochte Spaghetti-Nudel an beiden Enden fasst und zerbricht, entstehen immer drei Bruchst{\"u}cke oder mehr, nie jedoch nur zwei. Warum das so ist, fragte sich schon Richard Feynman. Mittlerweile ist die Frage gekl{\"a}rt, und Hochgeschwindigkeitsaufnahmen zeigen den Vorgang im Detail.}, language = {de} } @article{VollmerMoellmann2011, author = {Vollmer, Michael and M{\"o}llmann, Klaus-Peter}, title = {Zersplitterndes Holz auf rohen Eiern}, series = {In: Physik in unserer Zeit 42 (2011) 6, 305-306}, journal = {In: Physik in unserer Zeit 42 (2011) 6, 305-306}, doi = {10.1002/piuz.201190083}, pages = {305 -- 306}, year = {2011}, abstract = {Manch einer kennt die Show-Darbietungen, bei denen ein Sportler mit bloßen H{\"a}nden oder F{\"u}ßen Mauersteine oder Holzplatten zertr{\"u}mmert. Schon lange sind die physikalischen Hintergr{\"u}nde der Bruchmechanik und Dynamik bekannt, die diese scheinbar unm{\"o}glichen Kunstst{\"u}cke erlauben. Dennoch steht das Verst{\"a}ndnis der physikalischen Bewegungsgesetze h{\"a}ufig im Gegensatz zu unserer Alltagserwartung.}, language = {de} }