@article{VollmerMoellmann2012, author = {Vollmer, Michael and M{\"o}llmann, Klaus-Peter}, title = {Feynmans R{\"a}tsel der brechenden Spaghetti}, series = {In: Physik in unserer Zeit 43 (2012) 1, 46-47}, journal = {In: Physik in unserer Zeit 43 (2012) 1, 46-47}, doi = {10.1002/piuz.201290006}, pages = {46 -- 47}, year = {2012}, abstract = {Wenn man eine ungekochte Spaghetti-Nudel an beiden Enden fasst und zerbricht, entstehen immer drei Bruchst{\"u}cke oder mehr, nie jedoch nur zwei. Warum das so ist, fragte sich schon Richard Feynman. Mittlerweile ist die Frage gekl{\"a}rt, und Hochgeschwindigkeitsaufnahmen zeigen den Vorgang im Detail.}, language = {de} } @article{VollmerMoellmann2011, author = {Vollmer, Michael and M{\"o}llmann, Klaus-Peter}, title = {Zersplitterndes Holz auf rohen Eiern}, series = {In: Physik in unserer Zeit 42 (2011) 6, 305-306}, journal = {In: Physik in unserer Zeit 42 (2011) 6, 305-306}, doi = {10.1002/piuz.201190083}, pages = {305 -- 306}, year = {2011}, abstract = {Manch einer kennt die Show-Darbietungen, bei denen ein Sportler mit bloßen H{\"a}nden oder F{\"u}ßen Mauersteine oder Holzplatten zertr{\"u}mmert. Schon lange sind die physikalischen Hintergr{\"u}nde der Bruchmechanik und Dynamik bekannt, die diese scheinbar unm{\"o}glichen Kunstst{\"u}cke erlauben. Dennoch steht das Verst{\"a}ndnis der physikalischen Bewegungsgesetze h{\"a}ufig im Gegensatz zu unserer Alltagserwartung.}, language = {de} } @article{VollmerMoellmann2011, author = {Vollmer, Michael and M{\"o}llmann, Klaus-Peter}, title = {Das seltsame Verhalten von Superb{\"a}llen}, series = {In: Physik in unserer Zeit 42 (2011) 5, 255-256}, journal = {In: Physik in unserer Zeit 42 (2011) 5, 255-256}, doi = {10.1002/piuz.201190066}, pages = {255 -- 256}, year = {2011}, abstract = {Superb{\"a}lle sind nicht nur f{\"u}r Kinder ein Riesenspaß, auch "ausgewachsene" Physiker k{\"o}nnen sich f{\"u}r dieses, auch Flummi genannte, Spielzeug begeistern. Sie springen deutlich h{\"o}her von einer Unterlage wieder weg als andere B{\"a}lle, und bei schr{\"a}gem Wurf {\"a}ndern sich bei den Kollisionen mit der Unterlage Betrag und Orientierung der Eigendrehung. Die sehr eigent{\"u}mliche Kinematik l{\"a}sst sich mit Hochgeschwindigkeitskameras gut untersuchen.}, language = {de} } @article{VollmerMoellmann2011, author = {Vollmer, Michael and M{\"o}llmann, Klaus-Peter}, title = {Der Ring-in-die-Kette Zaubertrick und ein historisches Vakuumexperiment in neuem Gewand: Erkenntnisgewinn durch Hochgeschwindigkeitsaufnahmen}, series = {In: Praxis der Naturwissenschaften - Physik in der Schule 60 (2011) 5, 30-35}, journal = {In: Praxis der Naturwissenschaften - Physik in der Schule 60 (2011) 5, 30-35}, pages = {30 -- 35}, year = {2011}, language = {de} } @article{VollmerMoellmannPinno2011, author = {Vollmer, Michael and M{\"o}llmann, Klaus-Peter and Pinno, Frank}, title = {Die Versuchung bunter Bilder - Geb{\"a}udethermographie unter der Lupe}, series = {In: Physik in unserer Zeit 42 (2011) 4, 176-184}, journal = {In: Physik in unserer Zeit 42 (2011) 4, 176-184}, doi = {10.1002/piuz.201101272}, pages = {176 -- 184}, year = {2011}, abstract = {Geb{\"a}udethermographie mit Infrarotkameras wird immer popul{\"a}rer, da eine gute thermische Isolation der H{\"a}user zunehmend gefragt ist. Ihre bunten Falschfarbenbilder sind aussagekr{\"a}ftig, f{\"u}hren aber bei fehlender Fachkenntnis zu massiven Fehlinterpretationen. Infrarotkameras erfassen nur einen Ausschnitt aus dem Infrarotspektrum strahlender K{\"o}rper. Grunds{\"a}tzlich muss man das Emissionsverhalten der aufgenommenen K{\"o}rper und das Absorptionsverhalten der Luft zwischen diesen und der Kamera kennen. Eine richtige Bildinterpretation erfordert zudem Kenntnisse {\"u}ber den Standort, Abschattungen, das Wetter und die Aufheizung sonnenbeschienener Fl{\"a}chen in den Tagen zuvor. In der Regel sind Innenaufnahmen eher aussagekr{\"a}ftig. Neben der Beurteilung der W{\"a}rmeisolation eignet sich die Thermographie auch, um verborgene Strukturen wie etwa verputztes Fachwerk oder Heizungsrohre sichtbar zu machen.}, language = {de} } @article{Vollmer2003, author = {Vollmer, Michael}, title = {Freihandexperimente zur Spektroskopie im Unterricht und als Hausaufgabe}, series = {In: Praxis der Naturwissenschaften - Physik in der Schule 52 (2003) 4, 9-18}, journal = {In: Praxis der Naturwissenschaften - Physik in der Schule 52 (2003) 4, 9-18}, pages = {9 -- 18}, year = {2003}, language = {de} } @article{Vollmer2003, author = {Vollmer, Michael}, title = {Grundlagen der optischen Spektroskopie in der Schule}, series = {In: Praxis der Naturwissenschaften - Physik in der Schule 52 (2003) 4, 2-8}, journal = {In: Praxis der Naturwissenschaften - Physik in der Schule 52 (2003) 4, 2-8}, pages = {2 -- 8}, year = {2003}, language = {de} } @article{Vollmer2003, author = {Vollmer, Michael}, title = {Physikdidaktik in Deutschland: Ergebnisse einer Umfrage der Europ{\"a}ischen Physikalischen Gesellschaft}, series = {In: PhyDid A, Physik und Didaktik in Schule und Hochschule 2 (2003) 2, 90 -99}, journal = {In: PhyDid A, Physik und Didaktik in Schule und Hochschule 2 (2003) 2, 90 -99}, pages = {90 -- 99}, year = {2003}, abstract = {Aufgrund einer Initiative der Division of Education der europ{\"a}ischen physikalischen Gesellschaft (EPS) wurde eine europaweite Umfrage zur Physiklehrerausbildung und Forschung in Bereich Fachdidaktik der Physik durchgef{\"u}hrt. Insgesamt wurden Fachleute in 30 L{\"a}ndern befragt. Da in der Bundesrepublik bez{\"u}glich der Lehrerausbildung mit den 16 verschiedenen Regularien der Bundesl{\"a}nder quasi ein kleines Europa existiert, wurde zus{\"a}tzlich jeweils mindestens ein Fachdidaktiker in jedem Bundesland befragt, um f{\"u}r Deutschland eine detaillierte Analyse vornehmen zu k{\"o}nnen. Insgesamt ergab sich in Deutschland ein R{\"u}cklauf von 22 Frageb{\"o}gen aus den 16 Bundesl{\"a}ndern. Die wesentlichen Ergebnisse der deutschen Umfrage werden im Zusammenhang mit fr{\"u}heren Studien und Empfehlungen zur Fachdidaktik vorgestellt.}, language = {de} } @article{NiehusTrullMoellmannetal.2002, author = {Niehus, Christina and Trull, Thomas and M{\"o}llmann, Klaus-Peter and Vollmer, Michael}, title = {Wie viel Schwermetall ist im Trinkwasser?: Optische Spektroskopie}, series = {In: Physik in unserer Zeit 33 (2002) 6, 274-282}, journal = {In: Physik in unserer Zeit 33 (2002) 6, 274-282}, doi = {10.1002/1521-3943(200211)33:6<274::AID-PIUZ274>3.0.CO;2-V}, pages = {274 -- 282}, year = {2002}, abstract = {Die moderne optische Spektroskopie kann geringste Substanzmengen nachweisen. F{\"u}r schnelle Routinemessungen reichen konventionelle Zweistrahl-Spektralphotometer. Eine wesentlich h{\"o}here Nachweisempfindlichkeit im ppm- oder sogar ppb-Bereich erm{\"o}glichen das Atomabsorptions-Spektrometer (AAS) und das Fourier-Transformations-Infrarot-Spektrometer (FTIR). Ein AAS atomisiert die Probe vollst{\"a}ndig und weist dann einzelne Elemente nach. Deshalb ist es zum Beispiel f{\"u}r die Schwermetall-Analyse geeignet. Bei der Analyse von Molek{\"u}len dominieren heute FTIR-Ger{\"a}te. Ihr Herzst{\"u}ck ist meist ein Michelson-Interferometer. Zusammen mit schnellen Fourier-Algorithmen erlaubt es, sehr schnell breite Spektren aufzunehmen. Station{\"a}re und mobile FTIR-Ger{\"a}te k{\"o}nnen vielf{\"a}ltig eingesetzt werden.}, language = {de} } @article{Vollmer2002, author = {Vollmer, Michael}, title = {Vakuumphysik im Alltag: Physikalische Freihand- und Low-cost-Experimente}, series = {In: PhyDid A - Physik und Didaktik in Schule und Hochschule 1 (2002) 1, 19-32}, journal = {In: PhyDid A - Physik und Didaktik in Schule und Hochschule 1 (2002) 1, 19-32}, pages = {19 -- 32}, year = {2002}, abstract = {Es werden eine Reihe einfacher Freihandexperimente zum Thema Unterdruck vorgestellt. Viele der Beispiele sind vom grundlegenden Aufbau her bekannt, gestatten jedoch neue Varianten, Erweiterungen bzw. die Korrektur von Fehlvorstellungen. Neben der Druckmessung in Einmachgl{\"a}sern und der Funktionsweise von Ausgussreinigern und Saughaken werden Druck- sowie Tragf{\"a}higkeitsmessungen an Staubsaugern diskutiert. Des weiteren wird untersucht, welche Saugh{\"o}he per Strohhalm realisiert werden kann. Es wird eine physikalisch einleuchtende, aber dennoch verbl{\"u}ffende Erweiterung des Versuchs mit dem umgedrehten Wasserglas pr{\"a}sentiert.}, language = {de} }