@article{DietenbergerJechowKalinkatetal.2024, author = {Dietenberger, Manuel and Jechow, Andreas and Kalinkat, Gregor and Schroer, Sibylle and Saathoff, Birte and H{\"o}lker, Franz}, title = {Reducing the fatal attraction of nocturnal insects using tailored and shielded road lights}, series = {communications biology}, volume = {7}, journal = {communications biology}, publisher = {Nature}, doi = {10.1038/s42003-024-06304-4}, pages = {1 -- 12}, year = {2024}, abstract = {The attraction of insects to artificial light is a global environmental problem with far-reaching implications for ecosystems. Since light pollution is rarely integrated into conservation approaches, effective mitigation strategies towards environmentally friendly lighting that drastically reduce insect attraction are urgently needed. Here, we tested novel luminaires in two experiments (i) at a controlled experimental field site and (ii) on streets within three municipalities. The luminaires are individually tailored to only emit light onto the target area and to reduce spill light. In addition, a customized shielding renders the light source nearly invisible beyond the lit area. We show that these novel luminaires significantly reduce the attraction effect on flying insects compared to different conventional luminaires with the same illuminance on the ground. This underlines the huge potential of spatially optimized lighting to help to bend the curve of global insect decline without compromising human safety aspects. A customized light distribution should therefore be part of sustainable future lighting concepts, most relevant in the vicinity of protected areas.}, language = {en} } @article{DietenbergerJechowSannetal.2025, author = {Dietenberger, Manuel and Jechow, Andreas and Sann, Manuela and H{\"o}lker, Franz}, title = {Shedding light on dark taxa: exploring a cryptic diversity of parasitoid wasps affected by artificial light at night}, series = {Scientific Reports}, volume = {15}, journal = {Scientific Reports}, publisher = {Nature}, doi = {10.1038/s41598-025-88111-3}, pages = {1 -- 12}, year = {2025}, abstract = {Artificial light at night (ALAN) contributes to the globally observed insect decline. ALAN attracts nocturnal insects from their native ecosystems and disturbs their functions in the food web. Road lights in this context are ubiquitous and relevant ALAN sources that are often not considered in conservation approaches. In a previous study we showed that shielded LED road lights are suited to be part of conservation measures by effectively reducing the attraction of nocturnal insects. Here we show that this positive effect holds true for parasitoid wasps in an experimental BACI design (Before-After-Control-Impact). Combining morphological with molecular and phylogenetic analyses, we identified 106 individuals (62 morphotypes) of a minimum of 45 genera out of 13 Hymenoptera families. We were able to identify 21 species, 11 of which are newly reported in Southern Germany (Baden-W{\"u}rttemberg). Further combining knowledge on life history and host appearance from our data and the literature, we discuss potential impacts of ALAN ranging from an influence on nocturnal pollination via parasitoid pressure on moth species and biological control of invasive pest species to tritrophic interactions between primary and secondary parasitoids. We conclusively think that shielded LED road lights will reduce the ecological impact of ALAN on parasitoid wasps in a large and undescribed number of taxa with different host associations, likely affecting associated ecosystem functions such as biological control.}, language = {en} }