@article{VollmerMoellmann2013, author = {Vollmer, Michael and M{\"o}llmann, Klaus-Peter}, title = {Die M{\"u}nze im W{\"u}rfelturm (Rasante Physik)}, series = {In: Physik in unserer Zeit 44 (2013) 4, 200-201}, journal = {In: Physik in unserer Zeit 44 (2013) 4, 200-201}, doi = {10.1002/piuz.201390066}, pages = {200 -- 201}, year = {2013}, abstract = {Hinter manchem vermeintlichen Zaubertrick versteckt sich einfache Physik. Das entzieht den Tricks aber nicht ihre Faszination. Im Gegenteil. Ein gutes Beispiel ist das folgende R{\"a}tsel, das sowohl auf Kindergeburtstagen als auch auf Partys mit Erwachsenen erfolgreich eingesetzt werden kann. Hochgeschwindigkeits-Aufnahmen erm{\"o}glichen die physikalische Analyse.}, language = {de} } @article{VollmerMoellmann2013, author = {Vollmer, Michael and M{\"o}llmann, Klaus-Peter}, title = {Zerst{\"a}uben großer Wassertropfen (Rasante Physik),}, series = {In: Physik in unserer Zeit 44 (2013) 3, 149-150}, journal = {In: Physik in unserer Zeit 44 (2013) 3, 149-150}, doi = {10.1002/piuz.201390049}, pages = {149 -- 150}, year = {2013}, abstract = {In der Natur kommen Wassertropfen in verschiedenen Gr{\"o}ßen vor. Kleine Tr{\"o}pfchen von etwa 10 μm sind {\"u}blich in Nebel und Wolken, w{\"a}hrend Regentropfen bis zu 5 mm Durchmesser erreichen k{\"o}nnen. Gr{\"o}ßere Tropfen k{\"o}nnen oszillieren, w{\"a}hrend kleinere im Allgemeinen kugelf{\"o}rmig sind. Offensichtlich k{\"o}nnen Wassertropfen nicht beliebig groß werden. Welche Faktoren beschr{\"a}nken die m{\"o}gliche Gr{\"o}ße?}, language = {de} } @article{VollmerMoellmann2013, author = {Vollmer, Michael and M{\"o}llmann, Klaus-Peter}, title = {Schneller als der freie Fall (Rasante Physik)}, series = {In: Physik in unserer Zeit 44 (2013) 1, 46-47}, journal = {In: Physik in unserer Zeit 44 (2013) 1, 46-47}, doi = {10.1002/piuz.201390006}, pages = {46 -- 47}, year = {2013}, abstract = {L{\"a}sst man einen K{\"o}rper fallen, so beschleunigt dieser auf Meeresh{\"o}he in unseren Breiten bekanntermaßen mit etwa 9,8 m/s2. Ist es dennoch m{\"o}glich, dass unter diesen Bedingungen ein K{\"o}rper schneller fallen kann? Was auf den ersten Blick paradox erscheint, ist durchaus m{\"o}glich, wie sich mit Hochgeschwindigkeitsvideos eindrucksvoll belegen l{\"a}sst.}, language = {de} } @article{VollmerMoellmann2012, author = {Vollmer, Michael and M{\"o}llmann, Klaus-Peter}, title = {Prost Neujahr: die Physik von Champagnerflaschen (Rasante Physik)}, series = {In: Physik in unserer Zeit 43 (2012) 6, 307-308}, journal = {In: Physik in unserer Zeit 43 (2012) 6, 307-308}, doi = {10.1002/piuz.201290100}, pages = {307 -- 308}, year = {2012}, abstract = {Sekt und Champagner geh{\"o}ren zur Silvesterfeier wie ein pr{\"a}chtiges Feuerwerk. Physiker verfallen hierbei leicht in Diskussionen {\"u}ber die Wurfparabeln der Sektkorken oder das akustische Ph{\"a}nomen des Knalls. Hochgeschwindigkeitskameras er{\"o}ffnen zus{\"a}tzlich die M{\"o}glichkeit, sehr schnell ablaufende Prozesse bei der Handhabung der edlen Tropfen sichtbar zu machen, zum Beispiel die adiabatische Expansion des Treibgases.}, language = {de} } @article{VollmerMoellmann2012, author = {Vollmer, Michael and M{\"o}llmann, Klaus-Peter}, title = {Wie warm ist es auf dem Mond?}, series = {In: Sterne und Weltraum 51 (2012), 82-86, ISSN 0039-1263}, journal = {In: Sterne und Weltraum 51 (2012), 82-86, ISSN 0039-1263}, issn = {0039-1263}, pages = {82 -- 86}, year = {2012}, language = {de} } @article{VollmerMoellmann2011, author = {Vollmer, Michael and M{\"o}llmann, Klaus-Peter}, title = {Von B{\"a}llen und Schl{\"a}gern}, series = {In: Physik in unserer Zeit 42 (2011) 4, 202-203}, journal = {In: Physik in unserer Zeit 42 (2011) 4, 202-203}, doi = {10.1002/piuz.201190046}, pages = {202 -- 203}, year = {2011}, abstract = {B{\"a}lle sind eines der beliebtesten Spielzeuge von Kindern und Erwachsenen. Aus physikalischer Sicht haben alle Ballspiele eines gemeinsam: mehr oder minder stark deformierbare B{\"a}lle kollidieren mit Oberfl{\"a}chen. Die Physik vollst{\"a}ndig elastischer Kollisionen beinhaltet zwar nur recht elementare Physik. In der Praxis sind Kollisionen jedoch praktisch nie hundertprozentig elastisch, und außerdem laufen die Prozesse so schnell ab, dass Details nur mit Hochgeschwindigkeitsaufnahmen sichtbar werden.}, language = {de} } @article{VollmerMoellmann2011, author = {Vollmer, Michael and M{\"o}llmann, Klaus-Peter}, title = {Platzende Ballons - Retardierung in der Mechanik}, series = {In: Physik in unserer Zeit 42 (2011) 3, 150-151}, journal = {In: Physik in unserer Zeit 42 (2011) 3, 150-151}, doi = {10.1002/piuz.201190027}, pages = {150 -- 151}, year = {2011}, abstract = {Die endliche Ausbreitungsgeschwindigkeit einer St{\"o}rung f{\"u}hrt zu einer verz{\"o}gerten Wirkung. Dieses Ph{\"a}nomen nennt man in der Physik Retardierung. Am h{\"a}ufigsten werden retardierte elektromagnetische Felder oder Potentiale in der Elektrodynamik behandelt. Auch in der Mechanik sind solche Verz{\"o}gerungseffekte bei der Schallausbreitung in Luft oder Gasen ohne weiteres wahrnehmbar, beispielsweise beim Echo. Deutlich schwieriger beobachtbar sind sie in der Mechanik nichtgasf{\"o}rmiger Materialien. Hochgeschwindigkeitskameras zeigen dieses Ph{\"a}nomen auf beeindruckende Weise.}, language = {de} } @incollection{VollmerMoellmann2012, author = {Vollmer, Michael and M{\"o}llmann, Klaus-Peter}, title = {Die Versuchung bunter Bilder - Geb{\"a}udethermographie unter der Lupe}, series = {In: Erneuerbare Energie : Konzepte f{\"u}r die Energiewende ; [mit Informationen zu aktuellen F{\"o}rderprogrammen] / hrsg. von Thomas B{\"u}hrke ... - 3., aktualisierte und erw. Aufl. - Weinheim : Wiley-VCH-Verl., 2012 ISBN 978-3-527-41108-5}, booktitle = {In: Erneuerbare Energie : Konzepte f{\"u}r die Energiewende ; [mit Informationen zu aktuellen F{\"o}rderprogrammen] / hrsg. von Thomas B{\"u}hrke ... - 3., aktualisierte und erw. Aufl. - Weinheim : Wiley-VCH-Verl., 2012 ISBN 978-3-527-41108-5}, pages = {164 -- 167}, year = {2012}, language = {de} } @article{VollmerMoellmann2011, author = {Vollmer, Michael and M{\"o}llmann, Klaus-Peter}, title = {High Speed - Slow Motion: Technik digitaler Hochgeschwindigkeitskameras}, series = {In: Physik in unserer Zeit 42 (2011) 3, 144- 148}, journal = {In: Physik in unserer Zeit 42 (2011) 3, 144- 148}, doi = {10.1002/piuz.201101270}, pages = {144 -- 148}, year = {2011}, abstract = {Moderne Hochgeschwindigkeitskameras arbeiten digital. Ihre CMOS- oder CCD-Sensoren erm{\"o}glichen hohe Bildwiederholraten. Bei professionelleren Systemen l{\"a}sst sich dabei die Integrationszeit, also die Belichtungszeit der Einzelbilder, unabh{\"a}ngig von der Bildwiederholrate einstellen. F{\"u}r die hohe Aufnahmegeschwindigkeit sorgt ein zweistufiger Prozess. Ein sehr schneller interner Speicher nimmt die Bilddaten zuerst auf, dann schreibt eine Ausleseelektronik diese in einen externen Speicher. Neben teuren Profisystemen w{\"a}chst inzwischen das Segment an preiswerten Amateurkameras mit High-Speed-Option.}, language = {de} } @article{VollmerMoellmann2008, author = {Vollmer, Michael and M{\"o}llmann, Klaus-Peter}, title = {Thermographie : Grundlagen, Forschung und moderne Anwendungen in Industrie und Technik}, series = {In: Praxis der Naturwissenschaften - Physik in der Schule 57 (2008) 8, 5-14}, journal = {In: Praxis der Naturwissenschaften - Physik in der Schule 57 (2008) 8, 5-14}, pages = {5 -- 14}, year = {2008}, language = {de} }