@inproceedings{VollmerMoellmannKarstaedt1999, author = {Vollmer, Michael and M{\"o}llmann, Klaus-Peter and Karst{\"a}dt, Detlef}, title = {Lecture Demonstrations with Liquid Nitrogen}, series = {In: Proceedings / ICPE-GIREP International Conference Hands on Experiments in Physics Education [Medienkombination] : Duisburg - Germany, August 23 - 28, 1998 / ed. Gernot Born ... - Duisburg : Didaktik der Physik, Univ. - 1999 ISBN 3-00-004409-4}, booktitle = {In: Proceedings / ICPE-GIREP International Conference Hands on Experiments in Physics Education [Medienkombination] : Duisburg - Germany, August 23 - 28, 1998 / ed. Gernot Born ... - Duisburg : Didaktik der Physik, Univ. - 1999 ISBN 3-00-004409-4}, year = {1999}, language = {en} } @article{VollmerMoellmann2013, author = {Vollmer, Michael and M{\"o}llmann, Klaus-Peter}, title = {Das Splittern nach dem Schuss (Rasante Physik)}, series = {In: Physik in unserer Zeit 44 (2013) 5, 251-252}, journal = {In: Physik in unserer Zeit 44 (2013) 5, 251-252}, doi = {10.1002/piuz.201390089}, pages = {251 -- 252}, year = {2013}, abstract = {Rohe Eier sind, zwischen Daumen und Zeigefinger gehalten, sehr stabil. Das gilt auch f{\"u}r kugelf{\"o}rmige Christbaumkugeln. Mit solchen Feiertagsutensilien lassen sich interessante physikalische Experimente zur Inkompressibilit{\"a}t von Fl{\"u}ssigkeiten anstellen - und mit Hochgeschwindigkeitskameras studieren.}, language = {de} } @article{VollmerMoellmann2013, author = {Vollmer, Michael and M{\"o}llmann, Klaus-Peter}, title = {Die M{\"u}nze im W{\"u}rfelturm (Rasante Physik)}, series = {In: Physik in unserer Zeit 44 (2013) 4, 200-201}, journal = {In: Physik in unserer Zeit 44 (2013) 4, 200-201}, doi = {10.1002/piuz.201390066}, pages = {200 -- 201}, year = {2013}, abstract = {Hinter manchem vermeintlichen Zaubertrick versteckt sich einfache Physik. Das entzieht den Tricks aber nicht ihre Faszination. Im Gegenteil. Ein gutes Beispiel ist das folgende R{\"a}tsel, das sowohl auf Kindergeburtstagen als auch auf Partys mit Erwachsenen erfolgreich eingesetzt werden kann. Hochgeschwindigkeits-Aufnahmen erm{\"o}glichen die physikalische Analyse.}, language = {de} } @article{VollmerMoellmann2013, author = {Vollmer, Michael and M{\"o}llmann, Klaus-Peter}, title = {Zerst{\"a}uben großer Wassertropfen (Rasante Physik),}, series = {In: Physik in unserer Zeit 44 (2013) 3, 149-150}, journal = {In: Physik in unserer Zeit 44 (2013) 3, 149-150}, doi = {10.1002/piuz.201390049}, pages = {149 -- 150}, year = {2013}, abstract = {In der Natur kommen Wassertropfen in verschiedenen Gr{\"o}ßen vor. Kleine Tr{\"o}pfchen von etwa 10 μm sind {\"u}blich in Nebel und Wolken, w{\"a}hrend Regentropfen bis zu 5 mm Durchmesser erreichen k{\"o}nnen. Gr{\"o}ßere Tropfen k{\"o}nnen oszillieren, w{\"a}hrend kleinere im Allgemeinen kugelf{\"o}rmig sind. Offensichtlich k{\"o}nnen Wassertropfen nicht beliebig groß werden. Welche Faktoren beschr{\"a}nken die m{\"o}gliche Gr{\"o}ße?}, language = {de} } @article{VollmerMoellmann2013, author = {Vollmer, Michael and M{\"o}llmann, Klaus-Peter}, title = {Schneller als der freie Fall (Rasante Physik)}, series = {In: Physik in unserer Zeit 44 (2013) 1, 46-47}, journal = {In: Physik in unserer Zeit 44 (2013) 1, 46-47}, doi = {10.1002/piuz.201390006}, pages = {46 -- 47}, year = {2013}, abstract = {L{\"a}sst man einen K{\"o}rper fallen, so beschleunigt dieser auf Meeresh{\"o}he in unseren Breiten bekanntermaßen mit etwa 9,8 m/s2. Ist es dennoch m{\"o}glich, dass unter diesen Bedingungen ein K{\"o}rper schneller fallen kann? Was auf den ersten Blick paradox erscheint, ist durchaus m{\"o}glich, wie sich mit Hochgeschwindigkeitsvideos eindrucksvoll belegen l{\"a}sst.}, language = {de} } @article{VollmerMoellmann2012, author = {Vollmer, Michael and M{\"o}llmann, Klaus-Peter}, title = {Prost Neujahr: die Physik von Champagnerflaschen (Rasante Physik)}, series = {In: Physik in unserer Zeit 43 (2012) 6, 307-308}, journal = {In: Physik in unserer Zeit 43 (2012) 6, 307-308}, doi = {10.1002/piuz.201290100}, pages = {307 -- 308}, year = {2012}, abstract = {Sekt und Champagner geh{\"o}ren zur Silvesterfeier wie ein pr{\"a}chtiges Feuerwerk. Physiker verfallen hierbei leicht in Diskussionen {\"u}ber die Wurfparabeln der Sektkorken oder das akustische Ph{\"a}nomen des Knalls. Hochgeschwindigkeitskameras er{\"o}ffnen zus{\"a}tzlich die M{\"o}glichkeit, sehr schnell ablaufende Prozesse bei der Handhabung der edlen Tropfen sichtbar zu machen, zum Beispiel die adiabatische Expansion des Treibgases.}, language = {de} } @article{VollmerMoellmann2012, author = {Vollmer, Michael and M{\"o}llmann, Klaus-Peter}, title = {Wie warm ist es auf dem Mond?}, series = {In: Sterne und Weltraum 51 (2012), 82-86, ISSN 0039-1263}, journal = {In: Sterne und Weltraum 51 (2012), 82-86, ISSN 0039-1263}, issn = {0039-1263}, pages = {82 -- 86}, year = {2012}, language = {de} } @article{VollmerMoellmann2011, author = {Vollmer, Michael and M{\"o}llmann, Klaus-Peter}, title = {Von B{\"a}llen und Schl{\"a}gern}, series = {In: Physik in unserer Zeit 42 (2011) 4, 202-203}, journal = {In: Physik in unserer Zeit 42 (2011) 4, 202-203}, doi = {10.1002/piuz.201190046}, pages = {202 -- 203}, year = {2011}, abstract = {B{\"a}lle sind eines der beliebtesten Spielzeuge von Kindern und Erwachsenen. Aus physikalischer Sicht haben alle Ballspiele eines gemeinsam: mehr oder minder stark deformierbare B{\"a}lle kollidieren mit Oberfl{\"a}chen. Die Physik vollst{\"a}ndig elastischer Kollisionen beinhaltet zwar nur recht elementare Physik. In der Praxis sind Kollisionen jedoch praktisch nie hundertprozentig elastisch, und außerdem laufen die Prozesse so schnell ab, dass Details nur mit Hochgeschwindigkeitsaufnahmen sichtbar werden.}, language = {de} } @article{VollmerMoellmann2011, author = {Vollmer, Michael and M{\"o}llmann, Klaus-Peter}, title = {Platzende Ballons - Retardierung in der Mechanik}, series = {In: Physik in unserer Zeit 42 (2011) 3, 150-151}, journal = {In: Physik in unserer Zeit 42 (2011) 3, 150-151}, doi = {10.1002/piuz.201190027}, pages = {150 -- 151}, year = {2011}, abstract = {Die endliche Ausbreitungsgeschwindigkeit einer St{\"o}rung f{\"u}hrt zu einer verz{\"o}gerten Wirkung. Dieses Ph{\"a}nomen nennt man in der Physik Retardierung. Am h{\"a}ufigsten werden retardierte elektromagnetische Felder oder Potentiale in der Elektrodynamik behandelt. Auch in der Mechanik sind solche Verz{\"o}gerungseffekte bei der Schallausbreitung in Luft oder Gasen ohne weiteres wahrnehmbar, beispielsweise beim Echo. Deutlich schwieriger beobachtbar sind sie in der Mechanik nichtgasf{\"o}rmiger Materialien. Hochgeschwindigkeitskameras zeigen dieses Ph{\"a}nomen auf beeindruckende Weise.}, language = {de} } @incollection{VollmerMoellmann2012, author = {Vollmer, Michael and M{\"o}llmann, Klaus-Peter}, title = {Die Versuchung bunter Bilder - Geb{\"a}udethermographie unter der Lupe}, series = {In: Erneuerbare Energie : Konzepte f{\"u}r die Energiewende ; [mit Informationen zu aktuellen F{\"o}rderprogrammen] / hrsg. von Thomas B{\"u}hrke ... - 3., aktualisierte und erw. Aufl. - Weinheim : Wiley-VCH-Verl., 2012 ISBN 978-3-527-41108-5}, booktitle = {In: Erneuerbare Energie : Konzepte f{\"u}r die Energiewende ; [mit Informationen zu aktuellen F{\"o}rderprogrammen] / hrsg. von Thomas B{\"u}hrke ... - 3., aktualisierte und erw. Aufl. - Weinheim : Wiley-VCH-Verl., 2012 ISBN 978-3-527-41108-5}, pages = {164 -- 167}, year = {2012}, language = {de} } @article{VollmerMoellmann2011, author = {Vollmer, Michael and M{\"o}llmann, Klaus-Peter}, title = {High Speed - Slow Motion: Technik digitaler Hochgeschwindigkeitskameras}, series = {In: Physik in unserer Zeit 42 (2011) 3, 144- 148}, journal = {In: Physik in unserer Zeit 42 (2011) 3, 144- 148}, doi = {10.1002/piuz.201101270}, pages = {144 -- 148}, year = {2011}, abstract = {Moderne Hochgeschwindigkeitskameras arbeiten digital. Ihre CMOS- oder CCD-Sensoren erm{\"o}glichen hohe Bildwiederholraten. Bei professionelleren Systemen l{\"a}sst sich dabei die Integrationszeit, also die Belichtungszeit der Einzelbilder, unabh{\"a}ngig von der Bildwiederholrate einstellen. F{\"u}r die hohe Aufnahmegeschwindigkeit sorgt ein zweistufiger Prozess. Ein sehr schneller interner Speicher nimmt die Bilddaten zuerst auf, dann schreibt eine Ausleseelektronik diese in einen externen Speicher. Neben teuren Profisystemen w{\"a}chst inzwischen das Segment an preiswerten Amateurkameras mit High-Speed-Option.}, language = {de} } @article{VollmerMoellmann2008, author = {Vollmer, Michael and M{\"o}llmann, Klaus-Peter}, title = {Thermographie : Grundlagen, Forschung und moderne Anwendungen in Industrie und Technik}, series = {In: Praxis der Naturwissenschaften - Physik in der Schule 57 (2008) 8, 5-14}, journal = {In: Praxis der Naturwissenschaften - Physik in der Schule 57 (2008) 8, 5-14}, pages = {5 -- 14}, year = {2008}, language = {de} } @article{VollmerMoellmann2008, author = {Vollmer, Michael and M{\"o}llmann, Klaus-Peter}, title = {Infrarotkameras: es gibt mehr zu sehen als unsere Augen wahrnehmen}, series = {In: Naturwissensschaftliche Rundschau 61 (2008) 11, 557—565}, journal = {In: Naturwissensschaftliche Rundschau 61 (2008) 11, 557—565}, pages = {557 -- 565}, year = {2008}, language = {de} } @article{VollmerMoellmannArnold2008, author = {Vollmer, Michael and M{\"o}llmann, Klaus-Peter and Arnold, Frank}, title = {Ins eigene Segel blasen. M{\"u}nchhausen-Effekt und Schubumkehr}, series = {In: Physik in unserer Zeit 39 (2008) 5, 241-245}, journal = {In: Physik in unserer Zeit 39 (2008) 5, 241-245}, doi = {10.1002/piuz.200801172}, pages = {241 -- 245}, year = {2008}, abstract = {Kann man sich mit seinem Segelboot fortbewegen, indem man ins eigene Segel bl{\"a}st? Der Impulssatz erlaubt diesen an M{\"u}nchhausen erinnernden Effekt. Das demonstriert ein vereinfachtes Gedankenexperiment, bei dem der Segler durch den Werfer eines Balls und das Segel durch eine starre Wand ersetzt wird. Allerdings ergibt die naive Theorie, die Luftmolek{\"u}le als ball{\"a}hnliche Korpuskeln auffasst, einen zu hohen Impuls des reflektierten Luftstroms. Eine realistische Beschreibung liefert die moderne Str{\"o}mungstheorie. Ihre Resultate sind experimentell erfolgreich umsetzbar. Technisch angewendet wird das Prinzip in der Schubumkehr von Flugzeugtriebwerken.}, language = {de} } @article{VollmerMoellmannKarstaedt2004, author = {Vollmer, Michael and M{\"o}llmann, Klaus-Peter and Karst{\"a}dt, Detlef}, title = {Microwave oven experiments with metals and light sources}, series = {In: Physics Education 39 (2004), 500-508}, journal = {In: Physics Education 39 (2004), 500-508}, pages = {500 -- 508}, year = {2004}, abstract = {Don't put metal objects in the microwave' is common safety advice. But why? Here we describe demonstration experiments involving placing household metallic objects in a microwave oven. These allow a better understanding of the interaction of microwaves with materials. Light bulbs and discharge lamps can also be used in instructive demonstrations.}, language = {en} } @article{VollmerMoellmannKarstaedt2004, author = {Vollmer, Michael and M{\"o}llmann, Klaus-Peter and Karst{\"a}dt, Detlef}, title = {More experiments with microwave ovens}, series = {In: Physics education 39 (2004) 4, 346 - 351}, journal = {In: Physics education 39 (2004) 4, 346 - 351}, pages = {346 -- 351}, year = {2004}, abstract = {Microwave ovens can be used to perform exciting demonstrations that illustrate a variety of physics topics. Experiments discussed here show superheating, visualize the inhomogeneous heating that takes place in a microwave and also show how to use a mobile phone to detect radiation leaking from the oven. Finally eggs can give some spectacular (though messy) explosions. In all cases please note the safety advice given.}, language = {en} } @article{VollmerMoellmann2008, author = {Vollmer, Michael and M{\"o}llmann, Klaus-Peter}, title = {Michelson Interferometer for your kitchen table}, series = {In: The Physics Teacher 46 (2008), 114-117}, journal = {In: The Physics Teacher 46 (2008), 114-117}, issn = {0031-921x}, pages = {114 -- 117}, year = {2008}, language = {en} } @article{VollmerMoellmannArnold2007, author = {Vollmer, Michael and M{\"o}llmann, Klaus-Peter and Arnold, F.}, title = {Locomotion by blowing into the sail of a sailboat? From a basic physics question to thrust reversal of jet airplanes}, series = {In: Physics Education 42 (2007), 369-377}, journal = {In: Physics Education 42 (2007), 369-377}, issn = {0031-9120}, pages = {369 -- 377}, year = {2007}, language = {en} } @article{VollmerMoellmann2007, author = {Vollmer, Michael and M{\"o}llmann, Klaus-Peter}, title = {Infrared thermal imaging as a tool in university physics education}, series = {In: European Journal of Physics 28 (2007), S37-S50}, journal = {In: European Journal of Physics 28 (2007), S37-S50}, pages = {37 -- 50}, year = {2007}, language = {en} } @article{MoellmannVollmer2006, author = {M{\"o}llmann, Klaus-Peter and Vollmer, Michael}, title = {Measurements and predictions of the illuminance during a solar eclipse}, series = {In: European journal of physics 27 (2006), 1299-1314}, journal = {In: European journal of physics 27 (2006), 1299-1314}, pages = {1299 -- 1314}, year = {2006}, abstract = {Measurements of illuminance during a solar eclipse are presented. The data are compared to theoretical predictions, based on a geometrical model for obscuration. The model assumes a straight and uniform motion of the sun and moon as well as a spherical shape of both, i.e. it neglects any effects of limb darkening. Furthermore, the sun's disk is assumed to have homogeneous luminosity, i.e. any luminosity variations due to sun spots are neglected. Input parameters are the duration of the eclipse, the duration of totality, the impact parameter, i.e. the distance between the two trajectories of sun and moon, and the sizes of sun and moon. The model applies to all types of eclipses, partial, annular and total.}, language = {en} }