@article{VollmerMoellmannShaw2015, author = {Vollmer, Michael and M{\"o}llmann, Klaus-Peter and Shaw, Joseph A.}, title = {The optics and physics of near infrared imaging}, series = {Proceedings of SPIE 9793, Education and Training in Optics and Photonics: ETOP 2015, 97930Z (October 8, 2015)}, journal = {Proceedings of SPIE 9793, Education and Training in Optics and Photonics: ETOP 2015, 97930Z (October 8, 2015)}, doi = {10.1117/12.2223094}, year = {2015}, abstract = {abstract A large part of photonics research and development, as well as commercial applications such as optical data transmission or infrared thermal imaging, occurs in the infrared spectral range between 0.8 μm and 15 μm. However, relatively little material is so far available for experimentally teaching the physics and optics of this spectral range. We report a respective new approach in the near infrared (NIR) range between 0.8 μm and 1.7 μm that allows visualization of a number of fascinating physics phenomena. First, we use the near-infrared sensitivity of silicon-based detectors in rather inexpensive video cameras and digital single-lens reflex cameras by removing the infrared-blocking filter and replacing it with a visible-radiation blocking filter. Second, we utilize modern NIR cameras based on InGaAs detectors. With both camera types we illustrate and explain a number of physics concepts that are especially suitable for curricula in optics and photonics. Examples include the strangely bright appearance of vegetation, contrast enhancement between clouds and sky, the initially surprising differences of optical material properties between the VIS and NIR range, the possibilities of visualizing buried hidden structures and texts, and recent medical applications to locate blood vessels below the skin. © (2015) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE). Downloading of the abstract is permitted for personal use only.}, language = {en} } @article{VollmerMoellmann2015, author = {Vollmer, Michael and M{\"o}llmann, Klaus-Peter}, title = {Bouncing Poppers}, series = {The Physics Teacher 53 (2015) 8, 489.493}, journal = {The Physics Teacher 53 (2015) 8, 489.493}, doi = {10.1119/1.4933153}, year = {2015}, abstract = {Abstract Toys are known to attract interest in physics and they are therefore often used in physics teaching of various topics. The present paper deals with a simple toy, the so-called "hopper popper," which, similar to superballs, can be used when teaching mechanics. We suggest some experiments and describe the basic physics of this toy, also providing background information for teachers.}, language = {en} } @article{VollmerMoellmann2015, author = {Vollmer, Michael and M{\"o}llmann, Klaus-Peter}, title = {The tablecloth pull revisited}, series = {Physics Education 50 (2015) 3}, journal = {Physics Education 50 (2015) 3}, pages = {324 -- 328}, year = {2015}, abstract = {Abstract A very old and well-known magical trick is the so-called tablecloth pull. A table is covered with a tablecloth, on top of which are certain objects. The task is to remove the tablecloth while the objects—which must not be touched—stay on top of the table. This article describes the physics behind the experiment, and presents examples recorded with high-speed cameras.}, language = {en} } @article{VollmerMoellmann2015, author = {Vollmer, Michael and M{\"o}llmann, Klaus-Peter}, title = {Flickering lamps}, series = {European Journal of Physics 36 (2015) 3}, journal = {European Journal of Physics 36 (2015) 3}, doi = {10.1088/0143-0807/36/3/035027}, pages = {035027}, year = {2015}, abstract = {Abstract Many processes in electromagnetism vary with time. Some of them are well known, in particular those related to line frequencies of 50 Hz or 60 Hz such as fluctuating light output of discharge and incandescent lamps. The flickers of discharge and incandescent lamps have quite different physical principles involved, which are investigated experimentally using high-speed cameras and theoretically using simplified models. The topic is related to other phenomena such as the transient behaviour of phosphor layers covering the screen of oscilloscopes and the time-varying Lorentz force acting on the filament of light bulbs. All studies are well suited for teaching selected aspects of electromagnetism and light at undergraduate level at university.}, language = {en} } @article{VollmerMoellmann2015, author = {Vollmer, Michael and M{\"o}llmann, Klaus-Peter}, title = {Light-emitting pickles}, series = {Physics Education 50 (2015) 1}, journal = {Physics Education 50 (2015) 1}, pages = {94 -- 104}, year = {2015}, abstract = {Abstract We present experiments giving new insights into the classical light-emitting pickle experiment. In particular, measurements of the spectra and temperatures, as well as high-speed recordings, reveal that light emission is connected to the polarity of the electrodes and the presence of hydrogen.}, language = {en} } @article{VollmerMoellmann2015, author = {Vollmer, Michael and M{\"o}llmann, Klaus-Peter}, title = {Krach-bumm-peng - B{\"o}ller und Tischfeuerwerke}, series = {Physik in unserer Zeit 46 (2015) 6, 305-306}, journal = {Physik in unserer Zeit 46 (2015) 6, 305-306}, doi = {10.1002/piuz.201590105}, pages = {305 -- 306}, year = {2015}, abstract = {Abstract Zu Silvester wird es wieder krachen und knallen, draußen oder drinnen. Hochgeschwindigkeits-Videos von Chinakrachern offenbaren deren dynamische Explosionsphase. Auch die weniger spektakul{\"a}ren Tischfeuerwerke zeigen noch so manches interessante Detail.}, language = {de} } @article{VollmerMoellmann2015, author = {Vollmer, Michael and M{\"o}llmann, Klaus-Peter}, title = {Flimmernde Luft und funkelnde Sterne}, series = {Physik in unserer Zeit 46 (2015) 5, 254-255}, journal = {Physik in unserer Zeit 46 (2015) 5, 254-255}, doi = {10.1002/piuz.201590087}, pages = {254 -- 255}, year = {2015}, abstract = {Abstract Das Flimmern der Sterne, von manchen als romantisch empfunden, ist f{\"u}r Astronomen ein {\"A}rgernis. Selbst bei klarer Luft scheinen die Sterne herumzuh{\"u}pfen und in st{\"a}ndiger Bewegung zu sein. Das Maß des Seeings, wie die Wissenschaftler sagen, beschr{\"a}nkt das r{\"a}umliche Aufl{\"o}sungsverm{\"o}gen von Teleskopen. Mit einer einfachen Versuchsanordnung und einer Hochgeschwindigkeits-Kamera l{\"a}sst sich dieses Ph{\"a}nomen im Labor nachstellen und analysieren.}, language = {de} } @article{VollmerMoellmann2015, author = {Vollmer, Michael and M{\"o}llmann, Klaus-Peter}, title = {Der Trick mit der Tischdecke}, series = {Physik in unserer Zeit 46 (2015) 4, 199-201}, journal = {Physik in unserer Zeit 46 (2015) 4, 199-201}, doi = {10.1002/piuz.201590067}, pages = {199 -- 201}, year = {2015}, abstract = {Abstract Eine Tischdecke unter einem Service feinsten Porzellans wegzuziehen ohne dass etwas vom Tisch f{\"a}llt und zerbricht ist sicher eine Herausforderung. Aber viele Vorf{\"u}hrungen, auch in Experimentalphysik-Vorlesungen beweisen: es funktioniert. Hochgeschwindigkeits-Videos k{\"o}nnen diesen heiklen Experimenten physikalische Details entlocken.}, language = {de} } @article{VollmerMoellmann2015, author = {Vollmer, Michael and M{\"o}llmann, Klaus-Peter}, title = {Springende H{\"u}pfgummis}, series = {Physik in unserer Zeit 46 (2015) 3, 149-150}, journal = {Physik in unserer Zeit 46 (2015) 3, 149-150}, doi = {10.1002/piuz.201590049}, pages = {149 -- 150}, year = {2015}, abstract = {Abstract H{\"u}pfgummis sind einfache, preiswerte Spielzeuge, die in Spielwarenl{\"a}den oder Science Centern erh{\"a}ltlich sind. Sie erm{\"o}glichen interessante Einblicke in physikalische Ph{\"a}nomene der Mechanik - insbesondere mit Hochgeschwindigkeits-Videos.}, language = {de} } @article{VollmerMoellmann2015, author = {Vollmer, Michael and M{\"o}llmann, Klaus-Peter}, title = {Die Gurke leuchtet komplex}, series = {Physik in unserer Zeit 46 (2015) 2, 78-83}, journal = {Physik in unserer Zeit 46 (2015) 2, 78-83}, doi = {10.1002/piuz.201401388}, pages = {78 -- 83}, year = {2015}, abstract = {Abstract Das Experiment, bei dem eine Essiggurke elektrisch stimuliert leuchtet, geh{\"o}rt zum Standardrepertoire vieler Schulen und Hochschulen. Meist wird es zur Elektrizit{\"a}tslehre oder zur Atomphysik vorgef{\"u}hrt, inklusive vordergr{\"u}ndig einleuchtender Erkl{\"a}rung. Eine genauere Untersuchung zeigt jedoch, dass der Mechanismus komplexer als gedacht ist. Die Lichtemission entsteht in einem Zusammenspiel von Elektrolyse und hohen Elektrodentemperaturen. Dabei regen wahrscheinlich vor allem exotherme Wasserstoff- oder Knallgasreaktionen das Natriumlicht an.}, language = {de} } @article{VollmerMoellmann2014, author = {Vollmer, Michael and M{\"o}llmann, Klaus-Peter}, title = {Flackernde Entladungslampen unter der (Zeit-)lupe}, series = {Physik in unserer Zeit 45 (2014) 4, 199-200}, journal = {Physik in unserer Zeit 45 (2014) 4, 199-200}, doi = {10.1002/piuz.201490064}, pages = {199 -- 200}, year = {2014}, abstract = {Abstract Wer kennt es nicht, das Flackern von Lampen, das bei empfindlichen Menschen Kopfschmerzen verursachen kann? So etwas kann bei Entladungsr{\"o}hren mit ung{\"u}nstigen Eigenschaften der phosphorisierenden Beschichtung auftreten. Mit moderner Technik l{\"a}sst sich dieses Problem l{\"o}sen. Hochgeschwindigkeits-Videos zeigen verschiedene Ph{\"a}nomene, die beim Betrieb von Entladungsr{\"o}hren auftreten.}, language = {de} } @article{VollmerMoellmann2016, author = {Vollmer, Michael and M{\"o}llmann, Klaus-Peter}, title = {Stehaufkreisel - a never ending story}, series = {Physik in unserer Zeit}, volume = {47}, journal = {Physik in unserer Zeit}, number = {2}, doi = {10.1002/piuz.201601435}, pages = {96 -- 97}, year = {2016}, abstract = {Abstract Stehaufkreisel sind faszinierende physikalische Spielzeuge, die scheinbar die Schwerkraft auszutricksen verm{\"o}gen: Nach anf{\"a}nglicher Rotation drehen sie sich so um, dass sie schließlich auf der fr{\"u}heren Spitze rotieren. Hochgeschwindigkeits-Videos erm{\"o}glichen es, die komplizierten mathematischen L{\"o}sungen ihrer Bewegung experimentell zu {\"u}berpr{\"u}fen.}, language = {de} } @misc{VollmerMoellmann2011, author = {Vollmer, Michael and M{\"o}llmann, Klaus-Peter}, title = {High speed - slow motion: fascinating phenomena observed in hands-on experiments}, year = {2011}, language = {en} } @misc{VollmerMoellmann2013, author = {Vollmer, Michael and M{\"o}llmann, Klaus-Peter}, title = {Thermographie im Physikunterricht}, year = {2013}, language = {de} } @misc{Moellmann2013, author = {M{\"o}llmann, Klaus-Peter}, title = {Praxis der Strahlungsthermometrie}, year = {2013}, language = {de} } @misc{Moellmann2013, author = {M{\"o}llmann, Klaus-Peter}, title = {Position related spectra within experimental parhelia}, year = {2013}, language = {en} } @misc{MoellmannVollmaer2013, author = {M{\"o}llmann, Klaus-Peter and Vollmaer, Michael}, title = {High-Speed-Kameras im Physikunterricht}, year = {2013}, language = {de} } @misc{Moellmann2013, author = {M{\"o}llmann, Klaus-Peter}, title = {The Allure of Multicolored Images - Building Thermography Examined Closely}, year = {2013}, language = {en} } @misc{MoellmannVollmer2014, author = {M{\"o}llmann, Klaus-Peter and Vollmer, Michael}, title = {Experimente mit IR- Kameras}, year = {2014}, language = {de} } @misc{MoellmannVollmer2014, author = {M{\"o}llmann, Klaus-Peter and Vollmer, Michael}, title = {The Basics Science and History of Thermal Imaging}, year = {2014}, language = {en} }