TY - JOUR A1 - Vollmer, Michael A1 - Möllmann, Klaus-Peter A1 - Shaw, Joseph A. T1 - The optics and physics of near infrared imaging T2 - Proceedings of SPIE 9793, Education and Training in Optics and Photonics: ETOP 2015, 97930Z (October 8, 2015) N2 - abstract A large part of photonics research and development, as well as commercial applications such as optical data transmission or infrared thermal imaging, occurs in the infrared spectral range between 0.8 μm and 15 μm. However, relatively little material is so far available for experimentally teaching the physics and optics of this spectral range. We report a respective new approach in the near infrared (NIR) range between 0.8 μm and 1.7 μm that allows visualization of a number of fascinating physics phenomena. First, we use the near-infrared sensitivity of silicon-based detectors in rather inexpensive video cameras and digital single-lens reflex cameras by removing the infrared-blocking filter and replacing it with a visible-radiation blocking filter. Second, we utilize modern NIR cameras based on InGaAs detectors. With both camera types we illustrate and explain a number of physics concepts that are especially suitable for curricula in optics and photonics. Examples include the strangely bright appearance of vegetation, contrast enhancement between clouds and sky, the initially surprising differences of optical material properties between the VIS and NIR range, the possibilities of visualizing buried hidden structures and texts, and recent medical applications to locate blood vessels below the skin. © (2015) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE). Downloading of the abstract is permitted for personal use only. Y1 - 2015 UR - https://opus4.kobv.de/opus4-fhbrb/frontdoor/index/index/docId/1314 ER -