Photo by ©FAU/Erich Malter

OPEN FAU

Online-Publikationssystem der Friedrich-Alexander-Universität Erlangen-Nürnberg

Das Online-Publikationssystem OPEN FAU ist die zentrale Publikationsplattform zum Open-Access-Publizieren für alle Angehörigen der Friedrich-Alexander-Universität. Qualifizierte Arbeiten aus Forschung und Lehre können hier kostenlos erst- oder zweitveröffentlicht werden. Die Volltexte stehen weltweit dauerhaft zur Verfügung und sind über Kataloge und Suchmaschinen auffindbar und zitierfähig.


Um Dokumente im OPEN FAU zu suchen, wählen Sie bitte "Suchen" (über das Lupen-Symbol rechts oben). Dadurch stehen Ihnen verschiedene Recherchemöglichkeiten zur Verfügung. Wenn Sie ein Dokument veröffentlichen möchten, gehen Sie auf "Anmelden" und anschließend auf "Meine Veröffentlichungen". Ziehen Sie dann Ihr Dokument in das vorgesehene Feld und geben Sie die Daten ein. In nur wenigen Schritten können Sie Ihr Dokument einreichen. Bitte beachten Sie unsere Richtlinien, den Publikationsvertrag und FAQs.

 

Die zuletzt veröffentlichten Dokumente

Masterarbeit
Open Access
Dynamics of melting solids using SPH
Proceedings of the Institute for Multiscale Simulation (2017-08-08) Blank, Michael
In this thesis a meshless multiphysics simulation method based on the smoothed particle hydrodynamics (SPH) method is introduced and is applied to the simulation of dynamic melting processes. For this purpose, models for separate physical phenomena available in an academic SPH code were separately validated. These models include implicit viscous force computation for highly viscous flows and heat transfer for bodies with complex shaped free surfaces. Subsequently, a model for modifying the specific heat capacity which approximates the latent heat over a temperature interval around the melting temperature is implemented. In order to validate the viscosity model used, the coalescence of agglomerate chains with three or six primary spheres under the influence of surface tension is simulated. The time required to obtain a spherical shape through a viscous flow assumption is seen to be less in the case of SPH than that simulated by a surface area minimization algorithm. This could be due to inertial and hydrodynamic effects. The heat transport is then validated with two-dimensional analytical solutions of the heat conduction equation for different boundary conditions. The order of accuracy for this heat transfer model is shown to be more than first order. To determine the accuracy of the moving phase boundary position, an analytical solution of the two-dimensional Neumann problem is used and compared with the corresponding SPH results. The determined average error is between 3.67% and 0.60% as a function of the number of interpolation points and the boundary conditions used. The validated models of the viscosity, the heat conduction and the latent heat are then coupled to models for surface tension as well as rigid body interactions which are already part of the code. Thus, the multiphysics model obtained is used for the simulation of different morphologies with a heat of fusion of 1 J/kg, 1 kJ/kg and 100 kJ/kg, respectively. The surface evolution of complex shaped bodies melting at time scales comparable to the fluid flow time scales is shown to be a highly non-linear phenomena deviating considerably from viscous sintering models in literature. The usefulness of this simulation method for optimizing industrial process designs is thus demonstrated.
Masterarbeit
Open Access
Granular Jamming Transition versus Gravitational Acceleration
Proceedings of the Institute for Multiscale Simulation (2023-10-31) Yu, Qing
Granular materials are ubiquitous in our everyday life. Yet, some behaviors of granular media continue to surprise us, and a theory predicting granular flows from first principles is still missing. When the granular materials are compressed or sheared, they can change from a flowing fluid-like state to a rigid solid-like state. This change is called the jamming transition. The previous research shows that the granular packing fraction at the jamming point is lower in microgravity than on Earth. This small change in jamming packing fraction could influence the handling of granular materials in microgravity. To investigate this question, we probed the jamming point in microgravity, provided by drop tower Bremen. Additional discrete element method simulations were also performed to complement the practical experiments. Our experiments showed that the average jamming packing fraction in microgravity is 0.0212 lower than on Earth. Simulation results showed that, for a system with 0 friction coefficient, the average jamming packing fraction in microgravity and Earth gravitational acceleration are 0.6032 and 0.6142. For a system with a 0.5 friction coefficient, the average jamming packing fraction in microgravity and Earth’s gravitational acceleration are 0.5336 and 0.5448.
Masterarbeit
Open Access
Optimierung der Textur granulatdurchströmter Röhren hinsichtlich des Massenflusses
Proceedings of the Institute for Multiscale Simulation (2014-03-31) Verbücheln, Felix
Bachelorarbeit
Open Access
Masterarbeit
Open Access
Kritische Parameter der vertikalen Oszillation für das Einsetzen granularer Konvektion
Proceedings of the Institute for Multiscale Simulation (2000-05-24) Renard, Simon