• search hit 3 of 102
Back to Result List

C−O Stable Isotopes Geochemistry of Tunisian Nonsulfide Zinc Deposits: A First Look

Please always quote using this URN: urn:nbn:de:bvb:29-opus4-113765
  • A preliminary C–O stable isotopes geochemical characterization of several nonsulfide Zn-Pb Tunisian deposits has been carried out, in order to evidence the possible differences in their genesis. Nonsulfide ores were sampled from the following deposits: Ain Allegua, Jebel Ben Amara, Jebel Hallouf (Nappe Zone), Djebba, Bou Grine, Bou Jaber, Fedj el Adoum, Slata Fer (Diapir Zone), Jebel Ressas, Jebel Azreg, Mecella (North South Axis Zone), Jebel Trozza, Sekarna (Graben Zone). After mineralogical investigation of selected specimens, the C–O stable isotopic study was carried out on smithsonite, hydrozincite, cerussite and calcite. The data have shown that all the carbonate generations in theA preliminary C–O stable isotopes geochemical characterization of several nonsulfide Zn-Pb Tunisian deposits has been carried out, in order to evidence the possible differences in their genesis. Nonsulfide ores were sampled from the following deposits: Ain Allegua, Jebel Ben Amara, Jebel Hallouf (Nappe Zone), Djebba, Bou Grine, Bou Jaber, Fedj el Adoum, Slata Fer (Diapir Zone), Jebel Ressas, Jebel Azreg, Mecella (North South Axis Zone), Jebel Trozza, Sekarna (Graben Zone). After mineralogical investigation of selected specimens, the C–O stable isotopic study was carried out on smithsonite, hydrozincite, cerussite and calcite. The data have shown that all the carbonate generations in the oxidized zones of Ain Allegua and Jebel Ben Amara (Nappe Zone), Bou Jaber, Bou Grine and Fedj el Adoum (Diapir Zone), Mecella and Jebel Azreg (North South Zone) have a supergene origin, whereas the carbonates sampled at Sekarna (Graben Zone) (and in limited part also at Bou Jaber) precipitated from thermal waters at moderately high temperature. Most weathering processes that controlled the supergene alteration of the Zn-Pb sulfide deposits in Tunisia had probably started in the middle to late Miocene interval and at the beginning of the Pliocene, both periods corresponding to two distinct tectonic pulses that produced the exhumation of sulfide ores, but the alteration and formation of oxidized minerals could have also continued through the Quaternary. The isotopic characteristics associated with the weathering processes in the sampled localities were controlled by the different locations of the sulfide protores within the tectonic and climatic zones of Tunisia during the late Tertiary and Quaternary.show moreshow less

Download full text files

Export metadata

Additional Services

Share in Twitter Search Google Scholar Statistics
Metadaten
Author:Hechmi Garnit, Maria Boni, Giuliana Buongiovanni, Giuseppe Arfè, Nicola Mondillo, Michael Joachimski, Salah Bouhlel, Giuseppina Balassone
URN:urn:nbn:de:bvb:29-opus4-113765
DOI:https://doi.org/10.3390/min8010013
Title of the journal / compilation (English):Minerals
Publisher:MDPI
Document Type:Article
Language:English
Date of first Publication:2018/01/09
Publishing Institution:Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU)
Release Date:2019/08/13
Tag:C–O stable isotopes; Tunisia; mineralogy; nonsulfide deposits; paleoclimate
Volume:8
Issue:1
Original publication:Minerals 8.1 (2018). <https://www.mdpi.com/2075-163X/8/1/13>
Institutes:Naturwissenschaftliche Fakultät
Dewey Decimal Classification:5 Naturwissenschaften und Mathematik / 55 Geowissenschaften, Geologie / 550 Geowissenschaften
open_access (DINI-Set):open_access
Collections:Universität Erlangen-Nürnberg / Eingespielte Open Access Artikel / Eingespielte Open Access Artikel 2019
Licence (German):Creative Commons - CC BY - Namensnennung 4.0 International