Mit Salzschmelzen modifizierte Katalysatoren für die Methanol-Dampfreformierung und Wassergas-Shift-Reaktion

Molten salt modified catalysts for methanol steam reforming and water-gas shift reaction

  • In dieser Arbeit wurden Katalysatoren durch die Anwendung des SCILL-Konzepts (solid catalyst with ionic liquid layer) modifiziert. Dazu wurde ein heterogener Katalysator mit einer Salzschmelze beschichtet. Durch die Imprägnierung sollten die katalytischen Eigenschaften gezielt verändert werden. Aufgrund der thermischen Instabilität von ionischen Flüssigkeiten wurden hierfür anorganische, einfach aufgebaute und demnach thermisch stabilere Salzschmelzen verwendet. Die Katalysatoren wurden in der kontinuierlich betriebenen Methanol-Dampfreformierung MDR und Wassergas-Shift-Reaktion WGSR eingesetzt. Als Ausgangspunkt zur Katalysatormodifikation wurde die ternäre Salzmischung Li/K/Cs[OAc] (0,2/0,In dieser Arbeit wurden Katalysatoren durch die Anwendung des SCILL-Konzepts (solid catalyst with ionic liquid layer) modifiziert. Dazu wurde ein heterogener Katalysator mit einer Salzschmelze beschichtet. Durch die Imprägnierung sollten die katalytischen Eigenschaften gezielt verändert werden. Aufgrund der thermischen Instabilität von ionischen Flüssigkeiten wurden hierfür anorganische, einfach aufgebaute und demnach thermisch stabilere Salzschmelzen verwendet. Die Katalysatoren wurden in der kontinuierlich betriebenen Methanol-Dampfreformierung MDR und Wassergas-Shift-Reaktion WGSR eingesetzt. Als Ausgangspunkt zur Katalysatormodifikation wurde die ternäre Salzmischung Li/K/Cs[OAc] (0,2/0,275/0,525 mol%) gewählt. In Vorversuchen wurden Stoffdaten, wie z. B. die Dichte oder der Schmelzpunkt aber auch das Verhalten der Salze Li/K/Cs[OAc] (0,2/0,275/0,525 mol%), Cs[NTf2] und [(Ph)4P][NTf2] unter thermischer Belastung bestimmt. Bei der Anwendung des SCILL-Konzepts sind die Wechselwirkungen zwischen den Substraten der Reaktion (Methanol bzw. Wasser) und der Salzschicht ausschlaggebend für die Aktivität und Selektivität des Katalysators. Daher wurden diese mit verschiedenen Methoden, wie z. B. Inverser Gaschromatografie untersucht. Die Aktivitätskoeffizienten für verschiedene Stoffe in den Salzen Li/K/Cs[OAc], Cs[NTf2] und [(Ph4)P][NTf2] wurden bestimmt. Dabei wurden besonders niedrige Aktivitätskoeffizienten für Wasser und die Salzmischung Li/K/Cs[OAc] gefunden (γ∞,H2O = 0,45 für Li/K/Cs[OAc] bei T = 190 °C). Ein Vergleich der oben genannten Salze als Katalysatorbeschichtung mit dem Test in der Methanol-Dampfreformierung (MDR) und Wassergas-Shift-Reaktion (WGSR) zeigt, dass es nur bei Li/K/Cs[OAc] zu einer Erhöhung der Katalysatoraktivität und Selektivität kommt. Diese Ergebnisse verdeutlichen, dass für eine Steigerung der Aktivität und CO2-Selektivität starke Wechselwirkungen zwischen der Salzbeschichtung und den Substraten bzw. Inter-mediaten der jeweiligen Reaktion vorliegen müssen. Durch eine Variation im Edelmetall des Katalysators und des Kations der Alkaliacetatsalze konnte gezeigt werden, dass vor allem die Kombination Platin und Kalium eine hohe Katalysatoraktivität und CO2-Selektivität erreicht. Schließlich wurde KOH als die Salzbeschichtung identifiziert, die die höchste Steigerung der Aktivität des Pt/Al2O3-Katalysators für die MDR und WGSR induziert. Dabei ist die Aktivität stark abhängig von der Salzbeladung, wobei das Optimum bei einer KOH-Beladung von 7,5 wt% liegt. Für die Methanol-Dampfreformierung konnte die Aktivität im Vergleich zum unbeschichteten Referenzkatalysator um den Faktor 3 gesteigert werden (TOF = 22 h-1 vs. TOFKOH,a = 7,5 wt% = 64 h 1 bei T = 230 °C). Daneben wurden CO2-Selektivitäten (als Verhältnis von nCO2 zu nCO2+nCO+nCH4) größer 99 % erreicht. Für die Wassergas-Shift-Reaktion wurde die Katalysatoraktivität durch die Beschichtung mit KOH um nahezu den Faktor 6 erhöht (TOF = 17 h 1 vs. TOFKOH,a = 7,5 wt% = 95 h-1 bei T = 230 °C). Mit verschiedenen Charakterisierungsmethoden, wie z.B. DRIFT- (Diffuse Reflectance In-frared Fourier Transform) Spektroskopie und Sorptionsmessungen wurde nachgewiesen, dass drei Mechanismen verantwortlich für die Aktivitäts- und Selektivitätssteigerung durch die Alkalisalze sind. Aufgrund der cokatalytischen Beeinflussung der aktiven Pt-Zentren durch beispielsweise Kalium, kommt es zu einer stärkeren Adsorption von Kohlenstoffmonoxid am aktiven Zentrum. Durch die hygroskopischen Eigenschaften der Salzschmelze wird die Wasseradsorption auf der Katalysatoroberfläche verstärkt. Zudem wird durch die Basizität, vor allem der Alkalihydroxid-Salze die Wassergas-Shift-Reaktion positiv beeinflusst, da OH- ein wichtiges Intermediat in diesem Reaktionszyklus darstellt. Das Zusammenspiel dieser drei Mechanismen führt zur Leistungssteigerung bei salzbeschichteten Pt/Al2O3-Katalysatoren in der Methanol-Dampfreformierung und Wasser-gas-Shift-Reaktion. Desweitern wurde im Phasendiagramm für KOH-H2O gezeigt, dass diese Salzbeschichtung unter den Reaktionsbedingungen der MDR und WGSR flüssig auf der Katalysatoroberfläche vorliegt. Für die WGSR wurden kinetische Untersuchungen durchgeführt. Aus diesen kann abgeleitet werden, dass die Aktivitätssteigerung in der WGSR hauptsächlich durch eine Erhöhung der effektiven Geschwindigkeitskonstanten herbeigeführt wird. Diese Mechanismen auf der Katalysatoroberfläche sind schematisch in Abbildung 1 dargestellt. Durch die hygroskopische und stark polare Salzschicht ist die Sorption der Substrate Methanol und H2O am Katalysator erhöht. Der cokatalytische Effekt durch die Alkalispezies z. B. Kalium, verstärkt zudem die Adsorption der Substrate bzw. Intermediate (Kohlen-stoffmonoxid) am aktiven Zentrum. Daneben führt die starke Basizität der Hydroxide zu einer Steigerung der WGSR-Aktivität. Diese Arbeit beschreibt eine einfache und wirtschaftlich attraktive Methode zur Leistungssteigerung von heterogenen Katalysatoren. Dazu wurde ein Pt/Al2O3-Katalysator mit einer Salzschmelze, z.B. Kaliumhydroxid beschichtet und erfolgreich in der Methanol-Dampfreformierung und Wassergas-Shift-Reaktion eingesetzt. show moreshow less
  • Herein a straightforward procedure to increase the performance of heterogeneous catalysts through a surface modification with molten salts according to the SCILL approach (solid catalyst with ionic liquid layer) is described. In this concept the catalysts are impregnated with an ionic liquid leading to a modification of the catalysts` properties. Due to the thermal instability of organic ionic liquids at elevated temperatures (T > 200 °C), simple, inorganic and thus thermally more stable molten salts are applied as catalyst modifi-cation. These catalysts have been tested in continuous gas phase reactions, such as methanol steam reforming and watergas-shift reaction. To begin with, the ternarHerein a straightforward procedure to increase the performance of heterogeneous catalysts through a surface modification with molten salts according to the SCILL approach (solid catalyst with ionic liquid layer) is described. In this concept the catalysts are impregnated with an ionic liquid leading to a modification of the catalysts` properties. Due to the thermal instability of organic ionic liquids at elevated temperatures (T > 200 °C), simple, inorganic and thus thermally more stable molten salts are applied as catalyst modifi-cation. These catalysts have been tested in continuous gas phase reactions, such as methanol steam reforming and watergas-shift reaction. To begin with, the ternary salt mixture Li/K/Cs[OAc] (0,2/0,275/0,525 mol%) was selected for catalyst modification. In preliminary investigations chemical and physical data, such as density or melting point, but also the behavior of the salts Li/K/Cs[OAc], Cs[NTf2] and [(Ph)4P][NTf2] under thermal stress have been investigated. Since the interactions between the substrates of the reactions (methanol and water) and the salt layer determine the activity and selectivity of the catalysts, several methods such as inverse gas chromatography were applied to screen these. The activity coefficients for several compounds in the salts Li/K/Cs[OAc], Cs[NTf2], and [(Ph)4P][NTf2] were identified. Thereby, especially for water and Li/K/Cs[OAc] low activity coefficients were found (γ0,H2O = 0,45 in Li/K/Cs[OAc] at T = 190 °C). A comparison of the salts Li/K/Cs[OAc], Cs[NTf2] and [(Ph)4P][NTf2] as modification for the heterogeneous Pt/Al2O3 catalysts through experimental test runs in the methanol steam reforming and water-gas shift reaction indicates, that solely Li/K/Cs[OAc] leads to an enhancement of catalytic activity and selectivity. These results illustrate that for an increase in catalytic performance strong interactions between the salts and the reactions’ substrates/intermediates must exist. Through a variation in the catalytically active metal and the salts’ cation it could be shown, that especially the combination of platinum and potassium accomplished high catalyst activity and selectivity. Finally KOH has been identified as molten salt leading to the highest increase in performance of the Pt/Al2O3 catalyst applied in the methanol reforming and water-gas shift reaction. At the same time, the activity is strongly dependent on the salt loading on the catalyst´s surface with 7,5 wt% KOH reflecting the optimum. The activity for methanol steam reforming in comparison to the uncoated reference catalyst has been increased by a factor of three (TOF = 22 h-1 vs. TOFKOH,a = 7,5 wt% = 64 h 1 at T = 230 °C). Additionally, a CO2-selectivity (as ratio of nCO2 to nCO2+nCO+nCH4) higher than 99 % has been achieved. For the water-gas shift reaction the catalysts activity has been raised by a factor of six through the impregnation with KOH (TOF = 17 h 1 vs. TOFKOH,a = 7,5 wt% = 95 h-1 at T = 230 °C). Through the application of several techniques for characterization, e. g. DRIFT (diffuse reflectance infrared transmission) spectroscopy and sorption measurements it was demonstrated, that three mechanisms are responsible for the raise in activity and selectivity through the alkali salts impregnation. On the basis of a cocatalytic influence of potassium on the active centers (platinum) the adsorption of carbon monoxide is strengthened. Through the hygroscopic nature of the salt the adsorption of water at the catalyst surface is additionally enhanced. Moreover, the salts basicity especially for the hydroxide coatings influences the water-gas shift reaction in a strongly positive manner, as OH- is a key intermediate in this reaction sequence. The interplay between these three mechanisms leads to the increase in performance of the salt impregnated Pt/Al2O3 catalysts for the methanol reforming and water-gas shift reaction. Furthermore, the phase diagram of KOH-H2O indicates, that at least for KOH a liquid layer of salt and water can be found on the catalyst´s surface under reaction conditions. For the WGSR kinetic investigations have been carried out. These lead to the conclusion that the raise in catalytic activity for the WGSR relies mainly on an enhancement of the effective rate constant for this reaction. These mechanisms on the catalyst surface are summarized in Figure 1 (see Abbildung 1). Through the hygroscopic and strongly polar salt layer the sorption of methanol and water at the catalyst is strengthened. The cocatalytic influence through the alkali species, e.g. potassium, increases the substrates and intermediates (carbon monoxide) adsorption at the active center. Additionally, the hydroxide salts’ basicity leads to an increase of the WGSR activity. In total, a simple and economically attractive method to increase the performance of heterogeneous catalysts is described. Respectively, a Pt/Al2O3 catalyst is impregnated with a molten salt, e.g. potassium hydroxide and successfully applied in the methanol steam reforming and water-gas shift reaction. show moreshow less

Export metadata

  • Export Bibtex
  • Export RIS

Additional Services

Share in Twitter Search Google Scholar
Metadaten
Author:Matthias Kusche
URN:urn:nbn:de:bvb:29-opus4-68420
Advisor:Peter Wasserscheid
Document Type:Doctoral Thesis
Language:German
Year of Completion:2015
Embargo Date:2016/01/02
Publishing Institution:Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU)
Granting Institution:Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Technische Fakultät
Date of final exam:2015/05/04
Release Date:2016/01/21
Tag:Methanol-Dampfreformierung
SWD-Keyword:Heterogene Katalyse; Ionische Flüssigkeit; Methanol; Salzschmelze; Wassergas-Shift-Reaktion
Pagenumber:210
Institutes:Technische Fakultät
Dewey Decimal Classification:Technik, Medizin, angewandte Wissenschaften / Chemische Verfahrenstechnik / Chemische Verfahrenstechnik
open_access (DINI-Set):open_access
Licence (German):Keine Creative Commons Lizenz - es gilt der Veröffentlichungsvertrag und das deutsche Urheberrecht

$Rev: 13581 $