Laser Welding of Silicon Foils for Thin-Film Solar Cell Manufacturing

Laserschweißen von Siliziumfolien zur Herstellung von Dünnschicht-Solarzellen

Please always quote using this URN: urn:nbn:de:bvb:29-opus4-52969
  • Thin-film solar module manufacturing is one of the most promising recent developments in photovoltaic research and has the potential to reduce production costs. As the necessity for competitive prices on the world market increases and manufacturers endeavor to bring down the cost of solar modules, thin-film technology is becoming more and more attractive. In this work a special technique was investigated which makes solar cell manufacturing more compatible with an industrial roll-to-roll process. This technique allows the creation of the first monocrystalline band substrate by welding several monocrystalline silicon wafers together, so that the size restriction of float-zone grown wafers canThin-film solar module manufacturing is one of the most promising recent developments in photovoltaic research and has the potential to reduce production costs. As the necessity for competitive prices on the world market increases and manufacturers endeavor to bring down the cost of solar modules, thin-film technology is becoming more and more attractive. In this work a special technique was investigated which makes solar cell manufacturing more compatible with an industrial roll-to-roll process. This technique allows the creation of the first monocrystalline band substrate by welding several monocrystalline silicon wafers together, so that the size restriction of float-zone grown wafers can be overcome. Currently the size is 8 inches in diameter. Float-zone grown material is well suited as feedstock for high efficiency solar cells and it has also been very intensively studied in the past. This makes it the perfect feedstock material for thin-film solar modules. Unfortunately this material is quite expensive and therefore it should only serve as feedstock to generate the band substrate. After this step the necessary silicon layers to produce solar cells are grown epitaxially on top of the band substrate using chemical vapor deposition. To produce solar cells a silicon layer is separated from the band substrate using a layer transfer process. Subsequently the band substrate can be repeatedly reused to produce an infinite amount of silicon layers without requiring any silicon ingot feedstock. The linchpin for this technique is the welding step from single wafers to a band substrate. Thus, this work focuses on the investigation of the welding process. Welded samples were analyzed using micro-Raman and electron backscatter diffraction (EBSD). Moreover, the achievement of solar cells on top of 50 µm thick silicon foils and welded silicon foils are reported.show moreshow less
  • Die Produktion von Dünnschicht-Solarmodulen ist eine der vielversprechendsten Entwicklungen in der Photovoltaik in der näheren Vergangenheit, weil diese Technik geringe Produktionskosten verspricht. Wegen der Notwendigkeit von wettbewerbsfähigen Preisen an den Weltmärkten und dem Bemühen der Hersteller die Produktionskosten zu senken gerät die Dünnschicht-Technik immer mehr in den Fokus. In dieser Arbeit wird eine spezielle Technik untersucht, die die Herstellung von Solarzellen weiter an ein industrielles Rolle-zu–Rolle-Verfahren annähern soll. Diese Technik erlaubt es, monokristalline Siliziumwafer miteinander zu dem ersten monokristallinen Bandsubstrat zu verschweißen. Dadurch kann dieDie Produktion von Dünnschicht-Solarmodulen ist eine der vielversprechendsten Entwicklungen in der Photovoltaik in der näheren Vergangenheit, weil diese Technik geringe Produktionskosten verspricht. Wegen der Notwendigkeit von wettbewerbsfähigen Preisen an den Weltmärkten und dem Bemühen der Hersteller die Produktionskosten zu senken gerät die Dünnschicht-Technik immer mehr in den Fokus. In dieser Arbeit wird eine spezielle Technik untersucht, die die Herstellung von Solarzellen weiter an ein industrielles Rolle-zu–Rolle-Verfahren annähern soll. Diese Technik erlaubt es, monokristalline Siliziumwafer miteinander zu dem ersten monokristallinen Bandsubstrat zu verschweißen. Dadurch kann die Größenrestriktion der Produktion von im Zonenschmelzverfahren hergestellten einkristallinen Silizium-Ingots überwunden werden, die momentan einen Durchmesser von 8 Zoll haben. Da im Zonenschmelzverfahren gewonnenes Silizium als Ausgangsmaterial für Hochleistungssolarzellen ideal ist und auch schon intensiv untersucht wurde, ist es der perfekte Ausgangspunkt für Dünnschicht-Solarmodule. Allerdings ist der hohe Preis für dieses Material ein Problem. Darum soll das hochwertige und teure Silizium nur für die Herstellung des Ausgangsbandsubstrates verwendet werden. Danach soll mittels chemischer Gasphasenabscheidung eine Epitaxie-Schicht auf dem Band gewachsen werden und diese gewachsene Schicht mittels Transferprozess vom Ausgangsband getrennt werden, um damit Solarzellen herzustellen. Das Bandsubstrat wird wiederverwendet um eine endlose Anzahl von Siliziumschichten zu produzieren ohne die Notwendigkeit von Silizium-Ingots als Ausgangmaterial. Für dieses Verfahren ist das Schweißverfahren der Dreh- und Angelpunkt, daher wurde in dieser Arbeit der Fokus auf das Charakterisieren der Verschweißung gelegt. Diese wurden mit Hilfe von Mikro-Raman und Electron backscatter diffraction (EBSD) untersucht. Außerdem wurden erfolgreich Solarzellen auf 50 µm dünnen Siliziumfolien sowie Solarzellen auf verschweißten Siliziumfolien hergestellt.show moreshow less
Metadaten
Author:Maik Heßmann
Persistent identifiers - URN:urn:nbn:de:bvb:29-opus4-52969
Referee:Christoph J. Brabec
Document Type:Doctoral Thesis
Language:English
Year of publication:2014
Publishing Institution:Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU)
Granting institution:Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Technische Fakultät
Acceptance date of the thesis:2014/09/30
Release Date:2014/10/24
Tag:Dünnschicht-Solarzelle; Siliziumfolien
Laser Welding; Silicon Foils; Silicon Solar Cell; Thin-Film Solar Cell
SWD-Keyword:Laserschweißen; Solarzelle; Dünnschicht; Silizium
Length/size:116
Institutes:Technische Fakultät / Department Werkstoffwissenschaften
CCS-Classification:B. Hardware
Dewey Decimal Classification:6 Technik, Medizin, angewandte Wissenschaften / 60 Technik / 600 Technik, Technologie
PACS-Classification:80.00.00 INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY
open_access (DINI-Set):open_access
Licence (German):Keine Creative Commons Lizenz - es gilt der Veröffentlichungsvertrag und das deutsche Urheberrecht
Einverstanden ✔
Diese Webseite verwendet technisch erforderliche Session-Cookies. Durch die weitere Nutzung der Webseite stimmen Sie diesem zu. Unsere Datenschutzerklärung finden Sie hier.