The discontinuous Galerkin method for free surface and subsurface flows in geophysical applications

Das unstetige Galerkinverfahren für Strömungen mit freier Oberfläche und im Grundwasserbereich in geophysikalischen Anwendungen

Please always quote using this URN: urn:nbn:de:bvb:29-opus4-126532
  • Free surface flows and subsurface flows appear in a broad range of geophysical applications and in many environmental settings situations arise which even require the coupling of free surface and subsurface flows. Many of these application scenarios are characterized by large domain sizes and long simulation times. Hence, they need considerable amounts of computational work to achieve accurate solutions and the use of efficient algorithms and high performance computing resources to obtain results within a reasonable time frame is mandatory. Discontinuous Galerkin methods are a class of numerical methods for solving differential equations that share characteristics with methods from theFree surface flows and subsurface flows appear in a broad range of geophysical applications and in many environmental settings situations arise which even require the coupling of free surface and subsurface flows. Many of these application scenarios are characterized by large domain sizes and long simulation times. Hence, they need considerable amounts of computational work to achieve accurate solutions and the use of efficient algorithms and high performance computing resources to obtain results within a reasonable time frame is mandatory. Discontinuous Galerkin methods are a class of numerical methods for solving differential equations that share characteristics with methods from the finite volume and finite element frameworks. They feature high approximation orders, offer a large degree of flexibility, and are well-suited for parallel computing. This thesis consists of eight articles and an extended summary that describe the application of discontinuous Galerkin methods to mathematical models including free surface and subsurface flow scenarios with a strong focus on computational aspects. It covers discretization and implementation aspects, the parallelization of the method, and discrete stability analysis of the coupled model.show moreshow less
  • Für viele geophysikalische Anwendungen spielen Strömungen mit freier Oberfläche und im Grundwasserbereich oder sogar die Kopplung dieser beiden eine zentrale Rolle. Oftmals charakteristisch für diese Anwendungsszenarien sind große Rechengebiete und lange Simulationszeiten. Folglich ist das Berechnen akkurater Lösungen mit beträchtlichem Rechenaufwand verbunden und der Einsatz effizienter Lösungsverfahren sowie von Techniken des Hochleistungsrechnens obligatorisch, um Ergebnisse innerhalb eines annehmbaren Zeitrahmens zu erhalten. Unstetige Galerkinverfahren stellen eine Gruppe numerischer Verfahren zum Lösen von Differentialgleichungen dar, und kombinieren Eigenschaften von Methoden derFür viele geophysikalische Anwendungen spielen Strömungen mit freier Oberfläche und im Grundwasserbereich oder sogar die Kopplung dieser beiden eine zentrale Rolle. Oftmals charakteristisch für diese Anwendungsszenarien sind große Rechengebiete und lange Simulationszeiten. Folglich ist das Berechnen akkurater Lösungen mit beträchtlichem Rechenaufwand verbunden und der Einsatz effizienter Lösungsverfahren sowie von Techniken des Hochleistungsrechnens obligatorisch, um Ergebnisse innerhalb eines annehmbaren Zeitrahmens zu erhalten. Unstetige Galerkinverfahren stellen eine Gruppe numerischer Verfahren zum Lösen von Differentialgleichungen dar, und kombinieren Eigenschaften von Methoden der Finiten Volumen- und Finiten Elementeverfahren. Sie ermöglichen hohe Approximationsordnungen, bieten einen hohen Grad an Flexibilität und sind für paralleles Rechnen gut geeignet. Diese Dissertation besteht aus acht Artikeln und einer erweiterten Zusammenfassung, in diesen die Anwendung unstetiger Galerkinverfahren auf mathematische Modelle inklusive solcher für Strömungen mit freier Oberfläche und im Grundwasserbereich beschrieben wird. Die behandelten Themen umfassen Diskretisierungs- und Implementierungsaspekte, die Parallelisierung der Methode sowie eine diskrete Stabilitätsanalyse des gekoppelten Modells.show moreshow less

Download full text files

Export metadata

Additional Services

Share in Twitter Search Google Scholar Statistics
Metadaten
Author:Balthasar ReuterORCiD
URN:urn:nbn:de:bvb:29-opus4-126532
Referee:Peter Knabner, Clint Dawson
Advisor:Peter Knaber
Document Type:Doctoral Thesis
Language:English
Year of Completion:2020
Embargo Date:2020/01/07
Publishing Institution:Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU)
Granting Institution:Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Naturwissenschaftliche Fakultät
Date of final exam:2019/12/06
Release Date:2020/01/13
Pagenumber:262
Institutes:Naturwissenschaftliche Fakultät / Department Mathematik
Dewey Decimal Classification:5 Naturwissenschaften und Mathematik / 51 Mathematik / 518 Numerische Analysis
open_access (DINI-Set):open_access
Licence (German):Keine Creative Commons Lizenz - es gilt der Veröffentlichungsvertrag und das deutsche Urheberrecht