
Adaptation to Varying Network Conditions
and Conversation Patterns for Robust High

Quality Audio Communication over the
Internet Protocol

—

Adaption an wechselnde
Netzwerkbedingungen und

Konversationseigenschaften zur robusten,
hochqualitativen Audio-Kommunikation

über das Internet Protokoll

Der Technischen Fakultät

der Friedrich-Alexander-Universität

Erlangen-Nürnberg

zur

Erlangung des Doktorgrades

D O K T O R - I N G E N I E U R

vorgelegt von

Jochen Issing

aus Würzburg

Als Dissertation genehmigt

von der Technischen Fakultät

der Friedrich-Alexander-Universität Erlangen-Nürnberg

Tag der mündlichen Prüfung: 4. April 2017

Vorsitzender des Promotionsorgans: Prof. Dr.-Ing. Reinhard Lerch

Gutachter: Prof. Dr-Ing. habil. Reinhard German

Prof. Dr.-Ing. Bernd Edler

Abstract

Narrow band communication is still widespread in existing VoIP clients despite the

development of high quality communication codecs, like AAC-ELD and EVS. These

new communication codecs allow for more natural speech through higher dynamic

range and audio bandwidth, enabling more comfortable telecommunication.

In this thesis we enable excellent audio quality in communication clients by

integrating AAC-ELD and EVS into a VoIP client. The integration of such codecs,

however, requires the revalidation of the existing VoIP client processing components

to verify high subjective audio quality. We conduct this validation through the

de�nition of objective metrics and listening tests. To implement Adaptive-Playout,

we exploit the excellent packet loss concealment and robust structure of modern

communication codecs and thereby reduce complexity in the VoIP receiver. In the

case of heavy network artifacts we improve the average audio quality by introducing

a new frame classi�er with negligible performance cost.

We develop a novel Adaptive Playout mechanism that �nds the balance between

low delay and minimal audio artifacts dynamically instead of using empirically

chosen adaptation parameters. Therefore we assess the impact of delay and inter-

activity on Conversational Quality. By conducting conversational tests we derive a

statistical model describing the Conversational Quality as a function of delay and

Conversational Interactivity. From these results we create an optimization model

and integrate this optimization model into the communication system.

We validate the quality of the adaptive communication system by conducting an-

other run of conversational tests that provide clear preference towards the adaptive

communication system for high and low interactivity conversations. Even though the

results show room for improvement in the case of medium interactive conversations,

the novel communication system is preferred by approximately 80 % of the test

subjects for high interactivity conversations.

iii

Kurzfassung

Trotz der Entwicklung hochqualitativer Kommunikationscodecs wie AAC-ELD und

EVS ist die Schmalbandkommunikation immer noch weit verbreitet. Dabei bilden

gerade diese Kommunikationscodecs die menschliche Sprache natürlicher ab und

erlauben einen höheren Dynamikumfang sowie eine größere Audiobandbreite, was

wiederum eine komfortablere Telekommunikation ermöglicht.

Im Zuge dieser Dissertation ermöglichen wir exzellente Klangqualität durch die

Integration von AAC-ELD und EVS in einen VoIP-Client. Diese Integration erfordert

allerdings eine Überprüfung der existierenden Verarbeitungsmodule des VoIP-Clients

zur Vermeidung des Verlusts von Klangqualität. Zur Durchführung dieser Validierung

de�nieren wir objektive Metriken und führen Hörtests durch. Zudem entwickeln wir

einen Adaptive-Playout-Mechanismus, der die exzellente Fehlerverschleierung und

die robuste Struktur moderner Kommunikationscodecs ausnutzt und die Komplexität

im VoIP-Empfänger reduziert. Im Fall von schweren Netzwerkartefakten verbessern

wir die mittlere Klangqualität durch die Entwicklung eines Signalklassi�zierers bei

vernachlässigbarem Zusatzaufwand.

Wir entwickeln einen neuartigen Adaptive-Playout-Algorithmus der den Kompro-

miss zwischen niedriger Verzögerung und minimalen Audio-Artefakten dynamisch

�ndet, statt empirische Adaptations-Parameter anzuwenden. Daher bemessen wir

anhand unseres hoch-qualitativen Kommunikationssystems den Ein�uss von Verzö-

gerung und Interaktivität auf die Gesprächsqualität. Mithilfe von Konversationstests

leiten wir ein statistisches Modell ab, welches die Gesprächsqualität als Funktion

von Verzögerung und Interaktivität abbildet. Anhand dieses Modells entwickeln wir

eine Optimierungsfunktion und integrieren diese in unser Kommunikationssystem.

Wir validieren die Qualität dieses adaptiven Kommunikationssystems durch

weitere Konversationstests, welche eine klare Präferenz zum adaptiven Kommuni-

kationssystem für Konversationen mit hoher und mittlerer Interaktivität belegen.

Auch wenn die Ergebnisse Verbesserungsmöglichkeiten im Bereich der mittleren

Interaktivität aufweisen, wird das adaptive Kommunikationssystem von annähernd

80 % der Testteilnehmer für Gespräche mit hoher Interaktivität bevorzugt.

v

Contents

Abstract iii

Kurzfassung v

1 Introduction 3

2 Adaptive Playout 7

2.1 Related Work . 8

2.1.1 Phase Vocoder . 10

2.1.2 Uni�ed Speech and Audio Coding Phase Vocoder 10

2.1.3 Synchronous Overlap-Add . 11

2.2 Jitter Estimation . 12

2.2.1 Packet Delay Metrics . 12

2.2.2 Existing Jitter Estimation Algorithms 14

2.2.2.1 Algorithm 1 . 16

2.2.2.2 Algorithm 2 . 16

2.2.2.3 Standard Deviation . 16

2.2.2.4 Percentile Algorithm . 17

2.2.2.5 Evaluation of Jitter Estimation Algorithms 17

2.3 AAC-Based Adaptive Playout . 21

2.3.1 Review of Advanced Audio Coding 22

2.3.2 AAC Time Stretching . 23

2.3.3 AAC Time Shrinking . 24

2.3.4 Network Simulation Model . 25

2.3.5 Listening Tests . 26

2.3.5.1 Time Stretching Test Results 27

2.3.5.2 Time Shrinking Test Results 29

2.4 Advanced Time Shrinking . 29

2.4.1 Listening Test of Time Scaling Algorithms 31

2.4.2 Design of a Classi�er for Frame Dropping 31

2.4.3 Audio Signal Features . 33

vii

viii Contents

2.4.3.1 Energy . 34

2.4.3.2 Normalized Zero Crossing Rate 34

2.4.3.3 Pearson Product-Moment Correlation Coef�cient . . 34

2.4.3.4 Normalized Pitch-Lag 34

2.4.3.5 Normalized Periodicity 35

2.4.3.6 Feature Analysis . 36

2.4.4 Classi�cation Based on Decision Trees 36

2.4.4.1 Low Delay USAC classi�er 38

2.4.5 Subjective Evaluation . 43

2.4.5.1 Veri�cation Test Design 43

2.4.5.2 Veri�cation Test Results 44

2.5 Chapter Summary . 46

3 Impact of Delay and Interactivity on Conversational Quality 49

3.1 Related work . 50

3.1.1 Impact of delay . 50

3.1.2 Metrics for Interactivity . 54

3.2 Conversation Test Design . 56

3.3 Conversation Test Results . 59

3.3.1 Composition of Conversational Quality 60

3.3.2 Impact of Delay on Conversational Quality 62

3.3.3 Feature Extraction . 63

3.3.4 Metrics for Interactivity . 65

3.3.5 Graphical Evaluation of the Impact of Delay and Interactivity

on Conversational Quality . 68

3.3.5.1 Impact of Delay on Conversation Metrics 70

3.3.6 Statistical Evaluation of the Impact of Delay and Interactivity

on Conversational Quality . 74

3.4 Chapter Summary . 77

4 Interactivity-Aware Playout Adaptation 79

4.1 Related Work . 79

4.2 A Model for Conversational Quality . 81

4.2.1 Conversational Quality as a Function of Late Loss 81

4.2.2 Conversational Quality as a Function of Delay and Interactivity 83

4.2.3 Combined Model . 87

4.3 Design of the Communication System . 88

4.3.1 Network Simulation . 89

4.3.2 Round-Trip-Time Estimation . 92

4.3.3 Silence Detector . 92

Contents ix

4.3.4 Voice Activity Detection . 93

4.3.5 Speaker Alternation Rate (SAR) Detection 94

4.3.6 Buffer Control . 96

4.4 Design of the Veri�cation Tests . 100

4.5 Veri�cation Test Results . 104

4.5.1 Composition of Conversational Quality 2 105

4.5.2 Impact of Conversation System on End-to-End Delay 107

4.5.3 Impact of Conversation System on User Perception 109

4.5.3.1 Dependency on SAR . 109

4.5.3.2 Graphical Evaluation towards the Preferred Commu-

nication System . 110

4.5.3.3 Statistical Evaluation towards the Preferred Commu-

nication System . 112

4.5.3.4 Graphical Quality Analysis of the Communication

System . 114

4.5.3.5 Statistical Quality Analysis of the Communication

System . 115

4.6 Chapter Summary . 117

5 Conclusion 119

A Appendix 121

A.1 Source Code Listings . 121

A.1.1 AAC-ELD Dropping Classi�er . 121

A.1.2 Low Delay USAC Class�er . 123

A.1.3 Real-Time SAR estimation . 124

A.1.4 Create Veri�cation Test Directory Structure 130

Bibliography 133

Glossary 141

dedicated to Levi, Mathilda, and Katja

Chapter 1

Introduction

After about 100 years of analogue and about 25 years of circuit switched digital

telephony with mostly narrow band (300 Hz - 3400 Hz) voice communication, Voice

over IP (VoIP) has become a viable alternative to traditional telephony services.

The appearance ofVoIP in particular introduced new possibilities in terms of au-

dio quality. Due to the computational power of smart phones, tablets, etc., VoIP

clients can nowadays process audio in full bandwidth, apply highly ef�cient com-

pression schemes and sophisticated audio processing in real time without draining

the battery unduly. And indeed, due to the fact that VoIP is based on several open

standards [75][79] , the choice of the compression scheme (i.e., voice codec) be-

came open for everyone and innovation cycles in Telecommunication have been

substantially reduced.

High quality phone calls are possible even in limited and error-prone wireless

and mobile networks. Audio codecs, usually known to require huge delay to reach

high coding ef�ciency, have made notable progress in terms of reduced delay and

appear as a high quality alternative to establishedVoIP codecs. And still, after

roughly 175 years of electric telecommunication, the ubiquitous "High-Fidelity" is

still missing in telecommunications.

To overcome this de�ciency we fathom the idea of CD-like quality in commu-

nications over IP networks in the underlying thesis. We have chosen to use a state

of the art low delay audio codec (i.e. AAC-ELD), which has been standardized by

MPEG[16] . AAC-ELD allows for novel mechanisms to exploit the codec structure

improving quality and reducing complexity of existing signal processing steps within

the VoIP client. Apart from that we analyze the existing VoIP mechanisms if they

are still feasible for high quality audio communication.

Therefore, we examine the modules of aVoIP client along with AAC-ELD and

analyze example implementations that exploit the codec structure inChapter 2 .

3

4 1 Introduction

Figure 1.1 shows the structure of a state of the art VoIP client with its most

common building blocks including sender and receiver.

Socket
In

Jitter
Buffer

RTP
Depacketizer

AAC-ELD
Decoder

Playout

Microphone AAC-ELD
Encoder

Receiver

RTP
Packetizer

Socket
Out

Sender

Figure 1.1 – Structure of a VoIP system

However, the emergence ofVoIP also caused new technical challenges: Since IP

is packet based and small chunks of audio data (usually blocks of20 ms) are sent

over the network in separate packets, the propagation delay of these packets can

vary signi�cantly when traversing from one client to the other. This phenomenon

is called network jitter and can be caused by cross traf�c, unreliable networks

(especially wireless), routing precedence between multiple Autonomous Systems

(AS), etc. Network jitter is usually compensated in the receiver using Adaptive

Playout (AP).

The pivot of good AP is the trade-off between low-delay and reduced late loss

artifacts. This trade-off controls the size of the jitter buffer and the speed of jitter

adaptation. A large jitter buffer for instance can compensate higher packet delay

than a small jitter buffer and thereby improve the audio quality since late packets

can be put in order before they are played out. But larger jitter buffers also introduce

more end-to-end delay. Humans can tolerate some delay, say up to around200 ms,

after which the communication experience looses naturalness and results in pauses,

loss of turn-taking, accidental interruptions of the speaker, etc. At some point added

delay does no longer improve the communication experience compared to lower

delay with some artifacts. And that is the crux here: what is the acceptable delay as

a function of network jitter. There is also the consideration of concealment and how

well the missing audio frames can be concealed.

Even though AP has been covered in the literature for several decades, no

consensus has been made for the optimal solution up to the time of this writing.

First, to gain better knowledge of the cost of delay in communications depending

on interactivity, we conduct listening tests in Chapter 3 and discuss their statistical

analysis.

1 Introduction 5

Using the �ndings from Chapter 2 and Chapter 3, we build a linear model in

Chapter 4 to estimate the sweet spot between low delay and reduced late loss

artifacts depending on the interactivity of the conversation and integrate the model

into a Communication System (CS). We conduct more conversation tests using a

baselineCSand an extendedCSincluding the linear model. The statistical analysis

provides interesting results for different conversation scenarios and shows some

signi�cant improvements in conversational quality.

Chapter 2

Adaptive Playout

AP is a mechanism used inVoIP clients to compensate variable network delay. In

the case of audio communication,AP is a very important component to deliver a

high quality audio CS.

When a digital audio frame travels from the sender in RTP-packets through the

internet to the receiver, it passes many different devices and sub systems. Because

subsequent packets can take different network paths, or might get queued in some

devices due to cross traf�c, etc. the propagation delay of audio packets can vary

notably. This variation is also known as jitter and is an inherent characteristic of

IP-based networks. Due to the continuous nature of audio samples, we have to

compensate the jitter in the receiver to maintain continuous playout of audio frames,

which otherwise leads to audible drop outs. If an audio frame arrives later than it's

actual playout time, it is considered as late loss and discarded, resulting in audible

artifacts. This jitter compensation is what we call AP.

Figure 2.1 shows the delay of a sequence of RTP packets as well as the principal

characteristics of �xed and adaptive playout as an example. It clearly identi�es

one bene�t of AP, namely the reduction of late loss in cases of changing network

delay. Even in the case of excellent network conditions,AP can reduce buffering

delay where �xed playout remains at a predetermined level. AP furthermore can

adapt to much worse network scenarios with high jitter while keeping late loss at a

reasonable level.

To provide these features,AP works in three ways: Firstly, AP needs to provide

accurate and reliable estimates of network jitter that cover both short-term and

long-term jitter patterns (i.e. jitter estimation). Secondly, it calculates a target

playout time using the results of the jitter estimation, on the premise to solve the

trade-off between low delay, late loss, and audio scaling artifacts in an optimal

manner. Thirdly, AP modi�es the audio time scale (i.e., stretches and shrinks the

7

2.1 Related Work 9

weighted moving averages, similar to the one de�ned in the RTP speci�cation [79] ,

but with different tunings towards increasing / decreasing delays and spike detection.

The other algorithm has been taken from a tool called NeVoT[80] and estimates

the delay by calculating the minimum delay of the last talk spurt.

A follow-up study by Moon et al. [64] proposed three algorithms for playout

adaptation, two of which are based on linear �lters as well. One algorithm follows a

different approach for delay jitter estimation: When a talk spurt starts, the algorithm

calculates a percentile point in a distribution function (the index in a preallocated

array) for the last w packets, wherew denotes the number of packets in a sliding

time window. The algorithm detects spikes and proceeds as follows: once a spike is

detected, it stops collecting packet delays and follows the spike until it detects the

end of a spike.

Another approach for jitter estimation has been proposed in[50] . It calculates

the mean and variance of packet delay over a sliding window and estimates the

network jitter using the variance and an empirically chosen factor to calculate the

con�dence interval.

As a side note in Liang et al.[57] , the authors proposed a percentile based jitter

estimation, which looks up the necessary buffer time in a sorted sliding window

over previous packet delays. However, the authors did not examine the effects of

different window sizes and late loss accuracy, which are important metrics to our

choice of jitter estimation technique.

Narbutt et al. [65] proposes a method for assessingVoIP call quality by extend-

ing the ITU-T E-model concept. The method provides a direct link to perceived

conversational speech quality by estimating user satisfaction from the combined

effect of information loss, delay and echo. The authors compare various adaptive

buffering algorithms with respect to: average buffering delay, late packet loss ratio

and user perceived quality as measured by the proposed method. They observed that

histogram-based algorithms are not capable of very rapidly increasing the buffering

delay during congestion and quickly reducing it when congestion has passed. Also

reactive algorithms (that rely on �xed estimator gain) tend to either react too quickly

to transient noise conditions (when the estimator gain is small) or ignore persistent

changes in performance (when the estimator gain is high). Even though the work is

mostly related to ours, it rates the algorithms using a receiver model based on the

E-Model and assumes very aggressive playout adaptation.

In contrast, we need to analyze the jitter estimation towards technical accuracy,

e.g. matching a desired accepted late loss, to make well-grounded decisions in the

playout adaptation later. Therefore, we decided to evaluate the existing algorithms,

chose the candidate with highest accuracy in terms of accepted late loss and modify

the algorithm if necessary to meet our requirements.

10 2.1 Related Work

Most common algorithms for time scale modi�cation can be classi�ed into two

categories: Phase Vocoders, working in the frequency domain, and Similarity/ Synchronous

Overlap and Add (SOLA) algorithms, working in the time domain.

2.1.1 Phase Vocoder

The Phase Vocoder[33] is an algorithm to modify the time scale of audio. The

algorithm interpolates subsequent audio frames in the frequency domain to shrink

or stretch the audio signal. Common implementations are based on the short-time

Discrete Fourier Transform (DFT). The Phase Vocoder can be separated into the

following steps: analysis, processing and synthesis.

In the analysis, the input audio signal is processed on a frame-by-frame basis.

The frames overlap according to the analysis hop size (i.e., the distance between

two subsequent frames in samples). Each frame is transformed to the frequency

domain separately and presented by its spectrum.

The Phase Vocoder processes each spectrum by calculating the signal speci�c

phase difference (i.e., the phase difference between two subsequent frames reduced

by the expected phase difference due to the analysis step). To scale the audio signal,

the input frames are re-sampled according to the scale factor by linear interpolation

of the spectrum's magnitude. To retain the phase, the signal speci�c phase difference

is applied to the output frame.

Finally, the interpolated spectra are transformed back using an inverse transfor-

mation and a synthesis hop size. The quality of the Phase Vocoder is determined

by many factors including windowing method, chosen hop size, and especially the

applied transformations.

2.1.2 Uni�ed Speech and Audio Coding Phase Vocoder

Uni�ed Speech and Audio Coding (USAC) adds speech coding technologies such

as Algebraic Code-Excited Linear Prediction (ACELP) to Modi�ed Discrete Cosine

Transform (MDCT) based transform coding, which is used for music signals in

general. It combines the strength of both mechanisms and thereby retains high

compression rates at reasonable delay while coding all kinds of sound material. For

testing purposes, it can run in three different modes: The �rst two are TC and ACELP.

TC stands for exclusive transform based coding and ACELP means that all audio

frames are encoded using ACELP. The most important mode is the switch mode,

where the encoder switches between TC and ACELP based on signal features.

Spectral band replication (SBR) [28] is a tool for low bit-rate codecs, which

restores the harmonic slope of the spectrum by reproducing the full spectrum from

a base band spectrum. The SBR encoder sub-samples the audio signal and extracts

signal processing parameters which are used in the decoder to regain the full audio

2.1 Related Work 11

bandwidth. The sub-sampled audio signal is then encoded using a classic audio

codec also referred to as the core codec.

Haishan et al. [38] have built a Quadrature-Mirror-Filter (QMF) based harmonic

SBR for USAC. Their harmonic SBR tool uses phase vocoder techniques to replicate

the high frequency bands from the low frequency bands. It performs time-stretching

and pitch-shifting at certain ratios on the low frequency signal to produce the

high frequency signal, which therefore conforms to the harmonic structure of the

low frequency signal. The authors state that the overall process of formation of

overlapping blocks, amplitude and phase modi�cation as well as overlap-add at

a new hop size is reminiscent of the DFT domain processing. However, the QMF

analysis bank with its low frequency resolution compared to the DFT transposer

leads to intermodulation products. The authors suppress these intermodulation

products by overlapping the source sub-bands multiple times.

2.1.3 Synchronous Overlap-Add

The other main class ofTSM algorithms is known as SOLA. While generic Overlap

and Add works on uniform frames which are cross faded by a �xed overlap, SOLA

signi�es a class of algorithms working in the time domain based on non-uniform

framing. The amount of overlap is determined by both the modi�cation rate and

audio signal features - or more speci�c similarity metrics.

A common metric for speech processing is the pitch, which denotes the subjective

dominant base frequency of an audio signal. Technically, it is often estimated as the

dominant base frequency in the audio signal, e.g. using autocorrelation or spectral

processing. Pitch Synchronous Overlap and Add (PSOLA) [41] [25] applies the

analysis-synthesis principle as follows.

In the analysis, the speech waveform is represented with “pitch-marks” dis-

tributed along the time scale. These pitch-marks are set synchronously with the

pitch periods over voiced portions, while their positions are arbitrary over unvoiced

portions. The analysis frames are obtained by windowing the input samples with

the window centered on the corresponding pitch-marks. The desiredTSM can

be de�ned as a time-warping function mapping the analysis time scale onto the

synthesis one. Thus, by extending the distance between pitch-marks in the synthesis,

the signal can be stretched and by shortening the distance between pitch-marks, the

signal can be shrunk.

Like PSOLA, Waveform Similarity and Overlap Add (WSOLA) [88] provides a

non-uniform Overlap and Add method for changing the speed of audio signals. The

algorithm chooses so-called synthesis instants, i.e., frames for which the similarity

metric is maximized. The similarity metric can be a cross-correlation coef�cient,

a normalized cross-correlation coef�cient or a cross-AMDF (average magnitude

12 2.1 Related Work

difference function) coef�cient for instance. To shrink the audio signal, the synthesis

instants are cross faded at the position of maximum correlation which is closest

to the desired shrink rate. To stretch the audio signal, the synthesis instants are

inserted and cross faded by the same principle.

This TSM technique has been used in the literature already forAP: A study

by Liang et al. [57] proposed audio scaling based on a tailoredWSOLAalgorithm,

which searches for a similar segment using a template audio frame in the time

domain. If a similar frame is found, the two audio frames are cross-faded without

algorithmic delay by a symmetric window.

2.2 Jitter Estimation

The �rst step in playout adaptation is the observation and estimation of incoming

network jitter. Network jitter is de�ned by [2] as the short-term variations of the

signi�cant instances of a timing signal from their ideal positions in time, thus is a

measure for packet delay variance if applied to packet-based networks. The metric

itself needs to be further de�ned according to the application domain - we de�ne it

as the maximum buffering time over all packets of a sequence at a given trade-off

between late loss and buffering delay.

In the following paragraphs we �rst introduce the speci�c metrics we use through-

out this thesis. Then, we review and analyze some of the existing jitter estimation

algorithms towards important metrics �rst and �nally chose an algorithm for our

communication system.

2.2.1 Packet Delay Metrics

To distinguish between absolute and inter-arrival delay, the following quantities are

de�ned: Let si be the absolute (true) wall clock time when a packet i is sent. si is

then derived from the RTP timestamp as given by

si = s0 + (1 + bs) t s(i), (2.1)

where jbsj << 1 is describing the drift of the sender's clock,s0 the time when RTP

packet 0 has been sent andt s(i) the RTP timestamp of packeti . For simplicity, we

ignore the modulo operation resulting from limited word length, because it can be

compensated easily in practice.

Besides that, let r i be the absolute (true) reception time of packet i taken from

the receiver's system clock ast r (i). Note that sender and receiver clocks are not

synchronized and could start at arbitrary points in time. This is particularly true for

2.2 Jitter Estimation 13

the RTP timestamp, which is de�ned to be initialized using a random number [79] .

Figure 2.2 shows an example with above quantities.

t s
s0

t r
r0

si � 2 si � 1 si

r i � 2 r i � 1 r i

di � 2

di � 1

di

Figure 2.2 – Illustration of absolute packet delay

The absolute delay is therefore given as

di = r i � si . (2.2)

As jitter is de�ned as the variation in packet delay, the absolute offset is not

relevant to the jitter estimation and thus jitter can be measured easily this way.

However, timestamps have a wrap around at 232 and general purpose computers

suffer in dealing with ever growing numbers. Apart from that, clock skew and

numerical drifting can require additional need for adjusting the reference time

instancess0 and r0 (i.e., the reception time of RTP packet 0) continuously.

These problems can be avoided by calculating absolute delay using inter-arrival

delay values. Inter-arrival delay is based on two time differences: the reference

time difference between two packets given by the RTP timestamp increment and

the measured time difference between two packets re�ected by the reception time

difference. Both time differences are depicted in Figure 2.3.

t s

t r

si � 2 si � 1 si

r i � 2 r i � 1 r i

� si � 1 � si

� r i � 1 � r i

Figure 2.3 – Inter-arrival delay example

The intervals can therefore be expressed as

� si = si � si � 1 (2.3)

� r i = r i � r i � 1 (2.4)

14 2.2 Jitter Estimation

and the inter-arrival delay by

d0
i = � r i � � si . (2.5)

Using (2.3) and (2.4) we can calculate absolute delay based on time intervals and

the last delay value recursively as:

di = � r i + r i � 1 � (� si + si � 1) (2.6)

= � r i � � si + r i � 1 � si � 1 (2.7)

= � r i � � si + di � 1. (2.8)

Using this approach, we limit the range of values in the calculations to the range

of the actual delay values and remain in the range of milliseconds to seconds, in

contrast to dealing with wrap-arounds and large random offsets. Additionally, if

clock skew or numeric drifting values are a problem, they can be compensated with

a factor to di � 1 after every delay computation.

2.2.2 Existing Jitter Estimation Algorithms

To choose the best jitter estimation for our communication system, we assess the

available algorithms against three different objective measures, namely average

delay, late loss and adaptation rate.

Note that the existing algorithms we present here are not only plain jitter

estimating algorithms but some also contain playout scheduling. However, as

playout scheduling involves TSM which we will cover in a later section, we integrate

the plain jitter estimating algorithms into an idealized model assuming unlimited

playout scheduling abilities (i.e., unlimited shrinking and stretching of audio).

First, we de�ne our �gures of comparison: average delay, late loss, and adapta-

tion rate. For the scope of this evaluation let Yc be the result of the jitter estimation

of algorithm identi�ed with the letter c.

Yc = f yc
i , 0 � i < N � 1g, (2.9)

with N being the total number of frames of the packet sequence. Next, we de�ne

the packet network delay (as observed in the client and calculated using (2.5)) as

D = f di , 0 � i < N � 1g. (2.10)

2.2 Jitter Estimation 15

Note that D is normalized to contain only positive values or 0. The buffering delay

of individual packet i is then given by

bc
i = yc

i � di . (2.11)

Note that the values bc
i contain both played out (bc

i � 0) and late lost (bc
i < 0)

packets. Using (2.11), we can create the set of delays of played out packets as

Pc = f pc
j , 0 � j < Mg (2.12)

using

Pc = f yc
i j bc

i � 0g. (2.13)

Our �rst metric, the average delay of the jitter estimation algorithm, is then

given by

d̄c =
1

M

M� 1X

j= 0

p j � dt (j) , (2.14)

with t (j) transforming the indices j to their original index i in the delay vector.

Now we de�ne our second metric the late loss rate using (2.11) again. This time

we select all packets with a scheduled playout time before the actual reception.

Lc = f di j di < 0g. (2.15)

The overall late loss ratel c of the algorithm is then de�ned as

l c =
jLcj

N
, (2.16)

where jLcj denotes the cardinality of the set Lc, i.e. the number of values in the set.

Our last metric, the adaptation rate ra, is furthermore derived from (2.11) and

represents the average amount of time the algorithm needs to scale per audio frame.

ra =
1

M � 1

M� 1X

j= 1

jpi � pi � 1j. (2.17)

The adaptation rate can be considered as a measure of variance but is easier to be

interpreted as the amount of audible artifacts per frame.

Two �lter based algorithms are chosen from [74] , namely Algorithm 1 and

Algorithm 2. Both algorithms calculate an average delay and a measure for delay

variability and combine these two measures to determine the playout delay of the

audio frame. This playout time represents the result of the jitter estimation, i.e., the

time to buffer the packet until smooth audio playout is ensured.

16 2.2 Jitter Estimation

2.2.2.1 Algorithm 1

Algorithm 1 calculates the average delay using a weighted moving average as in

d̄A1
i = � A1 � d̄A1

i � 1 + (1 � � A1) � di (2.18)

and the variability measure according to:

d̃A1
i = � A1 � d̃A1

i � 1 + (1 � � A1) � j d̄A1
i � di j. (2.19)

According to Ramjee et al.[74] � is set to 0.998002. The jitter estimation at frame

index i is then de�ned by

yA1
i = d̄A1

i + 4 � d̃A1
i . (2.20)

2.2.2.2 Algorithm 2

Algorithm 2 adds another factor � to the equations so that it shows customizable be-

havior for increasing and decreasing network delay. The average delay is calculated

using

d̄A2
i = � A2 � d̄A2

i � 1 + (1 � � A2) � di 8 di > d̄A2
i � 1 (2.21)

d̄A2
i = � A2 � d̄A2

i � 1 + (1 � � A2) � di 8 di � d̄A2
i � 1. (2.22)

According to Ramjee et al.[74] � is set to 0.998002 as before and� is set to 0.75.

The variability for Algorithm 2 is given by

d̃A2
i = � A2 � d̃A2

i � 1 + (1 � � A2) � j d̄A2
i � di j

and the resulting jitter estimation by

yA2
i = d̄A2

i + 4 � d̃A2
i .

2.2.2.3 Standard Deviation

In an earlier study [50] we have been implementing a jitter estimation algorithm

based on the standard deviation. We had empirically chosen a factor (fstd = 3.5)

that multiplies the standard deviation so that it contains a certain percentile of RTP

packets, under the assumption that the distribution of packet delays does not change

its shape over time. The algorithm is based on a sliding windowWs containing the

last jWsj delay values and is given by

ystd
i = � + � � fstd, (2.23)

2.2 Jitter Estimation 17

where � is the standard deviation of the delay values in the sliding window and �

the average.

2.2.2.4 Percentile Algorithm

The fourth jitter estimation algorithm is based on the cumulative distribution func-

tion or percentile, as given in the literature [66] [64] [81] . It estimates network

jitter based on a sliding window Wp and the set Sp. Sp contains the same delay

values asWp but sorted by increasing values, not by receive time. The jitter is

estimated by subtracting the lowest delay value from theq-highest delay value. In

this example, q represents the percentile point and is calculated for an accepted late

loss rate r l and a window size N according to

q = br l � Nc. (2.24)

The resulting jitter estimation yP
i of the percentile algorithm is then looked up in

the sorted window using:

yP
i = Sp(q) � Sp(0). (2.25)

2.2.2.5 Evaluation of Jitter Estimation Algorithms

Figure 2.4 shows an example network trace with the results of the different jitter

estimation algorithms introduced.

The plot illustrates the moving average behavior of both Algorithms 1 and 2,

with Algorithm 2 being very sensitive to network spikes, which occur at around

sequence numbers 150 and 600. Both the standard deviation-based (Stddev) and

the percentile-based jitter estimation algorithm show rectangular jitter increments

and decrements, caused by the window size of 100 packets in use. The network

trace has been taken from a set of 909 traces, which have been collected by myself,

colleagues and friends using a custom tracing application. The application sends

dummy RTP packets to a server, located in Erlangen, Germany, which in turn records

the trace �les. The traces thus contain real network traces, recorded from various

places including business trip destinations and mobile networks. Each trace is

between 1000 packets (20 s) and 60 s long. The traces contain all relevant timing

information, i.e., reception times, RTP timestamps and RTP time scale, which is

necessary to simulate the presented jitter estimation algorithms realistically and

have been collected using a software plugin in a company's PBX.

To compensate the clock drift in the traces, we have applied Paxon's algo-

rithm [69] , which is a stable and ef�cient algorithm [63] for the speci�c purpose

to reduce clock skew from network delay measurements. It is based on separating

22 2.3 AAC-Based Adaptive Playout

algorithm towards better quality while remaining minimal computational cost by

using a audio frame classi�er.

The basic adaptive playout algorithm takes advantage of the structure of AAC and

provides TSM at negligible computational cost. Before we describe the algorithm,

we will introduce the AAC fundamentals �rst on which the algorithm relies. After

that, we will go into detail about the algorithm and prove its subjective quality using

the results from listening tests.

2.3.1 Review of Advanced Audio Coding

In the following, we brie�y review AAC fundamentals of importance to playout

adaptation. The work has been published in[46] and we describe the mechanism

here brie�y.

AAC is, as many lossy audio codecs are, a transform-based codec. This means

that the actual time domain samples are transformed by an analysis function into

the frequency domain, where the actual signal processing takes place. The transfor-

mation is accomplished on frames of 512 or 480 samples per channel in the case of

AAC-ELD. Other codecs use different frame sizes, e.g. 1024 for AAC-LC or 2048 for

HE-AAC(v2). Each frame is overlapped by half of its predecessor and successor. On

the synthesis side, the audio signal is then reconstructed using overlap add of each

subsequent frame accordingly, as shown in Figure 2.8. The windows in the �gure

are sine shaped for the sake of simplicity. The real ELD windows follow a different

shape to reduce the codec delay[78] . Transform-based codecs therefore in general

provide an inherent cross-fade between each audio frame.

t

i i + 1 i + 2 i + 3

Figure 2.8 – Overlap-add of adjacent AAC frames. Each frame is overlapped
by half of its preceding and succeeding frame.

If we change the sequence of AAC frames, e.g., dropping a frame, we can

therefore modify the audio signal without clipping effects, as they would occur

with time domain codecs. With the assumption that the aliasing artifacts have less

effect on the perceived audio quality, we can therefore modify the AAC stream on a

per-packet basis.

AAC concealment takes place whenever an AAC frame is missing, either due

to network loss or late loss, i.e. frames received too late. The �eld of packet loss

concealment has been subject to various scienti�c work and a good summary is

given by [70] .

24 2.3 AAC-Based Adaptive Playout

seconds) in network delay, where human conversation encounters severe problems.

On the other hand the spikes remain only for a short period of time in general.

Therefore, these spikes will always cause buffer under-runs in receivers for low

delay communication and late loss is dif�cult to avoid completely.

Even if late loss can not be completely avoided, we could still bene�t from

the audio interruption by turning delay spikes into points for re-buffering or in

other words re-adjusting the receiver buffer size to the newly experienced network

conditions. This means, that we can stretch the audio signal in regions of late loss

by playing out the late lost frames after they arrived. Figure 2.10 shows an example

of such a sequence.

Received 1 2 3 4 5

Played-Out 1 2 3 C 4 5

Figure 2.10 – Example of AAC audio stretching using packet loss concealment
after late loss

The remaining question is: is there a difference in subjective quality if we adapt

during periods of late loss events, and if so, how large is the effect in terms of Mean

Opinion Score (MOS)? We will address this question with listening tests after we

have introduced the time shrinking counterpart in Section 2.3.3.

2.3.3 AAC Time Shrinking

The same basic concept in terms of packet handling as for AAC time stretching can

be applied to AAC time shrinking. Instead of inserting concealed AAC frames, we

can drop single frames, as shown in Figure 2.11. Time shrinking is simply done by

discarding AAC frames from the original packet sequence, exploiting the overlap-add

principle of transform-based audio codecs.

Received 1 2 3 4 5

Played-Out 1 2 4 5

Figure 2.11 – Example of AAC audio shrinking using frame dropping

By using this technique, however, aliasing artifacts will become more likely.

Besides that, the effect of AAC aliasing depends on the content of the AAC frames

and has not been subject to research so far. Therefore, we will address this issue by

listening tests in the following sections.

26 2.3 AAC-Based Adaptive Playout

starts are given in �lled circles and late lost packets are indicated with a value of 1.

The pattern is re-triggered at position 4, which results in the late lost packets 2 to 7.

1 2 3 4 5 6 7 8 9 10 11 12 13 14
0

1

la
te

lo
ss P

Q

Figure 2.13 – Simulation pattern example. The patterns consist of (1) late
lost frames and (0) normally received frames. A �lled circle indicates the
beginning of a pattern and is triggering an delay spike event. The empty
circles are subsequent late lost frames due to delay spike length, i.e., 4 frames
in this example.

A custom AAC-ELD decoder reads the pattern �les and the test stimuli (audio

�les) and applies the patterns to the audio data. Besides that, the custom decoder

can apply frame dropping with �xed dropping rates and therefore provides all

necessary functionality for creating the stimuli for our listening tests.

2.3.5 Listening Tests

The ITU compiled several different speci�cations and standards for the conduction

of subjective listening tests. Numerous standards have been taken into consideration

for the adaptive playout listening tests. BT.1116 [6] speci�es the assessment of

small quality impairments and is designed to compare two stimuli per test run.

It is, however, not suitable for assessing systems with intermediate audio quality.

BS.1284 [10] proposes general methods for the subjective assessment of sound

quality, but does not provide absolute scoring for the rating. P.800 [13] , P.810 [4]

and P.830 [5] are focused on speech signals in a telephone environment and proved

to be inapplicable for the evaluation of fullband audio signals. BS.1534[11] speci�es

a method called MUSHRA (MUlti Stimulus test with Hidden Reference and Anchor),

which is intended for the assessment of intermediate audio quality on an absolute

scale. Therefore, it has been chosen for the ACE listening tests.

Besides the actual test items, a MUSHRA listening test comprises the reference

signal as well as at least one anchor, which is de�ned to be the original signal �ltered

using a 3.5 kHz low pass. The hidden reference and low anchor are used to provide

an indication of how the systems under test compare to well known audio quality

levels and should not be used for rescaling results between different tests, as stated

in [11] .

The listening tests were conducted with headphones. All items were created

using AAC-ELD with 48 kbit / s. Due to the fact that the test items are scaled in

time, some modi�cations to the simulation software had to be made. As on the �y

comparison of the test items would involve time shifts, the listeners are not able to

switch between the items directly. Instead, each item is played from the beginning if

2.3 AAC-Based Adaptive Playout 27

a tester switches to it. Looping within markers, as it is common practice to identify

artifacts in general, is not possible for the same reasons.

The stimuli have been chosen to cover both critical and common signal classes.

Since full band audio codecs capture ambience in more detail and are likely to be

used for studio links or music streaming we include music items in the stimuli. Apart

from that, they help to assess the boundaries of the algorithms much better due to

their continuous and broad band nature. amper contains a drum signal showing

many transients, anten is a radio moderation with speech only, back2is a song of

Amy Winehouse, andsqamis a tonal item (hautbois), track no 16, from the so-called

SQAM-CD. Each item lasts about 10 s.

2.3.5.1 Time Stretching Test Results

The purpose of the time stretching tests is to verify the hypothesis, that late loss

events can serve as synchronization points for playout adaptation with negligible

additional impact on the audio quality. The custom AAC decoder therefore was run

in two different modes: The �rst mode labeled concealmentsimulates the standard

behavior for late loss and thus discards all AAC frames with a pattern value of 1.

The second mode calledstretchon the other hand does not discard any packet. In

contrast, it conceals during delay spike events and plays out the late frames after the

event and thereby exploits the audio disruption as a playout adaptation point. The

modes are tested at each delay spike length along with the hidden reference, and

the 3.5 kHz low anchor. Figure 2.14 shows the results of the concealment listening

tests conducted with 15 expert listeners. The graph shows the results for delay spike

duration of 10 ms, 50 ms, 100 ms, and 200 ms.

While concealment does not change the time scale of the audio signal, the stretch-

ing technique extends the originally 10 s audio track. Note that a spike duration of

200 ms would have enlarged the playout buffer by 1.7 s after 10 s streaming, which

should compensate most of the encountered network jitter and makes interactive

conversation hardly possible. Therefore, the200 ms already represents extreme

network situations.

The hypothesis that delay spike events can be used as playout adaptation points

seems valid looking at the test results, as the differences in MUSHRA score between

concealment and stretching mode are negligible. The results for speech only are even

more impressive. The audio quality of the stretching results is about 20 MUSHRA

score points higher compared to plain packet loss concealment for small durations

of delay spikes and about 10 points for spike durations of50 ms and 100 ms. This

improvement must be related to the fact that plain concealment discards parts of

the speech and thus information in the audio signal, which implicit stretching still

retains. For example, while plain concealment discards a single syllable or even

2.3 AAC-Based Adaptive Playout 29

2.3.5.2 Time Shrinking Test Results

To assess the subjective audio quality of our AAC-based time shrinking technique,

listening tests were conducted with 13 test subjects on premises of Fraunhofer

IIS, Erlangen, Germany. The main objective of the test design was to �nd an

optimal reference time shrinking application, providing best quality with state-of-

the-art shrinking algorithms. To match this requirement, we chose Apple's Logic

Studio 2.0 [20] , which is shipping a proprietary high complexity time modi�cation

algorithm. For the time shrinking tests, Logic Studio is considered to be the quality

reference, especially regarding algorithmic artifacts. Shrinking with Logic was run

off-line and had unlimited time and CPU performance compared to the network

simulator, which drops an encoded audio frame without further knowledge about

the underlying signal or additional delay.

Figure 2.15 shows the results of the time shrinking listening tests over all items

except for the sqamitem, which is shown separately. The reason for this separation

is that the sqamitem, as a stimulus with emphasis on tonality, has been identi�ed

as a particularly critical candidate for AAC frame dropping. Thus, signals featuring

high tonality can be generally classi�ed as critical candidates for frame dropping.

Shrinking has been performed with dropping rates of 1 %, 2 %, 4 %, and 10 %.

The markers indicate the mean, and the error bars the95 % con�dence interval

according to the Student's distribution of the test results. Items 2 to 5 present the

audio quality with Logic Audio time shrinking. Items 6 to 9 represent the results

of our AAC-based frame dropping technique with the same shrinking rates. Frame

dropping performs even better than Logic Studio for 1 %, 2 %, and 4 % on average.

The audio quality is excellent up to 2 % and remains good for 4 %. However, the

audio quality drops to fair at 10 % frame dropping.

In summary we can state that the AAC-based dropping algorithm works very well

for low dropping rates until 4 %. The reference algorithm's mean score performed

worse for all low rates. For higher rates, i.e., 10 %, on the other hand the dropping

quality drops seriously to poor while the reference algorithm retains good quality.

The sqamstimulus, i.e., a signal with high tonality, was identi�ed as a bad candidate

for frame dropping and thus might be avoided using a signal classi�er.

2.4 Advanced Time Shrinking

In this chapter we re�ne the AAC-based adaptive playout algorithm and further

improve its audio quality using a frame classi�er.

We focus on time shrinking because our playout adaptation is designed to always

retain the lowest delay at an acceptable late loss rate. The algorithm is not allowed

2.4 Advanced Time Shrinking 31

classify sequences of audio frames towards the severity of artifacts they would

produce if they were dropped. These manually classi�ed sequences provide the

ground truth for our classi�cation process. Using a selection of signal features in

correlation to the manually classi�ed sequences we then build the classi�cation

tree for different codec modes. We assess the bene�t and limits of the improved

algorithm with a veri�cation listening test.

2.4.1 Listening Test of Time Scaling Algorithms

To assist the choice of which time scaling technology the classi�er should be based

upon, we conduct listening tests to assess the audio quality of several existing

algorithms. We expose three items which are shrunk in time by10 % to the test

subjects in a single MUSHRA listening test. Based on the results of the listening test

we then select our candidate for further improvement.

The candidates under test arePSOLA, WSOLA, QMF64 (as in [38]), regular

dropping using low delay USAC in TC mode, LDFB 60 band, and LDFB 120 band.

The WSOLAalgorithm under test is a C implementation which has been taken

from [30] . QMF64 identi�es a 64-band QMF Phase Vocoder, to assess the perfor-

mance of the QMF Phase Vocoder only, without additional coding artifacts. Fur-

thermore we apply the technique of the QMF Phase Vocoder to a 60-band low

delay �lter bank (LDFB60) as used by the low delay version of USAC. To assess the

effect of higher frequency resolution we also add a 120-band low delay �lter bank

implementation (LDFB120) of the Phase Vocoder.

We have chosen three test items featuring audio (classical music), speech (with

background noise), and mixed speech with audio (background choir with moder-

ator's voice in front). Figure 2.16 shows the results of the MUSHRA test with 7

listeners. Two of the originally 9 listeners had to be �ltered out because they rated

the hidden reference to a MUSHRA score below 90.

The �gure provides a good orientation and comparison of the audio quality to

expect from the different TSM algorithms. Considering regular dropping as the base

TSM method due to its negligible complexity, we re�ne it using a frame classi�er in

the following sections.

2.4.2 Design of a Classi�er for Frame Dropping

To train the classi�er, we manually classi�ed single frames in terms of drop-ability. To

cover a broad range of signals with an emphasis on speech, we chose nine different

audio signals we also refer to as training signals. Six of these were speech signals

and three music. The speech signals comprise two clean speech signals and four

with background noise including street, car, and of�ce noise.

34 2.4 Advanced Time Shrinking

The features were normalized based on the frame length where appropriate and

are de�ned in the following paragraphs.

2.4.3.1 Energy

The signal energyE is given in decibels (dB) using the audio samplesx of each

frame with length N according to

E = 10 � log10

1

N

N� 1X

i= 0

x[i] 2

!

. (2.26)

2.4.3.2 Normalized Zero Crossing Rate

The zero crossing rate is normalized to the maximum possible zero crossing rate,

i.e., N � 1 and is calculated asfZC using

fZC =
1

N � 1

N� 1X

i= 1

�
sgn(x[i]) � sgn(x[i � 1])

2

�

. (2.27)

2.4.3.3 Pearson Product-Moment Correlation Coef�cient

The Pearson product-moment correlation coef�cient, also abbreviated as R, is a

measure for the linear dependency between two frames and calculated according to

R=
cov(X, Y)

� X � Y
(2.28)

=

P N� 1
i= 0 (x[i] � x̄)(y[i] � ȳ)

ÆP N� 1
i= 0 (x[i] � x̄)2

ÆP N� 1
i= 0 (y[i] � ȳ)2

, (2.29)

with the covariance cov, the standard deviation � , the samples of the current frame

y[i] and of the last frame x[i] as well as the mean of the framesx̄ and ȳ.

2.4.3.4 Normalized Pitch-Lag

We de�ne the pitch as the dominant base frequency in the audio signal. As earlier

listening tests with dropping have shown, signals resembling sinusoids are critical

for frame dropping. This leads to the assumption that the cross-fade between the

two signals suffers from phase shifts and therefore results in interference effects,

which heavily degrades the audio quality. The magnitude of interference depends

on the pitch of the signal. For instance, frames that contain one or more whole sine

periods show no interference, whereas for frames containing any integer plus half

the period, the interference causes severe signal attenuation.

2.4 Advanced Time Shrinking 35

We estimate the pitch of a frame with length N using the autocorrelation func-

tion [44] [90] which is given by

� (i) =
N� 1X

j= 0

x j x j+ i . (2.30)

The main peak in the autocorrelation function is at the zero lag location (i = 0).

The location of the next peak gives an estimate of the period, and the height gives

an indication of the periodicity of the signal. We furthermore restrict the pitch to

lie between 50 Hz (i.e., period 20 ms) and 500 Hz (i.e., period 2 ms). We take the

period of the pitch from the calculation of the normalized pitch lag in

� = imax (2.31)

� (imax) = max � (i), fs � 2 ms� i � fs � 20 ms, (2.32)

using the sample frequencyfs.

We further de�ne the pitch lag as the modulus of � divided by the frame length:

L� = � mod N. (2.33)

The pitch lag is then normalized by the period of an audio frame N to represent

the relative amount of the phase shift

L0
� = 1 �

�
�
�
�

�
L�

N
� 0.5

�

� 2

�
�
�
� . (2.34)

Note that the worst pitch lag in terms of interference lies in the middle of the

frame.

2.4.3.5 Normalized Periodicity

Measuring the normalized pitch lag does not make sense in all circumstances,

e.g., in cases when the signal does not contain an actual pitch. Instead of blindly

relying on the normalized pitch lag as an prediction parameter, we add a metric

for the periodicity of a signal. We de�ne the periodicity of the signal as the sum of

four periodic components of the autocorrelation function. Using the pitch's period

Equation (2.31) and the correlation function Equation (2.30) we determine the

periodicity by

P =
1

4

�

� (�) + � (2�) � � (
�

2
) � � (

3�

2
)

�

. (2.35)

36 2.4 Advanced Time Shrinking

Note that for a periodic signal, � (�) and � (2�) are usually positive while � (�
2
)

and � (3�
2

) are usually negative. Hence,� (�) and � (2�) are added and� (�
2
) and

� (3�
2

) are subtracted in above equation. To normalize the sum of the 4 harmonics

(taken from a normalized autocorrelation function) we divide the result by 4. In our

computations, we got values between 0 and 1 for the periodicity.

2.4.3.6 Feature Analysis

Before we build a classi�cation tree, we will take a look into the signal features

and how the features manifest in the audio frames of the given training signals.

Figure 2.18 shows an overview of all features and their appearance in the training

signals.

The result of the manual classi�cation has been reduced from the 4 categories

in Table 2.1 to audible (A) and droppable (D). The reduction was achieved by

mapping all audible categories (A, AA, AAA) to A while D remains the same. Most

of the features are non-parametric and some are showing multi-modality, e.g. fZC

or L0
� , which makes regression analysis dif�cult. The features with the most notable

differences are energy,fZC and L0
� , so we assume them to be major factors in our

classi�cation algorithm. The differences between A and D frames are stable over

all different codec types (i.e., TC and ACELP) and signal classes (i.e., music and

speech) even though the distributions show some differences.R and P seem to

have almost no in�uence on the audibility of frame drops as shown by similarly

shaped distributions and close mean values, although we can not rule out interaction

between features which might lead to good classi�cation results.

In summary, there exists no clear separation between A and D frames with any

de�ned signal feature. We can not rely on parametric features in our classi�cation

method so we need to use a different statistical approach.

2.4.4 Classi�cation Based on Decision Trees

Many different approaches for classi�cation are known and used practice. Among

the most prominent are neural networks, linear regression and classi�cation trees.

For our problem of frame dropability classi�cation, we have chosen to use a decision

tree for classi�cation, also referred to as recursive partitioning. The reason we chose

decision trees was that a tree can be easily interpreted and the relationship between

factors becomes obvious by following the branches of the decision tree.

The majority of recursive partitioning algorithms are special cases of a simple two-

stage algorithm: First partition the observations by univariate splits in a recursive

way. Secondly �t a constant model in each cell of the resulting partition. A very

popular implementation is called CART [24] , which performs an exhaustive search

over all possible splits, maximizing an information measure of node impurity by

38 2.4 Advanced Time Shrinking

selecting the covariate showing the best split. According to[43] , this approach has

two fundamental problems: over�tting and a selection bias towards covariates with

many possible splits. Therefore, we have chosen to apply the approach by[43] ,

which is available as theparty package in GNU/ R [86] . The authors implement

recursive binary partitioning using the theory of permutation tests developed by [83] .

The algorithm features a non-parametric class of regression trees and is applicable

to all kinds of regression problems including nominal, ordinal, numeric, censored,

and multivariate response variables. The splitting criteria is based on two-sample

linear statistics rather than an impurity measure and therefore does not require

additional pruning of the resulting tree.

We have chosen to use all covariates, i.e., signal features, as the input to the

classi�cation process. The response is the reduced manual classi�cation conducted

previously and consists of each droppable frame (D) as is and each audible frame

(A,AA,AAA) simpli�ed to audible (A). The resulting classi�er will therefore predict

each frame to be either droppable or audible.

2.4.4.1 Low Delay USAC classi�er

We build the classi�er for the low delay USAC codec by using all classi�ed frames in

the classi�er creation process. The USAC codec has been submitted as a candidate

for the Enhanced Voice Service (EVS)[31] as a next generation joint audio and

speech codec for the Long Term Evolution (LTE) standard. Figure 2.19 shows the

classi�cation tree as it is created by calling the function ctree in the party package.

Note that the terminal nodes in the classi�cation tree originally delivered state

probabilities and the splitting criteria is based on statistical signi�cance and not �nal

classi�cation values. Hence, we applied a threshold value of 0.5 to the resulting

terminal node probability to extract the �nal classi�cation state, i.e., A or D, thereby

reducing the number of inner nodes.

The primary splitting covariate of the classi�cation process (fZC) is given by node

1, which also has shown signi�cant differences in Figure 2.18. The lower hierarchies

of the tree contain the other features, i.e., L0
� , Energy, P, and R, as differentiation.

Table 2.2 shows the confusion matrix for the classi�cation tree. In total, 77.3 % of

A D correct wrong

A 253 239 51.4% 48.6%
D 162 1114 87.3% 12.7%

total 415 1353 77.3% 22.7%

Table 2.2 – Confusion matrix of low delay USAC classi�er. Original classes
are given per row while classi�er results are presented in columns. In total,
76.5% of all frames are classi�ed as dropable.

40 2.4 Advanced Time Shrinking

level values vi taken from Table 2.1 by

wi = vi � fw. + 1 (2.36)

with vi 2 f 0, 1, 2, 3g and the constant factor fw to adjust the weight levels manually.

By using higher weights for more severe artifacts, we put emphasis on artifact

reduction with the emphasis level being controlled by the weight factor fw. Even

though there is a risk to over-specify the classi�cation tree with excessive weight

factors and thereby increase the number of nodes notably, it is for the bene�t of

reduced misclassi�ed audible frames.

Table 2.3 shows the effect of different weight factors when creating the classi�-

cation tree. The misclassi�cation rate for originally audible frames is signi�cantly

fw A misclass. rate max shrink rate #nodes

0 48.6% 76.5% 11
1 29.5% 64% 23
2 14.4% 47.9% 29
3 13.4% 47.5% 39

Table 2.3 – Effect of different weights on relative dropable misclassi�cations,
maximum shrink rate and total number of nodes per classi�cation tree.

reduced with increasing fw until a factor of 2. However, the number of frames

classi�ed as droppable also decreases from76.5 % to 47.9 %. This limits the max-

imum shrink rate accordingly. Apart from that, the total number of nodes in the

non-reduced classi�cation trees raises to more than double the size. A weighting

factor of 3 shows minor difference apart from a seriously increasing number of

nodes. We interpret this as a sign of saturation and we have seen this effect growing

for higher weight factors. Therefore, we will use a weighting factor of 2 for our low

delay USAC classi�er. The �nal reduced and simpli�ed classi�cation tree for low

delay USAC is shown in Figure 2.20.

Table 2.4 shows the confusion matrix for the �nal low delay USAC classi�cation

tree. By using a weight factor of 2 we have reduced the relative number of wrong

classi�cations for originally audible frames from 48.6 % to 15.2 %, while keeping the

available maximal shrinking rate at 47.7 %. The downside is the increased number

of nodes from 11 to 29 for the reduced classi�cation trees. Listing A.2 shows the

classi�er for low delay USAC in MATLAB, as used for our veri�cation listening tests

later.

To estimate the complexity of the Low Delay USAC dropping classi�er, we use the

so-called BASOP (Basic Operator Libraries) instrumentation speci�cation of the ITU,

which is incorporated in [17] . The instrumentation results in the two complexity

parameters WMOPS (Weighted Million Operations per Second) and ROM (Read-only

42 2.4 Advanced Time Shrinking

A D correct wrong

A 421 71 85.6% 14.4%
D 501 775 60.7% 39.3%

total 922 846 67.6% 32.4%

Table 2.4 – Confusion matrix of low delay USAC classi�er with weight factor 2.
Original classes are given per row while classi�er results are presented in
columns. In total, 47.9% of all frames are classi�ed as dropable. Also note
that only 43.8% of all audible frames are incorrectly classi�ed as droppable,
assuring improved audio quality.

Memory) usage, which estimate computational complexity in terms of speed and

memory usage.

The complexity of an if-statement is given as 4 complexity weights and 2 memory

weights by [17] . Based on these values, we can make a complexity estimation by

simple tree analysis. The minimum complexity is given by the least amount of

if-clauses necessary to classify a frame and is in this example 2, i.e., all frames

classi�ed by node 29. The worst case scenario is given by all frames classi�ed by

nodes 14 or 15, resulting in 7 if-clauses. Apart from the extreme values, we can

estimate the expected average complexity using the classi�cation results from tree

creation. We therefore extract each �tting node (n j), i.e., the node that �nally

classi�es the frame, from the observations. The if-rate r i f which determines the

classi�ers WMOPS and ROM complexity measures is given by

Ni f =
29X

i= 1

nifs(n j ,i) (2.37)

r f = 50 (2.38)

r i f =
Ni f

Nf � r f
, (2.39)

with nifs counting the number of if-clauses for each �tting node, Ni f being the total

number of if-clauses for all classi�ed frames, r f being the frame rate in 1/ s. Table 2.5

summarizes minimum, maximum and expected complexity values for the low delay

USAC classi�cation tree. Note that complexity is in general estimated using WMOPS,

which are million operations per second, where our results are orders of magnitudes

below. The signal feature complexity has been left out of the instrumentation since

the dropability of a frame can be calculated in (or right before) the encoder and

carried as side information to the decoder for �nal evaluation.

In this section we have built and analyzed a dropping classi�er for low delay

USAC (LDUSAC) based on a classi�cation tree. The classi�er has been trained

using manually classi�ed audio samples (training data) and uses signal features like

2.4 Advanced Time Shrinking 43

algorithm
Complexity
in WOPS

Memory consumption
in WORDS

min 400 14
expected 838 14
max 1400 14

Table 2.5 – Complexity estimation of low delay USAC classi�cation tree

normalized zero crossing rate, energy level, normalized pitch lag, etc. to identify

droppable audio frames. To reduce the amount of audible artifacts, audible frames

are weighted in terms of their severity (i.e., audible nuisance). The weights reduce

the number of misclassi�ed audible frames signi�cantly at the cost of less precision

when classifying droppable audio frames. The weights have been adjusted to provide

sensible reliability in the classi�cation of audible frames while retaining decent drop

rates of up to 50 %.

2.4.5 Subjective Evaluation

To verify the functionality and assess the quality of the two created classi�ers, we

have to conduct more listening tests. In contrast to the algorithm quali�cation tests

in Section 2.4.1, we reconsider the choice of listening test speci�cation for the �nal

veri�cation tests �rst.

2.4.5.1 Veri�cation Test Design

The ITU P.800 speci�cation [3] recommends different methods for listening only

audio quality assessment. One method mandates assessing the audio quality using

ACR (Absolute Category Rating). With ACR, the test subjects are exposed to a

single stimulus, i.e., a shrunken �le or coded content they are only allowed to listen

to once. After listening, the test subjects provide their rating on a discreteMOS

scale, i.e., numbers from 1 to 5 representing the opinionsbad, poor, fair , good, and

excellent.

We have chosen 6 pairs of items from the McGill speech database[53] as well

as two music pieces for our veri�cation test. The speech items are around5 s long,

while the music items last for about 10 s, to to allow the subjects capturing the tune

of the music as well as the artifacts. To 5 of the 6 speech items we add background

noise. The background noise is comprised of separately recorded music, of�ce, street,

car, and babble noises. Each noise signal is normalized to� 51 dBov according to

P.56 [19] , except for the of�ce noise, which was normalized to � 46 dBov. All other

items are normalized to � 26 dBov, as required by the P.800 speci�cation. We test

the following shrinking algorithms and MNRUs (Modulated Noise Reference Units):

44 2.4 Advanced Time Shrinking

• LDUSAC (classi�er)

• LDUSAC regular dropping (e.g. every 10th frame)

• LDUSAC random dropping (using uniform random numbers)

• WSOLA

• MNRU 34 dB

• MNRU 16 dB

The MNRUs are the audio signals modulated with standardized noise. They

serve as anchors and are used to calibrate the judgment scale. ThedB value speci�es

the signal to noise ratio. A high value therefore indicates less and a low value

indicates more audible noise.

To cover a broad range of shrinking rates, we create test �les with 4 %, 10 %,

and 20 % shrinking. In summary, the tests are run on 8 different audio �les with 5

different algorithms each with 3 different shrinking rates, 2 MNRUs, and the original

�le as reference. This results in 120 test �les for all algorithms and shrinking rates,

16 MNRUs, and 8 references �les. In total, we have to test 144 �les. We decided to

split the test �les into two groups to reduce the time for each test subject to about

15 min. We use a P.800 test software that automatically scrambles the audio �les

and splits them into two groups.

2.4.5.2 Veri�cation Test Results

The test subjects listened to the test audio signals using headphones and a custom

listening test software that guided through the test process. We tested 30 subjects

in 15 test groups. The results contain 2160 ratings in total with 15 ratings per test

item. Figure 2.21 shows the results of the P.800 listening test over all rates.

The original (Ref) and both MNRU items contain 120 ratings while all shrinking

algorithms consist of 360 ratings each. WSOLAis included as a high quality ref-

erence. As can be seen from Figure 2.21 when comparing LDUSAC with LDUSAC

reg, the overall improvement of the classi�er across all rates is almost half aMOS

point. Even though the classi�er does not reach high pro�le algorithms like WSOLA,

which performs one MOS point better, we have improved the dropping algorithm at

negligible performance cost.

We now focus on speech and therefore exclude all music items from the analysis.

Apart from that, we reduced the results to contain only dropping rates of 4 %

and 10 % as the effect of classi�cation diminishes towards higher dropping rates.

Figure 2.22 shows the summarized speech only results of all algorithms for shrinking

rates of 4 % and 10 %.

2.5 Chapter Summary 47

on the estimation result is a trade-off between: (a) higher late loss accuracy and

variance, more delay, and less adaptation rate using large windows, and (b) less

late loss accuracy and variance, less delay, and higher adaptation rate using smaller

windows. Considering the results from Figure 2.6, we chose 500 packets (i.e.,10 s)

as our preferred window size for the percentile jitter estimation.

We then proved the hypothesis that delay spike events can be used as playout

adaptation points with remarkable results. This is especially true for speech items

where the audio quality is about 20 MUSHRA score points higher compared to plain

packet loss concealment for small durations of delay spikes.

We introduced a time shrinking algorithm based on dropping AAC frames that

works very well for low dropping rates until 4 %. We further improved the AAC-

based time shrinking using a frame classi�er [48] . The frame classi�er predicts the

audibility of allegedly dropped frames based on signal features which are already

available in the USAC codec. Thereby we improved the time shrinking audio quality

by another 0.5 MOS points.

Chapter 3

Impact of Delay and Interactivity on

Conversational Quality

Since the availability of intercontinental phone calls, many users will have expe-

rienced the impact of delay on Conversational Quality (CQ). With the migration

of the Public Switched Telephone Network (PSTN) toVoIP, and the prevalence of

mobile communication, this experience is likely to be familiar on an increasingly

wider scale. In times of PSTN, the end-to-end delay was mainly determined by

the impulse propagation of electrons through copper and remained fairly constant

during the conversation. Nowadays however, with packet-based telecommunication

networks, the propagation of the transmitted packets suffers from varying packet de-

lay caused by different network effects, for instance packet queuing or inter-domain

routing [72] , i.e., routing between autonomous systems in the Internet. When

we speak of delay, we always refer to the end-to-end or mouth-to-ear delay in one

direction of a communication for the scope of this work.

Apart from that, the impact of delay also depends on the interactivity during the

conversation. For instance, if the grandparent reads a book to her grandchildren and

does this well, so that the grandparent is never interrupted by her grandchildren,

delay will not even be recognized. However, in a lively discussion where the

interlocutors take turns frequently, interrupt each other, or speak on both ends

(double-talk), delay has a much stronger in�uence to CQ. Telecommunication

clients therefore need to adapt to the changes (jitter) of this packet delay and solve

the trade-off between reduced artifacts and conversational interactivity.

To address this trade-off, we �rst need to assess the impact of delay onCQ.

After we present the related work on this subject, we propose a methodology for

conversation tests controlling the interactivity of the test subjects and present the

results of conversation tests with this methodology applied. Parts of this chapter are

based on our publication [47] .

49

50 3.1 Related work

3.1 Related work

Assessing conversational quality has been identi�ed to be a particularly dif�cult

matter and requires the de�nition of a conceptual framework for what is actually

measured and the speci�c distinction between “subjective” and “objective” qual-

ity [56] . In the following sections, we present existing work related to subjective

conversation quality with respect to delay and will discuss the results in relation to

the work in this thesis.

3.1.1 Impact of delay

An early study by Kitawaki et al. [55] described the effect of transmission delay on

speech quality in telecommunications. This study also takes human factors such as

conversational mode and the talker's knowledge of the cause of delay into account.

The authors veri�ed the assumption that a talker expects a particular response

time from his partner and notices delay which is outside this expectation time

window. Besides that, they state that the perception of delay is greatly in�uenced by

temporal characteristics of conversational speech. The work included six different

kinds of tasks with varying temporal characteristics. The different tasks are given in

Table 3.1.

Table 3.1 – Kitawaki Tasks

No. Description

1 Take turns reading random numbers aloud
as quickly as possible

2 Take turns verifying random numbers as
quickly as possible

3 Words with missing letters are completed
with letters supplied by the other talker

4 Take turns verifying city names as quickly as
possible

5 Determine the shape of a �gure described
verbally

6 Free conversation

They conclude that the effect of delay on a conversation differs appreciably

depending on the content and occasion, and that long round-trip transmission delay

in the range of 500 ms results in considerable quality degradation in telecommu-

nications. The results regarding impact of delay onCQ are shown annotated with

kitawaki 1 , 2, 4, and 6 in Figure 3.1.

The International Telecommunication Union (ITU) addressed the topic in several

ways. The E-Model (also called ITU-T Transmission Rating Model)[7] de�nes an

algorithm useful during transmission planning, to help ensure that users will be

52 3.1 Related work

satis�ed with end-to-end transmission performance. The primary output of the

model is a scalar rating of transmission quality. A major feature of this model is

the use of transmission impairment factors that re�ect the effects of modern signal

processing devices. The model calculates user satisfaction using the rating factor

R by subtracting the various impairments, e.g. signal and delay impairments from

the optimal rating value. The delay impairment factor includes impairments due

to talker echo, listener echo, and impairments caused by too-long absolute delay.

In face of it's complexity, the E-Model lacks a parameter for interactivity. The delay

only impairment (i.e., without echo) is shown in the graph and labeled as emodel. It

remains stable until 200 ms, which matches the common transition time for speaker

alternations of many languages[82] and saturates at a quality level betweenfair

and poor for delays above1.5 s. Comparing it's slope with the other results in the

graph, the E-Model seems to presume natural conversation with low interactivity.

Recommendation G.114[12] provides speci�cations for transmission time, in-

cluding delay due to equipment processing time as well as propagation delay. It

is assumed that echo is adequately controlled. Older versions[1] [8] address the

impact of delay on communication quality in the range of 0 ms to 750 ms. The

results were derived from conversational tests using the same six tasks as Kitawaki,

but show higher quality in general, maybe due to a different speech codec. The

results from G.114 Annex B are shown labeled asg114b3.

Less critical results regarding the impact of delay onCQ were given by [35] .

The tests were conducted using a custom video conference system. The authors

extended the so-calledBuilding Blocks Scenario, where two persons have to build

the same building block model. The building instructions are distributed between

both test persons, so that each person has the instruction's complement of the other

person. The results are labeled asbraeuerand show only little effect of delay on CQ

Another study [29] was conducted in order to assess the subjective impact of

transmission delay on mobile voice communications via satellite. This study was

conducted using simulated end-to-end propagation delays representative of low

earth orbit (LEO) and geostationary earth orbit (GEO) networks (single and double-

hop) in combination with three different speech coding technologies:

64 kbit / s Pulse-Code Modulation (PCM),8 kbit / s Vector-Sum Excited Linear Predic-

tion (VSELP), and4.15 kbit / s Improved Multiband Excitation (IMBE) (representing

wireline, cellular, and mobile satellite technologies, respectively). The delay took

discrete values of188 ms, 376 ms, and 632 ms. The results given bydimo pcm, dimo

vselp, and dimo imbeshow very low dependency ofCQ on delay, in fact the authors

state that the impact of coding artifacts is much stronger.

Communication with high delay very often suffers from echo, if microphone and

loudspeaker are not acoustically separated. Guegin et al.[37] show the results of

conversation tests with and without echo, which are given by guegin echoand guegin.

3.1 Related work 53

The delay values tested covered0 ms, 200 ms, 400 ms, and 600 ms. While the echo-

free results suggest low dependency towards delay, the results from the tests with

echo show a steep drop inCQ. The results of guegin echobetween 250 ms and

750 ms have overlapping con�dence intervals in the original data, so the increase in

CQ has no statistical signi�cance.

Takahashi [85] conducted subjective quality experiments to investigate the

performance of the E-model for individual quality factors such as loudness, delay,

and talker echo, as well as the interaction between speech distortion and delay.

The delay values cover10 ms, 30 ms, 50 ms, 70 ms, 100 ms, 300 ms, and 500 ms.

The experimental results showed that the E-model prediction sometimes diverges

from the actual subjective quality. The authors propose a new opinion model based

on E-model and demonstrated the improvement achieved by the proposal in the

evaluation of practical VoIP systems. The results are given bytakahashi and show

again a stronger impact of delay on CQ.

In a more recent study [89] , the delay perception on different delays and average

talkspurts of sentences is evaluated. The communication system used Adaptive

Multi-Rate (AMR) for audio and MPEG-4 for video. The experimental results show

that the MOS decreases with an increase of delay for all tested conversation tasks.

Apart from that, the observations imply that talkspurts can well represent temporal

characteristics of non-free conversations, and the longer the talkspurts of a sentence,

the harder for the subject to perceive delay. The study used delay values of100 ms,

250 ms , 450 ms, 600 ms, 800 ms, 1000 ms, and 1400 ms. The conducted tasks are

labeled wang count, week, and fruit and their description is given in Table 3.2. In

this study, the more interactive tasks show again more sensitivity towards delay.

Table 3.2 – Wang tasks

Name Description

count Take turns in counting numbers from one to
ten

week Take turns in articulating the days of the
week from Monday to Sunday

fruit Take turns in describing different fruits with
long sentences

In summary, the described studies show a variety of different test scenarios, using

different codecs, different technical equipment as well as different conversational

tasks. However, the interactivity of the tasks is not quanti�ed and thus the impact of

delay can not be related to interactivity based on the existing studies. To solve the

trade-off given at the beginning of this section (i.e., reduce the distortions caused

by late loss and keep delay suf�ciently low to maintain conversational interactivity)

54 3.1 Related work

a metric for interactivity is necessary as well as an understanding about it's impact

on CQ.

3.1.2 Metrics for Interactivity

Brady [23] analyzed on-off patterns in 16 conversations statistically. The subjects

talked over a 4-wire circuit and had no degrading factors such as noise, echo or

delay. The test persons (close friends) were allowed to speak about whatever they

wished. The on-off patterns were determined using a �xed threshold speech detector

having certain rules for rejecting noise and for �lling in short gaps, e.g., from stop

consonants. Distributions for ten events were obtained, including the states given in

Table 3.3.

Table 3.3 – Basic conversation states

State Description

A Speaker A speaking exclusively
B Speaker B speaking exclusively
M Mutual Silence, i.e., nobody is speaking
D Double Talk, i.e., both persons speaking

To model the different states of the conversation, the author suggested to use a

�rst-order Markov Chain, as an extension to the existing monologue model [52] .

The four states were identi�ed to provide a useful basis for the statistical evaluation

of conversation patterns. The model is given in Figure 3.2.

A B

D

M

Figure 3.2 – Model of the basic conversational states

Hammer et al. [34] worked on a measurable parameter of conversational inter-

activity. The authors extract basic conversational parameters, i.e., the four states

from Brady's previous work as well asSARand interruption rate. They compare

two types of scenarios, differing in interactivity, for conversational speech quality as-

sessment and explore four different situations (60 ms, 360 ms, 660 ms, and 960 ms)

with regard to transmission delay. The test scenarios comprised Short Conversation

Tests (SCT) and interactive Short Conversation Tests (iSCT). SCTs represent real-life

telephone scenarios like ordering a pizza or reserving a plane ticket, leading to

comparable and balanced conversations of a short duration of 2–3 minutes. The

3.1 Related work 55

tests have been adopted by the ITU-T for Recommendation P.805[15] . The iSCTs

were developed by the authors to yield more interactive conversations and consist

of rapid exchange of numerical or lexical data motivated by the scenario, such as

exchanging room numbers and email-addresses of new employees of a large com-

pany. For the comparison of the SCT and iSCT scenarios, clean PCM a-law encoded

connections were analyzed. The most signi�cant difference was observed in the

parameter values for mutual silence, being much smaller for the iSCT scenario. To

validate the effect on interactivity, the scenarios were analyzed towardsSARand

interruption rate. The authors suggest the interruption rate as well as the state

probabilities for mutual silence and double talk as candidates for the interactivity

metric. The SAR was given as an additional parameter to be applicable as a binary

indicator for interactivity, switching between values of SAR� 26min � 1 for more

interactive tasks to SAR� 19min � 1 for less interactive tasks.

Before getting to the next study, we need to discuss the probability of mutual

silence for a metric of interactivity. Mutual silence is the conversation state where

both interlocutors say nothing. This is clearly a conversation of very low interactivity

– if we can call it a conversation in the �rst place. A monologue, however, is

common in interview or conference situations and also signi�es conversations of

low interactivity. Mutual silence in monologues, however, could be as frequent as

in interactive conversations, which means that the frequency of mutual silence by

itself can not be used as a single measure for interactivity. Hence, we discard mutual

silence as a metric for interactivity since the applicability as a general metric for

interactivity is unlikely. All conducted tests were rather interactive conversations.

The questioner always had to wait until his question was transmitted to the other side

and the other person's answer was transmitted back to the questioner. The waiting

times for both the questioner and the responder are classi�ed as mutual silence and

are directly affected by increasing end-to-end delay. If the test had incorporated

tasks with much lower interactivity, e.g., reading a book, the accuracy of mutual

silence as a metric for interactivity should have been much worse. Therefore, we

will not consider the probability of mutual silence as a metric for interactivity.

A follow-up study [39] furthermore introduced “Parametric Conversation Anal-

ysis” as a formal framework for the instrumental investigation of conversational

parameters at different transmission delay conditions. The authors de�ne the “con-

versational temperature” as an intuitive scalar metric for interactivity. This metric

is given as a function of the mean sojourn times in the conversation statestA (i.e.,

speaker A is talking), t B (i.e., speaker B is talking), t M (i.e., mutual silence), and t D

(i.e., both speakers talking – double talk).

In summary, the existing work de�ned the basic conversation parameters, de-

noted A, B, M, and D, and identi�ed the state probabilities in M, the sojourn time

56 3.1 Related work

in M, the interruption rate, and the SAR as possible metrics for conversational

interactivity.

3.2 Conversation Test Design

To solve the trade-off between low delay (to preserve interactivity) and large receiver

buffers (to avoid late loss), the interdependency of delay and interactivity towards

CQ needs to be assessed. Therefore, we design conversation tests with delay and

interactivity as the two independent variables and investigate their effect on CQ.

As conversational interactivity still lacks a thorough de�nition, we will discuss the

different conversational parameters to determine our metric of interactivity. We will

then analyze the results of the conversation tests statistically towards the effect of

both delay and interactivity. Besides that, we derive a numerical model to predict

the CQ from given end-to-end delay and interactivity. At �rst, we start with the

design of the conversation tests

There exist different approaches to assessCQin the literature. The most common

conversation tests are de�ned in the ITU-T Recommendation P.805[15] . The recom-

mendation includes the short conversation tests and interactive short conversation

tests as used by related work, introduced in the previous section. The variables for

our conversation tests are end-to-end delay and conversational interactivity. There-

fore, we specify conversation tests that vary delay and provoke a certain amount of

interactivity.

We decided to use three different test classes with two of them having a con-

�gurable interactivity parameter. One test class is based on the Random Number

Veri�cation (rnv) test [15] , where the test subjects verify random numbers between

1 and 99 in a 8x8matrix. The numbers are read row-by-row by each test subject

by turns. However, to control interactivity, the subjects were instructed to give no

positive feedback but only when a mismatch occurred. While one test subject was

reading a row, the other person interrupted in case of a mismatch and both test

subjects marked the number on their sheet. To cover a wide range of interactivity,

we applied four different mismatch rates (10 %, 20 %,30 %, and 40 %) to the tests

with randomized distance between the mismatches. Table 3.4 shows a shortened

example of the rnv test after a successful test run – all mismatches properly crossed

out.

The next test class is the textual equivalent tornv: the proof reading of a Text

(text), taken from the book Matilda by “Roald Dahl”. To vary interactivity, four

different mismatch rates (1 %, 3 %, 7 %, and 10 %) were applied to each of the four

paragraphs. The mismatches were realized by substituting randomly chosen words

by a synonym at approximately equal distance, by removing a word, or by inserting

3.2 Conversation Test Design 57

Table 3.4 – Shortened rnv example

User 1

45 93 � �97
� �70 97 50
� �19 � �41 38

4 � �37 65

User 2

45 93 � �90
� �35 97 50
� �91 � �70 38

4 � �95 65

a word without breaking the grammar. The words and synonyms were chosen so

that both reader and listener could not anticipate the wrong words. Note that the

actual number of words which were modi�ed was calculated from the number of

words in the paragraph, multiplied with the mismatch rate and rounded towards

the nearest integer. Thus, each paragraph and each version of the paragraph might

differ in the actual number of mismatches. During the test, whenever a mismatch

occurred, the listener would interrupt the reader and both mark the mismatching

words, the position of the missing words, or cross out the additional words in the

text. In the case of the text test, the interruptions occurred naturally, whenever a

mismatch was noticed by the listener, just as with reading a book to children who

know the story by heart. The following paragraph shows an example:

User 1

Amanda, paralysed with fright, man-
aged to stutter, “My m-m-mummy
likes them � � � �so much. She p-p-plaits
them for me � �eachmorning.”

“Your mummy's a twit!” the Trunch-
bull bellowed. She pointed a �n-
ger � � �double the size of a salami at
the child's head and shouted� � ��ercely ,
“You look like a � �mutt with a � �long tail
coming out of its head!”

User 2

Amanda, paralysed with fright, man-
aged to stutter, “My m-m-mummy
likes them somuch. She p-p-plaits
them for me � ��every morning.”

“Your mummy's a twit!” the Trunch-
bull bellowed. She pointed a �nger
double the size of a salami at the
child's head and shouted f iercel y,
“You look like a ��rat with a long tail
coming out of its head!”

Figure 3.3 – Shortened text example

Both rnv and text will be referred to as parametric tests in the following.

The third class of conversation tests is the Flight (�ight) booking test taken

directly from P.805 [15] . One test person is appointed the role of a travel agent and

the other the role of a customer who wants to book a �ight, e.g., from Frankfurt to

New York. The travel agent has a time table with different �ights, with or without a

stopover, different travel times and durations. The customer then chooses the �ight

freely according to her personal preference and notes down the travel information.

The travel agent on the other end records the booking and payment information.

58 3.2 Conversation Test Design

This test class represents a free and natural conversation, without any manipulation

of interactivity.

To cover a large range of delay values with more detail in low delays, we have

chosen100 ms, 200 ms, 400 ms, and 800 ms for our test points. In summary, the

test setup contains 3 different test classesrnv, text, and �ight, the two parametric

tests (rnv and text) have NM (4) different mismatch rates (M), and all tests are run

using ND (4) different delay values (D):

M = f mi j i 2 f A, B, C, Dgg

D = f di j i 2 f � , � , , � gg.

In order to reduce the number of test points to a feasible amount while elim-

inating an ordering effect, we use a 4x4 Graeco-Latin square[32] and thereby

cover all elements of M on all positions in the test sequence after 4 test runs. The

Graeco-Latin square for each test group of the rnv test is given in Table 3.5.

Table 3.5 – Graeco-Latin square of con�gurations for the rnv test

Group Con�guration

1 A, � D, � C, B, �
2 B, C, � D, � A, �
3 D, � A, B, � C, �
4 C, � B, � A, � D,

The text test's Graeco-Latin square is a rotated version of thernv Graeco-Latin

square with simply the last row moved to the �rst line, as given in Table 3.6.

Table 3.6 – Graeco-Latin square of con�gurations for the text test

Group Con�guration

1 C, � B, � A, � D,
2 A, � D, � C, B, �
3 B, C, � D, � A, �
4 D, � A, B, � C, �

This design leads to recurring test con�gurations every 4 pairs of test subjects and

therefore should give statistical signi�cance with much less test subjects compared

to the design without Graeco-Latin squares.

After each test, the test subjects completed an evaluation form with 5 statements,

also referred to as questions, as shown in Table 3.7.

The questionnaire includes statements targeting different conversation attributes:

While questions Q1 and Q2 directly ask about distinct conversation features, e.g.

60 3.3 Conversation Test Results

Mexican (1), and Serbian (1). Even though the tests were performed in English,

preference was given to both subjects having the same nationality, as accents tend

to be easier understandable by people of the same nationality and lacking words in

English can be easily solved.

Due to technical problems or mistakes by the test conducting personnel,79 test

conditions had to be discarded from the results. As the text test has �xed roles for

each test, i.e., one subject listens while the other subject reads the paragraph, we

decided to remove all results from the listening test subjects for the text test. Finally,

785 tests remained for further evaluation.

3.3.1 Composition of Conversational Quality

It is important to note that the de�nition of CQ is not clearly given in general, but is

speci�c to a certain domain [56] . For instance, it can be focused on intelligibility

or listening-only audio quality. When assessing the impact of delay onCQ, it often

depends on the test environment, the �delity of the test signal (e.g., presence of

noise or quality of the recording) or the stimuli used in the test. Thus, test subjects

would rate the impact of delay differently if e.g. audio distortions were part of

the test stimuli. To de�ne the term CQ for the scope of the conversation test, we

analyze the correlation and interdependency between the responses given in the

questionnaire. In the following sections, we use Q5 as our metric forCQand explain

its composition based on the responses to the other questions.

Figure 3.5 shows a correlation matrix of all responses to the questions given in

Table 3.7. On the main diagonal, most of the responses to the statements seem to

have suf�cient variation for further analysis. The responses for Q4, however, show

very small variance, with almost all ratings having a value of 5. (As a reminder: Q4

asks if the other person was cooperative for completing the task.) Each participant

of the conversation tests knew her counterpart well and thus had a solid impression

of the character already. Therefore, almost no test subject projected the delay to

the other persons cooperativeness, leading to almost no variance in the responses.

Q4 was therefore not in�uenced by the impression from the conversation tests only,

but mostly based on existing experience and sympathy. Hence, the responses to

Q4 were discarded from further analysis. The following paragraphs discuss the

conversation effects (Q1, Q2, Q3) that make upCQ (Q5) �rst, and second analyze

the interrelations between the conversation effects.

The highest correlation (r: � 0.72) is found between Q1 and Q5. This negative

correlation between Q1 and Q5 indicates that users give lowCQ ratings when they

experience conversational delay. It means that in tasks which low experienced

CQ subject often suffered from waiting for the other person to respond. Another

strong correlation of CQ is given by Q3 and Q5 with a coef�cient of 0.59: With

64 3.3 Conversation Test Results

To extract these conversational metrics, the recorded audio �les were pro-

cessed in several steps. We avoided the use of an existing Voice Activity Detection

(VAD) [73] , as most of them are designed for speci�c speech or audio codecs with

the goal to optimize rate-distortion, e.g. switch to discontinued transmission by

sending comfort noise. This can affect detection accuracy seriously, e.g. by longer

decay times after the actual talk spurt. Apart from that, our recordings in clean

conditions make it easy to use Level Activity Detection (LAD), which simply detects

activity by signal level.

To remove breathing noise as well as clicking noise caused by the ball pens

subjects used, we applied a350 Hz-8000 Hz pass-band �lter. After the preprocessing,

all recordings were normalized to a speech level of26 dB (overload) according to

ITU P.56 [19] .

Now the actual LAD took place. We processed the audio signal using frames

of 10 ms at a energy activity threshold level of 44.262 dB. The energy in dB was

calculated using the following equation:

EdB = 10 � log10

 P N� 1
i= 0 x2

i

N

!

,

where x denotes the audio samples and N is the frame length, i.e.,480 samples

for 10 ms at 48 kHz sample rate. To avoid phantom activity in case of transients,

we �ltered out any activity region smaller than 3 frames (30 ms). After that, each

activity region was expanded by 4 frames (40 ms), to capture the onset and decay

inside the activity region. The resulting activity levels were then analyzed towards

the conversational metricsSAR, AIR, and PIR, as de�ned by [40] , [34] . The IR is

simply the sum of AIR and PIR. Figure 3.8 shows examples of these metrics on both

sides of the conversation. Local speaker activity (A,B) is shown by black rectangles,

whereas remote speaker activity (A',B') is given in gray rectangles. Every speaker

activity is delayed by the Channel. A speaker alternation occurs on Side B, i.e., after

A made an utterance, B starts speaking. The delayed �rst utterance B' causes an

interrupt on Side A and is classi�ed to be passive. The delayed second utterance

A' is then actively interrupted by B. Note that every interruption also represents a

speaker alternation.

In other words, the interruption is called active if the interrupting person hears

the speaker talking while starting to speak, and called passive if the interrupting

person does not hear the other person speaking while starting to speak. Thus,

passive interruptions are only possible with a certain amount of delay. The corre-

sponding rates (i.e., SAR, AIR, PIR) are given by the number of events (i.e., speaker

alternations, passive or active interruptions) per minute.

3.3 Conversation Test Results 65

speaker alternation

passive interruption

active interruption

t

A

B'S
id

e
A

Channel

tB

A'

S
id

e
B

Figure 3.8 – Example for SAR, AIR, and PIR

The SAR, AIR, and PIR were estimated from all existing recordings according to

above de�nition using a python script by using LAD state vectors as its input. An

LAD state vector contains one letter of A, B, M, or S for each10 ms frame in the

corresponding audio �le. The script traverses through each state vector, detects

speaker alternations, and separatesAIR from PIR using the remote state vector and

the speci�ed delay for the conversation.

3.3.4 Metrics for Interactivity

After the extraction of the conversation features, we now will proceed with a

discussion of these metrics versus the mismatch rate of the tests. As we do not have a

ground truth for interactivity, an appropriate metric is not easily de�nable. However,

we can derive certain requirements from the test design to rate the accuracy of

the different metrics and compare them to each other to �nd our candidate for

conversational interactivity.

Both parametric tests (rnv, text) have mismatch rates to control the interactivity

in each test. In general, a test of the same class with a higher mismatch rate should

show more interactivity than a test with a low mismatch rate. Additionally, the rnv

test is commonly known to be highly interactive – even though we restricted the

test subjects to negative feedback only, the tests with40 % mismatch rate should

still provide much higher interactivity than the text test with 10 %. The text test on

the other hand, especially for mismatch rates as low as1 %, should produce much

lower interactivity on average. Thus, considering both parametric test classes, the

rnv test should cover the higher inactive tasks and the text test the lower interactive

task with a possible overlapping area with lower mismatch rates.

3.3 Conversation Test Results 67

The �rst row shows the results of the IR estimation. The IR was one of the

main candidates for interactivity given by [34] . Starting with the text test, the IR

scales with the mismatch rate from 1 % to 10 %. The medians, however, show only

modest difference between1 % and 4 %, as well as between7 % and 10 %. The

metric is therefore divided into two groups of high IR and low IR, giving rather

low precision of a metric for interactivity. The rnv test shows almost the sameIR

for each mismatch rate, with signi�cant differences between 10 %, 20 %, and 30 %.

After 30 %, the IR seems to approximate towards a mean of3 min � 1. The boxes in

each column also reveal a little skew towards higherIR, indicating higher variation

towards higher IR and less predictability. To recap, the IR does not ful�ll all the

requirements for our interactivity metric de�ned above, especially due to the low

difference in IR between the rnv tests and the text tests.

The results of the AIR are given in the second row. As with the IR, we can see

increasing active interruptions for increasing mismatch rates for both parametric

tests. The difference between the text and thernv test, however, is again negligible,

which con�icts with the requirements given at the beginning of this section.

In row three, the PIR is given. Considering the text test, thePIRsplits the results

with different mismatch rates again in two groups. The lower group contains 1 %

and 4 %, the higher group 7 % and 10 %. So the difference in interactivity is not

covered well by the PIR for low interactivity. The rnv test with 10 % mismatches

shows even less passive interruptions per minute. The tests with20 %, 30 %, and

40 % are again on the samePIR level. Considering the two parametric test classes,

their difference is even less signi�cant than with all the other interruption rates.

Therefore, none of our requirements are ful�lled.

The last row shows the results of theSAR. Considering the text test, the SAR

starts at relatively low values at about 5 min � 1 and scales with the mismatch rate

pretty well. The notches are almost never overlapping, except for7 % and 10 %,

indicating that the medians are signi�cantly different. The rnv test continues this

tendency, showing signi�cant differences between medians for 10 %, 20 %, and

30 %. The overall difference in the parametric tests conforms to our requirements

as well. Besides that, the sizes of the boxes are much smaller in relation compared

to the interruption rates. This suggests higher estimation reliability due to smaller

variance.

In summary, all interruption-based metrics, i.e., IR, AIR, and PIR, do not provide

the expected results for the conducted conversation tests. Apart from that, they

result in much lower average values from about1 min � 1 to 3 min � 1. In practice, this

means that one interruption more or less in a conversation has a strong in�uence

on the resulting measure. In a live system for example, it might be necessary to

wait for a minute before an interruption can be detected. If we need to average the

measurements, this waiting time increases accordingly. And that also means, the

70 3.3 Conversation Test Results

Considering the low interactivity class (c1), the CQ seems to degrade between

100 ms and 200 ms and again increase between200 ms and 400 ms. However, due

to the fact that the con�dence intervals overlap the mean values of the adjacent

delay, we can not prove a signi�cant difference in the average CQ between 100 ms

and 400 ms. With the conduction of more conversation tests, we should see the

means equalize instead and thus deduce that the test subjects were not able to

distinguish between 100 ms and 400 ms delay for low interactivity. This corresponds

to the results of [55] , where test subjects had a detectability threshold up to560 ms

(1120 ms round trip delay) for free conversation. After 400 ms, we see a strong

dependency of delay with clearly separate con�dence intervals and a serious drop

in CQ to a MOS score of about 3.25.

The medium interactivity class (c2) shows no signi�cant difference in CQ until

200 ms, as the con�dence intervals overlap the adjacent mean values. Between

200 ms and 400 ms, the averageMOS score shows some difference at a low signi�-

cance level: the averageMOS score is no longer covered by the con�dence interval

of the other measurement. For800 ms, the MOSscore is heavily degraded to aMOS

score of about 2.9.

For high interactivity conversations (c3), all results show signi�cant differences

between all tested delay values but at200 ms c1, c2, c3 are almost identical. Besides

that, the results seem to be less variant due to smaller con�dence intervals and as

expected, high interactivity conversations show the highest sensibility to delay with

a MOS dropping from initially 4.5 to 2.6.

Now we take a closer look at the results on each delay level with respect to their

interactivity class. With 100 ms, there seems to be no difference inCQ for each

class. The same applies for200 ms, where all results remain closely together. With

400 ms, the different classes show signi�cant differences of aMOS score up to 0.8,

with the low interactivity class showing no effect at all. This difference between the

interactivity classes remains stable with800 ms as well, as if the interactivity causes

a �xed offset in CQ beyond 400 ms. To prove this constant offset however, more

conversation tests would be necessary.

To conclude the graphical analysis, we have shown that the dependency ofCQon

delay is strongly in�uenced by conversational interactivity starting from end-to-end

delay of 400 ms. The impact seems to be constant until800 ms due to equal offsets

in MOS score. Furthermore, the curves forCQ over delay change the direction from

convex to concave going from low interactivity to high interactivity.

3.3.5.1 Impact of Delay on Conversation Metrics

Before we can proceed with the statistical evaluation of the impact of both delay and

SARto conversational quality, we need to verify the stability of SARover all delay

72 3.3 Conversation Test Results

text test, featuring less interruptions by design, starts at 2.3 min � 1 and saturates

already at 200 ms with an IR of about 2.9 min � 1. The saturation can be explained to

be a result of the test subjects adapting towards increasing end-to-end delay of the

communication system: after a certain amount of delay, the test subjects accept the

delay of the conversation and compensate its effect with communication discipline.

In natural conversations like the �ight test, this effect seems to be even stronger,

even though the results contain much higher variances compared to the parametric

tests. Due to this variance, we can not prove any difference between200 ms and

400 ms. Even with 800 ms, this difference might not be signi�cant.

The AIR, given in the second row, remains rather stable for the parametric test

modes at about 2 min � 1. The reason for this stability can be explained with the

guided nature of the parametric tests in general. The moments in time, where

an interruption occurs is mostly given by the test and not a decision made by the

test subjects. For free speech, we can observe a large decrease in theAIR average

from about 3.1 min � 1 to 1.25 min � 1. This should again be an effect of increasing

conversation discipline, as already observed for the IR above.

Regarding the PIR, the results of all test classes increase uniformly with increas-

ing delay. Starting from about 0.5 min � 1, the PIR saturates at 400 ms at about

1.5 min � 1. This is particularly interesting as it shows most effect between100 ms

and 200 ms, where delay shows almost no effect onCQ at all. Even though the

probability of passive interruptions increases with increasing delay. However, con-

sidering the relatively stable AIR in row 2, we can state that most of the additional

passive interruptions are not simply converted active interruptions, but caused by

delay only. The effect is most notable for the parametric tests and it also explains the

increasing IR of the parametric tests in the �rst row. Thus, the passive interruptions

were either too subtle to recognize, or the test subjects did not associate them with

CQ.

Before we discuss the results of theSAR, we will consider the expected effects

of delay on the SAR. First we de�ne the talk-spurt duration (t ts) as

t ts = t sa + t cd, (3.1)

where tsa denotes the duration the speaker is active andt cd represents the channel

delay. Note that we de�ne tsa to also include natural delay between speaker taking

turns, which is usually perceived as mutual silence. Figure 3.14 depicts a virtual

conversation between two speakers with a constant talk-spurt duration.

We further de�ne the minimal talk-spurt duration of a speci�c conversation as

SAR0 =
1

tsa
(3.2)

3.3 Conversation Test Results 73

t ts

t sa

t cd

t

A

B

Figure 3.14 – Effect of end-to-end delay on the SAR

and the actual talk-spurt duration including channel delay as

SAR=
1

t ts
=

1

tsa + t cd
. (3.3)

Note that with increasing delay the original talk-spurt duration grows and

thereby SAR is decreased. The degradation factor of theSARis given by

fSAR=
SAR

SAR0
=

1

(1
SAR0

+ t cd)SAR0

=
1

1 + SAR0 � t cd
. (3.4)

Applying this equation to the SARresults by using the results with 100 ms delay

as the baseline, we should expect theSARresults from Table 3.8 for 200 ms, 400 ms,

and 800 ms end-to-end delay.

Table 3.8 – Expected SAR values for increasing end-to-end delay

test 100 200 400 800

rnv 17.3 16.8 15.9 14.4
�ight 16.5 16.1 15.2 13.8

text 10.4 10.2 9.89 9.27

These expected values are shown in Figure 3.13 corresponding by symbol and

color to their measured counterparts. The parametric tests always remain above

the expected values, which is surprising as it becomes more exhausting to keep

the interactivity high with higher delay. This is a result of the guided nature of the

parametric tests and the fact that the text and rnv tests rather resemble competition

instead of relaxed conversation. The measured results of the �ight test, however,

are always below the expected results. Here, the interlocutors adapt to the higher

delay by lowering their interactivity. This also means, that the conversation style

changed with increasing delay.

To analyze the effect of delay andSARon CQ later, it is important to have the

full range of SARover all delay values. By conducting conversation tests with free

conversations only, this would have been a dif�cult task, but with the parametric

tests, we could force the subjects to keep the interactivity at the desired level

over all delay values. The parametric tests have therefore decoupledSARfrom its

74 3.3 Conversation Test Results

dependency on delay. This overall stability of SAR, is important groundwork to

evaluate the impact of SAR later.

3.3.6 Statistical Evaluation of the Impact of Delay and Interac-

tivity on Conversational Quality

After we visualized the dependency ofCQ on delay and interactivity, we will now

proceed with the statistical evaluation. In Section 3.3.5, we have used three different

SAR groups to study the effect of both delay and interactivity graphically. We have

shown the averageCQalong with a con�dence interval at a con�dence level of 95 %.

By comparison, we could identify statistically signi�cant differences on average CQ

between delay values of high interactivity, as well as between high delay values of low

interactivity. However, by the separation of SARinto 3 classes, we coarsely quantized

the rather continuous original SAR values and thereby introduced quantization

errors. This separation is no longer necessary for the statistical evaluation, and we

will proceed now with the original data.

To estimate relationships among variables, manifold statistical techniques under

the term exist, those include mechanisms for modeling and analyzing different

variables, e.g., to reveal relationships between a dependent variable and one or

more independent variables. More speci�cally, regression analysis helps to under-

stand how the typical value of the dependent variable changes when any of the

independent variables is varied, while the other independent variables are held

�xed. The optimization target is a function of the independent variables called the

regression function or estimation model. To carry out regression analysis on these

models, a large body of techniques has been developed. Common methods such as

linear regression and ordinary least squares regression are parametric, in that the

regression function is de�ned in terms of a �nite number of unknown parameters

that are estimated from the data.

For the statistical evaluation performed in this section, we will not assume para-

metric or normally distributed variables. Instead, we will consider our variables as

“limited dependent”, non-ordinal. The commonly used technique for such observa-

tions is the logistic regression analysis[59] , where the independent variables are

used to predict a categorical outcome. The independent variables are delay andSAR

and the predicted outcome is theCQ. As the dependent variable (CQ) is not binary

but categorical (MOS: 1,2,3,4,5), we apply multinomial logistic regression analysis

(MNL) [60] [36] , which is a generalization of logistic regression from binary to

categorical dependent variables.

The basic setup is the same as in logistic regression, the only difference being that

the dependent variables are categorical rather than binary, i.e. there areM possible

outcomes rather than just two. The basic idea behind MNL is to consider each

3.3 Conversation Test Results 75

category as a single logistic regression with one category de�ned as the reference.

The probability of membership in other categories is compared to the probability

of membership in the reference category. A dependent variable withG outcomes

requires the calculation of G � 1 equations one for each category relative to the

reference category, to describe the relationship between the dependent (i.e.,MOS)

and the independent variables (i.e., delay and SAR).

Note that MNL introduces separate sets of regression coef�cients, one for each

possible outcome. The unknown parameters in each vector� k are jointly estimated

by maximum likelihood. For the results shown in the following paragraphs, we used

the mlogit package[27] in GNU/ R [86] and de�ned a MOS score of 5 to be our

reference, as we want to prove the degradation ofCQ by the independent variables

delay and SAR. The optimization inside mlogit is done using the Newton-Ralphson

method [22] .

To �nd an appropriate model, we apply different regression functions and applied

MNL to each of them. Table 3.9 shows the regression function (Formula) along with

the McFadden R2, � 2, and p-value of the MNL. The Formula is given in abbreviated

form starting with the � splitting the formula into to pieces: the prediction value

on the left side and the coef�cients on the right side. To get the long form of the

formula one needs to add an intercept (f0) and factors to each coef�cient, e.g.:

MOS� delay+ SAR ! MOS= f0 + f1 � delay+ f2 � SAR. (3.5)

The McFadden R2 represents a so-called pseudo R2 value, which is interpreted

as the coef�cient of determination of a regression model. It provides a measure of

how well future outcomes are likely to be predicted by the model. As categorical

variables follow the � 2 distribution, an � 2 test is applied to each model, resulting

in a p-value which is used to reject the null hypothesis i.e., a criterion to decide

whether the model is of statistical signi�cance. In our case, all models provide a

suf�cient level of signi�cance and thus we will consider the R 2 coef�cient to choose

the model we will investigate in further detail.

Table 3.9 – R2, chi-square, and p-value of mlogit models with given formulas

Formula McFadden R2 � 2 p-value

MOS� delay+ SAR 0.1013 229.44 3.8941e–45
MOS� delay2 + SAR 0.09595 217.24 1.4722e–42
MOS� delay+ SAR2 0.09979 225.94 2.1388e–44
MOS� delay2 + SAR2 0.09438 213.7 8.2471e–42

MOS�
p

delay+ SAR 0.1025 232.02 1.1063e–45
MOS� delay+

p
SAR 0.1021 231.18 1.6677e–45

MOS�
p

delay+
p

SAR 0.1032 233.68 4.9301e–46

76 3.3 Conversation Test Results

In our results, all models have rather low R2 values, showing that the prediction

using the MNL approach would give relatively weak results. This does not contradict

with the outcome of the model since the actual reason why we chose MNL was

rather because of having a robust veri�cation model without making additional

assumptions about the dependent variables instead of having optimal coverage.

The highest R2 (10.32 %) is given by formula MOS�
p

delay+
p

SAR. Therefore,

we will examine its coef�cients in more detail. The estimates of each coef�cient

along with their standard error, t-value and the according probability is given in

Table 3.10.

Table 3.10 – Multinomial Logistic Regression coef�cients with std error, t-
value (result of t-test), probability according to t-value and signi�cance code

MOS Coef�cient Estimate Std. Error t-value Pr(> |t|) Sig. Code

1 intercept –12.848542 2.304936 –5.5744 2.484e–08 ***
2 intercept –7.741674 1.030463 –7.5128 5.795e–14 ***
3 intercept –4.642106 0.685437 –6.7725 1.266e–11 ***
4 intercept –1.875709 0.530266 –3.5373 0.0004042 ***
1

p
delay 0.414909 0.069186 5.9970 2.010e–09 ***

2
p

delay 0.226648 0.023678 9.5723 < 2.2e–16 ***
3

p
delay 0.147578 0.016915 8.7248 < 2.2e–16 ***

4
p

delay 0.047696 0.015103 3.1580 0.0015883 **
1

p
sar 0.352215 0.332096 1.0606 0.2888801

2
p

sar 0.570117 0.215140 2.6500 0.0080495 **
3

p
sar 0.406860 0.151979 2.6771 0.0074265 **

4
p

sar 0.274836 0.121203 2.2676 0.0233551 *
Signif. codes: 0*** 0.001 ** 0.01 * 0.05 . 0.1 ` ` 1

The legend for the signi�cance codes is given at the end of the table. In short,

three asterisks show high signi�cance, one asterisk standard signi�cance. The mean

values (intercepts) for all MOS categories show very high signi�cance, proving that

most of the responses lie close together. The categories for the predictor
p

dela y

prove high signi�cance as well – the most common signi�cance level of 95 % is

ful�lled by one or more asterisks – demonstrating the strong impact of delay on

CQ. The predictor
p

SARalbeit shows signi�cance only for MOScategories 2, 3, and

4. Consequently,
p

SARhas little impact on the tested scenarios with low CQ. We

can relate these results to the conclusions of the graphical evaluation. The three

interactivity groups pretty much show the same difference in MOS between 400 ms

and 800 ms delay. Relating the other categories (2, 3, and 4) to the graphical results,

we can see thatSARindeed provides statistical signi�cance also for low delay values.

3.4 Chapter Summary 77

3.4 Chapter Summary

In this chapter, we showed how both delay and SARaffect conversational quality. To

assess this impact, we designed a new variant of conversation tests with parametric

interactivity. The parametric tests feature, but are not limited to, mean SARs from

5 min � 1 to 20 min � 1. Using the results from the questionnaire, we described the

elements composing the CQ for the scope of this work. Furthermore, we identi�ed

the SARas our metric for conversational interactivity and proved the effect of the

parametric conversational tests on this metric. The evaluation of the results was

two-fold: First, we presented the graphical evaluation. Therefore, we split the

conversations into three groups: low, medium, and high interactivity. The results

were illustrated for each delay and SARgroup separately by their mean values along

with the con�dence intervals with a con�dence level of 95 %. Hereby we shown

signi�cant impact of both SARand delay. The statistical signi�cance was not always

distinct, for instance for low delay in scenarios of low and medium interactivity, but

for high delay values and especially for high interactivity, the impact was clearly

visible. The second part of the evaluation presented the results from a Multinomial

Logistic Regression analysis, which proved the signi�cance of both delay andSAR.

The results clearly prove that the conversational interactivity (SAR) has an signi�cant

impact on the quality degradation due to delay and needs to be taken into account

when estimating overall CQ[47] .

Chapter 4

Interactivity-Aware Playout Adaptation

In the following sections we build a novel integrated audio communication system

for playout adaptation based on the results of the previous chapters. We �rst create

a model to predict the impact of late loss on subjective audio quality. We then add

another model that estimates the audio quality degradation for a speci�c delay and

interactivity. We then integrate these two models into the jitter buffer management

module of a CS to optimize overall CQ in terms of delay, interactivity, and late

loss artifacts. To verify the functionality of the CS, we conduct conversation tests

simulating different network scenarios and using different conversational tasks.

Parts of this chapter are based on our publication[49] .

4.1 Related Work

While most of the existing playout adaptive communication systems adapt towards

changing network conditions, e.g., jitter and loss, there are a few existing studies

trying to solve the trade-off between loss of interactivity and jitter compensation.

An early study [21] proposed a perceptually motivated optimality criterion that

allows the receiver to automatically balance packet delay versus packet loss. The

dejitter buffer size is adaptively set, and the adopted criterion relies on the use of

a simpli�ed version proposed by Cole and Rosenbluth[26] of the conversational-

quality E-Model. The dejitter buffer algorithm was taken from [74] . The test results

show the performance of three different versions of the system, which differ mainly

in the jitter estimation algorithm. The results are presented using min, max and

mean R factors in the range of about 50 to 80, corresponding to MOS levels offair

to good. The overall improvement with the adaptive approach is given to be about

14 R points, which corresponds to aMOS score difference of about 0.75. However,

actual conversation test results are missing.

79

80 4.1 Related Work

Another study [84] proposes a method for predicting voice quality for buffer

design and optimization. The method is also designed for voice quality monitoring

and for QoS control. In the method, non-linear regression models are derived for a

variety of codecs (e.g., G.723.1/ G.729/ AMR/ iLBC) with the aid of ITU PESQ[9]

and the E-model. Besides that, the authors propose the use of minimum overall

impairment as a criterion for buffer optimization. This criterion is said to be

more ef�cient than using traditional maximum MOS. Third, the authors show

that the delay characteristics of VoIP traf�c is better characterized by a Weibull

distribution than a Pareto or an Exponential distribution. Based on the new voice

quality prediction model, the Weibull delay distribution model and the minimum

impairment criterion, they propose a perceptual optimization buffer algorithm. The

authors claim, with preliminary results, that the proposed algorithm can achieve

optimal perceived voice quality compared with other algorithms under all network

conditions considered. The improvements are given on theMOS scale and are in

the range of about 0.2 to 0.8. Conversation test results are, however, missing.

A paper by Sat et al.[76] presents adaptive playout scheduling and loss con-

cealment schemes for delivering consistent conversational voice communication

quality perceived by users in real-timeVoIP systems. The authors �rst characterize

the delay and loss conditions of an IP network and a human conversation in a

VoIP system. Then, they identify the attributes that affect the human perception of

CQ, which include listening-only speech quality, conversational interactivity, and

conversational ef�ciency. They investigate their trade-offs with respect to system-

controllable mouth-to-ear delays and the amount of redundant piggybacking (i.e.,

a simple FEC scheme). The authors evaluate their adaptive playout scheduling

and redundancy-based loss concealment schemes by packet traces collected in the

PlanetLab. The playout control schemes is based on just noticeable differences in

terms of conversational ef�ciency and conversational interactivity with respect to

CQ. The authors design the algorithm based on conversation test results, but the

system veri�cation test is again accomplished based on objective criteria.

In summary, there are some interesting approaches towards the adaptation

towards both better jitter compensation and preserving conversational interactivity.

However, all methods are based on the E-Model, which does not take the actual

interactivity into account. Apart from that, none of the systems has been veri�ed

using actual implementations in a real CS and therefore, the �nal proof of concept

is still missing. Thus, we will design and build a CS using our results from the

previous chapters in the following sections to prove the fact that adaptation towards

interactivity is important and verify the obtained results in conversation tests.

4.2 A Model for Conversational Quality 81

4.2 A Model for Conversational Quality

To adapt towards interactivity, delay, and late loss we need to design a prediction

model, to solve the trade-off between reduced late loss and preserved conversational

interactivity. Therefore, the model consists of two main components:

• Model for the impact of late loss

• Model for the impact of delay with respect to interactivity.

Each model predicts the quality, that can be expected from ourCS with the

speci�c parameters given (i.e., late loss rate, end-to-end delay, or conversational

interactivity). The compound model then adds up both predictions and searches for

a local maximum to optimize the trade-off between delay and late loss for a given

conversational interactivity by maximizing experienced audio and conversation

quality.

We do not include a model for the impact of time shrinking artifacts, as with

excellent time shrinking mechanisms like WSOLA, this impact is negligible, which

has been shown in Section 2.4.

In the following sections, we will derive these models from the results presented

in Section 2.3.5.1 and Chapter 3. After that, we integrate the two models into a

compound model for the prediction of CQ with respect to all adaptation parameters

addressed in this work.

4.2.1 Conversational Quality as a Function of Late Loss

As we are going to stretch the audio during buffer under-runs, we will use the results

of the stretching tests, done in Section 2.3.2. The basis of our model is given by the

results of the burst loss or concealment test with a small modi�cation: instead of the

strech duration we use the corresponding concealment rate which is calculated by

the percentage of audio frames that have been concealed while stretching the signal

and is furthermore denoted as rc. We �rst build a model from these results using

non-linear least squares modeling, which is accomplished using using GNU/ R [86]

with the command nls . As a quality indicator for our �tting model we use R 2

coef�cient of determination, which is a statistical measure of how close the data are

to the �tted regression line. The non-linear model is given by the function prototype

CQ0
c =

b

a + rc
,

with the two constants b and a being the �xed numerator and denominator

part of the equation and rc representing the concealment rate. Table 4.1 shows the

resulting coef�cient table of the non-linear model.

4.2 A Model for Conversational Quality 83

�nal late loss model:

CQc =
CQ0

c

25
+ 1. (4.1)

4.2.2 Conversational Quality as a Function of Delay and Inter-

activity

To design the model to estimate CQ we use the results collected in Section 3.3.

In contrast to the statistical evaluation in Section 3.3.6, where we conducted a

multinomial logistic regression, we will design a scalar regression model in this

section to estimateCQ continuously without discrete steps in the model function.

Such steps would otherwise cause oscillation in the adaptation parameters, which

would in turn cause frequent changes in conversation quality and seriously affect the

user experience. For this purpose, we have built 13 linear (or linearized) regression

models and one non-linear model by collecting several possible combinations of the

two covariates including squared, square root, and multiplicative combinations. To

shorten the equation descriptions, we will use d for delay and rSA for the SARin

the following paragraphs. Table 4.2 shows the linear models (1–13) as well as the

non-linear model along with their R 2 , adjusted R2, and predicted R2 values.

Table 4.2 – Linear models (1-13) with the R2, adjusted R2, predicted R2

coef�cients of determination, and standard error of the residuals. Model 14 is
a one non-linear model shown with the standard error of the residuals. The
highest coverage is given by models 10, 12, and 13. The non-linear model
does not perform signi�cantly better than the linear models as shown by the
standard error values of the residuals.

No. Model R2 adjusted R2 predicted R2 std. error

1 CQI � 1 0 0 -0.003 1.105
2 CQI � d 0.2437 0.2427 0.2223 0.9616
3 CQI � d + rSA 0.2538 0.2518 0.2364 0.9558
4 CQI � d � rSA 0.2461 0.2451 0.2363 0.9601
5 CQI �

p
d 0.2360 0.2350 0.2136 0.9664

6 CQI �
p

d + rSA 0.2457 0.2437 0.2276 0.9609
7 CQI �

p
d � rSA 0.1767 0.1756 0.1757 1.003

8 CQI � d + r 2
SA 0.2508 0.2488 0.2315 0.9577

9 CQI � d � r 2
SA 0.1728 0.1716 0.1719 1.006

10 CQI � d � r 2
SA+ d � rSA 0.2612 0.2592 0.2423 0.9510

11 CQI � d2 + rSA 0.2507 0.2487 0.2350 0.9578
12 CQI � rSA � d2 + d � rSA 0.2548 0.2528 0.2386 0.9551
13 CQI � rSA � d2 0.2526 0.2516 0.2370 0.9559
14 CQI � b=(a + rSA � d) - - - 0.9612

The models are composed using a prototype formula, which is used as the model

description in the table. Note that delay is given in milliseconds and the SARin

SAs per minute. The linear models are created using GNU/ R with the command lm

84 4.2 A Model for Conversational Quality

and the non-linear model using the command nls . After its creation, each model

has been reduced using the Akaike Information Criterion (AIC) as the optimization

criterion using the step command. A formula consists of two parts, which are

separated by the� character. The left part de�nes the prediction (or dependent)

variable, which is always CQ in this section and the right part the predictors or

covariates. To have a compact representation of the model's formula, we do not

show the factors with which each covariate is scaled in the model creation process.

For instance, the model labeled with CQI � 1 actually has a factor before the 1 as in

CQI � f1 � 1 or the model labeled CQI � d + rSA is actually implemented as in

CQI � fd � d + f r � rSA.

All linear models except for model 1 yield an F-statistic p-value of < 2e–06,

which is not shown in the table, and are considered as statistically signi�cant. The

R2 values are in general very low compared to the concealment model. This is

caused by high variance in the conversation test results, which is in turn caused

by the dif�culty to assess the quality degradation due to higher delay. The highest

predicted R2 values are given by models10, 12 and 13. The non-linear model does

not perform better than models 10, 12 or 13 and therefore is not taken into further

consideration.

The residual plot for each model is shown in Figure 4.2. The residuals for models

8, 9, 10 and 14 indicate bias due to higher order patterns. All models show a clear

pattern caused by the different delay values, which indicates how the model �ts to

the data for the different delay. Models 4, 7, 9, 10, 12, 13, and 14 follow the impact

of the delay closer than the other models.

The CQ estimates for delay values between0 ms and 800 ms and SARs of 1, 1,

20, and 40 alternations per minute are shown for all models in Figure 4.3. The

simplest model using both delay andSAR(3) represents a set of parallel lines with

a linear impact of delay and SARon CQ. Even though the model shows a good

coverage in terms of R2, we discard it as CQ degrades already with increasing

conversational interactivity (CI), which does not seem plausible. Generally speaking,

the model should not estimate any loss inCQ if either SARor delay becomes zero.

This requirement is ful�lled by several models (i.e., 4, 7, 9, 10, 12, 13, 14) by

combining both parameters (delay and SAR) using multiplication.

Model 10 starts the estimation of CQ from one single point no matter with

which SARwe simulate. Besides that the coverage in terms of adjusted R2 is almost

26 % and the highest for all selected models. However, the curve with high CI

(green, long dashed) is �ipped above the curves with 10 (red) and 20 (blue) speaker

alternations. The reason is that the created models were designed usingSARvalues

4.2 A Model for Conversational Quality 87

Table 4.3 – Coef�cient table of model 12 with coef�cient estimate, std. error,
t-value, alpha error probability and signi�cance code.

Coef�cient Estimate Std. Error t value Pr(> |t|) Sig. Code

c 4.397e+ 00 7.928e–02 55.462 < 2e–16 ***
f1 –1.093e–07 3.700e–08 –2.954 0.00324 **
f2 –4.866e–05 3.306e–05 –1.472 0.14149

Signif. codes: 0 *̀ ' 0.001 `**' 0.01 `*' 0.05 `.' 0.1 ' ' 1

4.2.3 Combined Model

To solve the trade-off between low delay and reduced late loss, we now combine

the two models from the previous sections. For the combination, we apply additive

combination of the artifacts, as also done in the E-Model[7] and due to the fact,

that additive models provides good results for low impairments. The full model is

therefore given by

CQ= CQ0 � Ic � I I (4.3)

with CQ0 being the maximum achievable conversational quality (i.e., MOS 5), Ic

representing the impact of late loss onCQ and I I representing the impact of delay

and interactivity (SAR).

The impact of late loss is calculated from the late loss model using

Ic = CQc
0 � CQc (4.4)

with CQc
0 being the CQfor 0 late loss and the impact of delay and interactivity using

I I = CQI
0 � CQI (4.5)

with CQI
0 representing the CQ for no delay or zero SAR.

To �nd the solution for the trade-off between both models, an optimization

algorithm maximizes the full model CQ in (4.3) . However, we can further simplify

the optimization process: Due to the fact that we can shift CQI
0 to the value of

CQc
0 by setting parameter c without breaking the model's estimation result, we can

alternatively maximize (4.3) by maximizing

ĈQ= CQc
0 + f1 � rSA� d2 + f2 � d � rSA+

b

a + rc
, (4.6)

with f1 and f2 being the coef�cients of the SARand delay model, rSA asSARand d

as delay, b and a being the coef�cients of the late loss or concealment model and rc

representing the late loss rate.

88 4.2 A Model for Conversational Quality

To apply the combined optimization model, a CS implementation needs to

estimate end-to-end delay and the corresponding concealment rate continuously

to optimize Equation (4.6) towards a maximum ĈQ. To measure the end-to-end

delay (d), the CS has to add network delay estimation, which we show later in

Section 4.3.2 using existing network protocols. The concealment rate (rc) can

be obtained using the delay estimation in combination with the percentile jitter

estimation: For a given receiver buffer size (which corresponds to a given delay), the

portion of packets arriving in time can be estimated using a lookup in the percentile

jitter buffer. The resulting fraction of packets that would be received late represents

the concealment rate rc.

4.3 Design of the Communication System

To verify the compound model and therefore the adaptation algorithm, we conduct

another conversation test in the following sections. We �rst build a customized CS

with the compound model integrated as the control for the jitter buffer. We have

chosen the ACE implementation from Fraunhofer IIS Erlangen, as the basis for our

CS. It is a low delay audio communication framework, which includes AAC-ELD,

socket I/ O and audio playout among other functionality. The ACE implementation

is written purely in C ++ and so are all of our extensions to it [50] [51] [45] .

To make the system adaptive towards jitter, delay andCI, we have to extend its

existing structure to collect the additionally required information and provide the

necessary control structures.

Figure 4.4 shows an overview of the Fraunhofer ACE client after we have ex-

tended it.

The original client is shown by the boxes with white background, which we will

introduce shortly in the following paragraphs: The data �ow starts with the Socket

IO, which returns received RTP and RTCP packets. Originally, these packets were fed

into the Jitter Buffer, where the packet jitter is compensated using a packet queue

before the encoded audio frames are extracted by theRTP Depacketizer.

Right before the decoder, theBuffer Controldecides whether the packet needs to

be decoded or discarded due to buffer shrinking. This module was already available

before we extended theCS. However, it had to undergo major changes to integrate

the full adaptation model for our studies and therefore it is painted black. If an

encoded audio frame is then to be decoded, it is fed into theAAC-ELD Decoder,

which returns raw audio frames. The raw audio is then �nally played out by Playout.

In the following sections, we discuss the functionality and describe the imple-

mentation of the newly created modules.

4.3 Design of the Communication System 89

Socket
In

Network
Simulation

RTT
Estimation

Jitter
Buffer

RTP
Depacketizer

Time Scale
Modi�cation

Silence
Detector

Buffer
Control

AAC-ELD
Decoder

Playout

VAD

SAR
Detection

VAD

MicrophoneAAC-ELD
Encoder

Sender

RTP
Packetizer

Socket
Out

Receiver

Figure 4.4 – Overview of the ACECSclient with additional adaptation. Boxes
with white background have been part of the original implementation already,
while all black boxes had to be implemented for our studies. Solid lines
indicate the audio data or RTP packet �ow, dashed lines convey control infor-
mation, necessary for the playout adaptation and the solid red line controls
the time scale adjustments right before the decoder.

4.3.1 Network Simulation

Existing network simulators can be divided into two main categories: speci�c

hardware network simulators working as a network bridge device and network

simulation modules built into simulation frameworks like OMNet ++ [87] or ns–

3 [42] , etc. Network simulation hardware focuses on real time network simulation

in general and provides many different levels of abstraction for network simulation,

from simulating basic network effects like bit-rate limitations, packet jitter or cross

traf�c to simulating the behavior of real network hardware components, like routers

and switches from speci�c vendors. Simulation frameworks on the other hand

focus on the simulation of networks with almost arbitrary complexity in terms of

simulation detail, network size, etc. and perform the simulation of�ine in a local

simulation loop in general, without ful�lling the real time constraint.

For our communication test, we require a network simulator that simulates

packet jitter with network spikes in real time and, as we might want to change

the network conditions for subsequent conversation tests, can be automated easily.

Hardware is in general, apart from being very expensive, dif�cult to automate.

Therefore, to simulate the network in real time and to be able to automatically

control the network simulation, we implemented and integrated a software network

simulation module right after the socket reception. The implementation is based on

the same concepts as common simulation frameworks: simulate different network

90 4.3 Design of the Communication System

effects or network devices with separate software modules and simulate a whole

network path by concatenating multiple software modules together to create a

superposition of the network effects of each single software module. Real networks

effects emerge from the same principle, where each node and link along the network

path has certain in�uences on the packets, like adding delay or discarding packets

(i.e., packet loss). The only difference is, while each device can add several network

effects at once in reality, our network simulator only adds one effect per node.

For the implementation we loosely followed the implementation of G.1050 [14] ,

which concatenates up to 20 servers for the core network simulation. To model

our network, we have chosen to implement three different software modules (i.e.,

C++ classes) that model delay, jitter, and delay spikes. Each module runs in its

own thread, which continuously re-schedules packets and waits for dispatching or

receiving new packets. Thread synchronization is ensured using mutexes and wait

conditions.

The delay module simply adds a certain amount of delay to each packet. There-

fore, it enqueues each received packet and calculates a dispatch time (i.e., reception

time + delay), where the packet shall leave the queue again. After the received

packet has been queued and scheduled, the delay module waits until the next packet

has to be dispatched or until new packets are received.

The jitter module adds the basic jitter noise �oor to our network. It applies

a statistical model to the delay module, based on a maximum queue size and

an average buffering event distance. At startup, the module calculates the next

buffering event using a random number generator with exponential distribution.

A buffering event is de�ned as a certain period of time, where no packets are

forwarded, but enqueued until the buffering event is over. A buffering event is the

simulative counterpart to buffering in switches due to cross traf�c, for instance.

After the buffering event ends, the time of the next buffering event is calculated and

all queued packets are forwarded at a maximum rate to the next simulation network

device, resulting in the zigzag shape often observed in network traces. The random

number generator is initialized using a random seed and the reciprocal average

buffering distance as the lambda value (i.e., the rate parameter of the exponential

distribution). At each buffering event, the amount of time to buffer is given by

another random number generator, which returns exponentially distributed numbers

between 0 and 1.0 with a lambda of 1. This number is multiplied with the maximum

queuing delay which is given as a parameter to the module. The thread then sleeps

for the duration left (after �ushing the buffer) until the buffering event is completed

and starts over with the calculation of the next buffering event time.

To gain stable results from our conversation tests, we need to add a deterministic,

dominant component to our network simulation. Therefore, we de�ne a spike

module to add buffering events with a �xed distance and duration to our network

92 4.3 Design of the Communication System

4.3.2 Round-Trip-Time Estimation

As shown in Section 2.2, the delay values we derive from the RTP time stamp

and the system time at packet reception has an almost arbitrary offset. The offset

is determined by the relative delay of the �rst received packet, which has been

assigned an absolute delay value of 0. Even though the relative delay offset has no

in�uence on the percentile-based jitter estimation algorithm, we need to have good

estimates of absolute end-to-end delay for our model ofCQ with respect to delay

and interactivity.

For this purpose, we send, receive and analyze RTCP messages, which are sent on

the same ports as the RTP packets in our implementation, as speci�ed in[71] . These

RTCP messages contain sender NTP time stamps for calculating the round-trip-time

of RTCP packets[62] . As stated in [79] , RTCP receiver reports may be sent at most

every 5 s while the RTCP bitrate shall not exceed5 % of the corresponding RTP

sessions' bitrate. Using the recommended interval would require long measurement

intervals depending on the variance of the network delay. However, we need to gain

stable end-to-end delay estimation as soon as possible, to provide a solid playout

adaptation. Therefore, we increase the interval from 5 s to 25 ms on both sender

and receiver side. The high frequency of RTCP reports results in an RTCP bitrate

ratio of 32 % for IPv4. The number could be heavily reduced, e.g. by using an RTP

header extension down to 6 %. Reducing the overhead should be straight forward

and was left outside the scope of this work. For our test setup the overhead was not

of concern and we used standard RTCP packets since we ran the experiments in a

controlled Gigabit-LAN.

To ensure that both jitter estimation and RTT estimation observe the same win-

dow of network conditions, we synchronize their window sizes. By the assumption

that the fastest RTCP packets have the same propagation delay as the fastest RTP

packets, we can correct each packet delay value in the jitter estimation so that the

RTP packet with the lowest delay is RTT half the RTT of theRTCPpacket with the

lowest RTT.

4.3.3 Silence Detector

At the time of the veri�cation test, the study of the classi�er was not �nished. There-

fore, we had to choose a simple and reliable mechanism to shrink the audio before

playout if the input buffer has grown too large. As we conducted the veri�cation

test in our laboratory with easily controllable conditions, we decided to implement a

silence detection based on the voice activity detection results we did in Section 3.3.3,

where we automated the feature extraction of SARand the interruption rates. There-

fore, we are using a level of � 44.626 dB as our threshold for silence. Audio frames

4.3 Design of the Communication System 93

exceeding the threshold are classi�ed as audible, audio frames below the threshold

are classi�ed droppable.

To classify audio frames by their energy, we need to decode them �rst. However,

as we need to drop silence framesbeforethe main decoder, we added a second

decoder before the threshold detection. Otherwise, decoding the frame would have

modi�ed the decoder state (i.e., look-ahead, overlap-add, etc.) and the frame could

not be dropped any longer according to our basic adaptive playout scheme. The

second decoder right after unpacking therefore decodes and classi�es every received

frame. If the frame is decided to be dropped by the buffer control later, it will

be discarded and not forwarded to the main decoder. An alternative approach to

the second decoder could either be the migration of the classi�cation process right

before encoding (with look-ahead compensation) or estimating the audio frame

energy from the scale band factors in the AAC frame, which are obtainable directly

after huffmann decoding. However, as the classi�er is not the subject to verify in the

conversation test but rather needs to adapt the audio signal with reasonable effort,

we take the additional complexity into account. In a real world system, time scaling

would be accomplished as presented in Section 2.4 or using other state-of-the-art

time scaling techniques.

Using a �xed energy threshold, however, requires stable input signals in terms of

dynamic range as well as signal peak value. During the test setup, we therefore had

to take additional care about adjusting the gain of the microphones appropriately

and controlling the dynamic range for each individual test subject, so that the

threshold detects true silence reliably and leaves enough dynamic range to provide

a natural and clear voice.

4.3.4 Voice Activity Detection

To estimate SARas the second step, we need to detect voice activity (VAD) in the

�rst place. Since the ITU general purpose VAD as standardized in G.720.1[18] , did

not provide stable results for high interactivity due to long hangover, we de�ne a

LAD (Level Activity Detection) algorithm.

To avoid overestimation of speech activity in the clients by misinterpreting

background noises caused by chairs, test subjects handling paper or other non-

verbal sounds, we add a good amount of headroom to the inverse silence detection

threshold. To reduce unwanted signals, we �rst apply a custom designed IIR band

pass �lter to the audio samples, a Chebyshev Type II IIR �lter designed in MATLAB

with a low stop frequency of 200 Hz, low pass frequency of 400 Hz, high pass

frequency of 4 kHz, and a high stop frequency of7 kHz, and an order of 10. The

attenuation in the stop bands is 40 dB. We classify a frame to contain activity, if the

remaining signal level exceeds the empirically de�ned threshold of –35 dB.

94 4.3 Design of the Communication System

4.3.5 SAR Detection

The SARdetection in Section 3.3.3 has always calculated the averageSARover the

whole conversation as in

SAR=
NSA

Lc

with NSA being the number of speaker alternations during the conversation andLc

representing the duration of the conversation in minutes. As theSARis our input

metric to adapt the playout towards CI, delay and late loss, we need to continuously

estimate the SAR during the conversation in real time. Besides that, the SAR

estimation shall provide stable results (e.g., suppressing estimation oscillation by

averaging), fade out the SAR estimate when no more SA (Speaker Alternation)

occurs, and discard phantom activity below a certain activity duration (as already

accomplished for the �xed SAR detection).

The input of the SARdetection is the activity of local and remote speaker. For

every played out frame, we measure speaker activity and feed it into theSAR

estimation module. The SARmodule then transforms the activity indication of both

speakers into a communication state according to Table 4.4

Table 4.4 – Communication state table. L represents the local speaker and R
the remote speaker. The communications state indicates MS as mutual silence,
LC when the local speaker is active, RM when the remote speaker is active
and DT in case of double talk.

L= 0 L= 1

R= 0 MS LC
R= 1 RM DT

The resulting communication state is then pushed into the pre-queue, which

ensures a minimum duration of activity per speaker for at least 4 audio frames (i.e.,

80 ms), by shifting the last 4 communication states through the queue and suppress

the detection of a new SA if not all entries contain the same active speaker. We

skipped expanding the detected activity region as accomplished in Section 3.3.3,

because the expansion has no impact on theSARdetection result. A SA is de�ned

as in Section 3.3.3 and therefore the following sequence of communication states is

not detected as a SA:

f LC, LC, DT, DT, DT, LCg.

In contrast, a SA with DT needs to be in the following form:

f LC, LC, DT, DT, DT, RMg.

4.3 Design of the Communication System 95

Let t SA
i be the time of the i-th speaker alternation. The distance between two

speaker alternations i � 1 and i is then

� SA
i = t SA

i+ 1 � t SA
i . (4.7)

To smoothen the detectedSAR, we average over up to 9 speaker alternation

distances using a shift register.

Every time an audio buffer is requested from the sound card, we estimate the

SAR) as

SAR=
60 � Na
P Na

i= 1 � i

, (4.8)

where Na is the number of speaker alternation distances that are used in the estima-

tion. We dynamically adjust Na by timing out speaker alternations every 2 seconds.

Thus, every speaker alternation matching the following criteria is timed out:

t SA
i > t + i � 2 s. (4.9)

Hence, a �lled shift register times out in 18 seconds. Note that the SAD queue

size of 9 and the time out value of 2 as well as the minimum activity region of 4

frames are chosen empirically and might be subject for further studies. The full

source code listing can be found in Section A.1 at Listing A.3.

To verify the estimation quality and the estimation behavior in case of changing

SAR or non-equidistant SAs, we have run theSAR estimation algorithm on our

arti�cially created conversation �les. Figure 4.7 shows the results for different

combinations of our conversation test �les starting with different levels of SARand

ending with zero SAR.

In case of 2 SAs per minute, theSAR estimation returns non-zero SAR only

around the actual SA occurrences and returns to zero very quickly after the last SA

occurred (i.e., about 400 audio frames (� 8s). For all other SARlevels, the SAR

estimate is faded out after about 900 audio frames (i.e., approximately 18 s). The

fade-out is caused by adding the current system time to the average SA distance as

described above and the abrupt drop inSARis caused by an empty SAD queue after

all observations have timed out.

Figure 4.8 shows the SAR estimation results for changing non-zero SAR levels.

The SARestimation adapts quickly to all changes in SARand provides stable

values for all equidistant SAs from the start. For the non-equidistant SA, theSAR

is �rst overrated. This is caused by the �rst two SAs lying close together. After the

third SA has occurred later, the over-estimation is compensated in the SAD queue.

In summary, we have designed and implemented a stableSARestimation, which

adapts to all changes inSARquickly. It uses the distance to the last measured SA to

fade-out the SARestimation quickly. This fade-out is further ampli�ed by timing out

4.4 Design of the Veri�cation Tests 101

packet delay window for instance. Besides that, we record network traces for each

client using tcpdump. To log all input and output audio, which can be used for

later bug tracking or further evaluation, we have been using Audition, a hard disk

recording application by Adobe.

To emphasize on the effect ofCI, we need to cover a large range ofCI in our test

design. In contrast to our previous conversation test in Chapter 3, we do not need

to parametrically adjust CI, but focus on three levels ofCI: high, medium and low

interactivity.

Therefore, we have chosen to use thernv test from [15] again. This time,

however, including positive feedback so that the test subjects can accomplish the

task even quicker and the conversations result in higher interactivity.

As natural conversation, we useRichard's task (Richard) from [15] . In this

test, both subjects get a matrix with different shapes per cell and each cell has a

unique name. Then, one test subject chooses a shape and the other subject tries to

guess which shape was chosen by asking for speci�c information about it's structure

(e.g., how many spikes, broad or narrow shaped, etc.). The asked subject was

advised to start to give hints soon, so that the conversation has been kept going.

For the last task we reduceCI to zero. The test subjects listen to a short sequence

of an audio book (Book) and can not interact with each other during the test run.

Thereby we also avoided mistakes like accidentally highCI sometimes occurring

when test subjects don't follow the task or encounter unforeseen, alleged problems

during the test. To avoid biased results due to training effect when listening to the

same sequence twice, we have chosen two different sequences with a duration of

about 32 s. As almost all listeners were German and all listeners are familiar with

the German language, the sequences have been taken from the German audio book

Herz der Finsternisby Joseph Conrad. This also reduced bias due to intelligibility, as

shown in [77] .

A major concern in the test design has been the problem that test subjects tend

not to be truly involved in the actual task during conversation tests. Even though

the conversations cover real world examples, the test subjects play given roles in

the tests and do not actually book a �ight, order a pizza, etc. and are not in a real

hurry. The outcome of the conversation is not in their personal interest.

To make test subjects being more involved in the tasks, we have chosen to impose

a time limit to the interactive tasks (i.e., rnv and Richard) and told the subjects

that we will evaluate their performance towards amount of accomplished random

number veri�cations for rnv and the total number of guessed shapes for Richard.

The evaluation aspect was added to put the test subjects into challenge with each

other.

The time limit for the interactive tasks is 80 s, which is the time quick test

subjects needed for thernv test without any delay. The test subjects have responded

102 4.4 Design of the Veri�cation Tests

very well to this limitation and �nally showed personal interest in �nishing the tasks

quickly, guessing many shapes and retain focus on the task.

To mitigate the ordering effects of the conversation tests, we apply a Latin square

to the three test task classes rnv, Book, and Richard as shown in Table 4.5.

Table 4.5 – Latin Square of conversation test for interactive model veri�cation.

Group Task 1 Task 2 Task 3

1 Book rnv Richard
2 Richard Book rnv
3 rnv Richard Book

The Latin square therefore results in 9 tests, for which we want to assess the

quality of our two CSbaselineand interactive. Both CSare tested in a speci�c order:

baseline�rst or interactive �rst and therefore, another binary test parameter must be

incorporated in the design of the conversation test. The least common multiplier of

2 and 9 is 18, which means that we need to run 18 tests with both systems each to

cover all con�gurations. To combine both the parameter of task class and the type

of the CS, we therefore de�ne a test run to contain 6 groups, which in turn cover

one line of above Latin square. We randomize the order (i.e.,baselineor interactive

�rst) of the CS for each test while ful�lling the following requirements:

• Above Latin square is created exactly twice per test run

• Each task is tested 6 times with

• 3 times starting with the baselineCS and

• 3 times starting with the interactiveCS

By de�ning these constraints, we cover all possible combinations equally and

distribute them randomly over the single conversation tests.

The algorithm we used to create and shuf�e the con�guration and build the

directory structure is given in Listing A.4. Table 4.6 shows an example run of the

conversation tests.

To become comfortable with the test system and the interactive tasks we have

conducted two training tests before the actual conversation tests. The training

tests were also limited in time and were run with optimal network conditions (i.e.,

network simulation switched off). The �rst training test was Richard's task and the

second anrnv test. The training tests also made the test subjects aware of the time

limit and how fast they had to perform to �nish the tasks in time. This put additional

pressure on the test subjects and some times caused desperation, especially with the

baselinesystem in the rnv test, which requires very high CI. The actual test process

was almost completely automated using shell scripts and helper applications.

4.4 Design of the Veri�cation Tests 103

Table 4.6 – Example run of the conversation tests. One run covers 6 groups
(i.e., twice the Latin square). CSorder de�nes the CSorder, where 0 means
baselinesystem �rst and 1 indicates interactivesystem �rst.

Group Task CS Order

1 book 0
1 rnv 0
1 Richard 1
2 Richard 0
2 book 1
2 rnv 1
3 rnv 1
3 Richard 1
3 book 1
4 book 0
4 rnv 0
4 Richard 0
5 Richard 0
5 book 0
5 rnv 1
6 rnv 0
6 Richard 1
6 book 1

After each test, the test subjects completed an evaluation form with 4 statements,

also referred to as questions, as shown in Table 4.7.

Table 4.7 – Veri�cation conversation tests questionnaire

Number Statement

R1 I had to wait for the other person very often
R2 Completing the task was easy and required

little effort
R3 The overall quality of the conversation was

excellent
R4 The overall experience of the conversation

was excellent

Questions 1 and 2 represent low level and straight forward statements, that

should be easy to answer once test subjects had become familiar with the speci�c

impairments for the conversation tests. Questions 3 and 4 on the other hand ask for

the quality and user experience of theCSand therefore are candidates for a �nal

CQ metric.

As the Book test required no interaction, the �rst two questions were left out for

the Book test. To reduce the quantization error in the responses of the questionnaire,

we provide 9 levels (0: completely disagree, 8: fully agree) for each question to

express the test subject's agreement. After every second test, when bothCShave

4.5 Veri�cation Test Results 107

accomplish. These tasks are the tasks with high adaptation rates, where the delay

has been kept very low even though the network causes delay spikes every 8 seconds,

which in turn cause audible artifacts. This effect can also be observed as an bias

of in the spectrogram of R1 and R2 towards the upper right corner. Responses

given to R3 and R4 represent the overall quality and overall experience of the

test subjects. Both questions refer to the mean opinion score and therefore target

the subjective impression of the conversations in strong contrast to the �rst two

questions. Considering both histograms, we can see a high peak at 6 (i.e. good)

which indicates that most of the tests featured good audio quality. This is actually

a very good rating considering the heavy network delay spikes. The tendency to

good audio quality can also be observed in the spectrograms between R1 and R2

to R3 or R4, as an bias towards the upper right corner. We have added R4 to the

questionnaire to testify if there are differences in the perception of audio quality to

the overall user experience. Looking at the histograms, spectrogram and the Pearson

product-moment correlation coef�cient (PCC), however, the differences are rather

marginal. Most of the test subjects gave very similar responses to both questions

even though a few speci�cally differed between both questions pretty much. There

are areas where R3 indicates low audio quality and R4 high user experience and

vice-versa. From the histograms only, we therefore can not choose our candidate for

MOS from R3 and R4.

The highest correlation can be observed between R3 and R4, which is no surprise,

because both questions differ only slightly. What is interesting indeed is that R4

shows the highest correlation with R1. The test subjects seem to have separated the

conversational quality indicators (i.e., delay and interactivity) from the listening only

audio quality (i.e. MOS). The correlation values are also higher than in our previous

conversation tests in Chapter 3, which indicates that questioning the audio quality

only lacks important information in terms of overall user experience. Therefore, we

will use R4 as our metric for MOS in the following sections.

In summary, we have shown that we have been facing two effects (delay and

audio artifacts) in our conversation tests, which cause different responses by the test

subjects. The split between R3 and R5 in terms of audio quality and user experience

was identi�ed to be a good decision as the correlation values between R1, R2, and

R4 have been improved also in comparison to our previous conversation test.

4.5.2 Impact of Conversation System on End-to-End Delay

The main objective parameter in the CSunder test is the playout delay (i.e., buffer

time). The buffer control adjusts the playout delay with respect to the optimization

criteria. For the baseline CS, the playout delay solely depends on the packet delay

distribution. It observes network delay jitter and adjusts the playout delay such that

4.5 Veri�cation Test Results 109

they interact, how they perform the task or if they might get stuck guessing the right

�gure.

In this section we have shown the effect of theCSon average playout delay, a

purely objective metric. While the baseline CShas shown only few variations in

playout delay between the different tasks, the interactive CSwas able to adapt to

changes inCI as expected: increase average playout delay for lowCI and lower

delay for high CI. For natural conversion, the interactive CScovers a much broader

range, caused by the unconstrained nature of those conversations. If the interactive

CShas made the right decisions for Richard's task in terms of adapting the playout

delay towards CI could not be analyzed yet and needs further investigation towards

an subjective metric - the MOS.

4.5.3 Impact of Conversation System on User Perception

In the following paragraphs, we will present and discuss the results of the veri�cation

test with respect to SAR, MOS, test subject preference as well as the subjective quality

of the overall user experience. We will �rst analyze the dependency for MOS to SAR

and discuss the results shortly. Then, we study the results of test subjects preference

regarding the baseline or interactive CSboth graphically and statistically. In the end

of this section we evaluate the impact of theCStowards the quality of the overall

user experience using standard statistical methods.

4.5.3.1 Dependency on SAR

Figure 4.17 shows the histogram of the averageSARper single test with two test

subjects.

While the book task only consists of aSARof 0 (i.e., no interactivity), Richard's

task covers low to medium interactivity and rnv dominates the upper end of SARup

to more than 62min � 1. Both Richard's task andrnv show effect between 24 and

29 min � 1 where rnv is taking over from Richard's task. The full range of SARvalues

reaches from 0 to 67 with 90 % having a SARbelow 45 min � 1. The shortest average

talk spurt therefore was 900 ms (at 67min � 1), while the overall average talk spurt

lasts 3119 ms. The tests therefore comprised relative lively discussions on average

while still containing the book task requiring no interactivity at all.

Figure 4.18 shows the responses to overall quality (i.e., R4) on average, for the

baseline and for the interactive CSdepending on averageSARo the conversation

test.

Most notably is the lack of very high interactivity with the baseline CS. High

end-to-end delay restricted the test subjects below a maximumSARof 40min � 1.

Besides that, the baselineCSshows stronger in�uence of SARon MOS than the

interactive CSwith MOS dropping from 4 to 2, while the MOS for the interactive

4.5 Veri�cation Test Results 113

Table 4.8 – Table with signi�cance codes ranging from highly signi�cant (***)
to no signi�cance (` `)

Signi�cance code Con�dence level

*** 0.001
** 0.01
* 0.05
. 0.1

1

Table 4.9 shows the coef�cient table for the model �tted to all test results. The

interesting coef�cient is � 1, which signi�es the in�uence of the CS (i.e., old or

interactive CS). The estimate represents the log odd ratio, which is the relative

change in odds that theCSis preferred or not. A positive value indicates a tendency

towards the interactive CS. We can also deduct high statistical signi�cance due to

the low p-value, which is also given by the signi�cance code in the last column. An

odd ratio value of roughly 2.25 means that the odds that the CSis preferred are

2.25 times higher for the interactive CS. The statistical evaluation therefore yields a

signi�cant improvement caused by the interaction adaptation.

Estimate Std. Error z value Pr(> |z|) Odd Ratio Signif. Code

� 0 -0.76665 0.157554 -4.86596 1.13903e-06 0.464567 ***
� 1 0.809667 0.215264 3.76128 0.000169047 2.24716 ***

Table 4.9 – Coef�cient table of logistic model �tted to all test results

The results for the book test, shown in Table 4.10, do not show signi�cance to

the CS under test. Both CS seem to perform similar.

Estimate Std. Error z value Pr(> |z|) Odd Ratio Signif. Code

� 0 -0.528067 0.262905 -2.00858 0.0445814 0.589744 *
� 1 0.398856 0.36593 1.08998 0.275723 1.49012

Table 4.10 – Coef�cient table of logistic model �tted to the test results of the
book test

Table 4.11 shows the coef�cient table for the tests where Richard's task has

been conducted. A negative estimate for� 1 indicates that the old CS has been

preferred by the test subjects. The signi�cance code and p-value signify that this

statement holds true up to a con�dence interval of 95 % and the odds that the old

CS is preferred are about 3 times higher than for the interactive system. This is

again an indication that the optimization model given in (4.6) needs to be adjusted

using the results from further conversation tests.

114 4.5 Veri�cation Test Results

Estimate Std. Error z value Pr(> |z|) Odd Ratio Signif. Code

� 0 -0.0645385 0.254133 -0.253956 0.799529 0.9375
� 1 -1.07756 0.390546 -2.75911 0.00579597 0.340426 **

Table 4.11 – Coef�cient table of logistic model �tted to the test results of the
richard's test

The coef�cient table for the rnv test is given in Table 4.12. A very high estimate,

a very low p-value and an odd ratio of some 43 indicate a clear preference of the

interactive CS versus the old CS. Due to the high interactivity by frequent turn

taking, the task requires seriously reduced end-to-end delay in contrast to reduced

late loss.

Estimate Std. Error z value Pr(> |z|) Odd Ratio Signif. Code

� 0 -2.23359 0.429513 -5.20029 1.98978e-07 0.107143 ***
� 1 3.76752 0.543138 6.93659 4.01677e-12 43.2727 ***

Table 4.12 – Coef�cient table of logistic model �tted to the test results of the
rnv test

In summary, the statistical evaluation underscores the results shown in the

graphical evaluation. While both CSperform similar for the book task, Richard's

task shows mostly a preference to the oldCS while rnv has a clear preference

towards the interactive CS. On average, the interactiveCSis preferred due to the

sum of the very high rnv preference and the small preference in the book task.

4.5.3.4 Graphical Quality Analysis of the Communication System

To analyze the impact of the CStowards the quality of the overall user experience,

we analyze the results of the conversation test using R4 and its dependency to the

kind of CS (i.e., baseline or interactive CS).

Figure 4.20 shows the expectedMOS value for each test class (task) as well as

the average.

The interactive CSyields at least the same quality of experience as the baseline

CSexcept for Richard's task. While theMOS of the baselineCSdrops down to 2.2,

the interactive CS provides a MOS of about 3.0.

In the case of Richard's task, the adaptation was too aggressive and should be

adjusted to work more moderately as discussed previously. The con�dence intervals

of all tests are widely constant.

For the book task, both systems deliver roughly the same quality of experience.

The difference in the highly interactive rnv test, however, is very signi�cant and

causes the advantage of the interactive CS in the overall results.

116 4.5 Veri�cation Test Results

As the response variable (MOS) is a numerical value, we use the following model

prototype:

MOS= 0 + 1 � s (4.11)

Becauses can only take two values (0 or 1), the intercept 0 will represent the

MOS of the old CSwhere (s= 0) and the slope 1 indicates the numeric difference

caused by the interactiveCS. A positive slope indicates quality improvement and a

negative value a fall off in experienced quality. Note that the signi�cance code for

 0 is not of interest in this evaluation.

Table 4.13 shows the coef�cient table for all conversation test results. The old

Estimate Std. Error t value Pr(> |t|) Signif. Code

 0 3.31989 0.0717879 46.2459 7.44676e-156 ***
 1 0.22043 0.101523 2.17122 0.0305492 *

Table 4.13 – Coef�cient table of linear regression model �tted to all results

system provides afair MOS value of 3.3 with a standard error of 0.071, which is

about 2.15 %. The interactive system improves theMOS by 0.22 towards good

quality with a standard error of 0.1 (� 45 %). The high standard error indicates a

high variance in test results. Due to the low p-value of 1 we can reject the null

hypothesis and conclude that the interactive system performs better in terms of

MOS to a con�dence level of 95 %. This is also shown by the signi�cance code.

Table 4.14 shows the coef�cient table for the results taken from the book test.

Considering the high 0 and low 1 we can see that bothCSperform at a very high

Estimate Std. Error t value Pr(> |t|) Signif. Code

 0 3.96774 0.0849493 46.7072 1.0741e-79 ***
 1 0.0725806 0.120136 0.604152 0.546864

Table 4.14 – Coef�cient table of linear regression model �tted to book results

quality level for the book task and can second the previous results where bothCS

were identi�ed to have negligible differences. This statement is also grounded by

the relatively high p-value which is why we can not reject the null hypothesis here.

Table 4.15 shows the coef�cient table for the results taken from Richard's task.

The overall quality level in terms of MOS is a little lower (i.e. 3.8) than for the book

test, but still relatively high considering the bad network conditions during the test.

While the MOS value drops by 0.27 for Richard's task on average, this fall off holds

only at a con�dence level of 90 %. However, as discussed previously, the results

taken from Richard's task urge more conversation tests as well as adjustments to

the optimization model (4.6).

4.5 Veri�cation Test Results 117

Estimate Std. Error t value Pr(> |t|) Signif. Code

 0 3.76613 0.107311 35.0954 1.32865e-65 ***
 1 -0.274194 0.151761 -1.80674 0.0732668 .

Table 4.15 – Coef�cient table of linear regression model �tted to results of
richard's task

Table 4.16 shows the coef�cient table for the results taken from the rnv test. The

Estimate Std. Error t value Pr(> |t|) Signif. Code

 0 2.22581 0.0976325 22.7978 8.35372e-46 ***
 1 0.862903 0.138073 6.24961 6.27002e-09 ***

Table 4.16 – Coef�cient table of linear regression model �tted to results of
rnv test

poor MOS indicated by a 0 of 2.2 can be improved by almost one (0.8) MOS to

fair (3.0) by using the interactive CSinstead of the old CS. The null hypothesis that

both systems perform equally can be rejected with a con�dence level of no less than

99.9 %. Even though fair quality still provides room for improvement, considering

the high interactivity of the task as well as the heavy network delay, the overall

performance of the interactive CS is outstanding and a perfect example of what

adaptation with respect to CI can enable.

In summary, we have shown that the interactive CSperforms well in all cases

except for Richard's task, which requires further tuning of the interactive CS as

stated. Signi�cant improvement has especially been exposed by thernv test, where

the averageMOS value has been improved frompoor to fair by almost 1 MOS point.

4.6 Chapter Summary

In this chapter we have built a novel integrated audio CSfor playout adaptation.

The CSadapts the audio playout to balance the impact of delay onCQ and artifacts

caused by late loss. The adaptation is performed depending on the current Conver-

sational Interactivity to adjust the amount of adaptation to the characteristics of the

ongoing conversation.

We enhanced an existingCSwith a network simulation, round-trip-time estima-

tion, voice activity detection, speaker alternation detection, and buffer control to

measure, assess and apply the playout adaptation accordingly. We exposed 70 test

subjects to both the baseline and the interactiveCSand assessed the impact of the

CS type statistically.

On average, almost50 % of all test subjects preferred the interactive CSto the

baselineCS, for which about 30 % have voted and less than20 % were unsure about

118 4.6 Chapter Summary

their decision. The average test task has improved from aMOSscore of 3.3 to aMOS

score of 3.5, for medium interactivity the MOS score did suffer slightly by 0.2 MOS

points, which indicates the necessity for further re�nements of the optimization

model. For very high interactivity tasks the MOS score improved from 2.2 to 3.1,

which is a signi�cant improvement.

In summary we can conclude that the interactiveCS[49] was able to signi�cantly

improve the conversational experience of the users on average, but also has room

for improvements in the case of medium interactivity.

Chapter 5

Conclusion

In this thesis we focused on high �delity audio communication over IP as well as

the impact of delay and interactivity on Conversational Quality (CQ).

First, we analyzed existing and established methods fromVoIP clients and

adjusted their application to high quality audio environments. We identi�ed the

percentile-based jitter estimation algorithm to best �t our requirements. According

to our �ndings, the effect of the window size on the estimation result is a trade-off

between: (a) higher late loss accuracy and variance, more delay, and less adaptation

rate using large windows and (b) less late loss accuracy and variance, less delay,

and higher adaptation rate using smaller windows. Considering the results from

Figure 2.6, we choose 500 packets (i.e.,10 s) as our preferred window size for the

percentile jitter estimation.

Then we proved the hypothesis that delay spike events can be used as playout

adaptation points with remarkable results especially for speech items where the

audio quality is about 20 MUSHRA score points higher compared to plain packet

loss concealment for small durations of delay spikes.

We introduced a time shrinking algorithm based on dropping AAC frames that

works very well for low dropping rates until 4 %. We further improved the AAC-

based time shrinking using a frame classi�er. The frame classi�er predicts the

audibility of allegedly dropped frames based on signal features which are already

available in the USAC codec. Thereby we could improve the time shrinking audio

quality by further 0.5 MOS points.

Then, we showed how both delay and Speaker Alternation Rate (SAR) affect

conversational quality. To assess this impact, we designed a new variant of conver-

sation tests with parametric interactivity. The parametric tests use tailored tasks to

control SARand achieve average SAR values between5 min � 1 and 20 min � 1. Using

the results from the questionnaire, we described the elements composing theCQ

for the scope of this work. Furthermore, we identi�ed the SARas our metric for

119

120 5 Conclusion

conversational interactivity and veri�ed the effect of the parametric conversational

tests on this metric. The evaluation of the results was two-fold: First, we presented

the graphical evaluation. Therefore, we split the conversations into three groups:

low, medium, and high interactivity. The results were illustrated for each delay

and SARgroup separately by their mean values along with the con�dence intervals

with a con�dence level of 95 %. Hereby we shown signi�cant impact of both SAR

and delay. The statistical signi�cance was not always distinct, for instance for low

delay in scenarios of low and medium interactivity, but for high delay values and

especially for high interactivity, the impact was statistically signi�cant. The second

part of the evaluation presented the results from a Multinomial Logistic Regression

analysis, which showed statistical signi�cance in both delay and SAR. The results

clearly prove, that the conversational interactivity (SAR) has a signi�cant impact

on the quality degradation due to delay and needs to be taken into account, when

estimating overall CQ.

In the last chapter we built a novel integrated audio Communication System (CS)

for playout adaptation. The CSadapts the audio playout to balance the impact of

delay on CQand artifacts caused by late loss. The adaptation is performed depending

on the current Conversational Interactivity to adjust the amount of adaptation to

the characteristics of the ongoing conversation.

We enhanced an existingCSwith a network simulation, round-trip-time estima-

tion, voice activity detection, speaker alternation detection, and buffer control to

measure, assess and apply the playout adaptation accordingly. We exposed 70 test

subjects to both the baseline and the interactiveCSand assessed the impact of the

CS type statistically.

On average, almost50 % of all test subjects preferred the interactive CSto the

baselineCS, for which about 30 % voted and less than20 % were unsure about their

decision. The average test task improved from aMOS score of 3.3 to aMOS score

of 3.5, for medium interactivity the MOS score did suffer slightly by 0.2 MOS points,

which indicates the necessity for further re�nements of the optimization model. For

very high interactivity tasks the MOS score improved from 2.2 to 3.1, which is a

signi�cant improvement.

We can �nally conclude that the high-quality, interactive Communication System

signi�cantly improved the average subjective Conversational Quality.

Appendix A

Appendix

The following sections contain additional information about tools, algorithms, and

hardware setups, which have been used to collect the results and conduct conversa-

tion tests for the purpose of this thesis. They are not part of the thesis but shall be

noted here as they carry import information for reproducing and understanding the

obtained results on a practical level.

A.1 Source Code Listings

The following sections contain source code listing to provide additional detail to

algorithmic descriptions and problem statements in the text.

A.1.1 AAC-ELD Dropping Classi�er

1 funct ion droppable = c l a s s i f y _ t c (f_zc , r , l_lambda , prdn , &

nrgy)

2

3 %% p r e a l l o c r e s u l t (column vec to r)

4 % a l l aud ib le by d e f a u l t

5 droppable = zeros (length (nrgy) ,1) ;

6

7 %% t c mode c l a s s i f i c a t i o n

8 fo r idx = 1: length (nrgy)

9 % t c mode t r e e

10 i f l_lambda (idx) <= 0.52803 % NODE 1

11 droppable (idx) = 1;

12 i f r (idx) <= � 0.18611 % NODE 2

13 i f nrgy (idx) > � 23.362 % NODE 3

14 i f f _zc (idx) <= 0.06875 % NODE 5

121

122 A.1 Source Code Listings

15 i f prdn (idx) > 0.16761 % NODE 6

16 droppable (idx) = 0; % TERM &

NODE 8

17 end

18 e lse % (NODE 5)

19 i f r (idx) > � 0.21388 % NODE 9

20 droppable (idx) = 0; % TERM &

NODE 11

21 end

22 end

23 end

24 e lse % (NODE 2)

25 i f f _zc (idx) <= 0.10208 % NODE 12

26 i f r (idx) <= 0.43539 % NODE 13

27 i f prdn (idx) > 0.085168 % NODE 14

28 droppable (idx) = 0; % TERM &

NODE 16

29 end

30 end

31 end

32 end

33 e lse % NODE 1

34 i f f _zc (idx) <= 0.058333 % NODE 19

35 i f f _zc (idx) > 0.04375 % NODE 20

36 i f nrgy (idx) <= � 32.461 % NODE 22

37 droppable (idx) = 1; % TERM &

NODE 23

38 end

39 end

40 e lse

41 i f f _zc (idx) > 0.325 % NODE 25

42 droppable (idx) = 1; % TERM &

NODE 27

43 end

44 end

45 end

46 end

47 end

Listing A.1 – AAC-ELD dropping classi�er in MATLAB

A.1 Source Code Listings 123

A.1.2 Low Delay USAC Class�er

1 funct ion droppable = c l a s s i f y _ s w i t c h e d (f_zc , r , l_lambda , &

prdn , nrgy)

2

3 %% p r e a l l o c r e s u l t (column vec to r)

4 % a l l aud ib le by d e f a u l t

5 droppable = zeros (length (nrgy) ,1) ;

6

7 %% c l a s s i f i c a t i o n loop

8 fo r idx = 1: length (nrgy)

9 % switched mode t r e e

10 i f f _zc (idx) > 0.097917 % NODE 1

11 droppable (idx) = 1; % TERM &

NODE 29

12 i f f _zc (idx) <= 0.325 % NODE 25

13 i f l_lambda (idx) <= 0.86786 % NODE 26

14 droppable (idx) = 0; % TERM &

NODE 27

15 end

16 end

17 e lse

18 i f l_lambda (idx) <= 0.20408 % NODE 2

19 i f prdn (idx) <= 0.65032 % NODE 3

20 droppable (idx) = 1; % TERM &

NODE 4

21 end

22 e lse

23 i f f _zc (idx) <= 0.054167 % NODE 6

24 i f l_lambda (idx) <= 0.3506 % NODE 7

25 i f prdn (idx) <= 0.19405 % NODE 8

26 droppable (idx) = 1; % TERM &

NODE 9

27 end

28 e lse % NODE 7

29 i f nrgy (idx) <= � 27.026 % NODE 11

30 i f prdn (idx) <= 0.23865 % NODE 12

31 i f r (idx) <= � 0.16824 % NODE 13

32 droppable (idx) = 1; % TERM &

NODE 14

33 end

34 end

35 e lse % NODE 11

124 A.1 Source Code Listings

36 i f r (idx) > 0.55173 % NODE 17

37 droppable (idx) = 1; % TERM &

NODE 19

38 end

39 end

40 end

41 e lse % NODE 6

42 i f r (idx) <= � 0.16922 % NODE 20

43 i f prdn (idx) <= 0.045508 % NODE 21

44 droppable (idx) = 1; % TERM &

NODE 22

45 end

46 end

47 end

48 end

49 end

50 end

51 end

Listing A.2 – Low delay USAC class�er in MATLAB

A.1.3 Real-Time SAR estimation

1 #include < queue>

2 #include < s t r i n g . h>

3 #include < math . h>

4

5 #include " mmt_types . h "

6 #include " mmt_time . h "

7

8 using mmt : : n i t i : : CTime ;

9 #def ine SAR_AVG_LEN 9U

10 #def ine NOSAR_DISTANCE 120.0

11

12 c lass CSarEst imat ion

13 {

14 pr iva te :

15 typedef enum _commstate {

16 l o c a l = 1 ,

17 remote = 2 ,

18 doubleTalk = l o c a l | remote ,

19 mutualS i lence = 0

A.1 Source Code Listings 125

20 } ECommState ;

21

22 c lass CCommunicat ionStateObservat ion

23 {

24 publ ic :

25 CCommunicat ionStateObservat ion (

26 const CTime& measuredAt=CTime () ,

27 const ECommState s t a t e= mutua lS i lence) :

28 m_measuredAt (measuredAt) , m_state (s t a t e)

29 { }

30

31 publ ic :

32 CTime m_measuredAt ;

33 ECommState m_state ;

34 } ;

35

36 typedef s td : : deque< CCommunicationStateObservation> &

CStateQueue ;

37 publ ic :

38 CSarEst imat ion (

39 const mmt : : UINT32 minFramesActive= 4U) :

40 m_minFramesActive (minFramesActive) ,

41 m_mostRecentState (mutua lS i lence) ,

42 m_las tSpeakerA l te rna t ion ()

43 {

44 fo r (mmt : : UINT32 idx = 0U; idx < SAR_AVG_LEN ; idx++)

45 m_distances[idx] = 0 .0 ;

46 }

47

48 // ! minimum number of frames to be a c t i v e to i n d i c a t e an &

a c t i v i t y s t a t e

49 mmt : : UINT32 minFramesActive () const

50 {

51 return m_minFramesActive ;

52 }

53

54 // ! add measurement to SAR es t ima t ion

55 void push (

56 const CTime& now,

57 const bool l o c a l _ a c t i v e ,

58 const bool remote_act ive

59)

60 {

126 A.1 Source Code Listings

61 CCommunicat ionStateObservat ion commstate=

62 c rea teS ta teObse rva t i on (now, l o c a l _ a c t i v e , &

remote_act ive) ;

63

64 m_mostRecentState = commstate . m_state ;

65 m_preQueue . push_back (commstate) ;

66

67 i f (m_preQueue . s i z e () >= m_minFramesActive)

68 p ickOutSpeakerA l te rna t ions () ;

69 }

70

71 mmt : : FLOAT32 getSar (const CTime& now)

72 {

73 i f (m_ las tSpeakerA l te rna t ion . m_measuredAt . i sZe ro ())

74 return 0.0 f ;

75

76 mmt : : FLOAT64 sinceLastMeasurement= &

s ta t i c_cas t <mmt : : FLOAT64> (

77 now � m_ las tSpeakerA l te rna t ion . m_measuredAt) ;

78

79 decay (sinceLastMeasurement) ;

80

81 i f (s inceLastMeasurement > averageDis tance ())

82 return averageSar (s inceLastMeasurement) ;

83

84 return averageSar () ;

85 }

86

87 s td : : s t r i n g s t a t e S t r i n g () const

88 {

89 switch (m_mostRecentState)

90 {

91 case l o c a l :

92 return " l c " ; // l o c a l

93 case remote :

94 return " rm" ; // remote

95 case doubleTalk :

96 return " d t " ; // double t a l k

97 case mutua lS i lence :

98 return " ms "; // mutual s i l e n c e

99 defau l t :

100 return " unknown " ;

101 }

A.1 Source Code Listings 127

102 }

103

104 pr iva te :

105 // c rea te a new s t a t e observa t ion ins tance accord ing to &

th resho lds

106 CCommunicat ionStateObservat ion c rea teS ta teObse rva t i on (

107 const CTime& now,

108 bool l o c a l _ a c t i v e ,

109 bool remote_act ive) const

110 {

111 CCommunicat ionStateObservat ion r e s u l t (now) ;

112

113 ECommState& s t a t e = r e s u l t . m_state ;

114 // t r i c k y b i t mask s e t t i n g (i nc ludes double t a l k &

i m p l i c i t l y !)

115 i f (l o c a l _ a c t i v e)

116 s t a t e = s ta t i c_cas t <ECommState> (s t a t e | l o c a l) ;

117 i f (remote_act ive)

118 s t a t e = s ta t i c_cas t <ECommState> (s t a t e | remote) ;

119

120 return r e s u l t ;

121 }

122

123 void p ickOutSpeakerA l te rna t ions ()

124 {

125 CCommunicat ionStateObservat ion o ldes tS ta teObse rva t i on = &

m_preQueue . f r o n t () ;

126 m_preQueue . pop_front () ;

127 ECommState& o l d e s t S t a t e = o ldes tS ta teObse rva t i on . m_state ;

128

129 // d i sca rd double t a l k frames and mutual s i l e n c e

130 i f (s i ng leSpeake rAc t i ve (o l d e s t S t a t e))

131 {

132 i f (s ta teRemainsAct iveInPreQueue (o l d e s t S t a t e))

133 {

134 i f (m_ las tSpeakerA l te rna t ion . m_measuredAt . i sZe ro ())

135 m_las tSpeakerA l te rna t ion = o ldes tS ta teObse rva t i on ;

136

137 // check i f speaker r e a l l y changed

138 i f (m_ las tSpeakerA l te rna t ion . m_state != o l d e s t S t a t e)

139 {

140 mmt : : FLOAT64 d is tance = &

o ldes tS ta teObse rva t i on . m_measuredAt

128 A.1 Source Code Listings

141 � m_ las tSpeakerA l te rna t ion . m_measuredAt ;

142 push_back (d i s tance) ;

143 m_las tSpeakerA l te rna t ion = o ldes tS ta teObse rva t i on ;

144 }

145 }

146 }

147 }

148

149 // check i f the given s t a t e/ speaker remains a c t i v e in &

whole pre queue

150 bool stateRemainsAct iveInPreQueue (const ECommState& &

checkSta te) const

151 {

152 fo r (CStateQueue : : c o n s t _ i t e r a t o r i t e r = m_preQueue . begin () ;

153 i t e r ! = m_preQueue . end () ; i t e r++)

154 {

155 // i s t rue i f l o c a l / remote speaker i s not a c t i v e in &

whole pre queue

156 i f ((checkSta te & i t e r � > m_state) == 0)

157 return f a l s e ;

158 }

159 return true ;

160 }

161

162 bool s i ng leSpeake rAc t i ve (ECommState& o l d e s t S t a t e)

163 {

164 return o l d e s t S t a t e == l o c a l || o l d e s t S t a t e == remote ;

165 }

166

167 mmt : : FLOAT64 averageSar (mmt : : FLOAT64 &

s i n c e _ l a s t _ a l t e r n a t i o n= 0.0) const

168 {

169 i f (averageDis tance (s i n c e _ l a s t _ a l t e r n a t i o n) >= &

NOSAR_DISTANCE)

170 return 0 .0 ;

171

172 mmt : : FLOAT64 r e s u l t = 60.0 / averageDis tance (&

s i n c e _ l a s t _ a l t e r n a t i o n) ;

173 s td : : cout << " speaker a l t e r n a t i o n measurement : "<< &

r e s u l t << s td : : endl ;

174

175 return r e s u l t ;

176 }

A.1 Source Code Listings 129

177

178 mmt : : FLOAT64 averageDis tance (mmt : : FLOAT64 &

s i n c e _ l a s t _ a l t e r n a t i o n= 0.0) const

179 {

180 mmt : : FLOAT64 r e s u l t = s i n c e _ l a s t _ a l t e r n a t i o n ;

181 mmt : : FLOAT64 d iv ideby = (s i n c e _ l a s t _ a l t e r n a t i o n== 0.0) ? &

0.0 : 1 .0 ;

182

183 fo r (mmt : : UINT32 idx = 0; idx < SAR_AVG_LEN ; idx++)

184 {

185 r e s u l t += m_distances[idx] ;

186 i f (m_distances[idx] != 0.0)

187 ++ d iv ideby ;

188 }

189 i f (d iv ideby == 0.0)

190 return NOSAR_DISTANCE;

191

192 r e s u l t /= d iv ideby ;

193

194 return r e s u l t ;

195 }

196

197 void push_back (mmt : : FLOAT64 d is tance)

198 {

199 : : memmove(

200 &(m_distances[0]) ,

201 &(m_distances[1]) ,

202 (SAR_AVG_LEN� 1) s i zeo f (mmt : : FLOAT64)) ;

203 m_distances[SAR_AVG_LEN� 1] = d i s tance ;

204 }

205

206 void decay (mmt : : FLOAT64 sinceLastMeasurement)

207 {

208 // t ime out measurements every N seconds

209 mmt : : FLOAT64 N = 2;

210 mmt : : UINT32 n_to_d iscard = : : round (sinceLastMeasurement &

/ N) ;

211 n_to_d iscard = s td : : min(n_to_d iscard , SAR_AVG_LEN� 1) ;

212 fo r (mmt : : UINT32 idx = 0; idx <= n_to_d iscard ; idx++)

213 m_distances[idx] = 0 .0 ;

214 }

215

216 pr iva te :

130 A.1 Source Code Listings

217 mmt : : FLOAT64 m_ac t i v i t yThresho ld ;

218 mmt : : FLOAT64 m_distances[SAR_AVG_LEN] ;

219 CStateQueue m_preQueue ;

220 mmt : : UINT32 m_minFramesActive ;

221 ECommState m_mostRecentState ;

222 CCommunicat ionStateObservat ion m_las tSpeakerA l te rna tion ;

223 } ;

Listing A.3 – Real-Time SAR estimation in C++

A.1.4 Create Veri�cation Test Directory Structure

1 #! / usr / b in / env python

2 import random

3 import sys

4 import os

5

6 # a v a i l a b l e d i f f e r e n t task c l a s s e s

7 # A: rnv

8 # B : book

9 # C: r i cha rd ' s task

10 t a s k _ c l a s s = [' rnv ' , ' book ' , ' r i c h a r d ']

11 # j i t t e r b u f f e r mode c o n f i g s � i n t e r a c t i v i t y awareness

12 i 2ac t_on = [[0 , 1] , [1 ,0]]

13

14 # i n d i c e s in to t a s k _ c l a s s to get l a t i n square matr ix

15 l a t i n _ s q u a r e _ i d c s =[[1 , 0 , 2] , [2 , 1 , 0] , [0 , 2 , 1]]

16

17 # bad a s s e r t s � a l l o f remaining s c r i p t depends on t h i s . . .

18 a s s e r t (len (t a s k _ c l a s s) == 3)

19 a s s e r t (len (i2ac t_on) == 2)

20

21 def c rea te_conf ig_chunk () :

22 r e s u l t = []

23 [r e s u l t . append ([]) fo r task in t a s k _ c l a s s]

24

25 # c rea te a l l p o s s i b l e combinat ions and feed each in to &

con f i g

26 fo r t idx , task in enumerate (t a s k _ c l a s s) :

27 fo r i i dx , i 2 a c t in enumerate (i2ac t_on) :

28 r e s u l t [t i d x] . append ([])

29 fo r a c t i v e in i 2 a c t :

A.1 Source Code Listings 131

30 tmp = task + ' . ' + s t r (a c t i v e)

31 r e s u l t [t i d x] [i i d x] . append (tmp)

32 #p r i n t tmp

33 fo r i tem in r e s u l t :

34 random . s h u f f l e (i tem)

35 return r e s u l t

36

37 # number of groups f o r one run

38 ngroups = len (t a s k _ c l a s s) len (i2ac t_on)

39

40 # number of t e s t s f o r one group

41 n t e s t s = len (i2ac t_on [0])

42

43 c o n f i g s = []

44 [c o n f i g s . append ([]) fo r idx in t a s k _ c l a s s]

45

46 # c rea te c o n f i g s

47 fo r i in range (len (t a s k _ c l a s s)) :

48 toadd = crea te_conf ig_chunk ()

49 fo r idx , l i n e in enumerate (toadd) :

50 fo r i tem in l i n e :

51 c o n f i g s [idx] . append (item)

52

53 # we need to go two t imes through the l a t i n square ,

54 # due to lcm of len (t a s k _ c l a s s) and len (i2ac t_on)

55 l a t i n _ s q u a r e _ i d c s = 2

56

57 grpnr = 1

58 fo r c fg in l a t i n _ s q u a r e _ i d c s :

59 grp_d i r = (' group .%01d '%(grpnr)) + ' / '

60 t e s t n r = 1

61 fo r t ask i dx in c fg :

62 fo r t e s t s p e c in c o n f i g s [t ask i dx] . pop () :

63 t e s t _ d i r = g rp_d i r + ('%02d_ '%(t e s t n r)) + t e s t s p e c

64 os . makedirs (t e s t _ d i r)

65 t e s t n r += 1

66 grpnr += 1

Listing A.4 – Create the directory structure for one run in the veri�cation

conversation tests

Bibliography

[1] “ITU-T Recommendation G.114: ONE-WAY TRANSMISSION TIME,” ITU-T

Telecommunication Standardization Sector, 1993.

[2] “ITU-T Recommendation G.810: Transmission Systems and Media,” ITU-T

Telecommunication Sector, Aug. 1996.

[3] “ITU-T Recommendation P.800: Methods for subjective determination of trans-

mission quality,” ITU-T Telecommunication Standardization Sector, Aug. 1996.

[4] “ITU-T Recommendation P.810: Modulated noise reference unit (MNRU),”

ITU-T Telecommunication Standardization Sector, 1996.

[5] “ITU-T Recommendation P.830: Subjective performance assessment of

telephone-band and wideband digital codecs,” ITU-T Telecommunication Stan-

dardization Sector, 1996.

[6] “ITU-R Recommentation BS.1116: Methods for the subjective assessment of

small impairments in audio systems including multichannel sound systems,”

ITU-R Radio Communication Sector, 1997.

[7] “ITU-T Recommendation G.107: The E-model, a computational model for use

in transmission planning,” ITU-T Telecommunication Standardization Sector,

2000.

[8] “ITU-T Recommendation G.114: One-way transmission time,” ITU-T Telecom-

munication Standardization Sector, 2000.

[9] “ITU-T Recommendation P.862: Perceptual evaluation of speech quality

(PESQ): An objective method for end-to-end speech quality assessment of

narrow-band telephone networks and speech codecs,” ITU-T Telecommunica-

tion Standardization Sector, Feb. 2001.

[10] “ITU-R Recommentation BS.1284: General methods for the subjective assess-

ment of sound quality,” ITU-R Radio Communication Sector, 2003.

133

134 Bibliography

[11] “ITU-R Recommentation BS.1534: Method for the subjective assessment of

intermediate quality levels of coding systems,” ITU-R Radio Communication

Sector, 2003.

[12] “ITU-T Recommendation G.114: One-way transmission time,” ITU-T Telecom-

munication Standardization Sector, 2003.

[13] “ITU-T Recommendation P.800.1: Mean Opinion Score (MOS) terminology,”

ITU-T Telecommunication Standardization Sector, Jul. 2006.

[14] “ITU-T Recommendation G.1050: Network model for evaluating multimedia

transmission performance over Internet Protocol,” ITU-T Telecommunication

Standardization Sector, Nov. 2007.

[15] “ITU-T Recommendation P.805: Subjective evaluation of conversational qual-

ity,” ITU-T Telecommunication Standardization Sector, Apr. 2007.

[16] “ISO/ IEC 14496-3 – MPEG-4 Standard: Information technology – Coding

of audiovisual objects – Part 3: Audio,” International Organization for Stan-

dardization, Geneva, Switzerland International Electrotechnical Commission,

2008.

[17] “ITU-T Recommendation G191: Software tools for speech and audio cod-

ing standardization,” ITU-T Telecommunication Standardization Sector, Mar.

2010.

[18] “ITU-T Recommendation G.720.1: Generic Sound Activity Detector,” ITU-T

Telecommunication Standardization Sector, Jan. 2010.

[19] “ITU-T Recommendation P.56: Objective measurement of active speech level,”

ITU-T Telecommunication Standardization Sector, Dec. 2011.

[20] Logic Pro 9 User Manual, Apple Inc., 2009.

[21] L. ATZORI and M. L. LOBINA, “Speech playout buffering based on a simpli�ed

version of the ITU-T E-model,” Signal Processing Letters, IEEE, vol. 11, no. 3,

pp. 382–385, Mar. 2004.

[22] K. BACKHAUS, B. ERICHSON, W. PLINKE, and R. WEIBER, Multivariate Anal-

ysemethoden: Eine anwendungsorientierte Einführung, 13th ed. Springer

Berlin Heidelberg, 2010.

[23] P. T. BRADY, “A Statistical Analysis of On-Off Patterns in 16 Conversations,”The

Bell System Technical Journal, vol. 47, pp. 73–91, 1968.

[24] L. BREIMAN, J. FRIEDMAN, and C. J. STONE, Classi�cation and Regression Trees,

1st ed. Chapman and Hall/ CRC, 1984.

Bibliography 135

[25] F. CHARPENTIER and M. STELLA, “Diphone synthesis using an overlap-add

technique for speech waveforms concatenation,” inInternational Conference

on Acoustics, Speech, and Signal Processing, ICASSP, Tokyo, Japan, Apr. 1986,

pp. 2015–2018.

[26] R. G. COLE and J. H. ROSENBLUTH, “Voice over IP performance monitoring,”

ACM SIGCOMM Computer Communication Review, vol. 31, no. 2, pp. 9–24,

Apr. 2001.

[27] Y. CROISSANT, mlogit: multinomial logit model, 2011.

[28] M. DIETZ, L. LILJERYD, K. KJORLING, and O. KUNZ, “Spectral Band Replication, a

Novel Approach in Audio Coding,” in 112th AES Convention, Munich, Germany,

Jan. 2002.

[29] S. DIMOLISTAS and A. PHIBBS, “Experimental Quanti�cation of Voice Trans-

mission Quality of Mobile-Satellite Personal Communications Systems,”IEEE

Journal on Selected Areas in Communications, vol. 13, no. 2, pp. 1–7, 1995.

[30] S. DÖHLA, “Dynamische Anpassung der Abspielgeschwindigkeit für die Über-

tragung audiovisueller Inhalte in Datennetzen,” Master's thesis, Friedrich-

Alexander-Universität Erlangen Nürnberg, 2004.

[31] T. A. L. ERICSSON, F. IIS, H. T. C. LTD, N. CORPORATION, NTT, N. DOCOMO, INC,

ORANGE, P. CORPORATION, Q. INCORPORATED, S. E. CO, LTD, VOICEAGE, and

Z. CORPORATION, “High Level Technical Description of the Jointly Developed

EVS Candidate Codec,” Seoul, South Korea, Tech. Rep. 77th TSG-SA4 Meeting,

Jan. 2014.

[32] R. A. FISHER, The Design of Experiments. Macmillan Pub Co, 1971.

[33] J. L. FLANAGAN, D. I. S. MEINHART, R. M. GOLDEN, and M. M. SONDHI,

“Phase Vocoder,”Journal of the Acoustical Society of America, vol. 38, no. 5, pp.

939–940, 1965.

[34] P. R. A. R. FLORIAN HAMMER, “Elements of Interactivity in Telephone Conversa-

tions,” in Interspeech 2004, Jeju Island, Korea, 2004, pp. 1741–1744.

[35] M. S. E. G. K. FRANZ BRAUER, “Subjective Evaluation of Conversational

Multimedia Quality in IP Networks,” pp. 1–5, Jul. 2008.

[36] W. H. GREENE, Econometric analysis. Hydro Recordings, 2003.

[37] M. GUÉGUIN, G. LE BOQUIN-JEANNÈS, G. FAUCON, and V. BARRIAC, “TOWARDS AN

OBJECTIVE MODEL OF THE CONVERSATIONAL SPEECH QUALITY,”ICASSP,

pp. 1–4, 2006.

136 Bibliography

[38] Z. HAISHAN, L. VILLEMOES, P. EKSTRAND, S. DISCH, F. NAGEL, S. WILDE, C. K.

SENG, and T. NORIMATSU, “QMF Based Harmonic Spectral Band Replication,”

131st AES Convention, pp. 1–9, Oct. 2011.

[39] F. HAMMER, P. REICHL, and A. RAAKE, “The well-tempered conversation: interac-

tivity, delay and perceptual VoIP quality,” in IEEE International Conference on

Communications (ICC), May 2005, pp. 244–249.

[40] F. HAMMER, “Quality aspects of packet-based interactive speech communi-

cation,” Ph.D. dissertation, Signal Processing and Speech Communication

Laboratory, Faculty of Electrical and Information Engineering, University of

Technology Graz, Graz, Austria, Jun. 2006.

[41] C. HAMON, E. MOULINE, and F. CHARPENTIER, “A diphone synthesis system based

on time-domain prosodic modi�cations of speech,” in International Conference

on Acoustics, Speech, and Signal Processing, ICASSP, Glasgow, Scotland, May

1989, pp. 238–241.

[42] T. R. HENDERSON, S. ROY, S. FLOYD, and G. F. RILEY, “ns-3 project goals,”

in WNS2 '06: Proceeding from the 2006 workshop on ns-2: the IP network

simulator. New York, NY, USA: ACM, 2006, p. 13.

[43] T. HOTHORN, K. HORNIK, and A. ZEILEIS, “Unbiased Recursive Partitioning: A

Conditional Inference Framework,” Journal of Computational and Graphical

Statistics, vol. 15, no. 3, pp. 651–674, Sep. 2006.

[44] X. HUANG, A. ACERO, and H. W. HON, Spoken Language Processing: A guide to

Theory, Algorithm, and System Development. Prentice Hall, Jan. 2001.

[45] J. ISSING, F. DRESSLER, N. FÄRBER, and S. REUSCHL, “Flexible Playout Adaptation

for Low Delay AAC RTP Communication,” inThe Third International Conference

on COMmunication Systems and NETworkS (COMSNETS 2011), Bangalore,

India, Jan. 2011.

[46] J. ISSING and N. FÄRBER, “Subjective Audio Quality Impairments of Playout

Adaptation with AAC RTP Communication,” in International Communications

Quality and Reliability (CQR) Workshop, Naples, Florida, USA, May 2011.

[47] J. ISSINGand N. FÄRBER, “Conversational Quality as a Function of Delay and

Interactivity,” in SoftCOM 2012, Split, Croatia, Sep. 2012.

[48] J. ISSING, N. FÄRBER, and R. GERMAN, “Advanced Time Shrinking Using a Drop

Classi�er Based on Codec Features,” inInterspeech 2015, Dresden, Germany,

Sep. 2015.

Bibliography 137

[49] J. ISSING, N. FÄRBER, and R. GERMAN, “Interactivity-Aware Playout Adaptation,”

in Interspeech 2015, Dresden, Germany, Sep. 2015.

[50] J. ISSING, N. FÄRBER, and M. LUTZKY, “Adaptive Playout for VoIP Based on the

Enhanced Low Delay AAC Audio Codec,” in124th AES Convention. Amster-

dam, NL: Audio Engineering Society, May 2008.

[51] J. ISSING, S. REUSCHL, N. FÄRBER, and R. GERMAN, “RTCP based Bit-Rate

Adaptation for AAC Audio Communication,” in Proceedings of NEM Summit

2009, St.Malo, 2009, p. 6.

[52] J. JAFFE, L. CASSOTTA, and S. FELDSTEIN, “Markovian Model of Time Patterns

of Speech,”Science, vol. 144, no. 3620, pp. 884–886, May 1964.

[53] P. KABAL, “TSP Speech Database,” Telecommunications & Signal Processing Lab-

oratory Department of Electrical & Computer Engineering, McGill University,

Tech. Rep., Sep. 2002.

[54] P. KAMPSTRA, “Beanplot: A boxplot alternative for visual comparison of distri-

butions,” Journal of Statistical Software, vol. 28, Nov. 2008.

[55] N. KITAWAKI and K. ITOH, “Pure delay effects on speech quality in telecommu-

nications,” in IEEE Journal on Selected Areas in Communications, May 1991,

pp. 586–593.

[56] N. KOUZNETSOVand L. THORPE, “On the Challenge of Voice Quality,” in Proceed-

ings of the 38th International AES Conference on Sound Quality Evaluation, Jun.

2010.

[57] Y. J. LIANG, N. FAERBER, and B. GIROD, “Adaptive playout scheduling and loss

concealment for voice communication over IP networks,” in Adaptive playout

scheduling and loss concealment for voice communication over IP networks, 2003,

pp. 532–543.

[58] A. P. MARKOPOULOU, F. A. TOBAGI, and M. J. KARAM, “Assessing the Quality of

Voice Communications over Internet Backbones,” inMultiple values selected,

2003, pp. 747–760.

[59] D. MCFADDEN, “Conditional logit analysis of qualitative choice behavior,” Insti-

tute of Urban and Regional Development, University of California, 1973.

[60] D. MCFADDEN, The measurement of urban travel demand, ser. Working paper.

Institute of Urban & Regional Development, University of California, 1974.

[61] R. MCGILL, J. W. TUKEY, and W. A. LARSEN, “Variations of Boxplots,” The

American Statistician, vol. 32, no. 1, pp. 12–16, 1978.

138 Bibliography

[62] D. L. MILLS, “Network Time Protocol (NTP),” Tech. Rep., Sep. 1985.

[63] S. B. MOON, P. SKELLY, and D. TOWSLEY, “Estimation and removal of clock skew

from network delay measurements,” in IEEE INFOCOM '99. Conference on

Computer Communications. Proceedings. Eighteenth Annual Joint Conference

of the IEEE Computer and Communications Societies. The Future is Now (Cat.

No.99CH36320). IEEE, 1999, pp. 227–234 vol.1.

[64] S. B. MOON, J. KUROSE, and D. TOWSLEY, “Packet audio playout delay adjust-

ment: performance bounds and algorithms,” in Packet audio playout delay

adjustment: performance bounds and algorithms. Secaucus, NJ, USA: Springer-

Verlag New York, Inc., 1998, pp. 17–28.

[65] M. NARBUTT and M. DAVIS, “Assessing the quality of VoIP transmission affected

by playout buffer scheme,” in 4th international Conference on Measurement of

Speech and Audio Quality in Networks (MESAQIN), Prague, Czech Republic, Jun.

2005.

[66] M. NARBUTT, A. KELLY, L. MURPHY, and P. PERRY, “Adaptive VoIP Playout

Scheduling: Assessing User Satisfaction,”Internet Computing, IEEE, vol. 9,

no. 4, pp. 28–34, Jul. 2005.

[67] M. NEUENDORF, P. GOURNAY, M. MULTRUS, J. LECOMTE, B. BESSETTE, R. GEIGER,

S. BAYER, G. FUCHS, J. HILPERT, N. RETTELBACH, R. SALAMI, G. SCHULLER,

R. LEFEBVRE, and B. GRILL, “Uni�ed speech and audio coding scheme for high

quality at low bitrates,” in International Conference on Acoustics, Speech, and

Signal Processing, ICASSP, Taipei, Taiwan, Apr. 2009, pp. 1–4.

[68] M. S. NIKULIN. (2011, Feb.) Student test. [Online] . Available: http: // www.

encyclopediaofmath.org/ index.php?title= Student_test&oldid= 17068

[69] V. PAXSON, “On calibrating measurements of packet transit times,” ACM SIG-

METRICS Performance Evaluation Review, 1998.

[70] C. PERKINS, O. HODSON, and V. HARDMAN, “A survey of packet loss recovery

techniques for streaming audio,” IEEE Network, vol. 12, no. 5, pp. 40–48,

1998.

[71] C. PERKINSand M. WESTERLUND, “Multiplexing RTP Data and Control Packets

on a Single Port,” Tech. Rep., Apr. 2010.

[72] H. PUCHA, Y. ZHANG, M. Z. MAO, and C. Y. HU, “Understanding network delay

changes caused by routing events,” inSIGMETRICS '07: Proceedings of the

2007 ACM SIGMETRICS international conference on Measurement and modeling

of computer systems. New York, NY, USA: ACM Press, 2007, pp. 73–84.

Bibliography 139

[73] J. RAMIREZ, J. M. GÓRRIZ, and J. C. SEGURA, “Voice activity detection. funda-

mentals and speech recognition system robustness,”Robust Speech Recognition

and Understanding, pp. 1–22, 2007.

[74] R. RAMJEE, J. KUROSE, D. TOWSLEY, and H. SCHULZRINNE, “Adaptive Playout

Mechanisms for Packetized Audio Applications in Wide-Area Networks,” in

INFOCOM '94. Networking for Global Communications, Toronto, Canada, Jun.

1994, pp. 680–688.

[75] J. ROSENBERG, H. SCHULZRINNE, G. CAMARILLO, A. JOHNSTON, J. PETERSON,

R. SPARKS, M. HANDLEY, and E. SCHOOLER, “SIP: Session Initiation Protocol,”

Tech. Rep., Jun. 2002.

[76] B. SAT and B. W. WAH, “Playout scheduling and loss-concealments in voip for

optimizing conversational voice communication quality,” in ACM Multimedia,

Augsburg, Germany, 2007, pp. 137–146.

[77] N. SCHINKEL-BIELEFELD, N. LOTZE, and F. NAGEL, “Does Understanding of Test

Items Help or Hinder Subjective Assessment of Basic Audio Quality?”133rd

AES Convention, Oct. 2012.

[78] M. SCHNELL, R. GEIGER, M. SCHMIDT, M. MULTRUS, M. MELLAR, J. HERRE, and

G. SCHULLER, “Low Delay Filterbanks for Enhanced Low Delay Audio Coding,”

Applications of Signal Processing to Audio and Acoustics, 2007 IEEE Workshop

on, pp. 235–238, 2007.

[79] H. SCHULZRINNE, S. CASNER, R. FREDERICK, and V. JACOBSON, “RTP: A Transport

Protocol for Real-Time Applications,” Tech. Rep., Jul. 2003.

[80] H. SCHULZRINNE, “Voice communication across the Internet: a network voice

terminal,” Tech. Rep., 1992.

[81] N. SHIVAKUMAR, C. J. SREENAN, B. NARENDRAN, and P. AGRAWAL, “The Concord

algorithm for synchronization of networked multimedia streams,” in Proceed-

ings of the International Conference on Multimedia Computing and Systems,

1995, pp. 31–40.

[82] T. STIVERS, N. J. ENFIELD, P. BROWN, C. ENGLERT, M. HAYASHI, T. HEINEMANN,

G. HOYMANN, F. ROSSANO, J. P. DE RUITER, and K. E. YOON, “Universals and

cultural variation in turn-taking in conversation,” Proceedings of the National

Academy of Sciences, vol. 106, no. 26, pp. 10 587–10 592, 2009.

[83] H. STRASSERand C. WEBER, “On the Asymptotic Theory of Permutation Statis-

tics,” Mathematical Methods of Statistics, vol. 8, pp. 220–250, 1999.

140 Bibliography

[84] L. SUN and E. IFEACHOR, “New models for perceived voice quality prediction

and their applications in playout buffer optimization for VoIP networks,” in

Communications, 2004 IEEE International Conference on, 2004, pp. 1478–1483.

[85] A. TAKAHASHI, “Opinion Model for Estimating Conversational Quality of VoIP,”

ICASSP, vol. 3, pp. 1–4, 2004.

[86] R. C. TEAM, R: A Language and Environment for Statistical Computing, 2012.

[87] A. VARGA, “The OMNeT++ Discrete Event Simulation System,” inEuropean

Simulation Multiconference (ESM 2001), Prague, Czech Republic, Jun. 2001.

[88] W. VERHELSTand M. ROELANDS, “An overlap-add technique based on waveform

similarity (WSOLA) for high quality time-scale modi�cation of speech,” in

Multiple values selected. Minneapolis, Minnesota, USA: IEEE, Apr. 1993, pp.

554–557.

[89] J. WANG, F. YANG, Z. XIE, and S. WAN, “Evaluation on Perceptual Audiovisual

Delay using Average Talkspurts and Delay,”CISP, pp. 125–128, Oct. 2010.

[90] D. ZWILLINGER, CRC Standard Mathematical Tables and Formulae. Chapman

and Hall/ CRC, 2012.

Glossary

ACR ACR stands for Absolute Category Rating and is de�ned in the P.800 recom-

mendation of the International Telecommunication Union (ITU). It de�nes a

methodology to assess audio quality impairments using absolute values, i.e.,

using a Mean Opinion Score (MOS). 43

AIC The Akaike information criterion is a measure of the relative goodness of �t

of a statistical model. It can be used to assess the trade off between bias and

variance in model construction, which can also be considered as accuracy and

complexity of the model. 84

AIR The Active Interruption Rate is a special case of a conversational interruption

when using a telecommunication system. The interruption is classi�ed active, if

the interrupting person hears the other person talking and then (intentionally)

interrupt. The counterpart to an active interruption is a passive interruption.

63–68, 71, 72

AMR The Adaptive Multi-Rate (AMR or AMR-NB) audio codec is a patented audio

data compression scheme optimized for speech coding. AMR was adopted as

the standard speech codec by 3GPP in October 1999 and is now widely used

in GSM and UMTS. It uses link adaptation to select from one of eight different

bit rates based on link conditions. 53

AP Adaptive Playout is a class of techniques to adapt media playout to variable

timing conditions in the input. AP is compensating network jitter by managing

the size of a packet buffer in the receiver and is introduced in Chapter 2, which

also covers a novel adaptation mechanism for AP exploiting the structure of

AAC-ELD. In general, AP comprises techniques to estimate network timing

effects as well as time scale modi�cation of rather continuous media streams

like audio. 4, 7, 12

Beanplot A beanplot is an alternative to the boxplot [61] for visual comparison of

univariate data between groups. In a beanplot, the individual observations

141

142 Glossary

are shown as small lines in a one-dimensional scatter plot. Next to that, the

estimated density of the distributions is visible and the average is shown. 62

Boxplot A Boxplot is a convenient way for visual comparison of univariate data

between groups. For each group, a box is drawn from the �rst quartile to the

third quartile, and the median is marked with a thick line. Whiskers extend

from the edges of the box towards the minimum and maximum of the data

set, but no further than 1.5 times the interquartile range. Data points outside

the range of box and whiskers are considered outliers and drawn separately.

66

CI Conversational Interactivity is an objective measure for the interactivity in a

human conversation. It is affected by the conversation topic, channel delay,

and the personalities of the interlocutors. It manifests in speaker alternations

like interruptions or usual turn-taking. 68, 84, 85, 88, 94, 98–102, 108, 109,

117

CQ Conversational Quality is the quality perceived by the user of a telecommuni-

cation systems and includes codec quality, time scale modi�cation artifacts

and the loss of interactivity due to high end-to-end delay. viii, ix, 49–54, 56,

59–63, 68, 70, 72–77, 79–81, 83–85, 87, 92, 96, 98–100, 103, 105, 108, 117,

119, 120

CS A Communication System is refered to as a complete end-to-end setup of Voice

over IP clients including sender and receiver modules and can be used for

telecommunication. ix, 5, 7, 8, 79–82, 88, 89, 100, 102–104, 107–118, 120

Delay Packet Delay or Delay for short is the end-to-end delay a packet needs to

travel from the sender to the receiver through the network. 49

DFT The Discrete Fourier Transform (DFT) converts a �nite list of equally-spaced

samples of a function into the list of coef�cients of a �nite combination of

complex sinusoids, ordered by their frequencies, that has those same sample

values. It can be said to convert the sampled function from its original domain

(often time or position along a line) to the frequency domain. Common imple-

mentations usually employ ef�cient fast Fourier transform (FFT) algorithms

so much so that the terms “FFT” and “DFT” are often used interchangeably. 10

�ight The Flight Test is a short conversation test and is de�ned by the ITU-T

Recommendation P.805. One test person is appointed travel agent and the

other test person is the customer, who wants to book a �ight to New York. 57

Glossary 143

IMBE Improved Multiband Excitation (or Advanced Multiband Excitation) Vocoder

is a codebook-based vocoder that operates at bitrates of between 2 and

9.6 kbit / s, and at a sampling rate of 8 kHz in 20 ms frames. 52

IR The Interruption Rate measures the number of interruptions of a conversation

per minute over a telecommunication system. An interruption in a conversa-

tion is de�ned to be the transition of one person speaking to the other person

speaking by double talk (both persons speaking). 63, 64, 66, 67, 71, 72

ITU The International Telecommunication Union (Union internationale des télé-

communications, in French), previously the International Telegraph Union, is

the specialized agency of the United Nations which is responsible for informa-

tion and communication technologies. 50

Jitter Packet Jitter or Jitter for short is given by the variations of packet delay, e.g.

due to network effects. Jitter can be caused by path changes, inter-domain

routing, queuing devices, traf�c shapers, etc. 49

LAD Level Activity Detection is the class of simpli�ed Voice Activity Detection

algorithms, where voice activity is detected using a �xed energy threshold.

The detection can also be done on a sub-band of the original audio signal. 64

MNL In statistical, a multinomial logit (MNL) model, also known as multinomial

logistic regression, is a regression model which generalizes logistic regression

by allowing more than two discrete outcomes. For instance, it can be used to

predict the choice of consumers from several different products based on their

income, gender, or social context. 74

MOS Mean opinion score is a test that has been used for decades in telephony

networks to obtain the human user's view of the quality of the network. His-

torically, and implied by the word Opinion in its name, MOS was a subjective

measurement where listeners would sit in a “quiet room” and score call quality

as they perceived it. 24, 43–45, 47, 53, 59, 62, 63, 69, 70, 74–76, 79, 80, 82,

87, 98, 107, 109, 111, 114–120, 141, 143

MUSHRA MUSHRA stands for MUlti Stimulus test with Hidden Reference and

Anchor and is the name for a listening test standard also known as BS.1534.

The test exhibits different items to the test subject: the reference (original

signal), the items under test, one or more anchors, i.e., a low-pass version

of the original item, and the hidden reference. Items are rated using integer

values from 0 to 100, i.e., the MUSHRA score, which is compatible toMOS

using linear transformation. 26

144 Glossary

PCM Pulse-Code Modulation is a method used to digitally represent sampled

analog signals. 52

PIR The Passive Interuption Rate is a special case of a conversational interruption

when using a telecommunication system. The interruption is classi�ed passive,

if the interrupting person actually did not intend to interrupt the speaker. This

is caused by high end-to-end delay, where the speech signal is delayed by the

transmission channel. If both speakers start talking within the interval of the

transmission delay, they inevitable will interrupt each other unintentionally.

63–68, 71, 72

PSOLA Pitch Synchronous Overlap and Add is a digital signal processing tech-

nique used to modify the pitch and duration of a speech signal. To change

the duration of the signal, the pitch segments are repeated multiple times (to

increase the duration) or some are eliminated (to decrease the duration). The

segments are then combined using the overlap add technique. 11, 31, 32, 145

PSTN The Public Switched Telephone Network is the network of the world's

public circuit-switched telephone networks. It consists of telephone lines, �ber

optic cables, microwave transmission links, cellular networks, communications

satellites, and undersea telephone cables, all inter-connected by switching

centers, thus allowing any telephone in the world to communicate with any

other. 49

R-square In statistics, the coef�cient of determination R 2 is used in the context

of statistical models whose main purpose is the prediction of future outcomes

on the basis of other related information. It is the proportion of variability

in a data set that is accounted for by the statistical model.[1] It provides a

measure of how well future outcomes are likely to be predicted by the model.

75

rnv The Random Number Veri�cation test is a conversation test featuring high

interactivity, where two test subjects verify random numbers in a matrix row-

by-row by each test subject by turns. 56–58, 63, 65, 67, 68, 71, 73, 101–103,

105, 108–110, 112, 114, 115, 117

SAR The Speaker Alternation Rate is a metric for conversational interactivity and

is given in number of speaker alternations per minute. A speaker alternation

is de�ned to be the transition of one person speaking to the other person

speaking using either mutual silence or double talk in a conversation. ix,

54–56, 63–77, 83–87, 92–100, 108–111, 119, 120, 124, 130

Glossary 145

SOLA Similarity / Synchronous Overlap and Add are a class of techniques in the

subject of digital signal processing that modify the duration of digital signals

based on speci�c predicates, like pitch synchronosity or waveform similarity.

10, 11

text The Text Test is a conversation test featuring mid to low interactivity, where

two test subjects proof read one paragraph of a text. One test subject is chosen

as the reader and the other test subject listens and veri�es his copy of the

paragraph. 56

TSM Time Scale Modi�cation is a class of techniques used to modify the speed

and scale of audio or speech signals without changing the pitch. Popular

algorithms are the Phase Vocoder or similarity overlap add techniques such as

WSOLAor PSOLA. TSM is often used for adjusting the playout buffer size on

the receiver's end with real-time communication. 8, 11, 12, 14, 21, 22, 31, 32

VoIP Voice over IP commonly refers to the communication protocols, technologies,

methodologies, and transmission techniques involved in the delivery of voice

communications and multimedia sessions over Internet Protocol (IP) networks,

such as the Internet. 3, 4, 7, 9, 49, 53, 80, 119

VSELP Vector-Sum Excited Linear Prediction is a speech coding method used in

several cellular standards. The VSELP algorithm is an analysis-by-synthesis

coding technique and belongs to the class of speech coding algorithms known

as CELP (Code Excited Linear Prediction). 52

WSOLA Waveform Similarity Overlap and Add is a digital signal processing tech-

nique used to modify the duration of a speech signal. The position to overlap

the segments are found basedon waveform similarity. 11, 12, 31, 32, 44–46,

81, 145

	Abstract
	Kurzfassung
	1 Introduction
	2 Adaptive Playout
	2.1 Related Work
	2.1.1 Phase Vocoder
	2.1.2 Unified Speech and Audio Coding Phase Vocoder
	2.1.3 Synchronous Overlap-Add

	2.2 Jitter Estimation
	2.2.1 Packet Delay Metrics
	2.2.2 Existing Jitter Estimation Algorithms
	2.2.2.1 Algorithm 1
	2.2.2.2 Algorithm 2
	2.2.2.3 Standard Deviation
	2.2.2.4 Percentile Algorithm
	2.2.2.5 Evaluation of Jitter Estimation Algorithms

	2.3 AAC-Based Adaptive Playout
	2.3.1 Review of Advanced Audio Coding
	2.3.2 AAC Time Stretching
	2.3.3 AAC Time Shrinking
	2.3.4 Network Simulation Model
	2.3.5 Listening Tests
	2.3.5.1 Time Stretching Test Results
	2.3.5.2 Time Shrinking Test Results

	2.4 Advanced Time Shrinking
	2.4.1 Listening Test of Time Scaling Algorithms
	2.4.2 Design of a Classifier for Frame Dropping
	2.4.3 Audio Signal Features
	2.4.3.1 Energy
	2.4.3.2 Normalized Zero Crossing Rate
	2.4.3.3 Pearson Product-Moment Correlation Coefficient
	2.4.3.4 Normalized Pitch-Lag
	2.4.3.5 Normalized Periodicity
	2.4.3.6 Feature Analysis

	2.4.4 Classification Based on Decision Trees
	2.4.4.1 Low Delay USAC classifier

	2.4.5 Subjective Evaluation
	2.4.5.1 Verification Test Design
	2.4.5.2 Verification Test Results

	2.5 Chapter Summary

	3 Impact of Delay and Interactivity on Conversational Quality
	3.1 Related work
	3.1.1 Impact of delay
	3.1.2 Metrics for Interactivity

	3.2 Conversation Test Design
	3.3 Conversation Test Results
	3.3.1 Composition of Conversational QualityCQ
	3.3.2 Impact of Delay on Conversational QualityCQ
	3.3.3 Feature Extraction
	3.3.4 Metrics for Interactivity
	3.3.5 Graphical Evaluation of the Impact of Delay and Interactivity on Conversational Quality
	3.3.5.1 Impact of Delay on Conversation Metrics

	3.3.6 Statistical Evaluation of the Impact of Delay and Interactivity on Conversational Quality

	3.4 Chapter Summary

	4 Interactivity-Aware Playout Adaptation
	4.1 Related Work
	4.2 A Model for Conversational Quality
	4.2.1 Conversational QualityCQ as a Function of Late Loss
	4.2.2 Conversational QualityCQ as a Function of Delay and Interactivity
	4.2.3 Combined Model

	4.3 Design of the Communication System
	4.3.1 Network Simulation
	4.3.2 Round-Trip-Time Estimation
	4.3.3 Silence Detector
	4.3.4 Voice Activity Detection
	4.3.5 SARSAR Detection
	4.3.6 Buffer Control

	4.4 Design of the Verification Tests
	4.5 Verification Test Results
	4.5.1 Composition of Conversational QualityCQ 2
	4.5.2 Impact of Conversation System on End-to-End Delay
	4.5.3 Impact of Conversation System on User Perception
	4.5.3.1 Dependency on SARSAR
	4.5.3.2 Graphical Evaluation towards the Preferred Communication SystemCS
	4.5.3.3 Statistical Evaluation towards the Preferred Communication SystemCS
	4.5.3.4 Graphical Quality Analysis of the Communication SystemCS
	4.5.3.5 Statistical Quality Analysis of the Communication SystemCS

	4.6 Chapter Summary

	5 Conclusion
	A Appendix
	A.1 Source Code Listings
	A.1.1 AAC-ELD Dropping Classifier
	A.1.2 Low Delay USAC Classfier
	A.1.3 Real-Time SARSAR estimation
	A.1.4 Create Verification Test Directory Structure

	Bibliography

