Charge transfer interactions in self-assembled single walled carbon nanotubes/Dawson–Wells polyoxometalate hybrids†‡

Concha Bosch-Navarro, a Benjamin Matt, b Guillaume Izzet, b Carlos Romero-Nieto,c Konstantin Dirian, c Andrés Raya, d Sergio I. Molina, d Anna Proust, *b Dirk M. Guldi, *c Carlos Martí-Gastaldo, *a and Eugenio Coronado, *a

We demonstrate the success in self-assembling pyrene-modified Dawson–Wells-type polyoxometalates (POMs) with single walled carbon nanotubes (SWCNTs) by means of π–π interactions. In this context, the immobilization of POMs onto SWCNTs is corroborated by aberration-corrected high-resolution electron microscopy, thermogravimetric analysis, and Raman spectroscopy. From steady-state and time-resolved photophysical techniques we derived evidence for mutual interactions between SWCNTs and POMs in the excited states. The latter are the inception to a charge transfer from the SWCNTs to the POMs. Our results corroborate the suitability of POM–SWCNTs assemblies for photoactive molecular devices.

Introduction

Tailoring hybrid nanostructures offers substantial advantages over the use of “classic” bulk solids as their use as building-blocks may permit downscaling of the costs associated with more conventional technologies. Moreover, nanostructure design enables integrating molecular and bulk electronic structures into sophisticated architectures with variable degrees of complexity. The latter can be processed more easily and allows fine-tuning of the chemical and physical properties that arise at the nanoscale. In the context of nanoelectronics, single walled carbon nanotubes (SWCNTs) have emerged as ideal one-dimensional wires on account of their unique electronic features, large specific surface areas, high mechanical strength, and remarkable chemical robustness. Hence, they have been implemented into practical devices in the areas of spintronics, optoelectronics, energy storage, field-effect transistors (FETs) or sensors.

Polyoxometalates (POMs) are an archetypical family of inorganic polynuclear metal-oxo nanoclusters. Their unmatched structural versatilities provide accessible chemical means to modulate their electronic behavior. This results in a rich landscape of magnetic, catalytic, and redox properties, which, alongside their chemical robustness, are currently attracting particular interest in areas like molecular magnetism, molecular spintronics, and water oxidation catalysis.

This interest has now evolved into the creation of SWCNT–POM hybrid architectures by immobilizing electronically active POMs onto the sidewalls of carbon nanotubes by means of either covalent or non-covalent interactions. For example, Chen et al. reported the grafting of the Keggin-type H3PMo12O40 onto SWCNTs and the use of the resulting assemblies as a catalyst support for the dispersion of electrocatalytic nanoparticles. Mallah et al. succeeded in isolating magnetic hybrids by incorporating magnetic POMs like Fe4(H2O)2(FeW9O34)2[As2W20O68Co(H2O)]8– or Fe4(H2O)2(FeW9O34)2[As2W20O68Co(H2O)]8– and suggested that the magnetic response of the clusters was retained after their grafting. More recent reports illustrate the potential benefits of these assemblies in catalysis or molecular cluster batteries. Whilst these precedents solely explored simple chemisorption or electrostatic trapping of the POMs to immobilize them on the surface of the chemically unmodified nanotubes, there are also abundant examples of organic–inorganic POM-based hybrids assembled from covalent post-functionalization reactions of interest in artificial photosynthesis, molecular self-healing or molecular electronics. The covalent approach renders stronger interactions between the organic and the inorganic...
components besides better control over the structure of the hybrids.20

Although covalent or electrostatic interactions provide strong SWCNT–POM coupling, they also affect the electronic properties of the nanotubes as a result of the introduction of defects to the original sp² structure.21 Supramolecular π–π grafting affords a strong contact within the carbon-based hybrids, whilst leaving the electronic properties of SWCNTs intact, featuring as the best choice for the fabrication of photoactive assemblies. In particular, pyrene (pyr) and pyr derivatives enable strong interactions within carbon-based hybrids without affecting the electronic properties of SWCNTs, including ballistic conductance and optical transitions. Previous studies have demonstrated the versatility of this polyaromatic hydrocarbon to facilitate the grafting of a wide variety of molecular building blocks like redox-active transition metal complexes,23 single molecule magnets,23 phthalocyanines,24 quantum dots,25 and even DNA to the sidewalls of SWCNTs,26

Built upon these considerations, the use of POMs derivatized with pyr as anchoring groups could give rise to stable hybrids, whose stability might be further increased by a nanotweezer-like geometry (i.e. when two or more aromatic units are involved in the binding with the SWCNTs).27 The strong coupling between pyr and the nanotubes’ sidewalls is also favorable to study the electronic communication within the hybrid. However, non-covalent functionalization of SWCNTs with POMs has been mostly unexplored to date – only two examples have been reported28 – likely due to the intrinsic synthetic difficulties to chemically derivatize the POM’s periphery. Among the wide array of available POMs, we targeted Dawson–Wells polyoxometalates, [M₁₃O₆₂X₆]²⁻,29 on the basis of their chemical versatility. The latter permits modification of the inorganic framework to produce non-classical or lacunary Dawson–Wells POMs30 as well as more complex multifunctional materials and hybrids.20

In this work, we report the preparation, characterization and electronic communication in photoactive SWCNT–POM hybrids, which incorporate Dawson–Wells-type POMs bearing pendant pyrenes (POM-pyr; Fig. 1) to enable their grafting onto SWCNTs via π–π interactions. POM-pyr was designed to feature a nanotweezers-like geometry that reinforces the coupling between the two anchoring pyrenes and SWCNTs to maximize the stability of the resulting hybrids.27

Our photophysical investigations suggest that the use of fully conjugated organic moieties grafted to the POMs is decisive to trigger an efficient electronic communication between the different constituents, with SWCNTs and POMs acting as electron donors and acceptors, respectively. Combination of these features with the ability of POMs to undergo multiple reductions renders the described SWCNT–POM hybrids as versatile electron reservoirs for catalysis.

Results and discussion

Synthesis of SWCNT–POM hybrids

The synthesis of the tetrabutylammonium salt of the pyrene-derivatized Dawson–Wells polyoxometalate (TBA)₅[P₂W₁₇O₆₁ [O(Si-phenyl-ethynyl-pyrene)₂]] (POM-pyr; Fig. 1) was prepared as previously described by Sonogashira cross-coupling reaction of an iodo aryl POM intermediate with an alkynyl pyrene derivative.31 The SWCNT–POM hybrids are prepared by adding POM-pyr to a fresh dispersion of commercial grade SWCNTs (i.e., HiPco® and Elicarb® SWCNTs) in DMF, which is left to settle overnight (Scheme 1). The residue is then collected by centrifugation and filtration, followed by thorough washing with DMF and acetonitrile to ensure removal of the excess of non-grafted POM-pyr.

Thermogravimetric analysis (TGA)

TGA was firstly used to confirm the functionalization of SWCNTs (Fig. SI1†). Thermal decomposition of the hybrid is

![Scheme 1 SWCNT–POM formed upon assembly of POM-pyr by means of π–π stacking of the pendant pyrenes of POM-pyr onto the sidewalls of SWCNTs. Tetrabutylammonium (TBA) cations are omitted for clarity.](Image 310x487 to 546x729)
dominated by the nanotubes’ response. Bare SWCNTs oxidize in a single, narrow process centered at 580 °C, whereas SWCNT-POM displays, on one hand, in the temperature regime up to 500 °C a thermal decomposition at 450 °C and, on the other hand, in the temperature regime beyond 500 °C a similar thermal stability to SWCNTs. As such, this behavior is governed by the presence of immobilized POM-pyr, whose organic moieties and ammonium counterions start to decompose at 350 °C for the starting TBA salt. The latter does not exert significant damage to the SWCNT structure, which is generally associated to poorer thermal stability due to the introduction of defects. According to the calculations described in Fig. SI1, the remaining mass of the SWCNT-POM hybrids with respect to the pristine SWCNTs is estimated to be close to 10% (1 POM-pyr unit per 4600 carbon atoms).

Electron microscopy and EDS (energy-dispersive X-ray spectroscopy) analysis

High Resolution Transmission Electron Microscopy (HRTEM) images were collected from samples prepared by drop casting fresh EtOH suspensions of SWCNT-POM hybrids on a carbon-coated copper grid. Fig. SI2† illustrates the presence of nanotube bundles with multiple interlocked junctions, which are mainly composed by carbon according to local EDS analysis, alongside a heterogeneous distribution of conglomerates with higher contrast composed of Si and W, consistent with the immobilization of Dawson–Wells-type POMs.

We next performed aberration-corrected High-Angle Annular Dark-Field Scanning-Transmission Electron Microscopy (HAADF-STEM) and Bright Field (BF)-STEM to determine the orientation of the POM-pyr clusters along the surface of SWCNTs (Fig. 2 and SI3†). The major advantage of HAADF-STEM over HRTEM is the non-existence of contrast reversal with specimen thickness and microscope parameters. This is due to the incoherent nature of the HAADF-STEM image process formation. Sub-Ångstrom resolution is achieved by using aberration corrected electron microscopes and, therefore, atomic columns and even individual atoms can be imaged. The intensity in HAADF images can be correlated with the atomic number (Z) of the present elements. Hence, elements with a high Z such as tungsten (W; Z = 74) show high contrast, whereas lighter elements like carbon (C; Z = 6) are hardly discernable. HAADF-STEM in Fig. 2 displays the presence of bright spots decorating the sidewalls of SWCNTs. These bright spots correspond to the projection of the structure formed by the W atoms of POMs. However, it remains difficult to establish exact atom-by-atom correlation between the observed projection and the structure of POM-pyr. The following aspects need careful consideration. On one hand, from analyzing just a single image we cannot differentiate between a bright spot that corresponds to a single atom or to two atoms, which are aligned or partially overlapped in the direction of the optical axis. On the other hand, several orientations of the SWCNT-POM hybrids may result in similar projections relative to the plane perpendicular to the incident electron beam.

Electron tomography experiments could not be performed because of the instability of the POM structure caused by the interaction with the electron beam. Besides, SWCNTs are more easily distinguished in the BF image (Fig. 2, right). The latter confirms the heterogeneous distribution of objects along SWCNTs composed of species with heavy atoms and with sizes of approximately 1.2 nm, in excellent agreement with the dimensions of the Dawson–Wells-type POMs.

X-Ray photoelectron spectroscopy (XPS)

XPS was also used to determine the presence of POM-pyr in SWCNT–POM hybrids and to rule out changes in its chemical nature upon immobilization. According to Fig. 3, the binding energies (BEs) for the W 4f signals in the XPS spectrum of SWCNT–POM hybrids agree with the data collected from a crystalline sample of POM-pyr. Both spectra display a doublet centered at ca. 35 and 38 eV, with an energy splitting of approximately 2.1 eV. These peaks originate from the spin–orbit splitting into the W 4f7/2 and W 4f5/2 levels, respectively (Table 1). In summary, these values confirm the presence of W=O bonds in both samples and confirm the presence of intact POM-pyr in SWCNT–POM hybrids.

Physicochemical properties

Upfront we tested POM-pyr and its relevant references in oxidative and reductive processes – a full account is given in ref. 16 and 31. Given that standard electrochemical measurements, like cyclic voltammetry, etc. are reported in the aforementioned papers, we focused our investigation onto
spectroelectrochemical measurements. In particular, we applied variable potentials in either the reductive or the oxidative ranges and recorded the absorption spectra in given intervals. Notably, differential spectra rather than absolute spectra are shown to illustrate the spectral changes. Thus, in POM-pyr the two first reductions (−0.73 V and −1.14 V vs. SCE) are POM centred, while the oxidation (ca. 1.3 V vs. SCE) involves pyr. In terms of differential absorption changes, applying a potential of +0.9 V vs. Ag/AgNO₃ has been shown to oxidize quasi-reversibly pyr and pyrene-1-methanol, which due to its functionalization serves as a reference to POM-pyr in the form of newly developing minima at 308, 322, and 336 nm for the earlier as well as 315, 328, and 344 nm for the latter in TBAPF₆ containing DMF solutions (either 0.1 or 0.2 M) (Fig. SI4†). These are accompanied by maxima at 360, 400, 430, and 457 nm for pyr and at 362, 375 and 396 nm for pyrene-1-methanol. In the case of POM-pyr, where the oxidation leads to irreversible changes, a bleaching of the sharp maxima at 300, 369, and 392 nm occur, which are accompanied by broad and still defined features throughout the 400–500 nm range (Fig. SI4†).

In contrast, when applying a potential of −0.8 V vs. Ag-wire as a pseudo reference electrode, discernible changes can be observed, which are related to the filling of electronic d-states, and includes a sharp and a broad maximum between 400 and 550 nm and between 600 and 1200 nm, respectively (Fig. 4). The corresponding maxima are noted at 450 and 830 nm. Upon applying a moderate positive potential (0.1 V), the aforementioned features retransform to those of the ground state. This trend corroborates previous cyclic voltammetric investigations in terms of the reversibility of the underlying process.

Insights into electronic communication between POM-pyr and SWCNTs were carefully probed by means of steady state and transient absorption assays. DMF suspensions of SWCNT–POM hybrids were initially tested by absorption spectroscopy and compared to the response of bare SWCNTs, which were suspended with sodium dodecyl benzene sulfonate (SWCNT/SDBS) in D₂O. Here, two types of SWCNTs, namely HiPco® and Elicarb® SWCNTs, stood at the forefront of the investigations. Owing, however, to the lack of notable absorption/fluorescence features for Elicarb® SWCNTs in the NIR – either in the form of SWCNT–POM hybrids or SWCNT/SDBS – we focused our investigations on HiPco SWCNTs. A close look at the absorption spectra of HiPco SWCNT–POM in DMF and HiPco SWCNT/ SDBS in D₂O reveals M₁₁, E₂₂, and E₁₁ absorption peaks at 420, 450, 510, 560, 600, 660, 740, 1010, 1190, 1325, and 1450 nm (Fig. 5).† The absence of appreciable shifts, which are also

Table 1 Binding energies (BE) extracted from the XPS spectra of POM-pyr and SWCNT–POM

<table>
<thead>
<tr>
<th>Sample</th>
<th>W 4f / BE, eV</th>
<th>W 4f₅/₂</th>
<th>W 4f₇/₂</th>
</tr>
</thead>
<tbody>
<tr>
<td>POM-pyr</td>
<td>35.43</td>
<td>37.53</td>
<td></td>
</tr>
<tr>
<td>SWCNT–POM</td>
<td>35.62</td>
<td>37.68</td>
<td></td>
</tr>
</tbody>
</table>

Fig. 3 W 4f high-resolution XPS spectra of POM-pyr (green spectrum) and SWCNT–POM (red spectrum). The dashed-lines represent the deconvolution for each sample.

Fig. 4 Differential absorption spectra (visible and near-infrared) obtained upon electrochemical reduction of POM-pyr in DMF with an applied potential of −0.8 V vs. Ag-wire as a pseudo reference electrode.

Fig. 5 Absorption spectra of SWCNT/SDBS in D₂O (black spectrum), SWCNT–POM in DMF (red spectrum), and POM-pyr in DMF (green spectrum). Inset illustrates the near-infrared part of the absorption spectra.
seen in the absence of POM-pyr, between the earlier and the latter, leads us to rule out the presence of electronic interactions in the ground state of HiPco SWCNT–POM hybrids. Previous studies have revealed red shifts of up to 30 nm.37 It is worthwhile highlighting that DMF solutions of POM-pyr present a shoulder at 350 nm and maxima at 368 and 392 nm in their absorption spectra. Similarly, the absorption spectrum of HiPco SWCNT–POM displays maxima at 350, 368 and 390 nm, which are, therefore, attributed to the presence of POM-pyr that are immobilized onto HiPco.

Next, the fluorescence features of HiPco SWCNT/SDBS and HiPco SWCNT–POM hybrids were investigated. In particular, HiPco SWCNT–POM display E11 fluorescence maxima at 1076, 1127, 1212, 1295, and 1437 nm – (10,2), (9,4), (8,6), (8,7) and (9,7) SWCNTs – when exciting at 650 nm (Fig. 6). Owing to the fact that the fluorescent features of HiPco SWCNT–POM hybrids mirror image the corresponding ground state absorption, we associate both processes to the fundamental absorption transitions across the band gap. Contrasting the fluorescence of the SWCNT–POM hybrids with that of SWCNT/SDBS at equal absorbances at the excitation wavelength sheds light onto the mutual interactions via either radiative or non-radiative decays in the SWCNT–POM hybrids (Fig. 6 and Fig. 7). To this end, HiPco SWCNT–POM hybrids reveal an energetic shift of the fluorescent transitions in the form of red-shifted maxima relative to those seen for HiPco SWCNT/SDBS. For HiPco SWCNT/SDBS, maxima at 1054, 1113, 1174, 1268, and 1376 nm were measured, which correspond to (10,2), (9,4), (8,6), (8,7), and (9,7) SWCNTs, respectively.36

We rationalize a redistribution of electron density from SWCNTs to the electron-accepting POM-pyr to be responsible for the noted shift to lower energies. Examination of the fluorescence intensities (Fig. 7) prompts to approximately 90% quenching of the HiPco SWCNTs features. Regarding the electron accepting and electron donating features of POM-pyr and SWCNTs, respectively, we hypothesize that the fluorescence quenching is due to a non-radiative singlet excited state deactivation in the form of an electron transfer process from the photoexcited SWCNT to the POM with energies of equal or less than 1.2 eV (Fig. 8).16,37 The relative excited state energies of SWCNTs and POMs were determined based on the long wavelength absorption and short wavelength fluorescence as ~1.2 and ~3.0 eV, respectively. These contradict, however, the feasibility of an energy transfer, which would be thermodynamically uphill. Moreover, we have no particular evidence for an energy transfer between different SWCNTs. The latter is taken from the fact that the fluorescence of (10,2), (9,4), (8,6), (8,7), and (9,7) SWCNTs are equally quenched.

Electronic interactions in HiPco SWCNT–POM hybrids were corroborated by Raman experiments. Here, the most important SWCNT signatures, which are RBM (~300 cm⁻¹), D (~1300 cm⁻¹), G (~1600 cm⁻¹), and 2D modes (~2550 cm⁻¹),28 reveal upshifts in D₂O suspensions of HiPco SWCNT–POM with respect to HiPco SWCNT/SDBS as well as in the solid without evidencing loss in resonance. For example, the G and 2D modes of HiPco SWCNTs shift from 1590 ± 2 to 1592 ± 2 cm⁻¹ and from 2548 ± 2 to 2552 ± 2 cm⁻¹, respectively (Fig. 9). This leaves no doubt that interactions are indeed operative between SWCNTs and POM-pyr but only in the excited state.

Fig. 6 (Top) 3D steady-state NIR fluorescence spectrum with increasing intensity from blue to green to yellow and to red of SWCNT/SDBS in D₂O. (Bottom) 3D steady-state NIR fluorescence spectrum with increasing intensity from blue to green to yellow and to red of SWCNT–POM in DMF.

Fig. 7 Comparison of the NIR fluorescence spectra of SWCNT/SDBS (black spectrum) in D₂O and SWCNT–POM (red spectrum) in DMF ~650 nm excitation.
Augmentation of electronic interactions in the ground state through, for example, charge transfer is ruled out, since no additional features are superimposed on the G band.

To determine the dynamics of the ultrafast excited state deactivation in HiPco SWCNT–POM hybrids, which was inferred from the fluorescence assays (vide supra), we employed transient absorption spectroscopy. In reference experiments, photoexcitation of POM-pyr (Fig. SI5†) and HiPco SWCNT/SDBS (Fig. SI6†) were probed at 387 nm. For POM-pyr, centered excited states are generated instantaneously upon photoexcitation. The corresponding spectral characteristics include transient maxima at 525, 630, 700, 1130, and 1350 nm and are assigned to higher lying excited states. In line with this assignment is the fact that an overall short lifetime of 2 ± 0.2 ps transforms these into maxima at 515, 600, 920, 1090, and 1290 nm. From here, we note a biphasic decay. On one hand, a short lifetime of around 75 ± 25 ps maxima are noted at 485, 535, 600, and 660 nm. The short lifetime is rationalized on the basis of strong spin–orbit couplings due to the presence of the metal centres and, in turn, correlates with the decay of the singlet excited state. On the other hand, a long lifetime of >7500 ps, which relates to the correspondingly formed triplet excited state, renders this transient rather stable prior to undergoing a possible electron transfer. With respect to the HiPco SWCNT/SDBS, the baseline is replaced with a strong bleaching that dominates the differential absorption spectra throughout the visible and near-infrared regions, where absorptive transitions of semiconducting SWCNTs appear, respectively (Fig. SI6†). The major minima are seen at 975, 1190, 1325, and 1460 nm. Multiwavelength analyses of the bleaching characteristics in the near-infrared resulted in complex dynamics with two dominant lifetimes, namely 1.2 ± 0.2 and 520 ± 10 ps. Throughout these multiexponential decays the original absorption/baseline is quantitatively reinstated. Hereby, the polydisperse nature of HiPco SWCNTs evokes a superimposition of a series of bleaching features. The latter is correlated with individual SWCNTs that absorb in nearly the same energetic range.

When turning to the HiPco SWCNT–POM hybrids, conditions were chosen that guaranteed stable SWCNT suspensions. Interesting is the fact, that the instantaneous bleaching follows the trend seen in the absorption assays. To this end, minima and shoulders in the differential absorption spectra at 565, 605, 660, 995, 1193, 1320, 1445, and 1585 nm correlate well with the maxima and shoulders found in the absorption spectra at 560, 605, 660, 1194, 1320, 1445, and 1585 nm and, in turn, are SWCNT centered (Fig. 10). In addition, maxima are noted at 475, 495, 535, and 820 nm. In fact, lifetimes of 25 ± 4 and 1600 ± 100 ps were derived from a multiwavelength analysis, which strongly evoke charge separation and charge recombination. Evidence for the charge transfer hypothesis, that is, charge separation and charge recombination, was learnt from fine structured maxima in the visible and the near-infrared at 475, 525, 585, 615, 690, 1255, 1375, and 1525 nm, which feature weak positive differential absorption changes. In addition, broad maxima are discernable in the 700 to 1200 nm range, in general, and the 850 nm maximum, in particular. In agreement with previous spectroelectrochemical experiments, we assign the earlier to oxidized SWCNTs, while the latter bears great resemblance with reduced POM-pyr.
HiPco SWCNTs were purchased from Unidym Inc. The samples were filtered employing a vacuum filter funnel pore size 3, and nylon membrane filters (φ 0.2 μm pore size). The ultrasound conditions were achieved with a Brandson 5510E-MT operating at 135 W.

Synthesis of POM-pyr. POM-pyr was synthesized following the reported procedure.31

Synthesis of SWCNT–POM hybrid. 6 mg of SWCNTs were dispersed in 24 mL of DMF by applying ultrasound for 30 minutes (Brandsonic 5510). Afterwards, 8 mg of POM-pyr were added to the above mixture and the slurry stirred for 4 hours. Then, the mixture was left to settle down for one night, and the nanotubes were washed by dispersing them first in DMF and secondly in acetonitrile with the aid of ultrasound. Finally, SWCNT–POM were isolated by filtering through a nylon membrane filter (0.2 μm pore size) and washing them with acetonitrile and with ethanol.

Physical characterization

HR-TEM images were obtained using a TECNAI G2 F20 microscope. Field Emission Gun (FEG) 200 kV. Aberration corrected HAADF and BF-STEM images were obtained in a JEOL ARM 200F microscope operating at 80 keV, equipped with CEOS spherical aberration correctors both for probe and image formation. Spherical aberration coefficients C3 is almost 0 mm and C5 is around 5 mm. An objective aperture has been used, and the convergence semiangle is 22 mrad. Inner and outer annular detector angles for HAADF STEM are about 50 and 200 mrad, respectively. Thermogravimetric analysis was carried out with a Mettler Toledo TGA/SDTA 851 apparatus in the 25–800 °C temperature range under an air atmosphere and at 10 K min\(^{-1}\) scan rate. X-Ray photoelectron spectroscopy (XPS) measurements were performed in an ultra-high vacuum system ESCALAB210 (base pressure 1.0 \(\times\) 10\(^{-10}\) mbar) from Thermo VG Scientific. Photoelectrons were excited by using the Mg-K\(_\alpha\) line (1253.6 eV). All spectra have been referred to the Fermi level.

Photophysical measurements. Steady-state UV/vis/NIR absorption spectroscopy was performed on a Cary 5000 spectrometer (Varian). Transient absorption spectroscopy was performed with 387 nm laser pulses from an amplified Ti/sapphire laser system (Model CPA2101, Clark-MXR Inc.; output: 775 nm, 1 kHz, and 150 fs pulse width) in the TAPPS (transient absorption pump/probe system) Helios from Ultrafast Systems with 200 nJ laser energy. Steady-state fluorescence spectra were taken from samples with a FluoroLog3 spectrometer (Horiba) with a IGA Symphony (5121 1 μm) detector in the NIR detection range. The Raman spectra were recorded with a FT-Raman spectrometer RFS100 (Bruker).

Spectroelectrochemical measurements. All experiments were carried out in deoxygenated DMF purchased from Sigma Aldrich with 0.1 M or 0.2 M TBAPF\(_6\) (Sigma Aldrich) as supporting electrolyte. All chemicals were used without further purification.

For spectroelectrochemical measurements, a quartz cell with an optical pathway of 1 mm or a home-made three neck cell was used in combination with a three electrode setup. A platinum

Experimental

Synthesis

General synthetic remarks. Elicarb Single Walled Nanotubes (SWCNTs) were purchased from Thomas Swan Co. Ltd. and...
gauze served as the working electrode, a platinum wire as the counter electrode and Ag/AgNO₃ in acetonitrile was chosen as the reference electrode. In the case of the three neck cell, Ag/AgNO₃ was replaced by a silver wire serving as a quasi reference electrode. Changes in absorption were monitored either by a Specord S600 (Analytik Jena) spectrometer or a Cary 5000 spectrometer (Varian).

Potentials were applied and controlled by means of a PGSTAT 101 potentiostat from Metrohm® and the corresponding software NOVA 1.6®.

Conclusions

Pyrene-appended Dawson–Wells-type polyoxometalates have been successfully immobilized onto SWCNTs by means of non-covalent forces. Non-covalent functionalization relies on the presence of π–π interactions between the sidewalls of SWCNTs and the π-conjugated pyrenes, which afford stable suspensions of strongly coupled SWCNT-POM hybrids. Formation of the hybrids was confirmed with high-resolution electron microscopy, XPS experiments, and thermogravimetric analysis. From the latter we estimate a loading of at least 1 POM-pyr per 4600 carbon atoms, which corresponds to a 10% coverage. Our photophysical studies confirm electron transfer from the photoexcited SWCNTs to the grafted polyoxometalate. The dynamics of the process, studied by transient absorption spectroscopy, reveal the appearance of metastable characteristics of oxidized SWCNTs and reduced POM-pyr. This is quite remarkable, as both components, POM-pyr and SWCNTs, are commonly used as electron acceptors. Our results demonstrate the potential of SWCNTs and POM-pyr for the design of photoactive molecular devices, which alongside the ability of POMs to undergo multiple reduction reactions with minor structural changes, qualify them as promising electron reservoirs for the design of advanced dyads.

Abbreviations

POMs Polyoxometalates
SWCNTs Single walled carbon nanotubes
FETs Field-effect transistors
Pyr Pyrene
TGA Thermogravimetric analysis
EDS Energy-dispersive X-ray spectroscopy
HRTEM High-resolution transmission electron microscopy
HAADF-STEM High-angle annular dark-field scanning-transmission electron microscopy
BF Bright field
XPS X-Ray photoelectron spectroscopy
BEs Binding energies

Acknowledgements

Financial support from the EU (Projects COST Action CM1203 PoCheMoN, ELFOS and ERC Advanced Grant SPINMOL), the Spanish Ministerio de Economía y Competitividad MINECO (Project MAT2011-22785), the Generalitat Valenciana (Prometeo Program) and the Bayrische Staatssregierung as part of the “Solar Technologies go Hybrid” are gratefully acknowledged. AMR and SIM acknowledge the support from the Spanish MINECO (projects TEC2011-29120-C05-03 and Consolider Ingenio 2010 CSD2009-00013) and the Junta de Andalucía (PAI research group TEP-946 INNANOMAT), and also to JEOL company for the use of a double-corrected aberration-corrected ARM electron microscope. C.M.-G. thanks the Spanish MINECO for a Ramón y Cajal Fellowship (RYC-2012-10894).

Notes and references

35 Changes due to differences in the environment are, however, ruled out based on the similarities in absorption features.
