Rheologische Untersuchungen an Polyisobutylenen und Polyacrylamidlösungen mit einem neuartigen optischen Dehnrheometer

Der Technischen Fakultät der Universität Erlangen-Nürnberg

Zur Erlangung des Grades

DOKTOR - INGENIEUR

vorgelegt von

Stefan Schuberth

Erlangen – 2008
Als Dissertation genehmigt von
der Technischen Fakultät der
Universität Erlangen-Nürnberg

Tag der Einreichung: 04.07.2007
Tag der Promotion: 25.01.2008
Dekan: Prof. Dr. Huber
Berichterstatter: Prof. Dr. Münstedt
 Prof. Dr. Willenbacher
Inhaltsverzeichnis

1 Einleitung und Motivation .. 1
2 Grundlagen ... 5
 2.1 Rheologie .. 5
 2.1.1 Strömungsmechanische und rheologische Grundlagen..................................... 5
 2.1.2 Empirische Relationen zwischen scherrheologischen Größen 11
 2.1.3 Düsenströmungen.. 12
 2.2 Spannungsoptik ... 15
 2.2.1 Polarisation.. 15
 2.2.2 Spannungsdoppelbrechung und Formdoppelbrechung 15
 2.2.3 Spannungsoptisches Gesetz ... 17
 2.2.4 Gültigkeitsbereich des spannungsoptischen Gesetzes 19
 2.2.5 Abhängigkeiten des spannungsoptischen Koeffizienten 19
 2.3 Polyelektrolytlösungen.. 20
 2.3.1 Konzentrationsbereiche ... 20
 2.3.2 Gyrationsradius und kritische Konzentration.. 21
 2.4 Literaturübersicht .. 23
 2.4.1 Mechanische Methoden zur Messung der Dehnviskosität 23
 2.4.2 Optische Methoden zur Geschwindigkeits- und Spannungsmessung 29
 2.4.3 Offene Fragen und Zielsetzung ... 33
3 Versuchsaufbau ... 35
 3.1 Koordinatensystem .. 35
 3.2 Laser-Doppler-Anemometer ... 35
 3.3 Zwei-Farben-Spannungsdoppelbrechung... 37
 3.3.1 Optischer Aufbau .. 37
 3.3.2 Messdatenerfassung .. 39
 3.3.3 Auswertung der Intensitätsmessungen .. 39
 3.3.4 Messung an einer $\lambda/4$-Platte ... 40
 3.4 Messzelle ... 41
 3.4.1 Aufbau ... 41
 3.4.2 Schlitzdüse .. 42
 3.4.3 Hyperbolisch geformte Düseninsätze .. 42
 3.5 Peripherie des Messaufbaus .. 43
 3.6 Durchführung der Messungen ... 44
4 Messungen an Polyisobutylen ... 45
 4.1 Materialcharakterisierung ... 45
 4.1.1 Molekulare Charakterisierung ... 45
 4.1.2 Scherrheologisches Verhalten ... 46
 4.1.3 Mechanischer Abbau im Pumpenkreislauf .. 47
 4.2 Untersuchung der Scherspannungen in einer Schlitzdüse .. 48
 4.2.1 Experimentelles Vorgehen ... 49
4.2.2 Scherspannungen in der Schlitzdüse ... 50
4.3 Dehnviskosität von Polyisobutylenen ... 56
4.3.1 Experimentelles Vorgehen .. 56
4.3.2 Planarität entlang der x-Achse .. 56
4.3.3 Bestimmung der Dehnviskositäten ... 57
4.4 Zusammenfassung ... 61
5 Charakterisierung der Polyacrylamide ... 63
5.1 Herstellung der Polymerlösungen .. 63
5.2 Aufbau der Polymere und Charakterisierung des Molekulargewichts 63
5.3 Wasserstoffbrückenbindungen ... 65
5.4 Reduzierte Viskosität und kritische Konzentration .. 66
5.5 Transiente und stationäre Scherviskosität .. 69
5.6 Viskosität von Polyacrylamidlösungen bei Natriumchloridzugabe 73
5.7 Molekularer Abbau durch mechanische Belastung ... 76
5.8 Alterung von Polyacrylamidlösungen ... 77
6 Grundlegende Untersuchungen zur Bestimmung der Dehngeschwindigkeit und Spannungsdoppelbrechung von Polyacrylamidlösungen ... 79
6.1 Experimentelles Vorgehen .. 79
6.2 Fließgeschwindigkeiten und Dehnraten in der hyperbolischen Düse 83
6.3 Planarität entlang der x-Achse ... 89
6.4 Spannungsdoppelbrechung innerhalb der hyperbolischen Düse 90
7 Dehnviskosität und Dehnverfestigung verschiedener Polyacrylamidlösungen 95
7.1 Einfluss der Dehnrate auf die Dehnviskosität .. 95
7.2 Einfluss der Konzentration auf die Dehnviskosität .. 98
7.2.1 Verhalten der Dehnviskosität bei Konzentrationsänderung 98
7.2.2 Reproduktionsmessungen bei unterschiedlichen Konzentrationen 100
7.2.3 Kritische Dehnung .. 101
7.3 Einfluss von molekularen Parametern ... 102
7.3.1 Ionogenität ... 102
7.3.2 Molmasse und Molmassenverteilungsbreiten ... 110
7.4 Viskosität bei Zugabe von Natriumchlorid .. 117
7.5 Vergleich der Ergebnisse mit der vorhandenen Literatur 121
7.6 Zusammenfassung ... 123
8 Spannungsoptische Koeffizienten von Polyacrylamidlösungen 125
8.1 Abhängigkeit von der Dehnrate ... 125
8.2 Abhängigkeit von der Konzentration ... 126
8.3 Abhängigkeit von der Ionogenität .. 128
8.4 Abhängigkeit von der Molmasse und Molmassenverteilungsbreite 130
8.5 Verhalten bei Zugabe von Natriumchlorid .. 131
8.6 Zusammenfassung ... 132
9 Vergleich des experimentellen Aufbaus mit anderen in der Literatur beschriebenen Messmethoden ... 133
9.1 Nachteile des FIB/LDA-Aufbaus ... 133
9.2 Vorteile des FIB/LDA-Aufbaus ... 134
1 Einleitung und Motivation

Die Bedeutung der Dehnviskosität wurde erstmals im Jahr 1906 von Trouton wissenschaftlich herausgestellt, indem er zeigte, dass bei der uniaxialen Dehnung eines Zylinders aus Newtonschen Materialien der Wert der Dehnviskosität dreimal dem Wert der Scherviskosität entspricht (Trouton 1906). Aus diesen grundlegenden Untersuchungen entwickelte sich die Dehnrheologie als die Lehre, die sich mit dem Verformungs- und Fließverhalten von Materie bei Dehnvorgängen beschäftigt.

Einleitung und Motivation

<table>
<thead>
<tr>
<th>Molmasse MW (g/mol)</th>
<th>Anwendungsbereich</th>
<th>Beispiel</th>
<th>Material</th>
</tr>
</thead>
<tbody>
<tr>
<td>$10^7 - 10^8$</td>
<td>Abwässer</td>
<td>Flockungshilfsmittel</td>
<td>Polyacrylamid</td>
</tr>
<tr>
<td></td>
<td>Tert. Erdölförderung</td>
<td>Fluten mit Polymerlösung</td>
<td>Polyacrylamid</td>
</tr>
<tr>
<td></td>
<td>Rohrströmungen</td>
<td>Fließwiderstandsreduzierung</td>
<td>Polyacrylamid</td>
</tr>
<tr>
<td></td>
<td>Papierherstellung</td>
<td>Erhöhung der Reifigkeit</td>
<td>Polyacrylamid</td>
</tr>
<tr>
<td>$10^6 - 10^7$</td>
<td>Lebensmittel</td>
<td>Verdickung, Bindemittel</td>
<td>Polysacharide</td>
</tr>
<tr>
<td></td>
<td>Pharmazie</td>
<td>Tablettenbindemittel</td>
<td>Polysacharide</td>
</tr>
<tr>
<td>$10^5 - 10^6$</td>
<td>Textil</td>
<td>Appretur, Imprägnierung</td>
<td>Silikone</td>
</tr>
<tr>
<td>$10^4 - 10^5$</td>
<td>Motorenöl</td>
<td>Viskositäts-Index-Verbesserer</td>
<td>Polyisobutylein</td>
</tr>
<tr>
<td></td>
<td>Wasser</td>
<td>Härtestabilisatoren</td>
<td>Polyacrylamid</td>
</tr>
<tr>
<td></td>
<td>Medizin</td>
<td>Blutplasmaexpander</td>
<td>Hydroxyethylstärke</td>
</tr>
</tbody>
</table>

Tab. 1-1: Anwendungsgebiete von Polymerlösungen (Plog 2005).

Versuche wurden unternommen, um diese zusätzlichen Einflussfaktoren abzuschätzen. Dazu wurden vereinfachte Modellvorstellungen angewandt, welche Annahmen über die lokale Verteilung von Spannung und Dehnrate machen. Weichen die tatsächlichen Verteilungen von Dehnspannung und Dehnrate von den Annahmen ab, so wird ein falscher Wert der Dehnviskosität ermittelt. In der Vergangenheit zeigten mehrere Forschergruppen, dass die Abweichungen zwischen wahren und gemessenen Werten mehrere Zehnerpotenzen betragen können (Kapitel 2.4).

Eine lokale Messung der tatsächlichen Dehnspannung und tatsächlichen Dehnrate würde diese Probleme umgehen, da keinerlei Annahmen über das vorhandene Strömungsprofil nötig
Einleitung und Motivation

Eine sehr genaue Methode zur Geschwindigkeitsdetektion ist die Laser-Doppler Anemometrie, welche in einem Messvolumen im sub-mm Bereich den Geschwindigkeitsvektor des Fluids bestimmen kann. Bei dieser Messmethode handelt es sich also um eine Punktmessung. Durch eine Ableitung des Geschwindigkeitsvektors nach einer Raumrichtung berechnet sich die entsprechende Dehnrate.

Wird ein nicht-Newtonisches Polymer abrupt mit einer konstanten Dehnrate auseinander gezogen, so steigt die Dehnviskosität an und erreicht für große Zeiten einen konstanten Wert. Diese so genannte transiente Dehnviskosität ist sowohl eine Funktion der Dehnrate als auch der Zeit. Um das Material rheologisch zu beschreiben, muss der Einfluss der Dehnrate auf die Dehnviskosität vom Einfluss der Zeit separiert werden. Diese Aufgabenstellung konnte in dieser Arbeit erfolgreich durch eine geschickte Wahl des Strömungskanals gelöst werden.

Ist andererseits die Dehnviskosität als Funktion der Zeit bei konstanter Dehnrate für ein Polymerfluid durch andere Messungen ausreichend abgesichert, so ist es möglich, das Verhältnis aus Doppelbrechung und wirkender Spannung für das Material zu bestimmen. Dieses Verhältnis wird auch als spannungsoptischer Koeffizient bezeichnet und ist in der Spannungsoptik ein aussagekräftiger Parameter, welcher das optische Verhalten von Materialien bei angelegter Spannung vorhersagt.

Um die Funktionalität der aufgebauten Apparatur sicherzustellen wurden zunächst Untersuchungen an niedermolekularen Polyisobutylenen durchgeführt. Dieses newtonschen Materialien haben die Eigenschaft, dass sowohl die Scher- als auch die Dehnviskosität zeitunabhängig sind. Daher lässt sich das Material mit der linear viskoelastischen Theorie beschreiben. Ist die Scherviskosität durch Untersuchungen im Rotationsrheometer bekannt, so
kann aus der Scherrate im Fluid die Scherspannung berechnet und mit jener verglichen werden, welche aus den Messungen der Spannungsdoppelbrechung bestimmt wird. Daraus lässt sich der spannungsoptische Koeffizient bestimmen, mit welchen aus nachfolgenden Dehnmessungen die Dehnrate des Materials bestimmt wird (Kapitel 4).
2 Grundlagen

2.1 Rheologie

2.1.1 Strömungsmechanische und rheologische Grundlagen

Die mathematische Beschreibung von Strömungen erfolgt in der Literatur überwiegend durch die Zerlegung der Strömung in kleine Volumenelemente. Die Materialeigenschaften eines solchen Volumenelements bestimmen die Reibungskräfte zu benachbarten Volumenelementen (Scherkräfte) und die Dehnkräfte im eigenen Element. Die Scher- und Dehnspannungen berechnen sich aus den Kräften unter Berücksichtigung der Flächen, auf denen die Kräfte wirken. Die Scher- und Dehnspannungen werden für alle drei Raumrichtungen im Spannungstensor \(\sigma \) zusammengefasst. Die Geschwindigkeitsunterschiede zwischen den Volumenelementen werden als Geschwindigkeitsgradienten für die unterschiedlichen Raumrichtungen im Deformationsratentensor \(D \) vereinigt. Dieser definiert sich zu:

\[
D = \frac{1}{2} \left[\nabla \mathbf{v} + (\nabla \mathbf{v})^T \right] = \frac{1}{2} \begin{bmatrix}
2 \frac{\partial v_x}{\partial x} & \frac{\partial v_x}{\partial y} + \frac{\partial v_y}{\partial x} & \frac{\partial v_x}{\partial z} + \frac{\partial v_z}{\partial x} \\
\frac{\partial v_x}{\partial y} + \frac{\partial v_y}{\partial x} & 2 \frac{\partial v_y}{\partial y} & \frac{\partial v_y}{\partial z} + \frac{\partial v_z}{\partial y} \\
\frac{\partial v_x}{\partial z} + \frac{\partial v_z}{\partial x} & \frac{\partial v_y}{\partial z} + \frac{\partial v_z}{\partial y} & 2 \frac{\partial v_z}{\partial z}
\end{bmatrix}
\]

Die Newtonsche Zustandsgleichung setzt den Spannungstensor mit dem Deformationsratentensor in Beziehung:

\[
\sigma = \tau - \mathbb{1} \cdot \rho \quad \text{mit} \quad \tau = 2\eta D
\]

Dabei ist \(\mathbb{1} \) der Einheitstensor und \(\rho \) der isotrope hydrostatische Druck innerhalb der Strömung, \(\eta \) die Scherviskosität und \(\tau \) der anisotrope Spannungstensor.

Volumenerhaltung

Zur Vereinfachung der nachfolgenden mathematischen Beziehungen wird die Erhaltung des Volumens innerhalb des strömenden Polymers vorausgesetzt. Aus der Kontinuitätsgleichung der Strömungsmechanik

\[
\frac{\partial \rho}{\partial t} = - (\nabla \cdot \mathbf{v})
\]

folgt unter der Annahme einer zeitlich konstanten Dichte \(\rho \):

\[
\nabla \cdot \mathbf{v} = \frac{\partial v_x}{\partial x} + \frac{\partial v_y}{\partial y} + \frac{\partial v_z}{\partial z} = 0
\]
Experimente mit reinem Wasser zeigen bei einer Druckerhöhung von 2,0 MPa eine Volumenverminderung von 0,1\% Ähnliche Zahlenwerte ergeben sich auch für niederviskose Polymerschmelzen, wie beispielsweise niedermolekulares Polysisobutylen (Böhme 2000). Für alle folgenden Betrachtungen und Messungen, welche bis zu einem Maximaldruck von 0,5 MPa durchgeführt wurden, ist daher die Volumenerhaltung aus Gleichung 2-4 erfüllt. Wasser wurde in dieser Arbeit als Lösungsmittel für das Polymer Polyacrylamid verwendet. Die Polymerkonzentration betrug maximal 0,5 Gew.-\%. Es ist daher ebenfalls von einer Volumenerhaltung auszugehen.

Einfache Scherung

Materialgrößen in Scherung, wie die Scherviskosität η, werden in Rotationsrheometern untersucht. Zwischen einer feststehenden Bodenplatte und einem rotierenden Kegel entsteht eine Scherströmung, bei welcher die Scherrate $\dot{\gamma}$ in radialer Richtung konstant ist. Die x-Richtung ist entlang der Stromlinien definiert, die y-Richtung parallel zur Rotationsachse des Rheometers. Diese Art von Strömung wird auch als „einfache Scherströmung“ bezeichnet. Der Deformationsratentensor definiert sich hierbei zu:

$$D = \frac{1}{2} \begin{pmatrix} 0 & \dot{\gamma} & 0 \\ \dot{\gamma} & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} \text{ mit } \dot{\gamma} = \frac{\partial v_x}{\partial y} + \frac{\partial v_y}{\partial x}$$

Aus 2-2 und 2-5 ergeben sich die Scherspannung und Scherviskosität zu:

$$\tau_{xy} = \eta \dot{\gamma} \Rightarrow \eta = \frac{\tau_{xy}}{\dot{\gamma}}$$

Bei Newtonschen Fluiden ist die Viskosität η nur eine Funktion der Temperatur. Diese kann gut mit der Theorie der Platzwechselvorgänge von Boltzmann erklärt werden, in der jedes Molekül als ein Punktteilchen mit einem Wechselwirkungspotential interpretiert wird. Makromoleküle können aufgrund ihrer Ausdehnung nicht mehr generell als Punktteilchen aufgefasst werden da sich die Polymerketten gegenseitig durchdringen und miteinander ein Verschlußnetzwerk bilden. Die Viskosität ist von der Verschlußdichte abhängig, welche sich wiederum mit der Temperatur sowie der Deformationsrate und Dauer der Belastung ändert. Für nicht-Newtonsche Fluide gilt daher, dass die Viskosität eine Funktion der Temperatur T, des Deformationsratentensors und der Zeit t ist:

$$\eta = \eta(T, D, t)$$

Ein Absinken der Viskosität mit der Scherrate nennt man scherverdünnendes Verhalten (Abb. 2-1). Im Bereich niedriger Scherraten ist die Viskosität scherratenunabhängig (Newtonisches Plateau), der Wert η_0 wird als Nullviskosität bezeichnet. Bei Erreichen einer kritischen Scherrate $\dot{\gamma}_c$ wird die Viskosität scherratenabhängig. Eine phänomenologische Beschreibung der Viskosität lieferte unter anderen Carreau mit folgender Gleichung:
Für Polymerlösungen ist η_∞ die Viskosität des Lösungsmittels. Für Polymerschmelzen gilt $\eta_0=0$, da die Makromoleküle nicht mit Lösungsmittelmolekülen interagieren können. Der Fließexponent n definiert sich aus dem in Abb. 2-1 eingzeichneten Steigungsdreieck und beschreibt den Grad der Scherverdünnung. Es ist eine materialabhängige Konstante.

\[\frac{\eta - \eta_\infty}{\eta_0 - \eta_\infty} = \left[1 + \left(\frac{\dot{\gamma}}{\dot{\gamma}_c} \right)^2 \right]^{(n-1)/2} \]

2-8

In Polymerfluiden können Polymerketten Verschlaufungen ausbilden. Ohne äußeren Kräfteeinfluss werden durch die Brown’sche Bewegung Verschlaufungen gelöst und gebildet, so dass sich ein Gleichgewicht einstellt und eine konstante Verschlaufungsdichte erreicht wird. Im Bereich niedriger Scherraten werden Verschlaufungen wieder gelöst. Da jedoch die erzwungene Bewegung der Ketten im Vergleich zur thermischen Bewegung klein ist, ist die Zeit zur erneuten Bildung der Verschlaufungen lange genug, und die Verschlaufungsdichte bleibt konstant. Ab der kritischen Scherrate $\dot{\gamma}_c$ ist die Zeit zur Bildung von Verschlaufungen zu kurz und der nicht Newtonsche Bereich beginnt. Zusätzlich werden die Moleküle in Fließrichtung orientiert, was die Wahrscheinlichkeit zur Bildung von Verschlaufungen zusätzlich vermindert. Die Ketten gleiten sozusagen aneinander ab.

$\dot{\gamma}_c$ ist der Kehrwert der charakteristischen Relaxationszeit τ_0, welche die Zeit darstellt, die benötigt wird, um unter Gleichgewichtsbedingungen eine Verschlaufung auszubilden. Damit kann $1/\tau_0$ als Maß für die Geschwindigkeit, mit der sich Verschlaufungen ausbilden, also als Maß für die Kettenbeweglichkeit betrachtet werden.

Einfache und planare Dehnung

Das Strömungsverhalten viskoelastischer Flüssigkeiten unterscheidet sich unter Dehnbeanspruchungen wesentlich von dem in Scherung. Materialparameter in Dehnung müssen deshalb mit speziellen Messmethoden charakterisiert werden. Ein Überblick über die in der Literatur beschriebenen Methoden ist in Kapitel 2.4 dargestellt. Das Prinzip aller
Methoden besteht darin, die Volumenelemente der Polymerprobe entlang einer Raumachse (x-Richtung) zu dehnen. Ist \(L_0 \) die Länge des Volumenelements im Ausgangszustand und \(L \) die Länge des Volumenelements im Endzustand so lässt sich die Gesamtdehnung als \(L/L_0 \) definieren. In der Literatur wird oft ein logarithmisches Dehnmaß verwendet, die so genannte Hencky Dehnung \(\varepsilon \):

\[
\varepsilon = \ln\left(\frac{L}{L_0} \right)
\]

2-9

Die zeitliche Ableitung von \(\varepsilon \) wird als Hencky-Dehnrate bezeichnet:

\[
\dot{\varepsilon} = \frac{\partial \varepsilon}{\partial t}
\]

2-10

Im Folgenden sind die Begriffe Dehnung und Dehnrate stets als Hencky Dehnmaße zu verstehen. In einer Dehnströmung ohne zusätzlicher Scherung ergibt sich der Deformationsratentensor mit Strömungsrichtung in Richtung der x-Achse zu:

\[
\mathbf{D} = \begin{pmatrix}
\dot{\varepsilon} & 0 & 0 \\
0 & -(1+m)\dot{\varepsilon} & 0 \\
0 & 0 & m\dot{\varepsilon}
\end{pmatrix}
\]

2-11

Für die Parameter \(m=-0,5,1 \) bzw. 0 beschreibt der Deformationsratentensor uniaxiale, biaxiale bzw. planare Dehnung. Die für diese Arbeit wichtige planare Dehnung (\(m=0 \)) ist eine Dehnung in x-Richtung mit der Zwangsbedingung, dass die Volumenelemente in einer Richtung senkrecht dazu (z-Richtung) weder gedehnt noch komprimiert werden. In der anderen Richtung (y) senkrecht zur Strömungsrichtung wird das Volumenelement entsprechend der Volumenerhaltung komprimiert. Der Deformationsratentensor ergibt für \(m=0 \) zu:

\[
\mathbf{D} = \begin{pmatrix}
\dot{\varepsilon} & 0 & 0 \\
0 & -\dot{\varepsilon} & 0 \\
0 & 0 & 0
\end{pmatrix}
\]

2-12

Vergleicht man die erste Komponente auf der Hauptdiagonalen dieses Tensors (2-12) mit der aus Gleichung 2-1, so ergibt sich, dass die Hencky Dehnrate der Ableitung des Geschwindigkeitsfeldes der Dehnströmung entspricht (Gleichung 2-13). Integriert man diese Beziehung, so erhält man genau dann eine einfache Dehnströmung (\(\dot{\varepsilon}=\text{konst.} \)), wenn ein Geschwindigkeitsfeld vorliegt, dessen Geschwindigkeit mit der Koordinate in Strömungsrichtung linear anwächst (Gleichung 2-14):

\[
\dot{\varepsilon} = \frac{\partial v_x}{\partial x}
\]

2-13

\[
v_x = v_0 + \varepsilon \cdot x
\]

2-14
Werden die ersten beiden Komponenten auf den Hauptdiagonalen der Tensoren aus 2-11 und 2-1 miteinander verglichen, so ergibt sich die so genannte Planaritätsbedingung, welche für eine planare Strömung erfüllt sein muss:

\[
\text{Planarität } \iff \frac{\partial v_x}{\partial x} = -\frac{\partial v_y}{\partial y}
\]

2-15

Analog zur Scherviskosität \(\eta \) lässt sich die Dehnviskosität \(\mu \) definieren:

\[
\mu = \frac{N_1}{\dot{\varepsilon}} \quad \text{mit} \quad N_1 = \tau_{xx} - \tau_{yy}
\]

2-16

\(N_1 \) ist die erste Normalspannungsdifferenz, welche als Differenz von \(\tau_{xx} \) und \(\tau_{yy} \) definiert ist. Sie wird auch als Dehnspannung bezeichnet. Für \(N_1 \) ergibt sich nach 2-2, 2-11 und 2-16 das so genannte Trouton-Verhältnis, der Faktor zwischen Scher- und Dehnviskosität:

\[
N_1 = \tau_{xx} - \tau_{yy} = 4\eta\dot{\varepsilon} \quad \Rightarrow \quad \mu = 4\eta
\]

2-17

Zeigt ein Polymer ein lineares Materialverhalten, so ist das Trouton-Verhältnis konstant.

Wird in einem Experiment die Dehnrate \(\dot{\varepsilon} \) zum Zeitpunkt \(t=0 \) von Null auf einen konstanten Wert erhöht und die resultierende Normalspannungsdifferenz gemessen, so spricht man von einem Spannversuch. Da die Viskosität nicht in einem stationären Zustand gemessen wird, wird sie als transiente Dehnviskosität \(\mu^+ \) bezeichnet:

\[
\mu^+(t, \dot{\varepsilon}) = \frac{N_1(\dot{\varepsilon}, t)}{\dot{\varepsilon}}
\]

2-18

Analog zur Scherviskosität lassen sich Materialien unterscheiden, die ein rein linear-viskoelastisches Verhalten in Dehnung zeigen, dehnverfestigend oder dehnverdünnend sind, wobei in dieser Arbeit nur die ersten beiden Gruppen behandelt werden. In Abb. 2-2 ist das Verhalten der transienten Dehnviskosität \(\mu^+ \) bei Polymerfluiden während eines Spannversuchs dargestellt. Die linear-viskoelastische Dehnanlaufkurve \(\mu_0^+ \) ergibt sich für den Fall einer physikalisch linearen Materialantwort des Fluids. Die transiente Scherviskosität \(\eta^+ = \tau_{xy}(\dot{\gamma}, t)/\dot{\gamma} \) ist analog zu \(\mu_0^+ \) definiert. Für das Trouton-Verhältnis im linear-viskoelastischen Bereich bei planaren Strömungsbedingungen gilt:

\[
\mu^+(t) = 4\eta^+(t)
\]

2-19

Steigt die Dehnviskosität überproportional an, so kommt es zu einer Dehnüberhöhung. Der Zeitpunkt \(t_0 \) bei der \(\mu^+ \) den linear-viskoelastischen Bereich verlässt, hängt von der Gesamtdehnung der Volumenelemente ab. Diese ergibt sich zu:
\[\varepsilon(t_0) = \int_0^{t_0} \dot{\varepsilon}(t') \, dt' \] 2-20

In der Literatur wird die Dehnverfestigung mit dem Dehnverfestigungsfaktor (eng.: strain hardening factor) \(\Phi \) charakterisiert:

\[\Phi(\dot{\varepsilon}, t) = \frac{\mu^+(\dot{\varepsilon}, t)}{\mu_0(t)} \] 2-21

Der Dehnverfestigungsfaktor \(\Phi \) wird oft als Funktion der Dehnrate bei konstanter Zeit bzw. konstanter Gesamtdehnung dargestellt.

\[\text{Abb. 2-2: Das prinzipielle zeitliche Verhalten der transienten Dehnviskosität eines dehnverfestigenden Materials für verschiedene Dehnraten } \dot{\varepsilon}. \text{ Die linear-viskoelastische Dehnanlaufkurve ist mit } \mu_0^+ \text{ bezeichnet, die linear-viskoelastische Scheranlaufkurve mit } \eta_0^+. \]

Rheologische Schermessungen mit oszillierenden Platten

Für viskoelastische Fluide gilt das Hooke’sche Gesetz:

\[\tau_{xy}(t) = |G^*| \gamma(t) \] 2-22

Dabei ist \(G^* \) der komplexe Schubmodul, \(\tau_{xy}(t) \) die Scherspannung und \(\gamma(t) \) die Deformation. \(\tau_{xy}(t) \) und \(\gamma(t) \) sind aufgrund der aufgeprägten Oszillation meist Sinusfunktionen.

$$|G'| = \sqrt{(G')^2 + (G'')^2}$$

Der Betrag der komplexen Scherviskosität berechnet sich aus G^* zu:

$$|\eta^*| = \left| \frac{G^*}{\omega} \right|$$

ω ist dabei die Winkelfrequenz der aufgeprägten Oszillation. Eine leichtverständliche Einführung in oszillatorischen Schermessungen ist z. B. in (Mezger 2002) enthalten.

2.1.2 Empirische Relationen zwischen scherrheologischen Größen

Cox-Merz Relation

Die bekannteste empirische Beziehung ist die Cox-Merz-Relation (Cox und Merz 1958). Sie besagt, dass die Scherviskosität als Funktion der Kreisfrequenz bei dynamisch-mechanischen Untersuchungen und die Scherviskosität bei konstanter Schergeschwindigkeit gleich sind, falls die Schergeschwindigkeit der Kreisfrequenz entspricht:

$$|\eta^*(\omega)| = \eta(\dot{\gamma}) \quad \text{für} \quad \omega = \dot{\gamma}$$

Spiegelrelation nach Gleissle

Die Spiegelrelation nach Gleissle (Gleissle 1980) verknüpft die Viskositätsfunktion $\eta(\dot{\gamma})$, mit der linear-viskoelastischen Anlaufkurve $\eta_0^+(t)$, wobei die Schergeschwindigkeit der reziproken Scherzeit t entspricht:

$$\eta_0^+(t) = \eta(\dot{\gamma}) \text{ mit } t = \frac{1}{\dot{\gamma}}$$ \hspace{1cm} 2-26

Dabei ist die lineare Scheranlaufkurve durch folgenden Grenzwert definiert:

$$\lim_{\gamma \to 0} \eta^+(t, \dot{\gamma}) = \eta_0^+(t)$$ \hspace{1cm} 2-27

2.1.3 Düsenströmungen

Strömung in einer 180°-Schlitzdüse

Strömt ein Medium durch eine Schlitzdüse wie in Abb. 2-3 dargestellt, so treten im Einlaufbereich Scher- und Dehnströmungen auf. Reine Scherströmungen finden sich im Reservoir und innerhalb der Düse in ausreichender Entfernung vom Düsenauflauf. In diesen Bereichen sind alle Geschwindigkeitsvektoren parallel zur Fließrichtung ausgerichtet und das Fließprofil senkrecht zur Strömungsrichtung wird unabhängig von der Position im Fließkanal. Bei Newtonschen Fluiden ist dieses Fließprofil parabelförmig. Bei viskoelastischen Fluiden hingegen bildet sich meist eine Pfropfenströmung aus, die sehr gut mit dem Ostwald-de Waele Gesetz beschrieben werden kann. Die Geschwindigkeitsverteilung der Strömung ergibt sich zu:

$$v_\chi(y) = v_0 \left[1 - \frac{2y^n}{B} \right]$$ \hspace{1cm} 2-28

Polyacrylamidlösungen wurde ein solches Verhalten jedoch nicht beobachtet. Daher kann für alle weiteren Betrachtungen Wandhaften angenommen werden.

Strömt ein Fluid durch einen Strömungskanal, so ruht es an der Wand und bewegt sich mit v_0 im Zentrum der Strömung. Dadurch wird das Fluid gesichert. Nach Gleichung 2-5 und 2-28 ergibt sich die Scherrate $\dot{\gamma}$ zu:

$$\dot{\gamma} = -\frac{n+1}{n} v_0 \left(\frac{2}{B} \right)^{\frac{n+1}{n}} y^{\frac{1}{n}}$$ 2-29

Bei Newtonschen Medien mit $n=1$ gilt:

$$\dot{\gamma} = -\frac{8v_0}{B^2} y$$ 2-30

Fließt das Medium in eine Schlitzdüse ein, so wird das Fluid beschleunigt, und es kommt im Bereich des Einlaufs zu einem Geschwindigkeitsanstieg und einer Dehnung. Um dies zu demonstrieren, wurden numerische Simulationen basierend auf einem finite Element Modellansatz (FEM) mit der Software FemLab für ein Newtonsches Medium durchgeführt und in den nachfolgenden Abbildungen dargestellt. Als Parameter wurden anwendungsnahe Werte verwendet ($\rho=1$ g/cm3, $\eta_0=10$ Pas, $v_0=150$ mm/s, $L=50$ mm, $B=1,4$ mm, $B_R=14$ mm, $y=0$ mm).

\begin{figure}[h]
\centering
\includegraphics[width=\textwidth]{graph.png}
\caption{Berechnete Geschwindigkeit und Dehnrate eines Newtonschen Fluids entlang der x-Achse.}
\end{figure}

In Abb. 2-4 sind die Geschwindigkeit v_x als durchgezogene Linie und die entsprechende Dehnrate $\dot{\varepsilon}$ strichliert entlang der x-Achse dargestellt. Die Geschwindigkeit steigt im Einlaufbereich der Düse zunächst kontinuierlich an, um dann innerhalb der Düse einen konstanten Wert anzunehmen. Die Dehnrate steigt im Reservoir ebenfalls an und erreicht etwa 1 mm vor dem Düsenlauf ein Maximum. In der Schlitzdüse sinkt die Dehnrate innerhalb weniger Millimeter wieder ab und erreicht verschwindend kleine Werte. Daraus
ergibt sich die Fragestellung, welche Düsengeometrie in der Lage ist eine konstante Dehnrate innerhalb der Düse zu erzeugen. Die Antwort darauf findet sich im folgenden Abschnitt.

Strömung in einer hyperbolischen Düse

Die Form der hyperbolischen Düse ist in einem kartesischen Koordinatensystem wie folgt definiert:

\[y(x) = \pm \frac{f}{x + x_0} \quad \text{für} \quad x \geq 0 \quad \text{und} \quad x_0 \geq 0 \]

Dabei ist \(f \) der Formparameter der Düse, \(x_0 \) der Abstand der Tangente der Hyperbel zur y-Achse und die Funktion \(y(x) \) die Grenzlinie, welche die Düse beschreibt. Die resultierenden Hyperbeläste für \(x \geq 0 \) sind in Abb. 2-5 für drei unterschiedliche Formparameter \(f \) dargestellt. Je größer \(f \), desto größer wird der Abstand zwischen beiden Düsenansätzen in y-Richtung bei gleicher x-Koordinate. Die Breite \(B \) der Düse ist nun eine Funktion der x-Koordinate.

Abb. 2-5: Verschiedene Geometrien, die durch den Formparameter \(f \) festgelegt werden. Der Formparameter \(f \) ist in \(\text{mm}^2 \) angegeben.

Innerhalb dieser Düse bildet sich ein Strömungsprofil mit konstanter Dehnrate aus. Eine ausführliche analytische Herleitung zur Berechnung der Dehnrate aus der Düsenform ist in Anhang A zu finden. Im Vergleich zur Schlitzdüse wird das strömende Fluid weit weniger beschleunigt, wenn es die Einlaufebene \(x=0 \) erreicht, da sich der Querschnitt nicht plötzlich, sondern graduell verjüngt. Abb. 2-6 zeigt die mit FEM-Rechnungen bestimmte Geschwindigkeit (durchgezogene Linie) und Dehnrate (strichliert) entlang der x-Achse für ein Newtonsches Fluid mit den gleichen Materialparametern und Startbedingungen, wie sie schon im vorherigen Abschnitt definiert wurden (\(\rho=1 \ \text{g/cm}^3, \ \eta_0=10 \ \text{Pas}, \ \nu_0=150 \ \text{mm/s}, \ L=50 \ \text{mm}, \ B_R=14 \ \text{mm} \)). Die Geschwindigkeit ist im Reservoir konstant und steigt innerhalb der
Grundlagen

hyperbolischen Düse konstant an. Die Dehnrate ist im Reservoir annähernd Null. Im Einlaufbereich und über einige mm innerhalb der Düse steigt die Dehnrate schnell an, um im weiteren Verlauf einen konstanten Wert anzunehmen.

Abb. 2-6: Berechnete Geschwindigkeit v_x und Dehnrate innerhalb der hyperbolischen Düse für ein Newtonsches Fluid.

2.2 Spannungsoptik

2.2.1 Polarisation

Licht kann als eine transversale elektromagnetische Welle betrachtet werden. Breitet es sich in z-Richtung aus, so gilt für die Feldvektoren \vec{E} des elektrischen Feldes:

$$\vec{E}(z,t) = \begin{pmatrix} E_{0x} \cos(kz - \omega t) \\ E_{0y} \cos(kz - \omega t + \varphi) \end{pmatrix}$$ \hspace{1cm} 2-32

Je nach Phasenunterschied zwischen den beiden Feldkomponenten in x- und y-Richtung liegt linear polarisiertes Licht ($\varphi = 2m\pi, m \in \mathbb{Z}$), zirkular polarisiertes Licht ($E_{0x}=E_{0y}$, $\varphi = -\pi/2 + 2m\pi, m \in \mathbb{Z}$) oder elliptisch polarisiertes Licht ($\varphi \in \mathbb{R}$) vor.

2.2.2 Spannungsdoppelbrechung und Formdoppelbrechung

Fließinduzierte Spannungsdoppelbrechung

Die Lichtausbreitung durch ein transparentes Medium erfolgt aufgrund der Anregung der Elektronen der Moleküle. Die Elektronen werden durch das E-Feld angeregt und reemittieren Elementarwellen. Die Elementarwellen vereinigen sich und die resultierende gebrochene Welle bewegt sich weiter fort. Die Geschwindigkeit der Welle und somit auch der Brechungsindex sind durch die Differenz zwischen der Frequenz des E-Feldes und der
Eigenfrequenz der Elektronen bestimmt. Eine Anisotropie des Potentials in dem das Elektron eingeschlossen ist (Potentialtopf), führt daher zur einer Anisotropie des Brechungsindex.

Da der Brechungsindex von der Polarisationsrichtung abhängt, muss er als Tensor angegeben werden. In einer näherungsweise zweidimensionalen Strömung kann dieser Tensor durch zwei Größen charakterisiert werden: den Betrag der Spannungsdoppelbrechung ∆n und den Extinktionswinkel χ. Betrachtet man ein einzelnes durch Scher- und Dehnspannungen elliptisch deformiertes Polymerknäul (Abb. 2-7), so ist χ der Winkel zwischen der längsten Hauptachse des Ellipsoids und der x-Achse des Laborsystems. ∆n=n₁-n₂ ist der Betrag der Spannungsdoppelbrechung längs dieser Hauptachse. Der Tensor n ergibt sich im Laborsystem mit der Rotationsmatrix R(χ) zu:

\[
\mathbf{n} = R^{-1}(\chi) \begin{pmatrix} n_1 & 0 & 0 \\ 0 & n_2 & 0 \\ 0 & 0 & n_3 \end{pmatrix} R(\chi)
\]

\[
\begin{pmatrix} \cos\chi & -\sin\chi & 0 \\ \sin\chi & \cos\chi & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} n_1 & 0 & 0 \\ 0 & n_2 & 0 \\ 0 & 0 & n_3 \end{pmatrix} \begin{pmatrix} \cos\chi & \sin\chi & 0 \\ -\sin\chi & \cos\chi & 0 \\ 0 & 0 & 1 \end{pmatrix}
\]

Dabei wurde angenommen, dass keine Dehnung in der dritten Raumrichtung (z) stattfindet, also planare Strömungsbedingungen vorliegen. Die beiden Größen ∆n und χ werden mit dem Versuchsaufbau bestimmt, der in Kapitel 3 beschrieben wird.
Abb. 2-7: Das gestreckte Polymerknäul ist um den Winkel \(\chi \) zur \(x \)-Achse gedreht und hat unterschiedliche Brechungsindizes entlang der Basisvektoren im gedrehten Koordinatensystem.

Formdoppelbrechung

Weicht bei Polymerlösungen der Brechungsindex des Lösungsmittels vom Brechungsindex des Polymers ab, so kommt es bei einem deformierten Polymerknäul zu einer zusätzlichen Formdoppelbrechung. Für die Formdoppelbrechung sind die unterschiedlichen dielektrischen Eigenschaften des Polymers und des Lösungsmittels in der Polymer-Lösungsmittel Grenzschicht verantwortlich.

2.2.3 Spannungsoptisches Gesetz

Kräfte, die durch elastische Eigenschaften des Materials hervorgerufen werden, erklärt die Theorie der Gummielastizität (Treloar 1958) mit der Abnahme der Entropie bzw.

\[
\mathbf{n} = \mathbf{n}_a + \mathbf{n}_i = C\mathbf{\tau} + A\mathbf{1} \quad 2-35 \\
\mathbf{n}_a = C\mathbf{\tau} \quad 2-36
\]

Dabei ist C der spannungsoptische Koeffizient, \mathbf{n}_a der anisotrope Anteil und \mathbf{n}_i der isotrope Anteil des Brechungsindexensors. A ist ein Skalar, welches den isotrophen Anteil der Spannungsdoppelbrechung beschreibt. Betrachtet man nur die anisotropen Anteile, so ergibt sich Gleichung 2-36. Aus dieser folgt direkt, dass die Richtungen der Hauptscharen des Brechungsindexensors mit denen des Spannungstensors übereinstimmen. Werden die Gleichungen 2-33 und 2-35 kombiniert, so steht $\Delta n = n_1 - n_2$ mit $\Delta \tau = \tau_1 - \tau_2$ der Spannung entlang der Hauptschale des Spannungstensors, der ersten Normalspannungs differenz N_1 und der Scherspannung τ_{xy} in folgendem linearem Zusammenhang:

\[
\Delta n = C \cdot \Delta \tau \quad 2-37
\]

Dabei spricht man davon dass das spannungsoptische Gesetz gilt, falls der spannungsoptische Koeffizient konstant ist, also ein linearer Zusammenhang zwischen Doppelbrechung und Spannung existiert. Anderenfalls sagt man, das spannungsoptische Gesetz sei verletzt.

Soll aus den während des FIB-Versuchs gemessenen Größen Δn und χ die Scherspannung τ_{xy} und Dehnspannung N_1 berechnet werden, so gelten im Laborsystem folgende Gleichungen:

\[
\tau_{xy} = \frac{1}{2C} \Delta n \sin(2\chi) \quad 2-38 \\
N_1 = \tau_{xx} - \tau_{yy} = \frac{1}{C} \Delta n \cos(2\chi) \quad 2-39
\]
Der Betrag der Doppelbrechung Δn entlang der Hauptsachsen des Brechungsindex tensors enthält sowohl die fließinduzierte Spannungsdoppelbrechung Δn_S als auch eine mögliche Formdoppelbrechung Δn_F. Der spannungsoptische Koeffizient C ergibt sich somit aus $2\,37$ additiv aus Spannungsdoppelbrechung und Formdoppelbrechung und stellt somit einen effektiven Spannungsoptischen Koeffizienten dar:

\[
C = \frac{\Delta n_S}{\Delta \tau} + \frac{\Delta n_F}{\Delta \tau} = C_S + C_F
\]

\[2\,40\]

2.2.4 Gültigkeitsbereich des spannungsoptischen Gesetzes

2.2.5 Abhängigkeiten des spannungsoptischen Koeffizienten

Temperaturabhängigkeit

Der spannungsoptische Koeffizient kann direkt aus der anisotropen Polarisierbarkeit ($\alpha_1 - \alpha_2$), dem Brechungsindex n und der Temperatur T berechnet werden (Fuller 1995):

\[
C = \frac{2\pi}{45k_B T} \left(\frac{n^2 + 2}{n} \right)^2 (\alpha_1 - \alpha_2)
\]

\[2\,41\]

k_B ist die Boltzmann-Konstante. Betrachtet man Formel 2-41 in Hinblick auf die Temperaturabhängigkeit, so ist zunächst die direkte inverse Proportionalität von C zu T offensichtlich. Da T jedoch in Kelvin angegeben wird, ist diese Änderung bei kleinen Temperaturänderungen bei Raumtemperatur klein. Ein zweiter möglicher Einfluss der Temperatur auf C ist die Veränderung der Brechzahl mit der Temperatur. Diese Änderung ist ebenfalls klein und ist erst bei größeren Temperaturdifferenzen messbar. Der dritte und größte Effekt ist die

Molmassen- und Konzentrationsabhängigkeit

2.3 Polyelektrolytlösungen

2.3.1 Konzentrationsbereiche

2.3.2 Gyrationsradius und kritische Konzentration

Die Ausdehnung der verknäulten Polymerketten geht in die Diskussion der in Kapitel 7 gemessenen Dehnverfestigung ein. Daher soll hier ein kurzer Überblick über Maße für die Ausdehnung der Makromoleküle gegeben werden: der Gyrationsradius und das Molekülvolumen.

Stellt man sich ein Polymermolekül als eine Kette von N Massenpunkten vor, die miteinander verbunden sind (Irrflugkette) und kennt man die Positionen R_i der Massenpunkte und den Schwerpunkt des Moleküls R_{CM}, so kann man den Erwartungswert des so genannten Gyrationsradius R_G definieren (Dautzenberg 1994) als:

$$\langle R_G^2 \rangle = \frac{1}{N+1} \sum_{i} \langle (R_i - R_{CM})^2 \rangle$$

Eine einfache Methode, um auf das Molekülvolumen zu schließen, ist die Bestimmung der reduzierten Viskosität mittels eines Ubbelohde-Viskosimeters. Dessen Aufbau und
Funktionsweise sind z. B. bei Hoffmann (Hoffmann 1977) zu finden. Aus der Einsteinformel, welche den Volumenanteil des gelösten Stoffes mit der spezifischen Viskosität η_{sp} der Lösung in Beziehung setzt, lässt sich eine Proportionalität zwischen der reduzierten Viskosität η_{red} und dem Molekülvolumen V_P ableiten (Kulicke 2004):

$$\eta_{red} \sim V_P \quad \text{mit} \quad \eta_{red} = \frac{\eta_{sp}}{c} \quad \text{und} \quad \eta_{sp} = \frac{\eta - \eta_L}{\eta_L}$$ \hspace{1cm} 2-43

Dabei ist η die Viskosität der Polymerlösung im Newtonschen Bereich für kleine Scherraten und η_L die Viskosität des newtonschen Lösungsmittels. Die Konzentration der Polymerlösung ist c. Die in 2-43 angegebene Proportionalität gilt für verdünnte Polymerlösungen mit flexiblen Polymerketten, also näherungsweise kugelförmiger Form der Makromoleküle.

Der Grenzwert der reduzierten Viskosität für verschwindend geringe Polymerkonzentration ist die intrinsische Viskosität:

$$[\eta] = \lim_{c \rightarrow 0} \eta_{red} \quad , \quad 2-44$$

Diese ist nach Gleichung 2-43 proportional zum Molekülvolumen V_P im vollständig verdünnten Medium.

In der Literatur (Kulicke 2004) wird oftmals der Überlappungsparameter $[\eta]c^*$ zur Definition der kritischen Konzentration c^* verwendet, also derjenigen Konzentration, bei der sich alle idealisierten sphärischen Makromoleküle berühren. Dabei gilt:

$$c^* \approx \frac{1}{[\eta]}$$ \hspace{1cm} 2-45

Da bei Polyelektrolytolösungen das Molekülvolumen eine Funktion der Konzentration ist, wird bei geringen Konzentrationen zunächst ein sehr großes η_{red} und somit ein sehr großes $[\eta]$ ermittelt. c^* ist nach Gleichung 2-45 sehr klein. Wird die Konzentration c^* erreicht, so hat sich das Molekülvolumen bereits so stark vermindert, dass die Polymermoleküle nur noch einen Bruchteil des Lösungsmittelvolumens ausmachen. Bei Polyelektrolyten ist somit die Berechnung von c^* nach Gleichung 2-45 nicht anwendbar. Eine alternative Definition der kritischen Konzentration c^* wird in Kapitel 5 dargestellt.
2.4 Literaturübersicht

Die Methoden zur Messung der Dehnviskosität können in zwei Gruppen unterteilt werden. In mechanische Methoden und in berührungsfreie optische Methoden. Die Dehnviskosität wird bei allen Methoden mit Hilfe der Zustandsgleichung 2-16 aus der Dehnspannung N_1 und der Dehnrate $\dot{\varepsilon}$ ermittelt. Jede Messmethode ermittelt N_1 und $\dot{\varepsilon}$ mit unterschiedlichen physikalischen Prinzipien. Um die optische Messmethode, welche in dieser Arbeit verwendet wird, in einen größeren Kontext zu stellen, wird sie mit den bereits existierenden mechanischen sowie optischen Methoden verglichen.

2.4.1 Mechanische Methoden zur Messung der Dehnviskosität

Verfahren mit Endklemmen für Polymerschmelzen

Methoden

Reproduzierbarkeit und Vergleichbarkeit

Verfahren ohne Endklemmen für Polymerlösungen und -schmelzen

Im Vergleich zu Polymerschmelzen ist die Messung der Dehnviskosität an niederviskosen Polymerlösungen (μ<100 Pas) experimentell schwierig, da sich diese nicht einfach einspannen lassen. Die mechanischen Messmethoden für Polymerlösungen berechnen die Dehnrate in der Strömung meist aus einer Messung des Volumendurchsatzes und die Normalspannungsdifferenz aus einer Druckdifferenz oder Kraftmessung. Allen Methoden ist gemein, dass sie Annahmen über die Strömungsprofile machen, um \(f \) und \(N_1 \) zu ermitteln. Unterscheidet sich das tatsächliche Strömungsprofil von den Annahmen, so ergeben sich Abweichungen in der Dehnviskosität. Im Folgenden werden verschiedene Methoden dargestellt, mit denen es möglich ist, die Dehnviskosität an niederviskosen Lösungen zu messen. Meist werden die Methoden nach den physikalisch-technischen Prinzipien benannt, nach denen sie arbeiten.

Methoden

Beim schlauchlosen Siphon wird eine Düse, an welcher ein Unterdruck anliegt, in ein Bad aus Polymerlösung getaucht und hochgezogen (Abb. 2-9B). Es bildet sich ein Flüssigkeitsfaden. Aus der Form des Flüssigkeitsfadens lassen sich die Masse und somit die nach unten wirksende Kraft berechnen. Die Dehnrate wird aus dem Volumenstrom abgeschätzt. Wie beim Faserspinnen müssen auch hier die Oberflächenspannung, die Trägheit des Polymerfadens sowie die Gravitation korrigiert werden.

entwickelte populäre Analyse unzulässige Vereinfachungen macht und daher nicht verwendet werden sollte.

Abb. 2-9: Verschiedene mechanische Methoden zur Bestimmung der Dehnviskosität an niederviskosen Polymerlösungen. (A) Faserspinnen, (B) Schlauchloser Siphon, (C) uniaxiale Stagnationsströmung, (D) planare Stagnationsströmung, (E) Gegenstrahlanordnung, (F) Einlaufströmungen, (G) Filament-Dehnung. (Macosko 1993)

Dehnviskosität berechnet, die mit der Dehnviskosität des Fluids übereinstimmen sollte. Die Gültigkeit der eingesetzten Modelle wurde nur für Polystyrollösungen gezeigt und erscheint für den generellen Einsatz an anderen Polymerlösungen fraglich.

Eine Messmethode, die sehr viel Anwendungsnähe zur tertiären Erdölförderung besitzt, nutzt Strömungen durch poröse Medien, um aus der Druckdifferenz vor und nach dem Medium den so genannten Fließwiderstand zu berechnen. Ab einer gewissen Volumenrate steigt dieser

Reproduzierbarkeit und Vergleichbarkeit

<table>
<thead>
<tr>
<th>Methode</th>
<th>Vorteile</th>
<th>Nachteile / systematische Fehler</th>
</tr>
</thead>
<tbody>
<tr>
<td>Faserspinnen</td>
<td>Einfache Probenpräparation</td>
<td>Korrekturen für Gravitation und Oberflächenspannung notwendig.</td>
</tr>
<tr>
<td>Schlauchloser Siphon</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Stagnationsströmung</td>
<td>Hohe Dehnungen</td>
<td>Keine konstante Dehnrate Instationäre Strömung</td>
</tr>
<tr>
<td>Gegenstrahlanordnung</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Einlaufströmungen</td>
<td>Großer Viskositätsbereich</td>
<td>Komplexe Strömung</td>
</tr>
<tr>
<td>Filament-Dehnrheometer</td>
<td>Konstante Dehnrate</td>
<td>Strömung im Flüssigkeitsfaden Radiale Inhomogenität</td>
</tr>
<tr>
<td>Kapillarbruch-Rheometer</td>
<td>Keine Kraftmessung notwendig</td>
<td>Keine konstante Dehnrate Kleine Gesamtdehnung Strömung im Flüssigkeitsfaden Radiale Inhomogenität</td>
</tr>
</tbody>
</table>

Tab. 2-1: Methoden zur Bestimmung der Dehnviskosität niederviskoser Fluide.

Abb. 2-10: Dehnviskositäten der niederviskosen Polymerlösung M1; gemessen mit unterschiedlichen Messmethoden (Quelle: (James 1993)).

2.4.2 Optische Methoden zur Geschwindigkeits- und Spannungsmessung

Die Abschätzung der lokalen Verteilung von Spannungs- und Geschwindigkeitsprofilen aus der Druckdifferenz und dem Volumenstrom, wie sie in Abschnitt 2.4.1 diskutiert wurden, sind bei optischen Methoden nicht notwendig, da diese es ermöglichen, die Spannungs- und Geschwindigkeitsprofile lokal zu messen. Von allen in Tab. 2-1 genannten Methoden ist die Einlaufströmung für optische Messungen am besten geeignet, da sich in Strömungskanälen und Düsen eine stationäre Strömung erzeugen lässt und die Düsengeometrie konstant bleibt.

Mit optischen Methoden lassen sich Dehn- sowie Scherspannung gleichzeitig bestimmen. Scherung an den Wänden ist in den untersuchten Geometrien immer noch vorhanden. Der Einfluss auf die Dehnspannung kann jedoch nun lokal gemessen werden. Systematische
Korrekturen der Messmethoden aus Abschnitt 2.4.1, wie Gravitation, Oberflächenspannung und parasitäre Scherspannungen, treten bei der optischen Messung von Düsenströmungen nicht auf.

Optische Geschwindigkeitsmessung

Grundsätzlich gibt es zwei unterschiedliche optische Methoden, die Geschwindigkeit in Strömungen zu messen. Die Teilchenverfolgung (engl.: „Particle Tracking“) und die Laser-Doppler Anemometrie.

Bei der Teilchenverfolgung werden makroskopische Partikel (>0,1 mm) ins strömende Fluid gemischt. Diese werden beleuchtet und machen so die Strömung sichtbar. Mit einer Kamera wird eine Folge von Strömungsbildern aufgenommen. Bildausschnitte von einigen Pixeln werden in zeitlich aufeinander folgenden Bildern miteinander korreliert (Particle Image Velocimetry, PIV) (Adrian 1986), oder alternativ werden einzelne Tracer-Teilchen direkt verfolgt (Particle Tracking Velocimetry, PTV), um die Geschwindigkeit der Tracerpartikel zu bestimmen (Adamczyk und Rimai 1988).

Düse vorausgesetzt werden kann, wurden jedoch nicht durchgeführt. Weitere Untersuchungen dieser Forschungsgruppe beschränken sich auf Druck- und Volumenstrommessungen an hyperbolischen Einlaufströmungen, die wie in Abschnitt 2.4.1 beschrieben auf Annahmen über die Geschwindigkeitsverteilung und Spannungsverteilung zurückgreifen.

Optische Spannungsmessung

Verschiedene Methoden zur optischen Bestimmung der Spannung sind in der Literatur publiziert. Alle arbeiten nach dem physikalischen Prinzip, dass eine Polymerlösung doppelbrechend wird, wenn eine Spannung im Fluid wirkt. Die Messung der Doppelbrechung erlaubt also Rückschlüsse auf den inneren Spannungszustand des Fluids (Spannungsoptisches Gesetz, Abschnitt 2.2.3). Die einfachste Anordnung, die Spannungsdoppelbrechung zu messen, besteht aus zwei Polfiltern, die zueinander um 90° gedreht sind. Dazwischen befindet sich das Polymer. Mit dieser Methode ist es jedoch nicht möglich, gleichzeitig den Extinktionswinkel \(\chi \) und die Doppelbrechung \(\Delta n \) zu bestimmen. Osaki (Osaki, et al. 1979) erweiterte die Messmethode, indem er zwei aufeinander folgende Messungen verwendete, um \(\chi \) und \(\Delta n \) zu bestimmen. Experimentelle Schwierigkeiten, welche sich aus der zeitlichen Differenz beider Messungen ergaben, führten schließlich zu der Entwicklung der Zwei-Farben-Spannungsdoppelbrechung von Chow (Chow und Fuller 1984), bei der beide Messungen simultan durchgeführt werden und somit eine gleichzeitige Bestimmung von \(\chi \) und \(\Delta n \) erlauben. Diese Zwei-Farben-Spannungsdoppelbrechung wird in der vorliegenden Arbeit verwendet. Eine detaillierte Beschreibung des experimentellen Aufbaus und der Funktionsweise findet sich in Abschnitt 3.3.

Frattini und Azzam (Azzam, et al. 1990; Frattini und Fuller 1984) entwickelten alternativ zur Zwei-Farben-Spannungsdoppelbrechung ein Verfahren, welches mehrere elektrisch steuerbare photoelastische Modulatoren verwendet, um die Phase des Lichts entlang des optischen Pfades zu verändern. Dadurch wird es möglich, \(\chi \) und \(\Delta n \) mit nur einer Lichtwellenlänge zu bestimmen (Fuller 1995).

Die Auflösungsgrenze und Reproduzierbarkeit lässt sich für beide Methoden aus publizierten Daten abschätzen (Chow und Fuller 1984; Johnson, et al. 1985) und liegt in der gleichen Größenordnung, wodurch sich keine Präferenzen für die eine oder andere Methode ergeben.

Optische Bestimmung der Dehnviskosität

von sechs unterschiedlichen rheologischen Modellen (Oldroyd-B, White-Metzner, Acierno, Giesekus, Bird-DeAguiar, Phan-Thien-Tanner) verglichen, wobei das Phan-Thien-Tanner Modell die experimentellen Daten am besten beschrieb. Die Dehnrate entlang der x-Achse in der verwendeten Schlitzdüse ist jedoch weit davon entfernt konstant zu sein. Der Quotient aus N_1 und $\dot{\varepsilon}_{xx}$ kann daher nicht als transiente Dehnviskosität bezeichnet werden.

Abb. 2-11: Variierende Dehnrate innerhalb einer planaren hyperbolischen Düse. (A) Geometrie und Koordinatensystem, (B) berechnete und experimentelle Dehnraten längs der y-Achse im Einlauf und (C) längs der x-Achse im Auslauf der Düse. (Daten nach Schoonen (Schoonen, et al. 1998)).
2.4.3 Offene Fragen und Zielsetzung

Optimierung der Messmethode

Die nachfolgend genannten Ziele sind die Voraussetzung für eine zuverlässige Charakterisierung von niederviskosen Polymerfluiden wie die ausgewählten wässrigen Polyacrylamidlösungen:

- Realisierung von Dehnströmungen mit konstanter Dehngeschwindigkeit in speziell dafür konstruierten hyperbolischen Düsen.

Es soll eine Messmethode aufgebaut werden, welche die Dehneigenschaften von Polyacrylamidlösungen als Materialfunktionen bestimmen kann, d. h. den Einfluss der Zeit und der Dehnrate auf die Dehneigenschaften voneinander separieren kann. Um die Zeitabhängigkeit der Dehnviskosität bei konstanter Dehnrate zu messen, wird ein Strömungskanal eingesetzt, an dessen Ende sich eine planare hyperbolische Düse befindet. Wie in Kapitel 5 experimentell gezeigt wird, ist die Dehnrate entlang der Kanalachse in Strömungsrichtung konstant. Im Vergleich dazu sind keine in der Literatur bekannten optischen Methoden zur Bestimmung der Dehnviskosität an niederviskosen Polymerlösungen in der Lage, annähernd konstante Dehnraten zu erzeugen. Das Filament-Dehnrheometer als nicht-optische Methode kann zwar konstante Dehnraten erzeugen, jedoch machen parasitäre Spannungen an freien Oberflächen der Probe Korrekturen der Dehnspannung nötig. Diese Korrekturen und die tatsächlichen Spannungen in der Probe sind bei niederviskosen Fluiden von gleicher Größenordnung, so dass die Möglichkeit eines systematischen Fehlers groß ist.

- Möglichkeit zur Überprüfung der Konstanz der Dehnrate längs der x-Achse mit LDA-Messungen.

Die Konstanz der Dehnrate in Abhängigkeit von Strömungsbedingungen und untersuchten Materialien wird in der Literatur, auch aufgrund mangelnder Messtechnik, nur knapp behandelt. Daraus ergibt sich die Fragestellung, unter welchen Strömungsbedingungen in der verwendeten hyperbolischen Düse von einer konstanten Dehnrate ausgegangen werden kann.

- Präzise Spannungsmessung längs der x-Achse.

Die Bestimmung der ersten Normalspannungs differenz erfolgt mittels Zwei-Farben Spannungsdoppelbrechung. Der Aufbau der Methode ist in Kapitel 3 geschildert und die Genauigkeit der Methode ist in Kapitel 4 an Polyisobutylen dargestellt. Polyisobutylen sollen wegen ihres einfachen Newtonschen Verhaltens dazu benutzt werden, die Messapparatur zunächst auf ihre Funktionalität hin zu testen. Die präzise
Spannungsmessung und die Bestimmung der Dehnviskosität steht dabei im Vordergrund.

Bestimmung der Dehneigenschaften von Polyacrylamiden

- Rein experimentelle Bestimmung der Dehnviskosität als Funktion der Zeit bei unterschiedlichen Hencky-Dehnraten.

- Quantifizierung der Dehnverfestigung von Polyacrylamiden.

Bestimmung der spannungsoptischen Koeffizienten der eingesetzten Polyacrylamidlösungen

3 Versuchsaufbau

3.1 Koordinatensystem

Das Koordinatensystem für alle nachfolgenden Untersuchungen ist in Abb. 3-1 dargestellt. Die Achsen wurden so gewählt, dass die x-Achse in Hauptströmungsrichtung, die y-Achse senkrecht zur Kanalwand und die z-Achse senkrecht dazu zeigt. Der Ursprung liegt im Zentrum des Strömungskanals innerhalb der y-z Ebene, welche mit der Düsenoberkante zusammenfällt.

![Koordinatensystem](image)

Abb. 3-1: Koordinatensystem für alle weiteren Messungen und Berechnungen. Die Hauptströmungsrichtung entspricht der x-Richtung.

3.2 Laser-Doppler-Anemometer

Der Argon-Ionen-Laser wird mit einer Ausgangsleistung von 300 mW betrieben, wobei die zwei Hauptwellenlängen 488 nm (Blau) und 514 nm (Grün) verwendet werden. In der Transmitterbox durchläuft der primäre Laserstrahl eine Strahlteileroptik und wird in die einzelnen Wellenlängenkomponenten aufgeteilt, und zwar so, dass von jeder Wellenlängenkomponente zwei Teilstrahlen vorhanden sind. Ein Strahl jedes Paares wird mittels einer Brag-Zelle um 40 MHz frequenzverschoben.
Versuchsaufbau

Abb. 3-2: Aufbau des Laser-Doppler-Anemometers aus Ar⁺-Laser, Transmitterbox und Sonde.

Zwei Strahlenpaare werden aus der Transmitterbox in vier Lichtleiter eingekoppelt und zur Messsonde geführt. Die Messsonde besteht aus einem Linsensystem der Brennweite 200 mm, welches jedes Strahlenpaar im Brennpunkt zum Schnitt bringt und gleichzeitig die einzelnen Strahlen fokussiert. Im Schnittpunkt jedes Strahlenpaars bildet sich ein räumliches Interferenzmuster (Abb. 3-3 A). Das Schnittvolumen hat die Form eines Rotationsellipsoids mit den Abmessungen von 43 μm in x- und y-Richtung sowie 597 μm in z-Richtung. Die Interferenzmuster beider Strahlenpaare werden im gleichen Messvolumen orthogonal zueinander positioniert, so dass Messungen der Geschwindigkeit in x- bzw. y-Richtung gleichzeitig möglich sind.

Der messbare Geschwindigkeitsbereich der LDA erstreckt sich von 100 μm/s bis 50 m/s. Die örtliche Auflösung in x- und y-Richtung beträgt 43 μm, die zeitliche Auflösung ist abhängig von der Anzahl der detektierten Streuteilchen im Fluid pro Sekunde (Datenrate).

3.3 Zwei-Farben-Spannungsdoppelbrechung

3.3.1 Optischer Aufbau

Der optische Aufbau der in dieser Arbeit verwendeten Zwei-Farben-Spannungsdoppelbrechung ist in Abb. 3-4 skizziert und orientiert sich am experimentellen Aufbau von Chow (Chow und Fuller 1984), welcher ursprünglich für Messungen am Rotationsrheometer konzipiert war. Eine detaillierte Darstellung ist in Abb. 3-5 zu sehen. Der Strahl eines Ar-Ionen-Lasers mit der Leistung von 750 mW wird über zwei Spiegel (S) zu einer λ/4-Platte gelenkt. Diese erzeugt aus dem linear polarisierten Strahl des Lasers einen elliptisch polarisierten Strahl. Je nach Orientierung der λ/4-Platte ändert sich die Intensität nach den feststehenden Polarisatoren P₁ und P₂ bzw. vor der Messzelle. Die Orientierung der λ/4-Platte ist bei allen Experimenten stets so gewählt, dass I₁₀ und I₂₀ gleich sind.

Nach der λ/4-Platte trifft der primäre Strahl auf einen Interferenzfilter (IF), welcher nur die Wellenlänge λ₂ = 514 nm passieren lässt. Der restliche Strahlanteil wird über einen Spiegel zu einem weiteren Interferenzfilter gelenkt. Dieser transmittiert nur die Strahlkomponente der Wellenlänge λ₁ = 488 nm. Dieser Teilstrahl 1 wird an dem nachfolgenden Polarisator P₁ 22,5 ° zur Hauptströmungsrichtung polarisiert. Mit einem halbdurchlässigen Spiegel (HS) werden 2 % der Strahlenergie ausgekoppelt und am Referenzdetektor (Ref 1) registriert. Der
Reststrahl passiert einen weiteren halbdurchlässigen Spiegel und trifft auf eine Linse, welche direkt vor der Messzelle platziert ist.

Abb. 3-4: Prinzipieller Aufbau der Zwei-Farben-Spannungsdoppelbrechung. Dargestellt sind der Argon-Ionen-Laser, Referenzdetektoren (Ref), Messdetektoren (Mess), Polarisatoren (P) und Analysatoren (A). Index 1 kennzeichnet optische Komponenten entlang des Laserstrahls mit \(\lambda_1 = 488 \text{ nm} \), Index 2 mit \(\lambda_2 = 514 \text{ nm} \).

Abb. 3-5: Optischer Aufbau der Zwei-Farben-Spannungsdoppelbrechung. (S) Spiegel, (HS) halbdurchlässiger Spiegel, (IF) Interferenzfilter, (P1,P2) Polarisatoren, (A1,A2) Analysatoren, (Ref 1, Ref 2) Referenzdetektoren, (Mess 1, Mess 2) Messdetektoren.

Der Teilstrahl 2 der Wellenlänge \(\lambda_2 = 514 \text{ nm} \) passiert nach dem ersten Interferenzfilter den Polarisator \(P_2 \) und wird -22,5° zur Hauptströmungsrichtung polarisiert. Nach Auskopplung von 2% der Strahlenergie (Ref 2) wird der Teilstrahl über einen Spiegel und einen halbdurchlässigen Spiegel mit dem Teilstrahl 1 vereinigt und wird zur Linse vor der Messzelle weitergeleitet. Die Linse direkt vor und nach der Messzelle bildet einen optischen Aufbau,
welcher das ankommende parallele Strahlenbündel vor der Messzelle in der Mitte der Düsen fokussiert und durch die zweite Linse wieder parallelisiert (Gerthsen, et al. 1989).

Die erneut parallelisierten Strahlenbündel werden mittels einer Linse auf die Messdetektoren (Mess 1 und Mess 2) fokussiert. Der vom Interferenzfilter reflektierte Teilstrahl mit der Wellenlänge \(\lambda_1 = 488 \text{ nm} \) wird nach dem Durchlaufen des Analysators A_1 und eines weiteren Interferenzfilters detektiert. Der transmittierte Teilstrahl der Wellenlänge \(\lambda_2 = 514 \text{ nm} \) durchläuft den Analysator A_2 und trifft über einen Spiegel auf den Messdetektor. Die Analysatoren A_1 und A_2 sind jeweils 90° zu den jeweiligen Polarisatoren P_1/P_2 gedreht, so dass bei ruhender Strömung in der Messzelle \(I_{1M} \) und \(I_{2M} \) zu Null werden.

3.3.2 Messdatenerfassung
Zur Erfassung der Intensitätsignale der Mess- und Referenzdetektoren wurde ein PC mit einer Mehrkanalmesskarte (Fa. Keithly) verwendet. Um die von der Messkarte registrierten Daten in Echtzeit anzuzeigen und auf Festplatte zu speichern, wurde ein Auswerteprogramm mit „Testpoint“ erstellt. Die Samplerate wurde bei allen weiteren Messungen der mittleren Datenrate der LDA angepasst und auf 1000 Hz eingestellt. Die Synchronisierung und weitere Verarbeitung der Messdaten von FIB und LDA erfolgte mit dem Programm „Matlab“.

3.3.3 Auswertung der Intensitätsmessungen
Analog zu Chow (Chow und Fuller 1984) wurden aus den Intensitäten der durch den Messaufbau transmittierten Laserstrahlen die Phasenverschiebungen \(\delta_1 \) und \(\delta_2 \) der Laserstrahlen mit den Wellenlängen \(\lambda_1 \) und \(\lambda_2 \) mit Gleichung 3-1 ermittelt. Diese Phasenverschiebungen werden durch die anisotropen Spannungen im Fluid hervorgerufen. Die Doppelbrechung \(\Delta n \) in Hauptspannungsrichtung und der Extinktionswinkel \(\chi \) lassen sich mit den Gleichungen 3-2 und 3-3 aus \(\delta_2 \) berechnen:

\[
\delta_2 = 2 \arcsin \left[\sqrt{i_1_t + i_2_t} \left(1 - \beta \frac{i_1}{i_1 + i_2} \right) \right] = \frac{\lambda_1}{\lambda_2} \delta_1 \quad \text{mit} \quad \beta = \frac{\lambda_1 - \lambda_2}{\lambda_2} \quad 3-1
\]

\[
\Delta n = \frac{\lambda_2 \delta_2}{2 \pi W} \quad 3-2
\]

\[
\chi = \frac{1}{2} \arctan \left\{ \frac{i_1^3 \sin^2 \left(\frac{\delta_1}{2} \right)}{i_1 \sin^2 \left(\frac{\delta_2}{2} \right)} \right\} + \theta \quad 3-3
\]

Zur physikalischen Bedeutung von \(\Delta n \) und \(\chi \) sei nochmals auf Abb. 2-7 verwiesen. \(i_1 = I_1/I_{1t} \) und \(i_2 = I_2/I_{2t} \) sind die Verhältnisse der Intensitäten vor und nach der Messzelle für jede Wellenlängenkomponente. \(I_1 \), \(I_2 \), \(I_{1t} \) und \(I_{2t} \) wurden unter Berücksichtigung der Transmissionsfaktoren des optischen Aufbaus ermittelt. Das Verfahren ist in Anhang D beschrieben. \(\theta \) ist der Winkel zwischen der Polarisationsrichtung des Laserstrahls der Wellenlänge \(\lambda_2 \) und
der Strömungsrichtung (x-Achse). W ist die Dicke des durchstrahlten Fluids und stimmt im Versuchsaufbau mit der Ausdehnung des Strömungskanals in z-Richtung überein.

Aus Δn und χ werden mit dem spannungsoptischen Gesetz die Spannung in Hauptspannungsrichtung $\Delta \tau$, die Scherspannung τ_{xy} und die Dehnspannung $\tau_{xx} - \tau_{yy}$ bestimmt. C ist der spannungsoptische Koeffizient.

\[
\Delta \tau = \frac{\Delta n}{C} \quad 3-4
\]

\[
\tau_{xy} = \frac{1}{2} \Delta \tau \sin(2\chi) \quad 3-5
\]

\[
N_i = \tau_{xx} - \tau_{yy} = \Delta \tau \cos(2\chi) \quad 3-6
\]

Die Gleichungen 3-4 bis 3-6 sind ein zentraler Punkt dieser Arbeit und werden für den weiteren Verlauf, z. B. der Bestimmung der Dehnviskosität, wichtig sein.

3.3.4 Messung an einer $\lambda/4$-Platte

Die Genauigkeit der Messapparatur wurde zunächst an einer $\lambda/4$-Platte getestet, welche eine konstante Phasenverschiebung von $\delta=\pi/2$ erzeugt. Dazu wurde die Messzelle entfernt und an deren Position die $\lambda/4$-Platte in den optischen Strahlengang eingebracht. Die optische Achse der $\lambda/4$-Platte konnte variabel im Winkel $\chi_{\lambda/4}$ zur x-Achse justiert werden. Dies simuliert eine Verkippung der Hauptspannungsrichtung um den Winkel $\chi_{\lambda/4}$ zur x-Achse.

Zunächst wurde δ_2 aus Gleichung 3-1 bei unterschiedlichen Winkeln $\chi_{\lambda/4}$ der $\lambda/4$-Platte zur x-Achse bestimmt (Abb. 3-6A). Der Mittelwert der Messungen beträgt $90,1^\circ \pm 0,2^\circ$ und stimmt gut mit dem nominellen Wert von 90° der $\lambda/4$-Platte überein. Die Messung wurde dreimal durchgeführt und gemittelt. Die Standardabweichung dieser Messungen entspricht in etwa der in Abb. 3-6A eingezeichneten Symbolgröße.

Die Genauigkeit der Winkelmessung wurde dadurch bestimmt, dass die $\lambda/4$-Platte zur x-Achse unter dem Winkel $\chi_{\lambda/4}$ justiert und der Extinktionswinkel mit Gleichung 3-3 berechnet wurde (Abb. 3-6 B). Eine gute Übereinstimmung konnte auch hier erreicht werden, was eine korrekte Messung und Auswertung der Intensitätsdaten bestätigt. Die Fehlerbalken wurden ebenfalls durch ein dreimaliges Durchführen der Messung mit anschließender Berechnung der Standardabweichung bestimmt. Der größte Fehler ergibt sich bei der Winkelmessung, falls die Orientierung der $\lambda/4$-Platte mit einer Polarisationsrichtung der Laserstrahlen übereinstimmt. In diesem Fall lagen diese bei $-22,5^\circ$ und $22,5^\circ$.
Versuchsaufbau 41

Abb. 3-6: Test des FIB-Aufbaus mit einer $\lambda/4$-Platte. (A) Phasendifferenz bei unterschiedlichen Orientierungen der $\lambda/4$-Platte. (B) Gemessener Extinktionswinkel χ im Vergleich zum Orientierungswinkel der $\lambda/4$-Platte.

3.4 Messzelle

3.4.1 Aufbau

Die Messzelle besteht aus einem massiven Messingblock, welcher in x-z-Ebene ($y=0$) geteilt ist. Durch dieses Vorgehen ist die Herstellung der Messzelle mit konventioneller Bearbeitungstechnik wie Bohren, Fräsen und Drehen möglich. In das Zentrum der Messzelle ist ein Strömungskanal eingearbeitet, welcher einen quadratischen Querschnitt von $B_R=14$ mm und $W=14$ mm besitzt (Abb. 3-7 A, C). Das Reservoir hat eine Länge L_R von 80 mm, die Düse eine Länge L von 50 mm. Am oberen und unteren Ende dieses Kanals ist ein Flansch angebracht, an welchem die Förderschläuche angeschlossen werden und die Temperatur des Fluids mittels Thermoelementen gemessen wird.

Abb. 3-7: In die Messzelle ist ein Strömungskanal eingearbeitet, der eine Ausdehnung von 14 mm x 14 mm besitzt. Innerhalb dessen definieren auswechselbare Düsenseinsätze die Strömungsbedingungen. Zwei gegenüberliegende Öffnungen, welche durch Silikatgläser abgedeckt sind, dienen als optischer Zugang für die Laserstrahlen (LDA, FIB). (A) Die Messzelle, gesehen entlang der optischen Achse. (B) Ansicht senkrecht zur optischen Achse. (C) Dimensionen des Fließkanals und der Düse mit eingezeichnetem Koordinatensystem.

Im unteren Bereich des Strömungskanals wurden Sockel und Bohrungen angebracht, um austauschbare Düsenseinsätze innerhalb des Kanals mit Schrauben fixieren zu können. Die Geometrien der verwendeten Düsenseinsätze sind in den nächsten Abschnitten 3.4.2 und 3.4.3 beschrieben.

3.4.2 Schlitzdüse

3.4.3 Hyperbolisch geformte Düsenseinsätze

Die eingesetzten hyperbolischen Düsen bestehen aus zwei Düsenseinsätzen, die hyperbolisch geformt sind. Die Länge der Düse ist L=50 mm und die Tiefe W=14 mm. Die Breite B(x) variiert mit der x-Koordinate und erreicht am Düsenende einen minimalen Wert von B_{DE}
(Abb. 3-7 C). Die Form der Düse ist durch Gleichung 2-31 mit $x_0 = 2f/B_0$ gegeben. Es lässt sich zeigen, dass die Strömungsgeschwindigkeit entlang der x-Achse innerhalb der Düse linear ansteigt und die Dehnrate folglich konstant ist (Anhang A.1). Diese Düse wurde eingesetzt, um das zeitliche Verhalten der Dehnviskosität von nicht-Newtonischen Polyacrylamidlösungen bei konstanter Dehnrate zu untersuchen.

3.5 Peripherie des Messaufbaus

Pumpe

Zur kontinuierlichen Förderung des Fluids durch die Messzelle wurde eine Exzenter-schneckenpumpe der Fa. Netsch (NM-021-BY-04S) eingesetzt. Dieser Pumpentyp erzeugt während des Pumpvorgangs nur geringe Druckschwankungen und somit wenig Rauschen in den Messsignalen von LDA und FIB. Eigene Messungen bei Volumenströmen von 1-100 ml/s und Absolutdrücken bis 0,5 MPa ergaben eine maximale relative Schwankung im Druck von 0,5%.

Die Fördermenge der Pumpe beträgt 0,6-5 l/min und kann gegen einen Maximaldruck von 1,8 MPa arbeiten. Da die Drehzahl der Pumpe nach unten begrenzt ist, wurde ein 3-Wege-Hahn am Pumpenausgang angebracht, um niedrigere Volumenströme zu erreichen (Abb. 3-8).

Traversierung

Temperaturkontrolle

Das Fluid wurde während der Messung durch einen Wärmetauscher auf 27 °C ± 1,0 °C gehalten. Die Thermoelemente zur Temperaturkontrolle sind im oberen und unteren Ansatzstutzen der Messzelle eingebaut und haben direkten Kontakt zum strömenden Fluid. Hierdurch wird eine schnelle Ansprechzeit und somit eine genauere Regelung der Temperatur erreicht.
3.6 Durchführung der Messungen

Die Messungen an Polyisobuten wurden bei einer Temperatur von 25±1 °C bis 35±1 °C durchgeführt. Die Messungen an Polyacrylamidlösungen bei einer konstanten Temperatur von 27±1 °C. Dabei wurde darauf geachtet, dass der gesamte Flüssigkeitskreislauf einschließlich Pumpe und Messzelle auf konstanter Temperatur gehalten wurde. Um sicherzugehen, dass stationäre Strömungsbedingungen im Strömungskanal vorliegen, wurden die Messungen erst begonnen, nachdem eine konstante Pumpendrehzahl erreicht war.

Bei jedem Materialwechsel wurde der Pumpenkreislauf zunächst mit Leitungswasser gespült. Danach wurde voll entsalztes Wasser (VE-Wasser) durch den Kreislauf gepumpt, um den Restionengehalt zu minimieren. Erst dann wurde das komplette Kreislaufvolumen durch die Polymerlösung ersetzt.

Die Geschwindigkeiten sowie die Spannungsdoppelbrechung wurden aus jeweils zwei bis vier Messungen gemittelt.
4 Messungen an Polyisobutylenen

4.1 Materialcharakterisierung

In diesem Abschnitt werden die untersuchten Polyisobutylen näher charakterisiert. Die Bestimmung der Molmasse bzw. Molmassenverteilungen, das scherrheologische Verhalten und Kenntnisse über die mechanische Degradation sind Voraussetzungen für die weiteren Scher- und Dehnuntersuchungen, welche in den Abschnitten 4.2 und 4.3 mit dem FIB/LDA-Versuchsaufbau durchgeführt werden.

4.1.1 Molekulare Charakterisierung

![Chemische Strukturformel von Polyisobutyl en]

Abb. 4-1: Chemische Strukturformel von Polyisobut ylen.

4.1.2 Scherrheologisches Verhalten

Die scherrheologischen Eigenschaften der eingesetzten Polyisobutylen wurden mit dem Rotationsrheometer AR-G2 untersucht. Alle Materialien zeigten keinerlei Scherverdünnung bei Frequenztests im untersuchten Frequenzbereich von 0,1 bis 628 rad/s. Bei Messungen mit konstanter Scherrate zeigte sich im Messbereich von $\dot{\gamma} = 0,1 \text{ s}^{-1}$ bis 1000 s$^{-1}$ ebenfalls keinerlei Scherverdünnung. Alle Materialien zeigen somit ein Newtonsches Verhalten. Ein Vergleich der Viskositäten zwischen beiden Tests ergab eine sehr gute Übereinstimmung. Die Cox-Merz-Regel ist daher für diese Materialien erfüllt. Die Viskositäten der Materialien, die den Nullviskositäten entsprechen, sind für verschiedene Temperaturen in Abb. 4-2 dargestellt. Mit steigender Temperatur sinkt die Viskosität. Aufgetragen über die inverse absolute Temperatur ergeben sich Geraden, d. h. die Temperaturabhängigkeit folgt der Arrheniusgleichung

$$\eta_0 = A \cdot \exp \frac{E_a}{RT}$$

Dabei ist E_a die Fließaktivierungsenergie, R die allgemeine Gaskonstante, T die absolute Temperatur und A ein konstanter Faktor. Die Fließaktivierungsenergie E_A (Tab. 4-1) ist im Rahmen der Messgenauigkeit von ±2 kJ/mol konstant.

Um die elastischen Eigenschaften der Materialien zu untersuchen, wurden Kriechversuche durchgeführt. Die stationäre elastische Nachgiebigkeit J^0_ε, welche ein Maß für die elastischen Eigenschaften des Materials darstellt, lag bei allen drei Materialien unter der Auflösungsgrenze des eingesetzten Rotationsrheometers von 10^{-6} Pa^{-1}.

Alle durchgeführten Scherversuche zeigen, dass die eingesetzten Polyisobutylen GP1000, GP1300 und GP2300 ein Newtonsches Verhalten zeigen.

Tab. 4-1: Materialparameter der untersuchten Polyisobutylen GP1000, GP1300 und GP2300.

<table>
<thead>
<tr>
<th>Materialparameter</th>
<th>GP1000</th>
<th>GP1300</th>
<th>GP2300</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dichte ρ bei 25 °C, g/cm3</td>
<td>0,92a</td>
<td>0,92a</td>
<td>0,92a</td>
</tr>
<tr>
<td>Gewichtsmittel der Molmasse M_w, kg/mol</td>
<td>2,2b</td>
<td>3,9b</td>
<td>6,0b</td>
</tr>
<tr>
<td>Polydispersität, M_w/M_n</td>
<td>1,8b</td>
<td>2,4b</td>
<td>2,3b</td>
</tr>
<tr>
<td>Glasübergangstemperatur T_g, °C</td>
<td>-70a</td>
<td>-70a</td>
<td>-70a</td>
</tr>
<tr>
<td>Nullviskosität bei 25 °C, Pas</td>
<td>11,1</td>
<td>34,9</td>
<td>143</td>
</tr>
<tr>
<td>Aktivierungsenergie, kJ/mol</td>
<td>56</td>
<td>57</td>
<td>59</td>
</tr>
</tbody>
</table>

*a Quelle: Datenblatt der Firma BASF
*b Bestimmt als Äquivalentmolmasse in Polystyrol
4.1.3 Mechanischer Abbau im Pumpenkreislauf

Da die Gelpermeationschromatographie nicht für die Messung niedermolekularer Materialien optimiert ist, wurde zur Verifikation dieser Ergebnisse die Nullviskosität der Materialien vor und nach der Belastung im Pumpenkreislauf mit dem Rotationsrheometer ARES bestimmt. Die gemessenen Viskositätswerte stimmen für die einzelnen Materialien im Rahmen der Messgenauigkeit jeweils überein (Tab. 4-2).

<table>
<thead>
<tr>
<th>Material</th>
<th>η_0 vor Versuchsbeginn (Pas)</th>
<th>η_0 nach Versuchsende (Pas)</th>
</tr>
</thead>
<tbody>
<tr>
<td>GP1000</td>
<td>11,0</td>
<td>11,4</td>
</tr>
<tr>
<td>GP1300</td>
<td>34,8</td>
<td>35,4</td>
</tr>
<tr>
<td>GP2300</td>
<td>143</td>
<td>139</td>
</tr>
</tbody>
</table>

Tab. 4-2: Nullviskosität bei 25°C der untersuchten Polyisobutylene vor und nach der Belastung im FIB/LDA-Pumpenkreislauf.

Aus den GPC- und Viskositätsmessungen folgt, dass kein messbarer molekularer Abbau der untersuchten Polyisobutylene während der FIB/LDA-Messungen auftrat.

4.2 Untersuchung der Scherspannungen in einer Schlitzdüse

4.2.1 Experimentelles Vorgehen

In Abschnitt 3.3 wurde dargestellt, dass der Extinktionswinkel χ (Gl. 3-3) und die Spannungsdoppellbrechung Δn (Gl. 3-2) gleichzeitig mit dem FIB-Aufbau bestimmt werden können. Die resultierende Scherspannung τ_{xy} kann lokal aufgelöst an einer beliebigen x-y-Position innerhalb des Strömungskanals aus dem spannungsoptischen Gesetz (Gl. 3-4) und Gleichung 3-5 abgeleitet werden:

$$\tau_{xy}^{\text{FIB}} = \frac{1}{2} \Delta n \sin(2\chi)$$

4-2

Die Spannungsdoppellbrechung Δn kann mit dem FIB-Versuchsaufbau nicht punktweise, sondern lediglich als integraler Wert entlang des Laserstrahls (z-Achse) bestimmt werden. Daher können sich Einflüsse der Glasfenster auf die Strömung (Wandeffekte) störend bemerkbar machen. Sind weiterhin die eingesetzten Glasfenster selbst nicht spannungsfrei, so können diese den Polarisationszustand des FIB-Laserstrahls direkt beeinflussen und die gemessene Spannungsdoppellbrechung des Fluids verfälschen. Anhang B beschäftigt sich ausführlich mit den möglichen Einflüssen auf die gemessene Spannungsdoppellbrechung und kommt zu dem Schluss, dass diese Effekte in der verwendeten Schlitzdüse (Abschnitt 3.4) und den angewandten Strömungsbedingungen vernachlässigbar sind und Δn nur die Doppellbrechung darstellt, welche durch Scher- und Dehnschubspannungen im Fluid entsteht. Der Vergleich von gemessenen und berechneten Spannungen unter verschiedenen Strömungsbedingungen gibt einen unmittelbaren Hinweis auf die Größenordnung parasitärer Effekte.

Da es sich bei allen untersuchten Polyisobutylenen um Newtonsche Fluide mit konstanter Viskosität η_0 handelt, ist die Scherspannung τ_{xy} ebenfalls über folgende Zustandsgleichung gegeben:

$$\tau_{xy}^{\text{LDA}} = \eta_0 \dot{\gamma} \quad \text{mit} \quad \dot{\gamma} = \frac{\partial v_x}{\partial y}$$

4-3

Generell sollte im Fall Newtonscher Medien $\tau_{xy}^{\text{LDA}} = \tau_{xy}^{\text{FIB}}$ gelten. Die Überprüfung dieses Zusammenhangs stellt ein einfaches Kriterium für die korrekte Funktionsweise der Apparatur zur Messung der Spannungsdoppellbrechung dar.
4.2.2 Scherspannungen in der Schlitzdüse

Die Scherspannungen τ_{xy}^{LDA} und τ_{xy}^{FIB} wurden in der Schlitzdüse, welche in Abschnitt 3.4 beschrieben ist, als Funktion der y-Koordinate bei $x=12$ mm gemessen. Diese Koordinaten liegen weit unterhalb des Düseninlaufs. Die Dehnrate in Fließrichtung $\dot{\varepsilon}_{xx}=\frac{\partial v_x}{\partial x}$ liegt bei diesen Koordinaten für alle untersuchten Volumendurchsätze unterhalb der Auflösungsgrenze der Geschwindigkeitsmessung. Damit ist sichergestellt, dass reine Scherströmungen vorhanden sind.

Abb. 4-4: Geschwindigkeit v_x in Strömungsrichtung als Funktion der y-Koordinate bei $x=12$ mm für verschiedene Volumendurchsätze.

Abb. 4-4 zeigt die Geschwindigkeitsprofile v_x als Funktion der y-Koordinate für verschiedene Volumendurchsätze \dot{V}. Als Material wurde GP1000 gewählt. Die durchgezogenen Linien sind Parabeln, welche an die LDA-Messdaten - als Symbole dargestellt - angefittet wurden. Die LDA-Messungen stimmen sehr gut mit den gefitteten Parabeln überein, welche sich mathematisch für Newtonsche Materialien gelten. Messungen an GP1300 und GP2300 lieferten dieselben Geschwindigkeitsprofile wie in Abb. 4-4, da bei vorgegebener Düsengeometrie für Newtonschen Medien die Geschwindigkeitsprofile nur vom Volumenstrom abhängen.

Mit dem FIB/LDA-Aufbau wurden gleichzeitig mit den Geschwindigkeitsdaten die normierten Intensitäten i_1 und i_2 gemessen, welche in Abschnitt 3.3.3 beschrieben wurden. Für GP1000 und einer Volumenrate von 4 ml/s sind i_1 und i_2 in Abb. 4-5 dargestellt. Die Messpunkte in Abb. 4-5 stimmen sehr gut mit den durchgezogenen Linien überein, welche einem Fit mit $a \cdot (\cos y)^2$ für i_1 bzw. $b \cdot (\sin y)^2$ für i_2 entsprechen. a und b sind reelle

a Obwohl die Düse 1,4 mm breit war, wurden die Messungen nur bis $\pm 0,6$ mm durchgeführt, um Wandeinflüsse auf die Laserstrahlen durch Beugung zu vermeiden.

Abb. 4-5: Normierte Intensitäten i_1 und i_2 als Funktion der y-Koordinate.

Aus diesen primären Intensitätsmessungen wurde mit den Gleichungen 3-1 bis 3-3 die Doppelbrechung Δn und der Extinktionswinkel χ, also die Orientierung der Makromoleküle zur x-Achse, bestimmt. Diese sind in Abb. 4-6 dargestellt. Die Spannungsdoppelbrechung Δn zeigt ein lineares Verhalten als Funktion der y-Koordinate. Um den größtmöglichen Messbereich zu erhalten, wurden die Polarisatiorsebenen der Polfilter so gewählt, dass nur der Betrag von Δn mit dem FIB/LDA-Aufbau gemessen werden kann. Der Extinktionswinkel χ kann bei dieser Einstellung der Polarisationssebenen ebenfalls nur als Betrag detektiert werden. Aufgrund der Achsensymmetrie der Strömungsprofile $v_x(y)=v_x(-y)$ muss das Verhalten des Extinktionswinkels punktsymmetrisch $\chi(y)=-\chi(-y)$ sein (Janeschitz-Kriegl 1983). Dadurch wird es möglich, den wahren Verlauf von χ zu bestimmen. Dieser ist als gestrichelte Linie in Abb. 4-6 eingezeichnet. χ wechselt das Vorzeichen bei $y=0$.
In der Mitte der Düse, bei \(y=0 \) mm, ist \(\chi \approx 0 \). Die Makromoleküle sind also parallel zur \(x \)-Achse orientiert. Mit zunehmender Entfernung von der Mittelebene steigt \(\chi \) rasch an, um dann einen Sättigungswert von 45° anzunehmen. Der Fehler von \(\chi \) ist in der Mitte der Düse am größten. Dies liegt an der Bestimmungsgleichung von \(\chi \) (Gleichung 3-3), welche für kleine Werte von \(i_1 \) und \(i_2 \) große Fehler liefert.

Um die Scherspannung \(\tau_{xy}^{\text{FIB}} \) aus \(\Delta n \) und \(\chi \) mit Gleichung 4-2 zu berechnen, ist es nötig, den spannungsoptischen Koeffizienten von Glissopal 1000 zu ermitteln. Dazu wurde zunächst aus den gemessenen Geschwindigkeiten \(v_x(y) \) mit Gleichung 4-3 die Scherspannung \(\tau_{xy}^{\text{LDA}} \) berechnet. Der spannungsoptische Koeffizient wurde so gewählt, dass der Fehler \(\| \tau_{xy}^{\text{LDA}} - \tau_{xy}^{\text{FIB}} \| \) zwischen beiden Scherspannungen minimal wurde. Die Messung von \(\Delta n \) und \(\chi \) wurde neben 4 ml/s auch für 2 ml/s und 1 ml/s an GP1000 durchgeführt. Der spannungsoptische Koeffizient zeigte, abgesehen von statistischen Schwankungen, bei keiner der Versuchsreihen eine Abhängigkeit vom gewählten Durchsatz. Der über alle Durchsätze gemittelte spannungsoptische Koeffizient ergab \(C=(1,25\pm0,12)\cdot10^{-9} \) Pa\(^{-1}\) (Tab. 4-3). In der Literatur sind mehrere Arbeiten zu finden, welche einen spannungsoptischen Koeffizienten zwischen 1,4\(\cdot10^{-9} \) Pa\(^{-1}\) bis 3,0\(\cdot10^{-9} \) Pa\(^{-1}\) angeben (Tab. 4-4). Der Mittelwert aller Werte liegt bei \((1,8 \pm 0,7) \cdot10^{-9} \) Pa\(^{-1}\). Der mit der FIB/LDA-Apparatur gemessene Wert von \(C \) liegt somit noch innerhalb der Fehlertoleranz der Literaturwerte.

<table>
<thead>
<tr>
<th>Material</th>
<th>Spannungsoptischer Koeffizient ((\cdot10^{-9}) Pa(^{-1}))</th>
<th>Molmasse kg/mol</th>
</tr>
</thead>
<tbody>
<tr>
<td>GP1000</td>
<td>1,25(\pm)0,12</td>
<td>2,2</td>
</tr>
<tr>
<td>GP1300</td>
<td>1,22(\pm)0,11</td>
<td>3,9</td>
</tr>
<tr>
<td>GP2300</td>
<td>1,20(\pm)0,07</td>
<td>6,0</td>
</tr>
</tbody>
</table>

Tab. 4-3: Spannungsoptischer Koeffizient für die in dieser Arbeit verwendeten Polyisobutylene.
Messungen an Polyisobutylenen

<table>
<thead>
<tr>
<th>Autoren</th>
<th>Jahr</th>
<th>Spannungsoptischer Koeffizient ($\cdot 10^{-9}$ Pa$^{-1}$)</th>
<th>Molmasse (kg/mol)</th>
</tr>
</thead>
<tbody>
<tr>
<td>C. Booth, C. Rice (Booth und Rice 1989)</td>
<td>1989</td>
<td>1,7</td>
<td>1750</td>
</tr>
<tr>
<td>T. König, H. Buggisch (König und Buggisch 1998)</td>
<td>1998</td>
<td>3,0</td>
<td>40-85</td>
</tr>
<tr>
<td>P. H. Mott, A. Rizos, C. M. Roland (Mott, et al. 2001)</td>
<td>2001</td>
<td>1,4</td>
<td>420-4700</td>
</tr>
</tbody>
</table>

Tab. 4-4: Spannungsoptischer Koeffizient von Polyisobutylen bei Raumtemperatur.

Booth und Rice geben in ihrem Tabellenbuch einen spannungsoptischen Koeffizienten von PIB ohne Angabe einer weiteren Quelle an, der bei $1,7\cdot 10^{-9}$ Pa$^{-1}$ liegt. Okamoto führte Oszillationsversuche im Scherrheometer durch und bestimmte die Spannungsdoppelbrechung mit einem polarisierten Laserstrahl, den er durch das Probenvolumen schickte. Der spannungsoptische Koeffizient wurde zu $1,4\cdot 10^{-9}$ Pa$^{-1}$ ermittelt. König und Buggisch bestimmten den spannungsoptischen Koeffizienten mit der Methode des Blasenkollapses. Durch eine feine Düse injizierten sie Wasser in niedermolekulares PIB um eine Blase zu erzeugen. Mit einem vereinfachten Rivlin-Saywer Modell (Rivlin und Saywer 1971) ermittelten sie die Spannungen und Deformationsraten im PIB am Rand der Blase. Eine gleichzeitige Messung der Spannungsdoppelbrechung ergab einen spannungsoptischen Koeffizienten von $3,0\cdot 10^{-9}$ Pa$^{-1}$. Mott untersuchte PIB mittels eines Dehnrheometers des Münstedt-Typs mit zusätzlicher Bestimmung der Spannungsdoppelbrechung. Der aus der gemessenen Dehnspannung und Doppelbrechung bestimmte spannungsoptische Koeffizient ergab einen Wert von $1,4\cdot 10^{-9}$ Pa$^{-1}$. Genieser führte die Bestimmung des spannungsoptischen Koeffizienten mit einer von Quinzani (Quinzani 1991) aufgebauten Messapparatur aus. Dazu wurde eine Zylinder-Zylinder Geometrie in ein Scherrheometer eingebaut und die Spannungsdoppelbrechung im Spalt bestimmt. Der Wert des spannungsoptischen Koeffizienten lag bei $1,48\cdot 10^{-9}$ Pa$^{-1}$.

Buggisch folglich mit systematischen Fehlern behaftet sind, ist auch die Aussagekraft des angegebenen spannungsoptischen Koeffizienten fraglich.

Abb. 4-7 zeigt den Verlauf der Scherspannungen für GP1000 entlang der y-Achse bei unterschiedlichen Volumenraten, berechnet mit dem gemittelten spannungsoptischen Koeffizienten. Die durchgezogenen Linien \(\tau_{xy}^{\text{LDA}} \) entsprechen den Spannungen, welche mit Gleichung 4-3 und dem parabolischen Geschwindigkeitsfit aus Abb. 4-4 bestimmt wurden. Die Symbole repräsentieren \(\tau_{xy}^{\text{FIB}} \). Ein minimierter Fehler zwischen \(\tau_{xy}^{\text{LDA}} \) und \(\tau_{xy}^{\text{FIB}} \) ist zwar durch geschickte Wahl von C zu erwarten, doch zeigt die Messung, dass die Messungen mit außerordentlicher Genauigkeit durchgeführt werden können. Die Spannungen \(\tau_{xy}^{\text{LDA}} \) und \(\tau_{xy}^{\text{FIB}} \) fallen linear mit steigender y-Koordinate ab, wobei der Fehler bei \(y=0 \) mm am größten ist, da sich dort der \(\chi \)-Fehler am stärksten fortsetzt. Wie erwartet steigen die Scherspannungen mit höherem Durchsatz an, weichen jedoch auch dort nicht von ihrem linearen Verhalten ab.

In Abb. 4-8 und Abb. 4-9 sind \(\tau_{xy}^{\text{LDA}} \) und \(\tau_{xy}^{\text{FIB}} \) für GP1300 und GP2300 dargestellt. Die gemittelten spannungsoptischen Koeffizienten wurde für GP1300 zu \(C=(1,22\pm0,11)\cdot10^{-9} \) Pa\(^{-1} \) und für GP2300 zu \(C=(1,20\pm0,07)\cdot10^{-9} \) Pa\(^{-1} \) bestimmt. Im Rahmen der Messgenauigkeit ist der spannungsoptische Koeffizient also unabhängig von der Molmasse (Tab. 4-3).

\begin{figure}
\centering
\includegraphics[width=\textwidth]{Abb_4-7.png}
\caption{Scherspannungen von Glissopal 1000 innerhalb der Schlitzdüse entlang der y-Achse bei \(x=12 \) mm.}
\end{figure}
Abb. 4-8: Scherspannungen von Glissopal 1300 innerhalb der Schlitzdüse entlang der y-Achse bei \(x=12\) mm.

Abb. 4-9: Scherspannungen von Glissopal 2300 innerhalb der Schlitzdüse entlang der y-Achse bei \(x=12\) mm.
4.3 Dehnviskosität von Polyisobutylenen

4.3.1 Experimentelles Vorgehen

Osaki zeigt in einem Artikel (Osaki und Inoue 1996), dass davon auszugehen ist, dass Polymere den gleichen spannungsoptischen Koeffizienten in Scherung wie in Dehnung besitzen, falls die Temperatur weit oberhalb der Glastemperatur des Polymeren liegt. Diese Voraussetzung ist bei allen verwendeten Polyisobutylenen erfüllt (Tab. 4-1). Da C aus Abschnitt 4.2 bereits bekannt ist, ergibt sich die erste Normalspannungsdifferenz durch Einsetzen von Gleichung 3-4 in Gleichung 3-6 zu:

\[N_{i}^{\text{FIB}} = \frac{\Delta n}{\cos(2 \chi)} \]

4.3.2 Planarität entlang der x-Achse

Planare Strömungsbedingung entlang der x-Achse sind genau dann vorhanden, wenn die nachfolgende Gleichung erfüllt ist, d. h. die Dehnrate in Strömungsrichtung \(\dot{\varepsilon}_{xx} \) gleich dem negativen der Dehnrate \(\dot{\varepsilon}_{yy} \) in y-Richtung ist.

\[\dot{\varepsilon}_{xx} = \frac{\partial v_x}{\partial x} = - \frac{\partial v_y}{\partial y} = - \dot{\varepsilon}_{yy} \]

4.3.2 Planarität entlang der x-Achse

Planare Strömungsbedingung entlang der x-Achse sind genau dann vorhanden, wenn die nachfolgende Gleichung erfüllt ist, d. h. die Dehnrate in Strömungsrichtung \(\dot{\varepsilon}_{xx} \) gleich dem negativen der Dehnrate \(\dot{\varepsilon}_{yy} \) in y-Richtung ist.

\[\dot{\varepsilon}_{xx} = \frac{\partial v_x}{\partial x} = - \frac{\partial v_y}{\partial y} = - \dot{\varepsilon}_{yy} \]

Ist die obige Gleichung erfüllt, so ist die Dehnrate in z-Richtung \(\dot{\varepsilon}_{zz} \) aufgrund der Volumenerhaltung Null. Abb. 4-10 zeigt Messungen der Dehnraten \(\dot{\varepsilon}_{xx} \) und \(\dot{\varepsilon}_{yy} \) entlang der x-Achse. Weit entfernt von der Einlaufebene der Düse (x=10 mm), sind beide Dehnraten praktisch null und steigen zur Düse (x=0 mm) hin an. Im Einlaufbereich der Düse ist Gleichung 4-6 demnach erfüllt und es liegen planare Strömungsbedingungen vor. Messungen von \(\dot{\varepsilon}_{yy} \) innerhalb der Düse sind aus Gründen der Strahlführung der LDA-Optik längs der x-Achse nicht möglich.
Abb. 4-10: Dehnraten $\dot{\varepsilon}_x$ und $-\dot{\varepsilon}_y$ von GP1000, GP1300 und GP2300 längs der x-Achse im Einlaufbereich der Schlitzdüse bei unterschiedlichen Durchsätzen.

Da planare Strömungsbedingungen entlang der x-Achse herrschen und sich die newtonschen Materialien linear verhalten, gilt zwischen Scherviskosität η_0 und Dehnviskosität μ_0 für Newtonsche Materialien folgende Beziehung:

$$\mu_0 = 4\eta_0 \tag{4-7}$$

4.3.3 Bestimmung der Dehnviskositäten

Abb. 4-11 zeigt den Geschwindigkeitsverlauf v_x der Strömung von $x=-10$ mm im Düsvorraum bis $x=5$ mm innerhalb der Schlitzdüse. Für einen festen Volumendurchsatz steigt v_x im Düsvorraum zunächst an, um innerhalb der Schlitzdüse einen konstanten Wert zu erreichen. Mit steigendem Volumendurchsatz steigt die Geschwindigkeit innerhalb der Düse an. Die Dehnrate wurde ohne Fit direkt aus den LDA-Geschwindigkeitsdaten ermittelt, was den Fehler der Dehnrate etwas erhöht. Die Geschwindigkeitsprofile für GP1300 und GP2300 wurden gemessen und sind identisch mit denen von GP1000 aus Abb. 4-11. Bei vorgegebener Düsegeometrie und festem Volumendurchsatz hängen die Strömungsprofile längs der x-Achse von Newtonschen Fluiden nicht von der Viskosität bzw. Molmasse des Materials ab.
Messungen an Polyisobutylenen

Abb. 4-11: Geschwindigkeit v_x der Düsenströmung längs der x-Achse für GP1000 für verschiedene Volumenströme.

Mit den LDA-Messungen an GP1000 wurden auch die normierten Intensitäten aus den synchron aufgezeichneten FIB-Messungen bestimmt und in Abb. 4-12 für eine Volumenrate von 4 ml/s dargestellt. Beide im FIB-Aufbau gemessenen normierten Intensitäten steigen zunächst an, um dann kurz vor der Düse abzufallen und bei etwa $x=0,5$ mm wieder Null zu erreichen.

Abb. 4-12: Normierte Intensitäten i_1 und i_2 längs der x-Achse.

Die aus den Intensitätsdaten mit den Gleichungen 3-2 und 3-3 berechneten Größen Δn und χ sind in Abb. 4-13 dargestellt. Die Spannungsdoublebrechung steigt im Einlaufbereich der Düse an und fällt kurz innerhalb der Düse wieder ab. Der Mittelwert des Extinktionswinkels χ liegt bei 0,2° und zeigt starke statistische Schwankungen. Die Schwankungsbreite ist jedoch
kleiner als bei den in Abb. 4-6B gezeigten Extinktionswinkel in Scherung. Der Grund ist die Drehung der Polarisationsachse um 22,5° im Vergleich zu den Schermessungen. Das Ergebnis $\chi \approx 0$ stützt die Annahme der in 4.2.2 bereits erläuterten Symmetriebedingung $\chi(-y) = -\chi(y)$, welche $\chi = 0$ längs der x-Achse vorhersagt.

Abb. 4-13: (A) Spannungsdoppelbrechung Δn und (B) Extinktionswinkel χ in Dehnung gemessen an GP1000. Die gestrichelt eingezeichnete Linie repräsentiert den Mittelwert aller dargestellten Messpunkte.

Aus den bisher dargestellten Daten wurde für das Material GP1000 und den Volumenraten 2 ml/s und 4 ml/s die Dehnviskosität μ_0 nach Gleichung 4-5 als Funktion der x-Koordinate von $x=-5$ mm bis $x=0$ mm in Abb. 4-14 aufgetragen. Dabei wurde der entsprechende spannungsoptische Koeffizient von GP1000 aus Tab. 4-3 verwendet. Außerhalb des dargestellten Bereiches sind die Fehler größer als die eigentlichen Messwerte, weshalb diese Bereiche nicht für die weitere Auswertung berücksichtigt wurden. Die gestrichelte horizontale Linie entspricht der Nullviskosität in Scherung, die durchgezogene Linie der nach der Planaritätsbedingung zu erwartende Dehnviskosität. Es ist gut zu erkennen, dass die Dehnviskositäten beider Volumenraten um $4\eta_0$ herum streuen. Der Mittelwert der Dehnviskosität liegt für $\dot{V}=4$ ml/s bei $\mu_0 = 44,9 \pm 6,2$ Pas, für $\dot{V}=2$ ml/s bei $\mu_0 = 43,0 \pm 8,8$ Pas. Da der Fehler von μ_0 wesentlich größer ist als der Unterschied beider Werte, sind diese im Rahmen der Messgenauigkeit gleich. Der Mittelwert der Dehnviskosität wurde daher über alle gemessenen Volumenraten bestimmt und ist in Tab. 4-5 aufgelistet. Der Wert in Klammern ist $4\eta_0$.
Die Dehnviskositäten der Polyisobutylene GP1300 und GP2300 wurden mit dem gleichen Verfahren bestimmt, welches für GP1000 eingesetzt wurde. Die berechneten Dehnviskositäten sind ebenfalls in Tab. 4-5 zu finden.

<table>
<thead>
<tr>
<th></th>
<th>GP1000</th>
<th>GP1300</th>
<th>GP2300</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\mu) (Pas) aus FIB/LDA</td>
<td>43,1</td>
<td>146</td>
<td>612</td>
</tr>
<tr>
<td>(\mu_0) (Pas) aus Rotationrheometrie</td>
<td>44,4</td>
<td>140</td>
<td>572</td>
</tr>
</tbody>
</table>

Tab. 4-5: Aus FIB/LDA-Messungen bestimmte Dehnviskosität \(\mu \) für die untersuchten Polyisobutylen. Der Wert \(\mu_0 \) wurde aus vier mal der Scherviskosität \(\eta_0 \) bestimmt, welche im Rotationsrheometer gemessen wurde.
4.4 Zusammenfassung

Mit dem bekannten spannungsoptischen Koeffizienten und den nachgewiesenen planaren Strömungsbedingungen wurden die Dehnviskositäten der Materialien aus den mit FIB gemessenen Dehnspannungen und der mit LDA bestimmten Dehnrate berechnet.

Folgende Ergebnisse können zusammengefasst werden:

- Der spannungsoptische Koeffizient C wurde aus einem Vergleich von FIB- und LDA-Messungen in Scherung ermittelt. C ist unabhängig vom Durchsatz und von der Molmasse der Materialien.

- Die Dehnviskositäten wurden aus FIB- und LDA-Messungen mit den für jedes Material ermittelten spannungsoptischen Koeffizienten berechnet. Die Abweichungen zwischen diesen Viskositäten und denen, welche mit Rotationsrheometern bestimmt wurden, betrugen weniger als 10 %.
Messungen an Polyisobutylenen
5 Charakterisierung der Polyacrylamide

5.1 Herstellung der Polymerlösungen

5.2 Aufbau der Polymere und Charakterisierung des Molekulargewichts

In der folgenden Tabelle (Tab. 5-1) sind die Polyacrylamide zusammengefasst, welche in dieser Arbeit untersucht wurden. Neutrale Polyacrylamide werden mit NF, anionische mit AF und kationische mit CF bezeichnet. Die beiden der Bezeichnung folgenden Ziffern entsprechen der Ionogenität in Mol-%, abgesehen von den neutralen Materialien. Die dritte
sowie vierte Ziffer hat keine quantitative Bedeutung, bezeichnet jedoch qualitativ die Größe des Gewichtsmittelwerts. In der zweiten Spalte der Tabelle ist nochmals explizit die Ionogenität der Materialien angegeben. Die dritte Spalte listet den aus den Reaktionsbedingungen abgeschätzten Gewichtsmittelwert der Molmasse M_w in Mg/mol auf (BASF 2006).

Die ersten drei Materialien der anionischen und kationischen Gruppe sind so gewählt, dass die Molmasse näherungsweise konstant, jedoch die Ionogenität der Produkte unterschiedlich ist. Die zweite Untergruppe der Polyacrylamide wurde so ausgewählt, dass die Ionogenität annähernd gleich ist, jedoch die Molmasse variiert. Eine exakte Übereinstimmung war bei den momentan erhältlichen Materialien nicht möglich.

Die Dichte der Polyacrylamide wurde durch Wägung und Volumenbestimmung in einem niederviskosen Öl bestimmt. Bei anionischen Polyacrylamiden liegt diese bei $1,4 \pm 0,04 \text{ g/cm}^3$, bei neutralen und kationischen Materialien bei $1,3 \pm 0,04 \text{ g/cm}^3$.

\[
\begin{align*}
\text{Neutrales Polyacrylamid} & \quad \text{Anionisches Polyacrylamid} & \quad \text{Kationisches Polyacrylamid} \\
\begin{array}{c}
\text{H} \\
\text{H} \\
\text{C} \\
\text{C} \\
\text{H} = \text{O} \\
\text{H} \\
\text{N} \\
\end{array} & \quad \begin{array}{c}
\text{H} \\
\text{H} \\
\text{C} \\
\text{C} \\
\text{H} = \text{O} \\
\text{C} = \text{O} \\
\text{Na}^+ \\
\end{array} & \quad \begin{array}{c}
\text{H} \\
\text{H} \\
\text{C} \\
\text{C} \\
\text{H} = \text{O} \\
\text{C} = \text{O} \\
\text{CH}_2 \text{N} \text{CH}_3 \\
\end{array}
\end{align*}
\]

Abb. 5-1: Chemische Strukturformeln für neutrales (A), anionisches (B) und kationisches (C) Polyacrylamid.
Charakterisierung der Polyacrylamide

<table>
<thead>
<tr>
<th>Material</th>
<th>Ionogenität (Mol-%)</th>
<th>Molmasse (Mg/mol)</th>
<th>Dichte (g/cm³)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Neutral</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NF106</td>
<td>< 2<sup>a</sup></td>
<td>10</td>
<td>1,4</td>
</tr>
<tr>
<td>Anionisch</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AF100</td>
<td>10</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>AF402</td>
<td>40</td>
<td>11</td>
<td></td>
</tr>
<tr>
<td>AF701</td>
<td>70</td>
<td>12</td>
<td></td>
</tr>
<tr>
<td>AF403</td>
<td>40</td>
<td>6</td>
<td>1,4</td>
</tr>
<tr>
<td>AF404</td>
<td>40</td>
<td>17</td>
<td></td>
</tr>
<tr>
<td>AF306</td>
<td>30</td>
<td>22</td>
<td></td>
</tr>
<tr>
<td>Kationisch</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CF104</td>
<td>10</td>
<td>9</td>
<td>1,3</td>
</tr>
<tr>
<td>CF404</td>
<td>40</td>
<td>7</td>
<td></td>
</tr>
<tr>
<td>CF7001</td>
<td>70</td>
<td>8</td>
<td></td>
</tr>
<tr>
<td>CF303</td>
<td>30</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>CF405</td>
<td>40</td>
<td>10</td>
<td></td>
</tr>
</tbody>
</table>

Tab. 5-1: Aufbau der untersuchten Polyacrylamide.

5.3 Wasserstoffbrückenbindungen

Zwischen den nahe aneinander liegenden Carboxyl-Gruppen (COO⁻) und Amid-Gruppen (NH₂) in anionischen Polyacrylamiden kommt es durch die partiellen Ladungen im Molekül zu Wasserstoffbrückenbindungen (Abb. 5-2), welche die Kettensteifigkeit erhöhen und somit das rheologische Verhalten verändern können.

^a Dieser Wert liegt nicht wie zu erwarten bei Null, sondern besitzt aufgrund des Herstellungsverfahrens einen endlichen Wert.
Abb. 5-2: Intramolekulare Wasserstoffbrückenbindungen im anionischen Polyacrylamid.

5.4 Reduzierte Viskosität und kritische Konzentration

Informationen über das Volumen der in Lösung befindlichen Makromoleküle erhält man nach Gleichung 2-43, welche eine Proportionalität zwischen der reduzierten Viskosität \(\eta_{\text{red}} \) und dem Molekülvolumen herstellt. Die reduzierte Viskosität der Polyacrylamidlösungen wurde mit einem Ubbelohde-Viskosimeter bestimmt und ist in Abb. 5-3 und Abb. 5-4 als Funktion der Konzentration dargestellt. Alle reduzierten Viskositäten durchlaufen dabei ein Minimum.

Wie im Grundlagenkapitel 2.3 beschrieben, steigt das Molekülvolumen von Polyelektrolyten bei niedrigen Polymerkonzentrationen aufgrund der inneren Ladungen des Moleküls an, was sich in der steigenden reduzierten Viskosität links des Minimums widerspiegelt. Rechts des Minimums ist eine Proportionalität zwischen reduzierter Viskosität und Molekülvolumen nicht mehr gegeben, da eine weit höhere Konzentration vorliegt als die Näherung in 2-43 gestattet. Das Molekülvolumen bleibt vielmehr mit steigender Konzentration nahezu konstant, während die reduzierte Viskosität durch Polymer-Polymer-Wechselwirkungen ansteigt (Kulicke 2004). Das Minimum stellt also den Übergang zwischen dem verdünnten und dem halbverdünnten Konzentrationsbereich dar und soll im Folgenden die kritische Konzentration \(c^* \) definieren. In Abschnitt 2.3.2 wurde bereits dargelegt, weshalb die über den Überlappungsparameter definierte kritische Konzentration bei Polyacrylamiden versagt.

Abb. 5-3 zeigt \(\eta_{\text{red}} \) für anionische und kationische Polyacrylamidlösungen ähnlicher Ionogenität aber unterschiedlicher Molmassen. Zusätzlich ist die reduzierte Viskosität des neutralen Produkts mit \(M_w=10 \text{ Mg/mol} \) dargestellt, um die Kurven besser miteinander vergleichen zu können. Weit unterhalb der kritischen Konzentrationen sind die reduzierten Viskositäten der anionischen Materialien ähnlich. Oberhalb der kritischen Konzentration ist \(\eta_{\text{red}} \) bei höheren Molmassen größer. Die anionischen Materialien zeigen im Vergleich zu den kationischen dabei einen höheren Einfluss der Molmasse auf \(\eta_{\text{red}} \).
Die reduzierten Viskositäten für Polyacrylamidlösungen unterschiedlicher Ionogenität sind in Abb. 5-4 dargestellt. Die anionischen Materialien zeigen eine Verschiebung von \(\eta_{\text{red}} \) zu höheren Werten mit steigender Ionogenität. Bei den kationischen Materialien ist die Abhängigkeit von der Ionogenität wesentlich ausgeprägter und macht sich besonders oberhalb von \(c^* \) bemerkbar.

Abb. 5-3: Reduzierte Viskosität als Funktion der Polymerkonzentration in Abhängigkeit der Molmasse. (A) Anionische und (B) kationische Polyacrylamide.

Abb. 5-4: Reduzierte Viskosität als Funktion der Polymerkonzentration in Abhängigkeit der Ionogenität. (A) Anionische und (B) kationische Polyacrylamide.

An die Daten in Abb. 5-3 und Abb. 5-4 wurden kubische Splines angefittet und von diesen die Position der Minima bestimmt. Dieses Vorgehen hat den Vorteil, dass die Position der Minima wesentlich genauer bestimmt wird, als allein durch die Verwendung des minimalen Messwertes.

In Abb. 5-5 sind die so bestimmten kritischen Konzentrationen \(c^* \) der untersuchten Polyacrylamide zusammengefasst. Die anionischen Materialien AF403, AF404, und AF306 haben annähernd die gleiche Ionogenität, aber unterschiedliche Molmasse. Je größer die Molmasse, desto kleiner ist die kritische Konzentration \(c^* \). Da \(c^* \) die Konzentration darstellt, bei der das Lösungsvolumen mit idealisierten sphärischen Polymermolekülen angefüllt ist,
steigt bei sinkendem c^* das Molekülvolumen. Das Molekülvolumen ist also umso größer, je größer die Molmasse ist. Eine Auswirkung der Molmasse auf c^* bei kationischen Polyacrylamiden (CF303, CF405) liegt innerhalb des Messfehlers von $\pm 5\%$.

Der Einfluss der Ionogenität auf c^* ist in Abb. 5-5 für die Materialien AF100, AF402 und AF701 bzw. CF104, CF404 und CF7001 bei annähernd gleicher Molmasse dargestellt. Die kritische Konzentration c^* der anionischen Materialien sinkt mit steigender Ionogenität. Im Vergleich zur Molmassenabhängigkeit ist dieser Einfluss gering. Bei den kationischen Materialien ist der Einfluss der Ionogenität vernachlässigbar und unterhalb des statistischen Messfehlers. Ein Einfluss der Ionogenität auf c^* der kationischen Polyacrylamide kann daher im untersuchten Konzentrationsbereich ausgeschlossen werden.

![Diagramm](image)

"Abb. 5-5: Kritische Konzentration als Funktion der Molmasse."
5.5 Transiente und stationäre Scherviskosität

Abb. 5-6 zeigt die Scheranlaufkurven $\eta^+(t)$ des anionischen Polyacrylamids AF306 als Funktion der Zeit. Für jede Scheranlaufkurve wurde eine andere konstante Schergeschwindigkeit eingestellt, welche am rechten Rand der Abbildung notiert ist. Alle Kurven steigen mit der Zeit an. Auffällig ist, dass unabhängig von der Scherrate alle Kurven denselben Anstieg zeigen und aufeinander liegen. Je niedriger die Scherrate wird, desto mehr statistisches Rauschen enthalten die Scheranlaufkurven. Dies liegt an der Auflösungsgrenze des Messgeräts. Es ist daher nicht möglich, den transienten Verlauf von $\eta^+(t)$ unterhalb einer gewissen Scherrate $\dot{\gamma}_{\text{lin}}$ aufzulösen. Folglich ist es auch nicht möglich, die Scherrate so weit abzusenken, um die lineare Scheranlaufkurve η^+_0 zu messen. Da jedoch alle Kurven im Anstieg bereits übereinander liegen und dieser Anstieg somit unabhängig von der Scherrate ist, entspricht dieser bereits der linearen Scheranlaufkurve η^+_0 für kleine Zeiten.

Unterhalb von 0,03 s machen sich zunehmend Effekte bemerkbar, welche während der Anfangsbeschleunigung der Messgeometrie entstehen. Aufgrund dieser Steifigkeit des Messgeräts bzw. der Messgeometrie und der endlichen Zeit, in der die Geometrie auf eine konstante Scherrate gebracht wird, sind die Scheranlaufkurven nach unten gekrümmt.

Abb. 5-6: Anlaufkurven $\eta^+(t)$ einer anionischen Polyacrylamidlösung für verschiedene Scherraten (strichliert) im direkten Vergleich mit der in den Zeitbereich mittels Gleissle-Spiegelrelation transformierten Scherviskosität (durchgezogene Linie).

Ein für diese Arbeit zwar nur sekundäres, wenn auch interessantes Ergebnis ist, dass bei hohen Schergeschwindigkeiten die Kurven ein Maximum durchlaufen, um daraufhin einen

Um den spannungsoptischen Koeffizienten aus den Scheranlaufkurven berechnen zu können, müssen diese in dem Zeitbereich bekannt sein, den ein Fluidelement benötigt, um die Düse zu passieren. Dieser Zeitbereich hängt von der Strömungsgeschwindigkeit in der Düse ab und reicht von 0,001 s bis 1 s. Da in diesem Bereich keine direkten Scheranlaufkurven mehr gemessen werden können, wurde mit Hilfe der Spiegelrelation nach Gleissle (Gleichung 2-26) die stationäre Scherviskosität $\eta(\dot{\gamma})$ in den Zeitbereich umgerechnet und ergibt $\eta(t=1/\dot{\gamma})$. Dies ist als durchgezogene Linie mit offenen Symbolen in Abb. 5-6 dargestellt. Die Symbole repräsentieren die Datenpunkte der $\eta(\dot{\gamma})$ Messung. Der Graph dieser transformierten Scherviskosität kommt direkt auf der linearen viskoelastischen Scheranlaufkurve η_0 zu liegen. Damit ist gezeigt, dass die Spiegelrelation gilt und $\eta(t=1/\dot{\gamma})$ dazu verwendet werden kann, um η_0 auf kleine Zeiten zu extrapolieren. Die Extrapolation wurde maximal bis zu 1 ms durchgeführt, da unterhalb von 1 ms bzw. oberhalb einer Scherrate von 1000 s$^{-1}$ wiederum Geräteartefakte durch das Trägheitsmoment der Messgeometrie auftreten.

Abb. 5-7: Strukturviskoser Bereich der Scherviskosität als Funktion der Scherrate für alle untersuchten (A) anionischen und (B) kationischen Polyacrylamide.

In Abb. 5-7 sind die Scherviskositäten aller untersuchten Polyacrylamide bei einer Konzentration von 3 g/l dargestellt. Diese zeigen im Vergleich zu den untersuchten Polyisobutylenen ein ausgeprägtes strukturviskos Verhalten. Die in Abb. 5-7 gezeigten Kurven wurden zur Extrapolation der linear-viskoelastischen Anlaufkurven benutzt. Die Auflösungsgrenze des Rheometers definiert den Messbereich der Scherrate. Nur bei Polyacrylamiden niedriger Molmasse (AF403, CF303) und niedriger Ionogenität (AF100, CF104) wird annähernd die Nullviskosität der Polymerlösung erreicht. Für höhere Molmassen und höhere Ionogenitäten ist die Nullviskosität der Polymerlösungen nicht mehr messbar. Auffällig ist ebenfalls, dass die Absolutwerte der Scherviskositäten für anionische
Polyacrylamide höher als die für kationische Polyacrylamide liegen. Das neutrale Polyacrylamid NF106 besitzt die geringste Scherviskosität der eingesetzten Materialien.

Es ist zu erkennen, dass $\eta(\dot{\gamma})$ bei Polyacrylamiden mit niedrigeren Molmassen (AF403, CF303) kleiner ist als für Polyacrylamide mit höheren Molmassen (AF404, CF405). Polyacrylamide mit niedriger Ionogenität (10 Mol-%) haben sowohl für anionische als auch für kationische Materialien die niedrigste Scherviskosität. Mit steigender Ionogenität nimmt die im Messbereich maximal erreichte Viskosität zu. Interessanterweise erreicht diese bereits bei einer mittleren Ionogenität von 40 Mol-% einen Wert, der sich auch bei steigender Ionogenität (70 Mol-%) nicht mehr stark verändert.

![Diagramm](image_url)

Abb. 5-8: Linear-viskoelastische Scheranlaufkurven als Funktion der Zeit für drei Polyacrylamidlösungen unterschiedlicher Ionogenität bei einer Konzentration von 3 g/l.

Cox-Merz Regel

Abb. 5-9 zeigt die Scherviskosität als Funktion der Scherrate und der Kreisfrequenz im direkten Vergleich. Die Cox-Merz Regel (vgl. Abschnitt 2.1.2) ist für die untersuchten anionischen Polyacrylamide unabhängig von der Ionogenität (AF100, AF701, $M_w \approx 11 \text{ Mg/mol}$) sowie der Molmasse (AF403, $M_w = 6 \text{ Mg/mol}$) des Materials gültig. Für kationische Polyacrylamide ist die Cox-Merz Regel ebenfalls für unterschiedliche Ionogenität (CF104, CF7001, $M_w \approx 8 \text{ Mg/mol}$) und unterschiedliche Molmassen (CF303, $M_w = 3 \text{ Mg/mol}$) erfüllt.
Die oberen Grenzen des Messbereichs mit $\omega=100$ rad/s bei dem Frequenztest und $\dot{\gamma}=1000$ s^{-1} bei den Schertests sind durch die Trägheit der Kegel-Platte Geometrie begrenzt. Bei niedrigen Frequenzen ist die untere Messgrenze durch die Auflösung des Rheometers gegeben.

Einige Autoren weisen darauf hin, dass die Cox-Merz Regel für kleine Schergeschwindigkeiten bzw. niedrige Oszillationsfrequenzen für Polyacrylamid nicht mehr erfüllt sei (Kulicke und Porter 1980; Tam und Tiu 1994). Diese Beobachtung konnte für die in dieser Arbeit verwendeten Polyacrylamide nicht bestätigt werden.

Tam (Tam und Tiu 1989; Tam und Tiu 1994) untersuchte z. B. wässrige Polyacrylamidlösungen bis 0,5 g/l mit einem Rotationsrheometer. Die stationäre Viskosität bei konstanter Scherrate $\eta(\dot{\gamma})$ und die mechanisch-dynamische Viskosität $|\eta^*(\omega)|$ wurden bestimmt. Beide Viskositäten zeigten ein scherverdünnendes Verhalten. Mit zunehmender Konzentration nimmt die Scherviskosität zu. Während bei niedrigen Oszillationsfrequenzen bzw. kleinen Deformationsraten $\eta(\dot{\gamma}) = \eta^*(\omega)$ gilt, wurde für $\omega > 0.1$ s^{-1} $\eta(\dot{\gamma}) \geq |\eta^*(\omega)|$ beobachtet. Die Abweichung stieg dabei mit wachsendem ω an.

Kulicke hingegen fand ein entgegengesetztes Verhalten (Kulicke und Porter 1980). Für Polymerlösungen mit der Konzentration größer als 20 g/l beobachtete er die Beziehung $\eta(\dot{\gamma}) \leq |\eta^*(\omega)|$ mit steigendem ω. Messdaten von Lauten (Lauten und Nystrom 2000) zeigen eine weitere Möglichkeit: für kleine Scherraten beobachtete er $\eta(\dot{\gamma}) \leq |\eta^*(\omega)|$, für große Scherraten hingegen $\eta(\dot{\gamma}) \geq |\eta^*(\omega)|$. Polyacrylamidlösungen von 2,5 g/l bis 10 g/l wurden in dieser Studie gemessen. Ghannam (Ghannam und Esmail 1998) führte ebenfalls Messungen von $\eta(\dot{\gamma})$ und $|\eta^*(\omega)|$ durch, publizierte jedoch nur sich ausschließende Bereiche der Messungen, so dass eine direkte Gegenüberstellung der Daten nicht möglich ist.}

*Abb. 5-9: Scherviskosität als Funktion der Scherrate und als Funktion der Kreisfrequenz für (A) anionische und (B) kationische Polyacrylamide unterschiedlicher Ionogenität und M_w.

Die Effekte in den genannten Arbeiten von Tam, Kulicke und Lauten sind signifikant, widersprechen sich jedoch. Da keine explizite Fehlerbetrachtung in den Arbeiten durchgeführt wurde, ist nicht ersichtlich, ob die Ergebnisse aufgrund der Materialunterschiede oder der
Charakterisierung der Polyacrylamide

gerätespezifischen Unterschiede variieren. Es ist unklar, inwieweit Auflösungsgrenzen der Messgeräte und Auswerteverfahren wie die so genannte Lagerkartographierung (engl.: „mapping“) in den zitierten Arbeiten Berücksichtigung fand.

5.6 Viskosität von Polyacrylamidlösungen bei Natriumchloridzugabe

Abb. 5-10 zeigt die reduzierte Viskosität der Polymerlösung AF701 bei unterschiedlichen Konzentrationen \(c_{\text{NaCl}} \) von Natriumchlorid. Dies ist im Bereich links der Minima der Fall. Bei salzfreien Lösungen steigt in diesem Bereich die reduzierte Viskosität mit sinkender Polymerkonzentration stark an. Wird Salz zugegeben, so sinkt die reduzierte Viskosität stark ab. Der Grund ist zum einen, dass sich das Konzentrationsgefälle der Ionen zwischen Lösungsmittel und Polymerknäul verringert und sich somit auch die osmotischen Kräfte verringern. Zum anderen werden die in der Polymerkette befindlichen Ionen durch nun reichlich vorhandene Gegenionen abgeschirmt und somit die Coulombkräfte verringern, welche zur Expansion der Makromoleküle führen. Mit steigender Salzkonzentration von 10 mmol/l bis 200 mmol/l (0,58-11,7 g/l) kollabiert das Knäuelvolumen und die damit verbundene reduzierte Viskosität.
Charakterisierung der Polyacrylamide

Auch bei hohen Polymerkonzentrationen werden die Ionen der Polymerkette durch Gegenionen abgeschirmt. Im Bereich rechts der Minima in dem die Polymer-Polymer Wechselwirkungen dominant werden, ist zu erkennen, dass mit steigender Salzkonzentration die Absolutwerte der reduzierten Viskositäten sowie die Kurvensteigungen abnehmen. Die Wechselwirkungen zwischen den Polymerknäueln sind bei hoher Salzkonzentration geringer und wachsen auch mit steigender Polymerkonzentration weniger stark an.

Da sich die molekularen Eigenschaften der Polymerlösungen bei Salzzugabe verändern, wirkt sich dies auch auf die Scherviskositäten der Polymerlösungen aus. Untersuchungen der Scherviskosität aller verwendeten Polyacrylamide nach NaCl Zugabe zeigte, dass die Veränderungen der Viskosität der anionischen sowie kationischen Materialien einen ähnlichen Verlauf besitzen. Die Scherviskosity ist in Abb. 5-11 exemplarisch für ein anionisches (AF403) und ein kationisches Polyacrylamid (CF303) dargestellt. Die Polymerkonzentration beträgt 1 g/l. Die NaCl-Konzentration variiert von $c_{NaCl}=0$ mmol/l bis 10 mmol/l. Auffällend ist, dass die Viskositäten der Polyelektrolytlösungen stark mit steigender NaCl-Konzentration abfallen. Bereits bei $c_{NaCl}=1$ mmol/l (0,06 g/l) ist eine Reduktion der Viskosität um 50 % bei AF403 und 75 % bei CF303 festzustellen. Bei AF403 ist zu erkennen, dass zwischen $c_{NaCl}=1$ mmol/l und $c_{NaCl}=3$ mmol/l ein sehr starker Viskositätsabfall stattfindet, während dies bei CF303 nicht zu beobachten ist.

Gleichzeitig mit der NaCl-Zugabe verschiebt sich $\dot{\gamma}_c$, der Punkt, bei dem das Material von einem Newtonschen Verhalten in ein scherverdünnendes Verhalten übergeht (vgl. Abb. 2-1). Da die charakteristische Relaxationszeit als $\tau_c=1/\dot{\gamma}_c$ definiert wurde (Abschnitt 2.1), nimmt somit die Relaxationszeit mit steigender Salzkonzentration ab. Die Zugabe von NaCl reduziert den Knäuelradius und damit die Dichte des Verschlaufsnetzwerkes.
In einem weiteren Experiment sollte festgestellt werden, wie schnell sich die Scherviskosität einer Polymerlösung nach Salzzugabe ändert. Dies ist wichtig für die spätere Versuchsdurchführung bei FIB/LDA-Dehnexperimenten. Wird nach Salzzugabe z. B. nicht lange genug gewartet, bis die Na⁺ und Cl⁻-Ionen in die Polymerketten diffundiert sind, so werden nicht die gewünschten NaCl-Einflüsse zu messen sein. Um dies zu vermeiden, wurden die nachfolgenden Versuche durchgeführt.

Für zwei Polymerlösungen AF701 und CF7001 mit der Polymerkonzentration von 1 g/l wurde daher zunächst die Viskosität bei \(\omega = 3 \text{ rad/s} \) mit einem Frequenztest bestimmt. Danach wurde NaCl-Lösung (5 mol/l) zugegeben, so dass die Gesamtkonzentration an NaCl 10 mmol/l betrug, vermischt und die Viskosität im Scherrheometer nach 60 s und 8 h bestimmt. Die Ergebnisse in Tab. 5-2 zeigen, dass die Viskosität der Polymerlösungen in den ersten 60 s um eine Größenordnung absinkt und dann annähernd auf einem konstanten Wert verbleibt. Diese zeitabhängigen Scheruntersuchungen wurden an allen verwendeten Polyacrylamiden durchgeführt. Dabei zeigten alle Materialien einen schnellen Viskositätsabfall innerhalb der ersten 60 s nach Zugabe der NaCl-Lösung und anschließend einen nahezu konstanten Viskositätsverlauf.

<table>
<thead>
<tr>
<th>Viskosität</th>
<th>(\eta^*(\omega)) in Pas</th>
<th>AF701</th>
<th>CF7001</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vor Zugabe von NaCl</td>
<td>0,51</td>
<td>0,267</td>
<td></td>
</tr>
<tr>
<td>60 s nach Zugabe</td>
<td>0,041</td>
<td>0,028</td>
<td></td>
</tr>
<tr>
<td>8 h nach Zugabe</td>
<td>0,039</td>
<td>0,026</td>
<td></td>
</tr>
</tbody>
</table>

Tab. 5-2: Scherviskositäten bei \(\omega = 3 \text{ rad/s} \) einer anionischen (AF701) und kationischen (CF7001) Polymerlösung nach NaCl-Zugabe. Die Polymerkonzentration betrug 1 g/l, die Salzkonzentration in der Lösung 10 mmol/l.

5.7 Molekularer Abbau durch mechanische Belastung

In einem Vorversuch wurde deshalb der Einfluss des Pumpenkreislaufs auf die Polymerlösung getestet um auszuschließen, dass keine signifikante Änderung der Viskosität während des Pumpens des Fluids stattfindet. Dazu wurde die Polyacrylamidlösung AF701 mit einer Konzentration von 3 g/l in den Pumpenkreislauf mit eingebauter hyperbolischer Düse eingefüllt und die Pumpe für 2100 s mit einem Durchsatz von 46 ml/s betrieben. Diese Volumenrate entspricht dem maximalen Durchsatz, welcher in den späteren Dehnexperimenten verwendet wurde. Nach 2100 s wurde der Volumenstrom auf 71 ml/s erhöht, um den Verlauf des molekularen Abbaus bei einem höheren Durchsatz zu beobachten. Während des gesamten Versuchs wurden Proben entnommen und die Viskosität wurde mit dem Rotationsrheometer bei zwei unterschiedlichen Kreisfrequenzen (0,01 rad/s und 0,1 rad/s) bestimmt.

Abb. 5-12 zeigt die Ergebnisse der durchgeführten Scheruntersuchungen. Bei einem Durchsatz von 46 ml/s macht sich der molekulare Abbau im Pumpenkreislauf bereits bemerkbar. Die Viskosität der Polymerlösung sinkt mit steigender Belastungszeit t. Wird der Volumenstrom auf 71 ml/s erhöht, so sinkt die Viskosität noch schneller ab. Der Abfall der Viskosität beträgt bei 46 ml/s 0,25 Pas/min und bei 71 ml/s 0,32 Pas/min.

Um Abbaueffekte gering zu halten, wurde die maximale Versuchzeit bei den FIB/LDA-Dehnexperimenten auf 400 s pro Kreislauffüllung festgelegt. Dies entspricht bei einem Gesamtvolumen von 4 Litern und einem Durchsatz von 46 ml/s etwa 5 Umläufen der Polymerlösung im Schlauchsystem. Ein maximaler Abfall der Viskosität um etwa 5%-10% wurde am Ende dieses Zeitraums beobachtet.
5.8 Alterung von Polyacrylamidlösungen

Während der FIB-LDA Dehnmessungen vergeht zwischen Ansatz der Polymerlösung und Messung aufgrund der aufwendigen Präparationsbedingungen eine gewisse Zeit. Um zu testen, wie stark sich die Alterung bei den in dieser Arbeit verwendeten Polyacrylamiden bemerkbar macht, wurden Polymerlösungen mit c=1 g/l hergestellt und anschließend wurde die Viskosität als Funktion der Scherrate und der Kreisfrequenz nach verschiedenen Aufbewahrungszeiten gemessen.

Charakterisierung der Polyacrylamide

Abb. 5-13: Scherviskositäten eines (A) anionischen und (B) kationischen Polyacrylamids in Abhängigkeit von der Aufbewahrungszeit.

6 Grundlegende Untersuchungen zur Bestimmung der Dehngeschwindigkeit und Spannungsdoppelbrechung von Polyacrylamidlösungen

Im Mittelpunkt dieses Kapitels stehen neben der Bestimmung der Dehnrate aus den Fluidgeschwindigkeiten auch die Gleichungen 3-1 bis 3-3 mit den normierten Intensitäten i_1 und i_2, dem Extinktionswinkel χ und der Spannungsdoppelbrechung Δn. An einer Polyacrylamidlösung aus AF100 werden diese Größen im Detail dargestellt und es wird somit das grundlegende Vorgehen bei den FIB/LDA-Messungen demonstriert.

6.1 Experimentelles Vorgehen

![Abb. 6-1: Strömungskanal mit Düse, Koordinatensystem und stark vergrößert dargestelltem FIB-Laserstrahl.](image)
Die Dehnrate $\dot{\varepsilon}_{xx}$ hingegen wurde aus punktweise durchgeführten Geschwindigkeitsmessungen des strömenden Fluids längs der x-Achse bestimmt:

$$\dot{\varepsilon}_{xx}(x) = \frac{\partial v_x(x,0)}{\partial x}$$ 6-1

Da dies mit der über die z-Achse gemittelten Dehnspannung nicht vereinbar ist, wurde das gesamte Geschwindigkeitsfeld innerhalb der x-z-Ebene bestimmt und die daraus resultierende Dehnrate $\dot{\varepsilon}_{ss}(x,z)$ längs der z-Achse gemittelt. $\dot{\varepsilon}_{xx}$ ist also die mittlere Dehnrate in z-Richtung als Funktion von x und ergibt sich zu:

$$\overline{\dot{\varepsilon}_{xx}}(x) = \frac{1}{W} \int_{-W/2}^{W/2} \frac{\partial v_x(x,z)}{\partial x} dz$$ 6-2

W ist die Ausdehnung der Messzelle in z-Richtung. Das Ziel des experimentellen Aufbaus war es, eine Möglichkeit zu schaffen, die Dehnviskosität und Dehnverfestigung von Polymerlösungen als Materialfunktion zu bestimmen, d. h. als Funktion von der Dehnrate und der Zeit, wobei beide Variablen unabhängig voneinander sind. Um dies zu realisieren muss ein Parameter konstant gehalten werden und es müssen die Dehneigenschaften als Funktion des anderen Parameters gemessen werden.

Bei Messungen an Polymerschmelzen (Kapitel 2.4) wurde eine ähnliche Vorgehensweise gewählt. Die Dehnrate wurde konstant gehalten und die Zeitabhängigkeit der Dehnviskosität wurde gemessen. Analog zu Messungen an Polymerschmelzen soll die Dehnrate $\overline{\dot{\varepsilon}_{xx}}$ mit Hilfe einer hyperbolischen Düse konstant gehalten werden. Sind die gemessenen Dehnraten nicht konstant, so wirkt sich dies ebenfalls auf die aus der Dehnrate berechneten Dehnviskositäten aus. Der Einfluss von wandnahen Strömungen auf die Dehnrate und somit auf die Dehnviskosität wird ausführlich in Anhang C diskutiert.

Zunächst wurden alle Messdaten als Funktion von x, also als Funktion des Ortes gemessen. Die in z-Richtung gemittelte Geschwindigkeit $\overline{v_x}(x,z)$ lässt sich aus dem gemessenen Geschwindigkeitsfeld $v_x(x,z)$ bestimmen:

$$\overline{v_x}(x) = \frac{1}{W} \int_{-W/2}^{W/2} v_x(x,z) dz$$ 6-3

Da sich jedem Ort im Strömungskanal auch eine Zeit zuordnen lässt, definiert sich die Belastungszeit $t(x)$ zu:

$$t(x) = \int_{x_0}^{x} \frac{1}{\overline{v_x}(x')} dx'$$ 6-4
Dabei ist x_S der Ort, an dem der Zeitnullpunkt definiert ist und die Deformation der Polymerlösung beginnt. Wie x_S ermittelt wird, wird beispielhaft in Abschnitt 6.2 dargestellt. Die Deformation der Polymerlösung kann zu jeder Zeit durch Integration der Dehnrate über die Zeit bestimmt werden:

$$\varepsilon(t) = \int_0^t \dot{\varepsilon}_{xx}(t') \, dt'$$ \hspace{1cm} 6-5

Die erste Normalspannungsdifferenz N_1 lässt sich mit den in Abschnitt 3.3.3 dargestellten Formeln 3-4 und 3-6 aus der gemessenen Doppelbrechung und dem Extinktionswinkel berechnen:

$$N_1 = \Delta \tau \cos(2\chi) = \frac{\Delta n}{C} \cos(2\chi) \quad \text{mit} \quad \Delta n = C \cdot \Delta \tau$$ \hspace{1cm} 6-6

Dabei ist C der spannungsoptische Koeffizient. Die transiente Dehnviskosität definiert sich demnach als Quotient von Spannung und Dehnrate als:

$$\mu^*(\varepsilon, t) = \frac{N_1(\dot{\varepsilon}, t)}{\dot{\varepsilon}_{xx}(t)}$$ \hspace{1cm} 6-7

bzw. mit Gleichung 6-6 zu:

$$\mu^*(\varepsilon, t) = \frac{1}{C} \frac{\Delta n(\dot{\varepsilon}, t) \cos(2\chi)}{\dot{\varepsilon}_{xx}(t)}$$ \hspace{1cm} 6-8

Da Δn, χ und $\dot{\varepsilon}_{xx}(t)$ mit dem FIB/LDA-Aufbau gemessen werden können, ist die einzige Unbekannte der spannungsoptische Koeffizient C. Dieser wird im Folgenden aus den scherrheologischen Eigenschaften der Polymerlösung bestimmt.

Die lineare Scheranlaufkurve $\eta_0^+(t)$ jedes untersuchten Materials wurden in Abschnitt 5.5 gemessen. Im Fall linearen Materialverhaltens und planarer Strömungsbedingungen, wie sie in der hyperbolischen Düse vorliegen (Abschnitt 6.3) gilt zwischen linearer Dehnanlaufkurve $0^+(t)$ und linearer Scheranlaufkurve folgender Zusammenhang:

$$\mu^*(\varepsilon, t) = 4 \cdot \eta_0^+(t)$$ \hspace{1cm} 6-9

Grundlegende Untersuchungen an Polyacrylamidlösungen

Materialverhalten zeigte sich in seinen Untersuchungen an Polystyrol sobald die Dehnung einen kritischen Wert überschreitet.

Allgemein und somit auch in der hyperbolischen Düse, gilt laut Gleichung 6-5 $\varepsilon=0$ an der Stelle $t=0$. Es existiert daher ein Bereich am Anfang der hyperbolischen Düse, in dem sich das Material linear verhält. Erst ab einer kritischen Zeit t_{krit}, bei der die kritische Dehnung ε_{krit} erreicht wird, beginnt das Material, sich nichtlinear zu verhalten. Also gilt:

$$\mu^+(\varepsilon, t) = \mu^+_0(t) \quad \text{für} \quad t < t_{krit} \quad 6-10$$

In Abb. 6-2 ist die lineare Dehnanlaufkurve $\mu^+_0(t)$ und $\mu^+(\varepsilon, t)$ schematisch dargestellt. Wird C in Gleichung 6-8 geändert, so verschiebt sich der Graph von $\mu^+(\varepsilon, t)$ in einem doppellogarithmischen Diagramm nach oben oder unten. Im linearen Bereich der Anlaufkurve sind $\mu^+_0(t)$ und $\mu^+(\varepsilon, t)$ zunächst parallel angeordnet. C wird nun so gewählt, dass beide Graphen aufeinander zu liegen kommen.

Abb. 6-2: Bestimmung des spannungsoptischen Koeffizienten C aus der linearen Dehnanlaufkurve.

Analytisch lässt sich C also mit Gleichung 6-8 wie folgt ausdrücken:

$$C = \frac{\Delta n}{\Delta \tau} \quad \text{mit} \quad \Delta \tau = \frac{\mu^+_0(t) \cdot \ddot{\varepsilon}_{xx}(t)}{\cos(2\chi)} \quad \text{für} \quad t < t_{krit} \quad 6-11$$

Der spannungsoptische Koeffizient C als Proportionalitätsfaktor zwischen Doppelbrechung und Spannung wird zwar zur Herleitung dieser Gleichung verwendet (Gleichung 6-6), es ist jedoch wichtig herauszustellen, dass dies nicht bedeutet, dass das spannungsoptische Gesetz gelten müsste. Das spannungsoptische Gesetz besagt, dass eine lineare Beziehung zwischen Spannung und Doppelbrechung existiert, bzw. gleichbedeutend damit C konstant ist. Ist dieses spannungsoptische Gesetz nun verletzt, d. h. liegt der spannungsoptische Koeffizient C als Funktion von $\dot{\varepsilon}_0$ vor, so kann diese Abhängigkeit mit der FIB/LDA-Apparatur gemessen werden, denn für jede Messung ist die Dehnrate $\dot{\varepsilon}_0$ innerhalb der Düse konstant und es wird
Für jede Messung ein C bestimmt. Trägt man nun $C(\dot{\varepsilon}_0)$ auf, so erhält man die gewünschte Abhängigkeit.

Bei Polymerlösungen, bei denen sich der Brechungsindex des Lösungsmittels vom Brechungsindex des Polymers unterscheidet, besteht die gemessene Doppelbrechung zu einem Teil aus Spannungsdoppelbrechung und und zum anderen Teil aus Formdoppelbrechung (siehe Abschnitt 2.2.2). Eine genaue Trennung der beiden Effekte ist bei dem geschilderten experimentellen Vorgehen nicht notwendig, da C beide Effekte beinhaltet.

Da $\mu^o(t)$ und $\mu^+(\dot{\varepsilon}, t)$ einen parallelen Verlauf für $t< t_{krit}$ zeigen (Abb. 6-2), folgt, dass C in diesem Bereich zeitunabhängig ist. Für größere Zeiten $t> t_{krit}$ im nichtlinearen Bereich wurde ebenfalls eine Zeitunabhängigkeit von C angenommen. Inwieweit diese Annahme gilt, wird im Zusammenhang mit den Dehnviskositätsmessungen in Kapitel 7 diskutiert.

6.2 Fließgeschwindigkeiten und Dehnraten in der hyperbolischen Düse

In Kapitel 3 wurde die hyperbolische Düse kurz dargestellt und im Anhang A.1 die Geschwindigkeits- und Dehnratenverteilung innerhalb der Düse berechnet. Abb. 6-3 zeigt die gemessene Geschwindigkeit v_x längs der x-Achse der verwendeten hyperbolischen Düse ($L=50$ mm, $f=13$ mm²). Im Reservoir ($x<0$) ist die Geschwindigkeit annähernd gleichbleibend. Innerhalb der Düse ($x>0$) geht $v_x(x)$ nach einem kurzen Bereich in einen linearen Anstieg über, welcher bis zum Düsenende konstant bleibt. Wird der Volumenstrom \dot{V} erhöht, so erhöht sich damit die Fließgeschwindigkeit innerhalb der Düse (Abb. 6-3). Die Linearität im Anstieg der Kurven für $x>20$ mm bleibt dabei näherungsweise erhalten.

![Abb. 6-3: Mittlere Geschwindigkeit als Funktion von x im Reservoir und in der hyperbolischen Düse für eine anionische Polyacrylamidlösung.](image-url)

Abb. 6-4 zeigt den Verlauf der mittleren Dehnrate als Funktion von x für die in Abb. 6-3 dargestellten Geschwindigkeitsprofile. Im Reservoir ist die Dehnrate vernachlässigbar klein. Bereits im Einlaufbereich der Düse bei ca. x=−10 mm beginnt die Dehnrate anzusteigen und erreicht 10 mm innerhalb der Düse einen konstanten Wert. Die Differentiation der Geschwindigkeitsdaten bewirkt, dass sich kleine Fehler bei der Messung der Geschwindigkeit bei der Dehnrate stark auswirken. Um das Rauschen zu reduzieren wurden für weitere Berechnungen die Messdaten daher mit einem glättenden Spline (engl.: „smoothing spline“) gefittet. Die mathematischen Grundlagen dieser Methode sind im Detail von Reinsch beschrieben (Reinsch 1967).

Abb. 6-4: Mittlere Dehnrate als Funktion von x im Reservoir und in der hyperbolischen Düse.

Der Beginn der Deformation und der Bereich ansteigender Dehnrate wurden mit einem Verfahren quantifiziert, welches in Abb. 6-5 dargestellt ist. Exemplarisch wurde \(\varepsilon_{xx} \) für eine Volumenrate von 20 ml/s ausgewählt. Die Messpunkte vor dem Anstieg der Dehnrate wurden mit einer horizontalen Geraden gefittet. Da der Anstieg der Dehnrate annähernd linear verläuft, wurde dieser Bereich ebenfalls mit einer Geraden gefittet. Der Schnittpunkt beider

\(a \) Die Welligkeit der Kurven entsteht bereits durch geringfügiges Rauschen in den Geschwindigkeitsdaten.
Geraden definiert den Startpunkt \(x_S \) der Deformation. Dieser definiert nach Gleichung 6-4 den Zeitpunkt \(t=0 \), bei der die Deformation beginnt\(^a\).

Das Plateau der Dehnrate innerhalb der Düse wurde ebenfalls durch eine horizontale Gerade angefittet. Die Abszisse des Schnittpunktes zwischen dieser Geraden und der im Dehnrateanstieg angepassten Geraden definiert \(x_P \), den Punkt ab dem von einer annähernd konstanten Dehnrate innerhalb der hyperbolischen Düse ausgegangen wird.

\[\text{Abb. 6-5: Definition des Beginns der Deformation (} x_S \text{), des Beginns des Bereichs konstanter Deformation (} x_P \text{) und der mittleren Dehnrate } \dot{\varepsilon}_0 \text{ zwischen } x_P \text{ und dem Düsenende bei } L=50 \text{ mm.} \]

Der Mittelwert der Dehnraten zwischen \(x_P \) und dem Düsenende wird als \(\dot{\varepsilon}_0 \) bezeichnet:

\[\dot{\varepsilon}_0 = \frac{1}{L-x_P} \int_{x_P}^{L} \dot{\varepsilon}_{xx}(x) \, dx \]

Gibt man die Volumenrate durch die hyperbolische Düse vor, so hängt bei rein viskosen Newtonschen Polymerlösungen die Geschwindigkeitsverteilung im Fluid nicht von der Polymerkonzentration ab. Anders hingegen verhält es sich bei Polyacrylamidlösungen, die ein nicht-Newtonsches Verhalten zeigen. Abb. 6-6 zeigt den Verlauf der mittleren Geschwindigkeit \(\bar{v}_x(x) \) für Konzentrationen von 0,5 g/l bis 5 g/l von AF100 in Wasser für einen konstanten Volumenstrom von 20 ml/s. Wie bereits in Abb. 6-3 dargestellt, ist bei einer Konzentration von 0,5 g/l der Anstieg der Geschwindigkeit innerhalb der Düse linear. Auffallend ist, dass die Geschwindigkeitsprofile für die dargestellten höheren

\(^a\) Die Anlaufeffekte dieser Kurven wurden nicht explizit auf verschiedene Einflussfaktoren hin untersucht. Dies würde sich für eine weitergehende Arbeit auf diesem Gebiet anbieten.
Konzentrationen als 0,5 g/l ins Reservoir verschoben sind. Ebenfalls sind eine leichte Änderung der Steigung und eine Abweichung vom linearen Anstieg zu beobachten. Diese Effekte werden genauer in den nächsten Abschnitten diskutiert.

![Diagramm](image)

Abb. 6-6: Mittlere Geschwindigkeit als Funktion von x für unterschiedliche Polymerkonzentrationen.

Durch das Pumpen der Polymerlösung bei hohen Volumenraten konnten darin kleine Luftblasen eingebracht werden. Eine direkte Beobachtung ermöglichte eine qualitative Analyse der Strömungsbedingungen. Divergente Strömungen und Sekundärströmungen konnten abhängig vom eingesetzten Polyacrylamin, der Polymerkonzentration und der Volumenrate beobachtet werden. Es wurde vermutet, dass das Verhalten von $v(x)$ darauf zurückzuführen sei. Um die Verschiebung des Anstiegs von $v(x)$ in negative x-Richtung zu klären, wurde daraufhin die Strömung mittels Partikel-Tracking quantifiziert. Dazu erwies es sich als nützlich, dass die eingesetzte Exzenterschneckenpumpe bei hohen Drehzahlen, die außerhalb des zur Messung verwendeten Rahmens lagen, Abriebteilchen aus Fluor-Elastomer (Vitron) erzeugte. Bei einem Volumenstrom von $V=20$ ml/s und Konzentrationen von 0,5 g/l, 1 g/l, 3 g/l und 5 g/l wurden Videoaufzeichnungen mit einer Digitalkamera durchgeführt. Mit einer selbst dafür programmierten Software in Matlab wurden die Trajektorien der Vitron-Partikel extrahiert.

Abb. 6-7 A zeigt ausgewählte Bahnlinien der Tracerpartikel für $c=0,5$ g/l. Im Reservoir verlaufen diese zunächst parallel, um dann vor der Düse in eine divergente Strömung überzugehen. Innerhalb der Düse schließt sich eine konvergente Strömung an. Ein ähnlicher Verlauf der Strömung bei Polyacrylamidlösungen wurde bereits an Schlitzdüsen beschrieben.

Wird die Konzentration von 0,5 g/l auf 1 g/l erhöht, so bilden sich im Düsenauflauf wandnahe Sekundärströmungen, welche die Hauptströmung einschränken. Eine divergente Strömung konnte bei diesen Konzentrationen nicht beobachtet werden. Aus den Bahnenlinien der Tracerpartikel wurden die Grenzlinien zwischen Sekundär- und Hauptströmung für die Konzentrationen 1 g/l, 3 g/l und 5 g/l extrahiert und in Abb. 6-7 B dargestellt. Es ist zu sehen, dass sich die Sekundärströmungen mit steigender Konzentration vergrößern, was eine Verschiebung der Geschwindigkeitsprofile längs der x-Achse Richtung Reservoir bewirkt.

Betrachtet man den Verlauf von $\bar{v}_x(x)$ in Abb. 6-6 für $c=5$ g/l genauer, so erkennt man, dass der Anstieg in zwei Etappen erfolgt. Zunächst steigt die Geschwindigkeit schnell an, um dann ab $x=7$ mm langsamer anzusteigen. Beide Anstiege sind näherrand linear. Daraus lässt sich schließen, dass die Sekundärströmung im Einlaufbereich der hyperbolischen Düse annähernd wie eine Verlängerung derselben wirkt, jedoch mit einem leicht niedrigeren Formfaktor. Dies verursacht eine höhere Steigung von $\bar{v}_x(x)$. Da die Sekundärströmung sich bis in den Düsenbereich ($x>0$) ausdehnt, wird die Hauptströmung am Anfang der Düse zur Mitte hin eingezogen. Die Geschwindigkeit ist an dieser Stelle höher als ohne Sekundärströmung. Der Strömungsverlauf am Ende der Düse wird von den Sekundärströmungen nur wenig beeinflusst. Daher ist der Geschwindigkeitsanstieg innerhalb der Düse für $x>7$ mm geringer und somit die Steigung von $\bar{v}_x(x)$ kleiner.

Abb. 6-7: (A) Trajektorien von Tracerpartikeln bei $c=0,5$ g/l AF100 in Wasser. (B) Grenzlinien zwischen Sekundär- und Hauptströmung für unterschiedliche Konzentrationen.
In Abb. 6-8 ist die mittlere Dehnrate $\overline{\dot{\varepsilon}}_{xx}$ (Gleichung 6-7) dargestellt, welche sich für verschiedene Konzentrationen der anionischen Polyacrylamidlösung AF100 im Reservoir und innerhalb der Düse ergibt. Die Messfehler betragen 10% des Maximalwertes. Die Fehlerbalken sind jedoch aus Gründen der Übersichtlichkeit nicht dargestellt. In genügend großer Entfernung sind die Dehnraten für alle dargestellten Konzentrationen verschwindend klein. Die oben beschriebenen Sekundärströmungen führen zu einer Verschiebung des Anstiegs der Dehnrate in Richtung negativer x-Werte für steigende Konzentrationen. Analog zu x_S verschiebt sich auch x_P, der Beginn des Plateaus der Dehnrate. $\dot{\varepsilon}_0$ innerhalb der Düse beträgt 41 s⁻¹ für 0,5 g/l und fällt mit steigender Konzentration bis auf 36 s⁻¹ für 5 g/l ab. Gleichzeitig zeigt sich ein leichter Überschwinger zu Beginn des Plateaus für 3 g/l und 5 g/l. Dieses Maximum entspricht dem schnelleren Geschwindigkeitsanstieg $\dot{v}_x(x)$ am Anfang der Düse und entsteht dadurch, dass die Sekundärströmungen innerhalb der Düse die Hauptströmung einengen.

Abb. 6-8: Mittlere Dehnrate als Funktion von x für unterschiedliche Konzentrationen.

Abb. 6-8 zeigt, dass die mittlere Dehnrate $\overline{\dot{\varepsilon}}_{xx}(x)$ über weite Bereiche der Düse hinweg konstant ist. Die Voraussetzung zur Messung des Zeitverhaltens der Dehnviskosität $\mu^+(t)$ bei annähernd konstantem $\dot{\varepsilon}_0$ ist daher erfüllt. Die Homogenität der Dehnrate $\overline{\dot{\varepsilon}}_{xx}(x,z)$ in z-Richtung wird im Anhang C beschrieben und der Einfluss auf die gemessene Dehnviskosität diskutiert.

Da sich das Strömungsverhalten bei Konzentrationsänderung stark verändert (Abb. 6-7), ist auch bei gleichem Volumenstrom davon auszugehen, dass sich die mittlere Dehnrate $\dot{\varepsilon}_0$ innerhalb der Düse ändert. Die Messung der Dehnrate $\dot{\varepsilon}_0$ zeigt, dass diese mit steigender
Konzentration absinkt. Verantwortlich dafür sind Sekundärströmungen im Reservoir und die Beobachtung, dass diese weit in die Düse hineingezogen werden.

6.3 Planarität entlang der x-Achse

Um von der linearviskoelastischen Scheranlaufkurve $\eta(t)$ auf die linearviskoelastische Dehnanlaufkurve $\mu(t)$ schließen zu können (Abschnitt 6.1) wurden planare Strömungsbedingungen in Gleichung 6-9 vorausgesetzt. Diese sind durch $\varepsilon_{zz}=0$ definiert (Abschnitt 2.1.1). Unter der Bedingung eines inkompressiblen Fluids ($\varepsilon_{xx}+\varepsilon_{yy}+\varepsilon_{zz}=0$) folgt:

$$\dot{\varepsilon}_{xx} = -\dot{\varepsilon}_{yy} \quad 6.13$$

Der experimentelle Nachweis der Gültigkeit dieser Beziehung folgt aus den Abb. 6-9 und Abb. 6-10 am Beispiel von Lösungen aus AF100. Die negative Dehnrate in y-Richtung $-\varepsilon_{yy}$ konnte für beide Diagramme nur bis ca. $x=17 \text{ mm}$ bestimmt werden, da die geometrische Anordnung der LDA-Laserstrahlen es verhindert, $v_y(y)$ für größere x-Positionen zu messen.

Abb. 6-9 zeigt die Dehnraten $\dot{\varepsilon}_{xx}$ und $-\dot{\varepsilon}_{yy}$ als Funktion von x für zwei verschiedene Konzentrationen. Abb. 6-10 zeigt $\dot{\varepsilon}_{xx}$ und $-\dot{\varepsilon}_{yy}$ für eine feste Konzentration von $c=0.5 \text{ g/l}$, jedoch bei unterschiedlichen Volumenraten. Die Ergebnisse bei der Abbildung zeigen überzeugend, dass die Geschwindigkeitsfelder im Rahmen der Messgenauigkeit planar sind.

a Die Sekundärströmungen bei hohen Konzentrationen von 5 g/l reichen des öfteren bis zum Düsenende. Dies könnte auch eine Erklärung dafür sein, dass in Abb. 6-6 die Geschwindigkeiten am Düsenende varieren.
90 Grundlegende Untersuchungen an Polyacrylamidlösungen

Abb. 6-10: Dehnrate in x- und y-Richtung längs der x-Achse für unterschiedliche Volumendurchsätze.

6.4 Spannungsdoppelbrechung innerhalb der hyperbolischen Düse

Die Funktionsweise der Messung der Spannungsdoppelbrechung und das experimentelle Vorgehen wurden bereits in den Abschnitten 3.3 und 6.1 beschrieben. Die Messergebnisse für die normierte Intensität, den Extinktionswinkel χ und die Doppelbrechung Δn werden im Folgenden für das anionische Polyacrylamid AF100 dargestellt. Alle Messungen wurden in der x-z-Ebene der hyperbolischen Düse durchgeführt und als Funktion der x-Koordinate aufgetragen.

Die normierten Intensitäten i_1 und i_2 sind in Abb. 6-11A für eine Konzentration von 0,5 g/l dargestellt. Die Kurven sind weit entfernt von der Düse nahezu Null und steigen im Einlaufbereich der Düse an. Dieser Anstieg setzt sich auch innerhalb der Düse fort. Ein Anstieg des Durchsatzes von 20 ml/s auf 40 ml/s vergrößert die mittlere Steigung der Kurven. Abb. 6-11B zeigt die normierten Intensitäten für $c=5$ g/l bei zwei unterschiedlichen Volumendurchsätzen von $\tilde{V}_1=20$ ml/s und $\tilde{V}_2=40$ ml/s. Hier sind die Kurven weit entfernt von der Düse ebenfalls Null um dann im Düsenauflaufbereich anzusteigen. Innerhalb der Düse zeigen die Kurven bei dieser Konzentration einen annähernd linearen Verlauf als Funktion von x. Vergleicht man beide Diagramme, so fällt auf, dass bei der höheren Konzentration (Abb. 6-11B) von $c=5$ g/l die Absolutwerte von i_1 und i_2 um mehr als eine Zehnerpotenz höher liegen als bei $c=0,5$ g/l. Aus diesen normierten Intensitäten lassen sich die eigentlich interessanten Größen wie Doppelbrechung Δn, Extinktionswinkel χ oder Dehnspannung N_1 nicht direkt ablesen, sondern müssen aus den Gleichungen 3-1 bis 3-6 berechnet werden. Aus diesem Grund wird im Weiteren darauf verzichtet die normierten Intensitäten für weitere Messungen darzustellen, da die Übersichtlichkeit der Arbeit stark darunter leiden würde.
Die Größen wurden aus den Gleichungen 3-1 bis 3-3 unter Vernachlässigung konstanter Faktoren und monotoner Funktionen abgeleitet. Aus Grenzwertbetrachtungen zur Doppelbrechung lassen sich folgende Schlüsse ziehen: Da die Doppelbrechung proportional zur aufgebrachten Spannung ist (Abschnitt 2.2), sollte Δn bei kleiner Volumenrate kleiner sein. Das gleiche gilt für geringere Konzentrationen, da in diesen Fluiden bei gleicher Volumenrate aufgrund der niedrigeren Viskosität kleinere Spannungen herrschen.

Abb. 6-11: Normierte Intensitäten i_1 und i_2 für verschiedene Volumenraten bei einer Konzentration von (A) 0,5 g/l und (B) 5 g/l.

Abb. 6-12 zeigt den Extinktionswinkel, welcher als Funktion von x für $c=0,5$ g/l (Abb. 6-12A) und $c=5$ g/l (Abb. 6-12B) mit Gleichung 3-3 berechnet wurde. Für die niedrigere Konzentration von $c=0,5$ g/l (Abb. 6-12A) streuen die Messwerte für $x<0$ mm sehr stark. Die Messfehler der normierten Intensitäten werden hauptsächlich durch das Detektorrauschen festgelegt und verändern sich nur wenig, während sich i_1 und i_2 stark ändern. Für kleine normierte Intensitäten ergibt sich daher ein hoher Messfehler für χ. Realistische Werte ergeben sich für χ nur für $x>5$ mm. Diese liegen im Bereich zwischen -3° und 7° mit der Tendenz, mit wachsendem x gegen $\chi=0^\circ$ zu laufen.

Abb. 6-12: Extinktionswinkel $\chi(x)$ für unterschiedliche Durchsätze bei einer Konzentration von (A) 0,5 g/l und (B) 5 g/l.
Für die Konzentration von 5 g/l beginnt der Bereich, in dem die Fehler kleiner als die Messwerte sind, bei \(x = -13 \) mm. Dies ist ein direkter Einfluss der höheren Intensitäten \(i_1 \) und \(i_2 \) und dem somit relativ dazu geringem Detektorrauschen. Die Werte für \(\chi \) reichen von -2° bis 4° und zeigen für große \(x \) ein asymptotisches Verhalten gegen 0°. Zu beachten ist, dass die Winkelbestimmung in diesem Bereich an der Auflösungsgrenze des FIB/LDA-Aufbaus stattfindet und der leichte Anstieg bei \(x = 0 \) mm (Abb. 6-12 B) daher nicht überinterpretiert werden sollte. Das lokale Maximum könnte von systematischen Fehlern des FIB-Aufbaus, oder von einer leichten Fehjustage der Messzelle stammen. Ein signifikanter Einfluss von \(\chi \) auf die Dehnspannung \(N_1 \) ist nicht zu erwarten. Schwankt \(\chi \) zwischen 0° und 5°, so ist nach Gleichung 6-6 für \(N_1 \) lediglich ein relater Fehler von \(\frac{\cos(0°) - \cos(10°)}{\cos(0°)} \approx 1,5\% \) zu erwarten. Dies ist klein im Vergleich zu den statistischen Fehlern, die bei der Bestimmung der Dehnviskosität auftreten. Obwohl die Abweichung des Extinktionswinkels von Null vernachlässigbar ist wurde dieser gemessen und in die Auswertung mit einbezogen.

Betrachtet man lediglich den Parameterbereich, in dem genügend hohe Intensitäten \(i_1 \) und \(i_2 \) gemessen werden (\(\dot{V} = 40 \) ml/s, \(c = 1 \) g/l bis 5 g/l), so bestätigt sich (Abb. 6-13), dass die Messfehler des Extinktionswinkels kleiner werden und \(\chi \) maximal 5° für alle Konzentrationen im Bereich \(x \in [-30, 50] \) annimmt. Mit steigender Konzentration nimmt der Maximalwert von \(\chi \) noch weiter ab.

\[
\begin{align*}
\text{Abb. 6-13: Extinktionswinkel } \chi(x) \text{ für einen Volumendurchsatz von } 40 \text{ ml/s und unterschiedlichen Polymerkonzentrationen.}
\end{align*}
\]

Ausgehend von \(i_1 \) und \(i_2 \) wurde die Doppelbrechung \(\Delta n \) für die anionische Polyacrylamidlösung (AF100) berechnet und in Abb. 6-14 dargestellt. Da \(N_1 \) nach Gleichung 6-6 annähernd proportional zu \(\Delta n \) ist, wurde auf eine explizite Darstellung von \(N_1 \) verzichtet, da die Kurven den nahezu gleichen Verlauf besitzen, was keine neue Informationen liefert. Zudem ist der spannungsoptische Koeffizient \(C \) a-priori nicht bekannt. Abb. 6-14A zeigt \(\Delta n \) für eine feste Volumenrate von \(\dot{V} = 20 \) ml/s. Es sind die Konzentrationen \(c = 0,5 \) g/l und \(c = 5 \) g/l dargestellt.
Auffallend ist, dass die Doppelbrechung nach einem Plateau im Reservoir mit steigendem \(x \) zunimmt. Die mittlere Steigung innerhalb der Düse ist bei höherer Konzentration größer. Für jede Kurve wurde das Plateau im Reservoir mit einer horizontalen Geraden und der Beginn des Anstiegs mit Geraden ohne Zwangsbedingungen gefittet. Die Schnittpunkte der Geraden für die jeweiligen Konzentrationen sind mit Pfeilen gekennzeichnet. Die Punkte liegen für \(c=0,5 \text{ g/l} \) bei \(x=-8 \text{ mm} \) und für \(c=5 \text{ g/l} \) bei \(x=-15 \text{ mm} \). Diese Punkte stimmen gut mit den Stellen \(x_S \) überein, an denen die Dehnrate ansteigt. Diese liegen für \(c=0,5 \text{ g/l} \) bei \(x=-6 \text{ mm} \) und für \(c=5 \text{ g/l} \) bei \(x=-17 \text{ mm} \) (vgl. Abb. 6-8).

Abb. 6-14: Spannungsdoppelbrechung \(\Delta n(x) \) (A) für zwei Konzentrationen bei konstanter Volumenrate und (B) für unterschiedliche Volumenraten bei fester Konzentration.

Abb. 6-14B zeigt die gemessene Doppelbrechung \(\Delta n \) für Volumenraten von 20 ml/s bis 49 ml/s für eine Konzentration von \(c=5 \text{ g/l} \). Mit steigendem Volumendurchsatz steigt auch die gemessene Doppelbrechung an. Gleichzeitig ist bei höheren Volumendurchsätzen zu beobachten, dass nun auch im Reservoir eine gewisse Doppelbrechung zu messen ist.

Bei LDA-Messungen beobachtet man eine erhöhte Dehnrate im Reservoir mit steigender Konzentration bzw. steigendem Volumendurchsatz. Sowohl die Erhöhung der Spannungsdoppelbrechung als auch der Anstieg der Dehnrate können durch die Existenz von Sekundärströmungen im Einlaufbereich erklärt werden, welche bereits in Abschnitt 6.2 beschrieben wurden und in Abb. 6-7 dargestellt sind.
7 Dehviskosität und Dehnverfestigung verschiedener Polyacrylamidlösungen

7.1 Einfluss der Dehnrate auf die Dehviskosität

Aus den bisher in Kapitel 6 dargestellten Ergebnissen wurden mittels Gleichung 6-7 die transienten Dehviskositäten für die anionische Polymerlösung AF100 mit der Konzentration 0,5 g/l berechnet. Sie sind in Abb. 7-1 dargestellt. Die linear-viskoelastische Dehnanlaufkurve ist mit \(\mu_0 \) gekennzeichnet und als durchgezogene Linie dargestellt. Zur Berechnung von \(\mu_0 (t) \) ist auf Gleichung 6-9 verwiesen. Der Zeitbereich, in dem ein Fluidelement die hyperbolische Düse passiert, erstreckt sich von 30 ms bis 140 ms. Die Dehnraten reichen von 25 s\(^{-1}\) bis 98 s\(^{-1}\).

Für jede Dehnrate wurde ein spannungsoptischer Koeffizient ermittelt. Der Mittelwert aller spannungsoptischen Koeffizienten beträgt \(\overline{C} = (1,1 \pm 0,2) \cdot 10^{-7} \text{ Pa}^{-1} \) für \(c = 0,5 \text{ g/l} \). Wie in Kapitel 8 gezeigt, ist diese Mittelwertbildung durchführbar, da C nicht von der Dehnrate abhängt. Das generelle Verhalten der spannungsoptischen Koeffizienten in Abhängigkeit von Dehnrate, Konzentration und molekularen Eigenschaften der Materialien wird ebenfalls detailliert in Kapitel 8 diskutiert und daher hier nicht weiter vertieft.

Für eine beliebige Dehnrate folgt der Verlauf der Dehviskosität zunächst der linear-viskoelastischen Anlaufkurve um dann, ab einem gewissen kritischen Zeitpunkt \(t_{krit} \), nach oben abzuknicken und ein nichtlineares dehnverfestigendes Verhalten zu zeigen. Der letzte Datenpunkt entspricht dabei dem Düsenende bei \(x = 50 \text{ mm} \). Die gesamten Messkurven verschieben sich für kleinere Dehnraten zu höheren Zeiten. Kleinere Dehnraten sind äquivalent zu kleineren Fluidgeschwindigkeiten. Daher benötigt ein Fluidelement bei kleineren Dehnraten länger als bei hohen Dehnraten, um die Düse zu passieren. Weiterhin
zeigt Abb. 7-1, dass mit wachsender Dehnrate die Abweichung der Dehnviskosität vom linear-viskoelastischen Verhalten am Düsenende erhöht ist.

Das Verhalten der Dehnviskosität wird in der Literatur oft nicht in Abhängigkeit von der Zeit, sondern in Abhängigkeit von der Gesamtdehnung ε beschrieben. Theorien, welche versuchen, die Dehneigenschaften von Polymeren zu beschreiben (z. B. Doi-Edwards (Doi und Edwards 1986)), legen nahe, dass die Dehnviskosität der Makromoleküle direkt mit der aufgebrachten Dehnung in Zusammenhang steht. Da im Folgenden die Abweichungen vom linearen Verhalten der Dehnviskosität genauer betrachtet werden sollen, wird daher der Dehnverfestigungsfaktor μ^+ / μ_0^+ über die Dehnung ε aufgetragen.

Abb. 7-2 zeigt μ^+ / μ_0^+ als Funktion der Dehnung für $c=0,5$ g/l. Die Gesamtdehnung ε wurde mit Gleichung 6-5 bestimmt. Für $\varepsilon<1,5$ liegen alle dargestellten Graphen zunächst auf einer horizontalen Geraden mit dem Wert 1. Dies entspricht dem linear-viskoelastischen Verhalten. Steigt die Dehnung weiter an, so nimmt der Dehnverfestigungsfaktor zu. Wie bereits erwähnt, ist μ^+ / μ_0^+ für höhere Dehnraten größer als für kleinere Dehnraten. Die Kurven besitzen zwei Bereiche mit unterschiedlichen Steigungen. Der erste Bereich erstreckt sich von $\varepsilon\approx1,5$ bis $\varepsilon\approx3,0$. An diesen schließt sich ein Bereich an, der eine höhere Steigung besitzt und bis etwa $\varepsilon=3,4$ reicht. Die Dehnung von 3,4 entspricht in etwa auch der maximalen Dehnung, welche mit dem FIB/LDA-Aufbau gemessen werden kann.

Das geringe Signal/Rausch-Verhältnis bei der Geschwindigkeits- und Spannungsmessung könnte für das Ansteigen der Kurven ab $\varepsilon=3,0$ verantwortlich sein. Düseauslaufeffekte können ausgeschlossen werden, denn diese führen generell zu einem Absinken der auftretenden Dehnspannungen und damit zu einem Absinken der Dehnviskosität. Zudem
entspricht $\varepsilon \approx 3,0$ der Ortskoordinate $x=35$ mm. Messungen der Geschwindigkeitsprofile in diesem Bereich deuten nicht auf die Existenz von Düsenaußeneffekten hin.

Abb. 7-2: Dehnverfestigungsfaktor als Funktion der Dehnung für unterschiedliche Dehnraten.

Die gestrichelte vertikale Linie in Abb. 7-2 markiert die Dehnung $\varepsilon=2,7$. Für diese Dehnung wurde der Dehnverfestigungsfaktor in Abb. 7-3 als Funktion der Dehnrate dargestellt. Bei einer Dehnrate von $\dot{\varepsilon}_0=25$ s$^{-1}$ ist keine Dehnverfestigung zu erkennen. Es existiert zwar bereits ein Verschleißschadensnetzwerk, was aus Ubbelohde-Messungen bekannt ist (Abb. 5-4), dennoch ist die Dichte des Verschleißschadensnetzwerkes noch zu gering als dass es zu nichtlinearen Effekten, wie der Dehnverfestigung kommen könnte.

Abb. 7-3: Dehnverfestigungsfaktor als Funktion der Dehnrate bei konstanter Dehnung ($AF100, c=0,5$ g/l).
Eine mögliche Erklärung könnte folgende sein: Mit steigender Dehnrate kann das Verschlaufungsnetzwerk nicht mehr schnell genug relaxieren. Das Verschlaufungsnetzwerk befindet sich für hohe Dehnraten also nicht mehr im Gleichgewichtszustand, so wie es bei niedrigen Dehnraten der Fall ist. Die Spannung, welche bis zur Dehnung von 2,7 benötigt wird, ist bei hohen Dehnraten daher größer. Diese Spannungserhöhung hat eine Erhöhung der Dehnviskosität zur Folge. Dieser Anstieg spiegelt sich auch im Verhalten der gemittelten Steigung von μ^+/μ_0^+ als Funktion der Dehnrate wider. Die Steigung nimmt von $\dot{\varepsilon}_0=42 \, \text{s}^{-1}$ bis $\dot{\varepsilon}_0=98 \, \text{s}^{-1}$ geringfügig zu.

7.2 Einfluss der Konzentration auf die Dehnviskosität

Nachdem der Einfluss der Dehnrate auf die Dehnviskosität von AF100 dargestellt wurde, wird in diesem Abschnitt der Fragestellung nachgegangen, inwieweit die Konzentration der Polymerlösung die Dehnverfestigung beeinflusst.

7.2.1 Verhalten der Dehnviskosität bei Konzentrationsänderung

An Polyacrylamidlösungen aus AF100 wurde die Dehnviskosität bei unterschiedlichen Konzentrationen (0,5 g/l, 1 g/l, 3 g/l, 5 g/l) und Dehnraten gemessen. Die Ergebnisse sind in Form des Dehnverfestigungsfaktors als Funktion der Dehnung in Abb. 7-4 dargestellt. Abb. 7-4A zeigt die Dehnverfestigungsfaktoren von $c=0,5 \, \text{g/l}$ bei unterschiedlichen Dehnraten, welche bereits in Abb. 7-2 dargestellt wurden. Für etwa $\varepsilon<1,5$ liegen alle dargestellten Graphen zunächst auf einer horizontalen Geraden und zeigen ein linear-viskoelastisches Verhalten. Steigt die Dehnung weiter an, so nimmt der Dehnverfestigungsfaktor zu. Für alle Konzentrationen wird μ^+/μ_0^+ mit steigender Dehnrate größer.

Auffällend ist, dass die Absolutwerte der Dehnverfestigungsfaktoren stark mit der Konzentration ansteigen. Mit steigender Konzentration ist bei Polymerlösungen eine Erhöhung der Verschlaufungsdichte der Makromoleküle zu erwarten. Dies wurde an Polyacrylamiden für Konzentrationen kleiner als 0,5 g/l mittels Ubbelohde-Viskosimetrie in Kapitel 5 gezeigt. Auch bei hohen Konzentrationen von 3 g/l und 5 g/l werden die Polymer-Polymer Wechselwirkungen immer ausgeprägter. In einer Dehnströmung kann das entstandene Verschlaufungsnetzwerk der erzwungenen Deformation nun erheblich mehr Widerstand entgegengesetzt als bei niedrigen Konzentrationen, und die Dehnspannung auf ein Fluidelement steigt mit der Konzentration an. Bei konstanter Dehnrate steigt daher auch die Dehnviskosität an, und mit ihr auch die Dehnverfestigung im nichtlinearen Deformationsbereich (Abb. 7-4).
Abb. 7-4: Transienter Dehnverfestigungsfaktor als Funktion der Dehnung bei unterschiedlichen Dehnraten und Konzentrationen: (A) 0.5 g/l, (B) 1 g/l, (C) 3 g/l, (D) 5 g/l.

Abb. 7-5: Transienter Dehnverfestigungsfaktor als Funktion der Dehnung für unterschiedliche Konzentrationen, aber ungefähr gleicher Dehnrate $\dot{\varepsilon}_0 \approx 50 \text{ s}^{-1}$.
In Abb. 7-5 wurde μ^+ / μ_0^+ für alle gemessenen Konzentration bei einer konstanten Dehnrate von 50 s$^{-1}$ als Funktion der Dehnung aufgetragen. In dieser Auftragung, welche die unterschiedlichen Konzentrationen direkt miteinander vergleicht, ist gut zu erkennen, dass die Dehnverfestigung mit der Konzentration ansteigt. Der größte Anstieg der Dehnverfestigung findet zwischen 3 g/l und 5 g/l statt.

Im folgenden Schritt wurden aus Abb. 7-4 die einzelnen Dehnverfestigungsfaktoren bei einer Dehnung von $\varepsilon=2,7$ als Funktion der Dehnrate für verschiedene Konzentrationen in Abb. 7-6 aufgetragen. Diese Darstellung veranschaulicht, dass nicht nur die Absolutwerte der Dehnverfestigung mit höheren Konzentrationen anwachsen, sondern auch die Steigung $d(\mu^+ / \mu_0^+)/d\dot{\varepsilon}_0$ mit steigender Konzentration zunimmt.a

Abb. 7-6: Dehnverfestigungsfaktoren als Funktion der Dehnrate für verschiedene Konzentrationen bei einer festen Dehnung von 2,7.

7.2.2 Reproduktionsmessungen bei unterschiedlichen Konzentrationen

Abb. 7-7 zeigt Reproduktionsmessungen für Polymerlösungen aus AF100 bei einer Konzentration von $c=0,5$ g/l und $c=3$ g/l. Es wurde bei einer geringen und einer hohen Konzentration $c=5$ g/l und kleineren Dehnraten Abweichungen vom linear ansteigenden Geschwindigkeitsprofil $\overline{v_x(X)}$ in x-Richtung und Inhomogenitäten der Fließgeschwindigkeit $v_x(z)$ entlang der z-Richtung im Strömungskanal und innerhalb der Düse vorhanden sind. In Anhang C wird das Auftreten von Strömungsinhomogenitäten ausführlicher diskutiert. Die ersten beiden Datenpunkte des Graphen für $c=5$ g/l in Abb. 7-6 wurden daher für weitere Analysen verworfen.

a Zwei Datenpunkte des Graphen für $c=5$ g/l bei $\dot{\varepsilon}_0=29$ s$^{-1}$ und $\dot{\varepsilon}_0=38$ s$^{-1}$ liegen unterhalb des Graphen für $c=3$ g/l. Dieses Verhalten steht im Widerspruch zu dem restlichen Verlauf der Kurve, welche eine signifikant größere Dehnverfestigung als die Kurve für $c=3$ g/l zeigt. Eine Analyse der Strömungsbedingungen ergab, dass bei der Konzentration $c=5$ g/l und kleinen Dehnraten Abweichungen vom linear ansteigenden Geschwindigkeitsprofil $\overline{v_x(X)}$ in x-Richtung und Inhomogenitäten der Fließgeschwindigkeit $v_x(z)$ entlang der z-Richtung im Strömungskanal und innerhalb der Düse vorhanden sind. In Anhang C wird das Auftreten von Strömungsinhomogenitäten ausführlicher diskutiert. Die ersten beiden Datenpunkte des Graphen für $c=5$ g/l in Abb. 7-6 wurden daher für weitere Analysen verworfen.
Polymerkonzentration gemessen, um die Zuverlässigkeit der Messungen in einem weiten Konzentrationsbereich zu überprüfen. Die Messungen wurden direkt nacheinander ohne eine Veränderung des experimentellen Aufbaus durchgeführt. Bei der Konzentration \(c = 0.5 \text{ g/l} \) (Abb. 7-7A) ist der relative Fehler zwischen den Messkurven größer als bei der höheren Konzentration von \(c = 3 \text{ g/l} \) in Abb. 7-7B. Dies liegt daran, dass bei \(c = 0.5 \text{ g/l} \) die Auflösungsgrenze der Spannungsdoppelbrechung des FIB-Aufbaus nahezu erreicht ist, während bei \(c = 3 \text{ g/l} \) die Signale an den Intensitätsdetektoren eine ausreichende Größe besitzen.

Da die Dauer der Reproduktionsexperimente in etwa mit denen aus Abb. 7-2 identisch war, kann aus diesen Ergebnissen auch abgeleitet werden, dass die Polymerlösung während der Messzeit keinem signifikanten mechanischen Abbau innerhalb des Pumpenkreislaufes ausgesetzt war. Dies scheint sowohl für \(c = 0.5 \text{ g/l} \) als auch für \(c = 3 \text{ g/l} \) zu gelten.

Abb. 7-7: Reproduktionmessungen der Dehnverfestigungsfaktoren als Funktion der Dehnung. Drei direkt aufeinander folgende Messungen sind für (A) \(c = 0.5 \text{ g/l} \) und (B) \(c = 3 \text{ g/l} \) dargestellt.

7.2.3 Kritische Dehnung

Die kritischen Dehnungen, bei denen das nichtlineare Materialverhalten für die Polymerlösungen aus AF100 einsetzt, können aus Abb. 7-5 abgelesen werden. In diesem Diagramm sind die Dehnverfestigungen für unterschiedliche Konzentrationen, aber gleicher Dehnrate dargestellt. Bei einer Konzentration von \(c = 0.5 \text{ g/l} \) liegt der Wert der kritischen Dehnung bei etwa \(\varepsilon_{\text{krit}} = 3.2 \). Für die Konzentrationen 1 \text{ g/l}, 3 \text{ g/l} und 5 \text{ g/l} liegen die kritischen Konzentrationen bei etwa \(\varepsilon_{\text{krit}} = 1.7 \). Die kritische Dehnung verändert sich zwischen den Konzentrationen 1 \text{ g/l}, 3 \text{ g/l} und 5 \text{ g/l} kaum.

Wählt man nun eine konstante Konzentration von \(c = 5 \text{ g/l} \) und betrachtet den Einfluss der Dehnrate auf die kritische Dehnung (Abb. 7-4D), so ist zu erkennen, dass mit steigender Dehnrate die kritische Dehnung absinkt. Bei \(c = 3 \text{ g/l} \) (Abb. 7-4C) und \(c = 1 \text{ g/l} \) (Abb. 7-4B), ist der Einfluss der Dehnrate auf \(\varepsilon_{\text{krit}} \) ebenfalls zu beobachten, jedoch weniger stark ausgeprägt.
Rothstein (Rothstein und McKinley 2002) führte eine Untersuchung der Deheigenschaften an Polystyrollösungen mit einem Filament-Dehnrheometer durch. Als Lösungen verwendete er Oligostyrol mit 0,025 % Polystyrol und eine weitere Lösung mit 5 % Polystyrol in Tricresylphosphat. Die Polymerlösung niedriger Konzentration war hochverdünnt und bildete kein Verschleifungsnetzwerk, die Lösung hoher Konzentration war zur Ausbildung eines Verschleifungsnetzwerks fähig. Die kritische Dehnrate $\varepsilon_{\text{krit}}$, bei der die Dehnverfestigung einsetzte, lag bei der Lösung geringer Konzentration bei 2,7 und für die Lösung hoher Konzentration bei etwa 1,6.

Eine mögliche Erklärungshypothese ist diese: Wird ein Volumenelement eines Fluids gedehnt, so wirkt umso mehr Kraft auf die einzelnen Moleküle, je dichter das Verschleifungsnetzwerk ausgebildet ist. Bringt man eine feste Dehnung ε auf ein Fluidelement auf, so werden die Polymerketten mit sinkender Konzentration auf molekularer Ebene immer weniger gedehnt, bzw. zeigen erst bei einer höheren makroskopischen Dehnung die gleichen physikalischen Effekte wie sie bei Materialien mit einem dominanten Verschleifungsnetzwerk bereits bei niedrigeren makroskopischen Dehnungen auftreten. Daher ist das konzentrationsabhängige Verhalten der dargestellten Kurven erkläbar.

Interessant ist ein Vergleich dieser Ergebnisse mit Messungen an Polymerschmelzen. Da Polyacrylamid sich chemisch zersetzt, bevor es geschmolzen werden kann, ist es unmöglich, von Polyacrylamid selbst eine Schmelze herzustellen und diese mit den Ergebnissen an den entsprechenden Lösungen zu vergleichen. Ein Vergleich mit anderen Polymeren wie Polyethylene schmelzen zeigt Ähnlichkeiten im Verhalten der Dehnverfestigung. In einer Untersuchung von Münstedt und Kurzbeck (Münstedt, et al. 1998) zeigt ein LLDPE eine kritische Dehnung von ca. 1,2 bis 1,5 und ein LDPE ein $\varepsilon_{\text{krit}}$ von 1,5 bis 2,0. Eine Änderung von $\varepsilon_{\text{krit}}$ in Abhängigkeit der Dehnrate konnte aus jenen Messdaten nicht abgeleitet werden.

7.3 Einfluss von molekularen Parametern

Die in diesem Kapitel bisher dargestellten Untersuchungen an AF100 wurden ebenfalls an den in Tabelle Tab. 5-1 angegebenen Materialien unterschiedlicher Ionogenität und Molmasse durchgeführt. Die Ergebnisse dieser Untersuchungen sind in den nachfolgenden Abschnitten zusammengefasst.

7.3.1 Ionogenität

Anionische Polyacrylamide

In diesem Abschnitt wird das Verhalten der Dehnverfestigung von Polymerlösungen dargestellt, welche aus den Materialien AF100 ($M_w=10 \text{ Mg/mol}$, Ionogenität: 10 Mol-%), AF402 ($M_w=11 \text{ Mg/mol}$, Ionogenität: 40 Mol-%) und AF701 ($M_w=12 \text{ Mg/mol}$, Ionogenität: 70 Mol-%) hergestellt wurden – also Materialien unterschiedlicher Ionogenität, aber mit ähnlichen Molmassengewichtsmittelwert. Die Dehnviskosität wurde als Funktion der Dehnung für jedes Material bei unterschiedlichen Konzentrationen und Dehnraten bestimmt. Da sich daraus eine unübersichtliche Datenmenge ergibt, wird im Folgenden die Dehnverfestigung bei einer Gesamtdehnung von $\varepsilon=2,7$ betrachtet um eine klare Darstellung
zu erhalten. Diese Dehnung wurde deshalb ausgewählt, da sich bei den untersuchten Polymerlösungen für \(\varepsilon = 2,7 \) bereits eine signifikante Dehnverfestigung beobachten lässt, welche bei den meisten untersuchten Polyacrylamidlösungen über einen gewissen \(\varepsilon \)-Bereich konstant ist.

Abb. 7-8 zeigt zunächst den Dehnverfestigungsfaktor \(\mu^+ / \mu_0^+ \) der AF-Typen als Funktion der Dehnrate bei \(\varepsilon = 2,7 \) für \(c = 1 \) g/l und \(c = 5 \) g/l. Ebenso wie bei Polymerlösungen aus AF100 scheint die Dehnverfestigung auch bei Materialien höherer Ionogenität mit der Polymerkonzentration zuzunehmen. Daher ist es nicht verblüffend, dass sich die Kurven unterschiedlicher Konzentration in zwei Bereiche aufspalten. Für \(c = 1 \) g/l ist der funktionelle Zusammenhang annähernd linear, während bei \(c = 5 \) g/l generell eine Krümmung nach oben hervortritt.

Abb. 7-8: Dehnverfestigungsfaktoren als Funktion der Dehnrate in Abhängigkeit von unterschiedlichen Ionogenitäten (10, 40, 70 Mol-%) und Konzentrationen (1 g/l, 5 g/l).

Für \(c = 1 \) g/l ist die Dehnverfestigung von AF402 für alle Dehnraten die niedrigste, gefolgt von AF701 und AF100. AF100 zeigt für \(c = 1 \) g/l die höchste Dehnverfestigung. Für \(c = 5 \) g/l haben sich die Beziehungen zwischen den Materialien geändert: Nun zeigt AF100 die geringste Dehnverfestigung, während AF701 etwas höher liegt. Betrachtet man nur Dehnraten bis 44 s\(^{-1}\), so zeigt AF402 die höchste Dehnverfestigung. Höhere Dehnraten konnten für AF402 und \(c = 5 \) g/l aufgrund von ausgeprägten Sekundärströmungen nicht gemessen werden. Daher wurde der Dehnverfestigungsfaktor für \(\dot{\varepsilon}_0 = 50 \) s\(^{-1}\) linear extrapoliert.

Die Polymerlösung aus AF100 zeigt bei einer Konzentrationsänderung von \(c = 1 \) g/l auf \(c = 5 \) g/l die geringste Veränderung der Dehnverfestigung. Für AF701 wurde eine stärkere Erhöhung
der Dehnverfestigungsfaktoren gefunden. Übertragen wird diese im dargestellten Dehnratebereich nur noch durch das Material AF402.

Abb. 7-9 zeigt die Dehnverfestigung als Funktion der Konzentration bei einer konstanten Dehnrate von $\dot{\varepsilon}_0=50$ s$^{-1}$ und $\varepsilon=2,7$ für AF100, AF402 und AF701. Nur für diese Dehnrate ist es möglich, alle drei Materialien miteinander zu vergleichen, da für AF402 aufgrund der Wirbelbildung im Strömungskanal keine größeren Dehnrate gemessen werden konnten. Eine allgemeingültige Diskussion der Ergebnisse für verschiedene Dehnrate ist daher nicht möglich.

Die in Abb. 7-9 dargestellte Dehnverfestigung zeigt bei den Polymerlösungen aller drei Materialien einen deutlichen Anstieg mit der Konzentration zwischen $c=0,5$ g/l und $c=5$ g/l. Die sich in den Polyacrylamidlösungen befindlichen Makromoleküle neigen aufgrund der im Molekül vorhandenen Ionen leicht dazu, Wasserstoffbrückenbindungen einzugehen. Als Kandidaten eignen sich die umgebenden Wassermoleküle als auch NH$_2$-Gruppen der eigenen bzw. anderer Polymermoleküle. Bei höherer Polymerkonzentration steigt die Wahrscheinlichkeit für Wasserstoffbrückenbindungen zwischen den Makromolekülen. Ein Netzwerk mit langreichweitigen Kräften kann entstehen. Ein solches Netzwerk ist im halbverdünnten Konzentrationsbereich also umso stärker, je höher die Polymerkonzentration ist.

Die mittlere Steigung der Dehnverfestigung über den gesamten Konzentrationsbereich ist für Lösungen aus AF100 deutlich geringer als für Lösungen aus AF402 oder AF701 (Abb. 7-9).

In Abschnitt 5.3 wurde darauf hingewiesen, dass sich intramolekulare Wasserstoffbrückenbindungen zwischen Monomer- und Comonomereinheiten aufbauen können. Klein (Klein und Heitzmann 1978) und Kulicke (Kulicke und Hoerl 1985) konnten mit viskometrischen Messungen zeigen, dass diese intermolekularen Wasserstoffbrückenbindungen bei
Dehviskosität und Dehnverfestigung verschiedener Polyacrylamidlösungen

einer Ionogenität von etwa 70 Mol-% ihre maximale Anzahl erreichen und spekulierten, dass sich in der Molekülkette Triplets in der Form Carboxyl(COOH)-Amid(NH$_2$)-Carboxyl(COOH) bilden. D. h. die Ladungen der Ionen im Makromolekül werden durch intramolekulare Wasserstoffbrückenbindungen abgesättigt. Dadurch sinkt die Wahrscheinlichkeit zur Bildung von intermolekularen Wasserstoffbrückenbindungen. Die höchste Wahrscheinlichkeit für intermolekulare Wasserstoffbrückenbindungen ist daher für Polyacrylamide mit mittlerer Ionogenität zu erwarten, also bei AF402.

Aufgrund dieser Angaben wurde folgende Hypothese aufgestellt: Liegt ein Polyacrylamid mit geringer Ionogenität vor (AF100), so können die Makromoleküle nur wenig intermolekulare Wasserstoffbrückenbindungen ausbilden, da nur eine geringe Anzahl ionischer Gruppen vorliegt. Steigt die Ionogenität an, so erreicht die Wahrscheinlichkeit zur Bildung von intermolekularen Wasserstoffbrückenbindungen ein Maximum (AF402). Eine weitere Erhöhung der Ionogenität (AF701) führt dann aufgrund der intramolekularen Wasserstoffbrückenbindungen zu einer Verminderung der Wasserstoffbrückenbindungen zwischen den Makromolekülen.

Um diese Hypothese zu überprüfen, wurde die Abhängigkeit der Dehnverfestigung als Funktion der Ionogenität der Materialien in Abb. 7-10 dargestellt. Für $c=0,5$ g/l ist ein leichter Anstieg der Dehnverfestigung zwischen AF100 und AF701 Lösungen zu beobachten. Im Vergleich dazu fällt bei $c=1$ g/l die Dehnverfestigung mit der Ionogenität ab. Bei $c=3$ g/l ist die mittlere Steigung des dargestellten Graphen nahezu Null. Für Konzentrationen bis $c=3$ g/l ist also kein Trend bei der Dehnverfestigung als Funktion der Ionogenität erkennbar.

Abb. 7-10: Dehnverfestigung anionischer Polyacrylamidlösungen (AF100, AF402, AF701) als Funktion der Ionogenität bei verschiedenen Konzentrationen und einer festen Dehnung von $\varepsilon=2,7$ und einer Dehnrate $\dot{\varepsilon}_0=50$ s$^{-1}$.
Die Kurve in Abb. 7-10 für c=3 g/l verläuft keineswegs linear, sondern besitzt für 40 Mol-% ein Maximum\(^a\). Dieser Effekt kann mit der zuvor aufgestellten Hypothese erklärt werden. Aufgrund des hohen Messfehlers ist jedoch auch eine lediglich statistische Abweichung nicht ganz auszuschließen. Die höchste Konzentration c=5 g/l zeigt dagegen einen stetigen Anstieg der Dehnverfestigung mit der Ionogenität. Dies steht zunächst im Widerspruch zu der Behauptung, dass die Dehnverfestigung bei den höchsten Ionogenitäten (AF701) wieder geringer ausfallen sollte. Der Verlauf der Kurve ist durch die Annahme zu erklären, dass die bei c=3 g/l noch intermolekular ausgebildeten Wasserstoffbrückenbindungen nun mit einer gewissen Wahrscheinlichkeit als intermolekulare Wasserstoffbrückenbindungen existieren.

Kationische Polyacrylamide

Kationische Polyacrylamide besitzen einen grundlegend anderen chemischen Aufbau als die anionischen Materialien (vgl. Abb. 5-1). In diesem Abschnitt werden die Ergebnisse der Messungen zum Einfluss der Ionogenität auf das nichtlineare Verhalten der Dehnviskosität bei kationischen Polyacrylamidlösungen beschrieben. Diese wurden an den Materialien CF104 (M\(_w\)=9 Mg/mol, Ionogenität: 10 Mol-%), CF404 (M\(_w\)=7 Mg/mol, Ionogenität: 40 Mol-%) und CF7001 (M\(_w\)=8 Mg/mol, Ionogenität: 70 Mol-%) durchgeführt. Da es sich dabei um auf dem Markt erhältliche Materialien handelt, mussten hinsichtlich der Molmasse Kompromisse eingegangen werden. Die Molmasse wurde dabei so gewählt, dass sie für die unterschiedlichen Polyacrylamide ähnlich waren.

Bei der Auswertung der Dehnviskositäten für kationische Polyacrylamide wurde festgestellt, dass diese im Vergleich zu anionischen Materialien generell erst bei höheren Dehnungen dehnverfestigend werden. Daher wurde die Dehnung, bei der die Messungen analysiert wurden, auf \(\varepsilon=3,0\) festgelegt. Ein direkter Vergleich anionischer und kationischer Materialien bei gleicher Dehnung ist weiter unten in diesem Abschnitt zu finden.

Abb. 7-11 zeigt die Dehnverfestigung der untersuchten kationischen Polyacrylamide für c=1 g/l und c=5 g/l als Funktion der Dehnrate. Ähnlich wie bei den anionischen Materialien ist ein starker Einfluss der Konzentration auf die Dehnverfestigung zu beobachten. Die Graphen können in zwei Konzentrationsbereiche eingeteilt werden: Die Kurven mit gefüllten Symbolen repräsentieren die Polymerlösungen mit c=1 g/l, die mit offenen Symbolen sind die Ergebnisse für c=5 g/l.

Für kleine Dehnraten \(\dot{\varepsilon}_0\approx20\ s^{-1}\) und hohe Konzentrationen (c=5 g/l) ist die Dehnrate längs der z-Achse nicht mehr homogen verteilt, was zu Abweichungen bei der gemessenen Dehnviskosität und folglich der Dehnverfestigung führt. In Anhang C findet sich eine Diskussion der Dehnraten- und Spannungsverteilungen längs der z-Achse und deren Auswirkung auf die Dehnviskosität. Für derartige Strömungsbedingungen sind die Graphen für c=5 g/l zu niedrigen Dehnraten hin gestrichelt fortgeführt. Die Kurven sind in diesem Bereich teilweise so stark nach unten verschoben, dass diese unter denen für c=1 g/l zu liegen.

\(^a\) Bei welcher Ionogenität das Maximum genau liegt wurde aufgrund der Komplexität der Messungen nicht nachgeprüft. Qualitativ liegt ein Maximum jedoch vor.
Dehviskosität und Dehnverfestigung verschiedener Polyacrylamidlösungen

kommen. Eine scheinbare niedrigere Dehnverfestigung für kleine Dehnraten bei höheren Konzentrationen ist die Folge. Wird die Dehnrate erhöht, so steigen auch die Dehnspannungen in der Düse an und werden weniger durch parasitäre Effekte beeinflusst.

Abb. 7-11: Dehnverfestigung als Funktion der Dehnrate für kationische Polymerlösungen unterschiedlicher Ionogenität und bei zwei Konzentrationen.

Ein klarer linearer Zusammenhang zwischen Dehnverfestigung und Dehnrate, wie er für die anionischen Polymerlösungen für \(c = 1 \, \text{g/l} \) erhalten wurde, wurde für die kationischen Polycrylamide nur für CF104 und \(c = 1 \, \text{g/l} \) gefunden. Alle anderen Graphen zeigen eine komplexere Funktionalität und für hohe Dehnraten einen Abfall der Steigung. Auffallend ist auch, dass sich die Dehnverfestigung für die Polymerlösung aus CF404 mit der Konzentration weniger stark ändert, als für die Polymerlösungen aus CF104 bzw. aus CF7001.

Abb. 7-12 zeigt die Dehnverfestigung als Funktion der Konzentration für die untersuchten kationischen Polyacrylamide mit 10, 40 und 70 Mol-% Ionogenität. Die Ergebnisse sind für eine Dehnrate von \(\dot{\varepsilon}_0 = 50 \, \text{s}^{-1} \) und einer Dehnung von \(\varepsilon = 3,0 \) dargestellt.

Alle drei Kurven steigen mit größer werdender Konzentration an. Für CF104 sind Messpunkte für \(c = 1 \, \text{g/l} \) und \(c = 5 \, \text{g/l} \) vorhanden. Diese wurden mit einer gestrichelten Geraden verbunden und der Punkt bei \(c = 3 \, \text{g/l} \) linear interpoliert. Die Dehnverfestigung ist für Polymerlösungen aus CF104 bei allen Konzentrationen die geringste. Betrachtet man zunächst \(c = 1 \, \text{g/l} \), so ist das Material mit der nächst höheren Dehnverfestigung CF7001, gefolgt von CF404 mit der höchsten Dehnverfestigung für diese Konzentration. Bei \(c = 3 \, \text{g/l} \) und \(c = 5 \, \text{g/l} \) haben sich die Rollen von CF404 und CF7001 vertauscht. Bei diesen Konzentrationen ist die Dehnverfestigung von CF7001 größer als die von CF404.
Die Abhängigkeit der Dehnverfestigung von der Ionogenität der kationischen Materialien ist in Abb. 7-13 dargestellt. Für $c=5 \text{ g/l}$ steigt die Dehnverfestigung linear mit der Ionogenität an. Das Gleiche ergibt sich für $c=3 \text{ g/l}$, wenn der in Abb. 7-12 eingezeichnete interpolierte Datenpunkt mit in die Auswertung einbezogen wird.

Für die kleinste Konzentration $c=1 \text{ g/l}$ steigt die Dehnverfestigung zwischen 10 und 40 Mol-% an, um dann bei der höchsten gemessenen Ionogenität mit 70 Mol-% wieder abzufallen. Für eine Erklärung dieses Verhaltens können bei den kationischen Materialien intramolekulare Wasserstoffbrückenbindungen nicht verantwortlich sein, da diese aufgrund der Molekülgeweometrie (Abb. 5-1) praktisch nicht vorhanden sind.
Vergleich zwischen anionischen und kationischen Polyacrylamiden

Abb. 7-14 zeigt die Dehnverfestigungsfaktoren für die untersuchten anionischen und kationischen Materialien bei einer Dehnung von $\varepsilon=2,7$ als Funktion der Dehnrate $\dot{\varepsilon}$. Die Graphen für die anionischen Polyacrylamidlösungen aus den Materialien AF100, AF402 und AF701 sind strichliert gezeichnet und wurden bereits in Abschnitt 7.3.1 genauer dargestellt. Die Dehnverfestigungen für AF100 und AF701 steigen mit steigender Dehnrate stark an. Bei der Polymerlösung aus AF402 ist dieser überproportionale Anstieg nicht zu erkennen.
Dehviskosität und Dehnverfestigung verschiedener Polyacrylamidlösungen

![Diagramm](image.png)

Abb. 7-14: Direkter Vergleich der Dehnverfestigung von anionischen und kationischen Polyacrylamidlösungen bei einer Polymerkonzentration von 5 g/l und einer Dehnung von $\varepsilon=2,7$ als Funktion der Dehnrate.

Die Dehnverfestigung der kationischen Polyacrylamide wurde bei einer Dehnung von $\varepsilon=2,7$ ausgewertet und ebenfalls in Abb. 7-14 eingezeichnet. Werden Kurven gleicher Ionogenität miteinander verglichen, so ist die Dehnverfestigung der kationischen Polyacrylamide in allen Fällen geringer als die der anionischen Materialien. Besonders bei hohen Dehnraten ($\dot{\varepsilon}_0>50 \text{ s}^{-1}$) macht sich ein großer Unterschied bemerkbar. Während die Dehnverfestigung der anionischen Materialien mit der Dehnrate stark zunimmt, ist für CF104 und CF7001 ein Maximum zu erkennen. Für CF404 könnte auch ein Maximum existieren. Die dafür nötigen Dehnraten können jedoch in der verwendeten Düse nicht erreicht werden.

7.3.2 Molmasse und Molmassenverteilungsbreiten

In diesem Abschnitt sind die Ergebnisse zusammengefasst, welche den Einfluss des Gewichtsmittelwertes der Molmasse und der Molmassenverteilung auf die Dehnverfestigung zeigen. Dabei wurde die Ionogenität der untersuchten Materialien annähernd konstant gehalten.

Anionische Polyacrylamide

Zunächst wurden anionische Polyacrylamide mit unterschiedlichen Molmassengewichtsmittelwerten M_w untersucht. Die Materialien AF403 ($M_w=6 \text{ Mg/mol}$, Ionogenität: 40 Mol-%) und AF306 ($M_w=22 \text{ Mg/mol}$, Ionogenität: 30 Mol-%) wurden für diesen Zweck ausgewählt. Die Priorität der Materialauswahl lag darin, einen möglichst großen Unterschied von M_w zu erzielen. Daher wurde in Kauf genommen, dass die Ionogenität beider Materialien nicht exakt
ubereinstimmte. Aufgrund der Messungen in Abschnitt 7.3.1 ist zu erwarten, dass diese geringe Abweichung in der Ionogenität nur zu sehr kleinen Änderungen in der Dehnviskosität führt.

Abb. 7-15: (A) Dehnverfestigungsfaktor und (B) transiente Dehnviskosität von AF403 bei einer Konzentration von 1 g/l und unterschiedlichen Dehnraten.

Um den Verlauf der Graphen zu verstehen, ist die Dehnviskosität als Funktion der Zeit in Abb. 7-15B dargestellt. In dieser Abbildung ist deutlich zu erkennen, dass μ^+ für kleine Zeiten und den Dehnraten $\dot{\varepsilon}_0 = 39 \text{ s}^{-1}$ bzw. $\dot{\varepsilon}_0 = 52 \text{ s}^{-1}$ der gestrichelt eingezeichneten lineare viskoelastischen Dehnanlaufkurve μ^+_0 entspricht. Ab einem bestimmten Zeitpunkt, welcher der Dehnung von ca. 2 entspricht, knickt μ^+ ab und geht in eine Art Sättigung über, in der die Dehnviskosität nahezu unabhängig von der Zeit ist. Für die dargestellten Dehnraten $\dot{\varepsilon}_0 \geq 67 \text{ s}^{-1}$ ist vor dem Plateau eine leicht e Dehnverfestigung zu erkennen. Da die linear-viskoelastische Anlaufkurve $\mu^+_0(t)$ annähernd eine lineare Funktion der Zeit ist, stellen sich die horizontal verlaufenden Kurven aus Abb. 7-15B als linear abfallende Kurven in Abb. 7-15A dar. Dieses von den bisher untersuchten Polyacrylamidlösungen abweichende Materialverhalten steht mit dem niedrigen Mw des Materials in Beziehung.

Die Dehnverfestigungsfaktoren und transienten Dehnviskositäten für das Polyacrylamid AF306 hoher Molmasse sind in Abb. 7-16A und Abb. 7-16B dargestellt. Die Konzentration beträgt wie bereits beim nieder molekularen AF403 c=1 g/l. Da bei Polymerlösungen aus AF306 signifikant größere Wirbel im Düse vorraum auftraten, sind die Dehnraten geringer als bei Polymerlösungen aus AF403. Bei vergleichbaren Dehnraten ist die Dehnnüberhöhung
bei AF306 deutlich höher als bei AF403. Da die Molmassenverteilung beider Materialien mittels Gelpermeationschromatographie nicht gemessen werden konnte (vgl. Abschnitt 5.2) kann nicht ausgeschlossen werden, dass die stärkere Dehnüberhöhung eine Folge einer breiteren Molmassenverteilung sein könnte. Am Ende der Kurven der Dehnverfestigungsfaktoren (Abb. 7-16A) als auch der Dehnviskositäten (Abb. 7-16B) sind leichte Maxima zu erkennen, die zu kleinerer Dehnrate hin ausgeprägter sind.

Um den Einfluss einer verbreiterten Molmassenverteilung zu untersuchen, wurden Polymerlösungen aus AF403 ($M_w=6 \text{ Mg/mol}$) und AF306 ($M_w=22 \text{ Mg/mol}$) mit jeweils $c=1 \text{ g/l}$ hergestellt. 90 Vol.-% der Polymerlösung aus AF403 wurden mit 10 Vol.-% der Polymerlösung aus AF306 vermischt. Dadurch entstand im Vergleich zu den Ausgangsprodukten eine stark verbreiterte Molmassenverteilung mit einer hochmolekularen Komponente.

Die Dehnviskosität und die Dehnverfestigungsfaktoren der Polymerlösung aus AF403 und AF306 wurde mit dem FIB/LDA-Aufbau gemessen und in Abb. 7-17 dargestellt. Vergleicht man die Dehnverfestigungsfaktoren aus Abb. 7-16A mit denen aus Abb. 7-17A, so fällt zunächst auf, dass der Absolutwert der Dehnverfestigung bei ähnlicher Dehnrate größer ist. Die Kurvenform ist ähnlich zu den Kurven, die für AF306 gemessen wurden. Der Beginn der Dehnverfestigung ist bei der Mischung aus AF403/AF306 zu kleineren Dehnungen verschoben und entspricht in etwa dem Beginn der Dehnverfestigung für AF403 (Abb. 7-15A). In Abb. 7-17B ist die Dehnviskosität zu den in Abb. 7-17A gezeigten Dehnverfestigungsfaktoren dargestellt. Die durchgezogene Linie, welche mit 90/10 gekennzeichnet ist, ist die linear-viskoelastische Anlaufkurve für die gemischte Polymerlösung. Die beiden gepunkteten Kurven ober- und unterhalb sind die linearen Anlaufkurven für AF306 und AF403.
Dehviskosität und Dehnverfestigung verschiedener Polyacrylamidlösungen

Abb. 7-17: (A) Dehnverfestigungsfaktoren und (B) Dehnviskosität einer Polymerlösung aus AF403 ($M_w=6 \text{ Mg/mol}$) und AF306 ($M_w=22 \text{ Mg/mol}$) bei unterschiedlichen Dehnraten.

In Abb. 7-18 ist die explizite Abhängigkeit zwischen Dehnrate $\dot{\varepsilon}$ und Dehnverfestigungsfaktoren bei einer festen Dehnung von $\varepsilon=2.7$ dargestellt. Die Konzentration beträgt 1 g/l. Die Polymerlösung aus AF403 zeigt die geringsten Dehnverfestigungsfaktoren und den geringsten Anstieg mit der Dehnrate. Während für Dehnraten $\dot{\varepsilon}<73 \text{ s}^{-1}$ die Dehnverfestigungsfaktoren noch kleiner als eins sind, erreichen diese für größere Dehnraten Werte größer als eins. Die Dehnverfestigung der Polymerlösung aus AF306 liegt bedeutend höher und steigt mit wachsender Dehnrate schneller an. Die Dehnverfestigungsfaktoren der Mischung aus AF403 und AF306, welche durch die halboffenen Symbole gekennzeichnet sind, liegen deutlich über den Kurven beider letztgenannten Polymerlösungen.

Die Molmassenverteilungsbreiten der Materialien sind zwar nicht bekannt, dennoch lassen sich Schlüsse aus dem Verhalten der untersuchten Mischung ziehen. M_w der Mischung muss zwischen der M_w von AF403 und M_w von AF306 liegen. Da nur ein geringer Prozentsatz beigemischt wurde ist es wahrscheinlich, dass M_w der Mischung nahe bei M_w von AF403 liegt. Die Dehnverfestigung hingegen liegt über den Dehnverfestigungen beider Ausgangsmaterialien. Die Molmasse alleine kann diese Erhöhung daher nicht erklären. Festzustellen ist jedoch, dass die Breite der Molmassenverteilung in der Mischung aus AF403 und AF306 stark erhöht ist.

Kationische Polyacrylamide

Die kationischen Polyacrylamide wurden wie folgt untersucht: Zunächst wurden zwei unterschiedliche kationische Polyacrylamide ausgewählt, die sich in ihrer Molmasse möglichst stark unterschieden aber eine ähnliche Ionogenität aufwiesen. Die Wahl fiel auf...
CF303 ($M_w=3$ Mg/mol, Ionogenität: 30 Mol-%) und CF405 ($M_w=10$ Mg/mol, Ionogenität: 40 Mol-%). Beide Materialien wurden bei einer Konzentration von 3 g/l und unterschiedlichen Dehnraten untersucht. Zusätzlich wurde eine Mischung aus 90 Vol.-% der Polymerlösung aus CF303 und 10 Vol.-% der Polymerlösung aus CF405 hergestellt und es wurden die Dehnverfestigungsfaktoren bestimmt.

Abb. 7-19 zeigt die Dehnverfestigungsfaktoren für Polymerlösungen aus CF303, CF405 und der oben beschriebenen Mischung. CF303, das niedermolekulare Polyacrylamid, zeigt in Abb. 7-19A einen Beginn der Dehnverfestigung für kleine Dehnungen bei etwa $\varepsilon_{krit}\approx 2,3$. Für größere Dehnungen ergibt sich eine höhere Dehnviskosität und die kritische Dehnung ist zu kleineren Werten verschoben. Ansonsten zeigen die Graphen, wie bei den anionischen Materialien, die Tendenz eines Maximums bei kleinen Dehnungen und hohen Dehnungen. Die höhermolekulare Polyacrylamidlösung aus CF405 (Abb. 7-19B) wird erst bei etwas höheren Dehnungen dehnverfestigend und erreicht bei vergleichbaren Dehnraten Dehnverfestigungsfaktoren, die etwa um den Faktor 1,5 über denen von CF303 liegen. Durch den höheren Absolutwert und den späteren Beginn der Dehnverfestigung ist die Steigung der Kurven bei CF405 größer als bei CF303.

Die Dehnverfestigungsfaktoren der Mischung aus CF303 und CF405 sind in Abb. 7-19C dargestellt. Der Beginn der Dehnverfestigung ist im Vergleich zu den Ausgangsmaterialien zu kleineren Dehnungen verschoben. Die Höchstwerte der Dehnverfestigungsfaktoren sind bei ähnlicher Dehnrate mit denen von CF405 vergleichbar. Weiterhin streuen die Dehnverfestigungsfaktoren stärker mit der Dehnrate als dies für die beiden Ausgangsmaterialien der Fall ist. Für hohe Dehnungen von $\varepsilon>2,8$ sind dominante Maxima erkennbar.

* Bei gleicher Konzentration ist die Dehnviskosität von kationischen Polyacrylamidlösungen im Vergleich zu anionischen geringer. Gleichzeitig sind kationische Polyacrylamide weniger spannungsdoppelbrechend (Kapitel 8). Die Konzentration von $c=3$ g/l wurde bei den kationischen Polyacrylamidlösungen gewählt, um eine vergleichbare Spannungsdoppelbrechung und somit ein ähnliches Signal/Rausch-Verhältnis wie bei der Messung der anionischen Polyacrylamidlösungen zu erhalten.
116 Dehviskosität und Dehnverfestigung verschiedener Polyacrylamidlösungen

Abb. 7-19: Dehnverfestigungsfaktoren für drei kationische Polymerlösungen unterschiedlicher Molmasse bzw. Molmassenverteilung. (A) CF303 ($M_w=3$ Mg/mol), (B) CF405 ($M_w=10$ Mg/mol) und (C) einer Mischung aus CF303 und CF405.

Um die Dehnverfestigung aller drei untersuchten Polymerlösungen besser miteinander vergleichen zu können, wurden diese in Abb. 7-20 bei einer Dehnung von $\varepsilon=3,0$ als Funktion der Dehnrate aufgetragen. Diese Dehnung entspricht in etwa der Stelle, an dem die Dehnverfestigungsfaktoren der Polymerlösungen maximal sind. Wie zu erwarten liegt die annähernd lineare Kurve für CF303 unter der von CF405 und spiegelt die obigen Ausführungen wider. Der Graph für CF405 weicht vom linearen Verhalten aufgrund des Datenpunktes bei $f_0=33$ s$^{-1}$ ab, was jedoch mit dem erhöhten Fehler bei dieser Dehnrate erklärt werden kann.

Interessanterweise liegt die Dehnverfestigung die Mischung aus CF303 und CF405 unterhalb derer von CF405. Dies ist ein klarer Unterschied zum Verhalten der anionischen Polyacrylamide, bei denen die Dehnverfestigung der Mischung oberhalb derer des hochmolekulareren Materials zu liegen kam.
Eine mögliche Hypothese wäre, dass das unterschiedliche Verhalten darauf zurückzuführen ist, dass bei den untersuchten kationischen Polyacrylamiden eine größere Molmassenverteilungsbreite vorliegt, als bei den anionischen. Ist die Molmassenverteilung bereits in den Ausgangsmaterialien sehr hoch, so machen sich die hochmolekularen Komponenten in einer Mischung beider Materialien nicht so stark bemerkbar, wodurch die Dehnverfestigung der Mischung kleiner ist.

7.4 Viskosität bei Zugabe von Natriumchlorid

Wie bereits in Abschnitt 5.6 erwähnt, gehören Polyacrylamide zu der Gruppe der Polyelektrolyte, welche ionische Gruppen im Molekül besitzen. Die Zugabe von Ionen in Form von Salzen zur Polymerlösung ändert die Größe, Form und molekulare Dynamik der Molekülketten und führt daher auch zu einer Änderung der Scherviskosität (Abschnitt 5.6) und der Dehnviskosität (Wilkes und Gampert 2005). Wie sich die Dehnverfestigung als Funktion der Dehnung bei Zugabe von Natriumchlorid zu den Polymerlösungen AF701 und CF7001 ändert, wird im Folgenden dargestellt. Die Konzentration der Polymerlösungen beträgt $c=1$ g/l, die des Natriumchlorids in der Polymerlösung $c_{\text{NaCl}}=1$ mMol/l.

Anionisches Polyacrylamid

Der Einfluss des zugegebenen Natriumchlorids auf die Dehnverfestigung lässt sich in Abb. 7-21A erkennen. In dieser Abbildung sind die Dehnverfestigungsfaktoren als Funktion der Dehnung ohne und mit NaCl-Zugabe aufgetragen. Die Dehnrate beträgt in beiden Fällen $\dot{\varepsilon}=50$ s$^{-1}$. Während ohne Salz eine maximale Dehnverfestigung von 1,47 erreicht wird, sinkt diese bei einer Salzkonzentration von 1 mMol/l NaCl auf 1,1 ab. Dies entspricht einer hochsignifikanten Änderung. Aus den bisher dargestellten Messungen in Kapitel 7 ist zu
vermuten, dass bei $c=1 \text{ g/l}$ lediglich ein schwaches Verschlagungsnetzwerk vorhanden ist. Wird nun NaCl zugegeben, so werden die in der Polymerkette eingebauten Ionen von den Na\(^+\)- und Cl\(^-\)-Ionen abgeschirmt und der Gyrationsradius der Makromoleküle wird kleiner (Abschnitt 5.6). Die Folge ist eine geringere Dichte des Verschlagungsnetzwerkes und damit auch der nichtlinearen Effekte (Dehnverfestigung) desselben. Die Scherviskosität fällt bei der gleichen NaCl-Konzentration von 1 mMol/l auf etwa die Hälfte ab (Abb. 7-21B).

Abb. 7-21: (A) Dehnverfestigungsfaktoren von AF701 ohne und mit Natriumchlorid. (B) Scherviskosität als Funktion der Scherrate der gleichen Polymerlösungen.

Da sich die Dehnverfestigung für eine bestimmte Dehnung mit der Dehnrate bei salzfreien Polyacrylamidlösungen ändert, ist eine interessante Fragestellung, ob und wie die NaCl-Zugabe dieses Verhalten beeinflusst. Dazu wurden bei fünf unterschiedlichen Dehnraten die Dehnverfestigungsfaktoren beider Polymerlösungen bestimmt und in Abb. 7-22 dargestellt. Wird die Polymerlösung mit 1 mMol/l NaCl versetzt, so kommt es neben dem bereits angesprochenen starken Abfall in der Dehnverfestigung zu einem leichten Absinken der Dehnverfestigung mit steigender Dehnrate.
Kationisches Polyacrylamid

Dieser Abschnitt beschäftigt sich mit dem Einfluss von Natriumchlorid auf die Dehnegenschaften von CF7001. Da in das kationische Polyacrylamid CF7001 ein anderes ionisches Comonomer als bei den anionischen Materialien eingebaut ist (Abb. 5-1), sollte mit dieser Messung der Fragestellung nachgegangen werden, ob kationische Materialien bei Salzzugabe ein grundsätzlich anderes Verhalten als die anionischen Materialien zeigen.

Abb. 7-23A zeigt die Dehnverfestigungsfaktoren einer Polymerlösung aus CF7001 mit einer Polymerkonzentration von 1 g/l ohne und mit Zugabe von 1 mMol/l NaCl. Die Dehnverfestigungsfaktoren sind als Funktion der Dehnung aufgetragen und wurden bei einer festen Dehnrate von $\dot{\varepsilon}_0=50$ s$^{-1}$ gemessen. In der salzfreien Polymerlösung erreicht der Dehnverfestigungsfaktor bei einer Dehnung von $\varepsilon=3,2$ einen maximalen Wert von 2,4. Bei entsprechender Zugabe von NaCl steigt die Dehnverfestigung im dargestellten Dehnungsbereich gerade einmal auf 1,2. Das Verhalten der Scherviskosität bei einer NaCl-Zugabe von 1 mMol/l ist in Abb. 8-36B dargestellt.
Um die Dehnrateabhängigkeit der Dehnverfestigungsfaktoren zu bestimmen, wurden diese bei fünf verschiedenen Dehnraten gemessen und in Abb. 7-24 dargestellt. Bei CF7001 ohne NaCl findet sich der bereits in Abschnitt 7.3 beschriebene Anstieg mit der Dehnrate. Nach dem Hinzufügen von NaCl (c_{NaCl}=1 mMol/l) ändert sich dieses Verhalten und die Dehnverfestigung nimmt mit der Dehnrate ab.

Abb. 7-23: Dehnverfestigungsfaktoren als Funktion der Dehnung für ein kationisches Polyacrylamid ohne und mit Zugabe von Natriumchlorid.

Abb. 7-24: Dehnverfestigung als Funktion der Dehnrate für das kationische Polyacrylamid CF7001 ohne und mit Natriumchloridzugabe von 1 mMol/l.
7.5 Vergleich der Ergebnisse mit der vorhandenen Literatur

In diesem Abschnitt wird auf die bisher in der Literatur publizierten Resultate zum dehnrheologischen Verhalten von Polyacrylamid in wässriger Lösung eingegangen und wie diese im Verhältnis zu den eigenen Messergebnissen stehen.

Ein Vergleich der eigenen Messungen an Polyacrylamidlösungen mit Polymerschmelzen ergab, dass die Dehnverfestigung bei ähnlich großen Dehnungen auftritt (7.2.3) und die Dehnverfestigung ansteigt, falls eine hochmolekulare Komponente im Material vorhanden ist (7.3.2). Mac'Sporran (Macsporran 1981) beobachtete das Verhalten einer wässrigen 10 g/l Polyacrylamidlösung mit der Methode des schlauchlosen Siphons. Mit einfachen Modellannahmen approximierte er die Dehnviskosität als Funktion der Zeit und verglich die Daten der gemessenen Polyacrylamidlösung mit Daten von Polymerschmelzen, wobei diese Daten mit der gleichen Messmethode gewonnen wurden. Mac’Sporran konnte darlegen, dass beide Dehnviskositäts-Zeit-Kurven prinzipiell das gleiche Verhalten zeigten. Weitergehende Überlegungen wurden jedoch nicht durchgeführt.

Stelter (Stelter, et al. 2000) führte Messungen mit einem Kapillarbruch-Rheometer an Polyacrylamidlösungen durch. Aus dem Zeitverhalten des Durchmessers eines zwischen zwei Platten erzeugten Flüssigkeitsfadens fand er heraus, dass sich die Dehnviskosität bis zum Zereisen des Fadens nicht signifikant ändert. Da die Zeitabhängigkeit der Dehnviskosität nicht angegeben ist, sondern nur Mittelwerte über die Zeit, lässt sich diese Behauptung leider nicht verifizieren. Die Polymerkonzentrationen lagen bei 0,25 g/l, 0,5 g/l und 1 g/l. Mit
steigender Konzentration stieg auch die Dehnviskosität an. Angaben über die uniaxiale Dehnverfestigung reichen von 34 bis 750. Statistische Fehler in Form von Fehlerbalken sind nicht angegeben, wodurch Schlüsse über die Genauigkeit der publizierten Daten nicht möglich sind.

Pelletier (Pelletier, et al. 2003) untersuchte wässrige Polyacrylamidlösungen unterschiedlicher Molmasse bei Konzentrationen von 0,2 g/l bis 1,6 g/l mit einer Gegenstrahlanordnung von Meadows (Meadows, et al. 1995). Mit steigender Molmasse sowie steigender Konzentration stieg die Dehnviskosität an. Die Dehnraten bei dieser Studie betrugen 1 s⁻¹ bis 100 s⁻¹. Dehnverfestigungen sind in dieser Arbeit nicht angegeben.

Wilkes und Gampert (Gampert und Wilkes 2002; Wilkes und Gampert 2003; Wilkes und Gampert 2005) untersuchten verdünnte Polyacrylamidlösungen mit der Gegenstrahlanordnung bei konstanter Dehnung von \(\varepsilon = 1 \) und Konzentrationen zwischen 10 mg/l und 50 mg/l. Ihre Messungen zeigten, dass die Dehnviskosität als Funktion der Dehnrate zunächst bis zu einer kritischen Dehnrate von ca. 600 s⁻¹ konstant blieb und dann in einem doppellogarithmischen Diagramm linear anstieg. Die Dehnviskosität stieg ebenfalls mit steigender Konzentration an.

7.6 Zusammenfassung

Die grundlegenden Ergebnisse dieses Kapitels lassen sich wie folgt zusammenfassen:

Strömungsbedingungen in der hyperbolischen Düse:

- Planare Strömungsbedingungen sind längs der x-Achse im Düsenraum und innerhalb der Düse erfüllt (Abb. 6-9, Abb. 6-10).

Einfluss der Dehnrate auf die Dehnverfestigung:

- Die Dehnverfestigung steigt für alle anionischen und kationischen Polyacrylamide mit der Dehnrate an.

Einfluss der Konzentration auf die Dehnverfestigung:

- Mit steigender Konzentration steigen die Dehnverfestigungsfaktoren für anionische und kationische Polyacrylamide an und sind Ausdruck eines sich verstärkenden Verschlußungsnetzwerkes (Abb. 7-9, Abb. 7-12).

- Die kritische Dehnung, bei der das nichtlineare Materialverhalten einsetzt, verhält sich wie folgt (Abb. 7-4, Abb. 7-5, Abschnitt 7.2.3):
 - Eine geringe Abnahme mit steigender Dehnrate wurde beobachtet.
 - Der Einfluss der Dehnrate auf die kritische Dehnung wird bei geringerer Konzentration kleiner.
 - Die kritische Dehnung ist nahezu unabhängig von der Konzentration, falls die Dehnrate konstant gehalten wird.
Einfluss der Ionogenität auf die Dehnverfestigung:

- Das Verhalten der Dehnverfestigung als Funktion der Ionogenität wird bei kationischen Polyacrylamiden kaum von der Konzentration der Polymerlösung beeinflusst. Bei allen untersuchten Konzentrationen von \(c = 1 \) g/l bis \(c = 5 \) g/l wurde eine ansteigende Dehnverfestigung mit der Ionogenität festgestellt (Abb. 7-13). Bei anionischen Polyacrylamiden hingegen ist die Dehnverfestigung als Funktion der Ionogenität stark von der Konzentration abhängig (Abb. 7-10). Folgende Schlussfolgerungen können für anionische Polyacrylamide zusammengefasst werden:
 - Für konzentrierte Polymerlösungen (\(c \geq 5 \) g/l) steigt die Dehnverfestigung mit der Ionogenität an.
 - Für \(c = 3 \) g/l könnte ein Maximum der Dehnverfestigung bei einer Ionogenität von 40 mol-% existieren.
 - Für niedrigere Konzentrationen (\(c = 0.5 \) g/l, \(1 \) g/l) sind aufgrund der hohen Fehler keine allgemeingültigen Aussagen möglich.

Einfluss des molekularen Aufbaus, der Molmasse und der Molmassenverteilung:

- Anionische Polyacrylamide sind stärker dehnverfestigend als kationische bei sonst gleichen Parametern wie Dehnung, Dehnrate, Konzentration, Molmassengewichts-mittelwert und Ionogenität (Abb. 7-14).
- Besitzt das Polyacrylamid eine hochmolekulare Komponente oder steigt die Molmassenverteilungsbreite an, so steigt auch die Dehnverfestigung an. Dieser Effekt ist bei anionischen Polyacrylamiden stärker ausgeprägt als bei kationischen (Abb. 7-18, Abb. 7-20).

Einfluss von NaCl-Zugabe auf die Dehnverfestigung:

- Bei Zugabe von 1 mMol/l NaCl sinkt die Dehnverfestigung bei anionischen wie kationischen Polyacrylamidlösungen hochsignifikant ab (Abb. 7-21A, Abb. 7-23A).
- Die Abnahme von \(\eta(\dot{\gamma}) \) bei 1 mMol/l NaCl ist für anionische und kationische Polyacrylamidlösungen für hohe Scherraten sehr gering. Mit der Gleissle-Beziehung ergibt sich daraus, dass sich die linearen Scher- bzw. linearen Dehnanlaufkurven nur geringfügig ändern.
8 Spannungsoptische Koeffizienten von Polyacrylamidlösungen

Bei dem gemessenen spannungsoptischen Koeffizienten handelt es sich um einen effektiven Wert, der sowohl Spannungsdoppelbrechung als auch Formdoppelbrechung beinhaltet (vgl. Abschnitt 2.2.3). In diesem Kapitel werden verschiedene Einflüsse auf die spannungsoptischen Koeffizienten wie die Abhängigkeit von Dehnrate, Konzentration, Ionogenität und Molmasse bzw. Molmassenverteilungsbreite dargestellt.

8.1 Abhängigkeit von der Dehnrate

Abb. 8-1 zeigt die Abhängigkeit der spannungsoptischen Koeffizienten von der Dehnrate für Polymerlösungen aus AF100 bei unterschiedlichen Konzentrationen. Die spannungsoptischen Koeffizienten liegen alle im Bereich um 10^{-7} Pa$^{-1}$ und sind daher mit 10^7 multipliziert dargestellt. Alle abgebildeten Kurven sind mit horizontalen Ausgleichsgeraden gefittet. Die Kurven der geringen Polymerkonzentrationen mit $c=0,5$ g/l und $c=1$ g/l zeigen dabei wesentlich größere statistische Schwankungen als die Kurven der höheren Konzentrationen von $c=3$ g/l und $c=5$ g/l. Dies liegt daran, dass die Spannungsdoppelbrechung mit steigender Konzentration immer genauer bestimmt werden kann.

Spannungsoptische Koeffizienten von Polyacrylamidlösungen

(Formdoppelbrechung) zerlegt werden kann. Daraus folgt die bereits im Grundlagenkapitel hervorgehobene Formel 2-40: \(C = C_S + C_F \).

\[C \cdot 10^7 \text{ (Pa}^{-1}\text{)} \]

Abb. 8-1: Spannungsoptischer Koeffizient von AF100 für verschiedene Konzentrationen als Funktion der Dehnrate.

Für alle weiteren Messungen wurde die Abhängigkeit des spannungsoptischen Koeffizienten von der Dehnrate untersucht und bei einem dehnratenunabhängigen Verhalten der Mittelwert \(\overline{C} \) und die Standardabweichung bestimmt. Dieser nun gemittelte spannungsoptische Koeffizient \(\overline{C} \) wurde im weiteren als Funktion der Konzentration, Ionogenität und Molmassenverteilung diskutiert. Die Ursachen der gefundenen Konzentrationsabhängigkeit werden im nächsten Abschnitt genauer betrachtet.

8.2 Abhängigkeit von der Konzentration

Ist der Brechzahlunterschied zwischen Polymer und Lösungsmittel vernachlässigbar klein (Polystyrol-Brombenzol), so tritt keine Formdoppelbrechung auf ($C_F \approx 0$). Der spannungsoptische Koeffizient C ist unabhängig von der Konzentration. Bei Polystyrollösungen ist die Doppelbrechung stets negativ und somit auch der spannungsoptische Koeffizient.

Nimmt die Brechzahländerung zwischen Polymer und Lösungsmittel zu, so tritt Formdoppelbrechung auf ($C_F > 0$) und C wird bei kleinen Konzentrationen zu positiveren Werten verschoben. Nach den Ergebnissen aus Abb. 8-3 ist die Formdoppelbrechung
demnach in verdünnten Polymerlösungen am ausgeprägtesten und verschwindet in konzentrierten Polymerlösungen. Dort ist nur noch C_S zu messen.

In Abb. 8-2 lässt sich auch bei einer Konzentration von $c=5$ g/l lässt sich noch kein Plateau erkennen. Dies ist ein Indiz dafür, dass die Formdoppelbrechung noch nicht vollständig verschwunden ist. Die Messung noch höher konzentrierter Polyacrylamidlösungen stößt an die Grenzen des FIB/LDA-Aufbaus, da in diesen Strömungen die Geschwindigkeitsverteilungen in z-Richtung zu inhomogen werden und eine sinnvolle Auswertung nicht mehr möglich ist. Der genaue Wert von C_S kann somit nicht ermittelt werden, was eine Trennung von C_S und C_F für Polyacrylamidlösungen mit diesem experimentellen Aufbau nicht möglich macht.

Der spannungsoptische Koeffizient von kationischen Polyacrylamidlösungen ist in Abb. 8-4 dargestellt. \overline{C} sinkt wie bei den anionischen Materialien ebenfalls mit der Konzentration ab, wenn auch etwa um einen Faktor zwei geringer. Unterschiede zeigen sich dabei vor allem im Bereich kleiner Konzentrationen, was den Schluss nahe legt, dass im direkten Vergleich zwischen AF701/CF7001 und AF403/CF404 die Formdoppelbrechung der kationischen Materialien etwas geringer sein könnte. Die Berechnung des Plateauwertes C_S für hohe Konzentrationen liegt auch hier außerhalb der sinnvollen Anwendung der Messmethode.

![Diagramm](image.png)

Abb. 8-4: Spannungsoptischer Koeffizient kationischer Polyacrylamide unterschiedlicher Ionogenität als Funktion der Konzentration.

8.3 Abhängigkeit von der Ionogenität

Wie der spannungsoptische Koeffizient von der Ionogenität der untersuchten Polyacrylamide abhängt, ist in Abb. 8-5 dargestellt. Die Konzentrationen 0,5 g/l, 1 g/l, 3 g/l und 5 g/l wurden vermessen. Wie bereits in Abschnitt 8.2 dargestellt, zeigen die spannungsoptischen Koeffizienten die Abhängigkeit mit steigender Konzentration abzufallen, was durch die
Formdoppelbrechung verursacht wird. Für alle Kurven wurden Ausgleichsgeraden eingefüllt und strichliert in Abb. 8-5 eingezeichnet. Die Steigungen dieser Ausgleichsgeraden sind um so geringer, je höher die Konzentration der Polymerlösung ist. Tendenziell zeigt sich, dass die Ionogenität nur einen geringen Einfluss auf \tilde{C}.

![Graph](attachment:graph)

Abb. 8-5: Spannungsoptische Koeffizienten anionischer Polyacrylamide als Funktion der Ionogenität für verschiedene Konzentrationen.

Die spannungsoptischen Koeffizienten der kationischen Materialien zeigen ein etwas anderes Verhalten (Abb. 8-6). Werden die Messdaten wiederum durch Ausgleichsgeraden gefüllt, so haben diese nun eine negative Steigung, d. h. \tilde{C} fällt mit steigender Ionogenität. Der Einfluss der Ionogenität ist dabei umso größer, je kleiner die Konzentration ist.

![Graph](attachment:graph)

Abb. 8-6: Spannungsoptische Koeffizienten kationischer Polyacrylamide als Funktion der Ionogenität bei unterschiedlichen Konzentrationen.
8.4 Abhängigkeit von der Molmasse und Molmassenverteilungsbreite

Die spannungsoptischen Koeffizienten von niedermolekularen und hochmolekularen Polyacrylamiden aus den durchgeführten FIB/LDA-Messungen (Abschnitt 7.3.2) sind in Tab. 8-1 zusammengefasst. Aufgrund des niedrigeren spannungsoptischen Koeffizienten der kationischen Materialien wurde für diese Materialgruppe eine höhere Konzentration gewählt, um eine bessere Auflösung der Spannungsdoppelbrechung während der FIB-Messung zu erhalten.

Die spannungsoptischen Koeffizienten der Materialien AF403 und AF306 liegen in der Nähe von 10^{-7} Pa$^{-1}$. Das leicht höhere \bar{C} für AF403 kann durch die etwas höhere Ionogenität des Materials erklärt werden, da bei anionischen Materialien \bar{C} mit der Ionogenität ansteigt. Für die Mischung AF403/AF306 wurde ein geringerer spannungsoptischer Koeffizient von $0,71\cdot10^{-7}$ Pa$^{-1}$ gemessen.

Für die kationischen Materialien CF303 und CF405, die sich in ihrem Molmassengewichtsmittelwert etwa um den Faktor 3 unterscheiden, wurden nahezu identische spannungsoptische Koeffizienten ermittelt. \bar{C} der Mischung CF303/CF405 liegt mit $0,18\cdot10^{-7}$ Pa$^{-1}$ etwas unterhalb beider Ausgangsmaterialien.

<table>
<thead>
<tr>
<th>Material</th>
<th>Spannungsoptischer Koeffizient, C·10$^{-7}$ (Pa$^{-1}$)</th>
<th>M$_w$ (Mg/mol)</th>
<th>c (g/l)</th>
</tr>
</thead>
<tbody>
<tr>
<td>AF403</td>
<td>1,17 ± 0,14</td>
<td>6</td>
<td>1</td>
</tr>
<tr>
<td>AF306</td>
<td>0,91 ± 0,08</td>
<td>22</td>
<td></td>
</tr>
<tr>
<td>90% AF403, 10% AF306</td>
<td>0,71 ± 0,16</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CF303</td>
<td>0,21 ± 0,03</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>CF405</td>
<td>0,20 ± 0,02</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>90% CF303, 10% CF405</td>
<td>0,18 ± 0,02</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Tab. 8-1: Spannungsoptische Koeffizienten für anionische und kationische Materialien unterschiedlicher Molmasse und Molmassenverteilungsbreite. Die Molmassen und Konzentrationen der Polymerlösungen sind angegeben.

8.5 Verhalten bei Zugabe von Natriumchlorid

Die Zugabe von Natriumchlorid zu Polyacrylamidlösungen ändert deren molekulare Eigenschaften. Dies wurde bereits in den Abschnitten 5.6 und 7.4 anhand von Experimenten dargestellt. Wie sich diese molekularen Veränderungen auf die spannungsoptischen Koeffizienten von Polyacrylamidlösungen auswirken, ist in Tab. 8-2 an Polyacrylamidlösungen der Materialien AF701 und CF7001 bei einer Konzentration von c=1 g/l gezeigt.

Während die Dehnverfestigung bei NaCl-Zugabe abfällt, steigen die spannungsoptischen Koeffizienten von AF701 und CF7001 bei einer NaCl-Konzentration von 1 mMol/l an. Bei dem anionischen AF701 ist der Anstieg von 8% weniger stark ausgeprägt als bei dem kationischen CF7001 mit einem Anstieg von 76%.

<table>
<thead>
<tr>
<th>Material</th>
<th>C·10^7 (Pa⁻¹) ohne NaCl Zugabe</th>
<th>C·10^7 (Pa⁻¹) 1 mMol/l NaCl</th>
</tr>
</thead>
<tbody>
<tr>
<td>AF701</td>
<td>0,92 ± 0,04</td>
<td>0,99 ± 0,04</td>
</tr>
<tr>
<td>CF7001</td>
<td>0,54 ± 0,10</td>
<td>0,95 ± 0,06</td>
</tr>
</tbody>
</table>

Tab. 8-2: Veränderung der spannungsoptischen Koeffizienten eines anionischen und eines kationischen Polyacrylamids bei Zugabe von NaCl.

Der Unterschied zwischen anionischem und kationischem Polyacrylamid legt den Schluss nahe, dass das kationische Material durch die NaCl-Zugabe mehr beeinflusst wird. Diese Feststellung fügt sich in die bereits dargestellten Messungen aus Abb. 7-21 und Abb. 7-23 ein. Sowohl die Dehnverfestigung als auch die Scherviskositäten der kationischen Polymerlösung aus CF7001 weisen stärkere Unterschiede zwischen Messungen mit und ohne NaCl-Zugabe auf.
8.6 Zusammenfassung

Die beschriebenen experimentellen Beobachtungen über den spannungsoptischen Koeffizienten können wie folgt zusammengefasst werden:

- Die spannungsoptischen Koeffizienten C der untersuchten anionischen und kationischen Polyacrylamide sind für die Konzentrationen $c=3 \text{ g/l}$ und $c=5 \text{ g/l}$ unabhängig von der Dehnrate. Bei kleineren Konzentrationen von $c=0,5 \text{ g/l}$ und $c=1 \text{ g/l}$ treten größere statistische Schwankungen in den Messungen auf, die jedoch nicht auf einen generellen Trend von $C(\varepsilon_0)$ schließen lassen.

- Der spannungsoptische Koeffizient nimmt bei anionischen Materialien mit der Ionogenität zu, während er bei kationischen Polyacrylamiden mit der Ionogenität abnimmt. Der Einfluss der Ionogenität ist für kationische Materialien bei gleicher Konzentration größer.

- Der Gewichtsmittelwert der Molmasse hat keinen Einfluss auf die spannungsoptischen Koeffizienten, falls die Molmassenverteilung breite annähernd gleich ist. Wird die Verteilung der Molmasse durch einen hochmolekularen Anteil verbreitert, so sinkt der spannungsoptische Koeffizient leicht ab. Dieser Einfluss ist bei anionischen Polyacrylamiden stärker ausgeprägt als bei kationischen.

- Wird zu anionischen bzw. kationischen Polyacrylamidlösungen NaCl zugegeben ($c_{\text{NaCl}}=1 \text{ mMol/l}$), so erhöht sich der spannungsoptische Koeffizient. Bei kationischen Polyacrylamiden ist dieser Anstieg stärker ausgeprägt als bei anionischen.
9 Vergleich des experimentellen Aufbaus mit anderen in der Literatur beschriebenen Messmethoden

9.1 Nachteile des FIB/LDA-Aufbaus

Der beschriebene FIB/LDA-Aufbau wurde so entwickelt, dass er Nachteile der bereits in der Literatur beschriebenen Methoden, welche in Abschnitt 2.4 zusammengefasst sind, vermindert bzw. ganz vermeidet.

Während der durchgeführten Messreihen hat sich gezeigt, dass der experimentelle Aufbau jedoch andere Schwächen besitzt, die im Folgenden erörtert werden. Der Hauptnachteil, der einer weiten Verbreitung dieser Messmethode möglicherweise entgegensteht, sind die hohen Anschaffungskosten der Laser-Doppler-Anemometrie und der Zwei-Farben-Spannungsdoppelbrechung. Die Messmethode ist nicht nur kostenintensiv, sondern auch materialintensiv. Der Verbrauch an Polymerlösung beträgt pro Füllung in etwa 4 Liter. Für Polymerlösungen, die als Lösungsmittel organische Lösungsmittel beinhalten, kann dies ein erhebliches Problem darstellen, wenn diese in Dehnströmungen schnell mechanisch degradieren und danach entsorgt werden müssen.

Bei der Messung von Polyisobutylen mit der Scherviskosität von 10-100 Pas stellte sich heraus, dass der Volumenstrom und damit der isotope Druck im Strömungskanal einen gewissen Wert nicht überschreiten dürfen, da sonst die Doppelbrechung der Glasscheiben einen signifikanten Beitrag zur Doppelbrechung des strömenden Fluids liefern und die gemessenen Dehnspannungen falschlicherweise zu hoch sind. Bei den niederviskosen Polyacrylamidlösungen stellte dies jedoch kein Problem dar.

Bei den Polyacrylamidlösungen zeigte sich jedoch ein anderer Effekt: Bei niedrigen Konzentrationen (c=0,5-1 g/l) und hohen Dehnraten bzw. bei höheren Konzentrationen (c=3-5 g/l) und allen Dehnraten wurden Sekundärströmungen durch direkte Beobachtung der Strömung festgestellt. Starke Sekundärströmungen führen dazu, dass das Fluid innerhalb des Strömungskanals nicht nur durch die Düse, sondern ebenfalls durch die Sekundärströmungen eingeschränkt wird. Eine konstante Dehnrate innerhalb der Düse kann daher a-priori nicht mehr angenommen werden und muss durch entsprechende LDA-Messungen verifiziert werden.

Andererseits ist es so, dass die Spannungsdoppelbrechung des Fluids erst ab einem gewissen Schwellwert, welcher der Auflösungsgrenze der FIB-Methode entspricht, mit der FIB-Apparatur bestimmt werden kann. Um diese Auflösungsgrenze zu überschreiten, ist eine gewisse Dehnspannung im Fluid nötig. Ausreichend hohe Dehnspannungen lassen sich jedoch erst dann erreichen, wenn eine hohe Konzentration oder eine hohe Dehnrate vorhanden sind. Für die FIB-Messung ist daher eine minimale Dehnrate nötig, um die Spannung im Fluid messen zu können.
9.2 Vorteile des FIB/LDA-Aufbaus

Von den in Abschnitt 2.4 beschriebenen Methoden zur Messung der Dehnviskosität niederviskoser Polymerlösungen hält lediglich das Filamentbruchrheometer (engl.: „capillary breakup rheometer“, CBR) und das Filamentdehnungsrheometer (engl.: „filament stretching rheometer“, FSR) den Vergleich mit der in dieser Arbeit beschriebenen Messmethode stand. Sowohl CBR als auch FSR sind Methoden, welche aus einem Fluidfilament die Dehnviskosität des Materials bestimmen.

Hervorzuheben ist ebenfalls, dass die Dehnrate einen frei wählbaren Parameter im FIB/LDA-Aufbau darstellt. Im CBR ist es z. B. nicht möglich die Dehnrate unabhängig von der Konzentration der Lösung einzustellen.

Mit dem vorhandenen FIB/LDA-Aufbau ist es möglich, sowohl die Dehnviskosität als auch die Dehnverfestigung einer Polymerlösung quantitativ zu messen. Dies ist sinnvoll sowohl für anwendungstechnische Fragestellungen als auch für tiefergehende wissenschaftliche Überlegungen zur Korrelation der Dehnviskosität bzw. der Dehnverfestigung mit dem molekularen Aufbau. Mit den vorhandenen Methoden war dies bisher nur bedingt möglich.

10 Zusammenfassung

Im experimentell zugänglichen Parameterbereich (c=0,5...5 g/l, \(\dot{\varepsilon} = 15...100 \, \text{s}^{-1} \)) zeigte die Dehnverfestigung der untersuchten Polyacrylamidlösungen folgendes Verhalten (Abschnitt 7.1 und 7.2):

- Je höher die Dehnrate ist, desto größer ist auch die Dehnverfestigung.
- Ein ausgeprägter Anstieg der Dehnverfestigung ist mit steigender Polymerkonzentration zu beobachten.

Wie molekulare Parameter die Dehnverfestigung beeinflussen, ist in der nachfolgenden Liste zusammengefasst (Abschnitt 7.3):

- Die Steigerung der Menge des Comonomeren im Molekül (Ionogenität), hat bei kationischen Polyacrylamiden bei allen untersuchten Konzentrationen eine Erhöhung der Dehnverfestigung zur Folge. Bei anionischen Polyacrylamiden war dies nur bei nahezu konzentrierten Polymerlösungen der Fall.
- Anionische Polyacrylamide sind bei sonst gleichen Versuchsparametern stärker dehnverfestigend als kationische Polyacrylamide.
- Die Dehnverfestigung erhöht sich überproportional stark, falls eine hochmolekulare Komponente vorhanden ist.
- Polyacrylamide mit höherer Molmasse zeigten eine höhere Dehnverfestigung. Da die verwendeten Polyacrylamide radikalisch polymerisiert sind, ist die Molmassenverteilungsbreite um so größer, je höher die mittlere Molmasse ist. Die Erhöhung der Dehnverfestigung ist also auf eine breitere Molmassenverteilung zurückzuführen.

Die Dehnung, bei der das nichtlineare Materialverhalten einsetzt, die sogenannte kritische Dehnung, hängt von folgenden Faktoren ab:

- Steigt die Dehnrate an, so wird die kritische Dehnung kleiner.
- Der Einfluss der Dehnrate auf die kritische Dehnung wird bei geringerer Konzentration kleiner.
- Die kritische Dehnung ist nahezu unabhängig von der Konzentration, falls die Dehnrate konstant gehalten wird.

Da es sich bei dem ionisch modifizierten Polyacrylamid in Lösung um Polyionen handelt, die auf die in der Polymerlösung vorhandene Ionenkonzentration reagieren, wurde der Einfluss von zugegebenen NaCl auf die Dehneigenschaften untersucht. Ein signifikanter Abfall der Dehnverfestigung nach NaCl-Zugabe wurde bei anionischen sowie kationischen Polyacrylamidlösungen festgestellt und ist dadurch zu erklären, dass die zugegebenen Ionen die im Makromolekül vorhandenen Ionen abschirmen, so dass die elektrostatische Abstoßung innerhalb des Moleküls kleiner wird und der Gyrationsradius sinkt. Gleichzeitig werden die intermolekularen ionischen Wechselwirkungen vermindert, die Verschlaufungsdichte sinkt.

Während des linearen Materialverhaltens in Dehnung wurde mit den Messungen der Dehneigenschaften auch der spannungsoptische Koeffizient, d. h. die Proportionalität
zwischen Dehnspannung und Doppelbrechung bestimmt. Dieser Koeffizient gibt an, wie sich die Doppelbrechung des Materials mit der Dehnspannung ändert. Der spannungsoptische Koeffizient zeigte folgendes Verhalten:

- Unabhängigkeit von der Dehnrate und der Molmasse.
- Die im spannungsoptischen Koeffizienten enthaltene Formdoppelbrechung fällt annähernd exponentiell mit steigender Konzentration ab.
- Der spannungsoptische Koeffizient steigt bei anionischen Polyacrylamiden mit steigender Ionogenität an, während er für kationische Polyacrylamide mit wachsender Ionogenität absinkt.
- Die Zugabe von NaCl zu anionischen und kationischen Polyacrylamidlösungen erhöht den spannungsoptischen Koeffizienten.
11 Summary

In the presented work, a new elongational rheometer was built up, with which the extensional viscosity of low-viscous polymer fluids can be determined under planar flow conditions. The main part of the rheometer is a flow channel with an integrated hyperbolic die, in whose center a constant Hencky extension rate affects the flowing fluid. Since the extensional viscosity of viscoelastic materials generally depends on the extension rate and the time, the separation of both dependences is now possible with a constant extension rate. The time dependence of the extensional viscosity can be measured.

The conditions for the calculation of the extensional viscosity are the measurement of the extension rate and the first normal stress difference at the center of the flow channel. The extension rate was computed from the fluid velocity. A laser-Doppler velocimetry system (LDV) was used to determine these velocities. This measuring system is able to measure the velocities of flowing fluids with high local and temporal resolution in an optical way. Since polymer melts and solutions modify their optical characteristics under the influence of stresses, the extension stress was computed from the birefringence of the flowing material. The determination of the birefringence was accomplished with a sensitive measuring method, the “two color flow induced birefringence system” (FIB), with a good spatial resolution.

First the experimental setup was tested on its functionality with low-molecular Newtonian polyisobutylenes. In addition three materials with different molar masses were used. Shear- and extension stresses were measured directly at different volume rates with the FIB setup and compared with those, which were computed from the LDV data and the shear viscosity. Since both measuring methods showed a good agreement for the Newton's materials, in a second step the elongational viscosities of the polyisobutylenes were determined with the FIB/LDA method. Under planar flow conditions and apart from statistic uncertainties, the extensional viscosity corresponded to the expected value of 4 times the shear viscosity (chapter 4).

Besides the polyisobutylenes, which show only a linear material behavior, aqueous non-Newtonian polyacrylamide solutions were examined, because they offer interesting possibilities both scientifically and for application technology (chapter 1). The main interest of the investigations were focused on the nonlinear behavior of the extensional viscosity. For polyacrylamides this nonlinear behavior is a positive deviation of the extension viscosity from the linear material behavior. This deviation is also called elongational strain hardening. Different dependencies were examined: the applied extension rate, the concentration of the polymer, the fraction and type of a ionic copolymer, the molar mass distribution and the presence of sodium chloride. In the following these influences are presented only qualitatively in order to keep the summary short. More detailed results can be found in the individual chapters.
In the experimentally accessible parameter range \((c=0.5\ldots5 \text{ g/l}, \dot{\varepsilon}=15\ldots100 \text{ s}^{-1})\) the elongational strain hardening of the examined polyacrylamide solutions showed the following behavior (section 7.1 und 7.2):

- The higher the elongational rate the more pronounced the strain hardening.
- The extension strain hardening showed a pronounced rise with the polymer concentration.

How molecular parameters affect the elongational strain hardening is summarized in the following list (section 7.3):

- The increase of the comonomer fraction increases the strain hardening for cationic polyacrylamides for all examined concentrations. For anionic polyacrylamides this was only the case with almost concentrated polymer solutions.
- The elongational strain hardening is more pronounced with anionic polyacrylamides than cationic polyacrylamides.
- The elongational strain hardening increases more than proportional, if a high-molecular component is present.
- With the increase of the molar mass an increase of the strain hardening was determined. Since the polyacrylamide is polymerized with a reaction procedure using radicals, the width of the molar mass distribution increases with increasing the molar mass average. The increase of the elongational strain hardening is due to the broader molar mass distribution.

The elongation, where the nonlinear material behavior begins, the so-called critical elongation, depends on the following factors:

- The critical elongation decreases if the elongational rate increases.
- The influence of the elongational rate on the critical elongation decreases with decreasing concentration.
- The critical stretch is almost independent of the concentration, if the elongational rate is kept constant.

The ionically modified polyacrylamides dissolve to polyions in solution und act in response to the existing ion concentration. The influence of added sodium chloride on the extension characteristics was examined. A significant decline of the strain hardening after NaCl addition was determined for anionic as well as cationic polyacrylamide solutions. This can be explained by a shielding of the polyions with the added salt ions. The electrostatic interactions are reduced inside the molecule und this leads directly to a reduction of the radius of gyration und therefore the entanglement density. At the same time the intermolecular ionic interactions are also reduced und therefore the density of the entanglement network.

During the measurements of the linear material behavior in elongation the optical properties of the polyacrylamide solutions became accessible. These were measured by the
determination of the stress optical coefficient, which is the proportionality factor between extension stress and birefringence. This coefficient indicates, how the birefringence changes with the extension stress. The stress optical coefficient showed the following behavior:

- The stress optical coefficient was determined to be independent of the extension rate and molar mass.
- The stress optical coefficient C includes form birefringence. C drops approximately exponential with increasing concentration.
- The stress optical coefficient for anionic polyacrylamides increases with a rising copolymer fraction, while it drops with rising polymer fraction for cationic polyacrylamides. This effect is smaller, if the concentration gets larger.
- Adding NaCl to a polyacrylamide solution will increase the stress optical coefficient.
Anhang

A Berechnungen zur hyperbolischen Düse

A.1 Berechnung der Dehnrate aus einer vorgegebenen hyperbolischen Geometrie

Die Form der hyperbolische Düse wird in einem kartesischen Koordinatensystem (Abb. 3-1) wie folgt definiert:

\[y = \pm \frac{f}{x + x_0} \quad \text{für} \quad x \geq 0 \quad \text{A-1} \]

Für \(x<0 \) gilt \(y = \pm \frac{B_r}{2} \) (Abb. 3-7C). Für \(x=0 \), so gilt aufgrund der stetigen Anschlussbedingung:

\[B_r = \frac{2f}{x_0} \quad \text{A-2} \]

Für einen konstanten Volumenstrom \(\dot{V} \)

\[\dot{V} = \dot{V}(x) \quad \text{A-3} \]

gilt:

\[\dot{V} = \int \int_{A(x)} v_x(x,y,z) \, dy \, dz = \text{konst.} \quad \text{A-4} \]

umformen. Dabei steht \(v_x \) für die Geschwindigkeit in x-Richtung.

Zu jeder Geschwindigkeitsverteilung \(v_x(x,y,z) \) an der Position \(x \) lässt sich eine mittlere Geschwindigkeit \(\overline{v}_x(x) \) und eine senkrecht durchströmte Querschnittsfläche \(A(x) \) definieren, welche den Volumenstrom analog beschreibt d. h.,

\[\dot{V} = A(x) \cdot \overline{v}_x(x) \quad \text{A-5} \]

Die Geschwindigkeitsverteilung \(v_x(x,y,z) \) hat für eine feste Position ihr Maximum aus Symmetriegründen auf der x-Achse. Die Geschwindigkeit entlang der x-Achse wird im folgenden \(v_m(x) \) bezeichnet. Führt man eine Proportionalitätskonstante \(k \) zwischen \(v_m(x) \) und \(\overline{v}_x(x) \) ein,

\[\overline{v}_x(x) = k \cdot v_m(x) \quad \text{A-6} \]
So ergibt sich A-5 zu:

$$\dot{V} = A(x) \cdot k v_m(x)$$

A-7

Umgeformt nach $v_m(x)$, ergibt sich mit A-1 und $A(x) = 2Wy(x) = 2Wf \cdot (x + x_0)$

$$v_m(x) = \dot{\varepsilon} x + \dot{\varepsilon} x_0 \quad \text{mit} \quad \dot{\varepsilon} = \frac{\dot{V}}{2Wkf}$$

A-8

Dabei ist W die Ausdehnung der Düse in z-Richtung. Mit

$$\dot{\varepsilon} = \frac{\partial v_m(x)}{\partial x}$$

A-9

Folgt aus A-8

$$\dot{\varepsilon} = \varepsilon'$$

A-10

Die Geschwindigkeit in x-Richtung entlang der x-Achse steigt somit linear mit der Steigung ε an und besitzt einen zusätzlichen konstanten Anteil. Als Anschlussbedingung für $x=0$ gilt $v_m(0) = \dot{\varepsilon} x_0$. Dabei ist $v_m(0) = v_0$ die Geschwindigkeit an der Position $x=0$ auf der x-Achse. Somit folgt:

$$v_m(x) = \dot{\varepsilon} x + v_0$$

A-11

A.2 Berechnung der Dehnrate als Funktion des Volumenstroms

Die Substitution aus Gleichung A-8 ergibt mit A-10 direkt eine Formel zur Bestimmung der Dehnrate in hyperbolischen Düsen:

$$\dot{\varepsilon} = \frac{\dot{V}}{2Wkf} \quad \text{mit} \quad k = \frac{\nabla x}{v_m}$$

A-12

Lässt sich das Geschwindigkeitsprofil mit dem auf zwei Dimensionen erweiterten Ostwald-de Waele Gesetz

$$v_x(x, y, z) = v_m \left[1 - \frac{2y}{B(x)} \cdot n^{n+1} \right] \left[1 - \frac{2z}{W} \cdot n^{n+1} \right]$$

A-13

beschreiben, so gilt für k:

$$k = \frac{n'+1}{2n'+1} \cdot \frac{n''+1}{2n''+1}$$

A-14

Und somit für den Newtonschen Fall ($n' = n'' = 1$) mit parabolischen Fließprofilen $k=4/9$.
B Einflüsse der Glasfenster auf die gemessene Spannungsdoppelbrechung

B.1 Abhängigkeit der Endeffekte vom Breite/Tiefe-Verhältnis

Bei der Messung der Spannungen im strömenden Fluid mittels polarisierter Laserstrahlen werden die Spannungen entlang des Laserstrahls integriert, welcher durch das Medium propagiert. Randbereiche der Strömung, welche an die begrenzenden Glasscheiben anschließen, sowie die Glasscheiben selbst können zu einer Veränderung der optischen Eigenschaften des Laserstrahls führen, was eine scheinbare zusätzliche Spannung im Fluid vortäuscht.

Burghardt (Burghardt und Fuller 1989) beschäftigte sich mit der Spannungsdoppelbrechung in der Strömung zwischen einem ruhenden inneren Zylinder und einem konzentrisch rotierenden äußeren Zylinder (Couette-Strömung). Er kam zu dem Schluss, dass die Endeffekte in dieser Strömung ab einem Verhältnis von Spaltbreite/Zylinderlänge von 1:10 vernachlässigbar sind.

B.2 Spannungen in den Glasfenstern

Minimierung der Restspannungen in den Glasfenstern

Bei der Herstellung von Glas entstehen durch den Abkühlprozess innere Spannungen, falls dieser zu schnell durchgeführt wird. Diese inneren Spannungen führen zur sogenannten intrinsischen Doppelbrechung, da Glas ebenfalls dem spannungsoptischen Gesetz unterliegt. Der spannungsoptische Koeffizient C von Floatglas beträgt ca. 10^{-12} Pa^{-1} im Vergleich zu Polymeren mit $C \approx 10^{-9} \text{ Pa}^{-1}$. Sind die im Polymer vorhandenen Spannungen um den Faktor 10³ kleiner gegenüber den Glasspannungen, so ist die Spannungsdoppelbrechung im Glas und im Polymer von gleicher Größenordnung. Besonders bei der Messung von Polymerlösungen ist es daher nötig Restspannungen in den eingesetzten Glasfenstern zu minimieren.

Die Restspannungen in den Glasfenstern wurden durch Tempern, also durch Erhitzen und langsames Abkühlen reduziert. Dabei wurde bis 10 °C über den Temperpunkt ($T_{FS57} = 391 \, ^\circ \text{C}$, $T_{Float} = 557 \, ^\circ \text{C}$) aufgeheizt und über vier Wochen hinweg bis 60°C unter den Temperpunkt abgekühlt. Eine weitere Woche wurde dazu verwendet, die Gläser bis auf Raumtemperatur abzukühlen. So konnte sichergestellt werden, dass nur minimale Restspannungen in den Gläsern vorhanden waren.

Die intrinsische Doppelbrechung der Gläser wirkt sich sowohl auf die Messung der Phasenverschiebung des Lichts als auch auf eine Veränderung des Extinktionswinkels aus. Diese beiden Effekte werden in den folgenden Abschnitten diskutiert.

Änderung der Phasenverschiebung durch Restspannungen

Um zu zeigen, dass Spannungen in den Glasfenstern die Phasenverschiebungsmessung des Fluids beeinflussen können, soll ein System aus drei aufeinander folgenden Medien betrachtet werden. Die zwei äußeren Medien stellen die im Experiment verwendeten Gläser dar und verschieben die Phase eines eintreffenden Laserstrahls um δ_{Glas}. Das innere Medium (Fluid) verschiebt die Phase zusätzlich um δ_{Fluid}. Da die Phasenverschiebungen additiv sind, gilt für die gemessene Phasenverschiebung δ_{eff}:

$$\delta_{\text{eff}} = \delta_{\text{Glas}} + \delta_{\text{Fluid}} + \delta_{\text{Glas}}$$ \hspace{1cm} B-1

Ist δ_{Glas} sehr viel kleiner als δ_{Fluid} so kann davon ausgegangen werden, dass die korrekte Phasenverschiebung des Fluids gemessen wurde ($\delta_{\text{eff}} \approx \delta_{\text{Fluid}}$). Für Messungen an PIB wurden Glasfenster mit einer Dicke von 15 mm eingesetzt. Sie ergaben eine Phasenverschiebung von 2$\delta_{\text{Glas}} = 4,5\, ^\circ$. Für Untersuchungen an Polyacrylamidlösungen wurden 2 mm dicke Glasscheiben eingesetzt. Für sie folgte eine Phasenverschiebung von 2$\delta_{\text{Glas}} = 0,6\, ^\circ$. Um diese geringen Phasenverschiebungen messen zu können, wurden bis zu zehn mit dem gleichen Verfahren getemperte Glasscheiben aufeinander gelegt und die Phasenverschiebung aller Glasscheiben mit dem FIB-Aufbau vermessen. Ausgehend von dem erhaltenen Messwert,
wurde auf die Phasenverschiebung einer Glasscheibe geschlossen. Im Rahmen der Messgenauigkeit des FIB-Aufbaus war die induzierte Phasenverschiebung homogen über die gesamte Glasfläche verteilt.

Im Vergleich zu der niedrigen Phasenverschiebung der Gläser betrug die Phasenverschiebung bei Messungen an Polyisobutylen bis zu $\delta_{\text{Fluid}} \leq 360^\circ$, bei Messungen an Polyacrylamidlösungen bis zu $\delta_{\text{Fluid}} \leq 90^\circ$. Der Einfluss der Gläser auf die Phasenverschiebung ist daher vernachlässigbar.

Änderung der Phasenverschiebung durch druckinduzierte Spannungen

Bei strömendem Medium wirken Kräfte auf die Glasfenster des Strömungskanals, wodurch sich diese deformieren. Dadurch werden Spannungen in den Gläser induziert und bewirken eine Spannungsdoppelbrechung die ihrerseits eine Phasenverschiebung des Laserstrahls zur Folge hat. Im Vergleich zu Polymerlösungen haben die eingesetzten Polyisobutylen eine wesentlich höhere Viskosität. Daher mussten bei Messungen an Polyisobutylen höhere Drücke im Reservoir erzeugt werden, um den gewünschten Volumenstrom zu erzielen. Um druckinduzierte Spannungen zu minimieren, wurden die Gläser aus der Glassorte SF57 hergestellt, welche einen spannungsoptischen Koeffizienten von nur $2 \cdot 10^{-14} \text{ Pa}^{-1}$ besitzt.

Um den Einfluss des Reservoir-Drucks auf die Gläser zu bestimmen, wurde der Auslauf der Messzelle verschlossen und bei ruhender Strömung die Messzelle unter einen Druck von bis zu 0,5 MPa gesetzt. Dies entspricht dem maximalen Druck, der während der Messungen an Polyisobutylen auftrat. Signifikante durch den zusätzlich aufgebrachten Druck induzierte Phasenverschiebungen konnten nicht nachgewiesen werden und liegen demnach unter der Messgrenze des FIB-Aufbaus.

Änderung des gemessenen Extinktionswinkels durch Restspannungen

Einzelne Publikationen (Burghardt und Fuller 1989; Galante und Frattini 1991) haben bereits darauf hingewiesen, dass eine zusätzliche von den Glasfenstern induzierte Phasenverschiebung einen erheblichen Einfluss auf den gemessenen Extinktionswinkel χ_{eff} haben kann. Die Abweichung vom tatsächlichen Wert des Extinktionswinkels χ kann auch nicht durch eine Erhöhung des W/B-Verhältnisses reduziert werden, so wie es bei der Phasenverschiebung der Fall ist. Am deutlichsten fasst Öttinger den Sachverhalt zusammen (Öttinger 1999a). Er präsentiert in seiner Publikation folgenden analytischen Zusammenhang

Anhang 147
zwischen dem gemessenen Extinktionswinkel χ_{eff} und wahren Extinktionswinkel der Polymermoleküle χ:

\[
\tan(2\chi_{\text{eff}}) = \tan(2\chi) \cdot f_{\chi}
\]

mit

\[
f_{\chi} = \frac{\cos(\delta_{\text{Glas}}) \sin(\delta_{\text{Fluid}}) - \sin(\delta_{\text{Glas}}) [1 - \cos(\delta_{\text{Fluid}})] \cos(2\chi)}{\cos(2\delta_{\text{Glas}}) \sin(\delta_{\text{Fluid}}) - \frac{1}{2} \sin(2\delta_{\text{Glas}}) \left[1 - \cos(\delta_{\text{Fluid}})\right] \cos(2\chi) - \frac{1 + \cos(\delta_{\text{Fluid}})}{\cos(2\chi)}}
\]

Die Abhängigkeit des Faktors f_{χ} von δ_{Glas} und δ_{Fluid} ist in Abb. B-0-1 für kleine χ ($\chi \approx 0$) dargestellt.

\begin{figure}
\centering
\includegraphics[width=\textwidth]{fig_b01.png}
\caption{Abb. B-0-1: Faktor f_{χ} in Abhängigkeit der Phasenverschiebung der Glasfenster δ_{Glas} und der Phasenverschiebung im gemessenen Fluid δ_{Fluid}.}
\end{figure}

Wenn die von den Gasfenstern induzierte Phasenverschiebung sehr klein bzw. klein gegenüber der Phasenverschiebung im Fluid ist, dann stimmt der effektive Orientierungswinkel χ_{eff} mit dem wahren Orientierungswinkel χ überein:

\[
\delta_{\text{Glas}} \approx 0 \text{ oder } \delta_{\text{Glas}} < \ll \delta_{\text{Fluid}} \Rightarrow \chi_{\text{eff}} \approx \chi
\]

Wie im vorangegangenen Abschnitt bereits dargelegt ist, wurde bei der Auswahl und Behandlung der Gläser darauf geachtet, dass $\delta_{\text{Glas}} \ll \delta_{\text{Fluid}}$ stets erfüllt ist. Daher ist der Einfluss der Gläser auf die Änderung des Extinktionswinkels vernachlässigbar.
C Dehnraten- und Spannungsverteilung längs des Laserstrahls zur Messung der Spannungsdoppelbrechung

Die Doppelbrechung Δn ist zur Spannung Δτ proportional (Spannungsoptisches Gesetz, Abschnitt 2.2). Unter der Annahme eines konstanten Δn(z) folgt daher direkt, dass Δτ längs der z-Achse konstant ist. Nimmt man zusätzlich eine konstante Dehnviskosität μ^+(z) in z-Richtung an, so folgt eine homogene Dehnratenverteilung \(\varepsilon_{xx}(z) \) entlang der z-Richtung:

\[
\varepsilon_{xx}(z) = \text{konst.}
\]

Aus einer Konstanz von \(\varepsilon_{xx}(z) \) lässt sich daher die Konstanz von Δn(z) folgern. Um die Homogenität von Δn(z) längs der z-Achse zu charakterisieren, ist es daher ausreichend, die in z-Richtung gemittelte Dehnrate \(\varepsilon_{xx} \) und die Dehnrate \(\varepsilon_{xx} \) längs der x-Achse (y=z=0) miteinander zu vergleichen:

\[
\varepsilon_{xx} = \frac{1}{W} \int_{-W/2}^{W/2} \frac{\partial v_x(x,z)}{\partial x} \, dz
\]

\[
\dot{\varepsilon}_{xx} = \frac{\partial v_x(x,0)}{\partial x}
\]

Sind \(\varepsilon_{xx} \) und \(\dot{\varepsilon}_{xx} \) gleich, so ist dies ein starkes Indiz dafür, dass eine konstante Verteilung der Dehnrate in z-Richtung vorliegt. Sind beide Größen unterschiedlich, so liegt eine inhomogene Verteilung der Dehnrate in z-Richtung vor.

Analog zur mittleren Dehnrate \(\varepsilon_{xx} \) lässt sich die mittlere Geschwindigkeit \(\overline{v_x} \) durch Gleichung C-4 definieren:

\[
\overline{v_x}(x) = \frac{1}{W} \int_{-W/2}^{W/2} v_x(x,z) \, dz
\]
und mit $v_x(x,0)$ vergleichen. Da die Dehnraten $\dot{\varepsilon}_{xx}$ und \ddot{v}_x lediglich die Ableitungen von v_x und \ddot{v}_x nach x sind, ist es ebenfalls möglich diese beiden Größen miteinander zu vergleichen.

Ein solcher Vergleich ist in Abb. C-1 für Polymerlösungen aus AF100 dargestellt. Verschiedene Konzentrationen von $c=0,5$ g/l bis $c=5$ g/l wurden untersucht. Bei einem konstanten Volumenstrom von $\dot{V}=20$ ml/s wurde die Polymerlösung durch die hyperbolische Düse gepumpt und das entstandene Geschwindigkeitsfeld $v_x(x,z)$ bestimmt. Daraus wurden v_x und mit Gleichung C-4 \ddot{v}_x ermittelt.

Da sich die Geschwindigkeitsprofile in Abb. C-1 alle überlagern würden, sind diese für $c=3$ g/l und $c=5$ g/l um einen konstanten Wert von 0,5 m/s und 1 m/s nach oben verschoben. Die durchgezogenen Kurven entsprechen den gemittelten Geschwindigkeiten \ddot{v}_x, die gepunkteten Graphen den Geschwindigkeiten v_x auf der x-Achse. Alle Graphen verlaufen im Bereich des Reservoirs zunächst horizontal, um dann im Düsenlaufbereich anzusteigen. Innerhalb der Düse erreichen alle Kurven bis auf zwei eine konstante Steigung. Für $c=0,5$ g/l und $c=1$ g/l liegen beide Kurven annähernd aufeinander, was auf einen sehr geringen Einfluss der Wände auf das Strömungsprofil hindeutet.

![Diagramm](image.png)

Abb. C-1: Geschwindigkeit längs der x-Achse (v_x) im direkten Vergleich mit der mittleren Geschwindigkeit (\ddot{v}_x) für verschiedene Konzentrationen einer anionischen Polyacrylamidlösung.

Bei den höheren Konzentrationen weichen beide Kurven voneinander ab, und die Geschwindigkeit v_x längs der x-Achse steigt im Vergleich zur gemittelten Geschwindigkeit \ddot{v}_x an. Dabei bleibt \ddot{v}_x jedoch weitgehend linear. Mit steigender Konzentration verschiebt sich der Beginn des Geschwindigkeitsanstiegs in negative Richtung.
Das Verhalten der Dehnraten $\dot{\varepsilon}_{xx}$ und $\overline{\varepsilon}_{xx}$ ist in Abb. C-2 dargestellt. Die durchgezogenen Kurven entsprechen den gemittelten Dehnraten, während die gepunkteten die Dehnraten längs der x-Achse repräsentieren. Im Reservoir sind bei $x=-30$ mm alle Dehnraten verschwindend klein, steigen im Düsenlaufbereich jedoch rasch an. Für $c=0.5$ g/l und $c=1$ g/l gilt $\dot{\varepsilon}_{xx} \approx \overline{\varepsilon}_{xx}$. Für die höheren Konzentrationen $c=3$ g/l und $c=5$ g/l ist bei $\dot{\varepsilon}_{xx}$ längs der x-Achse ein Über- und ein Unterschwinger zu beobachten. Die mittlere Dehnrate $\overline{\varepsilon}_{xx}$ sinkt mit der Konzentration ab.

Für $c=3$ g/l und $c=5$ g/l stimmt $\dot{\varepsilon}_{xx}$ nicht mit $\overline{\varepsilon}_{xx}$ überein und die Dehnratenverteilung längs der z-Achse ist folglich nicht homogen. Da $\overline{\varepsilon}_{xx}$ jedoch ein relativ konstantes Verhalten innerhalb der Düse zeigt, bedeutet dies, dass die Dehnratenschwankungen längs der z-Achse im Mittel nicht von Bedeutung sind. Erst noch größere Abweichungen in der Dehnratenverteilung im Strömungskanal führen zu einem $\dot{\varepsilon}_{xx}$, welches nicht mehr konstant innerhalb der Düse verläuft.

Ein Kriterium für die Auswertbarkeit der im FIB/LDA-Versuch erhaltenen Daten war die Konstanz von $\overline{\varepsilon}_{xx}$ innerhalb der hyperbolischen Düse. War diese Voraussetzung nicht gegeben, so wurden die entsprechenden Messungen verworfen.

Abb. C-2: Dehnraten längs der x-Achse ($\dot{\varepsilon}_{xx}$) im direkten Vergleich mit der mittleren Dehnrate ($\overline{\varepsilon}_{xx}$) für verschiedene Konzentrationen einer anionischen Polyacrylamidlösung.
D Berechnung der Intensitäten der Laserstrahlen zur Messung der Spannungsdoppelbrechung vor und nach der Messzelle

Zur Bestimmung der Spannungsdoppelbrechung Δn des strömenden Fluids wurde eine Apparatur nach der Methode der Zwei-Farben Spannungsdoppelbrechung (Chow und Fuller 1984) aufgebaut (Kapitel 3). Δn wurde dabei aus den Intensitäten I_1^0, I_2^0 vor der Messzelle und I_1, I_2 nach den Analysatoren bestimmt (Gleichung 3-2). Diese Intensitäten sind jedoch nicht direkt zugänglich, ohne durch die Messung ihren Wert zu verändern.

Die Intensitäten vor der Messzelle wurden dadurch bestimmt, dass ein Teil der Primärintensität des Laserstrahls nach der Separation in zwei Teilstrahlen über einen halbdurchlässigen Spiegel ausgekoppelt und am Referenzdetektor vermessen wurde (R_1^I, R_2^I). Das Verhältnis zwischen der Intensität vor der Messzelle und der Intensität am Referenzdetektor wurde für jeden Teilstrahl bestimmt (P_1^T, P_2^T). Diese „Transmissionsfaktoren“ sind nur von der Art des optischen Aufbaus abhängig und bleiben während des Experiments konstant. I_1^0, I_2^0 wurde während des Experiments mit folgenden Gleichungen bestimmt:

\[
I_1^0 = P_1^T \cdot R_1^I \\
I_2^0 = P_2^T \cdot R_2^I
\]

Zur Bestimmung der Transmissionsfaktoren für die Analysatoroptik (A_1^T, A_2^T) wurde jeweils der Quotient aus der Intensität am Ende des optischen Pfades (M_1^I, M_2^I) und der in die Analysatoroptik eintretenden Intensität bestimmt. Dazu wurden Polarisatoren und Analysatoren parallel ausgerichtet, um keine zusätzliche Absorption durch Auslöschung an den Polarisatoren zu erhalten. Die Intensitäten nach den Analysatoren bei gekreuzter Polarisator-Analysator Anordnung ergeben sich während des Experiments daher zu:

\[
I_1 = \frac{I_1^M}{T_1^A \cdot T_1^M} \\
I_2 = \frac{I_2^M}{T_2^A \cdot T_2^M}
\]

T_1^M und T_2^M sind dabei die Transmissionsfaktoren der Messzelle einschließlich des enthaltenen Fluids. Typische Werte der Transmissionsfaktoren, welche sich während der Messungen ergaben, sind in Tab. D1 zusammengefasst.
Tab. D1: Transmissionsfaktoren des optischen Aufbaus zur Messung der Spannungsdoppelbrechung.

<table>
<thead>
<tr>
<th></th>
<th>Index 1 ((\lambda=488) nm)</th>
<th>Index 2 ((\lambda=512) nm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(T^P)</td>
<td>4,19</td>
<td>5,57</td>
</tr>
<tr>
<td>(\Delta T)</td>
<td>0,311</td>
<td>0,314</td>
</tr>
<tr>
<td>(T^M)</td>
<td>(\approx 0,65)</td>
<td>(\approx 0,66)</td>
</tr>
</tbody>
</table>

Anders als \(T^P\) und \(\Delta T\), welche nur vom optischen Aufbau abhängen, verändert sich \(T^M\) mit der Absorption des Fludis. \(T^M\) kann sich daher je nach zugegebener Menge an TiO\(_2\)-Tracerpartikeln ändern. Diese Tracerpartikel werden zur Erhöhung der Messgenauigkeit bei LDA-Messungen benötigt. Für Messungen an Polyacrylamidlösungen wurden 3,75 mg/l TiO\(_2\) zugegeben.
E Nomenklatur

Allgemeine physikalische Größen

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Definition</th>
<th>SI-Einheit</th>
</tr>
</thead>
<tbody>
<tr>
<td>(t)</td>
<td>Zeit</td>
<td>s</td>
</tr>
<tr>
<td>(v)</td>
<td>Geschwindigkeit</td>
<td>m/s</td>
</tr>
<tr>
<td>(v_x)</td>
<td>Geschwindigkeit in x-Richtung</td>
<td>m/s</td>
</tr>
<tr>
<td>(\bar{v}_x)</td>
<td>Geschwindigkeit in x-Richtung, gemittelt in z-Richtung</td>
<td>m/s</td>
</tr>
<tr>
<td>(\omega)</td>
<td>Kreisfrequenz</td>
<td>rad/s</td>
</tr>
<tr>
<td>(T)</td>
<td>Temperatur</td>
<td>°C</td>
</tr>
<tr>
<td>(p)</td>
<td>Druck</td>
<td>Pa</td>
</tr>
<tr>
<td>(\dot{V})</td>
<td>Volumenstrom</td>
<td>m³/s</td>
</tr>
</tbody>
</table>

Deformation und Deformationsrate

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Definition</th>
<th>SI-Einheit</th>
</tr>
</thead>
<tbody>
<tr>
<td>(D)</td>
<td>Deformationsratentensor</td>
<td>s⁻¹</td>
</tr>
<tr>
<td>(\gamma)</td>
<td>Scherdeformation</td>
<td>-</td>
</tr>
<tr>
<td>(\dot{\gamma})</td>
<td>Scherrate</td>
<td>s⁻¹</td>
</tr>
<tr>
<td>(\varepsilon)</td>
<td>Hencky-Dehnung</td>
<td>-</td>
</tr>
<tr>
<td>(\Gamma)</td>
<td>Hencky-Dehnrate</td>
<td>s⁻¹</td>
</tr>
<tr>
<td>(\varepsilon_{xx})</td>
<td>Hencky-Dehnrate längs der x-Achse</td>
<td>s⁻¹</td>
</tr>
<tr>
<td>(\bar{\varepsilon}_{xx})</td>
<td>Hencky-Dehnrate längs der x-Achse, gemittelt in z-Richtung</td>
<td>s⁻¹</td>
</tr>
<tr>
<td>(\dot{\varepsilon}_0)</td>
<td>(\bar{\varepsilon}_{xx}) gemittelt in x-Richtung für (x \geq x_S)</td>
<td>s⁻¹</td>
</tr>
</tbody>
</table>

Spannung

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Definition</th>
<th>SI-Einheit</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\sigma)</td>
<td>Spannungstensor</td>
<td>Pa</td>
</tr>
<tr>
<td>(\tilde{\sigma})</td>
<td>Anisotroper Anteil des Spannungstensors</td>
<td>Pa</td>
</tr>
<tr>
<td>(\Delta \tau)</td>
<td>Spannung längs der mittleren Hauptachse der Moleküle</td>
<td>Pa</td>
</tr>
<tr>
<td>(N_1)</td>
<td>Erste Normalspannungsendifferenz</td>
<td>Pa</td>
</tr>
</tbody>
</table>

Doppelbrechung

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Definition</th>
<th>SI-Einheit</th>
</tr>
</thead>
<tbody>
<tr>
<td>(I)</td>
<td>Intensität</td>
<td>J/s</td>
</tr>
<tr>
<td>(I_0^1, I_0^2)</td>
<td>Intensität vor der Messzelle im FIB-Versuch</td>
<td>J/s</td>
</tr>
<tr>
<td>(I_1, I_2)</td>
<td>Intensität nach der Messzelle im FIB-Versuch</td>
<td>J/s</td>
</tr>
<tr>
<td>(i)</td>
<td>Normierte Intensität</td>
<td>-</td>
</tr>
<tr>
<td>(\lambda)</td>
<td>Wellenlänge</td>
<td>m</td>
</tr>
<tr>
<td>(\delta)</td>
<td>Phasenverschiebung</td>
<td>rad</td>
</tr>
<tr>
<td>(n)</td>
<td>Brechungsindextensor</td>
<td>-</td>
</tr>
<tr>
<td>(n_a)</td>
<td>Anisotroper Teil des Brechungsindextensors</td>
<td>-</td>
</tr>
<tr>
<td>(\Delta n)</td>
<td>Doppelbrechung längs der mittleren Hauptachse der Moleküle</td>
<td>-</td>
</tr>
<tr>
<td>(\chi)</td>
<td>Extinktionswinkel (\tilde{\Delta}) mittlere Hauptachse der Moleküle</td>
<td>rad</td>
</tr>
<tr>
<td>(C)</td>
<td>Spannungsoptischer Koeffizient</td>
<td>Pa⁻¹</td>
</tr>
<tr>
<td>(\overline{C})</td>
<td>Über alle gemessenen Dehnraten gemitteltes C</td>
<td>Pa⁻¹</td>
</tr>
<tr>
<td>(\alpha)</td>
<td>Polarisierbarkeit</td>
<td>m³</td>
</tr>
</tbody>
</table>
\(T^p \) Transmissionsfaktor des Polarisatoraufbaus im FIB-Versuch
\(T^A \) Transmissionsfaktor des Analysatoraufbaus im FIB-Versuch
\(T^M \) Transmissionsfaktor der Messzelle im FIB-Versuch

Materialeigenschaften

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Definition</th>
<th>Einheit</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\rho)</td>
<td>Dichte</td>
<td>kg/m³</td>
</tr>
<tr>
<td>(c)</td>
<td>Konzentration des Polymers in der Polymerlösung</td>
<td>g/l</td>
</tr>
<tr>
<td>(c_{\text{NaCl}})</td>
<td>Konzentration von Natriumchlorid in der Polymerlösung</td>
<td>mmol/l</td>
</tr>
<tr>
<td>(M_w)</td>
<td>Gewichtsmittelwert der Molmasse</td>
<td>g/mol</td>
</tr>
<tr>
<td>(E_A)</td>
<td>Aktivierungsenergie</td>
<td>kJ/mol</td>
</tr>
<tr>
<td>(\tau_i)</td>
<td>Relaxationszeiten</td>
<td>s</td>
</tr>
</tbody>
</table>

Rheologische Größen

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Definition</th>
<th>Einheit</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\eta)</td>
<td>Scherviskosität</td>
<td>Pa·s</td>
</tr>
<tr>
<td>(\eta_0)</td>
<td>Nullviskosität in Scherung</td>
<td>Pa·s</td>
</tr>
<tr>
<td>(\eta_\infty)</td>
<td>Viskosität des Lösungsmittels</td>
<td>Pa·s</td>
</tr>
<tr>
<td>(\eta^+)</td>
<td>Transiente linear-viskoelastische Scherviskosität</td>
<td>Pa·s</td>
</tr>
<tr>
<td>(\eta^+)</td>
<td>Transiente Scherviskosität</td>
<td>Pa·s</td>
</tr>
<tr>
<td>(n)</td>
<td>Fließexponent</td>
<td>-</td>
</tr>
<tr>
<td>(G')</td>
<td>Speichermodul</td>
<td>Pa</td>
</tr>
<tr>
<td>(G'')</td>
<td>Verlustmodul</td>
<td>Pa</td>
</tr>
<tr>
<td>(J^0)</td>
<td>Stationäre elastische Nachgiebigkeit</td>
<td>Pa⁻¹</td>
</tr>
<tr>
<td>(\eta_L)</td>
<td>Viskosität des Lösungsmittels</td>
<td>Pa·s</td>
</tr>
<tr>
<td>(\eta_{\text{sp}})</td>
<td>Spezifische Viskosität</td>
<td>-</td>
</tr>
<tr>
<td>(\eta_{\text{red}})</td>
<td>Reduzierte Viskosität</td>
<td>l/g</td>
</tr>
<tr>
<td>([\eta])</td>
<td>Intrinsische Viskosität</td>
<td>l/g</td>
</tr>
<tr>
<td>(c^*)</td>
<td>Kritische Konzentration</td>
<td>g/l</td>
</tr>
<tr>
<td>(\mu_0)</td>
<td>Nullviskosität in Dehnung</td>
<td>Pa·s</td>
</tr>
<tr>
<td>(\mu_0^\ast)</td>
<td>Transiente linear-viskoelastische Dehnviskosität</td>
<td>Pa·s</td>
</tr>
<tr>
<td>(\mu^\ast)</td>
<td>Transiente Dehnviskosität</td>
<td>Pa·s</td>
</tr>
</tbody>
</table>

Düsengeometrie

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Definition</th>
<th>Einheit</th>
</tr>
</thead>
<tbody>
<tr>
<td>(f)</td>
<td>Formfaktor der hyperbolischen Düse</td>
<td>m²</td>
</tr>
<tr>
<td>(x_0)</td>
<td>Abstand der Polstelle der Hyperbel von der y-z Ebene</td>
<td>m</td>
</tr>
<tr>
<td>(L)</td>
<td>Länge der Düse (x-Richtung)</td>
<td>m</td>
</tr>
<tr>
<td>(L_R)</td>
<td>Länge des Strömungskanals im Reservoir</td>
<td>m</td>
</tr>
<tr>
<td>(B)</td>
<td>Breite der Düse (y-Richtung)</td>
<td>m</td>
</tr>
<tr>
<td>(B_R)</td>
<td>Breite des Strömungskanals im Reservoir</td>
<td>m</td>
</tr>
<tr>
<td>(W)</td>
<td>Tiefe der Düse (z-Richtung)</td>
<td>m</td>
</tr>
<tr>
<td>(x_S)</td>
<td>Position auf der x-Achse, die den Nullpunkt der Zeit festlegt</td>
<td>m</td>
</tr>
</tbody>
</table>
Literaturverzeichnis

BASF. 2006. Persönliche Mitteilung.

Peterlin A, Stuart HA. 1939. The determination of the size and shape, as well as the electrical, optical and magnetic anisotropy of submicroscopic particles with the aid of artificial double refraction and inner viscosity. Zeitschrift fuer Physik 112:129-47.

Ting RY, Hunston DL. 1975. Some limitations in the measurement of elongational viscosity for dilute polymer solutions. Polymer Preprints (American Chemical Society, Division of Polymer Chemistry) 16(2):588-592.

Danksagung

Meinen Freunden, darunter besonders Herrn Dr. Graßl, danke ich für das rege Interesse an meinem Arbeitsthema und der Durchsicht meines Manuskripts. Bei Dr. Schwetz und Dr. Merten möchte ich mich für die kompetente Einführung in das Fachgebiet der Polymere und Laser-Doppler Anemometrie bedanken, was mir unter anderem einen schnellen Start am Lehrstuhl ermöglichte. Für anregende mathematische Diskussionen möchte ich mich bei Dr. Baroso und bei Dr. Okamoto bedanken. Bei Daniela Hertel bedanke ich mich für die gute Zusammenarbeit, das gute Arbeitsklima und manch konstruktiven Diskussion.

Lebenslauf

Persönliche Daten

12.04.1973 geboren in Coburg, Deutschland
Familienstand: verheiratet, 3 Kinder
Eltern: Gerhard Schuberth und Marianne Schuberth, geb. Vogel

Schulbildung

09/79-08/81 Volksschule Lichtenfels
09/81-08/83 Volksschule Schney
09/83-08/92 Meranier-Gymnasium Lichtenfels
Abschluss: allgemeine Hochschulreife

Zivildienst

10/92-10/93 Aktiver Einsatz beim Rettungsdienst des Roten Kreuzes Lichtenfels als Rettungssanitäter

Studium

WS 93/94 bis WS 99/00 Studium der Physik an der Universität Erlangen-Nürnberg.
Abschluss: Dipl. rer. nat.
Nebenfächern: Biomedizinische Technik, Vakuumtechnik, Biophysik, Geophysik, Angewandte Optik.

Berufliche Laufbahn

04/00-10/02 Tätig als wissenschaftlicher Mitarbeiter in der Abteilung für Phoniatrie und Pädaudiologie im Bereich der theoretischen Mechanik, medizinischer Bildverarbeitung und optischen Messtechnik.

11/02-05/07 Wissenschaftlicher Mitarbeiter am Lehrstuhl für Polymerwerkstoffe, Institut für Werkstoffwissenschaften, Universität Erlangen-Nürnberg.

Seit 05/07 Entwicklungsleiter im Bereich DNA-Technologie, Firma identif GmbH, Erlangen
Publikationen in wissenschaftlichen Zeitschriften

S. Schuberth, H. Münstedt, „Transient elongational viscosities of aqueous polyacrylamide solutions measured with an optical rheometer“, Rheologica Acta, Online verfügbar.

Publikationen/Tagungsbeiträge

S. Schuberth, D. Hertel, H. Münstedt, „Extensional viscosities of polyacrylamide solutions at constant elongational rates“, 3rd Annual European Rheology Conference (AERC), Hersonisos, Kreta, Griechenland, 27-29.04.06.

D. Hertel, S. Schuberth, H. Münstedt, „Experimental investigations of 3D effects in polymer melt entry flows using laser-Doppler velocimetry“, 3rd Annual European Rheology Conference (AERC), Hersonisos, Kreta, Griechenland, 27-29.04.06.

