
Department Informatik
Technical Reports / ISSN 2191-5008

Andreas Kurtz, Andreas Weinlein, Christoph Settgast, Felix Freiling

DiOS: Dynamic Privacy Analysis of iOS
Applications

Technical Report CS-2014-03

June 2014

Please cite as:

Andreas Kurtz, Andreas Weinlein, Christoph Settgast, Felix Freiling, “DiOS: Dynamic Privacy Analysis of iOS

Applications,” Friedrich-Alexander-Universität Erlangen-Nürnberg, Dept. of Computer Science, Technical Reports,

CS-2014-03, June 2014.

Friedrich-Alexander-Universität Erlangen-Nürnberg
Department Informatik

Martensstr. 3 · 91058 Erlangen · Germany

www.cs.fau.de

DiOS: Dynamic Privacy Analysis of iOS
Applications

Andreas Kurtz, Andreas Weinlein, Christoph Settgast, Felix Freiling
Dept. of Computer Science, Friedrich-Alexander-Universität Erlangen-Nürnberg, Germany

dios@i1.cs.fau.de

Abstract—We present DiOS, a practical system to
perform automated dynamic privacy analysis of iOS
apps. DiOS provides a highly scalable and fully auto-
mated solution to schedule apps from the official Apple
App Store for privacy analysis to iOS devices. While
apps are automatically executed, user interaction is
simulated using random and smart execution strategies,
and sensitive API calls as well as network connections
are tracked. We evaluated the system on 1,136 of the
most popular free apps from the iOS App Store and
found out that almost 20% of all investigated apps are
tracking users’ locations on every app start, one third
of all accesses to users’ address books are attributed to
apps from the social network category and almost half
of all apps are tracking users’ app usage behavior by
incorporating tracking and advertising libraries.

I. INTRODUCTION

A. Motivation

Mobile devices have become an integral part of
our daily life and business. Not only do they provide
connectivity to friends and colleagues at any time
and (almost) any place, they are also used to store
and manage large amounts of personal data such as
images, videos and emails. One major reason for the
success of smartphones are the manifold opportunities
gained from their expandability by third-party mobile
applications (apps).

However, with the increasing amount of apps offered
in central marketplaces, the risk of apps that are
potentially harmful to a user’s privacy rises. Privacy
concerns do not necessarily refer only to the secrecy of
application data, such as documents and emails, but
they also refer to contextual data that a smartphone
continuously produces through its sensors for location
(GPS), acceleration, video (camera) and audio (micro-
phone). Since most phones are usually switched on
and carried along with the person, the collected data
gives a deep insight into the life of the smartphone
owner, and is therefore highly privacy relevant.

Because of this relevance, the information available
on smartphones has attracted more and more attention
from the advertising industry and cybercriminals. There
have been numerous reports on privacy violations of
different forms (even for Apple products [1], [2]),
whereas most of them however were discovered by
accident or after intensive manual analysis work. Since
manual analysis does not scale to the vast amount
of apps that are developed every day, automated
solutions for detecting privacy leaks are in high
demand. Furthermore, since the entire smartphone
field is changing rather quickly, it is important to
continuously investigate the privacy implications of
using smartphones so that users and society can reflect
on (self) regulation.

B. Related Work

Related work in dynamic software analysis is mainly
focused on desktop operating systems [3]–[5]. Due
to several circumstances like, e.g., different execution
platforms, most known techniques are not applicable to
mobile devices. However, there have been several stud-
ies focusing on the analysis of mobile apps, although
most of them dealing with Android.

Enck et al. [6] were the first to present TaintDroid,
a system for monitoring Android apps for privacy
violations at runtime. Later, TaintDroid was incor-
porated in various other analysis solutions such as
AppsPlayground [7] or Mobile-Sandbox [8]. However,
TaintDroid (and all other existing solution that are
based upon it) are limited to the Android platform
and do not support analyzing native code. As code
in iOS is directly executed on the hardware without
any abstraction layer or virtual machine, those existing
solutions are not applicable for iOS-based dynamic
analysis. Moreover, compared to the vast amount
of Android-related analysis [9]–[13], relatively few
studies have been conducted in the field of Apple iOS.
This might be attributable to the fact that iOS is a

closed system that provides hardly any interfaces, and
information about internals generally need to be reverse
engineered.

Szydlowski et al. [14] discussed general challenges
of dynamically analyzing iOS apps. Within a prototype
implementation, they tracked sensitive API calls us-
ing debugger breakpoints and tried to automatically
explore an app’s user interface (UI) via VNC by recog-
nizing image patterns. In general, the practicability of
these approaches is questionable due to performance
impacts that are to be expected and, as the authors
admit, due to the inaccuracy of this approach to handle
non-uniform user interfaces.

Joorabchi and Mesbah [15] propose iCrawler, a tool
that explores an app’s UI and generates a model of
different UI states to facilitate reverse engineering of
iOS apps. Although the achieved coverage of their
navigation technique looks promising when applied on
a few open-source apps, it does not support simulation
of any advanced gestures or external events. Moreover,
the technique used by iCrawler is only applicable to
standard UI elements, and, most notably, iCrawler has
not been designed to perform privacy analysis.

Within PiOS, Egele et al. [16] employ data flow
analysis and slicing techniques to detect whether an
iOS application leaks sensitive data. As of this writing,
the results published within the PiOS study are the
first and yet only large-scale analysis results on the
privacy landscape of iOS apps. However, contrary to
our approach PiOS is based on static analysis and
prone to shortcomings such as statically resolving
message destinations. So overall, there appears to exist
no publicly scrutinizable solution for dynamic privacy
analysis of iOS apps to date.

C. Contributions

We wish to improve the state of the art in iOS
privacy analysis by introducing DiOS. To the best of our
knowledge, DiOS is the first fully automated scalable
solution to perform dynamic privacy analysis of iOS
apps.

As apps from the official Apple App Store are
compiled for ARM only (and protected by Apple digital
rights management), and there exists no emulator for
the iOS platform, DiOS schedules apps from Apple’s
App Store for dynamic privacy analysis to physical iOS
devices. The analysis throughput scales almost linearly
with the number of iPhones added to the system. With
only four such devices we were able to dynamically

analyze more than 500 apps a day (depending on the
desired level of detail).

DiOS allows for structured exploration and navi-
gation of an app’s UI by leveraging the automated
UI testing support provided by the official Apple
development tools. Originally, this feature was intended
to simplify UI tests during an app’s development
phase. However, we successfully reverse engineered
the inner workings to retrofit even existing App Store
apps to make use of Apple’s UI automation features
[17]. This allowed us to investigate several robust UI
exploration strategies that simulate user interaction
and thus optimize an app’s UI coverage. We show that
our automatic interface navigation achieves comparable
high coverage results to manual app usage.

One of the core features of DiOS is its pluggable
architecture. While apps are automatically executed
and user interaction is simulated using smart execution
strategies, any analysis component can be integrated
easily. To demonstrate its practicability and reliability,
we analyzed 1,136 top free apps from the iOS App
Store and tracked privacy-related API calls as well as
network connections.

To summarize, this report makes the following
contributions:
• We present a fully automated dynamic analysis

platform for iOS apps.
• We present a way to automatically purchase apps

from the official iOS App Store and to schedule
them to physical iOS devices for large-scale privacy
analysis.

• We present a novel and robust approach to perform
automated UI exploration of iOS apps and explore
the merits of different UI execution strategies.

• Finally, we present the results of a large-scale
dynamic privacy analysis of 1,136 iOS apps from
Apple’s App Store.

As we wish to enable other researchers to advance
the field of iOS application security based on our
framework, the full source code of DiOS, as well as
videos demonstrating DiOS in action, are available from
our project site: https://www1.cs.fau.de/dios/ .

D. Roadmap

This report is structured as follows: In Section II,
we provide relevant background information on Apple
iOS, its basic security concepts and the UI Automation
feature. In Section III, we explain the basic architecture
of the DiOS analysis framework as well as the chal-
lenges we had to overcome to automatically initiate app

https://www1.cs.fau.de/dios/

purchases and to simulate user interaction. Moreover,
we present different execution strategies integrated into
DiOS for automated UI exploration. In Section IV, we
explain the experimental setup and discuss the results
of our large-scale privacy analysis. Finally, we describe
the limitations of DiOS and conclude in Section V.

II. BACKGROUND INFORMATION

A. Apple iOS Operating System

iOS (previously iPhone OS) is an operating system
used on mobile devices by Apple. iOS is derived from
Apple’s desktop operating system OS X. While some
components of the iOS kernel are open-source, due to
historical reasons, the main parts of the iOS operating
system are closed and information on it is not publicly
available.

The functionality of the iOS operating system can be
extended by applications (so-called apps). Those apps
can be build using a software development kit (SDK)
based on the programming language Objective-C. In
order to interact with the underlying operating system,
iOS provides an extensive application programming in-
terface (API) organized in several different abstraction
layers. While lower layers provide fundamental system
services on which all apps rely on, the higher-level
layers provide object-oriented abstractions for lower-
level constructs.

Most of the iOS system interfaces are provided in
special packages, so-called frameworks. A framework
consists of a dynamic shared library and corresponding
resources (such as header files). Frameworks provide
the relevant interfaces needed to build software for the
iOS platform. Basically, there are two types of frame-
works: public frameworks that are recommended by
Apple to build third-party apps and private frameworks
that are restricted to be used by iOS and its system
apps only.

B. iOS Security Concepts

The security concept of the iOS system is funda-
mentally based on its closed nature. Starting from the
boot-up process all involved components are crypto-
graphically verified to ensure their integrity and to
establish a trusted execution environment. This in turn
allows only code providing a valid signature to be
executed. Consequently, also third-party apps need to
be signed with personalized certificates issued by Apple.

Those third-party apps are usually distributed via
the App Store, a digital marketplace maintained by
Apple. Although the main purpose of the App Store

was to provide users with a service to browse and
download apps, it also serves as a unique security
feature compared to other more open mobile software
platforms like Android. From the beginning, every app
has to pass through an approval process by Apple.
Among other tests, this vetting process attempts to
spot malicious apps and to admit only those apps
that are not harmful to users’ privacy. Although, this
vetting process is a good security design decision at a
first glance, there have been reported several cases in
which it failed to reveal apps that intentionally accessed
personal data [18].

Besides the trusted execution environment and the
promised gain in security derived from the App Store
approval, there are plenty of other security features
provided by the iOS operating system itself [19]. While
most of these security features are under the hood and
introducing each of them would exceed the scope of
this introduction, we only point out the most relevant.
First, all third-party apps run isolated within a sandbox
and are restricted from accessing other apps’ processes
and data. If an app needs to access shared data
outside its sandbox, it is limited to using the API and
services provided by iOS. Access to certain sensitive
API methods requires a user’s consent. For instance,
when an app tries to access a user’s current location
for the first time, the user is asked for permission once.
All privacy-relevant API methods and the related access
modalities will be described in Section IV-B in more
detail.

C. Jailbreaking

In the past, flaws in the chain of trust and software
vulnerabilities in the iOS operating system repeatedly
lead to different ways to install custom firmware
images and to remove the limitations imposed by
Apple. This process is often referred to as jailbreaking.
One of the main implications of jailbreaking is that
it provides root access to the iOS operating system
and enables installation and execution of additional
software. Signing apps with an Apple-issued certificate
is no longer required.

D. Objective-C

As all iOS apps are written in the Objective-C
language and an understanding of the basic concepts
of Objective-C is required to comprehend certain DiOS
principles and limitations, this section outlines the most
relevant characteristics of Objective-C.

1) Message Passing: One of the fundamental concepts
of the object-oriented programming model of Objective-
C is based on message passing. Whenever a method is
invoked, a message is sent to an existing object instance.
The core of that messaging concept is provided by
the objc_msgSend function, which is part of the
Objective-C runtime environment. This function serves
as a central dispatcher and routes messages between
existing objects. This dispatcher function takes at least
two parameters: The first parameter holds a pointer
to the instance of the class to which the message is
directed (the receiver), while the second argument is
the method to be invoked (identified by a selector,
which is a simple string representing the name of
the method). In the end, the dispatcher function may
receive a variable list of arguments that are passed to
the receiving method implementation.

2) Reflection: Another important characteristic of
the Objective-C language is reflection, which is widely
known as the ability of a computer program to modify
its behavior at runtime. For this, the Objective-C
runtime provides a low-level API to interact with
the underlying runtime system. By using this API it
is possible to query the runtime for information on
the running application which gives detailed insights
into its inner structure, like available classes, method
definitions and instance properties, without the need
for having access to the source code. Moreover, this
API offers ways to not only derive information on an
application’s inner workings, but also to manipulate it
at runtime. For instance, the runtime provides functions
to add new classes and methods, or to rewrite existing
method implementations. In the following sections,
these characteristics of the Objective-C runtime are the
basis for comprehensive and efficient dynamic analysis
of iOS applications.

E. API Hooking

In order to intercept calls to the iOS API, an app
first needs to be extended with additional code. This
can be accomplished by using the environment variable
DYLD_INSERT_LIBRARIES which advises the dy-
namic linker to load a specific library into an app’s
address space at start-up.

During initialization, the injected library needs to
reroute the app’s control flow using runtime patching
techniques. In the case of hooking Objective-C methods,
the runtime is instrumented to replace the implemen-
tation of specific Objective-C messages. If calls to C
functions should be intercepted, the replacement needs

to be accomplished at a lower level. For this, it is
required to inject jump instructions that reroute an
app’s control to a dedicated replacement procedure
which also resides in the injected library. To not infer
with the normal execution flow it is vital to backup the
replaced instructions to a custom memory location and
to execute them before jumping back to the invoking
routine.

In iOS, the most practicable way to hook library
calls is by making use of MobileSubstrate [20]. Mo-
bileSubstrate is a framework that facilitates runtime
patches to system functions and consists of two parts:
the MobileLoader and the MobileHooker. First, the
MobileLoader integrates itself into an app using the
linker environment variable and then loads all dynamic
libraries from a specific location. Afterwards, the Mo-
bileHooker is responsible for replacing specific system
functions and to install the actual hooks.

F. UI Automation

With the release of iOS 4, Apple introduced a feature
for automated UI testing within its app developer tools.
This allows developers to automate UI tests, which are
either implemented in JavaScript, or are recorded using
a built-in recording function. The resulting test scripts
simulate user interaction while an app is running on
a connected device using the UI Automation API [17],
which in turn is based on the iOS Accessibility API, a
programming interface to make an app’s elements such
as buttons, input fields etc. usable to visually impaired
people.

1 var localTarget = UITarget.localTarget
();

2 localTarget.frontMostApp().mainWindow.
tabBar().buttons()["Recipes"].tap();

3 localTarget.frontMostApp().mainWindow.
tabBar().buttons()[0].tap();

Listing 1: UI Automation test script to automatically
tap the recipes button in Figure 1

To understand how automatic exploration of an user
interface works, it is first necessary to understand an
app’s internal user interface structure. Therefore, figure
1a shows a sample app consisting of a navigation bar at
the top, a table view to display the actual contents, and
a tab bar at the bottom edge of the screen to change
content selection by tapping one of the two buttons.
All of these elements are internally represented within
a hierarchy as illustrated in Figure 1b. At the top of
the element hierarchy is the UITarget class which

(a) Sample recipes app

UIANavigationBar
(Unit Conversion)

UIAWindow UIATableView

UIAStaticText
(Unit Conversion)

UIATableCell
(Weight)

UIATableCell
(Temperature)

UIAApplication

UIATarget

UIATabBar

UIAButton
(Recipes)

UIAButton
(Unit Conversion)

UIAElement
(Weight)

UIATableCell
(Temperature)

(b) Hierarchy of the user interface elements displayed in Figure
1a

Fig. 1: Basic user interface of a sample app and its
internal representation of the element hierarchy [21].

is a high-level representation of the iOS device. The
running app is the frontmost app and can be accessed,
as well as any other user interface elements, from an
UI Automation test script as shown in Listing 1. For
example, in order to tap the recipes button, the path
to the selected node has to be stated. Array elements
can either be accessed by name or by index.

One limitation of UI Automation is that access to
the element hierarchy is only available for standard
UI elements or custom elements that have explicitly
been made accessible using the Accessibility API. With
the goal of automated app exploration in mind, this
drawback can be neglected for several reasons: Most
of the apps available in the App Store comply with the
iOS Human Interface Guidelines [22] by Apple, which
encourage developers to only build apps consistent with
iOS standards. This includes a uniform style and results
in a preferred use of standard UI elements. If an app is
not offering accessibility support, as it is e.g. often the
case with games, information on the displayed elements
cannot be extracted. However, UI Automation can still
be used, as it allows simulation of several gestures at
any specific point on the screen without knowing the

actual element hierarchy. Apart from touch gestures,
UI Automation has also the ability to simulate external
events like changes to the location, device orientation,
volume etc. Moreover, UI Automation provides a way
to handle alert messages to ensure that alerts do not
interfere while an app is automatically executed.

As described in more detail later, the automatic UI
exploration within DiOS is heavily based on this UI
Automation feature. Although intended to be used dur-
ing app development and testing only, we successfully
reverse engineered the UI Automation components to
retrofit even existing App Store app’s to make use of
it. This provides us with a clean interface to explore
an app’s internal element hierarchy, which in fact is
represented by an element tree, and it even allows us
to simulate user interaction in a convenient and robust
way.

III. DIOS FRAMEWORK

In the following, we present the design of DiOS
(Section III-A) and describe how we met some of the
major challenges within iOS-based dynamic analysis,
such as to automatically initiate app purchases from
Apple’s App Store (Section III-B), to simulate user
interaction to connected devices (Section III-C) or to
deal with alert messages (Section III-D). Afterwards,
we present different execution strategies integrated into
DiOS for automated UI exploration (Section III-E) and
evaluate the framework’s scalability and performance
(Section III-F).

A. System Architecture

Basically, the DiOS system consists of three major
parts as illustrated in Figure 2: a backend that is
mainly used as central data storage, a worker used as
connecting link between the backend and any number
of attached iOS devices, and several client components
running on the connected iOS devices. Each of these
components will be explained in more detail within
the following sections.

1) Backend: The Backend is the main component of
DiOS and is responsible for centralized data storage.
It holds configuration data such as App Store account
credentials (to automatically purchase apps) and status
information on available iOS analysis devices. Further-
more, it archives all app binaries of recent analysis and
processes analysis results reported back from the iOS
devices. To browse the App Store, DiOS provides a web-
based interface that uses RSS feeds provided by Apple
[23] to retrieve information on available apps and

<<device>>

Backend Server

Backend

Database
<<device>>

Host
Worker

<<device>>

Client (iOS Device)

Controller

Broker

Executor

Analyzer

Scheduler
<<TCP/IP>>

0..*1

find Jobs for Device
<<HTTP (REST)>>

<<TCP/IP>>
<<USB>>

1 0..*

<<TCP/IP>>

initiate Actions
<<HTTP (REST)>>

save Results
<<HTTP (REST)>>

Fig. 2: Architectural overview of the DiOS framework. Components on the right-hand side are executed on
attached iOS devices.

app charts. A scheduler ensures that selected apps are
automatically installed and executed on available iOS
devices. The backend component was implemented in
Python and provides a web service interface to enable
any other DiOS component to access its data.

2) Worker: The main task of the Worker is to
establish a physical link between all available iOS
devices (that are connected to the worker via USB)
and the backend. This intermediate layer was mainly
introduced for scalability reasons, as DiOS supports
multiple worker instances. Whenever a new device is
connected to a worker for the first time via USB, it is
automatically set up and registered with the backend.
Afterwards, the worker constantly polls the backend for
pending jobs and, on demand, initiates app installations
and app launches on the connected iOS devices. The
worker component was implemented in Python. To
facilitate communication via USB the worker uses
libimobiledevice [24], a software protocol library to
natively communicate to iOS devices.

3) Client: As the DiOS model is based on executing
and analyzing running apps on connected iOS devices,
several client components are required. These client
components running on the iOS devices are explained
in more detail in the following.

• The Controller is the frontmost client component
that receives instructions from the worker such as
purchasing apps from the App Store, installing
and executing apps and delegating automatic
UI exploration to the executor component. The
controller is implemented in Objective-C and is
integrated into SpringBoard (the standard applica-
tion that manages the iOS home screen) via library
injection. During initialization of the controller
library an HTTP web server is spawned providing

a REST-based web service interface to the worker
component. Further, on-device communication
between all involved client components is realized
using the distributed notification concept of iOS
[25].

• The Executor is responsible for exploring an app’s
user interface and for simulating user interac-
tion. For this, several execution strategies were
implemented which provide different granularity
levels of UI exploration (Section III-E). To separate
automation code from the actual app code, the
executor was implemented as iOS background
daemon and makes use of the UI Automation API
[17] (Section III-C).

• The Analyzer is the core of DiOS’ plugin archi-
tecture. All available analyzer components are
loaded into an app’s address space at startup
and are responsible for performing the actual app
analysis. By default, DiOS provides a basic analyzer
that tracks access to privacy-related API calls and
collects network packages.

• The Broker is a static library that simplifies the
development of DiOS analyzer plugins. It receives
notifications from the controller and provides a
clean interface to report analysis results to the
backend.

B. Automated App Purchase and Installation

In order to enable large-scale analysis of iOS apps,
the process of automatically purchasing apps from the
App Store and downloading them to connected iOS
devices is a key part of the DiOS client components.
However, so far app purchasing is limited to official
apps provided by Apple only and not available to
any third-party implementations. Therefore, we reverse

engineered the official iOS App Store app to find out
how to initiate store purchases from the DiOS controller
component in an automatic fashion.

Thereby, it turned out that the private StoreServices
framework is used to purchase any available store
products. In more detail, first a SSPurchase object
is initialized. This object is supplied with information
on the related store account to be used for the
purchase and several additional buying parameters1

which include the bundle identifier of the actual app.
Finally, a SSPurchaseRequest object is initialized
to deliver the purchase request object to the App Store
and to start the download process.

In this context, a major challenge was to properly
handle authentication forms, as a purchase requires a
user to enter his or her App Store credentials. We found
out that these credentials were cached in memory and
could be re-used without any additional user confirma-
tion in iOS version 5 and below. Thus, it was sufficient
to set the property setNeedsAuthentication
to false before submitting the request. However,
this behavior has changed with the release of iOS
version 6 where cached credentials now expire at
irregular intervals and therefore require to be re-
entered. Therefore, we instrumented the alert handling
system of DiOS (see Section III-D) to automatically
submit store credentials to enable fully automated
purchases.

C. Co-Opting the UI Automation Service

As mentioned above, Apple’s UI Automation feature
was intended to support automated UI testing during
development. From within the Apple developer tools,
JavaScript-based test scripts can be recorded in order
to automatically navigate an app through previously
defined paths. In order to retrofit even existing App
Store apps to make use of Apple’s UI automation
features, we reverse engineered its inner workings.

We found a script agent running on the iOS device
responsible for parsing the received test scripts and for
translating them into Objective-C method invocations.
The related Objective-C methods are provided within
the private UIAutomation.framework, an on-
device counterpart of the publicly available JavaScript
API [17]. This private framework is not part of the
operating system itself and needs to be extracted from

1Information required to automatically fill in an app’s buying
parameters can be obtained by scraping its HTML description from
the App Store when iTunes-iPhone is provided within the
HTTP user agent request header.

the iOS developer image, a toolset which is restricted
to iOS developers and loaded onto an iOS device on-
demand. The reverse engineering of the UI Automation
framework was facilitated by the fact that its method
structure is almost equivalent to its official JavaScript
counterpart.

After reconstructing the internal Objective-C API, we
were able to leverage the UI Automation framework to
automatically inspect an app’s user interface at runtime
and to simulate any user interaction or trigger external
events, without requiring any developer tools or an
app’s source code.

D. Dealing with Alerts

iOS provides different kinds of alerts in order to
display notifications or to ask users for basic deci-
sions. As these alerts would interrupt the automatic
execution of an app, proper alert handling was also
a notable challenge. To solve this, the DiOS Executor
(see Section III-A) was extended by an AlertManager.
This AlertManager is registered as callback via the
UIAutomation framework and is automatically invoked
whenever an alert rises. For maximum flexibility, the
AlertManager delegates further processing of an alert
to several AlertHandlers depending on an alert’s origin
(system vs. app-specific).

In consequence, system alerts or unsolved app-
specific alerts are processed by a GenericAlertHandler.
Usually, this handler results in pressing an alert’s default
button. However, a few special cases have emerged that
require special treatment. For instance, whenever an
app tries to access certain privacy-related API methods
that requires a user’s consent, the GenericAlertHandler
explicitly grants access by pressing the “allow” button.
Another special case was observed within apps that
ask users at startup to rate their app experiences or to
download affiliated apps. Pressing the default button
would forward the user to the App Store app, while
redirecting back to the original app may result in an
infinite loop, pending execution between these two
apps. To avoid those behaviors, we implemented a
blacklist of button names (like rate, evaluate, try etc.)
that are to be avoided.

In contrast, app-specific alerts are treated individually
depending on the the selected execution strategy.
These strategies will be explained within the following
sections in more detail.

E. Execution Strategies

To automatically navigate through an app’s user
interface and to simulate user interaction, the following
three different execution strategies have been inte-
grated into DiOS.

1) Open-Close Execution: The most basic execution
strategy within DiOS launches an app for a defined
duration. After a few seconds (15s by default) the app
is suspended to the background by simulating a tap
on the iOS device’s home button. Again, five seconds
later the app is resumed for another 15 seconds until
execution is finally terminated. Apart from handling
alerts by pressing the default button no other user
interaction is simulated. Therefore, the results of this
strategy later serves as a baseline reference to measure
the advance of the competing approaches.

2) Random Execution: Moreover, DiOS provides a
random execution strategy that utilizes Apple’s UI
Automation framework to execute randomly chosen
events, from pressing the home-button, changing a
devices orientation or location, shaking the device, or
adjusting the volume, to tapping on a random screen
position or performing any advanced gestures. However,
compared to common Android-based UI automation
approaches [7], [8], DiOS does not rely on issuing
random events only, but considers an app’s actual
user interface in certain ways: If an app provides any
navigation bars, from time to time, a random button
of these navigation elements is pressed intentionally to
avoid the risk of being stuck to sub views. Moreover, to
allow the simulated user interaction to be as realistic
as possible, the random events were weighted and
can be freely adjusted. Thus, the event of tapping a
random screen position, e.g., is ten times more likely to
occur than changing a device’s orientation. Using this
approach we aimed to effectively maximize an app’s
coverage without the need for exploring the actual UI
in detail.

3) Smart Execution: The third execution strategy
implemented within DiOS examines the actual user
interface in great detail. For this, it explores the
available UI elements on every screen and keeps track
of already executed UI paths. This enables targeted
navigation through an app’s user interface, while
avoiding repeated execution of already visited contents.

In order to (re-)recognize different UI states of an
app, it is necessary to define criteria to determine the
similarity of two views. Thereby, a view is defined as
an abstract description of an ordered set of different UI
elements (buttons, textfields etc.) that are arranged on

the screen in a certain way. Within DiOS we define two
views as being equivalent if and only if the following
conditions are met:

1) The element hierarchy is identical.
2) The following identifiers of each hierarchy el-

ement are identical: UIAutomation class name,
UIKit class name, UIAutomation class name of
the parent element.

In practice, this abstraction provides a reliable
way to determine UI equivalence within iOS and to
differentiate UI states without considering any variable
UI elements (like label/button names, values). To
keep track of all available app views, we modeled the
different UI states as nodes within a directed graph. The
related UI elements that lead to specific UI states are
represented by edges within that graph. This model
allows a targeted and efficient navigation between
different views. Whenever all available elements of a
view have been examined and successfully executed,
the model is searched for pending elements in other
UI states. Finally, we calculate the shortest path to
efficiently navigate to that view.

In more detail, the following steps are performed
whenever a view is entered. At the beginning, the
element hierarchy of this view is retrieved using the
UIAutomation framework. Afterwards, the state model
graph is searched for the current view using the UI
equivalence criteria described above. In case the current
view is not available within the state model, it is added
to the graph. Subsequently, a non-processed element is
randomly chosen from the current view, any available
input fields are filled using default data and the element
is executed.

One shortcoming of the smart execution approach is
the time needed to perform the numerous calculations
at the beginning of each transaction. In practice, these
calculations require approximately five seconds (on
iPhone 4 hardware). In exceptional cases, especially
within complex user interfaces, the iterations may take
longer. There are several reasons for this: On the one
hand, complex views may contain a large number
of (hidden) elements and processing these elements
takes some time, mainly caused by architectural issues.
On the other hand, the time delay is increased by
long response times of the UIAutomation framework
to provide information on the element hierarchy. We
addressed these issues by implementing concurrency
control and shifting the element analysis into separate
dispatch queues.

F. Framework Evaluation

The main objective of DiOS was to provide a system
for large-scale privacy analysis of iOS apps from the
official Apple App Store. Within this section we evaluate
and discuss the scalability of the overall system as well
as the effectiveness of the three different execution
strategies. Therefore, we analyzed the top 50 free apps
of each of the 23 available App Store categories (as
of May 10, 2013). We downloaded these 1,136 apps
(duplicate entries were removed) and analyzed them
using different execution strategies.

1) Scalability: The architecture of DiOS was chosen
to be as scalable as possible. This is particularly given by
the loose coupling of the involved components. While
DiOS is based on executing apps on physical devices
(iPhones), the analysis throughput scales almost linearly
with the number of iPhones added to the system.

During our experiments, the required time to down-
load2 an averaged size app, to install it on a connected
device and to remove it after successful execution was
around three to four minutes. Given that constant time
lapse of 3.5 minutes, the overall analysis time per app
solely depends on the chosen execution time. Thus,
running an app for five minutes, e.g., using smart
execution strategies, the overall analysis takes 8.5
minutes to complete. This results in a throughput of
seven apps per hour, or 169 apps per day. In order
to increase the throughput, DiOS allows to add any
number of iOS devices. Thus, to analyze 1,000 apps per
day which is approximately the number of submitted
apps to the App Store [26], only 6 analysis devices are
required.

2) Method Coverage: One major drawback of dy-
namic analysis in general is that its detection abilities
highly depend on the achieved code coverage. The
code coverage again is affected by proper simulation
of UI events, particularly in the context of highly
interactive mobile apps. If an app performs sensitive
API calls within a sub-branch that requires specific
UI interaction to be executed this event might be
missed, increasing the risk of false negatives. This is
why accurate simulation of user interaction is a key
part of any UI-driven dynamic analysis system.

In order to compare the different execution strategies
provided by DiOS, we instrumented the Objective-C
runtime to track all method invocations and for each

2The time calculations are based on an app’s average file size of
20 MB, downloaded using a high-speed internet connection of >
500KB/s.

execution strategy measured the amount of invoked
app methods. Although method coverage is known
to be a weak coverage criteria in systematic software
testing, it has proven to be a suitable benchmark to
check DiOS’ execution strategies against each other.
Compared to other platforms like Android where a
mid-layer (Dalvik VM) can be instrumented to measure
the coverage, iOS apps are executed on the hardware
directly. Measuring the coverage on a basic block or
instruction level might produce more significant results
but is considered to be impractical within large-scale
analysis due to performance impacts.

a) Tracing Method Invocations: As noted above,
every method invocation in Objective-C results in one
or more messages to the objc_msgSend runtime
function. By utilizing the Objective-C runtime we
were able to intercept all messages to that central
dispatcher and to retrieve a clear trace of all method
invocations. In detail, we replaced the implementation
of the objc_msgSend function in order to log the
CPU registers R0 and R1 which hold a pointer to the
receiving class instance and the name of the calling
method at this stage. As the logging procedure itself
modifies the CPU registers as well as the stack, it
is essential to preserve the current execution state
within the prologue of the replacement function. On
assembly level, we allocated an alternate stack within
heap memory and copied the values of the main CPU
registers including the Link Register to this alternate
stack. Following this, we logged the related register
values into a database, resolved the associated class
name of the receiving instance and restored the main
stack before continuing normal execution. To focus on
app-specific method invocations only, we enumerated
all classes and methods of each running app using the
Objective-C runtime API. Using this approach we were
able to precisely determine the amount of invoked
Objective-C app methods.

b) Comparison of Execution Strategies: We evalu-
ated the achieved method coverage of each execution
strategy within several experiments. Therefore, we
executed each of the above mentioned 1,136 App Store
apps using the open-close, the random and the smart
execution strategy. In each case, the execution time
was limited to three minutes, except one additional
test run using the smart execution strategy for another
five minutes.

The experimental results are shown in Figure 3a.
While starting an app without any further user interac-
tion (Open-Close Execution), 13 % of all available app

methods were accessed. By simulating random events
(Random Execution) for three minutes, the average
coverage rate was increased to 17 %. Compared to
that, three minutes of running an app using Smart
Execution achieved an average method coverage of
only 16 %, while executing an app for five minutes
using Smart Execution further increased the coverage
to 18 %. When comparing the results by category, we
observed various differences. While some apps like, e.g.,
Weather apps achieve a higher coverage due to the
synchronization of weather data during start up, social
networking apps often could not progress past the
initial welcome screen due to missing login credentials.

It is notable that within a three minute execution
time frame, simulating random events achieves higher
coverages than driving an app’s user interface smartly.
There are several reasons for this: First, random execu-
tion already takes an app’s UI state into account as the
events are weighted and it preferably tabs navigation
bar buttons. Therefore, it should be considered rather a
hybrid of random and smart execution. Second, Smart
Execution takes a long time to examine an app’s user
interface via UI Automation and to maintain the UI state
model. This is why we supposed a strong dependence
on the execution time. In order to study the actual
impact of the execution time, we selected 67 apps from
our sample set and executed them for additional 30
minutes. The selection was mainly based on those apps
at which the coverage has improved by 5 % within
five minutes of Smart Execution. By running these
selected apps for additional 30 minutes using Smart
Execution, we observed an average method coverage
of 23 %. This represents an average increase of 9 % per
app compared to the initial Open-Close Execution (see
Figure 3b).

Although we observed an increase in coverage by
raising the execution time, we still found the overall
coverage relatively low (< 30%). This is why we
investigated the actual amount of invoked app methods
when an app is used manually. Therefore, we randomly
selected 23 apps (one of each category) and executed
each of them by hand for five minutes. We tried to
cover as much UI elements as possible, while tracking
the amount of invoked app methods. We observed an
average method coverage of around 27.3 % after three
minutes and 29.4 % after five minutes. Our results
indicate that even within ordinary app usage, the
achieved code coverage reaches a saturation point
at around 30 %. We noticed that most of the idle
methods are provided by view controllers, libraries

and obsolete testing routines which are either invoked
within certain conditions only or not used at all. At
least, it was not possible to invoke these methods by
browsing the user interface for five minutes by hand.
These results underline the strengths of our automatic
UI exploration techniques that achieve comparable high
coverage results.

To date, only a few studies have examined the
amount of covered code achieved through automatically
browsing a mobile app’s user interface. Szydlowski et
al. [14] observed a coverage rate of 16 % during the
startup phase of an iOS app. These results are mostly
consistent with our observations (∼13 %). Gilbert et
al. [10] executed nine Android apps using a random
simulation approach. The authors observed a basic
block code coverage of 40% or lower and also experi-
enced the limitations of UI exploration regarding social
networking apps, where they measured a coverage
of less than 1%. Finally, the authors of the Android
analysis platform TraceDroid [27] observed a maximum
coverage rate of 33.6 % when applying their solution
to 35 Android apps. Moreover, they found the overall
coverage of stimulating apps manually at a comparable
low level (32.9 %), which again confirms our iOS-based
observations. Altogether, the observations outlined in
this report provides for the first time key insights into
the amount of covered code by automatically exploring
the user interfaces of a fairly large quantity of real iOS
App Store apps.

IV. LARGE-SCALE PRIVACY ANALYSIS OF IOS APPS

In order to demonstrate the scalability and reliability
of DiOS we analyzed our selection of 1,136 top free
apps (as of May 10, 2013) for privacy issues. The
primary goal was to give an overview of privacy-related
API accesses and network communication. Within
this section, we describe the experimental setup, the
privacy criteria our study was based and the results
we observed.

A. Experimental Setup

Our analysis was carried out using four iPhone 4
devices running iOS 6 which have been prepared with
a basic DiOS analyzer component that tracks an app’s
access to privacy-related API methods and its network
communication. Within a first experiment we executed
each app using DiOS’ basic Open-Close execution
strategy to establish a baseline reference of privacy-
related data that is accessed by only downloading and
starting an app from Apple’s App Store. Within a second

● ●● ●● ●● ●●●●● ● ●●● ● ●● ●● ●● ● ●● ●● ● ●● ●

● ●● ●● ●● ●●● ●●● ● ●● ● ● ●● ●●● ● ●● ●● ●● ●● ●● ●●● ●●● ●● ●●

● ●● ●● ●● ●●● ●● ●● ●● ● ●●● ●●●●● ●● ● ●● ●●● ●● ●●● ●●

● ●● ●● ●● ●● ●● ●●● ●● ● ●● ● ●●● ●● ● ●●● ●● ●● ● ●●●●● ● ●●

Smart (5)

Smart (3)

Random

OpenClose

A
ll

0 10 20 30 40 50 60 70 80
Method Converage in %

● ●● ●

●● ●●

● ●

●● ●

Smart (5)

Smart (3)

Random

OpenClose

W
eather

0 10 20 30 40 50 60 70 80
Method Converage in %

●

●

●

●

Smart (5)

Smart (3)

Random

OpenClose

S
ocial N

etw
orking

0 10 20 30 40 50 60 70 80
Method Converage in %

(a) Amount of invoked app methods by execution strategy grouped by selected categories

● ●●● ●

●●●

● ●●

Smart (30)

Smart (5)

Smart (3)

Random

0 5 10 15 20 25
Change of method coverage in % compared with open−close execution results

(b) Change of method coverage by comparing several execution strategies to basic Open-Close Execution

Fig. 3: Comparison of achieved method coverage by executing apps automatically using different execution
strategies.

run using DiOS’ Smart Execution, we determined any
deviation from our baseline reference when apps are
executed and automatically navigated for five minutes.

B. Analysis Criteria

Within our analysis we were interested in tracking an
app’s access to all personal data available on a mobile
device such as a user’s contacts, calendars, photos,
and hardware sensors like the microphone, camera,
accelerometer, GPS etc. Therefore, we extracted all rele-
vant API methods and monitored each access. Although
some of these methods require a user’s consent to be
invoked, we were interested in tracking them anyway,
as excessive access to these data may raise downstream
privacy issues. Moreover, we compiled a list of the most
popular advertising and analytic providers for iOS and
hooked each specific initialization methods. As most
of those services permanently track a user’s app usage
behavior, we consider them highly privacy-relevant.

In the end, one major advantage of dynamic analysis
over static analysis [16] is the ability to easily track
runtime information like network traffic. Thus, we also
monitored the related iOS methods that are used for
HTTP communication.

While implementing our analysis library, we faced
several challenges of determining the real source of a
specific API access. For instance, system frameworks
often invoke sensitive API within normal operation.
Those regular accesses need to be separated from
method calls originating from an app itself, in order
to avoid false positives. Therefore, we utilized the
Objective-C runtime to return a backtrace of the current
call stack every time a privacy-related method was
invoked. Thus, we were able to determine the names
of the calling methods, to identify the inquiring code
part and to ignore accesses from system frameworks.

C. Results

The following presentation of our analysis results is
divided into five parts.

1) Personal Data: For obvious reasons, invocations
of API methods providing direct access to personal
data are the most relevant parameters to study pri-
vacy implications. Unsurprisingly, we found a user’s
calendar most frequently accessed from apps of the
productivity (30 %) and business (20 %) categories, and
most accesses to a user’s photos for apps of the photos
& video category (35.4 %). However, it is important
to highlight that almost one third of all accesses to a
user’s contacts are attributed to apps from the social
network (29 %) category, followed by travel (19.4 %)
and navigation (9.7 %) apps.

Moreover, we revealed that almost 20 % of all
investigated apps access a user’s location at every
startup. After five minutes of execution, the average
amount increased to 25.6 % (see Figure 4). As expected,
most of the location accesses were registered within
apps from the navigation (15.5 %), followed by apps
from the weather (14 %) category, obviously to display
contextual data. One in five social networking apps
also accesses a user’s location on every app start. A
prominent example is the official Facebook app that
collects a user’s position on every launch, without any
obvious usage scenario. This is especially precarious
as most phones are usually switched on and carried
along and, therefore, the collected location data gives
a deep insight into users’ habits and personal activities
[28].

Finally, accesses to a device’s camera, microphone
and other sensors like the accelerometer are of particu-
lar interest, as sensor access is unrestricted within iOS
6 and does not require a user’s consent. While accesses
to the microphone and the camera, as depicted in
Figure 4, are privacy-relevant for obvious reasons, risks
associated with the accelerometer sensor need further
explanation. Marquardt et al. [29] demonstrated that
the data provided by the accelerometer sensor is precise
enough, to allow an app to recover text entered on
a nearby keyboard. Though we do not assume that
this practice is widespread, however, 15.7 % of all apps
would be able to make use of this technique.

2) Advertising and Analytic Libraries: A vast majority
of all investigated free apps are using advertising and
analytic services. While the main purpose of advertising
services is to monetize apps by displaying targeted ads
to its users, analytic libraries are meant for providing

detailed statistics on how, when and where an app
is used. In detail, we observed that 39.9 % of all
investigated apps make use of at least one tracking
service. Among these, the services provided by Flurry
(21.8 %), Google Analytics (10.2 %) and Google AdMob
(7.5 %) where the most prevalent (see Table I). As
almost every second app uses tracking and advertising
services provided by either Flurry or Google, these
tracking providers are able to track a user’s behavior
and activities even across apps. This is of particular
interest from a privacy perspective, as providers like
Google have the ability to establish a link between a
device’s hardware identifier and the real identity of its
owner. Once authenticated within any Google service
on an iOS device, Google would be capable of tracking
a user’s activities from within all apps, in which their
libraries are integrated.

TABLE I: Amount of tracking and advertising libraries
used within the 1,336 top free apps (reduced to the
top 10 most prevalent libraries).

Library # Apps

Flurry 248 (21.8%)

Google Analytics 116 (10.2 %)

Google AdMob 85 (7.5 %)

Tapjoy 64 (5.6 %)

Chartboost 35 (3.0 %)

Testflight 29 (2.6 %)

Localytics 20 (1.8 %)

Mixpanel 10 (0.9 %)

MobileAppTracker 9 (0.8 %)

Apsalar 8 (0.7 %)

TABLE II: Top 10 of the most frequently requested
domains ordered by the number of apps.

Domain # Apps # Requests

flurry.com 257 (23.15 %) 588 (5,41 %)

facebook.com 155 (13.96 %) 377 (3,47 %)

admob.com 127 (11.44 %) 157 (1,44 %)

apple.com 75 (6.76 %) 164 (1,51 %)

tapjoyads.com 65 (5.86 %) 216 (1,99 %)

crashlytics.com 63 (5.68 %) 63 (0,58 %)

ioam.de 62 (5.59 %) 174 (1,60 %)

amazonaws.com 40 (3.60 %) 141 (1,30 %)

chartboost.com 37 (3.33 %) 91 (0,84 %)

googleadservices.com 37 (3.33 %) 148 (1,36 %)

5.2 %

15.7 %

7.6 %

10.3 %

3.6 %

7.7 %

0.4 %

3.2 %

19.2 %

25.6 %

1.8 %

2.9 %

0.9 %

4.4 %

0.6 %

0.9 %

Accelerometer

Audio Input

Camera

Social Network Acc

Location

Contacts

Photos

Calendar

0% 10% 20%
App ratio

Execution Strategy
OpenClose
Smart (5)

Fig. 4: Amount of apps accessing sensitive API during startup compared to five minutes of Smart Execution.

3) Network Communication: We found 77.7 % of all
investigated apps communicating via HTTP within the
first 30 seconds after startup. Almost two third (71.2 %)
of all communication is unencrypted. Furthermore, we
noticed that a large part of all mobile communication
is attributed to advertising networks. In detail, almost
one fifth (18.7 %) of all requests are addressed to
only a limited number of domains, mostly servers of
advertising services, as presented in Table II. Moreover,
it is worth mentioning that almost 14 % of all apps
under review are transmitting data to Facebook’s
servers. Again, these figures confirm the dominance
and omnipresence of mobile advertising.

D. Discussion

As our results demonstrate, mobile advertising has
become well-established in recent times. While mobile
devices provide a suitable platform for target-oriented
advertising, least because of their tight integration in
our daily lives, the privacy concerns are obvious. This
is why Apple introduced new privacy controls with
the release of iOS 7 such as eliminating access to
several hardware identifiers like the Unique Device ID
(UDID) or the Wi-Fi MAC address. Though given the
long history of tracking identifiers in iOS, it remains
to be seen if deprecating the UDID and eliminating

the Wi-Fi MAC address is sufficient to push developers
to use Apple’s preferred software-based advertising
identifiers. We presume no significant changes in a
short-term, as advertisers had enough time to correlate
a user’s hardware identifier with self-defined tracking
cookies. With regard to other privacy aspects of iOS, we
observe a self-contradictory development. While apps
are supposed to ask a user for permission to access the
microphone since iOS 7, the camera is still accessible
from any app without any restrictions. This still allows
any app to take pictures and to transfer them off the
device without users consent and knowledge.

For the moment, the main goal of our study was
to demonstrate the practicability of DiOS. Therefore,
we focused on the amount of sensitive API methods
accessed upon launch and compared the results to a five
minute execution run of each app. We noticed that most
of the privacy-related APIs are called within the first
seconds after an app is launched. We assume that even
apps with malicious intents behave in the same way, as
from a psychological perspective it is reasonable that
users might be more willing to grant permission straight
after the initial startup, being curious about whether an
app delivers what it promises. However, future studies
must provide evidence on this assumption.

V. SUMMARY AND FUTURE WORK

With the exploding number of third-party apps avail-
able in the Apple App Store the risk of malicious apps
accessing personal information rises. This development
demands for automated analysis solutions in order to
facilitate empirical studies on the security and privacy
landscape of iOS mobile apps.

To address this need, we presented DiOS, a fully-
automated dynamic analysis solution for large-scale
analysis of iOS apps. DiOS features a scalable frame-
work, to schedule apps from the App Store to any
number of connected iOS devices. We proposed a
novel approach to exercise an app’s user interface and
to simulate user interaction as realistic as possible.
We evaluated different execution strategies provided
by DiOS and showed that the coverage rate of our
automatic UI exploration approaches is comparably
high as within common manual app usage.

To demonstrate the practicability and reliability of
DiOS, we utilized its plugin architecture and analyzed
1,136 of the most popular free apps from the App
Store. We tracked access to sensitive API methods and
monitored related network activities. We found out
that almost 80% of all observed apps send and receive
data within the first seconds after launch (two third
of it unencrypted). Almost half of all apps are sharing
data with statistic and tracking libraries and therefore
access hardware identifiers in order to reliably track
users. As only few tracking providers are prevalent in a
high percentage of apps, user’s might be tracked across
apps. These results are consistent with past studies
[16].

In addition, our results indicate a significant privacy
problem within the current iOS permission model.
Many apps take advantage of the fact that a user’s
permission to access selected personal data is required
only once. This effect can be observed especially within
access to location services: One in every five apps
accesses the current location on every app launch.
Once granted an app like, e.g., Facebook permission to
intentionally access location services (e.g. in order to
display nearby restaurants) it will track a user’s current
position on every future app start without any further
notifications.

Future Work: One shortcoming of DiOS’ automa-
tion capabilities is the missing handling of registration
and authentication forms. Therefore, future versions of
DiOS might provide features to fill in forms in a context-
sensitive way and to request manual assistance when

the method coverage of an app under review does not
increase although different execution strategies have
been applied.

A major drawback of the DiOS analyzer is its missing
ability to determine if accesses to privacy-related API
really constitute a privacy leak. Implementing taint
tracking on the closed-source iOS (where apps are
executed natively compared to other platforms) would
require either a full system emulation [30] or binary
instrumentation [31], [32]. In general, taint tracking
as well as detecting malware or vulnerabilities in native
code that are only exploited in certain trigger conditions
was far beyond the scope of the DiOS analysis platform.
In our opinion this remains a research topic even apart
from mobile malware. In fact, DiOS opens the doors for
such new iOS based research questions and provides
a solid basis for future work (not least because of its
pluggable architecture).

Therefore, apart from taint tracking, a next step
would be to extend the DiOS analyzer to detect more
subtle techniques of malicious apps. Recently, Han et
al. [18] demonstrated a prototype malware app for
iOS that was mainly based on dynamically loading
private frameworks at runtime. This is where dynamic
analysis techniques, like those provided by DiOS, are
more suitable than static analysis approaches [16].

One general limitation of all existing approaches
to perform large-scale analysis of iOS apps from the
official App Store is its jailbreak dependency. Regardless
if an app is analyzed statically [16] or dynamically, a
jailbreak is required to defeat Apple’s FairPlay digital
right management technology in order to decrypt an
app’s code at runtime. Although, most of the DiOS client
components currently require a jailbreak, the majority
of our techniques could be re-used on non-jailbroken
devices, as our automation is mainly based on standard
tools provided by Apple. Solely the analyzing features
of DiOS would have to be revised in order to place
hooks not at runtime, but by modifying an app’s binary.

In summary, we believe that apart from tracking
down rogue apps and malware, reviewing well-known
and popular apps for permission misusage is at least as
important. However, along both avenues, much remains
to be explored.

REFERENCES

[1] A. Thampi. Path uploads your entire iPhone address
book to its servers. http://mclov.in/2012/02/08/
path-uploads-your-entire-address-book-to-their-servers.
html.

http://mclov.in/2012/02/08/path-uploads-your-entire-address-book-to-their-servers.html
http://mclov.in/2012/02/08/path-uploads-your-entire-address-book-to-their-servers.html
http://mclov.in/2012/02/08/path-uploads-your-entire-address-book-to-their-servers.html

[2] J. Leyden. D’OH! Use Tumblr on iPhone or iPad, give your
password to the WORLD. http://www.theregister.co.uk/2013/
07/17/tumblr_ios_uncryption/.

[3] M. Egele, T. Scholte, E. Kirda, and C. Kruegel, “A survey on
automated dynamic malware-analysis techniques and tools,”
ACM Computing Surveys (CSUR), vol. 44, no. 2, p. 6, 2012.

[4] C. Willems, T. Holz, and F. Freiling, “Toward automated
dynamic malware analysis using cwsandbox,” Security &
Privacy, IEEE, vol. 5, no. 2, pp. 32–39, 2007.

[5] H. Yin, D. Song, M. Egele, C. Kruegel, and E. Kirda,
“Panorama: capturing system-wide information flow for mal-
ware detection and analysis,” in Proceedings of the 14th ACM
conference on Computer and communications security. ACM,
2007, pp. 116–127.

[6] W. Enck, P. Gilbert, B.-G. Chun, L. P. Cox, J. Jung, P. McDaniel,
and A. Sheth, “TaintDroid: An Information-Flow Tracking
System for Realtime Privacy Monitoring on Smartphones.” in
OSDI, vol. 10, 2010, pp. 255–270.

[7] V. Rastogi, Y. Chen, and W. Enck, “AppsPlayground: automatic
security analysis of smartphone applications,” in Proceedings
of the third ACM conference on Data and application security
and privacy. ACM, 2013, pp. 209–220.

[8] M. Spreitzenbarth, F. Freiling, F. Echtler, T. Schreck, and
J. Hoffmann, “Mobile-sandbox: Having a deeper look into
Android applications,” in Proceedings of the 28th Annual ACM
Symposium on Applied Computing. ACM, 2013, pp. 1808–
1815.

[9] C. Zheng, S. Zhu, S. Dai, G. Gu, X. Gong, X. Han, and W. Zou,
“Smartdroid: an automatic system for revealing ui-based
trigger conditions in android applications,” in Proceedings
of the second ACM workshop on Security and privacy in
smartphones and mobile devices. ACM, 2012, pp. 93–104.

[10] P. Gilbert, B.-G. Chun, L. P. Cox, and J. Jung, “Vision:
automated security validation of mobile apps at app markets,”
in Proceedings of the second international workshop on Mobile
cloud computing and services. ACM, 2011, pp. 21–26.

[11] P. Gilbert, B.-G. Chun, L. Cox, and J. Jung, “Automating
privacy testing of smartphone applications,” Technical Report
CS-2011-02, Duke University, Tech. Rep., 2011.

[12] L. K. Yan and H. Yin, “Droidscope: seamlessly reconstructing
the os and dalvik semantic views for dynamic android
malware analysis,” in Proceedings of the 21st USENIX Security
Symposium, 2012.

[13] I. Burguera, U. Zurutuza, and S. Nadjm-Tehrani, “Crowdroid:
behavior-based malware detection system for android,” in
Proceedings of the 1st ACM workshop on Security and privacy
in smartphones and mobile devices. ACM, 2011, pp. 15–26.

[14] M. Szydlowski, M. Egele, C. Kruegel, and G. Vigna, “Chal-
lenges for dynamic analysis of iOS applications,” in Open
Problems in Network Security. Springer, 2012, pp. 65–77.

[15] M. E. Joorabchi and A. Mesbah, “Reverse engineering iOS
mobile applications,” in Reverse Engineering (WCRE), 2012
19th Working Conference on. IEEE, 2012, pp. 177–186.

[16] M. Egele, C. Kruegel, E. Kirda, and G. Vigna, “PiOS: Detecting
Privacy Leaks in iOS Applications.” in NDSS, 2011.

[17] Apple Inc. UI Automation JavaScript Reference.
http://developer.apple.com/library/ios/#documentation/
DeveloperTools/Reference/UIAutomationRef/.

[18] J. Han, S. M. Kywe, Q. Yan, F. Bao, R. Deng, D. Gao,
Y. Li, and J. Zhou, “Launching Generic Attacks on iOS with
Approved Third-Party Applications,” in Applied Cryptography
and Network Security. Springer, 2013, pp. 272–289.

[19] Apple Inc. iOS Security. [Online]. Available: http://images.
apple.com/iphone/business/docs/iOS_Security_Oct12.pdf

[20] J. Freeman. Mobile Substrate. http://www.cydiasubstrate.
com.

[21] Apple Inc. Instruments User Guide: Automating UI
Testing. [Online]. Available: http://developer.apple.com/
library/ios/#documentation/DeveloperTools/Conceptual/
InstrumentsUserGuide/UsingtheAutomationInstrument/
UsingtheAutomationInstrument.html

[22] ——. iOS Human Interface Guidelines. [Online].
Available: http://developer.apple.com/library/ios/
#documentation/userexperience/conceptual/mobilehig/
Introduction/Introduction.html

[23] ——. iTunes RSS Feed Generator. https://rss.itunes.apple.
com.

[24] libimobiledevice. http://www.libimobiledevice.org.
[25] Apple Inc. NSDistributedNotificationCenter. [Online].

Available: https://developer.apple.com/library/mac/
#documentation/Cocoa/Reference/Foundation/Classes/
NSDistributedNotificationCenter_Class/Reference/
Reference.html

[26] 148Apps.biz: App Store Metrics: Count of Application Sub-
missions. http://148apps.biz/app-store-metrics/?mpage=
submission.

[27] V. van der Veen, H. Bos, and C. Rossow, “Dynamic Analysis
of Android Malware,” 2013.

[28] J. Krumm, “A survey of computational location privacy,”
Personal and Ubiquitous Computing, vol. 13, no. 6, pp. 391–
399, 2009.

[29] P. Marquardt, A. Verma, H. Carter, and P. Traynor, “(sp)iPhone:
decoding vibrations from nearby keyboards using mobile
phone accelerometers,” in Proceedings of the 18th ACM
conference on Computer and communications security. ACM,
2011, pp. 551–562.

[30] E. Bosman, A. Slowinska, and H. Bos, “Minemu: the
world’s fastest taint tracker,” in Proceedings of the
14th international conference on Recent Advances in
Intrusion Detection, ser. RAID’11. Berlin, Heidelberg:
Springer-Verlag, 2011, pp. 1–20. [Online]. Available:
http://dx.doi.org/10.1007/978-3-642-23644-0_1

[31] K. Hazelwood and A. Klauser, “A dynamic binary
instrumentation engine for the ARM architecture,” in
Proceedings of the 2006 international conference on Compilers,
architecture and synthesis for embedded systems, ser. CASES
’06. New York, NY, USA: ACM, 2006, pp. 261–270. [Online].
Available: http://doi.acm.org/10.1145/1176760.1176793

[32] P. Saxena, R. Sekar, and V. Puranik, “Efficient fine-grained
binary instrumentationwith applications to taint-tracking,”
in Proceedings of the 6th annual IEEE/ACM international
symposium on Code generation and optimization, ser. CGO
’08. New York, NY, USA: ACM, 2008, pp. 74–83. [Online].
Available: http://doi.acm.org/10.1145/1356058.1356069

http://www.theregister.co.uk/2013/07/17/tumblr_ios_uncryption/
http://www.theregister.co.uk/2013/07/17/tumblr_ios_uncryption/
http://developer.apple.com/library/ios/#documentation/DeveloperTools/Reference/UIAutomationRef/
http://developer.apple.com/library/ios/#documentation/DeveloperTools/Reference/UIAutomationRef/
http://images.apple.com/iphone/business/docs/iOS_Security_Oct12.pdf
http://images.apple.com/iphone/business/docs/iOS_Security_Oct12.pdf
http://www.cydiasubstrate.com
http://www.cydiasubstrate.com
http://developer.apple.com/library/ios/#documentation/DeveloperTools/Conceptual/InstrumentsUserGuide/UsingtheAutomationInstrument/UsingtheAutomationInstrument.html
http://developer.apple.com/library/ios/#documentation/DeveloperTools/Conceptual/InstrumentsUserGuide/UsingtheAutomationInstrument/UsingtheAutomationInstrument.html
http://developer.apple.com/library/ios/#documentation/DeveloperTools/Conceptual/InstrumentsUserGuide/UsingtheAutomationInstrument/UsingtheAutomationInstrument.html
http://developer.apple.com/library/ios/#documentation/DeveloperTools/Conceptual/InstrumentsUserGuide/UsingtheAutomationInstrument/UsingtheAutomationInstrument.html
http://developer.apple.com/library/ios/#documentation/userexperience/conceptual/mobilehig/Introduction/Introduction.html
http://developer.apple.com/library/ios/#documentation/userexperience/conceptual/mobilehig/Introduction/Introduction.html
http://developer.apple.com/library/ios/#documentation/userexperience/conceptual/mobilehig/Introduction/Introduction.html
https://rss.itunes.apple.com
https://rss.itunes.apple.com
http://www.libimobiledevice.org
https://developer.apple.com/library/mac/#documentation/Cocoa/Reference/Foundation/Classes/NSDistributedNotificationCenter_Class/Reference/Reference.html
https://developer.apple.com/library/mac/#documentation/Cocoa/Reference/Foundation/Classes/NSDistributedNotificationCenter_Class/Reference/Reference.html
https://developer.apple.com/library/mac/#documentation/Cocoa/Reference/Foundation/Classes/NSDistributedNotificationCenter_Class/Reference/Reference.html
https://developer.apple.com/library/mac/#documentation/Cocoa/Reference/Foundation/Classes/NSDistributedNotificationCenter_Class/Reference/Reference.html
http://148apps.biz/app-store-metrics/?mpage=submission
http://148apps.biz/app-store-metrics/?mpage=submission
http://dx.doi.org/10.1007/978-3-642-23644-0_1
http://doi.acm.org/10.1145/1176760.1176793
http://doi.acm.org/10.1145/1356058.1356069

	Introduction
	Motivation
	Related Work
	Contributions
	Roadmap

	Background Information
	Apple iOS Operating System
	iOS Security Concepts
	Jailbreaking
	Objective-C
	Message Passing
	Reflection

	API Hooking
	UI Automation

	DiOS Framework
	System Architecture
	Backend
	Worker
	Client

	Automated App Purchase and Installation
	Co-Opting the UI Automation Service
	Dealing with Alerts
	Execution Strategies
	Open-Close Execution
	Random Execution
	Smart Execution

	Framework Evaluation
	Scalability
	Method Coverage

	Large-Scale Privacy Analysis of iOS Apps
	Experimental Setup
	Analysis Criteria
	Results
	Personal Data
	Advertising and Analytic Libraries
	Network Communication

	Discussion

	Summary and Future Work
	References

