A passive measurement of dissociated atom densities in atmospheric pressure air discharge plasmas using vacuum ultraviolet self-absorption spectroscopy

George Laity, Andrew Fierro, James Dickens, Klaus Frank, and Andreas Neuber

Citation: Journal of Applied Physics 115, 123302 (2014); doi: 10.1063/1.4869895
View online: http://dx.doi.org/10.1063/1.4869895
View Table of Contents: http://scitation.aip.org/content/aip/journal/jap/115/12?ver=pdfcov
Published by the AIP Publishing

Articles you may be interested in

Absolute atomic oxygen and nitrogen densities in radio-frequency driven atmospheric pressure cold plasmas: Synchrotron vacuum ultra-violet high-resolution Fourier-transform absorption measurements

Simultaneous measurement of nitrogen and hydrogen dissociation from vacuum ultraviolet self-absorption spectroscopy in a developing low temperature plasma at atmospheric pressure
Appl. Phys. Lett. 102, 184104 (2013); 10.1063/1.4804369

Development of vacuum ultraviolet absorption spectroscopy technique employing nitrogen molecule microdischarge hollow cathode lamp for absolute density measurements of nitrogen atoms in process plasmas
J. Vac. Sci. Technol. A 19, 599 (2001); 10.1116/1.1340655

Measurement and control of absolute nitrogen atom density in an electron-beam-excited plasma using vacuum ultraviolet absorption spectroscopy
J. Appl. Phys. 88, 1756 (2000); 10.1063/1.1305559

Vacuum ultraviolet absorption spectroscopy employing a microdiacharge hollow-cathode lamp for absolute density measurements of hydrogen atoms in reactive plasmas
Appl. Phys. Lett. 75, 3929 (1999); 10.1063/1.125497
A passive measurement of dissociated atom densities in atmospheric pressure air discharge plasmas using vacuum ultraviolet self-absorption spectroscopy

George Laity,1,2 Andrew Fierro,1 James Dickens,1 Klaus Frank,3 and Andreas Neuber1
1Center for Pulsed Power and Power Electronics, Department of Electrical and Computer Engineering and Department of Physics, Texas Tech University, Lubbock, Texas 79409, USA
2Applied Science and Technology Maturation Department, Sandia National Laboratories, Albuquerque, New Mexico 87123, USA
3Erlangen Centre for Astroparticle Physics, Department of Physics, Friedrich–Alexander University at Erlangen-Nürnberg, 91058 Erlangen, Germany

(Received 24 January 2014; accepted 18 March 2014; published online 27 March 2014)

We demonstrate a method for determining the dissociation degree of atmospheric pressure air discharges by measuring the self-absorption characteristics of vacuum ultraviolet radiation from O and N atoms in the plasma. The atom densities are determined by modeling the amount of radiation trapping present in the discharge, without the use of typical optical absorption diagnostic techniques which require external sources of probing radiation into the experiment. For an 8.0 mm spark discharge between needle electrodes at atmospheric pressure, typical peak O atom densities of 8.5×10^{17} cm$^{-3}$ and peak N atom densities of 9.9×10^{17} cm$^{-3}$ are observed within the first \sim1.0 nm of plasma near the anode tip by analyzing the OI and NI transitions in the 130.0–132.0 nm band of the vacuum ultraviolet spectrum. © 2014 AIP Publishing LLC.

I. INTRODUCTION

Plasma formation1,2 is a limiting factor in the design of a variety of pulsed power modulators which require the dielectric support structure to sustain a high DC electric field across the device, especially considering the trend towards higher power applications. This plasma (in the form of spark breakdown) is especially prevalent when the device is deployed to environments with a large background of UV or x-ray radiation which can lead to free electron buildup. Such applications include power modulators in high current sources for high power microwave (HPM) vacuum diodes,3 mega-ampere current pulse generators in dense nuclear fusion experiments,4 induction accelerator cavities used to generate intense electron beams for radiographic studies,5 and as well as general problems with propagating high power electromagnetic waves for applications in communications.6 Studies7 have discussed the effectiveness of UV radiation in seeding the background electron density required for spark breakdown at atmospheric pressures, but most investigations are limited to studying optical wavelengths longer than 200 nm due to the experimental difficulty in measuring vacuum ultraviolet (VUV) radiation. Despite this, VUV irradiation has demonstrated8 an increased ability to generate free electrons in N$_2$ environments, and recent studies9 have investigated the earliest VUV production from N atoms in the streamer and spark phases of breakdown. As a result, it is desired to passively measure the dynamics of atom production from molecular dissociation in air discharge plasmas, without using a potentially invasive optical absorption diagnostic technique, such as two-photon laser induced fluorescence (TALIF) spectroscopy10 or broadband absorption spectroscopy,11 which can artificially increase the dissociation degree.

We recently reported12 favorable results in passively measuring the dissociated density of H and N atoms in H$_2$/N$_2$ plasmas by monitoring the HI/NI spectrum in the 120–125 nm range using the vacuum ultraviolet self-absorption spectroscopy (VUV-SAS) method, with measured atom densities on the order $\sim 10^{17}$ cm$^{-3}$. This was possible due to the strong self-absorption characteristics of 2p → 1s Lyman-α transition of HI at 121.57 nm. However, the usefulness of this technique was limited due to the small number of plasma studies outside of the research environment which use H$_2$ as a medium. Therefore, it was desired to extend the VUV-SAS method to plasmas generated in atmospheric pressure air, thereby demonstrating applicability to a large number of pulsed power and plasma experiments under investigation today as well as practical importance to breakdown studies in traditional high voltage environments.

II. RADIATION TRANSPORT PHYSICS

We demonstrate a passive method for determining the dissociated density of O atoms in air plasmas by measuring the absorption characteristics of the 2s22p3s \rightarrow 2s22p4 transition(s) in OI at 130.22/130.49/130.60 nm. Note that these transitions have been used to measure atom densities previously,13 but only at the expense of using probing radiation from a high pressure micro-discharge hollow cathode lamp to measure broadband absorption in the plasma structure. This method has the drawback of injecting energetic photons at high radiative intensities into the plasma, which during absorption potentially alters the fundamental plasma kinetics under investigation. The method presented in the present study instead uses the intrinsic self-radiation produced from the plasma structure itself, which undergoes partial radiation.
trapping as it attempts to escape the plasma medium (see Fig. 1). Under the assumption that most of the atomic population is energetically in the ground state, VUV photons which result from electronic de-excitation into the ground state are likely to be re-absorbed due to the high probability of encountering another ground atom within the path length leading out of the plasma. However, UV/VUV photons which result from higher de-excitations are less likely to be re-absorbed as they escape the plasma due to the lower probability of finding an excited atom in the correct energy state for re-absorption. Therefore, application of the VUV-SAS technique reduces to modeling the radiation trapping physics in the desired plasma structure. Note that by similarly monitoring the emission of the nearby 2s2p3d → 2s2p3 transition(s) of Ni at 131.05/131.10 nm, the N atom density is simultaneously derived from the experiment by comparing the relative intensity of the Ni and OI spectral profiles.

Modeling the radiation trapping physics inherently involves calculating the effective line profiles for emission and absorption, and the general treatment of the various line broadening mechanisms is well discussed in literature. The recorded line profiles contain a Lorentzian and Gaussian component, which are additionally convolved with the apparatus profile used in measurement. The Lorentz full-width at half maximum (δνL) is primarily the sum of the effects from pressure broadening, Stark broadening from charged particle interaction, and instrumentation. In first order, the effects of Stark broadening for NI and OI atomic systems are assumed to be much smaller than the Lorentz component for instrumentation and are therefore neglected. The pressure broadening estimated from resonance or Van der Waals collisions with neutral particles is calculated to be on the order <1% of the total line width due to instrumentation. Therefore, the effect of instrumentation (due to pixel cross-talk between CCD pixels on the detector) is the primary source of Lorentz broadening in the current study. The normalized Lorentzian distribution takes the form

\[I_L(\nu) = \frac{\nu_0^2}{(\nu - \nu_0)^2 + \frac{\nu_0^2}{2}} \]

where \(\nu_0 \) is the center frequency of the emission transition. The normalized Gaussian profile (with full-width at half maximum δνG) is primarily determined by the Doppler broadening of radiation released from the plasma, which is a function of gas temperature \(T_e \)

\[I_G(\nu) = \exp \left[-4 \ln(2) \frac{(\nu - \nu_0)^2}{\delta \nu_G^2} \right] , \]

\[\delta \nu_G = 2 \sqrt{\ln(2)} \frac{\nu_0}{c} \sqrt{\frac{2 k_B T_e}{m_A}} , \]

where \(c \) is the speed of light in vacuum \((2.99 \times 10^{10} \text{ cm/s}) \), \(k_B \) is Boltzmann’s constant \((1.38 \times 10^{-23} \text{ J/K}) \), and \(m_A \) is the mass of the radiating atom. The normalized Voigt profile \(I_V(\nu) \) is generated by numerical convolution of the Lorentzian and Gaussian profiles, along with a rectangular profile \(I_R \) from instrumentation accounting for the spectrograph entrance slit.

The amount of radiation self-absorption in a section of plasma is determined by the absorption coefficient \(\kappa \) at that location, which is assumed to have the same line width (population of atomic energy states) as the emission line profile, i.e., the Voigt distribution. As a result, the absorption coefficient takes the form

\[\kappa(r) = \frac{q^2 n_e(r) f_{ij} I_V}{4 \pi \omega_0 m_e} , \]

where \(q \) and \(m_e \) are the charge \((1.6 \times 10^{-19} \text{ C}) \) and mass \((9.11 \times 10^{-31} \text{ kg}) \) of the electron, respectively, \(n_i \) is the population density of absorbing atoms in the lower energy state, and \(\omega_0 \) is the permittivity of free space \((8.85 \times 10^{-12} \text{ F/cm}) \). The oscillator strength \(f_{ij} \) of the transition takes the form

\[f_{ij} = 1.499 \times 10^{-14} A_{ji} \omega_0^3 \frac{g_j}{g_i} \]

where \(A_{ji} \) is the Einstein coefficient for spontaneous emission of the transition given in s\(^{-1} \), \(\omega_0 \) is the transition wavelength of the radiation in nm, and \(g_i \) and \(g_j \) are the statistical degeneracies of the upper and lower states, respectively.

The population density of atoms is assumed to be in partial local thermodynamic equilibrium (LTE) condition determined as a function of a common Boltzmann electron temperature \(T_e \). The peak atom density of each species in the core of the plasma can then be calculated by estimating the dissociation percentage \(\eta_d \)

\[\bar{n}_i = 2 \eta_d n_0 n_i g_i \Gamma \exp \left(- \frac{E_i}{k_B T_e} \right) , \]

where \(n_i \) is the concentration of each species in the plasma (i.e., for laboratory air: \(n_0 = 0.79 \) for N\(_2\) molecules and \(n_0 = 0.21 \) for O\(_2\) molecules), \(n_0 \) is the background number density of molecules in the plasma \((2.5 \times 10^{19} \text{ cm}^{-3} \text{ for STP laboratory conditions}) \), \(E_i \) is the energy level of the state, and \(\Gamma \) is the statistical partition function of the total number of available states. The factor of two is due to the fact that each dissociated molecule creates two free atoms in the plasma. Note that if all other parameters are known or inferred, \(\eta_d \) (i.e., the dissociation kinetics) is determined by comparing the calculated line profiles to the ones measured from the experiment.

The spark channel is in first order assumed to be cylindrically symmetric, and so the absorption calculations are

![FIG. 1. Overview of the VUV-SAS methodology: radiation from one section of plasma passes into the adjacent section, undergoing partial radiation trapping on the way to the optical detector. Radiation from lower atomic states is likely to be re-absorbed, while radiation from higher atomic states mostly passes into the detector.](image-url)
formed by integration in 1D over the radial profile in the center of the cross section within the line of sight of the spectral instruments. The density of atoms in the plasma is not uniform in the radial direction, and other spark discharge studies16 with similar currents have shown that the luminosity (and therefore atomic population) is highest in the middle of the plasma channel. In first approximation, the spatial profile is assumed to be of Gaussian cylindrical shape, which takes the form

\[n_i(r) = \bar{n}_i \exp \left(-\frac{r^2}{\tau_0^2} \right), \]

(7)

where \(r_0 \) is the radial normalization given by

\[r_0 = \left(-\frac{\left(d/2 \right)^2}{\ln \left(\frac{n_{\text{edge}}}{n_{\text{core}}} \right)} \right)^{1/2}, \]

(8)

where \(d \) is the diameter of the plasma column and \(n_{\text{edge}}/n_{\text{core}} \) is the estimated plasma density taper at the edge of the spark channel. The amount of radiation produced from each location in the plasma is determined by the spontaneous emission of the local atom density. The resulting differential intensity packet produced by the local atom density, which escapes the plasma volume, is then given by the total absorption by inhomogeneous plasma within the path length from that position to the plasma edge

\[dl_i(r) = dtA \bar{n}_i(r) \times (I_V + I_R) \exp \left(-\int_{r_{\text{edge}}}^{r} \kappa(r)dr \right), \]

(9)

where \(dr \) is the discrete numerical thickness of each plasma slab, \(n_j \) is the population density of atoms in the upper energy state, and \(dt \) is the discrete numerical time step over which radiation is released. It follows that calculating the total emission profile observed at the detector reduces to integration of \(dl_i \) from radiation produced from all locations (in 1D) in the plasma over time. Radiation which originates from locations near the plasma edge is absorbed less due to the decreased path length to the detector, but the intensity is lower due to the overall lower atom density in this region. However, radiation which is released from the dense plasma core is much more intense but must travel through a longer path length to reach the plasma edge, leading to increased absorption of this core radiation. Thus, the final shape of the resulting profile observed at the detector is ultimately dominated by the dynamics of the intense core radiation escaping the dense plasma center. Direct evaluation of the radiation transport and spectral line profiling calculations are performed in the MATLAB\textcopyright environment and accelerated via graphics processing unit (GPU) processing resources using the NVIDIA\textcopyright CUDA\textTM architecture. The transition probabilities, statistical degeneracies, and atomic energy levels for OI and NI species relevant to this study are available online from NIST.17

III. EXPERIMENT AND DISCUSSION

The experiment18 consists of an 8.0 mm discharge between two needle electrodes in air at atmospheric pressure. The discharge is triggered via \(\sim 100 \) ns rise-time 15 kV high voltage pulse (1.0 Hz rep-rate), with typical peak discharge currents during the spark phase of \(\sim 20 \) A lasting up to 5.0 \(\mu \)s. Previous measurements9 of the relative emission line strengths for the NI spectrum in the range of 140–150 nm established an estimated Boltzmann electron temperature of 3.0 eV in partial-LTE condition during the spark phase of plasma development (i.e., the first \(\sim 200 \) ns after voltage collapse). The plasma forms very near to a MgF\textsubscript{2} surface which acts as the interface between the experiment and a vacuum spectrograph (vacuum vessel pressure = \(10^{-7} \) Torr) installed with VUV sensitive intensified CCD electronics as the detector. The plasma is positioned so only radiation from the first \(\sim 1.0 \) mm of plasma near the anode is viewable during the experiment, for a 100 ns exposure recorded 100–200 ns into the spark phase.

The measured and calculated intensity profiles in the wavelength range of 130–132 nm are shown in Fig. 2. The calculated spectrum is generated to best fit the profile of the entire spectrum, normalized to the NI intensity peak at 131.10 nm which is weakly self-absorbed. The calculated spectrum is corrected for the attenuation due to the spectrograph optics, quantum efficiency of the detector, and diffraction grating efficiency. The experiment consists of determining \(n_j \) from five sets of ten averaged measurements and calculating the standard deviation. The gas and atom densities are assumed to be at laboratory temperature (300 K) during the short timescales of the experiment. Previous discharge experiments,18,19 which include external imaging, revealed that the radial plasma depth ranges between 480 and 560 \(\mu \)m during the spark phase, and so an average plasma depth of 500 \(\mu \)m is assumed. In first approximation, the plasma density is assumed to fall to 1\% of the peak (core) value at the channel edge, leading to a Gaussian density taper of 10-2. The instrumental profile is determined to be 0.097 nm for both the Lorentzian and rectangular components.

![FIG. 2. Comparison of measured (blue) and calculated (red) profiles for OI and NI emission observed from the early spark phase of plasma formation in atmospheric pressure air (exposure time = 100 ns). The Lorentzian and rectangular components due to instrumentation are 0.097 nm and 0.097 nm, respectively.](image-url)
An interesting note for modeling the radiation self-absorption of air discharges arises as a consequence of the lower energy levels of O atoms for 130.49/130.60 nm radiation. These transitions are able to be thermally populated by collisions with gas molecules, atoms, or ions in the bulk discharge plasma, and so re-absorption of radiation emitted from these transitions is especially likely. The emission line at 129.85 nm is due to excitation of anode material, and therefore not included in the plasma radiative model. The number density of O atoms in the discharge is estimated by the ratio of emission lines at 130.22/130.49/130.60 nm which are all absorbed by different amounts, and the resulting peak O atom density in the plasma core is 8.5×10^{17} cm$^{-3}$. This results in a peak O$_2$ dissociation percentage of 8.10%, while the average dissociation in the Gaussian volume is 3.32%. The number density of N atoms in the discharge is then estimated by increasing the N atom density until the intensity ratio between NI and OI emission lines matches the measured spectrum, which results in a peak N atom density of 9.9×10^{17} cm$^{-3}$. This results in a peak N$_2$ dissociation percentage of 2.50%, while the average dissociation in the volume is 1.03%. Note that this value is close to the 0.43% dissociated N atom density recently estimated6 by calculating the collisional quenching of N atoms in pure N$_2$ discharges with the same electrode geometry. The estimated dissociation of N$_2$ molecules is higher in air discharges most likely as a result of the overlap in certain cross species photo-dissociative processes between N$_2$ and O$_2$ molecules (for example, the Birge-Hopfield and Carroll-Yoshino bands in the \sim12 eV range) which is believed2 to be a decisive element in the development of spark discharge plasmas in air. The overall higher O$_2$ dissociation percentage compared to the N$_2$ dissociation percentage is due to the lower dissociation energy of the O$_2$ molecule (5.17 eV) compared to the N$_2$ molecule (9.79 eV).

The normalized RMS error between the measured and simulated emission profiles in this range is roughly 4.2%, which indicates that the profile is matched within good agreement. The statistical deviation of the estimated atom densities is less than 15% over the number of discharges generated. It is observed during the calculations that an uncertainty in the Boltzmann electronic temperature of $\pm 10\%$ results in a change in the estimated atom densities by about $\pm 30\%$. Note that previous studies12 investigated the effect of assuming a non-Gaussian plasma channel geometry in the estimation of atom densities. For example, in the extreme case of a relatively hollow plasma geometry with peak plasma densities near the channel edge (such geometries correspond to energetic shockwaves which result from very high current discharges22), it is observed that the estimated atom densities change by a factor of about 2–3. However, assuming that the Gaussian radial geometry is in good approximation for plasma formation in low discharge currents, the total estimated uncertainty for application of the VUV-SAS technique in this plasma geometry is estimated to be less than 50%.

IV. CONCLUSIONS

In conclusion, the vacuum ultraviolet self-absorption spectroscopy diagnostic is capable of passively measuring O and N atom densities in transient plasma structures, without the use of potentially invasive optical diagnostic techniques currently in widespread practice. For an 8.0 mm spark discharge between needle electrodes at atmospheric pressure, typical peak O atom densities of 8.5×10^{17} cm$^{-3}$ and peak N atom densities of 9.9×10^{17} cm$^{-3}$ are observed within the first \sim1.0 mm of plasma near the anode tip by analyzing the OI and NI transitions in the 130.0–132.0 nm band of the vacuum ultraviolet spectrum. As a result, the VUV-SAS method should prove useful for a variety of future plasma experiments in pulsed power laboratories and traditional high voltage environments.

ACKNOWLEDGMENTS

This work was supported by the U.S. Air Force Office of Scientific Research (AFOSR) Grant on the “Basic Physics of Distributed Plasma Discharge.” G. Laity was under fellowship support from the Directed Energy Professional Society and the Directed Energy Scholar program at the U.S. Air Force Research Laboratory (AFRL). A. Fierro was under fellowship support from the National Physical Science Consortium in partnership with Sandia National Laboratories. The authors would like to thank the National Institute of Standards and Technology (NIST) for the Atomic Spectra Database (ASD) available online.

