












5.2 Photon statistics in optomechanical arrays

to the interaction term, Eq. (5.2). Note that the accuracy of this approximation improves if the
number of neighboring sites z increases. For identical cells, the index j can now be dropped and
the Hamiltonian reduces to a sum of independent contributions, each of which is described by

Ĥmf = Ĥom − ~J
(
â†〈â〉+ â〈â†〉

)
− ~K

(
b̂†〈b̂〉+ b̂〈b̂†〉

)
. (5.4)

To describe the time evolution of the open quantum system, we can now employ a Lindblad
master equation for the single cell density matrix ρ̂, dρ̂/dt = −i[Ĥmf , ρ̂]/~ + κD[â]ρ̂ + ΓD[b̂]ρ̂.
The Lindblad terms D[Â]ρ̂ = Âρ̂Â†− 1

2Â
†Âρ̂− 1

2 ρ̂Â
†Â take into account photon decay at a rate

κ and mechanical dissipation (here assumed due to a zero temperature bath) at a rate Γ.

5.2 Photon statistics in optomechanical arrays
In this section, we will discuss how the interaction of many cavities in an optomechanical array
alters the photon statistics. Aiming at nonclassical effects, we will revisit the most prominent
effect in this regard, the photon blockade [91]: For sufficiently strong optomechanical coupling
(g2

0 & κΩ), the presence of a single photon can hinder other photons from entering the cavity
(see also our discussion in chapter 3).

To this end, we analyze the steady-state photon correlation function [211]

g(2)(τ) = 〈â†(t)â†(t+ τ)â(t+ τ)â(t)〉/〈â(t)†â(t)〉2 (5.5)

at equal times (τ = 0). For a coherent state, it yields g(2)(0) = 1, and g(2)(0) > 1 for bunched
photons. A value of g(2)(0) < 1, on the other hand, is an unambiguous criterion for nonclassical
anti-bunched statistics, and for g(2)(0) = 0 photon blockade is complete.

Here, in Fig. 5.2, we probe the influence of the collective dynamics by varying the optical
coupling strength J , while keeping the mechanical coupling K zero for clarity. We note that,
when increasing J , the optical resonance effectively shifts: ∆ → ∆ + J . To see this, one may
consider the tight-binding energy dispersion, −∆ → −∆ − J cos(k) and the fact that, within
our model, only the symmetric mode, k = 0, is driven. Thus, to keep the photon number fixed
while increasing J , the detuning has to be adapted [212]. In this setting, we observe that the
interaction between the cells suppresses anti-bunching (inset of Fig. 5.2). Photon blockade is lost
if the intercellular coupling becomes larger than the effective nonlinearity, 2J & g2

0/Ω. Above this
value, the photon statistics shows bunching, and ultimately reaches Poissonian statistics for large
couplings. Thus, a single cell loses photon blockade because the coupling will allow photons from
neighboring sites to enter. Similar physics has recently been analyzed for coupled qubit-cavity
arrays [212].

For very large coupling strengths, the density plot of Fig. 5.2 reveals signs of the collective
mechanical motion (hatched area). There, we observe the correlation function to oscillate at the
mechanical frequency and to show strong bunching. We will now investigate this effect in detail.

5.3 Collective mechanical quantum effects
To describe the collective mechanical motion of the array, we focus on the case of purely mechanical
intercellular coupling (K > 0, J = 0) for simplicity. Note, though, that the effect is also observable
for optically coupled arrays, as discussed above.
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Figure 5.2: Loss of photon blockade for increasing optical coupling in an array of optomechanical
cavities. The equal time photon correlation function shows anti-bunching (g(2)(0) < 1) and
bunching (g(2)(0) > 1) as a function of detuning ∆ and optical coupling strength J . The smallest
values of g(2)(0) are found for a detuning ∆0 = −g2

0/Ω, i.e. shifted from resonance by the rate
of the effective photon nonlinearity. When increasing the coupling strength J while keeping the
intracavity photon number constant, i.e. along the dashed line, photon blockade is lost (inset,
g(2)(0) as black solid line). For a smaller driving power (inset, blue solid line, αL = 5 · 10−5κ),
anti-bunching is more pronounced, and the behavior is comparable to that of a nonlinear cavity
(inset, dashed line). The hatched area in the main figure outlines a region where a transition
towards coherent mechanical oscillations has set in (see main text and further figures). κ = 0.3 Ω,
αL = 0.65κ, g0 = 0.5 Ω, Γ = 0.074 Ω. (This figure has been published in [184].)
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As our main result, Figs. 5.3(a) and 5.4(a) show the sharp transition between incoherent self-
oscillations and a phase-coherent collective mechanical state as a function of both laser detuning
∆ and coupling strength K: In the regime of self-induced oscillations, the phonon number 〈b̂†b̂〉
reaches a finite value. Yet, the expectation value 〈b̂〉 remains small and constant in time. When
increasing the intercellular coupling, though, 〈b̂〉 suddenly starts oscillating:

〈b̂〉(t) = b̄+ re−iΩefft, (5.6)

and we term r the mechanical coherence.
Our more detailed analysis (see below) indicates that this transition results from the compe-

tition between the fundamental quantum noise of the system and the tendency of phase locking
between the coupled nonlinear oscillators. Below threshold, the quantum noise from the phonon
bath and the optical fields diffuses the mechanical phases at different sites and drives the mechan-
ical motion into an incoherent mixed state. The reduced density matrix ρ̂(m) is predominantly
occupied on the diagonal, see Fig. 5.3(d), and the Wigner distribution,

W (x, p) = 1
π~

ˆ ∞
−∞
〈x− y|ρ̂(m)|x+ y〉e2ipy/~dy, (5.7)

has a ringlike shape, reflecting the fact that the phase of the motion is undetermined [89, 54],
see Fig. 5.3(b). Above threshold, the mechanical motion at different sites becomes phase-locked,
and the coherence parameter r (Eq. (5.6)) reaches a finite value. Within our mean-field ansatz, r
grows with a critical exponent 1/2 close to the threshold, see Fig. 5.4(a). This threshold behavior
is also found as a function of the laser detuning, and thus can, in principle, be studied in a fully
controlled way in experiment. To detect mechanical phase coherence in experiment, it suffices
to measure the total optical transmission from the array, which shows strong oscillations at the
mechanical frequency in the synchronized regime (see Figs. 5.2 and 5.4(a)).

The emergence of coherence also becomes apparent from the off-diagonal elements of ρ̂(m)

(Fig. 5.3(e)). The corresponding Wigner function assumes the shape of a coherent state with
a definite phase oscillating in phase space, see Fig. 5.3(c). Thus, this transition spontaneously
breaks the time translation symmetry. In a two-dimensional implementation, true long range order
is excluded, but a state with quasi-long range order is possible [213, 214, 215, 216] and coherence
between different sites is expected to decay as a power law with distance. The ordered mechanical
phase thus resembles the superfluid phase in cold atomic gases [217], or Josephson junction arrays
[218].

We also note that this transition is the quantum mechanical analogon of classical synchro-
nization, which was studied for optomechanical systems in [133, 134] (see also section 4.4). An
important difference is, though, that the classical nonlinear dynamics were analyzed for an inho-
mogeneous system (with disordered mechanical frequencies) in the absence of noise [133, 134].
In our case, disorder is only introduced via fundamental quantum noise. Other systems for which
synchronization in the quantum regime was studied include cold atomic gases [219, 220, 221],
trapped ions [222, 223], spin systems [224], superconducting qubits [225], Josephson junction
arrays [226] and other superconducting devices [227].

The laser detuning determines both the strength of the self-oscillations and the influence
of the cavity shot noise on the mechanical motion. As we will show below, even the coherent
coupling between the mechanical phases (ultimately leading to synchronization) is tunable via the
laser frequency. As a result, the synchronization threshold depends non-trivially on the detuning
parameter ∆, see Fig. 5.3(a). The onset of self-induced oscillations happens continuously and
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Figure 5.3: Transition from the incoherent to the synchronized (coherent) phase: (a) Mechanical
coherence r, measuring the amplitude of the order parameter in 〈b̂〉(t) = b̄ + re−iΩefft, as a
function of laser detuning ∆ and mechanical coupling K. For weak coupling, the self-oscillations
are incoherent, r = 0, due to quantum noise. When increasing the coupling strength, the systems
shows a sharp transition towards the ordered regime, where the mechanical oscillations are phase-
coherent, r > 0. A cut for fixed detuning (dashed line) is shown in Fig. 5.4(a). (b,c) Modulus
of the density matrix elements (in Fock space) and Wigner density of the collective mechanical
state in the incoherent (b) and the coherent regime (c) (as marked in (a)). g0 = κ = 0.3 Ω,
αL = 1.1κ, Γ = 0.074 Ω (This figure has been published in [184].)
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Figure 5.4: (a) The mechanical coherence r as a function of coupling strengthK for fixed detuning
∆ = 0.5 Ω. The dashed line shows the optical readout of coherence, i.e. the oscillating component
of the photon number 〈â†â〉, which is directly accessible in experiment. The loss of synchronization
for even larger coupling strengths can be attributed to enhanced phase fluctuations and a non-
monotonic behavior of the effective phase coupling rate between the phases, as discussed in the
main text. (b) The phonon number 〈b̂†b̂〉 shows maxima at the resonance and at the sideband
(∆ − ∆0 ≈ Ω). (c) The diffusion constant for the mechanical phase, Dϕ, for an uncoupled
(K = 0, solid line) and coupled array (K = 0.1 Ω, dash-dotted line). Other parameters as in Fig.
5.3. (This figure has been published in [184].)

already at a red-detuned laser frequency, ∆ < 0, due to the effect of the static mechanical shift
and the shift of the optical spectrum by ∆0 = −g2

0/Ω. Close to the onset, the mechanical phases
are very susceptible to quantum noise preventing synchronization. The diffusion rate Dϕ, defined
as the linewidth of the correlator

〈b̂(t)b̂†(0)〉 ∼ e−(iΩeff+Dϕ)t, (5.8)

shows a maximum (Fig. 5.4(c), solid line). For finite coupling strengths, the diffusion is enhanced,
most strikingly at the mechanical sideband. As a result, the synchronization threshold shows a
minimum between the onset of self-oscillations and the sideband. From extended simulations, we
find that this behavior is generic for systems in the resolved sideband regime (Ω > κ).

Self-consistent equations can provide a useful tool for the study of mean-field models. In the
context of our model, this implies to consider an external input w = K〈b̂〉(in) that enters the
master equation via the coupling term −~K

(
b̂†〈b̂〉(in) + b̂〈b̂†〉(in)), and to compute the output

〈b̂〉(out) = Tr{ρ̂b̂} in the usual way from the master equation. The modulus of the output,
r = |〈b̂〉(out)|, grows linearly with the input |w|, and the slope can be used to extract the critical
coupling strength for the synchronization transition: Kc = |w|/r. In principle, this method can be
an efficient way to compute Kc requiring only a single simulation of the Lindblad master equation.
But there is one caveat: the phase 〈b̂〉(out) oscillates in time at a frequency Ωeff , and, for the self-
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Figure 5.5: Self-consistent solution of the mean-field master equation using an external input field
〈b̂〉in (as described in the main text). (a) The overlap Q between external drive and the solution
of 〈b̂〉 from the master equation as a function of driving frequency ωF and detuning ∆. (b) After
minimizing the overlap as a function of ωF , the critical coupling strength can be inferred from
the self-consistency condition, see dashed magenta curve. The density plot shows the coherence
r as a function of detuning ∆ and coupling strength K resulting from the full mean-field master
equation for comparison. The self-consistent approach affirms the main qualitative features of the
full model, but the numerical accuracy is too weak for an exact prediction. The approach has
to fail in the regime where synchronization is precluded, i.e. for approximately ∆ < −0.5 and
∆ > 0.5 here. Parameters: g0 = 0.5 Ω, κ = 0.3 Ω, αL = 0.08 Ω, Γ = 0.037 Ω.

consistent approach to be valid, the input field w = |w|e−iωF t+ϕ has to match these oscillations
both in frequency and in phase. Therefore, the overlap Q = 〈|Re

(
〈b̂〉(out))/r − cosωF t|〉t has to

be minimized. Here, 〈...〉t denotes the time average over a sufficiently large time interval (at least
one mechanical period). The results of such a numerical minimization are shown in Fig. 5.5(a),
where the overlap Q was computed for different input frequencies ωF . Notably, the minima in
Q are found for frequencies ωF smaller than Ω since, in the synchronized regime, the mechanical
oscillation frequency is shifted by the coupling term, Ω → Ω − K (see for example Eq. (5.4)).
After this minimization procedure, the critical coupling strength Kc can be extracted with the
above method, at least in the regime, where synchronization is possible, see Fig. 5.5(b). The
numerical approach studied here has very limited accuracy, but the method may still be used as
a test for the results from the full simulations of the master equation.

5.4 Semiclassical Kuramoto-like model

In this section, we establish the connection to the classical nonlinear dynamics, which we discussed
in the previous chapter, and develop a semiclassical Kuramoto-like model. It will reveal the basic
coupling mechanisms of the mechanical phases in the array, as well as their diffusion due to
quantum noise. This analysis will also result in an analytic expression for the synchronization
threshold.
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As a starting point, we consider the Langevin equations of coupled optomechanical cells,

β̇i =
(
− iΩ− Γ

2
)
βi + ig0|αi|2 + i

K

z

∑
〈ij〉

βj +

√
Γ
2 ξβ

α̇i =
(
i∆ + ig0(βi + β∗i )− κ

2
)
αi − iαL +

√
κ

2 ξα. (5.9)

The fluctuating noise forces ξx(t) and ηα(t) mimic the effects of the zero temperature phonon
bath and the cavity shot noise, respectively. They are independent at each site, have zero means
and the second order moments are delta-correlated, i.e. 〈ξx(t)ξx(t′)〉 = mΓ~Ωδ(t − t′) and
〈ηα(t)η∗α(t′)〉 = κ

2 δ(t − t′). Note that 〈...〉 in this context denotes an average over different
realizations of the stochastic noise terms. A description of this kind has proven good qualitative
agreement with the full quantum dynamics for a single optomechanical cell [54, 194].

The corresponding Hopf equations describe the slow dynamics of the mechanical phases ϕi
and amplitudes Ai (measured in units of the mechanical ground state width xZPF =

√
~/2mΩ):

ϕ̇i = −Ω(Ai) + K

zAi

∑
〈ij〉
Aj cos(ϕj − ϕi) + ξ̃ϕ/Ai

Ȧi = − γ(Ai − Ā)− K

z

∑
〈ij〉
Aj sin(ϕj − ϕi) + ξ̃A. (5.10)

The radiation pressure drives the mechanical motion onto a limit cycle with steady state am-
plitude Ā, amplitude damping rate γ and a modified mechanical frequency Ω(Ai) = Ω −
2g0〈|α|2 cosϕi〉T /Ai, see the discussion in section (4.1) of the previous chapter. The mechanical
coupling terms are yet to be averaged over a mechanical period, 〈...〉T , in order to extract the
relevant slow dynamics. An approach of this kind has been employed to describe the classical
dynamics of an inhomogeneous optomechanical array ([133] and section 4.4 of this thesis). Here,
however, we assume cells with identical properties, but include the effects of quantum noise.

The noise forces acting on the mechanical phases and amplitudes, ξ̃ϕ and ξ̃A, directly follow
from the stochastic terms in the Langevin equations (5.9), as shown by Rodrigues et al. in
[194]. They can be characterized by effective diffusion constants, which are obtained from the
zero-frequency component of the correlators after averaging over a mechanical period T = 2π/Ω
[228, 194]:

2D̃σ =
ˆ ∞
−∞

dτ
( 1
T

ˆ T

0
dt〈ξ̃σ(t+ τ)ξ̃σ(t)〉

)
(5.11)

where σ = {ϕ,A}. This definition is consistent with the expression given above (see Eq. 5.8),
and implies that, in absence of other effects, the phase fluctuations ∆ϕ = ϕ(t) + Ωt describe
a random walk with 〈(∆ϕ(t) − ∆ϕ(0))2〉 = 2D̃ϕt. The definition given in [194] differs slightly,
namely by the factor of 2 on the left hand side of Eq. (5.11). For further details, we refer to
the work of Rodrigues et al. [194], and only reproduce the explicit expressions for the diffusion
constants (in our notation) here:

D̃σ = Γ
2 + κg2

0α
2
L

2
∑
n

1
|hn|2

∣∣∣Jn−1(g0Ā/Ω)
hn−1

± Jn+1(g0Ā/Ω)
hn+1

∣∣∣2, (5.12)

77



5. Many-body effects in optomechanical arrays

where the plus and the minus sign refer to the phase diffusion (i.e. σ = ϕ) and amplitude diffusion
(σ = A), respectively. Jn(y) denotes Bessel functions of the first kind, hn = i(∆̃ + nΩ) + κ/2,
and the effective detuning ∆̃ = ∆ + Gx̄ includes the static shift of the mechanical mode (see
also 4.1). The first term of the diffusion constant, Eq. (5.12), originates from the phonon bath,
while the second term describes the shot noise of an optomechanical cavity in the presence of
mechanical self-oscillations. For vanishing mechanical amplitudes Ā → 0 and in the resolved
sideband regime κ� Ω, the term for optically induced noise reduces to the generic expression of
the optomechanical damping rate, i.e. Γopt/2 ≈ 2g2

0|ᾱ|2/κ [47].
The complexity of the Hopf equations (5.10) can be reduced by integrating out the amplitude

dynamics in a very similar way as shown in [133, 198] and in section (4.4). The fluctuations
of the mechanical amplitudes around the steady state value Ā are given, as a straightforward
generalization of Eq. (4.26), by

δAi(t) ≈ −
KĀ
zγ

∑
〈ij〉

sin(ϕj(t)− ϕi(t)). (5.13)

These beat modes introduce an effective second order coupling between phases at different sites,
as can be seen after plugging Eq. (5.13) into the Hopf equation for ϕi (5.10) and performing the
time averages 〈...〉T :

ϕ̇i = −Ω(Ā) + K

z

∑
〈ij〉

cos(ϕj − ϕi) + K dΩ
z γ

∑
〈ij〉

sin(ϕj − ϕi)

+ K2

2z2γ

∑
〈ij〉

∑
〈jk〉

(
sin(2ϕj − ϕk − ϕi)− sin(ϕk − ϕi)

)
+ K2

2z2γ

∑
〈ij〉

∑
〈ik〉

sin(ϕj + ϕk − 2ϕi) + ξϕ (5.14)

This equation takes into account the second order coupling terms (∼ K2) that were already studied
in [133]. In addition, mechanical phases may couple because the slow amplitude fluctuations shift
the oscillation frequencies. The corresponding coupling term, the third one in the first line of Eq.
(5.14), scales with the coupling strength K and the differential dΩ = Ā dΩ

dA |A=Ā, which stems
from an expansion of Ω(Ai) ≈ Ω(Ā) + δA dΩ

dA |A=Ā.
The stochastic term ξϕ(t) now includes the fluctuations acting directly on the phases, i.e.

ξ̃ϕ/Ai, but also noise that acts on the amplitudes originally. This noise is filtered by the amplitude
dynamics, and the low-frequency part is fed into the phase equation either via the mechanical
frequency shift or the mechanical coupling term. Thus, the diffusion constant associated with ξϕ
is given by

Dϕ = 1
Ā2
(
D̃ϕ + δΩ2 +K2

γ2 D̃A

)
. (5.15)

It fulfills 〈ξϕ(t)ξϕ(t′)〉 = 2Dϕδ(t− t′) and, for K = 0, directly corresponds to the result of [194].
The main message of this equation is the following: Close to the threshold of self-oscillations, i.e.
for small amplitudes and small amplitude damping rates γ, the phase is highly susceptible to noise
(see also Fig. 5.4(c)).

Ultimately, we apply a mean-field approximation to Eq. (5.14): We replace eiϕj for neighboring
cells by 〈eiϕj 〉 ≡ ReiΨ and ei2ϕj by 〈ei2ϕj 〉 ≡ R2e

iΨ2 , where 〈...〉 denotes the average over all
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sites [199]. The resulting equation describes the coupling of the mechanical phase ϕ on a single
site to a mean field Ψ:

ϕ̇ = −Ω(Ā) +KR cos(Ψ− ϕ) +K1R sin(Ψ− ϕ)
+K2R

2 sin(2Ψ− 2ϕ) +K2RR2 sin(Ψ2 −Ψ− ϕ) + ξϕ, (5.16)

where we defined the coupling rates K2 = K2/2γ and K1 = KdΩ/γ − K2. This equation
(5.16) has the form of a mean-field Kuramoto equation [199] in the presence of noise. The most
important coupling term is K1R sin(Ψ − ϕ), which is responsible for the threshold behavior, as
will be shown below. The physical origin of this term can be illustrated as follows: A beat mode
between two neighboring cells, as given in Eq. (5.13), can couple back to the phases of these cells
either via the mechanical frequency shift or the mechanical coupling itself. These two effects can
even counteract each other, namely for dΩ > 0, a situation which we will comment on in more
detail below. The higher order terms proportional to K2 in (5.16) describe how the amplitude
beating between two cells acts on the phase of yet another cell. The term KR cos(Ψ−ϕ), on the
other hand, characterizes the coupling between phases of neighboring sites without any assistance
from the amplitude dynamics.

The Kuramoto-like phase equation (5.16) can now be employed to study the synchronization
transition. In the incoherent regime, the order parameters R and R2 are zero and the mechanical
phase ϕ fluctuates freely. In the coherent regime, i.e. for 0 < R, R2 < 1, on the other hand, the
different coupling terms force the phase ϕ towards a fixed relation with Ψ. We note that, within
the mean-field approximation, only a configuration with ϕ = Ψ is stable. Such a situation can
be generated by the coupling terms proportional to K1 and K2, which provide a restoring force
acting on ϕ as long as K1,2 > 0. The cosine term only renormalizes the oscillation frequency for
ϕ close to Ψ. This statement can be clarified by a linear stability analysis following the approach
of Strogatz et al. [229] for the generic Kuramoto model.

Following [230, 229], we consider the density of the mechanical phases, %(ϕ). It is normalized,´ 2π
0 %(ϕ) = 1, and the order parameter R (R2) and the mean-field Ψ (Ψ2) can be computed from
ReiΨ =

´ 2π
0 eiϕ%(ϕ)dϕ (R2e

iΨ2 =
´ 2π

0 e2iϕ%(ϕ)dϕ). The Fokker-Planck equation [231, 232] for
%(ϕ), corresponding to Eq. (5.16), is given by

∂t%+ ∂ϕ
(
%v
)

= Dϕ∂
2
ϕ% (5.17)

with a velocity

v = −Ω(Ā) +K cos(Ψ−ϕ) +K1R sin(Ψ−ϕ) +K2R
2 sin(2Ψ− 2ϕ) +K2RR2 sin(Ψ2−Ψ−ϕ)

(5.18)
In the unsynchronized regime, the mechanical phases are equally distributed over the interval
[0, 2π], and % = (2π)−1. The behavior at the threshold of synchronization can now be analyzed
by studying the time evolution of a small fluctuation on top of the incoherent background [229].
To this end, we employ the ansatz

%(ϕ) = 1
2π + c(t)eiϕ + c∗(t)e−iϕ, (5.19)

the simplest possible choice, but also a sufficient one: We are only interested in first order
deviations from the incoherent state, to which higher harmonics in %(ϕ) do not contribute. For the
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same reason, we can omit the terms proportional to R2 and RR2 in (5.18). The time evolution
of c(t) is then found from (5.17) as

ċ = −
(
i
(
Ω− K

2
)

+
(
Dϕ −

K1
2
))
c. (5.20)

This equation reveals that the incoherent solution % = (2π)−1 becomes unstable for

K1=2Dϕ. (5.21)

and thus defines a critical coupling strength for the synchronization transition [229]. If, however,
K1 is negative, no stable phase synchronization is possible. This situation arises if dΩ < 0, or
for large intercellular coupling rates K > 2dΩ, and may serve as an explanation for the loss of
synchronization shown in Fig. 5.4(a).

In view of Eq. (5.20), we note that the time evolution of the order parameter R(t) at threshold
follows directly via R(t) = 2π|c|2(t). The above method can also be extended to compute the
time evolution to higher order. Including second harmonics ∼ e2iϕ in the ansatz (5.19) and taking
into account all terms of the velocity (5.18) leads to corrections in (5.20) of the order O(c3).

As an aside, we remark that the homogeneous Kuramoto model at threshold is formally
equivalent to the classical xy-model within the mean-field approximation. In this analogy, the
diffusion rate Dϕ can be interpreted as the critical temperature of the transition, which, in our
case, is tunable via laser frequency and driving strength.

The semiclassical model thus confirms the main observations from the full quantum model.
It predicts a sharp synchronization threshold (see Fig. 5.4(a)), as well as the enhanced phase
diffusion at the onset of self-oscillations. Moreover, it reveals an interesting scaling with the
amplitude damping rate γ: While the strength of the effective coupling rate K1 increases when
lowering γ, this effect does not necessarily facilitate synchronization, since it may be overwhelmed
by the increase of the diffusion rate with γ−2. This is an important observation even for the
classical regime as studied in the previous chapter.

Despite this basic consensus, the semiclassical equations can only give an approximate model
for the full quantum dynamics. They do not take into account higher order correlations and rely
on linearizations around the classical expectation values. Therefore, the semiclassical model can
not capture the regime of strong optomechanical and mechanical coupling, g0,K ∼ κ,Ω. It was
this regime, though, that we analyzed in Figs. 5.3-5.5, intending to observe strong nonlinear
quantum effects. In addition, constraints with regard to computational expenses required us to
stay in the regime of small photon and photon numbers. The simulations for Figs. 5.2-5.5 were
performed in a truncated Hilbert space with up to 14 photon and up to 18 phonon levels (using
a fourth order Runge-Kutta method to integrate the mean-field master equation).

5.5 Experimental requirements and future directions

Observation of the mechanical phase transition does not require single photon strong coupling
(g0 & κ): The quantum fluctuations of the light field will dominate over thermal fluctuations as
long as g2

0|ᾱ|2/κ > kBT/Q. This is essentially the condition for ground-state cooling, which has
been achieved for large photon numbers |ᾱ|2, high-Q mechanical resonators, and by reducing the
temperature T of the surroundings [7, 8]. In contrast, an observation of the photon-blockade effect
(Fig. 5.2) requires both very low temperatures T and g2

0 & Ωκ, or at least g0 & κ. Achieving this
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regime in experiment is still challenging, but experiments are approaching it (see the discussion in
the introduction and in chapter 3).

The potential to design two dimensional arrays has been demonstrated for optomechanical
crystals in [130], and sufficiently strong optical and mechanical hopping rates are feasible, as
shown for comparable structures in [133]. The strongest challenge would likely be the simultaneous
optical driving of many cells, although similar physics may be observed for many cells coupled to
one extended optical mode [133, 134, 125] (thereby effectively realizing global coupling). We
expect the transition to be robust against disorder [133]. Given the flexibility and accuracy
of modern microfabrication methods, one could also study the formation of vortices and other
defects induced by engineered irregularities or periodic variations, and explore various different
lattice structures and topologies.

Additional theoretical works [184] have analyzed the influence of fluctuations between different
sites that are not captured in the mean-field approach. The mean-field approach itself could
be extended to include two mechanical modes per unit cell, and could potentially reveal anti-
ferromagnetic order in the regime where K1 becomes negative. Extended numerical studies may
also be employed to study the differences between the semiclassical model and the full quantum
dynamics, or even track the quantum to classical transition by reducing g0/κ.
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Conclusion and outlook

In this thesis, we have studied the basic collective quantum effects in optomechanical setups with
multiple modes. The main issues discussed in the first parts of the thesis, the generation of
entanglement and the access to nonlinear interactions, are elementary ingredients for potential
quantum applications of multi-mode optomechanical systems. An experimental realization would
pave the way for quantum information processing with phonons and photons. The optomechanical
interaction may then provide the means to perform the basic operations required for continuous-
variable processing, or even to realize quantum gates for photonic and phononic qubits, and it
may also implement QND measurements of the phonon and photon numbers. In addition, the
integration of optomechanical setups with other quantum systems, as discussed above for the
optomechanical interface with a single atom, offers a promising approach to manipulating and
converting quantum information.

Optomechanical arrays also open up the prospect of providing insights into quantum many-
body effects in a driven dissipative system. The mean-field analysis presented here has already
revealed a rich phase diagram, and studies of the full problem in experiments seem to be within
the reach of currently available setups. One may then even think of probing the nonequilibrium
dynamics of optomechanical arrays by sweeping the system parameters (e.g. the laser detuning)
through the phase transition.
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Kollektive Quanteneffekte in
optomechanischen Systemen

Studien optomechanischer Systeme befassen sich typischerweise mit der Wechselwirkung eines
einzelnen mechanischen Resonators mit einer Kavitätsmode. In dieser Arbeit untersuchen wir
kollektive Quanteneffekte in optomechanischen Systemen, die aus zwei oder mehreren optischen
und mechanischen Moden bestehen.

Zunächst befassen wir uns damit, wie quantenmechanische Verschränkung zwischen zwei
mechanischen Resonatoren mit Hilfe optischer Kavitätsmoden erzeugt, aber auch vernichtet wer-
den kann. Wir beschreiben auch, wie die optomechanische Kopplung genutzt werden kann, um
die Bewegung einer mikromechanischen Membran und eines einzelnen Atoms stark miteinander
zu koppeln und zu verschränken.

Darüber hinaus zeigen wir, dass eine Anordnung aus zwei optischen und einer mechanischen
Mode zu verstärkten nichtlinearen Wechselwirkungen führt, und wie diese dazu genutzt werden
können, die Phonon- und Photonzahlen nicht-destruktiv zu messen.

Schließlich untersuchen wir quantenmechanischen Vielteilcheneffekte in Anordnungen aus vie-
len optomechanischen Systemen. Insbesondere erforschen wir den Übergang von einem ungeord-
neten Zustand, bedingt durch quantenmechanisches Rauschen, zu einem kollektiven Zustand mit
Phasen-kohärenten mechanischen Oszillationen. Als Zwischenschritt zu diesen Studien betrachten
wir auch die nichtlineare klassische Dynamik in optomechanischen Systemen mit einzelnen oder
mehreren Moden und vergleichen die theoretischen Vorhersagen mit experimentellen Daten.
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