

	Log InEmail addressPassword Log in
or
 Log in with Shibboleth

New user? Click here to register.Have you forgotten your password?

	 English
	 Deutsch

[image: Repository logo]	Faculties & Collections

All of Repository
	Statistics

	FAQ

	 English
	 Deutsch

	Log InEmail addressPassword Log in
or
 Log in with Shibboleth

New user? Click here to register.Have you forgotten your password?

	Home

	Fakultäten / Faculties

	Technische Fakultät

	A Compiler for Symbolic Code Generation for Tightly Coupled Processor Arrays

A Compiler for Symbolic Code Generation for Tightly Coupled Processor Arrays

Files
17754_MichaelWitteraufDissertation.pdf (5.53 MB)

Language
en
Show more

Document Type
Doctoral Thesis
Show more

Issue Date
2021-12-06
Show more

Issue Year
2021
Show more

Authors
Witterauf, Michael

Editor

Abstract
This dissertation presents symbolic loop compilation, the first full-fledged approach to symbolically map loop nests onto tightly coupled processor arrays (TCPAs), a class of loop accelerators that consist of a grid of processing elements (PEs). It is:
Full-fledged because it covers all steps of compilation, including space-time mapping, code generation, and generation of configuration data for all involved hardware components. A full-fledged compiler is paramount because manual mapping for accelerators, such as TCPAs, is difficult, tedious, and, most of all, error-prone. Symbolic because symbolic loop compilation assumes the loop bounds and number of allocated PEs to be unknown during compile time, thus allowing them to be chosen at run time.This flexibility benefits resource-aware applications where the number of PEs is known only at run time.

Symbolic loop compilation is a hybrid static/dynamic approach with two phases:
At compile time, all involved NP-hard problems (such as resource-constrained modulo scheduling) are solved symbolically, resulting in a so-called symbolic configuration, which is a space-efficient intermediate representation parameterized in the loop bounds and number of PEs.
This phase is called symbolic mapping.
Because it takes place at compile time, there is ample time to solve the involved NP-hard problems.
At run time, for each requested accelerated execution of a loop program with given loop bounds and number of allocated PEs, concrete PE programs and configuration data are generated from the symbolic configuration according to these parameter values.
This phase is called instantiation.

In the context of these two phases, this dissertation presents the following contributions:

	Symbolic modulo scheduling is a technique for solving resource-constrained modulo scheduling for multi-dimensional loop nests when the loop bounds and number of available PEs are unknown. We show that a latency-minimal solution can be found if the number of PEs is known beforehand and a near latency-minimal solution if it is not. 2. Polyhedral syntax trees are a space-efficient, parameterized representation of a set of PE program variants from which the necessary concrete PE programs are generated at run time. 3. Instantiation includes methods to generate concrete programs and configuration data from a symbolic configuration in a manner whose time complexity is not proportional to the loop bounds or number of allocated PEs. 4. Run-time enforcement for loops is a technique that utilizes the flexibility granted by symbolic loop compilation to enforce requirements on non-functional properties by dynamically adapting the mapping before execution. An example is to allocate a number of PEs that satisfies a given latency bound.

In summary, the methods presented in this dissertation enable, for the first time, the full-fledged symbolic compilation of loop nests onto TCPAs.
Without these methods, a given loop nest would need to be fully recompiled each time the loop bounds or number of available PEs change, which would render run-time mapping impractical and even conventional compilation overly time- and space-consuming.

Show more

URI
 https://open.fau.de/handle/openfau/17754

DOI

URN
 https://nbn-resolving.org/urn:nbn:de:bvb:29-opus4-177546

Document's Licence
 https://creativecommons.org/licenses/by-nc-nd/4.0/deed.de

Faculties & Collections
Technische Fakultät

Zugehörige ORCIDs
 Teich, Jürgen [image: ORCID logo]

 Show Metadata

[image: Repository logo]

	Cookie settings
	Privacy policy
	Send Feedback
	

	Legal Notice
	Accessibility
	Universitätsbibliothek
	Contact

