LS Thermodynamik / Thermische Verfahrenstechnik
Refine
Document Type
- Doctoral thesis (3)
Has Fulltext
- yes (3)
Is part of the Bibliography
- no (3)
Year of publication
- 2014 (3)
Keywords
- CFD (2)
- NOx (2)
- APT (1)
- Approximation (1)
- Bibliothek (1)
- Diesel (1)
- Dieselmotor (1)
- Engine (1)
- Flamelet (1)
- Flammenlose Verbrennung (1)
Institute
Diese Dissertation befasst sich mit der numerischen Simulation von Verbrennung sowie Ruß- und NOx-Emissionen in Dieselmotoren.
Für die Rußsimulation wurde das detaillierte Rußmodell von Prof. Dr. F. Mauß angewandt, das auf einer Flamelet-Bibliothek basiert (engl. Flamelet Library of Sources – FLOS). Dabei wird die detaillierte Chemie a priori gelöst und tabelliert, wodurch eine Berücksichtigung von lokalen Chemie- und Turbulenzeffekten bei akzeptablen CPU-Rechenzeiten ermöglicht wird. Unter der berechtigten Annahme, dass die Rußchemie viel langsamer als die turbulenten Längenskalen im Strömungsfeld ist, können Rußreaktionsraten vorausberechnet und in der FLOS tabelliert werden. Des Weiteren wurde ein ähnlich gestaltetes NOx-Modell entwickelt, das auch auf einem Flamelet-Bibliotheksansatz basiert.
Eine große Herausforderung bei der Anwendung von Flamelet-Bibliotheksansätzen ist die Kopplung zum CFD-Code. Eines der Hauptziele dieser Arbeit ist die Entwicklung einer neuen Methode, mit der die Kopplung zum CFD-Code verbessert wird. Der vorgeschlagene Ansatz weist eine weitere Bibliothek auf, in der Temperaturprofile von stationären Flamelets tabelliert sind. Mithilfe dieser zusätzlichen Bibliothek kann das Flamelet ausgewählt werden, das genau den thermodynamischen Bedingungen und der Gemischzusammensetzung in der CFD-Zelle entspricht. Damit wird die Konsistenz zwischen FLOS und CFD-Code hinsichtlich Mischungs-bruch und Temperatur gewährleistet.
Weitere Optimierung der Kopplung zwischen FLOS und dem CFD-Code wurde durch die Berücksichtigung der lokalen Acetylenkonzentration erreicht. Das Rußmodell ist unabhängig von dem in der CFD-Software verwendeten Verbrennungsmodell. Somit werden die Verbrennungsvorgänge in der Gasphase vom Rußmodell nicht beeinflusst. Gleichzeitig wird das Rußmodell von der Gasphasenchemie nicht beeinflusst. Während der stationären Flamelet-Rechnungen ist die lokale Rußoberfläche, von der das Oberflächenwachstum direkt abhängt, nicht bekannt. Aus diesem Grund kann der Acetylenverbrauch durch Rußoberflächenwachstum in der FLOS nicht explizit berechnet werden. Deshalb wurde das Acetylen-Feedback eingeführt: eine Limitierung der Rußoberflächenwachstumsrate, die die lokale Acetylenkonzentration berücksichtigt.
Das FLOS-Modell und die neu entwickelten Ansätze wurden mit dem CFD-Code STAR-CD© gekoppelt. Das resultierende CFD-Paket wurde für dieselmotorische Verbrennungs- und Emissionssimulation eingesetzt. Der Schwerpunkt der numerischen Untersuchungen lag auf dem Einfluss der AGR-Rate und der Einspritzstrategie auf die Verbrennung und die dabei entstehenden Ruß- und NOx-Emissionen. In diesem Kontext wurde über die Qualität des CFD-Setups und der Verbrennungssimulation diskutiert, die für eine zuverlässige Rußsimulation erforderlich ist. Die Simulationsergebnisse wurden mit experimentellen und diagnostischen Daten verglichen und zeigen eine sehr gute Übereinstimmung für die im Rahmen dieser Arbeit untersuchten Betriebspunkte. Diese Ergebnisse zeigen das Potenzial der verbrennungs-motorischen CFD-Simulation hinsichtlich Brennverfahrensoptimierung auf.
The environmental emergency has led to the development of new combustion technologies. In this context, flameless combustion (FC in this manuscript) offers the prospect of a less polluting and more efficient technology. In FC, combustion is strongly diluted with recirculated burnt gases. Consequently the oxygen content is reduced and temperature peaks are smoothed, yielding reduced heat release. These conditions dramatically reduce the conditions of NO pollutant formation and increase the efficiency of the combustion process. Being FC a relatively new technology, it still needs optimization and R&D, which can be expensive and time consuming. Potentially, CFD can reduce both the financial costs as well as the R&D projects length. The context in which this thesis is inserted is exactly the numerical modeling of FC, by using Large Eddy Smulations for its better prediction of the turbulent ternary mixing (fuel - burnt gases -air), compared to RANS. This work has been divided into two main parts. In the first, combustion in FC has been investigated by means of a new tabulated combustion model initially written in the context of the EC-KIAI project and developed and adapted to FC in this thesis. The model uses diluted homogeneous reactors DHR to simulate FC and it was developed to account for under adiabatic enthalpy losses and the ternary mixing typical of FC. The model was firstly validated on a non-premixed flame academical configuration called Flame D and subsequently on a real FC combustor from the work of Verissimo et al. The results obtained for these configurations are quite correct although some discrepancies in CO prediction are observed. In the second part of the thesis, the NO pollutant modeling in FC is investigated. With this aim, the Diffusion Flame - NO relaxation approach DF-NORA was developed. It consists in tabulating the NO relaxation towards equilibrium of the NO source term in a flamelet structure. As done in the first part, the model was first validated on Flame D and then employed in a real FC configuration. Results are quite satisfactory in both config- urations. The encouraging results obtained in this work open the possibility of applying the proposed developments to real industrial configurations in the future.
In this work Adaptive Polynomial Tabulation (APT) is presented. It is a new approach to solve the initial value chemical rate equation system. In this approach zeroeth, first and second order polynomials are used in real-time to approximate the solution of the initial value chemical rate equation system. The sizes of the local regions encountered for the different orders of polynomial approximation are calculated in real-time. To improve accuracy the chemical state space is partitioned into hypercubes. During calculations the hypercubes accessed by the reactive mixture are divided into adaptive hypercubes depending on the accuracy of the local solution. Mixture initial conditions are stored in the adaptive hypercubes. Around each stored initial condition two concentric ellipsoids of accuracy (EOA) are defined. These include the ISAT and identical EOAs. The time evolution of mixture initial conditions which encounter an identical and ISAT EOA are approximated by zero and first order polynomials respectively. With a certain number of stored initial conditions within an adaptive hypercube, its second order polynomial coefficients are constructed from the stored initial conditions. The time evolution of additional mixture initial conditions that encounter this adaptive hypercube are approximated with second order polynomials. The APT model is simplified by the replacement of the entire set of species mass fractions with a progress variable based on the enthalpy of formation evaluated at 298 K. APT has 3 degrees of freedom which include the progress variable, total enthalpy and pressure. The APT model was tested with a zero dimensional Stochastic Reactor Model (SRM) for HCCI engine combustion. A skeletal n-heptane/toluene mechanism with 148 chemical species and 1281 reactions was used. In the tests, the HCCI engine simulations using APT were in very good agreement with the model calculations using the ODE solver. The cool flame and main ignition events were accurately captured. The major and minor species were also accurately captured by APT. In SRM-HCCI calculations without cyclic variations, a computational speed up factor greater than 1000 was obtained when APT was used for all the operating points considered without significant loss in accuracy. For the SRM-HCCI engine calculations with cyclic variations, APT demonstrated a computational speed up exceeding 12 without significant loss in accuracy.
