Refine
Document Type
- Doctoral thesis (17)
Has Fulltext
- yes (17)
Is part of the Bibliography
- no (17)
Year of publication
Keywords
- CFD (3)
- NOx (3)
- Numerische Strömungssimulation (3)
- Reaction mechanism (3)
- Reaktionsmechanismus (3)
- Verbrennung (3)
- Braunkohle (2)
- Combustion (2)
- Computational fluid dynamics (2)
- Energiespeicher (2)
Im Rahmen dieser Arbeit wurde ein Berechnungsmodell zur thermisch-geometrischen Dimensionierung eines kontinuierlich arbeitenden Druck-Wirbelschicht-Verdampfungs-Trockners mit Tauchheizflächen für polydisperse Braunkohle erstellt. Zunächst wurde auf Basis experimenteller Ergebnisse eine strukturell optimierte Grundgleichung zur Beschreibung des zeitlichen Feuchteverlaufes entwickelt. Dabei wurden die Besonderheiten des Trocknungsgutes (z.B. die Polydispersität und die Ausbildung einer Gleichgewichtsfeuchte) berücksichtigt. Mit Hilfe der für den Trockner aufgestellten Energiebilanzen wurde ein Modell zur Beschreibung des zeitlichen Verdampfungstrocknungsverlaufes entwickelt. Dabei wurde auch der Einfluss des Druckes in den Subgleichungen und Stoffwertberechnungen berücksichtigt. (Der Überdruck ist einer der Hauptunterschiede der DDWT zu zahlreichen anderen Trocknungsverfahren). Weiterführend wurde unter Anwendung der Gleichungen zur Beschreibung der wirbelschicht-bedingten asymmetrischen Verweilzeitverteilung ein Gesamtmodell – das Trockner-Auslegungs-Modell (TRAM) – entwickelt und die Modellarchitektur detailliert beschrieben.
Development of a hierarchically detailed chemical reaction mechanism from C₃ to C₅ hydrocarbons
(2022)
The oxidation of fuel molecules can be described by using a reaction mechanism, a tool that combines thermodynamic and transport properties with reaction rates to predict the behavior and sub-products at different temperatures, pressures and equivalence ratios. A detailed reaction mechanism helps to understand the fuel-specific pollutant formation process. The aim of this doctoral thesis is to generate a hierarchically-detailed chemical reaction mechanism from C3 to C5 hydrocarbons that can be used to understand the reaction decomposition pathways for different fuels at high temperature regime, e.g. propene, propane, butane isomers, butene isomers and pentene isomers. A new nomenclature based in the IUPAC rules, has been developed and implemented as part of this work. The naming follows the order of priority for choosing a principal characteristic group. These naming rules and some examples are explained here. As starting point for this investigation, the chemical model presented in Schenk et al. (2013) has been used. Thermodynamic data for sensitive species from C3 chemistry were revised and updated. Updates in reaction rates for n-butane (C4H10) and iso-butane (C4H10-Me2) are shown. The chemistry of the butene (C4H8) isomers have been revised and a correction taking into account the H-atom allyl abstraction is implemented. Laminar flame speeds and ignition delay times for the different isomers are presented and discussed together with experiments in similar conditions for burner-stabilized flame for the three butene and butane isomers.
The high-temperature chemistry for branched and linear C5H10 species is implemented in the model. 2-Methyl-2-butene (C5H10-D2Me2) is the most interesting isomer because 9 of its 10 C-H atoms are in allylic position and it is compared to n-Pentane as an example of a linear molecule. The validation of a burner-stabilized flame, ignition delay time, and laminar flame speed experiments for these fuels are presented and discussed. The compilation strategy was used and it aims to continuously increase the number and type of targets for mechanism validation.
This thesis is a combined work of understanding the high temperature oxidation chemistry of cycloalkanes viz. methylcyclohexane based on previously developed cyclohexane and extending it to generate the larger n-propylcyclohexane chemical kinetic mechanism. The detailed kinetic reaction mechanism model for the oxidation of 1-hexene previously developed has been added to account for the ring opening of cyclohexane forming 1-hexene. As an update to the publication, preference of allylic H-abstractions from 1-hexene has been taken into account and retro-ene reaction producing propene has been added. The complete model is composed of 329 species and 2065 reactions with 3796 reversible elementary reactions. Further, these models have been validated against different experiments such as shock tubes, jet stirred reactors and laminar flames to cover full range of temperatures, pressures and equivalence ratios making the models comprehensive and was found to be adequate to satisfactorily reproduce the experimental data. The allylic radicals (C₆H₁₁-D1R3) preferred abstractions from 1-hexene improves the C₆H₁₁ profiles in the 1-hexene model. But it also influences the otherwise isomerization path of C₆H1₁₁-D1R6 to CYC₆H₁₁ (Cyclohexyl radical) which would further form cyclohexene (CYC₆H₁₀). It is observed that CYC₆H₁₀ profiles in 1-hexene flames and cyclohexane speciation are over-predicted. The major decomposition pathway of the cycloalkanes is through H-abstractions on the ring. The path which leads towards ring opening to form olefin is observed for cyclohexane and methylcyclohexane but is very low. The fulvene pathway influence on benzene profiles of 1-hexene is obvious but do not seem to affect the cycloalkanes. This infers there are other benzene formation pathways in cycloalkanes. Some possible pathways would be the dehydrogenation of dienes and dehydrogenation of cyclo-olefins.
Fundamental study on surrogates for commercially available fuels under engine-like conditions
(2025)
The increasing global energy demand, driven by technological advancements and population growth, has led to a significant rise in crude oil consumption. This trend is expected to continue until 2040 due to the lack of viable alternatives for sectors such as road freight, aviation, and petrochemicals. The combustion of fossil fuels, however, results in the emission of toxic and carcinogenic pollutants, including particulate matter (PM) and nitrogen oxides (NOx). This thesis aims to enhance the understanding of the formation and decomposition pathways of these pollutants under engine-like conditions using surrogate fuels.
The research was conducted at the Brandenburg University of Technology Cottbus-Senftenberg, funded by the EU FP7 Marie Skłodowska Curie action, Initial Training Network (ITN) project ECCO-MATE. The project involved collaboration with 11 key partners from academia and industry across Europe and Japan. The primary objective was to develop and implement novel combustion technologies for marine and automotive engines to improve efficiency and meet stringent emission standards.
Experimental studies were carried out using various analytical techniques, including gas chromatography, gas analysis, and luminescence techniques. These methods were optimized for engine-like conditions to investigate the formation of PM and NOx. The research utilized a range of experimental facilities, such as shock tubes and rapid compression machines, to measure ignition delay times and flame speciation. The study also involved the characterization of commercial fuels and the selection of surrogate fuels to represent their properties.
The findings indicate that the addition of diluents, such as nitrogen and carbon dioxide, can significantly reduce the formation of NOx and PM. The use of oxygenated fuels, like dimethyl ether (DME), was found to enhance combustion efficiency and reduce pollutant emissions. The research also highlighted the importance of understanding the chemical kinetics of fuel decomposition and the role of polycyclic aromatic hydrocarbons (PAHs) in soot formation.
Overall, this thesis provides valuable insights into the combustion behavior of surrogate fuels under engine-like conditions. The results contribute to the development of cleaner and more efficient combustion technologies for the automotive and marine sectors, aligning with global efforts to reduce the environmental impact of fossil fuel consumption.
In der vorliegenden Arbeit werden die Modellierung und die numerische Simulation von Strömung, Wärme- und Stofftransport zur Abbildung eines Trocknungsprozesses von Braunkohlepartikeln in einer blasenbildenden Wirbelschicht behandelt. Hierbei wird das Euler-Euler Two Fluid Model zugrunde gelegt und die Beschreibung des Fließverhaltens der Feststoffphase mittels der Kinetic Theory of Granular Flow realisiert. Ausgehend von einem Überblick zum aktuellen Stand der Forschung wird der Bedarf nach einer geeigneten Konfiguration von Modellparametern und Submodellen hinsichtlich der Strömungsmodellierung sowie nach der Implementierung eines Trocknungsmodells abgeleitet und als Zielsetzung formuliert.
Experimentelle Voruntersuchungen an einer Wirbelschichtanlage im Labormaßstab schaffen die Datenbasis für die spätere Validierung des Modells. Dabei erfolgt zunächst eine Betrachtung einzelner Zustandspunkte von diskontinuierlichen Trocknungsprozessen, um die darin auftretenden, strömungstechnischen Veränderungen zu quantifizieren. Zur Bewertung werden die makroskopischen Eigenschaften sowie Charakteristiken meso- und mikroskaliger Strömungstrukturen herangezogen, die sich aus der Analyse von Druckfluktuationen ergeben. Des Weiteren werden die Trocknungsverläufe mehrerer Chargen für verschiedene Betriebsparameter aufgezeichnet.
In einem ersten Untersuchungsschwerpunkt werden ausschließlich strömungsmechanische Aspekte fokussiert. Auf Basis umfangreicher Sensitivitätsanalysen zu den Einflüssen der rheologisch relevanten Parameter, der Impulsaustauschfunktion einschließlich der Partikelsphärizität und der Randbedingungen für Behälterwand und Gaseinlass, sowie durch Vergleiche mit den experimentellen Daten wird eine Parameterkonfiguration des Strömungsmodells vorgeschlagen. Die damit erzielten Ergebnisse sind insgesamt zufriedenstellend und geben die beobachteten Veränderungen im Trocknungsprozess korrekt wieder. Ursachen für bestehende Abweichungen zum Experiment werden diskutiert.
Im zweiten Untersuchungsschwerpunkt wird der gesamte Trocknungsprozess betrachtet. Hierzu werden Wärme- und Stofftransportmechanismen innerhalb des Modells berücksichtigt, wobei die eigens implementierte Trocknungskinetik auf Ebene der Partikel ansetzt. Die Einflüsse der Sphärizität und zwei verschiedener Formulierungen zur Berechnung der Wärme- und Stoffübergangskoeffizienten werden untersucht. Für den favorisierten Parametersatz werden die Simulationen mit einem expliziten Vorwärtsverfahren gekoppelt, wodurch die Trocknungsverläufe auf makroskopischer Zeitskale approximiert und somit mit den experimentellen Daten verglichen werden können. Es wird gezeigt, dass das vorgeschlagene Gesamtmodell die Trocknungsverläufe bei niedrigen bis mäßigen Leerrohrgeschwindigkeiten zuverlässig abbilden kann. Auftretende Diskrepanzen werden diskutiert und weiterer Entwicklungsbedarf abgeleitet.
Sophisticated engine knock modeling supports the optimization of the thermal efficiency of spark ignition engines. For this purpose the presented work introduces the resonance theory (Bradley and co-workers, 2002) for three-dimensional Reynolds-Averaged Navier-Stokes (RANS) and for the zero-dimensional Spark Ignition Stochastic Reactor Model (SI-SRM) simulations. Hereby, the auto-ignition in the unburnt gases is investigated directly instead of the resulting pressure fluctuations. Based on the detonation diagram auto-ignition events can be classified to be in acceptable deflagration regime or possibly turn to a harmful developing detonation.
Combustion is modeled using detailed chemistry and formulations for turbulent flame propagation. The use of detailed chemistry caters for the prediction of physical and chemical properties, such as the octane rating, C:H:O-ratio or dilution. For both models, the laminar flame speed is retrieved from surrogate specific look-up tables compiled using the reaction mechanism for Ethanol containing Toluene Reference Fuels by Seidel (2017). In the fresh gas zone, the scheme is used for auto-ignition prediction. For this purpose, the G-equation coupled with a Well-Stirred-Reactor model is applied in RANS. In analogy, in the SI-SRM the combustion is modeled using a two zone model with stochastic mixing between the particles.
RANS is used to develop the knock classification methodology and to analyze in detail location, size and shape of the auto-ignition kernels. RANS estimates the ensemble average of the process and therefore cannot reproduce a developing detonation. Hence, Large Eddy Simulation (LES) is used to verify the methodology. Studies using wide ranges of surrogates with different octane rating and cycle-to-cycle variations are carried out using the computationally efficient SI-SRM. Cyclic variations are predicted based on stochastic mixing, stochastic heat transfer to the wall, varying exhaust gas recirculation composition and imposed probability density functions for the inflammation time and the scaling of the mixing time retrieved from RANS.
The methodology is verified for spark timing and octane rating. It is shown that the surrogate formulation has an important impact on knock prediction.
RANS is suitable to predict the mean strength of auto-ignition in the unburnt gas if the thermodynamic and chemical state of the ignition kernel is analyzed instead of the pressure gradients. The probability of the transition to knocking combustion can be determined. Good agreement between RANS and SI-SRM are obtained. The combination of both tools gives insights of local effects using RANS and the distribution of auto-ignition in the whole pressure range of an operating point using SI-SRM with reasonable computationally cost for development purposes.
In this work Adaptive Polynomial Tabulation (APT) is presented. It is a new approach to solve the initial value chemical rate equation system. In this approach zeroeth, first and second order polynomials are used in real-time to approximate the solution of the initial value chemical rate equation system. The sizes of the local regions encountered for the different orders of polynomial approximation are calculated in real-time. To improve accuracy the chemical state space is partitioned into hypercubes. During calculations the hypercubes accessed by the reactive mixture are divided into adaptive hypercubes depending on the accuracy of the local solution. Mixture initial conditions are stored in the adaptive hypercubes. Around each stored initial condition two concentric ellipsoids of accuracy (EOA) are defined. These include the ISAT and identical EOAs. The time evolution of mixture initial conditions which encounter an identical and ISAT EOA are approximated by zero and first order polynomials respectively. With a certain number of stored initial conditions within an adaptive hypercube, its second order polynomial coefficients are constructed from the stored initial conditions. The time evolution of additional mixture initial conditions that encounter this adaptive hypercube are approximated with second order polynomials. The APT model is simplified by the replacement of the entire set of species mass fractions with a progress variable based on the enthalpy of formation evaluated at 298 K. APT has 3 degrees of freedom which include the progress variable, total enthalpy and pressure. The APT model was tested with a zero dimensional Stochastic Reactor Model (SRM) for HCCI engine combustion. A skeletal n-heptane/toluene mechanism with 148 chemical species and 1281 reactions was used. In the tests, the HCCI engine simulations using APT were in very good agreement with the model calculations using the ODE solver. The cool flame and main ignition events were accurately captured. The major and minor species were also accurately captured by APT. In SRM-HCCI calculations without cyclic variations, a computational speed up factor greater than 1000 was obtained when APT was used for all the operating points considered without significant loss in accuracy. For the SRM-HCCI engine calculations with cyclic variations, APT demonstrated a computational speed up exceeding 12 without significant loss in accuracy.
This thesis summarizes the author’s developments of combustion models and multi-objective optimization methods for gasoline and diesel engines. The combustion models belong to the family of zero-dimensional stochastic reactor models introduced in the 1990s to improve the prediction of emissions with detailed chemistry in partially stirred reactors.
The first part introduces the fundamentals of the physical and chemical models describing the combustion process. As a novelty, k−ε turbulence models were implemented in the stochastic reactor model to predict the turbulent time and length scales in gasoline and diesel engines. This development allowed an improvement of the models for convective heat transfer, fuel evaporation, gas exchange across the valves, turbulent flame propagation and crevice flow, which depend on the turbulent time and length scales.
In the second part, the multi-objective optimization platform for automatic training of the stochastic reactor model is presented. The optimization method considers multiple operating points to find a set of model parameters that predict performance and emissions over the entire engine map. The Non-domination Sorting Genetic Algorithm II is combined with the stochastic reactor model and response surface models to find the best Pareto front. Multi-criteria decision making is used to select the best designs from the Pareto front.
Finally, the third part of this thesis deals with the validation of the stochastic reactor model and the multi-objective optimization platform. For this purpose, experiments of two single-cylinder research engines with spark ignition, one passenger car engine with compression ignition and one heavy duty engine with compression ignition are used. For the spark ignition engines, a set of model parameters was found that predicts well the power and emissions over the whole engine map. The calculated turbulent kinetic energy, dissipation, and angular momentum follow the trends of the three-dimensional computational fluid dynamic simulations to a good approximation for various operating points. For the two compression ignition engines, the prediction of combustion progress and nitrogen oxide emissions are in good agreement with the experiments. Larger discrepancies were found for the prediction of carbon monoxide and unburned hydrocarbon. Optimization of the soot model parameters improves the prediction of soot mass for operating points throughout the engine map.
The environmental emergency has led to the development of new combustion technologies. In this context, flameless combustion (FC in this manuscript) offers the prospect of a less polluting and more efficient technology. In FC, combustion is strongly diluted with recirculated burnt gases. Consequently the oxygen content is reduced and temperature peaks are smoothed, yielding reduced heat release. These conditions dramatically reduce the conditions of NO pollutant formation and increase the efficiency of the combustion process. Being FC a relatively new technology, it still needs optimization and R&D, which can be expensive and time consuming. Potentially, CFD can reduce both the financial costs as well as the R&D projects length. The context in which this thesis is inserted is exactly the numerical modeling of FC, by using Large Eddy Smulations for its better prediction of the turbulent ternary mixing (fuel - burnt gases -air), compared to RANS. This work has been divided into two main parts. In the first, combustion in FC has been investigated by means of a new tabulated combustion model initially written in the context of the EC-KIAI project and developed and adapted to FC in this thesis. The model uses diluted homogeneous reactors DHR to simulate FC and it was developed to account for under adiabatic enthalpy losses and the ternary mixing typical of FC. The model was firstly validated on a non-premixed flame academical configuration called Flame D and subsequently on a real FC combustor from the work of Verissimo et al. The results obtained for these configurations are quite correct although some discrepancies in CO prediction are observed. In the second part of the thesis, the NO pollutant modeling in FC is investigated. With this aim, the Diffusion Flame - NO relaxation approach DF-NORA was developed. It consists in tabulating the NO relaxation towards equilibrium of the NO source term in a flamelet structure. As done in the first part, the model was first validated on Flame D and then employed in a real FC configuration. Results are quite satisfactory in both config- urations. The encouraging results obtained in this work open the possibility of applying the proposed developments to real industrial configurations in the future.
Diese Dissertation befasst sich mit der numerischen Simulation von Verbrennung sowie Ruß- und NOx-Emissionen in Dieselmotoren.
Für die Rußsimulation wurde das detaillierte Rußmodell von Prof. Dr. F. Mauß angewandt, das auf einer Flamelet-Bibliothek basiert (engl. Flamelet Library of Sources – FLOS). Dabei wird die detaillierte Chemie a priori gelöst und tabelliert, wodurch eine Berücksichtigung von lokalen Chemie- und Turbulenzeffekten bei akzeptablen CPU-Rechenzeiten ermöglicht wird. Unter der berechtigten Annahme, dass die Rußchemie viel langsamer als die turbulenten Längenskalen im Strömungsfeld ist, können Rußreaktionsraten vorausberechnet und in der FLOS tabelliert werden. Des Weiteren wurde ein ähnlich gestaltetes NOx-Modell entwickelt, das auch auf einem Flamelet-Bibliotheksansatz basiert.
Eine große Herausforderung bei der Anwendung von Flamelet-Bibliotheksansätzen ist die Kopplung zum CFD-Code. Eines der Hauptziele dieser Arbeit ist die Entwicklung einer neuen Methode, mit der die Kopplung zum CFD-Code verbessert wird. Der vorgeschlagene Ansatz weist eine weitere Bibliothek auf, in der Temperaturprofile von stationären Flamelets tabelliert sind. Mithilfe dieser zusätzlichen Bibliothek kann das Flamelet ausgewählt werden, das genau den thermodynamischen Bedingungen und der Gemischzusammensetzung in der CFD-Zelle entspricht. Damit wird die Konsistenz zwischen FLOS und CFD-Code hinsichtlich Mischungs-bruch und Temperatur gewährleistet.
Weitere Optimierung der Kopplung zwischen FLOS und dem CFD-Code wurde durch die Berücksichtigung der lokalen Acetylenkonzentration erreicht. Das Rußmodell ist unabhängig von dem in der CFD-Software verwendeten Verbrennungsmodell. Somit werden die Verbrennungsvorgänge in der Gasphase vom Rußmodell nicht beeinflusst. Gleichzeitig wird das Rußmodell von der Gasphasenchemie nicht beeinflusst. Während der stationären Flamelet-Rechnungen ist die lokale Rußoberfläche, von der das Oberflächenwachstum direkt abhängt, nicht bekannt. Aus diesem Grund kann der Acetylenverbrauch durch Rußoberflächenwachstum in der FLOS nicht explizit berechnet werden. Deshalb wurde das Acetylen-Feedback eingeführt: eine Limitierung der Rußoberflächenwachstumsrate, die die lokale Acetylenkonzentration berücksichtigt.
Das FLOS-Modell und die neu entwickelten Ansätze wurden mit dem CFD-Code STAR-CD© gekoppelt. Das resultierende CFD-Paket wurde für dieselmotorische Verbrennungs- und Emissionssimulation eingesetzt. Der Schwerpunkt der numerischen Untersuchungen lag auf dem Einfluss der AGR-Rate und der Einspritzstrategie auf die Verbrennung und die dabei entstehenden Ruß- und NOx-Emissionen. In diesem Kontext wurde über die Qualität des CFD-Setups und der Verbrennungssimulation diskutiert, die für eine zuverlässige Rußsimulation erforderlich ist. Die Simulationsergebnisse wurden mit experimentellen und diagnostischen Daten verglichen und zeigen eine sehr gute Übereinstimmung für die im Rahmen dieser Arbeit untersuchten Betriebspunkte. Diese Ergebnisse zeigen das Potenzial der verbrennungs-motorischen CFD-Simulation hinsichtlich Brennverfahrensoptimierung auf.
