The search result changed since you submitted your search request. Documents might be displayed in a different sort order.
  • search hit 9 of 26
Back to Result List

Plasma enhanced growth of GaN single crystalline layers from vapour phase

Plasmaunterstützte Züchtung von einkristallinen GaN-Schichten aus der Gasphase

  • Gallium nitride (GaN) is a III-V semiconductor, characterized by direct, wide band gap of 3.4 eV at RT. As a material of particular interest for opto- and power electronics applications, it has been thoroughly studied in recent years. Utilization of GaN homoepitaxy in manufacturing of laser diodes (LDs), light-emitting diodes (LEDs), power devices, etc. would be beneficial in terms of reducing defect density, thus improving their lifetime and performance. Yet cost-effective process for providing native GaN substrates has not been established so far. The focus of this work is put on development of a new method to grow single crystalline GaN layers from Ga vapour. Our approach exploits microwave (MW) plasma as a source of excited nitrogen species, in contrast to classical physical vapour transport (PVT)-based technique, in which ammonia (NH3) serves as a source of reactive nitrogen. Novelty of MW plasma enhanced growth of GaN from vapour lies in MW nitrogen plasma formation in the vicinity of the seed, at moderate pressure (200 – 800Gallium nitride (GaN) is a III-V semiconductor, characterized by direct, wide band gap of 3.4 eV at RT. As a material of particular interest for opto- and power electronics applications, it has been thoroughly studied in recent years. Utilization of GaN homoepitaxy in manufacturing of laser diodes (LDs), light-emitting diodes (LEDs), power devices, etc. would be beneficial in terms of reducing defect density, thus improving their lifetime and performance. Yet cost-effective process for providing native GaN substrates has not been established so far. The focus of this work is put on development of a new method to grow single crystalline GaN layers from Ga vapour. Our approach exploits microwave (MW) plasma as a source of excited nitrogen species, in contrast to classical physical vapour transport (PVT)-based technique, in which ammonia (NH3) serves as a source of reactive nitrogen. Novelty of MW plasma enhanced growth of GaN from vapour lies in MW nitrogen plasma formation in the vicinity of the seed, at moderate pressure (200 – 800 mbar range), and concurrent physical vapour transport of Ga to the growth zone. Simulations of the growth setup (HEpiGaN software) and of the MW plasma source (CST Microwave software) have followed the extensive investigations of material properties. The growth setup and the MW plasma source, with the resonance cavity being its crucial part, have been constructed and implemented into the existing growth reactor. The stability of MW plasma in function of temperature and pressure has been studied along with its influence on the seed temperature, and thus on the growth conditions. Furthermore, optical emission spectroscopy (OES) has been utilized for in-situ characterization of the growth atmosphere. Studies on the interaction of Ga vapour with the nitrogen discharge were interpreted on the basis of the level structure of lower excited states of Ga. Deposition experiments have been conducted, using sapphire seeds, GaN, AlN and AlGaN templates, while GaN single crystalline layers have been grown on sapphire and GaN templates. Characterization of GaN layers have been done by various methods, i.e. structure of layers by scanning electron microscopy (SEM), their composition by energy dispersive X-ray spectroscopy (EDX) and secondary ion mass spectrometry (SIMS), and crystal quality by high resolution X-ray diffraction (HRXRD). Results of the characterization together with outcome of OES measurements revealed importance of carbon for the sub-atmospheric MW plasma enhanced growth of GaN from vapour. In addition, this fact was confirmed by experiments in the setup with reduced carbon content. Possible routes for GaN synthesis have been discussed, with the most probable being CN-assisted GaN formation. While CN was detected in the plasma spectra, there was no evidence for the existence of GaN molecules in vapour phase.show moreshow less
  • Galliumnitrid (GaN) ist ein III-V-Halbleiter, der durch seine direkte, breite Bandlücke von 3.4 eV bei Raumtemperatur gekennzeichnet ist. Als Material von besonderem Interesse für Anwendungen in der Opto- und Leistungselektronik, wurde es in den letzten Jahren umfangreich untersucht. Die Verwendung der GaN-Homoepitaxie in der Herstellung von Laserdioden (LDs), Leuchtdioden (LEDs), Leistungsbauelementen etc. wäre günstig bezüglich der Verringerung die Defektdichte, um ihre Lebensdauer und Leistung zu verbessern. Ein kostengünstiges Verfahren zur Bereitstellung von GaN-Eigensubstraten wurde jedoch bisher nicht etabliert. Der Schwerpunkt dieser Arbeit ist die Entwicklung einer neuen Züchtungsmethode um einkristalline GaN-Schichten herzustellen. Unsere Vorgehensweise nutzt Mikrowellen (MW)-Plasma als Quelle angeregter Stickstoff-Spezies, im Gegensatz zu dem klassischen physikalischen Gasphasentransport (PVT) basierten Verfahren, in dem Ammoniak (NH3) als Quelle für reaktiven Stickstoff dient. Die Neuheit des MW-Plasmas gestütztenGalliumnitrid (GaN) ist ein III-V-Halbleiter, der durch seine direkte, breite Bandlücke von 3.4 eV bei Raumtemperatur gekennzeichnet ist. Als Material von besonderem Interesse für Anwendungen in der Opto- und Leistungselektronik, wurde es in den letzten Jahren umfangreich untersucht. Die Verwendung der GaN-Homoepitaxie in der Herstellung von Laserdioden (LDs), Leuchtdioden (LEDs), Leistungsbauelementen etc. wäre günstig bezüglich der Verringerung die Defektdichte, um ihre Lebensdauer und Leistung zu verbessern. Ein kostengünstiges Verfahren zur Bereitstellung von GaN-Eigensubstraten wurde jedoch bisher nicht etabliert. Der Schwerpunkt dieser Arbeit ist die Entwicklung einer neuen Züchtungsmethode um einkristalline GaN-Schichten herzustellen. Unsere Vorgehensweise nutzt Mikrowellen (MW)-Plasma als Quelle angeregter Stickstoff-Spezies, im Gegensatz zu dem klassischen physikalischen Gasphasentransport (PVT) basierten Verfahren, in dem Ammoniak (NH3) als Quelle für reaktiven Stickstoff dient. Die Neuheit des MW-Plasmas gestützten Wachstums von GaN aus Gallium(Ga)-Dampf liegt in der MW-Plasmaerzeugung in der Nähe des Keims bei mittlerem Druck (200 - 800 mbar) und gleichzeitigen physikalischen Transport von Ga-Dampf in die Wachstumszone. Den Simulationen des Aufbaus (HEpiGaN Software) und der MW-Plasmaquelle (CST Microwave Software) folgten die umfangreichen Untersuchungen der Materialeigenschaften. Der Aufbau und die MW-Plasmaquelle, die als wesentliche Komponente den Hohlraumresonator enthält, wurden konstruiert und in den vorhandenen Wachstumsreaktor implementiert. Die Stabilität des MW-Plasmas als Funktion von Temperatur und Druck wurde zugleich mit ihrem Einfluss auf die Keimtemperatur und damit auf die Wachstumsbedingungen untersucht. Außerdem wurde die Optische Emissionsspektrometrie (OES) zur in-situ Charakterisierung der Wachstums-Atmosphäre verwendet. Die Wechselwirkung des Ga-Dampfes mit der Stickstoffentladung wurde auf der Basis der Energieniveau-Struktur der unteren angeregten Ga-Zustände interpretiert. Die Abscheidungs-Experimente wurden unter Verwendung von Saphir-Keimsubstraten, GaN- , AlN- und AlGaN–Templates durchgeführt. Die GaN-Schichten wurden auf Saphir-Keimsubstraten und auf GaN-Templates gewachsen und mit verschiedenen Methoden charakterisiert: die Struktur mit der Rasterelektronenmikroskopie (SEM), die Zusammensetzung mit der Energiedispersiven Röntgenspektroskopie (EDX) und der Sekundärionen-Massenspektrometrie (SIMS) und die Kristallqualität mit der hochauflösenden Röntgenstrukturanalyse (HRXRD). Die Ergebnisse der Charakterisierung zeigten zusammen mit den Resultaten der OES-Messungen die Bedeutung von Kohlenstoff für das MW-Plasma gestützte, subatmosphärische Wachstum von GaN aus der Gasphase. Zusätzlich wurden sie durch die Experimente im Aufbau mit reduziertem Kohlenstoffgehalt bestätigt. Mögliche Wege der GaN-Synthese wurden diskutiert, wobei die CN-unterstützte GaN-Bildung der wahrscheinlichste ist. Während CN in den Plasmaspektren nachgewiesen wurde, gab es keine Beweise für die Existenz von GaN-Molekülen in der Dampfphase.show moreshow less

Download full text files

Export metadata

Additional Services

Search Google Scholar Stastistics
Metadaten
Author: Radoslaw Zwierz
URN:urn:nbn:de:kobv:co1-opus4-30710
Referee / Advisor:Prof. Dr. Holger Kersten, Prof. Dr. Jürgen Reif, apl. Prof. Dr. Dietmar Siche
Document Type:Doctoral thesis
Language:English
Year of Completion:2014
Date of final exam:2014/07/07
Release Date:2014/08/05
Tag:Plasma; Züchtung aus der Gasphase
GaN; Microwave plasma; Vapour growth
GND Keyword:Galliumnitrid; Gasphase; Plasma
Institutes:Fakultät 1 MINT - Mathematik, Informatik, Physik, Elektro- und Informationstechnik / FG Experimentalphysik und funktionale Materialien
Institution name at the time of publication:Fakultät für Mathematik, Naturwissenschaften und Informatik (eBTU) / LS Experimentalphysik / Materialwissenschaften
Licence (German):Keine Lizenz vergeben. Es gilt das deutsche Urheberrecht.
Einverstanden ✔
Diese Webseite verwendet technisch erforderliche Session-Cookies. Durch die weitere Nutzung der Webseite stimmen Sie diesem zu. Unsere Datenschutzerklärung finden Sie hier.