• search hit 4 of 11
Back to Result List

A cross-layer framework for adaptive processor-based systems regarding error resilience and power efficiency

Ein schichtenübergreifender Ansatz für adaptive prozessorbasierte Systeme hinsichtlich Fehlerresilienz und Leistungseffizienz

  • This dissertation proposes a cross-layer framework able to synergistically optimize resilience and power consumption of processor-based systems. It is composed of three building blocks: SWIELD multimodal flip-flop (FF), System Operation Management Unit (SOMU) and Framework Function Library (FFL). Implementation of the building blocks is performed at circuit, architecture and software layer of the system stack respectively. The SWIELD FF can be configured to operate as a regular flip-flop or as an enhanced flip-flop for protection against timing/radiation-induced faults. It is necessary to perform replacement of selected timing-critical flip-flops in a system with SWIELD FFs during design time. When the system is active, the SWIELD FFs operation mode is dynamically managed by the SOMU controller according to the current requirements. Finally, the FFL contains a set of software procedures that greatly simplify framework utilization. By relying on the framework, a system can intelligently interchange techniques such as AdaptiveThis dissertation proposes a cross-layer framework able to synergistically optimize resilience and power consumption of processor-based systems. It is composed of three building blocks: SWIELD multimodal flip-flop (FF), System Operation Management Unit (SOMU) and Framework Function Library (FFL). Implementation of the building blocks is performed at circuit, architecture and software layer of the system stack respectively. The SWIELD FF can be configured to operate as a regular flip-flop or as an enhanced flip-flop for protection against timing/radiation-induced faults. It is necessary to perform replacement of selected timing-critical flip-flops in a system with SWIELD FFs during design time. When the system is active, the SWIELD FFs operation mode is dynamically managed by the SOMU controller according to the current requirements. Finally, the FFL contains a set of software procedures that greatly simplify framework utilization. By relying on the framework, a system can intelligently interchange techniques such as Adaptive Voltage/Frequency Scaling, selective Triple Modular Redundancy and clock gating during operation. Additionally, a simple and convenient strategy for integration of the framework in processor-based systems is also presented. A key feature of the proposed strategy is to determine the number of SWIELD FFs to be inserted in a system. Using this strategy, the framework was successfully embedded in instances of both single- and multicore systems. Various experiments were conducted to evaluate the framework influence on the target systems with respect to resilience and power consumption. At expense of about 1% area overhead, the framework is able to preserve performance and to reduce power consumption up to 15%, depending on the number of SWIELD FFs in the system. Furthermore, it was also shown that under certain conditions, the framework can provide failure-free system operation.show moreshow less
  • In dieser Dissertation wird ein schichtenübergreifendes Framework vorgeschlagen, das in der Lage ist, die Resilienz und den Stromverbrauch von prozessorbasierten Systemen synergetisch zu optimieren. Es setzt sich aus drei Bausteinen zusammen: SWIELD Multimodal Flip-Flop (FF), System Operation Management Unit (SOMU) und Framework Function Library (FFL). Die Implementierung der Bausteine erfolgt jeweils auf der Schaltkreis-, Architektur- und Softwareebene. Das SWIELD FF kann so konfiguriert werden, dass es als normales Flipflop oder als erweitertes Flipflop zum Schutz vor zeit- und strahlungsbedingten Fehlern arbeitet. Während der Entwurfszeit müssen ausgewählte zeitkritische Flipflops im System durch SWIELD FFs ersetzt werden. Wenn das System aktiv ist, wird der Betriebsmodus der SWIELD FFs vom SOMU-Controller entsprechend den aktuellen Anforderungen dynamisch verwaltet. Schließlich enthält das FFL eine Reihe von Softwareverfahren, die die Nutzung des Frameworks erheblich vereinfachen. Durch den Einsatz des Frameworks kann das SystemIn dieser Dissertation wird ein schichtenübergreifendes Framework vorgeschlagen, das in der Lage ist, die Resilienz und den Stromverbrauch von prozessorbasierten Systemen synergetisch zu optimieren. Es setzt sich aus drei Bausteinen zusammen: SWIELD Multimodal Flip-Flop (FF), System Operation Management Unit (SOMU) und Framework Function Library (FFL). Die Implementierung der Bausteine erfolgt jeweils auf der Schaltkreis-, Architektur- und Softwareebene. Das SWIELD FF kann so konfiguriert werden, dass es als normales Flipflop oder als erweitertes Flipflop zum Schutz vor zeit- und strahlungsbedingten Fehlern arbeitet. Während der Entwurfszeit müssen ausgewählte zeitkritische Flipflops im System durch SWIELD FFs ersetzt werden. Wenn das System aktiv ist, wird der Betriebsmodus der SWIELD FFs vom SOMU-Controller entsprechend den aktuellen Anforderungen dynamisch verwaltet. Schließlich enthält das FFL eine Reihe von Softwareverfahren, die die Nutzung des Frameworks erheblich vereinfachen. Durch den Einsatz des Frameworks kann das System Techniken wie Adaptive Voltage/Frequency Scaling, selektive Triple Modular Redundancy und Clock Gating während des Betriebs intelligent austauschen. Außerdem wird eine einfache und komfortable Strategie zur Integration des Frameworks in prozessorbasierte Systeme vorgestellt. Eine wesentliche Eigenschaft der vorgeschlagenen Strategie besteht darin, die Anzahl der SWIELD FFs zu bestimmen, die in das System eingefügt werden sollen. Mit dieser Strategie wurde das Framework erfolgreich in Instanzen von Single- und Multicore-Systemen integriert. Es wurden verschiedene Experimente durchgeführt, um den Einfluss des Frameworks auf die Zielsysteme im Hinblick auf Resilienz und Stromverbrauch zu bewerten. Auf Kosten von ca. 1% Flächen-Overhead ist das Framework in der Lage, die Verarbeitungsleistung zu erhalten und den Stromverbrauch, abhängig von der Anzahl der SWIELD FFs im System bis 15% zu reduzieren. Darüber hinaus wurde gezeigt, dass das Framework unter bestimmten Bedingungen einen ausfallfreien Systembetrieb gewährleisten kann.show moreshow less

Download full text files

Export metadata

Additional Services

Search Google Scholar Stastistics
Metadaten
Author: Mitko VeleskiORCiD
URN:urn:nbn:de:kobv:co1-opus4-61450
DOI:https://doi.org/10.26127/BTUOpen-6145
Referee / Advisor:Prof. Dr.-Ing. Rolf Kraemer, Prof. Dr.-Ing. habil. Michael Hübner, Prof. Dr.-Ing. Milos Krstic
Document Type:Doctoral thesis
Language:English
Year of Completion:2022
Date of final exam:2022/11/10
Release Date:2022/11/25
Tag:Energieeffizienz; Fehlerresilienz; Leistungseffizienz; Prozessoren
Cross-layer; Power; Processor; Resilience
GND Keyword:Prozessor; Modell; Energieeffizienz; Fehlertoleranz
Institutes:Fakultät 1 MINT - Mathematik, Informatik, Physik, Elektro- und Informationstechnik / FG Technische Informatik
Licence (German):Keine Lizenz vergeben. Es gilt das deutsche Urheberrecht.
Einverstanden ✔
Diese Webseite verwendet technisch erforderliche Session-Cookies. Durch die weitere Nutzung der Webseite stimmen Sie diesem zu. Unsere Datenschutzerklärung finden Sie hier.