The search result changed since you submitted your search request. Documents might be displayed in a different sort order.
  • search hit 9 of 9
Back to Result List

Optimization of converting food waste to hydrogen and Biogas in double-stage-fermentation

Optimierung der Gewinnung von Wasserstoff und Biogas aus Lebensmittelabfällen mit Hilfe der zweistufigen Vergärung

  • Aim of this study The aim of this research is to develop batch scale and continuous reactor systems to evaluate technical and practical feasibility of sequential hydrogen and methane from food waste by two step dark fermentation process. Methodology The effects of limiting factors, like pH, temperature, as well as inoculum sources and pretreatment methods on H₂ yields were studies in batch assays. In addition, the feasibility of sequencing producing H₂+CH₄ via two stage dark fermentation process was evaluated in lab-scale tests based on batch assay results. Three kinds of Acid producing reactor, like CSTR, semi-percolator, and ASBR had been tested for bioH₂ production and well inoculated ASBR methane was used for further degradation of volatile organic acids produced in these acid producing reactor which acts as by-products of bioH₂. Different limiting factors on fermentation process have been investigated in each reactor type for optimum energy recovery. Monodigestion of food waste for methane production was also studied and usedAim of this study The aim of this research is to develop batch scale and continuous reactor systems to evaluate technical and practical feasibility of sequential hydrogen and methane from food waste by two step dark fermentation process. Methodology The effects of limiting factors, like pH, temperature, as well as inoculum sources and pretreatment methods on H₂ yields were studies in batch assays. In addition, the feasibility of sequencing producing H₂+CH₄ via two stage dark fermentation process was evaluated in lab-scale tests based on batch assay results. Three kinds of Acid producing reactor, like CSTR, semi-percolator, and ASBR had been tested for bioH₂ production and well inoculated ASBR methane was used for further degradation of volatile organic acids produced in these acid producing reactor which acts as by-products of bioH₂. Different limiting factors on fermentation process have been investigated in each reactor type for optimum energy recovery. Monodigestion of food waste for methane production was also studied and used as reference value for energy recovery from food waste. Main results and technical application from this study Hydrogen production results from food waste were shown to be possible with aerated inoculum in batch assays in thermophilic range, with highest H₂ yields of 19.72L/(kg oTS) from food waste. The inoculated HPB (Hydrogen producing bacterial) sludge taken from ASBR acid producing reactor was proved the optimum H₂ yields with the value of 61.41 L/(kg oTS) in this batch test. Inoculum to substrates ratio at 3 was found the best situ for H₂ yields in batch test. Even H₂ productivity at hyperthermophilic range has been confirmed with faster and higher performance, thermophilic fermentation process was taken in continuously lab-scale investigation due to too high process requirements in hyperthermophilic process. Two-stage sequencing producing H₂+CH₄ was shown the potential in H₂ yields in the first acid producing phase. Methane yields from monodigestion in ASBR methane reactor with OLR of 3.88 kg oTS/(m3.d) and average CH₄ yields at 312.71L/kg oTS were achieved and act as reference value for total energy recovery. In CSTR+ASBRMe system, the max. hydrogen yields of 69.15 L/(kg oTS) and CH₄ yields at 291.77. L/(kg oTS) were achieved; In semi-Percolator+ASBRMe system, the max. hydrogen yields of 77.34 L/kg oTS and average CH₄ yields at 293.87 L/(kg oTS) were achieved; In ASBR+ASBRMe system, the max. hydrogen yields of 196.85L/(kg oTS) and average CH₄ yields at 293.87 L/(kg oTS) were achieved. The max. H₂ concentration in hydrolysis gas was got in ASBR acid producing reactor at 54%. The experimental results indicated that food wastes can be considered as suitable substrates for BioH₂ and CH₄ sequencing production. Moreover, the less production cost for H₂ due to higher OLR and shorting HRT.show moreshow less
  • Ziel der Studie Das Ziel dieser Studie besteht darin, einen Batch-Scale und kontinuierliche Reaktorsysteme zu entwickeln, um die technische und praktische Durchführbarkeit von sequentiellem H₂ und CH₄ aus Lebensmittelabfällen durch einen zweistufigen Vergärungsprozess zu bewerten. Die Methodologie Die Auswirkungen begrenzender Faktoren wie pH-Wert, Temperatur, Inokulum und Vorbehandlungsmethoden auf die H₂-Ausbeuten wurden in Batch-Assays untersucht. Zudem wurde die Durchführbarkeit der sequentiellen H₂ + CH₄, bei einem zweistufigen Vergärungsprozess hergestellt und in Labortests auf der Basis von Batch-Assay-Ergebnissen bewertet. Drei Arten von Säure produzierenden Reaktoren, wie CSTR, Semi-Perkulator und ASBR, wurden auf BioH₂ Produktion getestet und gut inokuliertes ASBR-Methan für den weiteren Abbau von flüchtigen organischen Säuren verwendet, die in diesem Säure produzierenden Reaktor erzeugt werden und als Nebenprodukte von bioH₂ wirken. Verschiedene limitierende Faktoren im Fermentationsprozess wurden in jedem ReaktorZiel der Studie Das Ziel dieser Studie besteht darin, einen Batch-Scale und kontinuierliche Reaktorsysteme zu entwickeln, um die technische und praktische Durchführbarkeit von sequentiellem H₂ und CH₄ aus Lebensmittelabfällen durch einen zweistufigen Vergärungsprozess zu bewerten. Die Methodologie Die Auswirkungen begrenzender Faktoren wie pH-Wert, Temperatur, Inokulum und Vorbehandlungsmethoden auf die H₂-Ausbeuten wurden in Batch-Assays untersucht. Zudem wurde die Durchführbarkeit der sequentiellen H₂ + CH₄, bei einem zweistufigen Vergärungsprozess hergestellt und in Labortests auf der Basis von Batch-Assay-Ergebnissen bewertet. Drei Arten von Säure produzierenden Reaktoren, wie CSTR, Semi-Perkulator und ASBR, wurden auf BioH₂ Produktion getestet und gut inokuliertes ASBR-Methan für den weiteren Abbau von flüchtigen organischen Säuren verwendet, die in diesem Säure produzierenden Reaktor erzeugt werden und als Nebenprodukte von bioH₂ wirken. Verschiedene limitierende Faktoren im Fermentationsprozess wurden in jedem Reaktor auf eine optimale Energierückgewinnung untersucht. Die Methan Produktion von Speiseabfällen wurde ebenfalls im Monodigestion untersucht und als Referenzwert für die Energierückgewinnung aus Speiseabfällen verwendet. Ergebnisse und technische Anwendung der Studie Es wurde aufgezeigt, dass die Ergebnisse der Wasserstofferzeugung aus Speiseabfällen mit belüftetem Inokulum im Chargen Experiment im thermophilen Bereich die höchsten H₂-Ausbeuten von 19,72 l / (kg oTR) aus Lebensmittelabfällen aufweisen. Der inokulierte HPB (Wasserstoff produzierende bakterielle) Schlamm, der aus dem ASBR-Säureproduktionsreaktor entnommen wurde, zeigte die optimale H₂-Ausbeute mit einem Wert von 61,41 l / (kg oTR). Das Verhältnis von Inokulum zu Substrat wurde bei 3 als besten Wert für H₂-Ausbeuten im Batch-Test ermittelt. Sogar die H₂-Produktivität im hyperthermophilen Bereich wurde mit einer schnelleren und höheren Leistung bestätigt, der thermophile Fermentationsprozess wurde aufgrund zu hoher Prozessanforderungen im hyperthermophilen Prozess kontinuierlich im Labormaßstab durchgeführt. Eine zweistufige Sequenzierung, bei der H₂+CH₄ erzeugt wurde, zeigte das Potential in den H₂ Ausbeuten während der ersten Säureproduktionsphase. Es wurden Methanausbeuten aus Monodigestion in einem ASBR-Methanreaktor mit einer ORB von 3,88 kg oTR / (m3.d) und durchschnittlichen CH₄-Ausbeuten bei 312.71L / Kg oTR erreicht, die als Referenzwert für die Gesamtenergierückgewinnung dienen. Im CSTR+ASBRMe system wurde die max. Wasserstoffausbeute bei 69,15 l / (kg oTR) und CH₄-Ausbeuten bei 291,77. L / (kg oTR) erreicht; Im Semiperkulator + ASBRMe system wurde eine max. Wasserstoffausbeute von 77,34 l / kg oTR und eine durchschnittliche CH₄-Ausbeute von 293,87 l / (kg oTR) erreicht; Bei ASBR+ASBRMe system beträgt die max. Wasserstoffausbeute 196,85 l / (kg oTR) und die durchschnittliche CH₄-Ausbeute liegt bei 293,87 l / (kg oTS). Die max. H₂-Konzentration in dem Hydrolysegas wurde in einem ASBR-Säureproduktionsreaktor bei 54% erzeugt. Die Versuchsergebnisse zeigten, dass Lebensmittelabfälle als geeignete Substrate für die BioH₂ und CH₄ Sequenzierungsproduktion angesehen werden können. Außerdem sind die Produktionskosten für H₂ aufgrund eines höheren ORB und eines Kurzzeit-HRT geringer.show moreshow less

Download full text files

Export metadata

Additional Services

Search Google Scholar Stastistics
Metadaten
Author: Yanjuan Lu
URN:urn:nbn:de:kobv:co1-opus4-43209
Referee / Advisor:Prof. Dr. Marion Martienssen, Prof. Dr. Günter Busch
Document Type:Doctoral thesis
Language:English
Year of Completion:2017
Date of final exam:2017/01/05
Release Date:2017/11/29
Tag:ASBR; Biogas; Biowasser; CSTR; Faktor; Methan; ORB; Perkulator; Speiseabfälle; Vergärungsprozess
ASBR; Biogas; Biohydrogen; CSTR; Factor; Food waste; Methane; OLR; Semi-percolator; Two stage dark fermentation process
GND Keyword:Fermentation; Gärung; Lebensmittelabfall; Biogas
Institutes:Fakultät 2 Umwelt und Naturwissenschaften / FG Biotechnologie der Wasseraufbereitung
Licence (German):Keine Lizenz vergeben. Es gilt das deutsche Urheberrecht.
Einverstanden ✔
Diese Webseite verwendet technisch erforderliche Session-Cookies. Durch die weitere Nutzung der Webseite stimmen Sie diesem zu. Unsere Datenschutzerklärung finden Sie hier.