Electronic properties of interfaces produced by silicon wafer hydrophilic bonding

Elektronische Eigenschaften durch hydrophiles Bonden von Siliziumwafern erzeugter Grenzflächen

  • The thesis presents the results of the investigations of electronic properties and defect states of dislocation networks (DNs) in silicon produced by wafers direct bonding technique. Practical interest for the investigations in this area issued – first of all – from the potential application of such dislocation networks in microelectronics as all-Si light emitter for on-chip interconnection. Besides, dislocation networks may serve as a perfect model object to get new information about the fundamental properties of dislocations and grain boundaries in Si, what is of particular importance for multicrystalline silicon solar cells performance. Despite of a long story of studying of dislocations in silicon, a new insight into the understanding of their very attractive properties was succeeded due to the usage of a new, recently developed silicon wafer direct bonding technique, allowing to create regular dislocation networks with predefined dislocation types and densities. Samples for the investigations were prepared by hydrophilic bondingThe thesis presents the results of the investigations of electronic properties and defect states of dislocation networks (DNs) in silicon produced by wafers direct bonding technique. Practical interest for the investigations in this area issued – first of all – from the potential application of such dislocation networks in microelectronics as all-Si light emitter for on-chip interconnection. Besides, dislocation networks may serve as a perfect model object to get new information about the fundamental properties of dislocations and grain boundaries in Si, what is of particular importance for multicrystalline silicon solar cells performance. Despite of a long story of studying of dislocations in silicon, a new insight into the understanding of their very attractive properties was succeeded due to the usage of a new, recently developed silicon wafer direct bonding technique, allowing to create regular dislocation networks with predefined dislocation types and densities. Samples for the investigations were prepared by hydrophilic bonding of p-type Si (100) wafers with same small misorientation tilt angle (~0,5°), but with four different twist misorientation angles Atw (being of <1°, 3°, 6° and 30°, respectively), thus giving rise to the different DN microstructure on every particular sample. The main experimental approach of this work was the measurements of current and capacitance of Schottky diodes prepared on the samples which contained the dislocation network at a depth that allowed one to realize all capabilities of different methods of space charge region spectroscopy (such as CV/IV, DLTS, ITS, etc.). The key tasks for the investigations were specified as the exploration of the DN-related gap states, their variations with gradually increasing twist angle Atw, investigation of the electrical field impact on the carrier emission from the dislocation-related states, as well as the establishing of the correlation between the electrical (DLTS), optical (photoluminescence PL) and structural (TEM) properties of DNs. The most important conclusions drawn from the experimental investigations and theoretical calculations can be formulated as follows: - DLTS measurements have revealed a great difference in the electronic structure of small-angle (SA) and large-angle (LA) bonded interfaces: dominating shallow level and a set of 6-7 deep levels were found in SA-samples with Atw of 1° and 3°, whereas the prevalent deep levels – in LA-samples with Atw of 6° and 30°. The critical twist misorientation angle separating SA- and LA- interfaces was estimated as Atw*≈ 3,5±0,5°, what agrees quiet well with the results of previous PL and TEM investigations. - For the dominating shallow traps in SA-samples (denoted as ST1/ST3 traps) a new phenomenon – that is ‘giant Poole-Frenkel effect’ of enhanced carrier emission due to dislocations elastic strain field was observed for the first time. Performed theoretical calculations have shown that in the investigated samples such an effect should be ascribed to the row of 60° dislocations rather than to the mesh of screw ones. In this respect, shallow traps ST1/ST3 were identified either with shallow 1D bands (directly or as being coupled with them) or with shallow stacking fault states on splitted 60° dislocation. - From the comparison and correlations of measured DLTS spectra with the results of PL and TEM investigations it was established, that shallow ST1/ST3 traps participate in D1 radiative recombination and that the structural elements, responsible for D1 luminescence of small-angle DNs, are the triple knots (intersections with screw dislocations) along the 60° dislocations. However, the optimal density of 60° dislocations as well as of triple knots, in other words – the optimal tilt and twist misorientation angles for maximal D1 intensity – needs further clarification.show moreshow less
  • Die Doktorarbeit stellt Ergebnisse von Untersuchungen der elektronischen Eigenschaften und Defektzustände von durch direktes Waferbonden erzeugten Versetzungsnetzwerken in Siliziumwafern vor. Praktisches Interesse an diesen Untersuchungen resultiert vor allem aus der möglichen Nutzung solcher Versetzungsnetzwerke als Si-basierte Lichtemitter für die On-Chip-Datenübertragung in der Mikroelektronik. Außerdem können solche Versetzungsnetzwerke als perfektes Modellobjekt dienen, um neue Informationen über die grundlegenden Eigenschaften von Versetzungen und Korngrenzen in Si zu erhalten, die von erheblicher Bedeutung für die Leistungsfähigkeit der multikristallinen Si-Solarzellen sind. Trotz einer Vielzahl von vorangegangenen Untersuchungen an Versetzungen in Si konnte ein neuer Beitrag zum Verständnis der interessanten Eigenschaften von Versetzungen geleistet werden, der wesentlich auf der Nutzung eines neuen, kürzlich entwickelten Verfahrens zum Waferbonden aufbaut, mit dem es möglich geworden ist, ein regelmäßiges VersetzungsnetzwerkDie Doktorarbeit stellt Ergebnisse von Untersuchungen der elektronischen Eigenschaften und Defektzustände von durch direktes Waferbonden erzeugten Versetzungsnetzwerken in Siliziumwafern vor. Praktisches Interesse an diesen Untersuchungen resultiert vor allem aus der möglichen Nutzung solcher Versetzungsnetzwerke als Si-basierte Lichtemitter für die On-Chip-Datenübertragung in der Mikroelektronik. Außerdem können solche Versetzungsnetzwerke als perfektes Modellobjekt dienen, um neue Informationen über die grundlegenden Eigenschaften von Versetzungen und Korngrenzen in Si zu erhalten, die von erheblicher Bedeutung für die Leistungsfähigkeit der multikristallinen Si-Solarzellen sind. Trotz einer Vielzahl von vorangegangenen Untersuchungen an Versetzungen in Si konnte ein neuer Beitrag zum Verständnis der interessanten Eigenschaften von Versetzungen geleistet werden, der wesentlich auf der Nutzung eines neuen, kürzlich entwickelten Verfahrens zum Waferbonden aufbaut, mit dem es möglich geworden ist, ein regelmäßiges Versetzungsnetzwerk mit vordefinierten Versetzungstypen und Versetzungsdichten zu erzeugen. Die Proben für die Untersuchungen wurden durch hydrophiles Waferbonden hergestellt. Alle Proben wurden mit dem gleichen kleinen Fehlorientierungskippwinkel von ca. 0,5° gebondet, jedoch mit vier verschiedenen Fehlorientierungsverdrehungswinkeln von <1°, 3°, 6° und 30°, aus denen sich für die einzelnen Proben eine verschiedene Versetzungsmikrostruktur ergab. Der wichtigste experimentelle Ansatz dieser Arbeit ist die Durchführung von Messungen des Stromes und der Kapazität von Schottky-Dioden an Proben, die Versetzungsnetzwerke in einer solchen Tiefe enthielten, dass alle Möglichkeiten der verschiedenen Methoden der Raumladungszonen-Spektroskopie (wie CV/IV, DLTS, ITS) genutzt werden konnten. Die Zielstellungen der Untersuchungen umfassten die Erfassung der elektronischen Zustände in der Bandlücke, die mit dem Versetzungsnetzwerk in Verbindung stehen, deren Abhängigkeit von der graduell modifizierten Geometrie des Versetzungsnetzwerkes, die Untersuchung des Einflusses des elektrischen Feldes auf die Ladungsträgeremission aus den versetzungsbezogenen Zuständen sowie die Herstellung von Korrelationen zwischen elektrischen, optischen (Photolumineszenz – PL) und strukturellen (TEM) Eigenschaften der Versetzungsnetzwerke. Die wichtigsten Schlussfolgerungen aus den experimentellen Untersuchungen und theoretischen Berechnungen können wie folgt formuliert werden: - Die DLTS-Messungen zeigen einen großen Unterschied in der elektronischen Struktur von Netzwerken, die mit kleinem Winkel (SA) oder großem Winkel (LA) der Fehlorientierung gebondet wurden. Flache Zustände und etwa 6-7 tiefe Niveaus wurden in SA-Proben mit Verdrehungswinkeln von 1° und 3° gefunden, während für LA-Proben mit 6° und 30° Verdrehungswinkel tiefe Zustände vorherrschen. Der kritische Winkel, welcher die SA- von den LA-Proben trennt, ist etwa 3,5 ± 0,5 °, was auch mit den Ergebnissen der bisherigen PL- und TEM-Untersuchungen übereinstimmt. - Für die dominierenden flachen Zustände in den SA-Proben (bezeichnet als ST1/ST3- Haftstellen) wurde erstmalig ein neues Phänomen beobachtet – der so genannte "Riesen-Poole-Frenkel-Effekt" der verstärkten Ladungsträgeremission infolge des elastischen Verzerrungsfeldes der Versetzungen. Durchgeführte theoretische Berechnungen haben gezeigt, dass in den untersuchten Proben dieser Effekt nicht den Schraubenversetzungen, sondern den 60°-Versetzungen zugeschrieben werden muss. In diesem Zusammenhang konnten die flachen Haftstellen ST1/ST3 entweder als flache 1-D Bändern oder als flache Stapelfehlerzustände an aufgespaltenen 60°-Versetzungen identifiziert werden. - Durch Vergleich und Korrelation der gemessenen DLTS-Spektren mit den Ergebnissen der PL- und TEM-Untersuchungen wurde festgestellt, dass die flachen ST1/ST3-Haftstellen an der strahlenden D1-Rekombination beteiligt sind und dass die Dreifachknoten (Schnittpunkte) entlang der 60°-Versetzungen die Strukturelemente darstellen, die für die D1- Lumineszenz an Kleinwinkelnetzwerken verantwortlich sind. Daher sind für eine hohe Intensität der D1-Luminszenz sowohl Verdrehung wie auch Verkippung wichtig, wobei für die Angabe der optimalen Dreh- und Kippwinkel weitere Spezifizierung nötig ist.show moreshow less

Download full text files

Export metadata

Additional Services

Share in Twitter Search Google Scholar
Metadaten
Author: Maxim Trushin
URN:urn:nbn:de:kobv:co1-opus-22841
Referee / Advisor:Prof. Dr. rer. nat. Jürgen Reif
Document Type:Doctoral thesis
Language:English
Year of Completion:2011
Date of final exam:2011/07/15
Release Date:2011/10/27
Tag:D1 Lumineszenz Band; DLTS; Poole-Frenkel Effekt; Versetzungsnetzwerk
D1 Luminescence band; DLTS; Dislocation networks; Poole-Frenkel effect
GND Keyword:Bonden; Elektronische Eigenschaft; Silicium; Siliciumbauelement; Wafer
Institutes:Fakultät 1 MINT - Mathematik, Informatik, Physik, Elektro- und Informationstechnik / FG Experimentalphysik und funktionale Materialien
Institution name at the time of publication:Fakultät für Mathematik, Naturwissenschaften und Informatik (eBTU) / LS Experimentalphysik / Materialwissenschaften