Discriminative connectionist approaches for automatic speech recognition in cars

  • The first part of this thesis is devoted to the evaluation of approaches which exploit the inherent redundancy of the speech signal to improve the noise robustness. On the basis of this evaluation on the AURORA 2000 database, we further study in detail two of the evaluated approaches. The first of these approaches is the hybrid RBF/HMM approach, which is an attempt to combine the superior classification performance of radial basis functions (RBFs) with the ability of HMMs to model time variation. The second approach is using neural networks to non-linearly reduce the dimensionality of large feature vectors including context frames. We propose the use of different MLP topologies for that purpose. Experiments on the AURORA 2000 database reveal that the performance of the first approach is similar to the performance of systems based on SCHMMs. The second approach cannot outperform the performance of linear discriminant analysis (LDA) on a database recorded in real car environments, but it is on average significantly better than LDA onThe first part of this thesis is devoted to the evaluation of approaches which exploit the inherent redundancy of the speech signal to improve the noise robustness. On the basis of this evaluation on the AURORA 2000 database, we further study in detail two of the evaluated approaches. The first of these approaches is the hybrid RBF/HMM approach, which is an attempt to combine the superior classification performance of radial basis functions (RBFs) with the ability of HMMs to model time variation. The second approach is using neural networks to non-linearly reduce the dimensionality of large feature vectors including context frames. We propose the use of different MLP topologies for that purpose. Experiments on the AURORA 2000 database reveal that the performance of the first approach is similar to the performance of systems based on SCHMMs. The second approach cannot outperform the performance of linear discriminant analysis (LDA) on a database recorded in real car environments, but it is on average significantly better than LDA on the AURORA 2000 database.show moreshow less
  • Im ersten Teil dieser Arbeit werden bestehende Verfahren zur Erhöhung der Robustheit von Spracherkennungssystemen in lauten Umgebungen evaluiert, die auf der Ausnutzung der Redundanz im Sprachsignal basieren. Auf der Grundlage dieser Evaluation auf der AURORA 2000 Datenbank werden zwei spezielle Ansätze weiter ausgearbeitet und detalliert analysiert. Der erste dieser Ansätze verbindet die herausragende Klassifikationsleistung von neuronalen Netzen mit radialen Basisfunktionen (RBF) mit der Fähigkeit von Hidden-Markov-Modellen (HMM), Zeitveränderlichkeiten zu modellieren. In einem zweiten Ansatz werden NN zur nichtlinearen Dimensionsreduktion hochdimensionaler Kontextvektoren in unterschiedlichen Netzwerk-Topologien untersucht. In Experimenten konnte gezeigt werden, dass der erste dieser Ansätze für die AURORA-Datenbank eine ähnliche Leistungsfähigkeit wie semikontinuierliche HMM (SCHMM) aufweist. Der zweite Ansatz erzielt auf einer im Kraftfahrzeug aufgenommenen Datenbank keine Verbesserung gegenüber den klassischen linearen AnsätzenIm ersten Teil dieser Arbeit werden bestehende Verfahren zur Erhöhung der Robustheit von Spracherkennungssystemen in lauten Umgebungen evaluiert, die auf der Ausnutzung der Redundanz im Sprachsignal basieren. Auf der Grundlage dieser Evaluation auf der AURORA 2000 Datenbank werden zwei spezielle Ansätze weiter ausgearbeitet und detalliert analysiert. Der erste dieser Ansätze verbindet die herausragende Klassifikationsleistung von neuronalen Netzen mit radialen Basisfunktionen (RBF) mit der Fähigkeit von Hidden-Markov-Modellen (HMM), Zeitveränderlichkeiten zu modellieren. In einem zweiten Ansatz werden NN zur nichtlinearen Dimensionsreduktion hochdimensionaler Kontextvektoren in unterschiedlichen Netzwerk-Topologien untersucht. In Experimenten konnte gezeigt werden, dass der erste dieser Ansätze für die AURORA-Datenbank eine ähnliche Leistungsfähigkeit wie semikontinuierliche HMM (SCHMM) aufweist. Der zweite Ansatz erzielt auf einer im Kraftfahrzeug aufgenommenen Datenbank keine Verbesserung gegenüber den klassischen linearen Ansätzen zu Dimensionsreduktion (LDA), erweist sich aber auf der AURORA-Datenbank als signifikantshow moreshow less

Download full text files

Export metadata

Additional Services

Share in Twitter Search Google Scholar
Metadaten
Author: Marí Hilario, Joan
URN:urn:nbn:de:kobv:co1-000000649
Referee / Advisor:Prof. Dr.-Ing. Fellbaum, Klaus-Rüdiger
Document Type:Doctoral thesis
Language:English
Year of Completion:2004
Date of final exam:2004/08/31
Release Date:2007/03/12
Tag:AURORA; Connectionist; Evaluation; Noise robustness; Speech recognition
GND Keyword:Automatische Spracherkennung; Kraftfahrzeuginnenraum; Neuronales Netz; Redundanzanalyse; Sprachqualität; Sprachsignal; Störsignal
Institutes:Fakultät 1 MINT - Mathematik, Informatik, Physik, Elektro- und Informationstechnik / FG Kommunikationstechnik
Institution name at the time of publication:Fakultät für Maschinenbau, Elektrotechnik und Wirtschaftsingenieurwesen (eBTU) / LS Kommunikationstechnik