Optimieren der Reinigung von Hanfschäben im axialen Fluss

Von der Fakultät für Umwelt und Naturwissenschaften
der Brandenburgischen Technischen Universität Cottbus-Senftenberg zur Erlangung des
akademischen Grades eines Doktor-Ingenieurs genehmigte Dissertation

vorgelegt von

Diplom-Ingenieur
Carsten Lühr
aus Rostock

Gutachter: Prof. Dr.-Ing. habil. Peter Ay
Gutachter: Prof. Dr.-Ing. habil. Christian Fürll
Vorwort

Die hier vorliegende Arbeit entstand während meiner Tätigkeit als wissenschaftlicher Mitarbeiter am Leibniz-Institut für Agrartechnik und Bioökonomie e.V. (ATB). Finanziell wurde das Projekt im Rahmen des Programms ZIM - Kooperationen gefördert. Dem BMWi sei deshalb an dieser Stelle gedankt.


Wertvolle Hilfe erfuhr ich insbesondere von Dr. H.-J. Gusovius bei der Literaturrecherche sowie Dr. T. Hoffmann bei der Programmierung des Simulationsmodells in MATLAB® und von Studenten und Praktikanten durch Mithilfe bei Versuchen.

Herrn Prof. Dr.-Ing. habil. Ch. Fürll danke ich für die vielen wertvollen fachlichen sowie auch privaten Gespräche und als wegweisenden Ideengeber zur Entwicklung des Projekts.


Besonders haben ebenso die Kolleginnen und Kollegen der Abteilung 3 durch ihre große Hilfsbereitschaft, Zusammenarbeit und kritische Diskussion zum Ergebnis dieser Arbeit beigetragen.

Ganz besonderen Dank gilt meiner Familie, die mich unterstützend bei den Höhen und Tiefen in der Anfertigung dieser Arbeit begleitet und auf viele gemeinsame Stunden verzichtet hat.

Potsdam, den 02. August 2016

Carsten Lühr
# Inhaltsverzeichnis

Vorwort ................................................................................................................................................... II
Inhaltsverzeichnis ................................................................................................................................... III
Symbolverzeichnis .................................................................................................................................. VI
Zusammenfassung .................................................................................................................................. IX

1 Einleitung ........................................................................................................................................ 1

2 Zielstellung der Arbeit .................................................................................................................... 3

3 Hanf als nachwachsender Rohstoff in Deutschland und Europa .................................................. 5
   3.1 Die Hanfpflanze ........................................................................................................................ 6
   3.2 Gewinnbare Pflanzenteile vom Hanf und deren Anwendungsbereiche ..................................... 9
      3.2.1 Eigenschaften und Anwendungsgebiete von Schäben ......................................................... 10
   3.3 Schäben als Nebenprodukt bei der mechanischen Gewinnung von Hanffasern ....................... 12

4 Die Schäbenreinigung ................................................................................................................... 15
   4.1 Aufgabe und Funktionsstruktur der Schäbenreinigung ............................................................. 15
   4.2 Eigenschaften des Eingangsmaterials ......................................................................................... 16
   4.3 Aufbau typischer Aufschlussanlagen und Reinigungsanlagen .................................................. 21
   4.4 Stand der Technik in der Schäbenreinigung ............................................................................. 24
   4.5 Anforderungen an die Schäbenreinigung ................................................................................. 28

5 Schäbenreinigung im axialen Fluss .............................................................................................. 30
   5.1 Stand der Technik ..................................................................................................................... 30
   5.2 Erweiterte Anforderungen an die Schäbenreinigung im axialen Fluss ..................................... 33
   5.3 Präzisierte Aufgabenstellung und Neuheitswert einer optimierten Schäbenreinigung im axialen Fluss auf Basis eines Axialfraktionierers ................................................................. 34
   5.4 Maschinenkonzeption eines Axialfraktionierers .................................................................... 35
   5.5 Axialfraktionierer-Versuchsstand ............................................................................................ 37
      5.5.1 Versuchsaufbau und -durchführung .................................................................................... 37
      5.5.1.1 Aufbau eines Kondensers ............................................................................................. 41
   5.5.2 Grundlegende zu erwartende Versuchsergebnisse ............................................................... 41
   5.6 Siebraum und Paddelgeometrie im Hinblick auf den Materialtransport und das Abscheidevermögen .......................................................... 43
      5.6.1 Varianten der Siebflächengestaltung .................................................................................... 43
      5.6.2 Einflussparameter des Materialtransports ....................................................................... 44
      5.6.2.1 Vorschubwinkel $\beta$ in der Axialebene ......................................................................... 48
5.6.2.2 Vorschubwinkel \( \gamma \) in der Horizontalebene ................................................................ 50
5.6.3 Zusammenhang der Vorschubwinkel in Abhängigkeit von Lauf- und Steigungswinkel 52
5.6.4 Wirkende Kräfte beim Abwurf ................................................................. 53
5.6.5 Funktionsanalyse der Paddelfunktion .......................................................... 54
5.6.6 Konstruktion eines Paddels zur optimierten Siebflächenräumung ................. 55
5.7 Optimieren der Partikelbewegung im Arbeitsraum des Axialfraktionierers .......... 56
5.7.1 Funktionsanalyse zur Abwurfbewegung und Staubabsaugung im Arbeitsraum .... 56
5.7.2 Theorie der Partikelbewegung im Schwerefeld .............................................. 57
5.7.3 Konstruktion eines Versuchsstandes zur Bestimmung der Schwebegeschwindigkeit ... 60
5.7.4 Versuchsdurchführung zur Bestimmung der Schwebegeschwindigkeit ............ 63
5.7.5 Versuchsergebnisse ....................................................................................... 64
5.8 Schlussfolgerungen für die Modellierung ......................................................... 68

6 Modellentwicklung für Wurf- und Gutbewegungen in einem Axialfraktionierer .......... 70
6.1 Modellierung von Partikelbewegungen in Schneckenförderern ......................... 70
6.2 Modellierung der Partikelbewegung in einem Axialfraktionierer ......................... 71
6.2.1 Kinematik und Kinetik des Materialtransports .............................................. 71
6.2.2 Schräger Wurf ............................................................................................... 75
6.2.3 Numerische Umsetzung der entwickelten Bewegungsgleichungen ................. 76
6.2.3.1 Simulation der Wurfbewegung von Schäbenpartikeln ................................. 79
6.2.3.2 Simulation der Wurfbewegung von Faserflocken ......................................... 85
6.2.3.3 Zusammenfassung der Parameterstudie ....................................................... 91
6.2.4 Berechnung des Massestroms ........................................................................ 92

7 Modellentwicklung für den Aussiebungsverlauf ............................................... 98
7.1 Ansatz für das Abscheideverhalten der Schäben ................................................. 98
7.2 Bestimmung der Modellparameter ................................................................... 100

8 Bewertung des Massestrommodells sowie des Aussiebungsverlaufs ..................... 102
8.1 Versuchsdurchführung und –ergebnisse .......................................................... 102
8.1.1 Einfluss des Massestroms ............................................................................ 103
8.1.2 Einfluss der Paddelanordnung auf den Aussiebungsverlauf ......................... 104
8.1.3 Einfluss der Drehzahl auf den Aussiebungsverlauf ....................................... 106
8.1.4 Qualität der Austragsfraktionen ................................................................... 108
8.2 Modellvalidierung ............................................................................................. 111

9 Einsatz des Axialfraktionierer-Gesamtdmodells im Konstruktions- und Entwicklungsprozess. 115
9.1 Konstruktionstechnische Überarbeitung des Axialfraktionierers ....................... 115
<table>
<thead>
<tr>
<th>Kapitel</th>
<th>Seitenzahl</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.2 Auslegung eines anforderungsgerechten Axialfraktioniers</td>
<td>115</td>
</tr>
<tr>
<td>9.3 Bestimmung der Material- und Betriebsparameter für die Simulation</td>
<td>119</td>
</tr>
<tr>
<td>9.3.1 Simulationsergebnisse</td>
<td>119</td>
</tr>
<tr>
<td>9.4 Umsetzung der Konstruktionsvorgaben in einem Prototypen</td>
<td>123</td>
</tr>
<tr>
<td>9.5 Fazit</td>
<td>127</td>
</tr>
<tr>
<td>10 Fehlerquellen</td>
<td>128</td>
</tr>
<tr>
<td>11 Ausblick</td>
<td>130</td>
</tr>
<tr>
<td>12 Anhang</td>
<td>131</td>
</tr>
<tr>
<td>13 Literaturverzeichnis</td>
<td>133</td>
</tr>
</tbody>
</table>
Symbolverzeichnis

I...IV      Messachse
A_p        mm²  Körperquerschnittsfläche
A_s        cm²  Füllungsfläche
a_p        Anzahl Paddel pro Ganghöhe
a_s        Anzahl Paddelschnecken pro Welle
b          m   Strecke
c_w        Widerstandsbeiwert
C_a        Abscheidekonstante
d          m   Durchmesser
d_k        mm  Kugeldurchmesser
d_{50}     mm  Medianwert
e_p        Eingriffsbreite pro Paddel
f          s⁻¹  Frequenz
F          N   Kraft
F'              Fehler
F_A        N   Auftriebskraft
F_G        N   Gewichtskraft
F_H        N   Hangabtriebskraft
F_N        N   Normalkraft
F_R        N   Reibkraft
F_W        N   Luftwiderstandskraft
F_Z        N   Fliehkraft
F_{HZ}     N   zusätzliche Hangabtriebskraft am Paddel durch die Zentrifugalkraft hervorgerufen
F_{NZ}     N   zusätzliche Normalkraft am Paddel durch die Zentrifugalkraft hervorgerufen
F_{RZ}     N   zusätzliche Reibkraft am Paddel durch die Zentrifugalkraft hervorgerufen
g          m s⁻²  Fallbeschleunigung
G          m   Ganghöhe einer Helix
G_p        m   Ganghöhe einer Paddelschnecke
h          mm  Segmenthöhe
h          m   Strecke
h_M        m   Höhe Maschinenraum
k          kg m⁻¹  materialspezifischer Faktor
l          m   Strecke
l          mm  Füllungshöhe über Siebboden
l          mm  Sieblochmaß
m          kg  Masse
M              Motor
m          t h⁻¹  Massestrom
n          min⁻¹  Umdrehung
n_s        min⁻¹  Anzahl der Sieberührungen
n_{W1}     min⁻¹  Drehzahl Welle 1
n_{W2}     min⁻¹  Drehzahl Welle 2
p           Durchtrittswahrscheinlichkeit
p_{nS}     Abscheidewahrscheinlichkeit
P           Position des Partikels
P'          Position des Partikels nach Bewegung
q           m⁻¹  Materialkonstante
r           mm  Radius
r_p         mm  Partikelposition auf dem Radius
r'          mm  Radius Oberkannte Füllungsfläche
R           %   Restschäben
s           mm  Kreissehne
<table>
<thead>
<tr>
<th>Symbol</th>
<th>Einheit</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>s</td>
<td>m</td>
<td>Abscheideweg</td>
</tr>
<tr>
<td>t</td>
<td>s</td>
<td>Zeit</td>
</tr>
<tr>
<td>t_{Paddel}</td>
<td>s</td>
<td>benötigte Zeit zum Erreichen der Partikeleintrittsposition in den Paddelflugkreis</td>
</tr>
<tr>
<td>t_{Partikel}</td>
<td>s</td>
<td>benötigte Zeit zum Eintritt in den Paddelflugkreis</td>
</tr>
<tr>
<td>t_{Schritt}</td>
<td>s</td>
<td>Zeitschritt für Iteration</td>
</tr>
<tr>
<td>t_u</td>
<td>s</td>
<td>Zeit für eine Umdrehung</td>
</tr>
<tr>
<td>t_{1}, t_{2}</td>
<td>mm</td>
<td>Sieblochmaße</td>
</tr>
<tr>
<td>T_A</td>
<td>s</td>
<td>Zeitkonstante</td>
</tr>
<tr>
<td>u</td>
<td></td>
<td>Anzahl Umdrehungen</td>
</tr>
<tr>
<td>v</td>
<td>m s^{-1}</td>
<td>Geschwindigkeit</td>
</tr>
<tr>
<td>v_0</td>
<td>m s^{-1}</td>
<td>Anfangsgeschwindigkeit</td>
</tr>
<tr>
<td>v_a</td>
<td>m s^{-1}</td>
<td>axiale Fördergeschwindigkeit</td>
</tr>
<tr>
<td>v_u</td>
<td>m s^{-1}</td>
<td>Umfangsgeschwindigkeit</td>
</tr>
<tr>
<td>V_p</td>
<td>m^3</td>
<td>Partikelvolumen</td>
</tr>
<tr>
<td>V</td>
<td>m^3 h^{-1}</td>
<td>Volumenstrom</td>
</tr>
<tr>
<td>w</td>
<td>m</td>
<td>Strecke</td>
</tr>
<tr>
<td>w</td>
<td>mm</td>
<td>Sieblochmaße</td>
</tr>
<tr>
<td>w_s</td>
<td>m s^{-1}</td>
<td>Sinkgeschwindigkeit</td>
</tr>
<tr>
<td>x</td>
<td>m</td>
<td>x-Koordinate</td>
</tr>
<tr>
<td>x_y</td>
<td></td>
<td>Radialebene</td>
</tr>
<tr>
<td>x_z</td>
<td></td>
<td>Horizontalebene</td>
</tr>
<tr>
<td>y</td>
<td>m</td>
<td>y-Koordinate</td>
</tr>
<tr>
<td>y_z</td>
<td></td>
<td>Vertikalebene in radialer Richtung</td>
</tr>
<tr>
<td>z</td>
<td>m</td>
<td>z-Koordinate</td>
</tr>
<tr>
<td>α</td>
<td>°</td>
<td>Steigungswinkel des Paddel</td>
</tr>
<tr>
<td>α'</td>
<td>°</td>
<td>Öffnungswinkel für Füllungsfläche</td>
</tr>
<tr>
<td>β</td>
<td>°</td>
<td>Vorschubwinkel (Vertikalebene in axialer Richtung)</td>
</tr>
<tr>
<td>δ</td>
<td>°</td>
<td>Verdrehungswinkel</td>
</tr>
<tr>
<td>γ</td>
<td>°</td>
<td>Vorschubwinkel (Horizontalebene)</td>
</tr>
<tr>
<td>δϕ</td>
<td>°</td>
<td>Änderung des Laufwinkels</td>
</tr>
<tr>
<td>ϕ</td>
<td>°</td>
<td>Laufwinkel, Neigungswinkel schiefe Ebene</td>
</tr>
<tr>
<td>ϕ_p</td>
<td>°</td>
<td>Positionsinkel des Partikels</td>
</tr>
<tr>
<td>μ</td>
<td></td>
<td>Reibwert</td>
</tr>
<tr>
<td>ρ_s</td>
<td>kg m^{-3}</td>
<td>Dichte des strömenden Mediums</td>
</tr>
<tr>
<td>ρ_p</td>
<td>kg m^{-3}</td>
<td>Partikeldichte</td>
</tr>
<tr>
<td>ρ_s</td>
<td>kg m^{-3}</td>
<td>Schüttdichte</td>
</tr>
<tr>
<td>ρ_{SFG}</td>
<td>kg m^{-3}</td>
<td>Schüttdichte des Schäben-Faser-Gemischs</td>
</tr>
<tr>
<td>ω</td>
<td>s^{-2}</td>
<td>Winkelgeschwindigkeit</td>
</tr>
<tr>
<td>Φ</td>
<td>%</td>
<td>Füllungsgrad</td>
</tr>
</tbody>
</table>

**Indizes**

1, 2, 3 Motorkennzeichnung, Zeitpunkte  
a axiale Richtung  
j Zählvariable  
k Zählvariable  
n Laufvariable  
rel relativ  
SFG Schäben-Faser-Gemisch  
t tangentielle Richtung  
th theoretisch  
W1 Welle 1  
W2 Welle 2
Abkürzungen

<table>
<thead>
<tr>
<th>Abkürzung</th>
<th>Bedeutung</th>
</tr>
</thead>
<tbody>
<tr>
<td>Abb.</td>
<td>Abbildung</td>
</tr>
<tr>
<td>ATB</td>
<td>Leibniz-Institut für Agrartechnik und Bioökonomie e.V.</td>
</tr>
<tr>
<td>BMWi</td>
<td>Bundesministerium für Wirtschaft und Technologie</td>
</tr>
<tr>
<td>bzw.</td>
<td>beziehungsweise</td>
</tr>
<tr>
<td>d. h.</td>
<td>das heißt</td>
</tr>
<tr>
<td>dp</td>
<td>doppelte Paddelanordnung</td>
</tr>
<tr>
<td>FM</td>
<td>Feuchtmasse</td>
</tr>
<tr>
<td>L</td>
<td>Materialkategorie: Hanf leicht geröstet</td>
</tr>
<tr>
<td>ne</td>
<td>nacheilende Paddelanordnung</td>
</tr>
<tr>
<td>N</td>
<td>Materialkategorie: Fasernessel</td>
</tr>
<tr>
<td>NFC</td>
<td>NFC GmbH Nettle Fibre Company</td>
</tr>
<tr>
<td>S</td>
<td>Materialkategorie: Hanf stark geröstet</td>
</tr>
<tr>
<td>SFG</td>
<td>Schäben-Faser-Gemisch</td>
</tr>
<tr>
<td>Tab.</td>
<td>Tabelle</td>
</tr>
<tr>
<td>TM</td>
<td>Trockenmasse</td>
</tr>
<tr>
<td>ve</td>
<td>vorauseilende Paddelanordnung</td>
</tr>
<tr>
<td>VOFA</td>
<td>VOFA Vogtlandfaser GmbH &amp; Co. KG</td>
</tr>
<tr>
<td>V</td>
<td>Materialkategorie: Hanf VOFA</td>
</tr>
<tr>
<td>V/H</td>
<td>Materialkategorie: Hanf VOFA/Hammermühle</td>
</tr>
<tr>
<td>W</td>
<td>Materialkategorie: Hanf über Winter gestanden</td>
</tr>
<tr>
<td>ZIM</td>
<td>Zentrales Innovationsprogramm Mittelstand</td>
</tr>
<tr>
<td>zw.</td>
<td>zwischen</td>
</tr>
</tbody>
</table>
Zusammenfassung

Einleitung


Aufgrund der noch fehlenden Reinigungstechnologie für Schäben und mit dem Hintergrund steigender Anbauflächen und damit in größeren Mengen anfallender Schäben zeigt sich die Notwendigkeit eines leistungsfähigen und effektiven Verfahrens in diesem Bereich.
2 Zielstellung der Arbeit


Traditionell kommen für die Reinigung von Schäben-Faser-Gemischen vorrangig Trommelsiebe bzw. Reinigungsmaschinen aus der Baumwollindustrie zum Einsatz. Ein Auflösen der Faserflocken, in denen die Schäben meist verhakt sind, kann mit diesen Maschinen nicht erzielt werden. Um eine effektive und damit kostendeckende sowie auch qualitativ hochwertige Reinigung zu erreichen wurde am Leibniz-Institut für Agrartechnik und Bioökonomie e.V. ein völlig neuartiges System zur Schäbenreinigung entwickelt und patentiert (Abb. 2.1).

![Abb. 2.1: Paddelschnecke über einer Siebfläche zur Reinigung von Schäben aus der Naturfasergewinnung](image)

Das Prinzip basiert auf einer Paddelschnecke mit einer auf diese Schnecke abgestimmten halbkreisförmigen Siebfläche und einer quer zum axialen Vorschub verlaufenden Absaugung. Mit diesem einfachen sowie auch robusten Aufbau lassen sich die Schäben-Faser-Gemische effizient aufbereiten und in ihre Hauptbestandteile Schäben, Fasern und Staub separieren bzw. reinigen.

Um dieses Ziel zu erreichen, waren folgende Hauptarbeitsschritte notwendig:

- Agrartechnische Analyse/Auswertung neuester wissenschaftlicher Erkenntnisse, Anforderungen des Marktes, relevante Entwicklungstrends der Fasergewinnung sowie eigener vorliegender Erfahrungen
- Agrartechnische Analyse/Auswertung neuester wissenschaftlicher Erkenntnisse, Anforderungen des Marktes, relevante Entwicklungstrends der Fasergewinnung sowie eigener vorliegender Erfahrungen
- Erarbeitung von Vorgaben für das Trennverfahren hinsichtlich der
  - relevanten Verfahrensparameter der Fasergewinnung, insbesondere der Anforderungen an die Qualität der Schäben und vor dem Hintergrund der wirtschaftlichen Anforderungen der Naturfaserwirtschaft
  - abzuleitenden Prozessparameter für eine möglichst optimale Trennung und Klassierung von Schäben und Fasern
- Bestimmen der Materialeigenschaften von Schäben
- Modellieren des Wirkprinzips einer Paddelschnecke für die Reinigung eines Schäben-Faser-Gemischs und der darauf aufbauenden Maschine mit dem Ziel der Analyse:
  - des Massestroms in Abhängigkeit von Betriebs- und Konstruktionsparametern
  - des Trennverhaltens von Schäben und Fasern
- Durchführen von Versuchen zur Analyse des Einflusses natürlicher Schwankungen der Rohstoffeigenschaften
- Validieren der Modelle für Massestrom- und Trennverhalten
- Optimieren der Versuchseinrichtung zu einer Industriemaschine
3 Hanf als nachwachsender Rohstoff in Deutschland und Europa

Der in Deutschland seit 1996 wieder zugelassene Nutz- oder Industriehanf zählt zur Hanfart Cannabis sativa. Der indische Hanf (Cannabis indica) wiederum wird für die Herstellung von Drogen bzw. Arzneimitteln verwendet und ist für den landwirtschaftlichen Anbau verboten.


Hanf ist eine jahrhundertealte Nutzpflanze, mit vielseitigen Nutzungsmöglichkeiten. Schon seit dem Mittelalter diente Hanf als Rohstoff für die Herstellung von Seilen, Segeltuch, Bekleidungstextilien, Papier, Baustoffen und Ölprodukten [Hesch et al., 1996].

Aufgrund der hohen Zugfestigkeit der Fasern war er für die Herstellung von Seilen sehr gefragt. Die Verwendung für Segeltücher liegt vor allem in der Widerstandsfähigkeit gegenüber Salzwasser sowie einer geringen Wasseraufnahme im Vergleich zu Baumwolle begründet.


Im Jahr 1982 kam es dann zum völligen Verbot des Hanfanbaus durch das Betäubungsmittelgesetz in Deutschland und erst 14 Jahre später dann die Wiederzulassung der THC-armen Hanfsorten. Die Abb. 3.1 zeigt die beschriebene Entwicklung der Anbauflächen von Deutschland in den letzten 100 Jahren im Vergleich mit Frankreich und Italien. So kam es in Frankreich nie zu einem völligen Anbauverbot.

![Abb. 3.1: Hanfanbau in Deutschland, Frankreich und Italien von 1912 bis 2006 (FNR, 2008)]


### 3.1 Die Hanfpflanze

Morphologisch gesehen besteht der Hanfstängel aus Holz- und Bastgewebe. Wie in der Abb. 3.2 zu erkennen befindet sich das Bastgewebe als dunkler Bereich am Rand des Stängels. Den weitaus größeren Teil bildet der verholzte Kern (Schäben) der sich daran anschließt. Im Inneren des Hanfstängels befindet sich die Marköhle mit dem Mark, welches hier weiß zu sehen ist. Im Laufe der Wachstumsperiode sterben die Markzellen ab und verschwinden weitestgehend, so dass der Stängel dann hohl ist.
Die eigentlichen Hanffasern liegen im Bastgewebe als Faserbündel vor und sind eingebettet im Parenchymgewebe. Umgeben sind die Fasern dann noch nach außen von der Epidermis, als sogenannte Schutzschicht der Pflanze.

Der mechanisch aufschließbare Faseranteil von Hanfstroh liegt in Abhängigkeit von Sorte und Anbauberuf Klimabedingungen zwischen 20 und 30 Masse-% [Höppner et al., 2000], [Cappelletto et al., 2001], [Francken-Welz et al., 2003].

Ein typischer Bereich für die chemischen Bestandteile in einer Hanfpflanze liegen bei 11 - 14 % Lignin, 21 - 27 % Hemi-Zellulose, 49 - 54 % Zellulose und 5 - 7 % Asche [Cappelletto et al., 2001].
Die wesentlichen Bestandteile der Hanfpflanze unterteilt nach Schäben und Fasern zeigt die Tab. 3.1. Die Prozentanteile zu 100 können als Übrige bezeichnet werden, welche vor allem Proteine, Pektine, Kohlenhydrate und Asche beinhalten.

**Tab. 3.1:** Vergleich der chemischen Zusammensetzung von Hanfschäben und Hanffasern
* [Bedetti et al., 1976], ** [Van der Werf et al., 1994], *** [Bag et al., 2011], **** [Brazdausks et al., 2014]

<table>
<thead>
<tr>
<th>Schäben [%]</th>
<th>Fasern [%]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Zellulose</td>
<td>38,0*</td>
</tr>
<tr>
<td></td>
<td>34,5**</td>
</tr>
<tr>
<td>Hemi-Zellulose</td>
<td>31,0*</td>
</tr>
<tr>
<td></td>
<td>17,8**</td>
</tr>
<tr>
<td>Lignin</td>
<td>18,0*</td>
</tr>
<tr>
<td></td>
<td>20,8**</td>
</tr>
</tbody>
</table>

In der Arbeit von [Bag et al., 2011] werden ausführlich die prozentualen Anteile von Extraktstoffen aus Hanfschäben (Fedora 17) in bestimmten Temperaturbereichen bei Verwendung verschiedener Lösungsmittel beschrieben. Zugleich führte eine Extraktion zu Veränderungen der viskoelastischen Eigenschaften durch Modifikation der Lignine und der Hemicellulosen. Die Tab. 3.2 zeigt eine Zusammenfassung der löslichen Bestandteile.

**Tab. 3.2:** Extraktionsausbeuten und Zusammensetzung der Extraktstoffe von Hanfschäben [Bag et al., 2011]

<table>
<thead>
<tr>
<th>Extraktionsanteil [%]</th>
<th>Zusammensetzung vom Extrakt b</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>N</td>
</tr>
<tr>
<td>kalt (20°C im Chargenbehälter)</td>
<td></td>
</tr>
<tr>
<td>Tol/EtOH (1)</td>
<td>0,6</td>
</tr>
<tr>
<td>EtOH (2)</td>
<td>0,6</td>
</tr>
<tr>
<td>Wasser (3)</td>
<td>2,5</td>
</tr>
<tr>
<td>aufeinanderf. Extraktion (1)+(2)+(3)</td>
<td>3,0</td>
</tr>
<tr>
<td>heiß (Soxhlet-Apparatur)</td>
<td></td>
</tr>
<tr>
<td>Tol/EtOH (4)</td>
<td>2,4</td>
</tr>
<tr>
<td>EtOH (5)</td>
<td>2,2</td>
</tr>
<tr>
<td>Wasser (6)</td>
<td>2,6</td>
</tr>
<tr>
<td>aufeinanderf. Extraktion (4)+(5)+(6)</td>
<td>5,0</td>
</tr>
</tbody>
</table>

a bezogen auf Ausgangsmaterial; b bezogen auf Extraktstoff; n. f. nicht feststellbar

Die Dichte der Schäben werden mit 300 kg m⁻³ [Hesch et al., 1996] bzw. mit 250 - 330 kg m⁻³ [Pecenka, 2008] angegeben.

Die Fasern weisen eine fünfmal höhere Dichte im Vergleich zu den Schäben auf und werden mit 1,48 g cm⁻³ [Müßig, 2010] bzw. 1,44 g cm⁻³ [Hesch et al., 1996] angegeben.

Der Hanf ist eine einjährige Pflanze und ursprünglich zweihäusig, d. h. es gibt männliche und weibliche Pflanzen. Die männlichen Pflanzen reifen zuerst ab, um die weibliche Pflanze zu bestäuben. Da-
nach sterben die männlichen Pflanzen ab. Die weiblichen Pflanzen bringen den Samen zur Reife und sterben dann ebenfalls ab. Man kann sagen, dass die männliche Pflanze ca. 4 Wochen eher erntereif ist als die weibliche Pflanze. Durch diese unterschiedlichen Vegetationsphasen der Hanfpflanzen im Feldbestand, ist es schwierig einen optimalen Erntezeitpunkt zu definieren. So verändern sich die Eigenschaften der Fasern in Abhängigkeit vom Reifegrad der Hanfpflanze. Aus diesem Grund wurden einhäusige Pflanzen gezüchtet, d. h. männlich und weiblich auf einem Stängel, um somit eine gleichmäßigere Abreifung herbeizuführen. Zum Erntezeitpunkt können die Stängel eine Höhe von 2 bis 4 m aufweisen.

Die Aussaat kann Mitte April bis Mitte Mai erfolgen, wobei der Zeitpunkt auch regional angepasst werden muss [Hesch et al., 1996]. Erntereif ist der Hanf bereits nach 100 Tagen. Eine beginnende Körnerreife setzt aber erst ab Mitte August ein. Beachtet werden muss, dass mit zunehmender Dauer die Fasern weiter verholzen (Lignifizierung) [Bluhm, 1998], [Christen et al., 2007], sich die Eigenschaften der Fasern verändern und damit einen Einfluss auf die spätere Verwendung haben kann. Mit einem zunehmend späteren Erntezeitpunkt nimmt ebenfalls das Witterungsrisiko zu. So verlängert sich die notwendige Zeit zur Abtrocknung des Strohs auf eine Restfeuchte von weniger als 15 % um mehrere Tage, bei gleichzeitiger Abnahme der zur Verfügung stehenden Bergezeit [Gusovius, 2002].

Die erzielbaren Trockenmasseerträge von Hanfstroh hängen sehr stark von den Anbaubedingungen, Anbauregion und der verwendeten Sorte ab. So können für Deutschland im Mittel 6,22 t ha⁻¹ (1996 - 2002), für die Region Champagne in Frankreich im Mittel 8,72 t ha⁻¹ (2000 - 2004) und für Holland im Mittel 8,0 t ha⁻¹ (2000 - 2004) erzielt werden [Boulouc, 2013]. Bei der Samenernte werden Erträge bis zu 1,5 t ha⁻¹ erreicht [Gusovius et al., 2016].

Die Vorteile des Hanfanbaus liegen unter anderem im Verzicht auf Herbizide, da die Pflanze schon nach kurzer Zeit den Boden beschattet, was ein Wachsen von Unkraut verhindert [Heuser, 1924], [Hesch et al., 1996]. Sie hat eine geringe Anfälligkeit für Schädlinge und durch die tiefe Wurzel lockert sie den Boden auf, was wiederum Vorteile für den Anbau von Folgefrüchten bringt.

### 3.2 Gewinnbare Pflanzenteile vom Hanf und deren Anwendungsbereiche

3 Hanf als nachwachsender Rohstoff in Deutschland und Europa

3.2.1 Eigenschaften und Anwendungsgebiete von Schäben

Schon 1916 machte man sich Gedanken über die Verwendungsmöglichkeit von Hanfschäben. Sie wurden zur dieser Zeit als Abfallprodukt ohne Wert für andere Zwecke, die mit dem Einsatz für eine Papierherstellung konkurrieren könnten, gesehen [Dewey et al., 1916]. Es wurden Versuche zur Herstellung von Papieren durchgeführt, die eine ähnlich gute Bewertung im Vergleich zu Papieren aus Holz erhalten haben. betrachtet man die gegenwärtigen Anwendungsbereiche der produzierten Hanfschäben in Europa fällt auf, dass über zwei Drittel der Schäben für den Einstreubereich von Pferden und Kleintieren genutzt werden (Abb. 3.5).

![Diagramm von Anwendungen von Hanfschäben in Europa](image)

**Abb. 3.5:** Aufteilung der Anwendungen von Hanfschäben in Europa von der Ernte 2010 (total: 44.000 t) [Carus et al., 2013]

Dies liegt unter anderem an der enorm hohen Wasseraufnahmefähigkeit von Hanfschäben, die sich damit sehr gut für diesen Einsatzzweck eignen. So konnte im Rahmen von [EU-CRAFT PROJECT, 2002]
bei einer Wasserlagerung von Hanfschäben eine Wasseraufnahme von 400 Masse-% nachgewiesen
werden. Auch im Hanfproduktlinienprojekt [NOVA, 1996] wird von einer 4 bis 5-fachen Feuchtig-
keitsaufnahme vom Ausgangsgewicht gesprochen.

Abb. 3.6: Wasseraufnahme von Hanfschäben und Hanffasern [EU-CRAFT PROJECT, 2002]

Die Eignung im Baubereich als Dämmstoff zeigt sich in einem hohen Isoliervermögen der Hanfschä-
ben. Die Wärmeleitfähigkeit einer lose Hanfschäbenschüttung kann mit einem Wert
$\lambda = 0,05 \text{ W (m K)}^{-1}$ angegeben werden (Tab. 3.3).

Tab. 3.3: Wärmeleitfähigkeitswerte für eine lose Hanfschäbenschüttung [EU-CRAFT PROJECT, 2002]

<table>
<thead>
<tr>
<th>Probe</th>
<th>Dichte Kg/m³</th>
<th>Konditionierung °C / %rH</th>
<th>Dicke mm</th>
<th>Mitteltemp. °C</th>
<th>Temp.Diff. K</th>
<th>Lambda W/mK</th>
</tr>
</thead>
<tbody>
<tr>
<td>SHIVESE0</td>
<td>133,0</td>
<td>trocken</td>
<td>65,4</td>
<td>10</td>
<td>5</td>
<td>0,04927</td>
</tr>
<tr>
<td>SHIVESE1</td>
<td>133,0</td>
<td>trocken</td>
<td>65,4</td>
<td>10</td>
<td>5</td>
<td>0,04915</td>
</tr>
<tr>
<td>SHIVESE2</td>
<td>131,0</td>
<td>23 / 50</td>
<td>68,3</td>
<td>10</td>
<td>5</td>
<td>0,05177</td>
</tr>
<tr>
<td>SHIVESE3</td>
<td>127,0</td>
<td>23 / 80</td>
<td>68,4</td>
<td>10</td>
<td>5</td>
<td>0,05368</td>
</tr>
</tbody>
</table>

Bei der Herstellung von Dämmmaterialien aus Schäben konnte die Firma Steico AG für ein Produkt „Canaroof“ mit einer Rohdichte von nur 0,9 g cm$^{-3}$ einen Wert von 0,04 W (m K)$^{-1}$ erreichen [Gahle, 2007]. Besonders interessant ist auch die Herstellung von Schäbenplatten als Konstruktions-
werkstoffe, analog zu einer handelsüblichen Spanplatte aus Holz. So konnte gezeigt werden, dass mit
einer anteiligen Beimischung von Hanfschäben zum Teil verbesserte mechanisch-technologische
Eigenschaften erzielt wurden bzw. auch neue Produkteigenschaften bei reinen Hanfplatten
[Nonninger et al., 2010], [Pecenka et al., 2010]. In Abb. 3.7 ist eine reine Hanfschäbenplatte darge-
estellt, welche mit einer HPL-Deckschicht und einem 2 mm Kunststoffanleimer beschichtet wurde.


### 3.3 Schäben als Nebenprodukt bei der mechanischen Gewinnung von Hanffasern


In der Funktionsstruktur in Abb. 3.8 wird deutlich in welchen Verfahrensschritten und an welcher Prozessstufe die Schäben anfallen. Die Verfahrensschritte „Entholzen des Hanfstrohs“ und „Reinigen der Hanffasern“ waren viele Jahre von zentraler Bedeutung im Hanfauschluss. Mit zunehmendem Kostendruck der Verarbeitungsanlagen entwickeln sich die ursprünglich als Nebenprodukt anfallen-
den Schäben nun ebenfalls zu einem Hauptprodukt. Der Verfahrensschritt „Reinigen der Schäben“ kommt damit ebenfalls einer zentralen Bedeutung zu. Wie in der Abb. 3.8 dargestellt, handelt es sich bei der Fraktion Schäben in den beiden genannten Verfahrensschritten (Entholzen des Hanfstrohs/Reinigen der Fasern) nicht um ein reines Produkt, sondern um ein Mischprodukt.

Abb. 3.8: Funktionsstruktur des Entholzens von Hanfstroh (oben) bzw. des nachgelagerten Reinigens von Hanffasern (unten) [Pecenka, 2008]


Zu beachten ist, dass die in dieser Arbeit betrachtete Produktfraktion eines Schäben-Faser-Gemischs nur der „Trockengutlinie“ entstammt.
4 Die Schäbenreinigung

4.1 Aufgabe und Funktionsstruktur der Schäbenreinigung


Da die Fasern die Eigenschaft besitzen, sich zu verhaken, zu verknäueln und Faserflocken zu bilden, werden damit Schäben und Staub im Inneren eingeschlossen. Das Schäben-Faser-Gemisch muss also durch einen aktiven mechanischen Eingriff aufgelockert werden, damit zunächst Staub, Kleinstpartikel und Ultrakurzfasern (1 - 2 cm) je nach Gewicht oder Dichte über die Schwerkraft oder einen Luftstrom abgetrennt werden können. Danach oder auch parallel dazu erfolgt die Separierung von gereinigten Schäben. Zum Schluss soll versucht werden, die bereits ausgereinigten Fasern so aufzubereiten, daß diese möglichst wenige Schäben enthalten. Wie schon angeführt, ist dies abhängig von der verwendeten Entholzungstechnologie.

Es ergibt sich hieraus nach [Pahl et al., 2003] folgende Funktionsstruktur für die Schäbenreinigung (Abb. 4.1):

**Hauptfunktionen:**
- Schäben und Fasern separieren (Fasern abstrennen)
- Zusammenhalt von Agglomeraten auflösen durch
  - Auflockern
  - Umschichten
  - Auseinanderziehen
- zurückgewonnene Fasern von Restschäben befreien (Restschäben abstrennen)

**Nebenfunktionen:**
- Material transportieren
- Kleinstpartikel, Staub und Ultrakurzfasern entfernen
4.2 Eigenschaften des Eingangsmaterials

Neben den bereits in Kapitel 4.1 genannten Einflussfaktoren zur Zusammensetzung eines SFG’s ergeben sich aufgrund des eingesetzten Hanfstrohs nach [Bócsa et al., 2000], [Gusovius, 2002] noch weitere Einflussfaktoren wie:

- Röstgrad
- Hanfsorte
- Ernteverfahren/Lagerbedingung
- Feuchtegehalt des Hanfstrohs bei Verarbeitung

Die für diese Arbeit hauptsächlich eingesetzten Versuchsmaterialien wurden in der ehemaligen Pilotanlage vom ATB und jetzigen Industrieanlage zum Faseraufschluss aufbereitet. Mit freundlicher Unterstützung der NFC GmbH Nettle Fibre Company, dem Praxispartner im Bereich der Faserpflanzenabteilung vom ATB, konnten typische SFGe, wie sie im Bereich der Fasergewinnung als Nebenprodukt anfallen, gewonnen werden. Für die Entholzung des Strohs kam die vom ATB entwickelte Sichter-
mühle zum Einsatz. Das in diesem Prozessschritt anfallende Gemisch als Abgang unter dem Sieb der Sichtermühle wird als Ausgangsstoff für die Schäbenreinigung nicht betrachtet. Der aufgeschlossene Materialstrom über dem Sieb wird weiter zu einer kombinierten Faserreinigungsanlage geleitet, in der das SFG als Abgang anfällt (Abb. 4.2). Diese Reinigung besteht aus den folgenden Einzelmaschinen:

1. Tambour
2. Stufenreiniger
3. Horizontalöffner


Abb. 4.2: Schematische Darstellung der Austragsstellen vom SFG (Hanf) bei der Faserreinigung

In der Praxis werden meist alle anfallenden SFG wieder zusammengeführt und als ein Gesamtgemisch zur Schäbenreinigung transportiert. Im Rahmen dieser Arbeit wurden die zwei anfallenden Fraktionen (a) und (b) näher auf ihre Zusammensetzung untersucht (Abb. 4.3). Die Darstellung zeigt eine typische Zusammensetzung der jeweiligen anfallenden Fraktion als massengewichtete Bestandteile.
Bei der Herstellung des SFG als Ausgangsstoff für die zu entwickelnde Reinigungsmaschine wird ebenfalls nur noch ein gesamtes SFG betrachtet, welches sich aus den zwei genannten Einzelfraktionen (Fraktion (a) und (b), siehe Abb. 4.2) zusammensetzt.


Für eine leichtere Identifizierung in dieser Arbeit erhalten die genannten Strohvarianten nur noch ein Buchstabenkürzel. Die Tab. 4.1 stellt die Benennung der Strohvarianten und wichtige bei der Verarbeitung aufgenommene Eckdaten aus der Faseraufschlussanlage dar.
<table>
<thead>
<tr>
<th>Kürzel</th>
<th>Hanf (ATB)</th>
<th>Hanf (NFC)</th>
<th>Hanf (NFC)</th>
<th>Fasernessel (NFC)</th>
</tr>
</thead>
<tbody>
<tr>
<td>[W]</td>
<td>[L]</td>
<td>[S]</td>
<td>[N]</td>
<td></td>
</tr>
<tr>
<td>Ballenart</td>
<td>Quader</td>
<td>Quader</td>
<td>Rund</td>
<td>Quader</td>
</tr>
<tr>
<td>Ballengröße</td>
<td>klein</td>
<td>groß</td>
<td>normal</td>
<td>groß</td>
</tr>
<tr>
<td>Röstgrad</td>
<td>über Winter gestanden</td>
<td>leicht</td>
<td>stark</td>
<td>normal</td>
</tr>
<tr>
<td>Samen enthalten</td>
<td>nein</td>
<td>ja</td>
<td>ja</td>
<td>nein</td>
</tr>
<tr>
<td>Feuchte [%]</td>
<td>13,0</td>
<td>12,0</td>
<td>ja</td>
<td>12,1</td>
</tr>
<tr>
<td>Massestrom [t h⁻¹]</td>
<td>1,00</td>
<td>0,96</td>
<td>0,92</td>
<td></td>
</tr>
<tr>
<td>Hammermühle</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Frequenz HM [Hz]:</td>
<td>50</td>
<td>60</td>
<td>53</td>
<td>45</td>
</tr>
<tr>
<td>Abweiserstellung:</td>
<td>1,9</td>
<td>3,8</td>
<td>3,8</td>
<td>1,9</td>
</tr>
<tr>
<td>Schlägerart:</td>
<td>breit</td>
<td>schmal</td>
<td>schmal</td>
<td>schmal</td>
</tr>
<tr>
<td>Produktionsfraktionen</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SFG [%]</td>
<td>62,45</td>
<td>55,45</td>
<td>56,76</td>
<td>69,05</td>
</tr>
<tr>
<td>Fasern [%]</td>
<td>26,93</td>
<td>20,43</td>
<td>21,24</td>
<td>13,98</td>
</tr>
<tr>
<td>Rest [%]</td>
<td>10,62</td>
<td>24,12</td>
<td>22,00</td>
<td>16,97</td>
</tr>
</tbody>
</table>


In einer Siebanalyse wurde von allen für die Versuche eingesetzten SFGs der massenbezogene Anteil von 3 Größenklassen an Schäben und einer Faserfraktion bestimmt (Abb. 4.5). Der Faseranteil in den SFGs liegt zwischen 3 und 9 Masse-%. Der Anteil an Kleinstpartikel beträgt zwischen 8 und 25 Masse-%. Entscheidend ist, ob das Stroh zur Röste auf dem Feld gelegen hat und beim Pressen des Strohs zu Ballen mögliche Sandanteile mitaufgenommen wurden, die den Feinanteil beeinflussen.

Eine detaillierte Betrachtung der Korngrößenverteilung der Schäben aus einem SFG zeigt die Abb. 4.6 für die Strohvariante von über dem Winter gestandenen Hanf [W].

Diese typische massebezogene Schäbenverteilung liefert für den Medianwert des Partikeldurchmessers einer Schäbe von $d_{50} = 2,2$ mm. Wie schon bei der Masseverteilung der Bestandteile vom SFG gezeigt, unterliegen dementsprechend auch die in diesem Fall betrachteten Schäben, Schwankungen in den Partikelgrößenklassen, jeweils abhängig von der Strohvariante sowie der Aufschlussbedingung/Aufbereitung.
4.3 Aufbau typischer Aufschlussanlagen und Reinigungsanlagen


Sehr aufwendige Anlagen stellen die Konzepte von der Firma Temafa, La Roche und Bahmer dar (Abb. 4.7, Abb. 4.8, Abb. 4.9). Aufgrund der eingesetzten Brechertechnologie zum Faseraufschluss ist ein hoher maschinenotechnischer Aufwand für die nachfolgende Faserreinigung nötig. Es werden je nach gewählter Reinigungstechnologie mehrere Kammschüttel, Stufenreiniger und Faseröffner kombiniert und in Reihe geschaltet.

**Abb. 4.7: Anlagenkonzept der Fa. Temafa, Stand 1999 [Morgner, 1999]**

**Abb. 4.8: Anlagenkonzept der Fa. Bahmer [Löwe, 1998]**
Eine neu entwickelte Versuchsanlage zur Faser- und Schäbengewinnung bestehend aus wenigen Einzelmaschinen mit einem Massestrom von bis zu $1 \text{ t h}^{-1}$ zeigt die Abb. 4.10.

Das vom ATB entwickelte und in die Industrie überführte Konzept weist ähnlich der LENKON-Anlage eine einfache, aber sehr wirkungsvolle Aufschluss- und Reinigungslinie bei hohen Masseströmen von bis zu 3 t h\(^{-1}\) auf (Abb. 4.12). Die Kernbereiche Ballenöffnung (Station 2 und 3), Entholzung (Station 4) und Faserreinigung sowie -verfeinerung (Station 6 und 8) werden von wenigen bzw. einer Einzelmaschine wirksam bearbeitet.

Eine Zusammenstellung der anfallenden prozentualen Produktströme bei Verwendung dieses Anlagenlayouts zeigt das Fließschema in der Abb. 4.13.

### 4.4 Stand der Technik in der Schäbenreinigung


Auch mit Trommelsieben wird versucht das Gemisch in seine Einzelbestandteile zu separieren (Abb. 4.17). Hier besteht jedoch die Gefahr der Flockenbildung mit einer Einwicklung der Schäben darin.

Abb. 4.17: Trommelsieb zur Reinigung der Schäben


Abb. 4.18: Siebtrommelturn nach dem Prinzip von Dun Agro, gebaut durch die Firma Van Dommele (3D Schema rechts: [Dun et al., 2009])

Abb. 4.19: links: Axialfraktionierer im Labormaßstab für die ATB-Pilotanlage rechts: Schematische Darstellung des Axialfraktionieres [Fürll et al., 2008a], erweitert durch [Lühr et al., 2013]

4.5 Anforderungen an die Schäbenreinigung

Die Anforderungen an die Schäbenreinigung können nur im Zusammenhang mit der Betrachtung einer Gesamtanlage zur Fasergewinnung formuliert werden.

Überprüft man den gegenwärtigen Stand der Technik in der Schäbenreinigung mit den ökonomischen Anforderungen der Aufbereitung eines Nebenproduktes aus der Fasergewinnung von Hanfstroh, so ergeben sich für den Anlagendurchsatz und die Produktqualität gesteigerte Zielvorgaben für einen langfristig wirtschaftlichen Betrieb einer Gesamtanlage. Als Basis für die Berechnung wird das ATB-Konzept zur Hanfstrohverarbeitung herangezogen (Abb. 4.20). Bei einem Massestrom von 2,5 t h\(^{-1}\) Hanfstroh würde man die Gewinnschwelle erreichen [Pecenka et al., 2012]. Durch die beschriebenen unterschiedlichen Austragsstellen an schäbenhaltigen Fraktionen und für eine Aufbereitung in Frage kommenden Fraktionen kann mit einem Anteil von ca. 60 Masse-% SFG gerechnet werden. Dies würde für die Schäbenreinigungslinie einem Mindestmassestrom von 1,5 t h\(^{-1}\) SFG entsprechen. Die Berechnung von [Pecenka et al., 2012] stellt ebenfalls für einen Bereich von 4 - 6 t h\(^{-1}\) eine optimale Beziehung zwischen Anlageninvestition, Strohlogistikkosten und Gewinn heraus. Damit könnte bei einer Auslegung der Schäbenreinigungslinie von bis zu 3 t h\(^{-1}\) SFG diesem Bereich entsprochen werden.

Wie in den vorherigen Kapiteln bereits gezeigt, handelt es sich beim SFG um ein Restprodukt aus Faseraufschluss, Faserreinigung und Faseröffnung. Ziel sollte es sein, einen Anteil an gereinigten Schäben aus dem SFG von über 80 Masse-% zu erreichen, um ebenfalls bei einem Gesamtanteil von 50 Masse-% gereinigter Schäben bezogen auf 100 Masse-% Hanfstroh zu liegen. Der Restfasergehalt der gereinigten Schäben sollte dabei deutlich weniger als 1 Masse-% betragen. Die Entfernung der Fasern bezieht sich dabei größtenteils auf Kurzfasern, die bei der Gewinnung der Fasern (Faserreinigung) nicht erfasst werden konnten und durch Siebe gefallen sind bzw. ausgekämmt wurden. Für den maximal zulässigen Staubanteil in den gereinigten Schäben wird sich an den Anforderungen einer österreichischen Norm für Tiereinstreu orientiert (Tab. 4.2). Es werden in dieser Norm mit F1 und F2
zwei Produktklassen mit einem unterschiedlichen Feinanteil definiert. Als Anforderung an die Schä—benreinigung wird ein Staubanteil von weniger als 2 Masse-% festgeschrieben.

**Tab. 4.2:** Auszug aus einer österreichischen Norm zu Tiereinstreu aus nachwachsenden Rohstoffen
[ÖNORM S 1030, 2008]

<table>
<thead>
<tr>
<th>Kriterien der ON S 1030 und ihre Aussagekraft</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Parameter</strong></td>
</tr>
<tr>
<td>----------------</td>
</tr>
<tr>
<td>Fremd-Störstoffe</td>
</tr>
<tr>
<td>Wassergehalt</td>
</tr>
<tr>
<td>Grobanteil</td>
</tr>
<tr>
<td>Feinanteil</td>
</tr>
<tr>
<td>Saugfähigkeit</td>
</tr>
</tbody>
</table>
5 Schäbenreinigung im axialen Fluss

5.1 Stand der Technik


Abb. 5.1: Patent zur Baumwollreinigung [Smith, 1893]

Auch in der Landwirtschaft kommt das axiale Reinigungsprinzip zum Einsatz (Abb. 5.3). In einem von der Firma Class patentierten Mährescher zur Flaxaufbereitung wird der Gutstrom mittels eines Rotors in die axiale Richtung vorwärts bewegt.


Das vom ATB entwickelte und patentierte Verfahren zur Schäbenreinigung, beruht auf einer Paddelschnecke mit einem Siebboden (Abb. 5.5).

5.2 Erweiterte Anforderungen an die Schäbenreinigung im axialen Fluss

In dem Kapitel 4.5 konnten die grundlegenden Anforderungen an die Schäbenreinigung im Allgemeinen herausgearbeitet werden. Für die Erweiterung der Schäbenreinigung im axialen Fluss und mit dem Hintergrund der verschiedenen Systeme aus der Patentrecherche, stellen sich für die Entwicklung eines Maschinensystems mit dem Einsatzgebiet in einer modernen Praxisanlage zur Bastfasergewinnung folgende erweiterte Anforderungen:

- Die Reinigung soll so effizient sein, dass die Reinigungslinie zur Schäbenreinigung nur aus einer Einheit besteht (Restfasergehalt < 1 Masse-%).
- Neben der Reinigung der Schäben sollen Kurzfasern mit einem geringen Schäbenanteil aus dem Gemisch zurückgewonnen werden (Restschäbengehalt < 10 Masse-%).
- Durch die Verwendung eines aktiven mechanischen Eingriffs in das SFG sollen Faserflocken aufgelockert und Schäben herausgelöst werden.

In der Tab. 5.1 sind die grundlegenden Anforderungen aus dem Kapitel 4.5 sowie die erweiterten Anforderungen an die Schäbenreinigung zusammengefasst.

<table>
<thead>
<tr>
<th>Merkmal</th>
<th>Ausprägung</th>
<th>Bemerkung</th>
</tr>
</thead>
<tbody>
<tr>
<td>Massestrom SFG</td>
<td>bis zu 3 t h⁻¹</td>
<td></td>
</tr>
<tr>
<td>Masseanteil an gereinigten Schäben</td>
<td>&gt; 80 %</td>
<td>abhängig vom SFG bzw. Entholzungsgrad</td>
</tr>
<tr>
<td>davon Restfasern</td>
<td>&lt; 1 %</td>
<td></td>
</tr>
<tr>
<td>davon Staub</td>
<td>&lt; 2 %</td>
<td>Forderung</td>
</tr>
<tr>
<td></td>
<td>&lt; 1 %</td>
<td>Wunsch</td>
</tr>
<tr>
<td>Masseanteil an gereinigten Fasern</td>
<td>bis zu 5 %</td>
<td>abhängig vom Faseranteil im SFG</td>
</tr>
<tr>
<td>davon Restschäben</td>
<td>&lt; 10 %</td>
<td></td>
</tr>
</tbody>
</table>
5.3 Präzisierte Aufgabenstellung und Neuheitswert einer optimierten Schäbenreinigung im axialen Fluss auf Basis eines Axialfraktionierers


Abb. 5.6: Wirkprinzip des Axialfraktionierers
a) Bewegung über das Paddel, b) Bewegung entlang des Paddels, c) Abwurf vom Paddel
Das Besondere bei der Verwendung einer Paddelschnecke ist, dass es neben dem Transport des Gutes in axialer Richtung zu einer intensiven Auflockerung des SFG’s bei gleichzeitiger Siebflächenräumung durch das Paddel selbst kommt. Dadurch steht den losen Schäben immer wieder eine freie Siebfläche zum Passieren der Lochgeometrie bereit. Anhand der blauen Pfeile in der Abb. 5.6 kann man drei typische Hauptbewegungsarten (a, b, c) des Gemisches erkennen. Befindet sich das Paddel im unteren Bereich, also direkt über der Sieboberfläche, kommt es zu einem Fließen des Gutes über das Paddel (a). Dadurch können sich die Partikel neu ausrichten und die kurz zuvor geräumte Siebfläche passieren. Ein Teil des Gutes fließt entlang des Paddels in axiale Richtung (b) und wird dabei auch mit nach oben geschoben. Durch die unterbrochene Anordnung der Helix kann das Material am Ende des Paddels entlang der Siebfläche wieder nach unten rutschen. Es wird den Partikeln also genügend Zeit eingeräumt sich immer wieder neu auszurichten und dabei das Sieb zu passieren, bevor ein nachfolgendes Paddel das Material weiter in axialer Richtung vorwärts schiebt. Ab einer bestimmten Geschwindigkeit kann nicht mehr alles Material vom Paddel fließen, so dass es mit nach oben genommen und aufgrund der wirksamen Zentrifugalkraft vom Paddel auf die gegenüberliegende Siebfläche geworfen wird (c). Hier rutscht das Material dann entlang der Siebfläche wieder nach unten und die Schäben können ebenfalls das Sieb passieren. Durch Verwendung höherer Drehzahlen können auch Faserflocken zerschlagen bzw. auseinandergezogen werden, so dass eingeschlossene Schäben aus diesen herausfallen. Damit ergeben sich für die Optimierung der Schäbenreinigung in einem Axialfraktionierer folgende Arbeitsschritte:

- Entwickeln eines Versuchsaxialfraktionierers für die grundlegende Analyse des Einflusses allgemeiner Konstruktions- und Betriebsparameter auf den verarbeitbaren Massestrom und das Abscheideverhalten von Schäben aus der Restfraktion (Nebenprodukt) der Faser gewinnung von Hanf
- Analyse zum Aufbau und der Gestaltungsform einer Paddelschnecke für eine materialflussgerechte Gestaltung, insbesondere zur Auflösung von Faserflocken und Agglomeraten
- Analyse und Modellierung der Partikelbewegung in Abhängigkeit von Konstruktions- und Betriebsparametern
- Analyse und Modellierung des Massestroms und des Siebverhaltens von Schäben in einem Axialfraktionierer
- Anwenden und Bewerten des Modells für Simulationsrechnungen im Hinblick auf die Auslegung einer Reinigungsanlage für Schäben-Faser-Gemisch mit spezifischen Anforderungen

5.4 Maschinenkonzeption eines Axialfraktionierers

Auf Grundlage der typischen Zusammensetzung eines SFG, den gewünschten zu erzielenden, bzw. anfallenden Siebfraktionen und Übernahme des bekannten Wirkprinzips wurde das in Abb. 5.7 dargestellte Maschinenkonzept für den Bau einer Versuchsmaschine erarbeitet. Die Forderungen nach nur einer kompakten maschinenbaulichen Einheit sowie neben einer Reinigung der Schäben auch weitestgehend schäbenfreie Kurzfasern zurückzugewinnen, können mit diesem Konzept nachgekommen werden.
In Vereinfachung zum Patent erfolgt die Realisierung in zwei Wellenabschnitten, die unabhängig voneinander mit verschiedenen Drehzahlen betrieben werden können. Im Wellenabschnitt 1 werden über einer engmaschigen Siebfläche (Sieb 1) Staub und Kleinstpartikel und anschließend über einer Siebfläche mit größerer Maschenweite (Sieb 2) gereinigte Schäben abgeschieden. Der Wellenabschnitt 2 ist für die Reinigung der bis dahin transportierten Fasern mit den darin eingeschlossenen Schäben vorgesehen. Über einer grobmaschigen Siebfläche (Sieb 3) sollen dann Schäben mit fest verbundenen Faserfragmenten, sowie aus den Faserflocken herausgelöste Schäben ausfallen. Dieser Bereich kann auch als Überlauf betrachtet werden, um am Ende des kompletten Abscheidewegs die möglichst schäbenfreien Kurzfasern zurückzugewinnen. Die Abb. 5.8 zeigt den nach diesen Vorgaben entwickelten und in Zusammenarbeit mit einem Praxispartner konstruierten sowie gebauten Versuchsaxialfraktionierer.

Abb. 5.7: Maschinenkonzept des ATB-Axialfraktionierers

Abb. 5.8: Versuchsaxialfraktionierer des ATB

Der Materialvorschub über dem Sieb erfolgt nur über die verbaute Paddelschnecke in Abhängigkeit verschiedener Paddelanordnungen. Der Abscheideweg hat eine Länge von 6 m bei einem Paddelradius von 0,5 m und stellt im Vergleich zu den bisher bekannten in der Praxis vorkommenden Reinigungsmaschinen (siehe Kapitel 4.4), eine kleinere konstruktionstechnische Lösung dar. Die Projektierung sieht dennoch einen maximalen Massestrom von bis zu 3 t h⁻¹ vor.
5.5 Axialfraktionierer-Versuchsstand

5.5.1 Versuchsaufbau und -durchführung

Versuchsaufbau und -durchführung zur Optimierung des Axialfraktionierers bis hin zu einer Industriemaschine erfolgte in zwei verschiedenen Versuchsvarianten.


Abb. 5.9: Versuchsaufbau schematisch (Variante 1)

In der Versuchsanordnung nach Variante 2 (siehe Abb. 5.10) wurden dann nur noch die jeweiligen Fraktionen entsprechend ihrer Siebmaschenweite für eine Qualitätsanalyse betrachtet. Die vorher in einzelnen Behältern aufgefangenen Austragsmengen müssen nun als Gesamtfraktion betrachtet werden. Dazu wurden die einzelnen Auffangbehälter entfernt und in den entsprechenden Bereichen Trichter unter den Sieben (①-④) montiert, die es wiederum ermöglichen die vier Endfraktionen gesondert voneinander aufzufangen.
Parallel dazu wurde im Bereich der Schäbenabscheidung eine über Luft indizierte Staubabscheidung (5) quer zur Förderrichtung des Gutstroms installiert.

Zusammenfassend können die Ziele beider Versuchsanordnungen wie folgt definiert werden:

- **Variante 1**: Bestimmung Abscheidegrad
- **Variante 2**: Qualitätsanalyse

**Versuchsablauf**

Probennahme und -analyse


liche Zeitaufwand einer Probenanalyse im Vergleich zu einer vorherigen Aussortierung deutlich reduziert werden.

Für die Probenanalyse der Fraktion „gereinigte Fasern“, wurde sich Aufgrund des sehr hohen Faseranteils auf ein händisches Sortieren in Faser und Schäbe beschränkt. Dies war trotz einer reduzierten Probenmenge von ca. 30 g mit einem erheblichen Zeitaufwand verbunden. Eine maschinelle Lösung für eine Separierung der Faserfraktion mit einem sogenannten Labor-Grobauflöser wäre denkbar, ist aber durch das Grundprinzip der Maschine nur eingeschränkt möglich und führt zu einem verfälschenden Ergebnis der Masseanteile von Fasern und Schäben.

Versuchsplan

Die Tab. 5.2 gibt einen Überblick der durchgeführten Versuche mit den eingesetzten Materialien, den varierten Konstruktions- sowie Betriebsparametern und den aufgenommenen Messgrößen. Aufgrund des eng gestrickten Versuchszeitraums konnten nicht immer alle Parametervariationen durchgeführt werden. So wurden bestimmte Versuchseinstellungen mit einem geringen zu erwartenden Erkenntnisgewinn nicht weiter in das Versuchsprogramm aufgenommen.

<table>
<thead>
<tr>
<th>Material</th>
<th>KP¹</th>
<th>Betriebsparameter</th>
<th>Messgrößen</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rohstoff</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hanf (ATB)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Winterhanf</td>
<td>[W]</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>leicht geröstet</td>
<td>[L]</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>stark geröstet</td>
<td>[S]</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>Fasernessel (NFC)</td>
<td>[N]</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>typisches SFG</td>
<td>[V]</td>
<td>x</td>
<td>-/x</td>
</tr>
<tr>
<td>mit HM³ bearbeitetes SFG</td>
<td>[V/H]</td>
<td>x</td>
<td>-/x</td>
</tr>
</tbody>
</table>

¹KP... Konstruktionsparameter, ²SF... Siebfach, ³AF... Austragsfraktion, ⁴HM... Hammermühle
5.5.1.1 Aufbau eines Kondensers


Durch den Transport und Abscheidevorgang wird auch ein Teil des Feststoffes über die Luft und durch die perforierte Siebtrommel mit abgeschieden. Da Kondenser üblicherweise in Faseraufschlussanlagen eingesetzt werden, sollte das auch hier so sein. Der bei den Versuchen entstandene Verlust wurde ermittelt und in der Auswertung berücksichtigt.

5.5.2 Grundlegende zu erwartende Versuchsergebnisse

Für die Reinigung eines SFG bei der gewählten Versuchsanordnung lassen sich drei typische Aussiebungsverläufe annehmen (Abb. 5.13). Die Darstellung beruht auf der Berechnung, dass 100 Masse-% des SFG’s der Menge in den Behältern von 1 bis 21 entspricht. Jedes Siebfach entspricht einem Abscheideweg von 30 cm und stellt jeweils als Messpunkt das Ende des entsprechenden Abscheidewegs. So entspricht zum Beispiel das Siebfach 9 dem Messpunkt auf dem Abscheideweg von 2,7 m.
5 Schäbenreinigung im axialen Fluss

Abb. 5.13: Theoretisch vorhersagbarer prinzipieller Aussiebungsverlauf für ein SFG bei entsprechend gewählter Versuchsanordnung

Folgende Siebfächer bilden entsprechend des darüber liegenden Siebabschnitts entsprechender Sieblochweite eine Austragsfraktion:

- 1 - 5 Staubfraktion (Rundlochung 1,1 mm)
- 6 - 15 Schäbenfraktion (Quadratlochung 10 mm)
- 16 - 20 Mischfraktion (Quadratlochung 20 mm)
- 21 Faserfraktion (ohne Sieb)

5.6 Siebraum und Paddelgeometrie im Hinblick auf den Materialtransport und das Abscheidevermögen

5.6.1 Varianten der Siebflächengestaltung


Abb. 5.14: Lochformen und -anordnung [RMIG GmbH, 2010]

Eine Analyse der Durchtrittswahrscheinlichkeit eines Partikels bei einer entsprechenden Siebform in Abhängigkeit von der Partikelgröße erfolgt noch in Kapitel 7 im Rahmen der Modellentwicklung für den Aussiebungsverlauf. Die für die Versuche in Betracht kommenden Siebe sind in der Tab. 5.3 zusammengestellt.

Tab. 5.3: Verwendete Siebe in der Versuchsmaschine

<table>
<thead>
<tr>
<th>Beschreibung</th>
<th>Normbezeichnung [ISO 7806, 1983]</th>
<th>Perforierung</th>
<th>Lochweite [mm]</th>
<th>Lochteilung [mm]</th>
<th>Freifläche [%]</th>
<th>Länge [m]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sieb 1</td>
<td>Rv 1,1-2</td>
<td>Rundlochung</td>
<td>1,1</td>
<td>2,0</td>
<td>27,44</td>
<td>1,5</td>
</tr>
<tr>
<td>Sieb 2</td>
<td>Qg 10-12</td>
<td>Quadratlochung</td>
<td>10,0</td>
<td>12,0</td>
<td>69,44</td>
<td>3,0</td>
</tr>
<tr>
<td>Sieb 3</td>
<td>Qg 20-25</td>
<td>Quadratlochung</td>
<td>20,0</td>
<td>25,0</td>
<td>64,00</td>
<td>1,5</td>
</tr>
</tbody>
</table>

5.6.2 Einflussparameter des Materialtransports

Der Aufbau sowie die Konstruktion einer Schnecke zum axialen Transport können auf sehr unterschiedlicher Weise erfolgen. Damit verbunden sind verschiedene Einsatzgebiete der Schnecken die neben einem Transportieren auch ein Durchmischen begünstigen. Es können Schüttgüter bis hin zu dickflüssigen Materialien damit transportiert werden. In Abb. 5.15 ist eine Zusammenstellung unterschiedlicher zum praktischen Einsatz kommender Schneckengewinde dargestellt.


\[ G = \tan \alpha \times \pi \times r \]  \hspace{1cm} (5.1)
Die Übertragung der Gleichung auf ein Bandgewinde sieht wie in der Abb. 5.16 aus.

Um zu einer Paddelschnecke zu kommen, wird das Bandgewinde in mehrere Segmente unterteilt. Hierbei sollen die sich wiederholenden vier verschiedene Farben später jeweils eine Umdrehung bilden (Abb. 5.17).


Beim Ineinanderwickeln von zwei Bandschnecken, wie sie in der Abb. 5.19 gezeigt wird, ist dann noch eine Paddelanordnung möglich. Durch die versetzte Anordnung der beiden Bandschnecken um 180° und einem anschließenden Auseinanderdrehen um einen Verdrehungswinkel $\delta = 90°$ heben sich die nacheilende und die vorauseilende Paddelanordnung gegenseitig auf. Aus diesem Grund wird diese Konstellation als doppelte Paddelanordnung bezeichnet und kurz mit [dp] gekennzeichnet.

In allen drei Fällen muss die Drehrichtung der Paddelschnecke beachtet werden, damit das Gut in die gewünschte axiale Richtung bewegt wird.

Für eine Betrachtung des Materialtransports, welches ein Abgleiten am Paddel bzw. auch Abwerfen vom Paddel beinhaltet, wurden die Winkelverhältnisse bei der Bewegung um seine Drehachse näher untersucht. Dazu wurde folgendes Modell vom Paddel mit seinem konstanten Steigungswinkel $\alpha$ aufgestellt (Abb. 5.20). In den drei Hauptebenen (Axialebene, Horizontalebene, Radialebene) lassen sich die veränderlichen Schnittwinkel $\beta, \gamma, \varphi$ in Abhängigkeit von der jeweiligen Position des Winkels beschreiben. Der Schnittwinkel $\varphi$ in der Radialebene ist identisch mit dem Laufwinkel $\varphi$ des Paddels um seine Drehachse. Die Schnittwinkel $\beta$ und $\gamma$ als Vorschubwinkel in ihrer jeweiligen Ebene stehen in Abhängigkeit von dem Steigungswinkel $\alpha$ und dem Laufwinkel $\varphi$.
5 Schäbenreinigung im axialen Fluss

\[ \alpha \] Steigungswinkel des Paddel
\[ \beta \] Vorschubwinkel in der Axialebene (vertikal)
\[ \gamma \] Vorschubwinkel in der Horizontalebene (horizontal)
\[ \varphi \] Laufwinkel des Paddel (identisch mit dem Schnittwinkel in der Radialebene)

Abb. 5.20: Darstellung der Winkel am Paddel

Die Abb. 5.21 zeigt das Paddel in den drei Betrachtungsebenen sowie die direkte Ansicht in der Paddelebene. Über den fest einzustellenden Steigungswinkel \( \alpha \) vom Paddel und der jeweiligen Position des Paddels (Laufwinkel \( \varphi \)) bei der Bewegung um den Drehpunkt sollen nun die jeweiligen Vorschubwinkel in den entsprechenden Ebenen berechnet werden.

Abb. 5.21: Ansichten des Paddels in den verschiedenen Hauptebenen
5.6.2.1 Vorschubwinkel \( \beta \) in der Axialebene

Die Herleitung des vertikalen Vorschubwinkels in der Axialebene in Abhängigkeit von \( \alpha \) und \( \phi \) lässt sich durch geometrische Beziehungen zwischen den verschiedenen Ansichtsebenen vom Paddel durchführen (Abb. 5.22).

\[ \cos(\alpha) = \frac{w}{b} \]  \hspace{1cm} (5.2)

\[ \sin(\alpha) = \frac{G_{P}/a_{P}}{b} \]  \hspace{1cm} (5.3)

**Abb. 5.22**: Zusammenhang geometrischer Verhältnisse zur Bestimmung des Vorschubwinkels \( \beta \) in der Axialebene

Unter Verwendung der Orthogonalebene (Ansicht B), Radialebene und Axialebene und darin enthalten geometrische Größen wird die Herleitung des Winkels \( \beta \) in den folgenden Gleichungen 5.2 bis 5.13 gezeigt:

In der Orthogonalebene sind die Winkelverhältnisse wie folgt definiert:
Die Umstellung der Gleichungen 5.2 und 5.3 nach der Strecke w sowie \( G_p/a_p \) liefert:

\[
w = \cos\alpha \cdot b \tag{5.4}
\]

\[
G_p/a_p = \sin\alpha \cdot b \tag{5.5}
\]

In der Radialebene sind die Winkelverhältnisse wie folgt:

\[
\cos(\varphi) = \frac{w}{h} \tag{5.6}
\]

Die Umstellung der Gleichung 5.6 nach der Strecke h liefert:

\[
h = \frac{w}{\cos(\varphi)} \tag{5.7}
\]

Durch Einsetzen der Gleichung 5.4 in die Gleichung 5.7 entsteht das neue Winkelverhältnis:

\[
h = \frac{\cos\alpha \cdot b}{\cos(\varphi)} \tag{5.8}
\]

In der Axialebene sind die Winkelverhältnisse wie folgt beschreibbar:

\[
\tan(\beta) = \frac{G_p/a_p}{h} \tag{5.9}
\]

Durch Einsetzen der Gleichungen 5.5 und 5.8 in die Gleichung 5.9 ergibt sich:

\[
\tan(\beta) = \frac{\sin\alpha \cdot b \cdot \cos(\varphi)}{\cos\alpha \cdot b} \tag{5.10}
\]

Folgender Winkelzusammenhang besteht:

\[
\sin(\alpha) = \tan(\alpha) \cdot \cos(\alpha) \tag{5.11}
\]

Somit ergibt sich durch Einsetzen von Gleichung 5.11 in Gleichung 5.10 und Kürzen folgender Zusammenhang:

\[
\tan(\beta) = \cos(\varphi) \cdot \tan(\alpha) \tag{5.12}
\]
Die Auflösung der Gleichung 5.12 ergibt in der Axialebene den Winkel $\beta$ in Abhängigkeit vom Steigungswinkel $\alpha$ und dem momentanen Laufwinkel $\varphi$:

$$\beta = \arctan(\cos(\varphi) \times \tan(\alpha))$$  \hspace{1cm} (5.13)

Mit der Gleichung 5.13 kann nun für jede Position des Paddels (Laufwinkel $\varphi \leq 90^\circ$) und in Abhängigkeit von dem Steigungswinkel $\alpha$ des Paddels der entsprechend Vorschubwinkel $\beta$ in der Axialebene bestimmt werden.

### 5.6.2.2 Vorschubwinkel $\gamma$ in der Horizontalebene

Analog zur Bestimmung des axialen Vorschubwinkels $\beta$ kann auch der Vorschubwinkel $\gamma$ in der Horizontalebene bestimmt werden (Abb. 5.23).

Unter Verwendung geometrischer Paddelmaße in der Orthogonalebene, Radialebene sowie Horizontalebene und deren Beziehung zueinander, kann der Winkel $\gamma$ in Abhängigkeit von $\alpha$ und $\varphi$ berechnet werden (Gleichungen 5.14 bis 5.20).
In der Radialebene sind die Winkelverhältnisse wie folgt:

\[ \sin(\varphi) = \frac{w}{l} \]  
(5.14)

Die Umstellung der Gleichung 5.14 nach der Strecke l liefert:

\[ l = \frac{w}{\sin(\varphi)} \]  
(5.15)

Durch Einsetzen der Gleichung 5.4 in die Gleichung 5.15 entsteht das neue Winkelverhältnis:

\[ l = \frac{\cos(\alpha) \cdot b}{\sin(\varphi)} \]  
(5.16)

In der Horizontalebene sind die Winkelverhältnisse wie folgt beschreibbar:

\[ \tan(\gamma) = \frac{G_p / a_p}{l} \]  
(5.17)

Durch Einsetzen der Gleichungen 5.5 und 5.16 in die Gleichung 5.17 ergibt sich:

\[ \tan(\gamma) = \frac{\sin(\alpha) \cdot b \cdot \sin(\varphi)}{\cos(\alpha) \cdot b} \]  
(5.18)

Somit ergibt sich durch Einsetzen von Gleichung 5.11 in Gleichung 5.18 und Kürzen folgender Zusammenhang:

\[ \tan(\gamma) = \sin(\varphi) \cdot \tan(\alpha) \]  
(5.19)

Die Auflösung der Gleichung 5.19 ergibt in der Horizontalebene den Winkel \( \beta \) in Abhängigkeit vom Steigungswinkel \( \alpha \) und dem momentanen Laufwinkel \( \varphi \):

\[ \gamma = \arctan(\sin(\varphi) \cdot \tan(\alpha)) \]  
(5.20)

Damit kann nun auch der Vorschubwinkel \( \gamma \) nach der Gleichung 5.20 für jede Position des Paddels (Laufwinkel \( \varphi \leq 90^\circ \)) und in Abhängigkeit von dem Steigungswinkel \( \alpha \) des Paddels der entsprechende Vorschubwinkel \( \gamma \) in der Horizontalebene berechnet werden. Der Unterschied in den beiden Berechnungen der Vorschubwinkel (Gleichungen 5.13 und 5.20) besteht in der Verwendung des Sinus bzw. Cosinus vom Laufwinkel \( \varphi \). Daran zeigt sich, dass das Betrachtungssystem um 90° gedreht ist.
5.6.3 Zusammenhang der Vorschubwinkel in Abhängigkeit von Lauf- und Steigungswinkel

Für die entwickelten Gleichungen zur Berechnung der Vorschubwinkel $\beta$ und $\gamma$ in ihren entsprechenden Ebenen wurde in Abhängigkeit vom Laufwinkel $\varphi$ und Steigungswinkel $\alpha$ eine dreidimensionale Darstellung der Zusammenhänge aller 4 Winkel erarbeitet. Die Abb. 5.24 zeigt für den Steigungswinkel $\alpha$ in dem Bereich von 0° bis 45° und für den Laufwinkel $\varphi$ von 0° bis 90° die resultierenden Vorschubwinkel $\beta$ und $\gamma$. Dabei wurden die Steigungswinkel $\alpha$ von 10°, 25° und 40° zur besseren Verdeutlichung farblich hervorgehoben.

Bei einem Laufwinkel von $\varphi = 45^\circ$ weisen die Vorschubwinkel $\beta$ und $\gamma$ jeweils den gleichen Wert auf. Je größer der Steigungswinkel $\alpha$ ist, umso größer ist die absolute Änderung der Vorschubwinkel $\beta$ und $\gamma$ entlang des Laufwinkels $\varphi$ (rotierendes Paddel). Dabei zeigt sich, dass der Vorschubwinkel $\beta$ für kleine Laufwinkel nur eine geringe Änderung vollzieht und erst mit größer werden Laufwinkel sich bis auf $\beta = 0^\circ$ ändert. Beim Vorschubwinkel $\gamma$ wiederum zeigt sich bereits eine große Änderung für kleine Laufwinkel $\varphi$, welche mit zunehmenden Laufwinkel dann aber abnimmt und schließlich den eingestellten Steigungswinkel ($\gamma = \alpha$) erreicht. Diese Zusammenhänge werden für eine spätere Berechnung der Partikelbewegung auf dem Paddel und dem sich daraus ergebenden Abwurf zur Flugbahnberechnung genutzt (siehe Kapitel 6.2).
5.6.4 Wirkende Kräfte beim Abwurf


Zusammen mit der Luftreibung wirkt sie entgegen der Bewegungsrichtung. Für die Luftreibung kann kurz $k \cdot v^2$ geschrieben werden, wobei $k$ nach Gleichung 5.21 definiert ist.

$$ k = \frac{1}{2} \cdot c_w \cdot A_p \cdot \rho $$

$C_w$ Widerstandsbeiwert  
$A_p$ Körperquerschnittsfläche  
$\rho$ Dichte des strömenden Mediums

Bewegt sich nun ein Körper entlang einer schiefen Ebene nach oben, zeigen die Reibkraft und die Hangabtriebskraft entgegen der Bewegungsrichtung nach unten. Im zweiten Betrachtungsfall, einer Bewegungsrichtung des Partikels nach unten, wirken Reibkraft und Hangabtriebskraft in entgegengesetzter Richtung. Dies gilt es auch bei einer Partikelbewegung am Paddel zu beachten.

Hier kommt es zu einer überlagerten Bewegung aus einer Mitnahme des Partikels vom sich drehenden Paddels sowie einem Abgleiten des Partikels am Paddel nach unten infolge der Gravitationskraft. Aufgrund der wirkenden Zentrifugalkraft bewegt sich das Partikel dabei nach außen. Die Abb. 5.26 zeigt den Zusammenhang aus der tangentialen Geschwindigkeitskomponente $v_{tan}$ und der relativen Geschwindigkeitskomponente $v_{rel}$, verursacht durch die Zentrifugal- sowie Erdbeschleunigung.
Das Partikel an der Position P startet mit der Kreisbahngeschwindigkeit und bewegt sich aufgrund der wirkenden Zentrifugalkraft nach außen. Durch die Schrägstellung des Paddels kommt es zeitgleich zu einem Abrutschen des Partikels entlang des Paddels und die Position P' ist erreicht. Das Paddel hat sich um den Laufwinkel $\varphi$ weiter gedreht, wobei das Partikel an der Position P' eine vom Laufwinkel $\varphi$ abweichende Winkelposition einnimmt.

### 5.6.5 Funktionsanalyse der Paddelfunktion


**Abb. 5.26:** Schematische Darstellung des Bewegungsablaufs bei einer Kreisbewegung mit nach außen gerichteter sowie abgleitender Geschwindigkeit

**Abb. 5.27:** Darstellung eines Paddels mit runder Außenkante für drei verschiedene Steigungswinkel (von links nach rechts: $\alpha = 10^\circ$, $25^\circ$, $40^\circ$)
Für die zu entwickelnde Reinigungsmaschine gilt es neben dem Transport des Materials über die Siebfläche, gleichzeitig dieses auch optimal zu räumen. Ein Paddel mit einer runden Außenkante ist für diesen Einsatzzweck nicht geeignet, da es dann zu Bereichen entlang des Abscheidewegs kommt die gar nicht oder nur ungenügend beräumt werden. Damit würde freie Siebfläche für das Passieren von Schäben durch das Sieb verloren gehen. Es zeigt sich also, dass die Außenkante vom Paddel entsprechend der konkreten Winkelstellung $\alpha$, einer Parabel folgen muss.

5.6.6 Konstruktion eines Paddels zur optimierten Siebflächenräumung

Die Vorüberlegungen zur optimierten Paddelgeometrie zeigten die Notwendigkeit einer abgestimmten Paddelaußenkante zum Siebflächenradius. Die Verwendung der parabelförmigen Außenkante, abweichend von einer kreisförmigen Außenkante zeigt für einen Steigungswinkel $\alpha = 25^\circ$ eine optimale Form für eine gleichmäßige Räumung der Siebfläche (Abb. 5.28). Damit ist das Paddel auch unabhängig von der Länge des Sichelbogens, da dieser exakt dem Siebflächenradius im Querschnitt folgt.

Zu beachten ist, dass bei Verwendung dieser optimierten Paddelform ein Wegdrehen aus dem vorgegebenen Steigungswinkel nur bedingt möglich ist. Eine Vergrößerung des Steigungswinkels wäre bedenkenslos möglich. Bei einer Reduzierung des Steigungswinkels kommt es aber unweigerlich zu einer Kollision mit dem Siebflächenradius. In diesem Fall muss der Abstand vom Paddel zur Siebfläche vergrößert werden, was wiederum eine verschlechterte Räumung der Siebfläche zur Folge hätte.

5.7 Optimieren der Partikelbewegung im Arbeitsraum des Axialfraktioniers

Wie bereits dargestellt, soll bei der Reinigung eines SFG´s das Material vom Paddel über den Siebraum hinaus mitgenommen und dann abgeworfen werden (siehe Abb. 5.6). In dem oberen Arbeitsraum soll mit einer überlagerten Luftströmung vor allem Staub und Ultrakurzfasern als Schwebe- und Partikel aus diesem Bereich entfernt werden, ohne die eigentliche Abwurfbewegung zu beeinflussen. Notwendige Kennwerte von Schäben bei der Bewegung im Luftstrom sind dafür zu ermitteln.

5.7.1 Funktionsanalyse zur Abwurfbewegung und Staubabsaugung im Arbeitsraum

Durch das Prinzip einer Paddelschnecke wird das Gut auf dem Sieb vorwiegend auf die Steigseite vom Paddel geschoben. Damit steht freie Siebfläche zum Passieren der Schäben auf der gegenüberliegen-
den Seite bereit. Da die Paddelschnecke mit einer Drehzahl betrieben werden soll, die ein Abwerfen vom Paddel über die Welle begünstigt, besteht die Möglichkeit auch diese Siebfläche zu nutzen. Ein tangentialer Auslauf der Siebfläche ab einem Winkel von 60° soll einer materialflussgerechten Wurfbewegung entsprechen und zur Erhöhung eines möglichen Siebereignisses beitragen. Die Abb. 5.30 zeigt den sich ausbildenden Querschnitt vom Sieb- und Arbeitsraum mit seiner unteren Siebflächenbegrenzung und der oberen Gehäuseabdeckung.

Der obere Bereich muss so gestaltet werden, dass der Bauraum genügend Platz für eine Wurfbewegung bietet. Gleichzeitig muss die im oberen Bereich anzuschließende Staubabsaugung genügend Abstand vom Paddelradius und den Wurfbahnen haben. Ein sich von der Luftanschlussstelle aufweitendes Maschinengehäuse entspricht einer strömungsgerechten Gestaltung mit einer abnehmenden Strömungsgeschwindigkeit. Damit kann die Luftgeschwindigkeit so eingestellt werden, dass sie keinen nennenswerten Einfluss auf die Gutmstrombewegung im Bereich des Paddelradius ausübt, aber gleichzeitig im oberen Bereich in der Schwebe befindliche Staubpartikel erfassen kann.

5.7.2 Theorie der Partikelbewegung im Schwerefeld

Für die Bewegung eines Partikels im Schwerefeld bei einem umgebenden Fluid (in unserem Fall Luft) lassen sich nun verschiedene Kräftegleichgewicht für verschiedene Zeitpunkte und Bewegungsphasen aufstellen (Abb. 5.31). Der Fall a) beschreibt den Zustand zum Zeitpunkt $t = 0$ in dem das Partikel losgelassen wird und die Sinkgeschwindigkeit noch null ist. Die Beschleunigungsphase im Fall b) weist einen sehr kurzen Zeitabschnitt auf und ist in der Verfahrenstechnik für die meisten Anwendungen vernachlässigbar klein [Stieß, 2009]. Hier ist die Phase gemeint in der das Partikel zu sinken beginnt bis hin zu seiner Endgeschwindigkeit. Im Fall c) hat das Partikel seine Endgeschwindigkeit erreicht mit der es konstant sinkt. Die Trägheitskraft kommt in diesem Fall nicht mehr zur Anwendung und ist gleich null. Der letztgenannte Fall ist von besonderem Interesse und soll näher untersucht werden.
5 Schäbenreinigung im axialen Fluss

![Diagramme](image1)

**Abb. 5.31**: Kräftegleichgewicht an sinkender Partikel [Stieß, 2009]
(a) Zeitpunkt t = 0, (b) Beschleunigungsphase, (c) stationäres Sinken

Da die Kräfte im Fall c) auf einer Richtung liegen, wird für den zu untersuchenden Bewegungsfall folgender Zusammenhang aufgestellt (Gleichung 5.22):

\[ F_G = F_A + F_W \]  (5.22)

Die nach unten wirkende Gewichtskraft wirkt der nach oben gerichteten Auftriebskraft und der Widerstandskraft entgegen. Die Gleichungen 5.23 bis 5.25 zeigen dem mathematischen Zusammenhang zur Bestimmung der jeweiligen Kräfte.

\[ F_G = \rho_p \cdot V_p \cdot g \]  (5.23)

\[ F_A = \rho_F \cdot V_p \cdot g \]  (5.24)

\[ F_W = c_w \cdot \frac{\rho_p}{2} \cdot w_s^2 \cdot A_p \]  (5.25)

Durch Umstellung der zuvor genannten Zusammenhänge kann nun der Widerstandsbeiwert \( c_w \) bestimmt werden (Gleichung 5.26)

\[ c_w = \frac{2 \cdot (\rho_p - \rho_F) \cdot V_p \cdot g}{\rho_F \cdot w_s^2 \cdot A_p} \]  (5.26)

Mit dem \( c_w \)-Wert lässt sich dann für ein Partikel die Luftreibung bei verschiedenen Geschwindigkeiten berechnen. Dabei hat die Auftriebskraft einer Schäbe in Luft nur einen sehr geringen Einfluss. Soll für die Bestimmung des \( c_w \)-Wertes mit der Masse eines Partikels gerechnet werden, kann durch die
vorherrschende Auftriebskraft beim Wiegen in Luft die Berechnung näherungsweise nach Gleichung 5.27 erfolgen.

\[ c_w = \frac{2 \cdot m \cdot g}{\rho_F \cdot w_s^2 \cdot A_p} \]  \hspace{1cm} (5.27)

Wie aus dieser Gleichung erkennbar, ist für die Bestimmung des \( c_w \)-Wertes die Kenntnis der Schwebegeschwindigkeit notwendig. Führt man an einem sinkenden Partikel eine von unten konstante Luftströmung entgegen, ergibt sich der in Abb. 5.32 dargestellte Zusammenhang. Das Partikel bewegt sich jetzt mit seiner Sinkgeschwindigkeit relativ zu der ihm entgegengesetzten Luftströmung. Das Partikel hat nun die Absolutgeschwindigkeit \( u \). Im Betrachtungsfall \( c \) ist die Absolutgeschwindigkeit \( u = 0 \) und das Partikel wird als Schwebekorn bezeichnet. Damit sind die Sinkgeschwindigkeit \( w_s \) und die Luftgeschwindigkeit \( v \) vom Betrag her gleich groß. Daher wird in dieser Arbeit beim Erreichen dieses einen speziellen Zustandes von einer Schwebegeschwindigkeit gesprochen. Damit kann der \( c_w \)-Wert für eine Partikel berechnet werden. Alle Partikel die nun im Vergleich eine geringere Schwebegeschwindigkeit aufweisen würden, werden als Feingut nach oben abtransportiert. Partikel mit einer größeren Schwebegeschwindigkeit würden als Grobgut nach unten sinken.

Abb. 5.32: Prinzip der Gleichgewichts-Gegenstrom-Klassierung. (a) Absinken des Grobguts (Schwerguts) nach unten; (b) Aufwärtsstransport des Feinguts (Leichtguts) nach oben; (c) In-Schwebe-Bleiben des Gleichgewichtskorns [Stieß, 2009]

Anhand des \( c_w \)-Wertes für eine bestimmte Partikelform kann nun wiederum der Luftwiderstand für eine beliebige Geschwindigkeit des Partikels bei Kenntnis der Querschnittsfläche die der Bewegungsrichtung entgegen wirkt und der Dichte der Luft berechnet werden (Gleichung 5.28).

\[ F_W = c_w \cdot \frac{\rho_F}{2} \cdot v^2 \cdot A_p \]  \hspace{1cm} (5.28)

Somit kommt es zum Beispiel bei der Berechnung der Bewegungsbahn eines schrägen Wurfes zu einer reduzierten Wurfweite (ballistische Kurve), im Vergleich zur idealen Wurfparabel ohne den Einfluss des Luftwiderstandes.
5.7.3 Konstruktion eines Versuchsstandes zur Bestimmung der Schwebegeschwindigkeit

Für die Bestimmung der Schwebegeschwindigkeit (Sinkgeschwindigkeit) wurde sich für die Gegenstromsichtung entschieden.


Abb. 5.33: Schematische Darstellung und gebauter Versuchsstand zur Bestimmung der Schwebegeschwindigkeit

Abb. 5.34: engmaschige Siebfläche als Aufgabefläche (links) und darunter sitzender Gleichrichter aus Strohalmen (rechts)

Zur Überprüfung des Strömungsprofils im Austrittsrohr wurde nach Abb. 5.35 der Querschnitt mit einem Strömungssensor (Thermoanemometer) vermessen.

Abb. 5.35: Messpunkte für die Vermessung des Strömungsquerschnitts am Austrittsrohr

Der Querschnitt des oberen Sichterrohrs wurde in 4 Messachsen (I - IV) mit 13 Messpunkten unterteilt, welche jeweils um 45° zueinander verdreht sind. Ausgehend von dem Versuchsaufbau im Bereich ③ (siehe Abb. 5.33) wurde das Strömungsprofil ohne Einbauten, mit Sichterboden sowie mit Sichterboden und Gleichrichter am oberen Rohrquerschnitt aufgenommen (Abb. 5.36). Hier zeigte sich deutlich wie durch gezielte Einbauten die Luftströmung beruhigt und ein typisches Strömungsprofil im Rohrquerschnitt erzeugt wird. Dabei ist in der Rohrmitte die höchste Strömungsgeschwindigkeit, welche zur Rohrwan abnimmt.
Da die Schwebegeschwindigkeit von den zu untersuchenden Schäben eine große Bandbreite abdecken kann, wurde ebenfalls über die Frequenzsteuerung des Radiallüfters das Strömungsprofil bei unterschiedlichen Maximalgeschwindigkeiten aufgenommen (Abb. 5.37). So zeigte sich für fünf verschiedene Lüfterdrehzahlen (Frequenzsteuerung Motor) in dem Bereich von 1,0 bis 5,0 m s⁻¹ als Maximalgeschwindigkeit ein gewünschtes Strömungsprofil mit der höchsten Geschwindigkeit in der Rohrmitte. Aus diesem Grund wird die Rohrmitte als Bezugspunkt zur Bestimmung der Strömungsgeschwindigkeit genutzt. Es wird davon ausgegangen, dass alle Partikel, die eine geringere Sinkgeschwindigkeit als diese entsprechende Strömungsgeschwindigkeit aufweisen, diesen Bereich passieren und in einem bestimmten Zeitintervall ausgetragen werden. Für ein Aufgabegut von 5 g einer vorgesiebten Schäbenfraktion wurde experimentell eine maximale Zeitspanne von 25 min bis zur Gewichtskonstanz der ausgetragenen Partikelfraktion ermittelt. Für die durchzuführenden Versuche wurde diese Zeitspanne um weitere 5 min als Sicherheit zur vollständigen Austragung aller entsprechenden Partikel auf 30 min erhöht.
5 Schäbenreinigung im axialen Fluss

5.7.4 Versuchsdurchführung zur Bestimmung der Schwebegeschwindigkeit

Um möglichst viele Schäben mit einer ähnlichen Schwebegeschwindigkeit pro Aufgabemenge im Sichterrohr zu haben wurde ein typisches SFG mittels eines Schwingsiebes vorfraktioniert. Die enthaltenen Fasern wurden dabei entfernt. Durch die verwendeten Siebmaschenweiten konnte das Gemisch in folgende Siebfraktionen unterteilt werden:

- 0 - 0,5 mm
- >0,5 - 1,0 mm
- >1,0 - 2,5 mm
- >2,5 - 4,0 mm
- >4,0 - 8,0 mm

Die nun erhaltenen Fraktionen werden getrennt voneinander dem Sichterboden zugeführt. Über die Frequenzsteuerung vom Radiallüfter wird die Strömungsgeschwindigkeit langsam erhöht, bis sich die Partikel vom Sichterboden abheben. Durch die Verwendung eines durchsichtigen Rohrmaterials und einer visuellen Betrachtung kann die Strömungsgeschwindigkeit exakt eingestellt werden, ohne ein Austragen der Partikel aus dem Sichterrohr zu verursachen. Eine weitere Erhöhung der Strömungsgeschwindigkeit bewegt die ersten Partikel in den oberen Bereich des konisch verlaufenden Rohrstücks. Dieser Zustand muss sehr langsam angefahren werden, damit die Startgeschwindigkeit für die Partikel mit der geringsten zum Austragen notwendigen Schwebegeschwindigkeit gefunden wird und nicht frühzeitig Partikel das Rohr verlassen. Gleichzeitig vollzieht sich im Bereich des konisch verlaufenden Rohrteilstücks, durch die sich verändernde Strömungsgeschwindigkeit, eine Vorseparierung der Partikel. Mit der ermittelten Startgeschwindigkeit beginnt der eigentliche Austragungsvorgang der Partikel aus dem Sichterrohr. Nach Ablauf der experimentell bestimmten Sichtungszeit werden die ausgetragenen Partikel in dem Auffangbehälter entnommen und gewogen. In möglichst kleinen Intervallen wird nun die Strömungsgeschwindigkeit sukzessive erhöht und nach Ablauf der Sichtungszeit werden ebenfalls für jedes Intervall analog zur Startgeschwindigkeit die ausgetragenen Partikel entnommen und gewogen. Dies erfolgt solange bis alle Partikel in dem Sichterrohr ausgetragen sind. Das Intervall für die Strömungsgeschwindigkeit wurde mit 0,2 m s⁻¹ festgelegt. Als Beispiel weisen Partikel, die mit einer Strömungsgeschwindigkeit von 2,6 m s⁻¹ ausgetragen wurden, eine Schwebegeschwindigkeit von mehr als 2,4 bis maximal 2,6 m s⁻¹ auf. Die spätere Zuordnung erfolgt immer der oberen Intervallgrenze, da mit dieser Strömungsgeschwindigkeit die jeweilige komplette Austragfraktion abgedeckt wird (ähnlich der Summenbetrachtung einer Analysesiebung).
5.7.5 Versuchsergebnisse

Die Abb. 5.38 zeigt beispielhaft für zwei Siebfraktionen entsprechend ihrer Schwebgeschwindigkeit separierten Schräbenfraktionen. Dabei wurde für die Siebfraktion >1,0 - 2,5 mm ein Geschwindigkeitsbereich von 1,0 bis 3,8 m s\(^{-1}\) und für die Siebfraktion >2,0 - 4,0 mm ein Geschwindigkeitsbereich von 2,0 bis 4,2 m s\(^{-1}\) durchfahren.


Abb. 5.39: Scanneraufnahme von den ausgetragenen Schräben der Siebfraktion >1,0 - 2,5 mm (links: Schwebgeschwindigkeit 2,0 m s\(^{-1}\), rechts: Schwebgeschwindigkeit 3,0 m s\(^{-1}\))
Anhand der ermittelten Daten werden in den folgenden Diagrammen verschiedene Zusammenhänge dargestellt. In der Abb. 5.40 sieht man die Masseverteilungsdichte bezogen auf die Schwebegeschwindigkeit für jede einzelne Siebfraktion.

So zeigt sich mit einer größer werdenden Siebfraktion eine Verschiebung der Verteilungsdichten in Richtung der höheren Schwebegeschwindigkeiten. Die kleinste Siebfraktion (0 - 0,5 mm), welche vor allem Staubpartikel beinhaltet, zeigt im Vergleich zu den anderen Siebfraktionen den geringsten Schwebegeschwindigkeitsbereich mit einer deutlichen Konzentrierung bei 1 m s\(^{-1}\).

Betrachtet man nun die einzelnen Siebfraktionen als gesamte Probenfraktion zeigt sich eine bimodale Verteilung (Abb. 5.41). Dies liegt vor allem an der unterschiedlichen Zusammensetzung des Gemisches aus Staub- und Schäbenpartikel.

Abb. 5.40: Masseverteilungsdichte bei unterschiedlichen Schwebegeschwindigkeiten von vorgesiebten Schäben

Abb. 5.41: Masseverteilungsdichte bei unterschiedlichen Schwebegeschwindigkeiten von vorgesiebten Schäben
Eine Abtrennung von besonders kleiner Schäben- bzw. Staubpartikel ist bei einer Luftabsauggeschwindigkeit von ca. 1,2 m s\(^{-1}\) möglich.

In den nächsten Betrachtungen wurde sich nur noch auf die Schäbenfraktionen konzentriert. Die mittlere Masse einer Hanfschäbe zeigt einen exponentiellen Anstieg entlang der Schwebegeschwindigkeit (Abb. 5.42). Besonders deutlich wird dies bei der Sichtung der größeren Siebfraktionen.

![Masse eines Partikels bei unterschiedlichen Schwebegeschwindigkeiten von vorgesiebten Schäben](image)

Schäben mit unterschiedlicher Masse können gleiche Schwebegeschwindigkeiten aufweisen. Dies liegt in ihrer Schäbenform bzw. der Querschnittsfläche begründet, die der Luftströmung entgegengerichtet wird. Dabei richten sich bewegte Partikel immer so aus, dass sie ihr den maximalen Widerstand entgegensetzen [Müller, 2008]. In der Abb. 5.43 ist ein linearer Verlauf der mittleren Fläche einer Schäbe in Abhängigkeit von der Schwebegeschwindigkeit zu erkennen.

![Fläche eines Partikels bei unterschiedlichen Schwebegeschwindigkeiten von vorgesiebten Hanfschäben](image)

Aus der durchschnittlichen Masse und der mittleren Fläche eines Partikels lässt sich nun für jede Schwebegeschwindigkeit innerhalb der jeweiligen Korngrößenfraktion der \( c_w \)-Wert nach Gleichung...
5.27 berechnen. Der massengewichtete Mittelwert für die vier untersuchten Korngrößenfraktionen einer Schäbenmischung liegt bei einer Schwebegeschwindigkeit von 2,8 m s⁻¹ und einem Anteil von über 50 Masse-% der Schäben in einem engen Bereich von 2,4 bis 3,2 m s⁻¹ (Abb. 5.44).

Abb. 5.44: Widerstandsbeiwert einer Hanfschäbe bei konkreter Schwebegeschwindigkeit für verschiedene Siebfraktionen


In den Arbeiten von [Stieß, 2009] und [Zlatev, 2005] wird näher auf die Kornformbeschreibung und die verschieden möglichen Kornformfaktoren eingegangen. Als eine der ältesten Möglichkeiten zur Formkennzeichnung ist die Kennzeichnung der Partikelform nach [Walz, 1936]. Er schlägt vor, die Größtabmessungen von drei senkrecht zueinander stehenden Raumkoordinaten zu bestimmen. Aus den Verhältnissen von \(X_x/X_z\) und \(X_y/X_z\) lassen sich dann die Partikel zwar nur grob klassifizieren, es zeigt sich aber für Hanfschäben ein Formenbereich, zu dem sie gezählt werden können und warum diese Darstellung gewählt wurde. Im Gegensatz zu [Stieß, 2009] wo die Abmessungen mit den Bezeichnungen \(X_x\) als kleinsten Wert und mit \(X_y\) der größte Wert geordnet werden, muss die korrekte Bezeichnung aber mit \(X_x\) als größten Wert, also der Länge des Partikels und mit \(X_y\) der kleinste Wert des Partikels (Dicke) lauten. Damit ergibt sich für \(X_y\) der mittlere Wert der dann als Breite des Partikels bezeichnet werden kann. Mit dieser Bezeichnung von Länge, Breite und Dicke lässt sich die Darstellung nach Walz nun eindeutig erklären. Die Einordnung der Schäben in das Formendiagramm nach Walz ergibt die Form eines langgeformten Partikels (Abb. 5.45).

Die Übertragung dieser Partikelform in eine geometrische Form, für die es in der Literatur beschriebene Widerstandsbeiwerte existieren, zeigt bei einem zylindrischen Stab noch die meiste Ähnlichkeit. So wird in für einen quer angeströmten zylindrischen Stab bei einem Durchmesser zu Längenverhältnis von 1:5 einen Widerstandsbeiwert von 0,74 und bei einem Verhältnis von 1:10 einen Widerstandsbeiwert von 0,82 angegeben [Beitz, 1990]. Je höher die Schwebegeschwindigkeit bei den Schäben ist, umso mehr weisen sie eine gedrungene Form auf. Hier kann als Anhaltspunkt die geometrische Form einer Kugel genommen werden, die einen $c_w$ Wert von 0,4 aufweist [Wagner, 2001], [Stieß, 2009]. Damit liegen die ermittelten Werte von 0,42 bis 0,65 für die Schäben im realistischen Bereich im Vergleich zu den in der Literatur beschriebenen Werten für exakte geometrische Formen.

5.8 Schlussfolgerungen für die Modellierung

Für die weitere Arbeit gilt es als Ziel, den Materialtransport sowie die Separierung der Schäben von den anderen Bestandteilen des SFG’s in einem Modell festzuhalten. Die Form, der Steigungswinkel und der Flugkreisradius vom Paddel sowie Paddelanordnung und -drehzahl beeinflussen den zu transportierenden Massestrom sowie die Separierung und zählen zu den modellbildenden Parametern. Von Bedeutung sind die Materialparameter, insbesondere die Flugeigenschaften der Schäben. Die Analyse hat gezeigt, wie die Parameter miteinander zusammenhängen und welche Wirkung sie auf Materialtransport und -reinigung ausüben. So ist die Drehzahl der Paddelschnecke für die Geschwindigkeit des Gutstroms in axiale Richtung sowie die Abwurfbewegung des Materials vom

<table>
<thead>
<tr>
<th>Tab. 5.4: Einfluss der Konstruktions- und Betriebsparameter</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Massestrom</th>
<th>Verweilzeit</th>
<th>Abwurf- wahrscheinlichkeit</th>
<th>Zeitdifferenz zw. zwei Paddel</th>
<th>Impuls bei Materialkontakt</th>
</tr>
</thead>
<tbody>
<tr>
<td>Erhöhung der Drehzahl</td>
<td>↑</td>
<td>↓</td>
<td>↑</td>
<td>↓</td>
<td>↑</td>
</tr>
<tr>
<td>Paddelanordnung</td>
<td>↑↓</td>
<td>→↓</td>
<td>→</td>
<td>→</td>
<td>→</td>
</tr>
<tr>
<td>Erhöhung des Steigungswinkels</td>
<td>↑↓</td>
<td>↑↓</td>
<td>↑</td>
<td>→</td>
<td>→</td>
</tr>
<tr>
<td>Vergrößerung der Paddelhöhe</td>
<td>↑</td>
<td>→</td>
<td>↑</td>
<td>→</td>
<td>→</td>
</tr>
<tr>
<td>Vergrößerung des Paddelradius</td>
<td>↑</td>
<td>→</td>
<td>↑</td>
<td>→</td>
<td>↑</td>
</tr>
</tbody>
</table>

Das Modell soll die optimierende Konstruktion des Axialfraktionierers unterstützen. Die folgende Frage ist dabei zu beantworten: Welcher Paddelaufbau muss gewählt und bei welchen Parametern muss diese Paddelschnecke betrieben werden, um eine optimale Reinigung des SFG’s bei gleichzeitig hohem Massestrom zu gewährleisten?
6 Modellentwicklung für Wurf- und Gutbewegungen in einem Axialfraktionierer

In der vorliegenden Arbeit sollen vorrangig zwei Hauptziele mit der Modellierung des Massestroms in einem Axialfraktionierer verfolgt werden:

1. ein prinzipielles Verständnis über eine Paddelschnecke und den damit verbundenen Transportvorgängen
2. Vorhersagen grundlegender Betriebsparameter unter Verwendung konkreter Konstruktionsparameter für ein optimales Aussiebungsverhalten der Schäben entlang der Reinigungsstrecke

In der Literatur werden Transportvorgänge mit Paddelschnecken nur sehr wenig betrachtet, was die Notwendigkeit einer Beschreibung der Zusammenhänge und der Entwicklung eines eigenen Modells auch in Hinblick auf das Aussiebungsverhalten besonders erstrebenswert macht.

6.1 Modellierung von Partikelbewegungen in Schneckenförderern


In der zu entwickelnden Reinigungsmaschine kommt jedoch eine Paddelschnecke zum Einsatz, die noch nicht näher untersucht wurde. Bei diesem Reinigungsprinzip wird eine Wellendrehzahl bevorzugt, die das Gut mit hoch nimmt und über die Wellenachse wirft. Das Fließen über die Wellenachse wird vor allem bei Schneckenförderer vermieden, da Material in einem zurückliegenden Gang transportiert wird. Dieser unerwünschte Nebenfluss reduziert den Massestrom in axialer Richtung.

### 6.2 Modellierung der Partikelbewegung in einem Axialfraktionierer

#### 6.2.1 Kinematik und Kinetik des Materialtransports

Die bisherigen Vorbetrachtungen haben gezeigt, dass das zu reinigende Material vom Paddel abgeworfen und Agglomerate vom nachfolgenden Paddel aufgelöst werden sollen. Damit es zu einer solchen Konstellation kommt, muss in einem Modell die Bewegung der Partikel am Paddel und vor allem die Abwurfbewegung vom Paddel berücksichtigt werden, welche wiederum von verschiedenen Einflussfaktoren abhängig sind:

- Drehzahl der Paddelschnecke
- Steigungswinkel des Paddels
Die einwirkenden Kräfte auf ein Partikel am Paddel unter konkreten geometrischen Rahmenbedingungen sind in der Abb. 6.2 dargestellt. Diese Rahmenbedingungen wurden bereits im Kapitel 5.6.2 ausführlich gezeigt und bestehende Winkelbeziehungen hergeleitet. Zu beachten ist, dass es sich um eine Einzelpartikelbetrachtung handelt und es nicht zu einer Interaktion zwischen den einzelnen Partikeln kommt.

Da es sich um eine dreidimensionale Bewegung handelt, wird die Bewegung des Partikels jeweils in den drei Hauptebenen betrachtet. Die dabei entstehenden Schnitte am Paddel mit ihren geometrischen Winkelverhältnissen können in Abhängigkeit vom Laufwinkel $\varphi$ unter Berücksichtigung des Steigungswinkels $\alpha$ nach den Gleichungen 5.13 und 5.20 berechnet werden. Zu beachten ist, dass das Partikel durch das Abrutschen am Paddel einen vom Laufwinkel $\varphi$ abweichenden Positionswinkel $\varphi_p$ aufweist. Diese Differenz kann auch als Schlupf bezeichnet werden und hat wiederum Einfluss auf die Zentrifugalkraft. In dem Modell wird davon ausgegangen, dass sich die Partikel erst ab Erreichung der horizontalen Paddelposition nach außen bewegen können, da sie vorher noch von der im unteren Bereich befindlichen halbreisförmigen Siebfläche gehalten werden. Unbeachtet bleibt durch die nach
außen gerichtete Partikelbewegung bei einer Kreisbewegung auftretende Corioliskraft, da sie im Vergleich zu den anderen vorherrschenden Kräften nur einen geringen Einfluss ausübt.

Unter Beachtung der theoretischen Grundlagen aus dem Kapitel 5.6.4 kann in Abhängigkeit der Bewegungsrichtung des Partikels das Kräftegleichgewicht in den drei Hauptebenen aufgestellt werden:

- **Kräftegleichgewicht in der Radialebene (xy-Ebene)** nach Gleichung 6.1:

  \[ m \cdot a_{xy} = F_{H_{xy}} - F_{H_{xy}} - F_{R_{xy}} - F_{R_{zxy}} \]  
  
  Die entsprechenden Kraftkomponenten lassen sich nach den Gleichungen 6.2 bis 6.5 berechnen.

  \[ F_{H_{xy}} = F_G \cdot \sin(\varphi) \quad \text{mit} \quad F_G = m \cdot g \]  
  
  \[ F_{R_{xy}} = \mu \cdot F_{N_{xy}} \quad \text{mit} \quad F_{N_{xy}} = F_G \cdot \cos(\varphi) \]  
  
  \[ F_{H_{zxy}} = F_Z \cdot \cos(\varphi - \varphi_p) \quad \text{mit} \quad F_Z = \omega^2 \cdot m \cdot r_p \]  
  
  und \( \omega = \frac{\Delta \varphi}{\tau_{\text{Schritt}}} ; \omega_0 = 2 \cdot \pi \cdot n \)

  \[ F_{R_{zxy}} = \mu \cdot F_{N_{zxy}} \quad \text{mit} \quad F_{N_{zxy}} = F_Z \cdot \sin(\varphi - \varphi_p) \]  

- **Kräftegleichgewicht in der Axialebene (yz-Ebene)** nach Gleichung 6.6:

  \[ m \cdot a_{yz} = F_{H_{yz}} - F_{R_{yz}} \]  
  
  Die entsprechenden Kraftkomponenten lassen sich nach den Gleichungen 6.7 und 6.8 berechnen.

  \[ F_{H_{yz}} = F_G \cdot \cos(\beta) \quad \text{mit} \quad F_G = m \cdot g \]  
  
  \[ F_{R_{yz}} = \mu \cdot F_{N_{yz}} \quad \text{mit} \quad F_{N_{yz}} = F_G \cdot \sin(\beta) \]
6 Modellentwicklung für Wurf- und Gutbewegungen in einem Axialfraktionierer

- Kräftegleichgewicht in der Horizontalebene (xz-Ebene) nach Gleichung 6.9:

\[ m \cdot a_{xz} = F_{H_{xz}} - F_{R_{xz}} \]  \hspace{1cm} (6.9)

Die entsprechenden Kraftkomponenten lassen sich nach den Gleichungen 6.10 und 6.11 berechnen.

\[ F_{H_{xz}} = F_{x_{xz}} \cdot \cos(\gamma) \quad \text{mit} \quad F_{x_{xz}} = F_{z} \cdot \frac{\sin(\varphi - \varphi_{p})}{\sin(\varphi)} \]  \hspace{1cm} (6.10)

\[ F_{R_{xz}} = \mu \cdot F_{N_{xz}} \quad \text{mit} \quad F_{N_{xz}} = F_{z_{xz}} \cdot \sin(\gamma) \]  \hspace{1cm} (6.11)


\[ F_{W} = m \cdot q \cdot v^2 \]  \hspace{1cm} (6.12)

Für eine Vereinfachung des Modells wird auch für die Schäben nach dieser Formel gerechnet. Ein Großteil der Schäben liegt mit der Schwebegeschwindigkeit im Bereich von 2,8 m s\(^{-1}\) (siehe Kapitel 5.7.5) und ist weitestgehend von Form und Größe unabhängig. Da im Schwebezustand eines Partikels die durch die Luftreibung verursachte Kraft gleich der eigenen Gewichtskraft ist, kann für die Schäben mit einem materialspezifischen Faktor von \( q = 1,2 \text{ m}^{-1} \) gerechnet werden.

Unter Beachtung des verwendeten kartesischen Koordinatensystems ist die vektorielle Kraft mit dem Ausdruck der Art nach Gleichung 6.13 allgemein gültig beschreibbar [Hagedorn, 2008].

\[ \vec{F}_{W} = m \cdot q \cdot v^2 \cdot \left( \frac{\vec{v}}{v} \right) \]  \hspace{1cm} (6.13)

Für den Betrag der Geschwindigkeit kann folgender Ausdruck (Gleichung 6.14) verwendet werden:

\[ v = \sqrt{v_x^2 + v_y^2 + v_z^2} \]  \hspace{1cm} (6.14)

\[ \ddot{v}_{n+1} = (\ddot{a}_n - q \cdot v_n \cdot \dot{v}_n) \cdot t_{\text{Schritt}} + \dot{v}_n \]  
(6.15)

\[ \ddot{s}_{n+1} = \frac{\ddot{a}_n - q \cdot v_n \cdot \dot{v}_n}{2} \cdot t_{\text{Schritt}}^2 + \dot{v}_n \cdot t_{\text{Schritt}} + \ddot{s}_n \]  
(6.16)

6.2.2 Schräger Wurf

Die Bewegung eines Partikels auf dem Paddel wurde im vorherigen Kapitel ausführlich beschrieben. Erreicht das Partikel den äußeren Rand des Paddels hat es die bis dahin erreichte Geschwindigkeit $v_0$. Nach dem Verlassen des Paddelflugkreises wirken nur noch die Gewichtskraft $F_G$ und die durch die Luftreibung verursachte Kraft $F_W$ auf das Partikel. Der Zusammenhang der wirkenden Kräfte auf das Partikel beim Verlassen des Paddels ist in der Abb. 6.3 dargestellt.

Abb. 6.3: Abwurfvorgang vom Paddel im Arbeitsraum des Axialfraktionierers

Aus dem Zusammenhang der Kräfte lässt sich nun die Wurfparabel eines schrägen Wurfs unter Berücksichtigung der vorherrschenden Luftreibung des entsprechenden Partikels iterativ in den drei Hauptebenen bestimmen.

In $x$-Richtung, der waagerechten Wurfbewegung ist keine Erdanziehung vorhanden. Somit reduzieren sich die wirkenden Kräfte auf eine Luftreibung. Diese wirkt der Bewegung des Partikels entgegen und

\[
v_{x_{n+1}} = v_{x_n} - q \cdot \sqrt{v_{x_n}^2 + v_{y_n}^2 + v_{z_n}^2} \cdot v_{x_n} \cdot t_{\text{Schritt}}
\]

\[
x_{n+1} = v_{x_n} \cdot t_{\text{Schritt}} + \frac{q \cdot \sqrt{v_{x_n}^2 + v_{y_n}^2 + v_{z_n}^2} \cdot v_{x_n}}{2} \cdot t_{\text{Schritt}}^2 + x_n
\]\n
In y-Richtung, der senkrechten Wurfbewegung wirken nun Erdbeschleunigung und Luftreibung auf das Partikel. Außerdem muss eine Fallunterscheidung durchgeführt werden, ob sich das Partikel in der Steigphase \((v_y > 0)\) oder der Sinkphase \((v_y < 0)\) befindet. In der Steigphase wirken die Luftreibung und die Erdbeschleunigung gemeinsam entgegen der Bewegungsrichtung. In der Sinkphase wirkt die Luftreibung wiederum entgegen der Bewegungsrichtung, aber die Erdbeschleunigung nun in die Bewegungsrichtung. Die Berechnung der Geschwindigkeit sowie des zurückgelegten Weges erfolgen in Abhängigkeit des jeweiligen Betrachtungsfalls nach folgenden Gleichungen (6.19 sowie 6.20):

\[
v_{y_{n+1}} = v_{y_n} - \left( g \pm q \cdot \sqrt{v_{x_n}^2 + v_{y_n}^2 + v_{z_n}^2} \cdot v_{y_n} \right) \cdot t_{\text{Schritt}}
\]

\[
s_{y_{n+1}} = v_{y_n} \cdot t_{\text{Schritt}} - \left( \frac{g \pm q \cdot \sqrt{v_{x_n}^2 + v_{y_n}^2 + v_{z_n}^2} \cdot v_{y_n}}{2} \right) \cdot t_{\text{Schritt}}^2 + s_{y_n}
\]

In z-Richtung, wiederum eine waagerechte Wurfbewegung ist die Geschwindigkeitsgleichung 6.21 und die Weggleichung 6.22 analog zu der Bewegung in x-Richtung.

\[
v_{z_{n+1}} = v_{z_n} - q \cdot \sqrt{v_{x_n}^2 + v_{y_n}^2 + v_{z_n}^2} \cdot v_{z_n} \cdot t_{\text{Schritt}}
\]

\[
s_{z_{n+1}} = v_{z_n} \cdot t_{\text{Schritt}} - \frac{q \cdot \sqrt{v_{x_n}^2 + v_{y_n}^2 + v_{z_n}^2} \cdot v_{z_n}}{2} \cdot t_{\text{Schritt}}^2 + s_{z_n}
\]

6.2.3 Nummerische Umsetzung der entwickelten Bewegungsgleichungen

Für die Visualisierung der dreidimensionalen Partikelbewegung auf dem Paddel und dem anschließendem Abwerfen vom Paddel musste eine geeignete Darstellungsform entwickelt werden, in der die Abwurfpaddel- sowie die Partikelposition und die mögliche Kollision zwischen Partikel und nachfolgendem Paddel (in Vorschubrichtung) in Abhängigkeit von Konstruktions- und Maschinenparame-


Abb. 6.4: Darstellungsvariante für die numerische Berechnung der Abwurfbewegung vom Paddel
Vergleicht man die farbigen Bereiche der Funktion vom nachfolgenden Paddel mit denen aus der Abb. 6.4, ist die Position des Paddels auf dem Flugkreis erkennbar. Somit lassen sich drei Bereiche definieren, die für eine potentielle Partikel-Paddel-Kollision in Frage kommen.

- **Bereich I**: Partikel haben Paddelflugkreis bereits erreicht bevor das Paddel an dieser Position ist ($t_{\text{Paddel}} > t_{\text{Partikel}}$)
- **Bereich II**: Partikel und Paddel befinden sich zum gleichen Zeitpunkt an derselben Stelle, eine Kollision ist wahrscheinlich ($t_{\text{Paddel}} = t_{\text{Partikel}}$)
- **Bereich III**: Partikel erreichen Paddelflugkreis nachdem das Paddel den für eine Kollision relevanten Bereich bereits passiert hat ($t_{\text{Paddel}} < t_{\text{Partikel}}$)

Aus diesen Zusammenhängen können Rückschlüsse auf die Konstruktions- und Betriebsparameter für eine optimale Arbeitsweise der Paddelschnecke gezogen werden.

Die Umsetzung und Darstellung erfolgten mit der Software MATLAB® in einer Parameterstudie. Es wurden dabei die Drehzahl der Paddelschnecke, der Steigungswinkel des Paddels und die Paddelbreite variiert. Die Darstellung erfolgt gleichzeitig für die nacheilende und die vorauslaufende Anordnung, welche zusammen betrachtet der doppelten Paddelanordnung entsprechen würden. Es erfolgte eine separate Berechnung der Wurfbahnen für Schäben und Faserflocken.
Die dazu notwendigen Materialparameter beschränken sich auf den Reibungswert \( \mu \) und dem materialspezifischen Faktor \( q \) zur Berechnung der Luftreibung (Tab. 6.1).

**Tab. 6.1: Materialparameter für die numerische Umsetzung der Wurfbahnen**

<table>
<thead>
<tr>
<th>Materialspezifischer Faktor ( q )</th>
<th>Schäbe</th>
<th>Faserflocke</th>
<th>Messmethode</th>
</tr>
</thead>
<tbody>
<tr>
<td>1,2</td>
<td></td>
<td>2,8*</td>
<td>Gegenstromsichtung/</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Sedimentationsversuch</td>
</tr>
<tr>
<td>Reibungswert ( \mu )</td>
<td>0,6</td>
<td>0,5*</td>
<td>geneigte Ebene</td>
</tr>
</tbody>
</table>

* [Pecenka, 2008]

### 6.2.3.1 Simulation der Wurfbewegung von Schäbenpartikeln

Ausgehend von einem festen Steigungswinkel des Paddels \( \alpha = 25° \) wurden zunächst die Wurfbahnen in Abhängigkeit von der Drehzahl der Paddelschnecke für drei Varianten berechnet (Abb. 6.6, Abb. 6.7 und Abb. 6.8). Dabei zeigt sich, wie mit steigender Drehzahl die Wurfhöhe vergrößert werden kann. Ausgehend von einer Drehzahl \( n_{W1} = 50 \text{ min}^{-1} \) kommt es zu einem Abwerfen der Partikel vom Paddel sowie einem teilweise Abrutschen der Partikel entlang des Paddels. Dies bedeutet, dass es eine Grenzdrehzahl gibt, die erreicht werden muss, damit die Partikel überhaupt nach außen abgeworfen werden. Die Drehzahl \( n_{W1} \) wurde sukzessive um 10 \( \text{min}^{-1} \) von 50 \( \text{min}^{-1} \) auf 60 \( \text{min}^{-1} \) und 70 \( \text{min}^{-1} \) erhöht.

Durch die unterschiedlichen Wurfhöhen und der damit verbundenen Wurfdauer erreichen die Partikel beim Wiedereintritt in den Paddelflugkreis unterschiedliche Vorschubwege in z-Richtung. Ein weiterer Faktor in diese Richtung ist die erlangte Beschleunigung durch Abrutschen und Nachaußenbewegen des Partikels am Paddel. In der Seitenansicht ist die Vorschubbewegung in z-Richtung und das eventuelle Erreichen des nächsten Paddelabschnitts gut zu erkennen. Bedingt durch die unterschiedlichen Drehzahlen und der damit verbundenen Wurfzeit bzw. Wurfdauer der Partikel, ergeben sich unterschiedliche Trefferwahrscheinlichkeiten von einem Paddel im nächsten Paddelabschnitt in Vorschubrichtung. Im Zeit-Weg Diagramm ergibt sich für die nachfolgende Paddelanordnung bei einer Drehzahl \( n_{W1} = 60 \text{ min}^{-1} \) die höchste Wahrscheinlichkeit für ein Partikel-Paddel Kontakt. Die vorausseilende Anordnung ist aufgrund ihres hohen Nachlaufwinkels von \( \delta = 270° \) eher nicht für die angestrebte Konstellation geeignet.
Abb. 6.6: Parameterstudie zur Wurf- und Gutbewegungen in einem Axialfraktionierer
Abb. 6.7: Parameterstudie zur Wurfbahn und Kollision für $n_{\text{W}} = 60 \, \text{min}^{-1}$ und $\alpha = 25^\circ$
Für die Drehzahl $n_{W1} = 60 \text{ min}^{-1}$ wurden neben dem Steigungswinkel $\alpha = 25^\circ$ noch zwei weitere Steigungswinkel $\alpha = 10^\circ$ und $\alpha = 40^\circ$ als variable Parameter für die Berechnung herangezogen (Abb. 6.9 und Abb. 6.10). Bei einem Steigungswinkel $\alpha = 10^\circ$ rutschen die Partikel schneller vom Paddel, womit sich die Wurfweite verringert. Eine theoretische Kollision wäre laut Zeit-Weg Diagramm möglich, ist aber durch den geringen Vorschub in z-Richtung und das Nichterreichen des nachfolgenden Paddel-
bereichs ausgeschlossen. Bei der Verwendung des größeren Steigungswinkels $\alpha = 40^\circ$ reduziert sich das Abrutschen am Paddel und die Partikel werden stärker vom Paddel mitgenommen, was einen höheren Abwurf bedingt. Durch die längere Wurfphase erreichen auch bei dieser Konfiguration die Partikel den nachfolgenden Paddelbereich. Die Wahrscheinlichkeit einer Partikel-Paddel Kollision verschlechtert sich aber durch die längere Wurfphase, da das Paddel bis zum Eintreffen der Partikel im Paddelflugkreis diesen bereits unter den Partikeln passiert hat.

Abb. 6.9: Parameterstudie zur Wurfbahn und Kollision für $n_{\text{wz}} = 60 \text{ min}^{-1}$ und $\alpha = 10^\circ$
Die gezeigte Parameterstudie macht den Einfluss auf die Partikelbewegung der Schäben beim Abwurf deutlich und gibt erste Erkenntnisse für die optimale Ausrichtung sowie den Betrieb der Paddelschnecke vom Wellenbereich 1.

Abb. 6.10: Parameterstudie zur Wurfbahn und Kollision für \( n_{\text{rot}} = 60 \, \text{min}^{-1} \) und \( \alpha = 40^\circ \)
6.2.3.2 Simulation der Wurfbewegung von Faserflocken

Analog zum schrägen Wurf der Schäben wurde auch die Wurfbewegung der Faserflocken, welche besonders für den Wellenabschnitt 2 relevant ist in einer Parameterstudie abgeglichen. Aufgrund der erhöhten Luftreibung ist für die Faserflocken eine höhere Drehzahl der Paddelschnecke überhaupt notwendig, damit es zu einem Abwurf vom Paddel kommt. In der Abb. 6.11, Abb. 6.12 und Abb. 6.13 werden drei verschiedene Drehzahlen $n_{W2}$ bei einem konstanten Steigungswinkel $\alpha = 25^\circ$ betrachtet. Hier fällt auf, dass für eine wahrscheinliche Kollision von abgeworfener Faserflocke und nachfolgendem Paddel, die vorausseilende Paddelanordnung besser geeignet ist. Bei einer Drehzahl $n_{W2} = 110 \, \text{min}^{-1}$ entsteht eine Wurfbahn bis zum nächsten Paddelbereich mit einer wahrscheinlichen Faserflocke-Paddel Kollision wie sie im Zeit-Weg Diagramm erkenntlich ist (Abb. 6.12).

Das Zusammenspiel vom Abrutschen und Mitnehmen der Faserflocke am Paddel bedingt die resultierende Wurfbahn. Bei einer zu hohen Drehzahl $n_{W2}$ erfolgt der Abwurf schon bei einem kleinen Laufwinkel. Dadurch ist der Vorschubwinkel $\gamma$ ebenfalls noch klein (siehe Abb. 5.24), was einer geringen Vorschubbewegung in z-Richtung gleichkommt. Hinzu kommt noch aufgrund der geringen Verweilzeit sowie dem damit verringerten Abrutschen der Faserflocke auf dem Paddel, die axiale Geschwindigkeitskomponente in z-Richtung reduziert ist.
Abb. 6.11: Parameterstudie zur Wurfbahn und Kollision für $n_{\text{rot}} = 90 \, \text{min}^{-1}$ und $\alpha = 25^\circ$
Abb. 6.12: Parameterstudie zur Wurfbahn und Kollision für $n_2 = 110 \text{ min}^{-1}$ und $\alpha = 25^\circ$
Eine Reduzierung des Steigungswinkels $\alpha$ auf $10^\circ$ bei einer Drehzahl $n_{W2} = 110 \text{ min}^{-1}$ verursacht eine noch geringere Vorsubbewegung in $z$-Richtung, so dass die Faserflocken nicht mehr in den nachfolgenden Paddelbereich geworfen werden (Abb. 6.14). Eine Erhöhung des Steigungswinkels $\alpha$ auf $40^\circ$ bei einer Drehzahl $n_{W2} = 110 \text{ min}^{-1}$ bringt ebenfalls keine Erhöhung der Vorschubbewegung in $z$-Richtung (Abb. 6.12). Die Faserflocken werden zwar durch eine verbesserte Mitnahme höher abge-
worfen, erhalten aber durch ein verringertes Abrutschen eine reduzierte Geschwindigkeitskomponente in z-Richtung, wodurch die Wurfweite in diese Richtung nicht erhöht werden kann.

Abb. 6.14: Parameterstudie zur Wurfbahn und Kollision für $n_{\text{W2}} = 110 \text{ min}^{-1}$ und $\alpha = 10^\circ$
Abb. 6.15: Parameterstudie zur Wurfbahn und Kollision für \( \eta_{W2} = 110 \text{ min}^{-1} \) und \( \alpha = 40^\circ \)
6.2.3.3 Zusammenfassung der Parameterstudie

Für die zwei auszulegenden Wellenabschnitte liefert uns die numerische Berechnung der Abwurfbewegung wichtige Erkenntnisse. So konnte für den Wellenabschnitt 1, der für die Abscheidung der losen Schäben ausgelegt ist, eine Drehzahl \( n_{W1} = 60 \, \text{min}^{-1} \) für die nachfolgende Paddelanordnung mit einem Steigungswinkel \( \alpha = 25^\circ \) berechnet werden. Mit diesen Parametern lässt sich die Wurfbewegung so steuern, dass Schäben vom Paddel abgeworfen und von einem nachfolgenden Paddel getroffen werden. Durch dieses Hochwerfen und dem anschließendem Schlagimpuls sollen Schäbenagglomerate aufgelockert und vereinzelt werden, damit die losen Schäben das Sieb passieren können. Für das Auflösen der Faserflocken mit einer Kollision eines nachfolgenden Paddels im Wellenabschnitt 2 konnte eine Drehzahl \( n_{W2} = 110 \, \text{min}^{-1} \) für die vorauslaufende Paddelanordnung, ebenfalls mit einem Steigungswinkel \( \alpha = 25^\circ \) berechnet werden. Durch diesen Schlagimpuls sollen die hochgeworfenen Faserflocken auseinandergezogen und eingeschlossene Schäben freigelegt werden, damit die losen Schäben den Siebboden passieren können.

Ausgehend von der aus der Parameterstudie ermittelten Drehzahlen für die zwei Wellenabschnitte lassen sich weitere physikalische Größen ableiten, welche in den Gleichungen 6.23 bis 6.26 beschrieben und in der Tab. 6.2 zusammengefasst sind.

Die Frequenz der Wellendrehung wird wie folgt berechnet:

\[
f = \frac{n}{60}
\]  

(6.23)

Die Zeit für eine Umdrehung ergibt sich damit zu:

\[
t_u = f^{-1}
\]  

(6.24)

Die Winkelgeschwindigkeit wird wie folgt berechnet:

\[
\omega = 2 \pi f
\]  

(6.25)

Die Umfangsgeschwindigkeit wird nach folgender Formel berechnet:

\[
v_u = 2 \pi r f
\]  

(6.26)
Tab. 6.2: Zusammenstellung der Parameter an den zwei Wellenabschnitten

<table>
<thead>
<tr>
<th>Wellenabschnitt 1</th>
<th>Wellenabschnitt 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Radius r [mm]</td>
<td>500</td>
</tr>
<tr>
<td>Wellendrehzahl n [min⁻¹]</td>
<td>60</td>
</tr>
<tr>
<td>Frequenz f [s⁻¹]</td>
<td>1,00</td>
</tr>
<tr>
<td>Winkelgeschwindigkeit ω [s⁻¹]</td>
<td>6,28</td>
</tr>
<tr>
<td>Umfangsgeschwindigkeit (v_u) [m s⁻¹]</td>
<td>3,14</td>
</tr>
<tr>
<td>Zeit für eine Umdrehung (t_u) [s]</td>
<td>1</td>
</tr>
</tbody>
</table>

Ausgehend von den in der Parameterstudie ermittelten optimalen Konstruktions- und Betriebsparameter für ein bestes Reinigungsergebnis, bilden diese Werte die Basisdaten für die Versuchsmaschine. Darauf aufbauend sind besonders die Daten für Wellenabschnitt 1 die Grundlage für die Ermittlung des Massestroms.

6.2.4 Berechnung des Massestroms


Abb. 6.16: Schematische Darstellung der nacheilenden Paddelanordnung [ne] in der Versuchsmaschine und deren Gutstrombewegung
Für die nacheilende Paddelanordnung wird bei einer kompletten Paddelumdrehung eine SFG-Portion um die Ganghöhe \( G_P \) in axialer Richtung vorwärts bewegt. Dabei wird das Gemisch jeweils bei einem Verdrehungswinkel \( \delta = 90° \) um die Eingriffsbreite \( e_P \) vorwärts geschoben.

Abb. 6.17: Schematische Darstellung der vorausseilenden Paddelanordnung [ve] in der Versuchsmaschine und deren Gutstrombewegung

Bei der vorausseilenden Paddelanordnung werden für die gleiche axiale Vorschubbewegung von einer Ganghöhe \( G_P \) für die SFG-Portion drei Umdrehungen von der Paddelschnecke benötigt. Das Verschieben um die Eingriffsbreite \( e_P \) erfolgt hier erst bei einem Verdrehungswinkel \( \delta = 270° \).

Abb. 6.18: Schematische Darstellung der doppelten Paddelanordnung [dp] in der Versuchsmaschine und deren Gutstrombewegung

Für die doppelte Paddelanordnung ergibt sich ein ähnliches Bild wie für die nacheilende Paddelanordnung, nur dass zum gleichen Zeitpunkt innerhalb einer Ganghöhe \( G_P \) zwei Paddel aktiv am Weitertransport der SFG-Portion beteiligt sind. Für die axiale Vorschubbewegung um die Ganghöhe \( G_P \) wird dementsprechend auch hier eine Wellenumdrehung benötigt. Deutlich wird aber, dass zwei SFG-Portionen innerhalb einer Umdrehung diesen Weg zurücklegen können.
Aus diesen Zusammenhängen lässt sich die mittlere axiale Fördergeschwindigkeit \( v_a \) des SFG im Axialfraktionierer auf Basis der Verschiebewegung einer SFG-Portion und in Abhängigkeit der entsprechenden Drehzahl sowie der eingesetzten Paddelanordnung ableiten (Gleichung 6.27):

\[
v_a = n \cdot e_p \cdot \frac{360°}{\delta}
\]

mit

\[
e_p = \frac{G_p}{a_p}
\]

(6.27)

Für die Berechnung des Massestroms ist noch die Angabe der Querschnittsfläche des zu transportierenden SFG’s notwendig. Dazu wurden Ergebnisse aus Vorversuchen, die mit einer kleinen Laboranlage erzielt werden konnten, genutzt [Fürll et al., 2008a], [Fürll et al., 2008b], [ATB, 2014]. Bei Verwendung des sichelförmigen Paddels konnte dort ein maximaler Massestrom von bis zu 1200 kg h\(^{-1}\) gewährleistet werden. Ein optimaler Arbeitsbereich lag aber im Bereich von nur 700 kg h\(^{-1}\). Bei der Berechnung der Querschnittsfläche vom SFG, welches von einem Paddel mit einer Höhe von 3 cm in axialer Richtung vorwärts bewegt werden kann, wird von dem maximalen Massestrom ausgegangen, der zunächst noch unabhängig vom Aussiebungsresultat ist. In der Tab. 6.3 sind die von der Labormaschine genutzten Parameter zusammengestellt.

Tab. 6.3: Zusammenstellung der verwendeten Parameter für die Labormaschine (siehe Abb. 4.19)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Werte</th>
</tr>
</thead>
<tbody>
<tr>
<td>Radius ( r ) [mm]</td>
<td>250</td>
</tr>
<tr>
<td>Schüttdichte ( \rho_{SFG} ) [kg m(^{-3})]</td>
<td>85</td>
</tr>
<tr>
<td>Drehzahl ( n_{W1} ) [min(^{-1})]</td>
<td>125</td>
</tr>
<tr>
<td>Steigung Paddelschnecke ( G_p ) [mm]</td>
<td>300</td>
</tr>
<tr>
<td>Verdrehungswinkel ( \delta ) [°]</td>
<td>90</td>
</tr>
<tr>
<td>Anzahl Paddel pro Steigungshöhe ( a_p )</td>
<td>4</td>
</tr>
<tr>
<td>Anzahl Paddelschnecken ( a_s )</td>
<td>1</td>
</tr>
<tr>
<td>Fördermenge (Massestrom) ( m_{SFG} ) [t h(^{-1})]</td>
<td>1,2</td>
</tr>
<tr>
<td>mittlere axiale Fördergeschwindigkeit ( v_a ) [m s(^{-1})]</td>
<td>0,625</td>
</tr>
<tr>
<td>Füllungsfläche ( A_p ) pro Paddelschnecke [cm(^2)]</td>
<td>63</td>
</tr>
<tr>
<td>Füllungsgrad ( \Phi ) [%]</td>
<td>3,2</td>
</tr>
</tbody>
</table>

Für die neue Maschine soll mit einem optimierten Paddel, welches aber die gleiche Höhe von der Labormaschine (30 mm) aufweist, gearbeitet werden. Damit wird die Füllungshöhe in Anlehnung auf das Paddel von der Labormaschine im unteren Siebbereich auch auf maximal 30 mm begrenzt. Für eine entsprechende Berechnung der Füllungsfläche für die neue Maschine mit einem Siebradius $r$ von 500 mm lässt sich nach Abb. 6.20 folgender mathematischer Zusammenhang aufstellen.

Abb. 6.20: Darstellung zur Berechnung der Füllungsfläche in Abhängigkeit vom Radius und der Füllungshöhe $l$

Für die folgenden Formeln von 6.28 bis 6.33 sind alle Winkel im Bogenmaß anzugeben. Für den Winkel $\alpha = 120^\circ$ kann somit $\frac{2}{3} \pi$ geschrieben werden.

Die Kreissehne $s$ lässt sich nach Gleichung 6.28 berechnen:

$$s = 2 \cdot r \cdot \sin \left( \frac{\alpha}{2} \right) = \sqrt{3} \cdot r \quad (6.28)$$
Die Segmenthöhe \( h \) wird nach Gleichung 6.29 berechnet:

\[
h = r \times \left( 1 - \cos\left(\frac{\alpha}{2}\right) \right) = \frac{r}{2} \tag{6.29}
\]

Den Zusammenhang mit der Segmenthöhe \( h' \) zeigt die Gleichung 6.30:

\[
h' = h - l \tag{6.30}
\]

Damit lässt sich nun der Radius \( r' \) für die obere Begrenzung der Füllungsfläche nach Gleichung 6.31 bzw. der Öffnungswinkel \( \alpha' \) nach Gleichung 6.32 berechnen:

\[
r' = \frac{4 \times h'^2 + s^2}{8 \times h'} = \left( \frac{r}{2} - l \right)^2 + \left( \frac{\sqrt{3} \times r}{4} \right) \tag{6.31}
\]

\[
\alpha' = 2 \times \sin^{-1}\left( \frac{s}{2 \times r'} \right) = 2 \times \sin^{-1}\left( \frac{\sqrt{3} \times r}{2 \times r'} \right) \tag{6.32}
\]

Die gesuchte Füllungsfläche für eine Paddelschnecke bildet die Differenz aus der Segmentfläche mit dem Radius \( r \) sowie der Segmentfläche mit dem Radius \( r' \). In Abhängigkeit von der angestrebten Füllungshöhe \( l \) kann die Füllungsfläche nach Gleichung 6.33 berechnet werden.

\[
A_F = \frac{r^2}{2} \times (\alpha - \sin \alpha) - \frac{r'^2}{2} \times (\alpha' - \sin \alpha') \tag{6.33}
\]

Mit der berechneten axialen Fördergeschwindigkeit sowie der Füllungsfläche und der verwendeten Anzahl an Paddelschnecken auf einer Welle lässt sich der Volumenstrom (Gleichung 6.34) und für eine konkrete Schüttdichte der Massestrom bestimmen (Gleichung 6.35).

\[
\dot{V} = v_a \times A_F \times a_s \tag{6.34}
\]

\[
m_{SFG} = v_a \times \rho_{SFG} \times A_F \times a_s \tag{6.35}
\]

Der Füllungsgrad lässt sich ebenfalls über die Füllungsfläche und der Anzahl verwendeter Paddelschnecken auf einer Welle bestimmen (Gleichung 6.36).

\[
\Phi = \frac{A_F}{\pi \times r'^2} \times 100 \% \times a_s \tag{6.36}
\]
Die Tab. 6.4 enthält wichtige Kennzahlen sowie die berechneten Fördergeschwindigkeiten, Fördermenge und Füllungsgrad im Vergleich für die drei unterschiedlichen Paddelanordnungen.

<table>
<thead>
<tr>
<th>Tab. 6.4: Kennzahlen für die drei verschiedenen Paddelanordnungen</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Kennzahl</strong></td>
</tr>
<tr>
<td>Füllungsfläche $A_F$ pro Paddelschnecke [cm²]</td>
</tr>
<tr>
<td>Schüttdichte $\rho_{SFG}$ [kg m⁻³]</td>
</tr>
<tr>
<td>Wellendrehzahl im Wellenabschnitt 1 $n_{w1}$ [min⁻¹]</td>
</tr>
<tr>
<td>Steigung Paddelschnecke $G_p$ [mm]</td>
</tr>
<tr>
<td>Winkelabstand zwischen zwei Paddel $\delta$ [°]</td>
</tr>
<tr>
<td>Anzahl Paddel pro Steigungshöhe $a_p$</td>
</tr>
<tr>
<td>Anzahl Paddelschnecken $a_S$</td>
</tr>
<tr>
<td>mittlere axiale Fördergeschwindigkeit $v_a$ [m s⁻¹]</td>
</tr>
<tr>
<td>Fördermenge (Massestrom) $\bar{m}_{SFG}$ [t h⁻¹]</td>
</tr>
<tr>
<td>Fördermenge (Volumenstrom) $V$ [m³ h⁻¹]</td>
</tr>
<tr>
<td>Füllungsgrad $\Phi$ [%]</td>
</tr>
</tbody>
</table>


7 Modellentwicklung für den Aussiebungsverlauf

Für den Bereich der Schäbenabscheidung wird davon ausgegangen, dass im Wellenabschnitt 1 alle abscheidbaren Schäben auf dem Siebboden vorliegen. In der vorgelagerten Staubabscheidung wurde das SFG bereits so aufgelockert, dass das Gut bereits entmischt ist. Die noch in den Faserflocken eingeschlossenen Schäben werden aufgrund der geringen Drehzahl in diesem Bereich nicht weiter herausgelöst, sondern gemeinsam mit den Fasern über dem Siebboden transportiert und stehen somit für ein Siebereignis nicht zur Verfügung.

7.1 Ansatz für das Abscheideverhalten der Schäben


\[
R = e^{-\frac{t}{T_A}} \tag{7.1}
\]

Auf dieselbe Gleichung führt der empirisch verwendete Ansatz von [Huynh et al., 1978]. Dieser baut auf der Wahrscheinlichkeitsrechnung auf und für die Berechnung wird die theoretische Durchtrittswahrscheinlichkeit von der eingesetzten Siebgeometrie verwendet [Stieß, 2009]. In Anlehnung an die Normbezeichnung für ein Lamellensieb nach ISO 7806-1983 (für Deutschland: DIN 24041) sieht die Durchtrittswahrscheinlichkeit \( p \), wie in Abb. 7.1 dargestellt, dann wie folgt aus (Gleichung 7.2):

\[
p = \frac{(w - d_K) \cdot (l - d_K)}{t_1 \cdot t_2} \tag{7.2}
\]

Dabei hängt die Durchtrittswahrscheinlichkeit vom Verhältnis der Partikelgröße zur Siebmaschenweite ab. Damit das Partikel die Sieböffnung passieren kann, muss es im vollen Partikelumfang auf die Freifläche des Siebes treffen. Ausgehend vom Partikelmittelpunkt reduziert sich die eigentliche Freifläche auf eine Durchtrittsfläche, die im Verhältnis zur Maschenfläche steht.
In dem für die Versuche verwendeten Fall einer Quadratlochung, vereinfacht sich die Berechnung zur Gleichung 7.3:

\[ p = \frac{(w - d_K)^2}{t_i^2} \]  

(7.3)

Die Schäben weisen gegenüber einer Kugel eine stark veränderte und unregelmäßige Form auf, was die Vorhersage eines theoretischen Siebereignisses erschwert. Als Äquivalentdurchmesser für die Partikelgröße wird die Maschenweite der Analysesiebung mit dem Medianwert \( d_{50} \) herangezogen (siehe Kapitel 4.2). Bei sich wiederholenden Siebbeührungen ergibt sich die Abscheidewahrscheinlichkeit zu (7.4):

\[ p_{n_S} = 1 - (1 - p)^{n_S} \]  

(7.4)

Damit ist der verbleibende Rest auf dem Sieb (Gleichung 7.5):

\[ R = (1 - p)^{n_S} \]  

(7.5)

Durch Anwenden der Logarithmengesetze kann dies auch als Exponentialfunktion zur Basis e geschrieben werden (Gleichung 7.6):

\[ R = e^{n_S \ln(1-p)} \]  

(7.6)

Die Anzahl der Siebbeührungen kann aus der Winkelgeschwindigkeit \( \omega \) und der Siebzeit \( t \), bestimmt werden (Gleichung 7.7):

\[ n_S = \frac{\omega \cdot t}{2 \cdot \pi} \]  

(7.7)
Wird die Gleichung 7.7 in Gleichung 7.6 eingesetzt, ergibt sich der Rest über dem Sieb somit zur Gleichung 7.8:

\[ R = e^{\omega t \ln(1-p) / 2\pi t} \]  
(7.8)

Im Vergleich vom exponentiellen Ansatz mit dem Wahrscheinlichkeitsansatz erhält man für die Zeitkonstante \( T_A \) die Gleichung 7.9:

\[ T_A = -\frac{2 \pi}{\omega \ln(1-p)} \]  
(7.9)

Da der Restschäbenverlauf wiederum massestromabhängig ist, wird das Abscheidemodell noch um eine Abscheidekonstante \( C_A \) erweitert (Gleichung 7.10).

\[ R = e^{C_A t \ln(1-p) / 2\pi t} \]  
(7.10)

### 7.2 Bestimmung der Modellparameter

Der Aussiebungsverlauf wurde entlang des Weges aufgenommen. Dies bedeutet, dass am Ende jedes Siebfaches zum Auffangen des Siebdurchgangs mit definierter Breite, der Restschäbengehalt über dem Sieb bestimmt werden kann. Bei Verwendung der Abscheidefunktion muss nun an diesen Wegstellen \( s_k \) die Zeit mittels der axialen Vorschubgeschwindigkeit berechnet werden. Dies kann durch Gleichung 7.11 erfolgen:

\[ t_k = \frac{s_k}{v_a} \]  
(7.11)

Die Frage ist noch wie der Modellparameter \( C_A \) bestimmt werden kann. Die Lösung besteht hier in der Anwendung der Methode der kleinsten Quadrate zur optimalen Anpassung des Restschäbenverlaufs von Versuch und Simulation. Dementsprechend wird der Modellparameter \( C_A \) aus den Versuchsergebnissen so bestimmt, dass der Fehler zur Abscheidefunktion minimal wird. Hierbei handelt es sich um eine klassische Optimierungsaufgabe, die wiederum in einem numerischen Iterationsverfahren bestimmt werden kann. Zur Berechnung der kleinsten Fehlerquadrate nach Gleichung 7.12 kommt die Software MATLAB® zum Einsatz.

\[ (F(C_A))^2 = \sum_{k=0}^{10} (R(t = t_k) - R_{th}(t = t_k))^2 \]  
(7.12)

Den prinzipiellen Einfluss des Modellparameters \( C_A \) auf die Restschäben über dem Siebboden zeigt die Abb. 7.2.
Abb. 7.2: Einfluss unterschiedlicher Abscheidekonstanten auf den Verlauf der Restschäben

8 Bewertung des Massestrommodells sowie des Aussiebungsverlaufs

8.1 Versuchsdurchführung und -ergebnisse


In den nachfolgenden Siebabschnitten wurden die Paddelanordnungen entsprechend der Versuchs einstellung variiert. Im Bereich der Schäbenabscheidung konnte beim Einsatz der vorauselrenden Anordnung kein zufriedenstellender Materialfluss über dem Sieb erreicht werden. Dies lag vor allem an einer ungenügenden axialen Vorschubbewegung der Faserflocken, was sich an einem Anstauen der Flocken entlang der Reinigungsstrecke bemerkbar machte. Aus diesem Grunde wurde entschieden, die vorauselrenden Anordnung in diesem Siebabschnitt zur Schäbenabscheidung nicht weiter für die Untersuchungen einzusetzen. Die Tab. 12.1 im Anhang zeigt eine Zusammenstellung aller durchgeführten Versuche, die im weiteren Verlauf kurz nur noch mit einem V und der entsprechenden Versuchsnummer bezeichnet werden. Den prinzipiellen Aussiebungsverlauf für ausgewählte Versuchsvarianten zeigt die Abb. 8.1.

\[\text{Abb. 8.1: Aussiebungsverlauf für ausgewählte Versuchsvarianten}\]

(Winterhanf: V40/\(n_{W1} = 60 \text{ min}^{-1}\) [dp]/\(n_{W2} = 100 \text{ min}^{-1}\) [ve]/1,01 t h\(^{-1}\), V2/\(n_{W1} = 60 \text{ min}^{-1}\) [ne]/\(n_{W2} = 120 \text{ min}^{-1}\) [ne]/1,57 t h\(^{-1}\), V22/\(n_{W1} = 40 \text{ min}^{-1}\) [ne]/\(n_{W2} = 100 \text{ min}^{-1}\) [ve]/2,20 t h\(^{-1}\); stark geröstet: V28/\(n_{W1} = 80 \text{ min}^{-1}\) [dp]/\(n_{W2} = 120 \text{ min}^{-1}\) [dp]/2,35 t h\(^{-1}\); leicht geröstet: V38/\(n_{W1} = 60 \text{ min}^{-1}\) [dp]/\(n_{W2} = 120 \text{ min}^{-1}\) [ve]/2,49 t h\(^{-1}\))

8.1.1 Einfluss des Massestroms

Der zweite Siebabschnitt zur Abscheidung der Schäben (siehe Abb. 5.11) stellt die längste Reinigungsstrecke innerhalb des kompletten Aussiebungsverlaufs. Zur Beurteilung des Einflusses vom Massestrom auf den Aussiebungsverlauf wurde dieser Bereich für die Materialkategorie Winterhanf herangezogen. Um die Variation der Maschinenparameter im Wellenabschnitt 2 für die einzelnen Versuche nicht betrachten zu müssen, wurde die Misch- und Faserfraktion als eine Gesamtfraktion angegeben.


---

Abb. 8.2: Masseanteil der Austragsstellen sowie Aussiebungsverlauf im Bereich Schäben bei der nacheilenden Paddelanordnung mit einer Drehzahl \( n_{\text{d}} = 60 \text{ min}^{-1} \) im Wellenabschnitt 1 für unterschiedliche Masseströme (Materialkategorie: Winterhanf)
Für die doppelte Paddelanordnung in Abb. 8.3 zeigt sich ein ähnliches Bild wie für die nacheilende Paddelanordnung. Auch hier findet mit einer Steigerung des Massestroms eine Abnahme des ausge- siebten Schäbenanteils bei gleichzeitiger Zunahme der Gesamtfraktion Misch/Fasern statt. Zu erkennen ist aber auch der im Vergleich zur nacheilenden Paddelanordnung steilere Aussiebungsverlauf bei ähnlichen Masseströmen im Bereich der Schäbenabscheidung von Wellenabschnitt 1.

Ein Vergleich beider Paddelanordnungen auf ihren Aussiebungsverlauf in Abhängigkeit von Ihrem Massestrom soll im nächsten Kapitel gezeigt werden.

8.1.2 Einfluss der Paddelanordnung auf den Aussiebungsverlauf

Für eine Bewertung der Paddelanordnungen auf den Aussiebungsverlauf sollen zunächst die nachei- lende und die doppelte Paddelanordnung im Bereich der Schäben miteinander verglichen werden. Dazu wurde der bis zum Beginn der Schäbenabscheidung abgeschiedene Staubanteil ermittelt und in der Auswertung berücksichtigt, so dass der Aussiebungsverlauf für die herangezogenen Versuche wieder auf dem gleichen Niveau von 100 % beginnt. Eine exakte Verdopplung des Massestroms ist in diesen Größenordnungen (Massestrom) und bei Verwendung des beschriebenen Versuchsaufbaus nicht möglich. Die für einen Vergleich der Paddelanordnungen herangezogenen Masseströme liegen aber eng zusammen und können gut für einen Vergleich herangezogen werden (Abb. 8.4).
8 Bewertung des Massestrommodells sowie des Aussiebungsverlaufs

Abb. 8.4: Vergleich des Aussiebungsverlaufs der nacheilenden und der doppelten Paddelanordnung bei einer Drehzahl

\[ n_{W1} = 60 \text{ min}^{-1} \] im Wellenabschnitt 1 für unterschiedliche Masseströme (Materialkategorie: Winterhanf)


In der Abb. 8.5 sind alle drei untersuchten Paddelanordnungen dargestellt. Es wurde sich auf zwei Bereiche für den Masseanteil über Siebboden zum Beginn dieses Siebabschnitts konzentriert. Der ursprüngliche Massestrom variiert in den beiden Betrachtungsfällen.

8.1.3 Einfluss der Drehzahl auf den Aussiebungsverlauf

Für den Einfluss der Drehzahl auf den Aussiebungsverlauf im Bereich der Schäbenabscheidung werden drei verschiedene Materialkategorien (Winterhanf, leicht geröstet und stark geröstet) herangezogen. Dies soll sicherstellen, dass es nicht zu unerwarteten Interaktionen innerhalb einer Materialkategorie in Abhängigkeit von der Drehzahl kommt und den Aussiebungsverlauf verändert. Die untersuchten Wellendrehzahlen \( n_{W1} \) lagen bei 40, 60 und 80 min\(^{-1}\), was einer Verdopplung des Drehzahlbereichs entspricht.

Die Abb. 8.6 zeigt die Aussiebungsverläufe für die nacheilende und die doppelte Paddelanordnung. Auch hier ist wieder festzuhalten, dass der Massestrom innerhalb der Materialkategorien nicht exakt gleich realisierbar war. Für alle Materialkategorien und die beiden Paddelanordnungen lässt sich kein eindeutiger Trend beim Aussiebungsverlauf in Abhängigkeit von der Drehzahl feststellen.

Abb. 8.6: Aussiebungsverlauf bei Variation der Drehzahl $n_{W1}$ von der nacheilenden Paddelanordnung (links) und der doppelten Paddelanordnung (rechts) für die Materialkategorie Winterhanf, leicht geröstet und stark geröstet (von oben nach unten)
8.1.4 Qualität der Austragsfraktionen

Für die Beantwortung der Frage nach der Zusammensetzung der zu separierenden Fraktionen aus dem SFG wurde der Versuchsaufbau der Variante 2 herangezogen (siehe Abb. 5.10). Die Abb. 8.7 zeigt einen Überblick ausgewählter Versuche für verschiedene Materialkategorien mit ihren separierten Fraktionen und deren Masseanteilen. Zum Einsatz kamen die sich in der Versuchsanordnung Variante 1 als günstig herausgestellten Paddelanordnungen. So wurde der Wellenabschnitt 1 im Bereich der Schäbenabscheidung mit der doppelten Paddelanordnung und der Wellenabschnitt 2 im Bereich der Mischfraktion mit der vorauslaufenden Paddelanordnung bestückt.

Prinzipiell gibt die Größenverteilung der Schäben die Tendenz vom Ausgangsmaterial SFG wieder. Der Masseanteil der Schäben im Bereich von >1,0 - 4,0 mm ist dabei am größten. Deutlich zu erkennen ist bei der Materialkategorie V/H im Vergleich zur Materialkategorie V die Verschiebung des Masseanteils der großen Schäben (>4,0 - 8,0 mm) in Richtung der kleinen Schäben (>0,5 - 1,0 mm) durch die vorherige Bearbeitung des SFG´s mit einer Hammermühle. Zu beachten ist, dass der Staubanteil durch die zusätzliche Bearbeitungsstufe ebenfalls deutlich erhöht ist. Der in den Schäben enthaltene Faseranteil beträgt bis auf einen Versuch deutlich unter 1 Masse-%. Dabei handelt es sich vor allem um Ultrakurzfasern, Faserfragmenten die fest an den Schäben haften und Bastbestandteile. Beim Staubanteil in den gereinigten Schäben konnte der geforderte Wert von < 2 Masse-%, bis auf die eine bereits genannte Materialkategorie V/H, erreicht werden. Für ausgewählte Versuchsinstellungen und Materialkategorien liegt der Staubanteil in den gereinigten Schäben bei einem Wert von < 1 Masse-%.

Die zurückgewonnene Faserfraktion zeigt einen deutlichen Unterschied in ihrem Masseanteil an darin enthaltenen Restschäben (Abb. 8.9). Dies liegt zum einen an der verwendeten Materialkategorie und ihrem Entholzungsverhalten sowie der eingesetzten Entholzungsstechnologie in der vorgelagerten Aufschlussanlage.
8 Bewertung des Massestrommodells sowie des Aussiebungsverlaufs

Abb. 8.9: Zusammensetzung der Faserfraktion nach Versuchsanordnung Variante 2 (Material siehe Tab. 5.2)


Tab. 8.1: Vergleich der Versuchsergebnisse mit der ursprünglichen Anforderungsliste

<table>
<thead>
<tr>
<th>Ergebnis</th>
<th>Forderung</th>
</tr>
</thead>
<tbody>
<tr>
<td>Masseanteil Schäben</td>
<td>&gt; 80 %</td>
</tr>
<tr>
<td>Restfasergehalt:</td>
<td>&lt; 1,47 %*</td>
</tr>
<tr>
<td>(Feinanteil &lt; 0,5 mm)</td>
<td>&lt; 1 %</td>
</tr>
<tr>
<td>Staub:</td>
<td>0,8 - 2,4 %**</td>
</tr>
<tr>
<td></td>
<td>&lt; 2 % (siehe Tab. 4.2)</td>
</tr>
<tr>
<td>Produktklasse F1[&lt; 1 %]</td>
<td>bzw. F2[&lt; 2 %]</td>
</tr>
<tr>
<td>Masseanteil Fasern</td>
<td>bis 5 %</td>
</tr>
<tr>
<td>Restschäbengehalt:</td>
<td>4 - 25 %***</td>
</tr>
<tr>
<td></td>
<td>&lt; 10 %</td>
</tr>
</tbody>
</table>

* nur Versuch 55 aus der Materialkategorie V liegt über der geforderten Grenze von < 1 %
** nur Materialkategorie V/H liegt über der geforderten Grenze von < 2 %
*** stark abhängig vom Entholzungsgrad des Strohs in der Faseraufschlussanlage
8.2 Modellvalidierung

Die auf Basis der Modellierung angenommene Verschiebebewegung einer SFG-Portion wurde auch in den Praxisversuchen bestätigt (Abb. 8.10).


Für die Validierung des Modells zur Schäbenabscheidung muss der experimentell bestimmte Aussiebungsverlauf auf die in diesem Siebbereich abscheidbare Schäbenmasse umgerechnet werden. Damit beginnt der Anteil der Restschäben über Sieb wieder bei 100 % am Abscheideweg s = 0 m. Die Abscheidekonstante $C_A$ lässt sich aus den Praxisversuchen nach Gleichung 7.12 bestimmen. Die Tab. 8.2 zeigt die numerisch ermittelten Werte für $C_A$ und dessen Fehlerquadrat, die Varianz $(F(C_A))^2$ bzw. Fehler, die Standardabweichung $F(C_A)$ für die nachziehende und doppelte Paddelanordnung in Abhängigkeit vom Massestrom.
Die Abscheidekonstante nimmt mit zunehmendem Massstrom ab, wobei die Werte für die doppelte Anordnung über den Werten der nacheilenden Anordnung liegen. Der prinzipielle Verlauf der Regressionsfunktion für $C_A$ gilt aber für beide Paddelanordnungen (Abb. 8.11).

8 Bewertung des Massenstrommodells sowie des Aussiebungsverlaufs

Abb. 8.12: Gegenüberstellung von berechneten und gemessenen Aussiebungsverlauf von Hanfschäben bei der nacheilenden Paddelanordnung in Abhängigkeit vom Massenstrom (Versuch V1, V10, V3, V12 und V7 aus der Materialkategorie Winterhanf mit einer Drehzahl $n_{W1} = 60 \text{ min}^{-1}$)

Abb. 8.13: Gegenüberstellung von berechneten und gemessenen Aussiebungsverlauf von Hanfschäben bei der doppelten Paddelanordnung in Abhängigkeit vom Massenstrom (Versuch V40, V39, V33 und V24 aus der Materialkategorie Winterhanf mit einer Drehzahl $n_{W1} = 60 \text{ min}^{-1}$)

Die im Modell modellierten maximalen Massenströme konnten in den Versuchen erreicht und zum Teil übertroffen werden. So zeigte sich für die nacheilende Paddelanordnung ein höherer Massenstrom als mit dem Massenstrommodell abgebildet werden konnte. Dies deutet darauf hin, dass mit einer größeren zulässigen Füllungshöhe im Modell zur Auslegung des Axialfraktionierers bei Verwen-
Bewertung des Massestrommodells sowie des Aussiebungsverlaufs

dung der in den Versuchen eingesetzten Paddelgeometrie gerechnet werden könnte. Zu beachten ist aber die geringe Zeitspanne eines einzelnen durchgeführten Versuchs. Materialaufstauungen oberhalb des Abscheidewegs konnten nicht beobachtet werden, können sich aber möglicherweise bei einem längeren zeitlichen Betrieb einstellen. Für die vorausseilende Paddelanordnung kann aufgrund des schlechten Vorschubverhaltens im Bereich der Schäbenabscheidung und der wenigen durchgeführten Praxisuntersuchungen keine Aussage getroffen werden. Wahrscheinlich wurde in den Versuchen der Massestrom zu hoch gewählt, was ein Vergleich mit dem Massestrommodell auch nahe legt.


Auffällig ist jedoch die geringe Ausnutzung der Siebfläche auf der Wurfseite, gegenüber der Steigungsseite. Dies hängt mit der Drehrichtung der Paddelschnecke zusammen, die das Gut immer versucht, auf die Steigungsseite zu schieben. Weiterhin fehlt die vorteilhafte Wurfbewegung über die Welle auf die gegenüberliegende Seite. Damit könnte die Siebfläche auch in diesem Bereich effektiver für eine Schäbenabscheidung ausgenutzt werden. Betrachtet man die simulierten Wurfweiten aus dem Modell zur Wurfbewegung der Schäben, so bestätigt sich die Annahme einer zu geringen Wurfbewegung auf die gegenüberliegende Siebfläche.
9 Einsatz des Axialfraktionierer-Gesamtmodells im Konstruktions- und Entwicklungsprozess

9.1 Konstruktionstechnische Überarbeitung des Axialfraktionierers


Beim Einsatz der Reinigungsmaschine in einer Faseraufschlussanlage ist für den wirtschaftlichen Betrieb des Axialfraktionierers der Massestrom der Gesamtanlage mit dem daraus resultierenden Massestrom an SFG von entscheidender Bedeutung. Der Konstrukteur kann die Auswirkungen der variablen Parameter beurteilen und die Reinigungsmaschine auf eine konkrete Reinigungsleistung mit einem bestimmten Massestrom einstellen.

Die Funktions- und Systemstruktur vom Maschinenkonzept sollen erhalten bleiben, da sie sich in der Versuchsmaschine bei Verwendung unterschiedlicher Materialkategorien bewährt haben.

9.2 Auslegung eines anforderungsgerechten Axialfraktionierers

Die Auslegung der Reinigungsmaschine soll für ein typisches in den Faseraufschlussanlagen anfallendes SFG vorgenommen werden. Es wird dafür die Materialkategorie Winterhanf ausgewählt, da die in den Versuchen ermittelte Datenbasis am besten gesichert ist. Die Beschickung des Axialfraktionierers kann über ein Förderband oder wie in den Versuchen über einen Kondensator erfolgen. Die Austragsbreite eines Kondensators liegt bei ca. 1 m und eignet sich damit hervorragend für die stirnseitige Zuführung in den Arbeitsraum des Axialfraktionierers. Weiterhin lassen sich damit SFG bis zu einem Massestrom von 3 t h⁻¹ fördern, was auch dem angestrebten Bereich für den Massestrom der Reinigung entsprechen würde. Die Schwerpunkte liegen in der Auslegung der Sieblängen für die Schäbenabscheidung sowie den Paddelanordnungen mit ihren Betriebsparametern. Die Sieblängen für die Abscheidung von Staub und Mischfraktion werden von der Versuchsmaschine vorerst so übernommen. Besteht kein Bedarf nach einer Aufbereitung möglichst schäbenarmer Kurzfasern, kann der
Wellenabschnitt 2 komplett entfallen. Dieser dann zur Verfügung stehende Abscheideweg könnte bei einer Verlängerung des Wellenabschnitts 1 für eine höhere Ausbeute an gereinigten Schäben genutzt werden. Die Anforderungen an einen Axialfraktionierer für den industriellen Einsatz mit bereits in der Versuchsmaschine enthaltener Forderungen/Wünschen sind der Tab. 9.1 zu entnehmen. Die Angabe der Daten basieren auf den Versuchserfahrungen und worden mit drei verschiedenen Bewertungsstufen gekennzeichnet. Für eine Umsetzung von noch unbefriedigend gelöster Forderungen/Wünsche sind die im Folgenden durchgeführten Simulationsrechnungen zur Ermittlung von Konstruktions- und Betriebsparametern notwendig, die zu Änderungen/Ergänzungen der Anforderungsliste führen können.
<table>
<thead>
<tr>
<th>Merkmal</th>
<th>Ausprägung</th>
<th>Forderung/Wunsch</th>
<th>Erfüllung</th>
<th>Modifikation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ökonomie</td>
<td>Preis</td>
<td>F abzüglich</td>
<td></td>
<td>• Verwendung fester Paddelpositionen / -neigung</td>
</tr>
<tr>
<td></td>
<td>1) 100.000 €</td>
<td>W abzüglich</td>
<td>o</td>
<td>• feste Siebeinbauten</td>
</tr>
<tr>
<td></td>
<td>1a) 60.000 €</td>
<td>+ + +</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2) 90.000 €</td>
<td>+ +</td>
<td>o</td>
<td></td>
</tr>
<tr>
<td>Geometrie</td>
<td>Abmaß</td>
<td>F abzüglich</td>
<td></td>
<td>• Verzicht auf Kurzfasereinigung (Wellenabschnitt 2 entfällt)</td>
</tr>
<tr>
<td></td>
<td>3) kompakt</td>
<td>W der Lösung</td>
<td>+ + +</td>
<td></td>
</tr>
<tr>
<td></td>
<td>3a) 7000 x 1100 x 4000 mm (Länge x Breite x Höhe)</td>
<td>+ + +</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>3b) Sieblänge Staub/Schäben/Misch (1,5 m/3,0 m/1,5 m)</td>
<td>+ +</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Energie</td>
<td>Massestrom</td>
<td>F abzüglich</td>
<td></td>
<td>• Sieblänge der Schäbenabscheidung an Massestrom angepasst</td>
</tr>
<tr>
<td></td>
<td>4) 3,0 t h⁻¹ SFG</td>
<td>W abzüglich</td>
<td>+ + +</td>
<td>• Paddelbreite &gt; 30 mm</td>
</tr>
<tr>
<td>Leistung</td>
<td>5) Welle 1: 2,2 kW</td>
<td>F abzüglich</td>
<td>+</td>
<td>• Im Rahmen der Elektromotorenabstufungen</td>
</tr>
<tr>
<td></td>
<td>6) Welle 2: 1,5 kW</td>
<td>W abzüglich</td>
<td>o</td>
<td></td>
</tr>
<tr>
<td></td>
<td>7) Austragsschnecke: 0,37 kW</td>
<td>F abzüglich</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Luftvolumenstrom der Staub-</td>
<td>8) 3900 m³ h⁻¹ (1300 m³ h⁻¹ pro Meter Arbeitslänge mit einer max. Luftgeschwindigkeit in der Absaugöffnung von 1,2 m s⁻¹)</td>
<td>F abzüglich</td>
<td>+</td>
<td>• Kann entsprechend des zulässigen Feinstaubgehalts im Endprodukt entfallen</td>
</tr>
<tr>
<td>babsaugung im Bereich der</td>
<td></td>
<td>abhängig von der</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Schäbenabscheidung</td>
<td>9) Nebenprodukt aus der Bastfasergewinnung (geröstet/ungeröstet) materialflussgerechte Eintragung in den Siebraum</td>
<td>F abzüglich</td>
<td></td>
<td>• Stirnseitige Eintragsöffnung</td>
</tr>
<tr>
<td>Stoffe</td>
<td>Eingang SFG</td>
<td>F abzüglich</td>
<td>o</td>
<td></td>
</tr>
<tr>
<td>Merkmal</td>
<td>Ausgang</td>
<td>Staub</td>
<td>Ausprägung</td>
<td>Forderung/Wunsch</td>
</tr>
<tr>
<td>---------------</td>
<td>---------</td>
<td>-----------------------------------------------------------------------</td>
<td>----------------------------------------------------------------------------</td>
<td>-----------------</td>
</tr>
<tr>
<td>Stoffe</td>
<td>Ausgang</td>
<td>Staub</td>
<td>11) weitestgehende Entfernung von Sand und Staubbestandteilen</td>
<td>F</td>
</tr>
<tr>
<td>Schäben</td>
<td></td>
<td>Schäben</td>
<td>12) Reinigung der abscheidbaren Schäben von 94 %</td>
<td>F</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Schäben</td>
<td>12a) Reinigung der abscheidbaren Schäben von 97 %</td>
<td>W</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Schäben</td>
<td>13) Faseranteil &lt; 1,0 %</td>
<td>F</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Schäben</td>
<td>13a) Faseranteil &lt; 0,5 %</td>
<td>W</td>
</tr>
<tr>
<td>Mischfraktion</td>
<td></td>
<td>Masseanteil &lt; 10 %</td>
<td>F</td>
<td>+</td>
</tr>
<tr>
<td>Kurzfasern</td>
<td></td>
<td>Kurzfasern</td>
<td>15) Schäbenanteil &lt; 20 %</td>
<td>F</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Kurzfasern</td>
<td>15a) Schäbenanteil &lt; 10 %</td>
<td>W</td>
</tr>
<tr>
<td>Feinstaub</td>
<td></td>
<td>Feinstaub</td>
<td>16) weitestgehende Entfernung von Schwebe- und (keine Schäben)</td>
<td>F</td>
</tr>
<tr>
<td>Betrieb</td>
<td>Betriebssicherheit</td>
<td>Betriebssicherheit</td>
<td>17) Wicklungen an rotierenden Teilen gut zu entfernen</td>
<td>F</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Betriebssicherheit</td>
<td>17a) keine Wicklungen an rotierenden Teilen</td>
<td>W</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Betriebssicherheit</td>
<td>18) Einhaltung gültiger Arbeits-, Sicherheits- und Umweltvorschriften</td>
<td>F</td>
</tr>
<tr>
<td>Wartungsarbeiten</td>
<td></td>
<td>Wartungsarbeiten</td>
<td>19) Ausrichtung/Festigkeit Paddel und Lagerspiel überprüfen</td>
<td>F</td>
</tr>
<tr>
<td>Reinigung</td>
<td></td>
<td>Reinigung</td>
<td>20) 1 x wöchentlich</td>
<td>F</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Ausprägung</th>
<th>Stoffe</th>
<th>Ausgang</th>
<th>Schäben</th>
<th>Mischfraktion</th>
<th>Kurzfasern</th>
<th>Feinstaub</th>
<th>Betrieb</th>
<th>Betriebssicherheit</th>
<th>Wartungsarbeiten</th>
<th>Reinigung</th>
</tr>
</thead>
</table>
9.3 Bestimmung der Material- und Betriebsparameter für die Simulation

Für den Praxiseinsatz des Axialfraktionier-Gesamtmodells müssen für jeden zu verarbeitenden Rohstoff folgende Materialparameter bekannt sein:

- Schüttdichte vom SFG
- Aussiehbare Schäbenanteil aus dem SFG
- Partikelgrößenverteilung der Schäben mit ihrem mittleren Schäbendurchmesser

Für eine Berechnung des Aussiebungsverlaufs wird die Abscheidekonstante $C_A$ benötigt. Für ein SFG welches in einer nach dem ATB-Prinzip arbeitende Faseraufschlussanlage anfällt, wurde der Verlauf für zwei verschiedene Paddelanordnungen in Abhängigkeit vom Massestrom aufgenommen. Hier kann der für die Simulation zu verwendende Wert direkt für einen bestimmten Massestrom aus der Abb. 8.11 entnommen werden. Sollte sich das Material stark von der verwendeten Materialkategorie Winterhanf oder der zum Einsatz kommenden Faseraufschlussstechnologie unterscheiden, lässt sich die Abscheidekonstante durch Tests ermitteln:

- Reinigungstest bei mindestens 3 verschiedenen Massestromen mit dem Versuchsaxialfraktionierer
- Anpassung der Abscheidekonstante an den aufgenommen Aussiebungsverlauf
- Ermittlung des Verlaufs der Abscheidekonstante in Abhängigkeit des Massestroms für die gewählte Paddelanordnung

9.3.1 Simulationsergebnisse

Die Auswirkungen auf die Wurfbewegung der Schäben und Faserflocken vom Paddel können bei einer Variation der Paddelbreite mit dem Modell beantwortet werden. Die Ergebnisse aus den Praxisversuchen zeigen eine noch zu geringe Wurfweite der Schäben auf die gegenüberliegende Siebfläche. Mit einer Vergrößerung der Paddelbreite soll eventuell der Effekt des Werfens über die Welle verstärkt werden. Bei einer Verdopplung der Paddelbreite liegen bereits in der Startposition vom Modell ein Teil der Partikel näher am Drehpunkt. So kommt es bei Verwendung der Drehzahl $n_{w1} = 60 \text{ min}^{-1}$ im Wellenabschnitt 1 und dem Steigungswinkel des Paddels $\alpha = 25^\circ$ zu einem verstärkten Abrutschen der Partikel am Paddel und einem direkten Wurf auf die gegenüberliegende Siebfläche (Abb. 9.1).
So reicht die Zentrifugalbeschleunigung der näher zum Drehpunkt liegenden Partikel für eine schnelle Bewegung nach außen und damit frühzeitigen Abwurf nicht aus. Die Partikel werden also länger vom Paddel mitgenommen, was die anschließende Wurfbewegung in x-Richtung verstärkt.

Eine Verdopplung der Paddelbreite für eine Drehzahl von 110 min⁻¹ sowie einem Steigungswinkel $\alpha = 25°$ zeigt auch für die Faserflocken ein positives Ergebnis. Aufgrund der höheren Drehzahl kommt

Abb. 9.1: Parameterstudie zur Wurfbahn und Kollision für $n_{w2} = 60\, \text{min}^{-1}$, $\alpha = 25°$ und doppelter Paddelbreite
es im Vergleich zu den Schäben zu einem vollständigen Abwerfen nach außen mit einer größeren Wurfweite in x-Richtung von den näher zum Drehpunkt liegenden Faserflocken.

Abb. 9.2: Parameterstudie zur Wurfbahn und Kollision für $n_{W2} = 110 \text{ min}^{-1}$, $\alpha = 25^\circ$ und doppelter Paddelbreite

Eine mögliche Kollision zwischen Faserflocke und Paddel bei ausreichenden Wurfweiten in den nachfolgenden Paddelbereich ist weiterhin gegeben.
Der Aussiebungsverlauf für die Schäben kann mit dem Modell simuliert werden. Für die Simulationsrechnung werden zwei Szenarien betrachtet. Von denen im Wellenabschnitt 1 für eine Abscheidung zur Verfügung stehenden Schäben sollen einmal 94 % und einmal 97 % abgesiebt werden. Die Berechnung erfolgt auf Basis der Materialkategorie [W] mit einem abscheidbaren Schäbenanteil von 92 %. Dies würde dementsprechend einem Masseanteil an gereinigten Schäben von 86,5 % bzw. 89,2 % entsprechen. Der in einer Reinigungsmaschine zu installierende Ausscheideweg für gereinigte Schäben im Wellenabschnitt 1 ist der Abb. 9.3 zu entnehmen. Es wurden drei verschiedene Aussiebungsverläufe simuliert. Die für die Simulation notwendigen Abscheidekonstanten in Abhängigkeit vom Massestrom und der Paddelanordnung wurden nach den ermittelten Regressionsfunktionen in Abb. 8.11 berechnet und sind in der Tab. 9.2 zusammengefasst.

<table>
<thead>
<tr>
<th>Paddelanordnung</th>
<th>Massestrom [t h⁻¹]</th>
<th>Abscheidekonstante $C_A$</th>
</tr>
</thead>
<tbody>
<tr>
<td>[ne]</td>
<td>2,0</td>
<td>0,344</td>
</tr>
<tr>
<td>[dp]</td>
<td>2,0</td>
<td>0,503</td>
</tr>
<tr>
<td>[dp]</td>
<td>3,0</td>
<td>0,400</td>
</tr>
</tbody>
</table>

Es zeigt sich, dass eine Steigerung der Reinigungsleistung um 3 % auf 97 % mit einem verlängerten Ausscheideweg von ca. 1 m erkauft werden muss.

Abb. 9.3: Simulation der Abnahme der abscheidbaren Schäben über Siebboden entlang des Ausscheidewegs in Abhängigkeit von der Paddelanordnung und des Massestroms

Vom Einsatz einer nacheilenden Paddelanordnung für große Masseströme sollte abgesehen werden. Die Mehrkosten für eine Installation der zusätzlichen Paddel bei der doppelten Paddelanordnung halten sich im Vergleich zu einer erheblichen Verkürzung des Ausscheidewegs in Grenzen. Bei einem
Reinigungsniveau von 94 % für einen Massestrom von 2 t h\(^{-1}\) kann beim Einsatz der doppelten Paddelanordnung ein Abscheideweg von über 1,3 m gegenüber der nacheilenden Paddelanordnung eingespart werden. Wird ein höheres Reinigungsniveau von 97 % angesetzt, ließen sich sogar 1,5 m Abscheideweg einsparen.

Für eine Steigerung des Massestroms von 2 t h\(^{-1}\) auf 3 t h\(^{-1}\) bei Verwendung der doppelten Paddelanordnung und gewünschtem gleichbleibendem Reinigungsniveau von 94 % muss ein zusätzlicher Abscheideweg von ca. 0,7 m installiert werden.

9.4 Umsetzung der Konstruktionsvorgaben in einem Prototypen

Die Umsetzung der Konstruktionsvorgaben sollte nicht nur auf einem eigenständigen Prototyp beschränkt werden, sondern gleichzeitig auf eine geschickte Einbindung in ein Gesamtsystem einer Faseraufschlussanlage ausgerichtet sein.

Simulation und Praxisversuche zeigten bei Verwendung des optimierten Paddels einen möglichen Massestrom von bis zu $3 \text{ t h}^{-1}$ an SFG. Wie außerdem in der Simulationsrechnung gezeigt, empfiehlt es sich aufgrund der verbesserten Wurfbewegung von Schäben und Faserflocken ein Paddel mit einer größeren Breite zu verwenden. Damit würde sich auch der maximal zu transportierende Massestrom erhöhen. Dies ist in diesem Fall, aufgrund eines zurzeit im Bereich der Faseraufbereitung noch nicht nachgefragten hohen Massestroms für eine Schäbenreinigung, aber nicht notwendig und wird deshalb bei den veranschlagten $3 \text{ t h}^{-1}$ belassen. Weiterhin würde sich auch bei einer Erhöhung des Massestroms der Abscheideweg für den zu erreichenden prozentualen Masseanteil an gereinigten Schäben wiederum verlängern.

Für den in den Konstruktionsvorgaben festgelegten Reinigungsgrad von 94 % kann für den maximal festgelegten Massestrom ab einem Abscheideweg von 3,8 m entsprochen werden. Abweichend von der geforderten Sieblänge im Bereich der Schäbenabscheidung, wird eine mit einer Sicherheitsreserve beaufschlagten Länge von 4 m festgelegt. Damit kann auch der Wunsch der Reinigungsleistung von 97 % abscheidbarer Schäbenmasse für einen geringeren Massestrom von $2 \text{ t h}^{-1}$ gewährleistet werden. Zu beachten ist, dass die Luftabsaugung entsprechend angepasst werden muss. Bei einem spezifischen Luftvolumenstrom von $1300 \text{ m}^3 \text{ h}^{-1}$ pro Meter Arbeitslänge, im Bereich der Schäbenabscheidung, erhöht sich damit die benötigte Luftmenge von $3900 \text{ m}^3 \text{ h}^{-1}$ auf $5200 \text{ m}^3 \text{ h}^{-1}$. Eine Verlängerung der Welle ist bei Wahl eines geeigneten Wellquerschnitts durchaus möglich. Auch besteht die Möglichkeit die Welle vom oberen Rahmen in der Mitte zusätzlich abzufangen.

Die Sieblängen von jeweils 1,5 m zur Staubabscheidung und Ausreinigung der Kurzfasern (Mischfraktion) werden von der Versuchmaschine übernommen und könnten bei Bedarf ebenfalls angepasst werden.

Die einzelnen Fraktionen sind über Trichter auszutragen. Im Bereich der Schäbenabscheidung, wird aufgrund des im Verhältnis zu den anderen Fraktionen sehr langen Abscheidewegs, das Gut zusätzlich mit einer Transportschnecke zusammengeführt. Die Anschlüsse der Austragsfraktionen lassen sich ebenfalls an den Anforderungen einer modernen Faseraufschlussanlage anpassen. Empfohlen wird für die Staubfraktion eine direkte Abfüllung in Big Bags. Die Schäben- und Mischfraktion sollte mit einem Förderband, eventuell auch im Luftstrom zur Abpackung transportiert werden. Die zu-
rückgewonnenen Fasern können entweder im Luftstrom einem Nachaufschluss in der Entholzungs-
maschine oder einer Nachreinigung im Horizontalöffner oder direkt einer Faserballenpresse zuge-
führt werden. Für den Prototyp wird sich für einen pneumatischen Transport der zurückgewonnen
Fasern entschieden. Dabei muss darauf geachtet werden, dass das Anschlussrohrstück rückseitig eine
Öffnung aufweist, damit die benötigte nachströmende Luft nicht über den Maschinenraum entnom-
men wird.

Die Abb. 9.5 zeigt die anfallenden Stoffströme bei der Reinigung von Schäben-Faser-Gemischen am
Beispiel des Prototyps. So wird der Eingangsmassenstrom bei der Verwendung von drei unterschiedli-
chen Siebmaschenweiten und zwei sich in der Drehzahl unterscheidenden Wellenabschnitten in 5
verschiedene Fraktionen separiert:

- Staub / Sand
- Schäben
- Mischfraktion
- Kurzfasern
- Feinstaub

Abb. 9.5: Schematische Darstellung der Stoffflüsse in einem Axialfraktionierer

Die Überarbeitung des Gesamtsystems nach den anforderungsgerechten Konstruktionsvorgaben
erbrachte für die Reinigungsmaschine eine Länge von ca. 9 m, eine Höhe von ca. 4,3 m und eine Brei-
te von ca. 1,2 m (Abb. 9.6). In der Höhe kann die Maschine über obligatorisch zu verwendende Stüt-
zen bedarfsgerecht angepasst werden. Dies hängt von der vor Ort zur Verfügung stehenden Bauhöhe
bzw. der unter den Trichtern benötigten Anschlussstellenhöhe ab.
Abb. 9.6: Maße des Axialfraktionierers als Gesamtsystem mit seiner Beschickungseinheit (Kondensator) und seinen Anschlussstellen als Prototyp zum Einsatz in Faseraufschlussanlagen.
9 Einsatz des Axialfraktionierer-Gesamtmodells im Konstruktions- und Entwicklungsprozess

9.5 Fazit

10 Fehlerquellen

Großen Wert wurde auf eine einheitliche Bereitstellung des für die Versuche eingesetzten Ausgangsmaterials gelegt. So wurden die bei der Faserernte anfallenden SFG direkt beim Produktionsprozess in Big Bags abgefüllt. Einer Entmischung des SFG’s bei einer Zwischenlagerung und einer verfälschenden Zusammentzung bei einer nachträglichen Abfüllung in Big Bags sollte damit verhindert werden. Dennoch konnte Schwankungen in der Zusammentzung des SFG durch variierende Parameter im Faseranschlussprozess nicht ausgeschlossen werden. Einer Entmischung innerhalb der Big Bags beim Transport vom Verarbeitungs- zum Versuchsstandort konnte durch Verwendung eines kompletten Big Bag je Versuchsduurahlauf, erneuten Durchmischung und Dosierung deutlich verringert werden. Insgesamt wurden nach definierten Vorgaben (siehe Kapitel 4) aus 4,5 t über Winter gestandenen Hanfstroh [W] 2,8 t SFG, aus 1,9 t stark geröstetem Hanfstroh [S] 1,1 t SFG, aus 1,8 t leicht geröstetem Hanfstroh [L] 1,0 t SFG und aus 2,0 t Fasernesselstroh [N] 1,4 t SFG in der Faseranschlussanlage der NFC GmbH Nettle Fibre Company (ehemalige ATB-Versuchsanlage) produziert. Bei Zuführung von zu kleinen Chargen an Strohmaterialin den Produktionsprozess könnte es sonst zu einer Momentaufnahme mit verfälschenden Ergebnissen kommen. Vielmehr kann man hier von einer sehr praxisnahen Verarbeitung von Stroh mit einem typischen SFG, wie es auch der Realität entsprechen würde, ausgehen.


Die Erarbeitung des Modells hatte den Anspruch, die Wirklichkeit möglichst genau wiederzugeben. Das Modell sollte weitestgehend einfach aufgebaut sein, damit es leicht händelbar ist und in der Praxis auch Anwendung finden kann. Durch die Anpassung des Modells an die Wirklichkeit über eine

Nicht betrachtet wird eine durch die Staubabsaugung indizierte Luftströmung quer zur Förderrichtung. Durch den konstruktiven Aufbau des Axialfraktionierers ist eine nennenswerte Strömungsgeschwindigkeit nur im oberen Bereich des Arbeitsraums wirksam. Durch den sich danach weit öffnenden Querschnitt des Arbeitsraumes reduziert sich die Strömungsgeschwindigkeit, so dass sie im Bereich der Materialbewegung nur noch einen geringen Einfluss hat.

11 Ausblick


## Anhang

### Tab. 12.1: Versuche zur Optimierung der neuen Reinigungsmaschine

<table>
<thead>
<tr>
<th>Code</th>
<th>Versuch</th>
<th>Material</th>
<th>Big Bag</th>
<th>Masse [kg]</th>
<th>$n_{W1}$ [min$^{-1}$] Anordnung</th>
<th>$n_{W2}$ [min$^{-1}$] Anordnung</th>
<th>Massestrom [t h$^{-1}$]</th>
</tr>
</thead>
<tbody>
<tr>
<td>[W]</td>
<td>1</td>
<td>Winterhanf</td>
<td>4</td>
<td>70,9</td>
<td>60 [ne]</td>
<td>120 [ne]</td>
<td>0,51</td>
</tr>
<tr>
<td>[W]</td>
<td>2</td>
<td>Winterhanf</td>
<td>12</td>
<td>53,0</td>
<td>60 [ne]</td>
<td>120 [ne]</td>
<td>1,57</td>
</tr>
<tr>
<td>[W]</td>
<td>3</td>
<td>Winterhanf</td>
<td>12+1</td>
<td>90,0</td>
<td>60 [ne]</td>
<td>120 [ne]</td>
<td>1,20</td>
</tr>
<tr>
<td>[W]</td>
<td>4</td>
<td>Winterhanf</td>
<td>1+20</td>
<td>130,0</td>
<td>60 [ne]</td>
<td>120 [ne]</td>
<td>2,60</td>
</tr>
<tr>
<td>[W]</td>
<td>5</td>
<td>Winterhanf</td>
<td>2</td>
<td>102,5</td>
<td>40 [ne]</td>
<td>120 [ne]</td>
<td>2,64</td>
</tr>
<tr>
<td>[W]</td>
<td>6</td>
<td>Winterhanf</td>
<td>2</td>
<td>98,5</td>
<td>80 [ne]</td>
<td>120 [ne]</td>
<td>2,63</td>
</tr>
<tr>
<td>[W]</td>
<td>7</td>
<td>Winterhanf</td>
<td>25</td>
<td>109,0</td>
<td>60 [ne]</td>
<td>100 [ne]</td>
<td>3,02</td>
</tr>
<tr>
<td>[W]</td>
<td>8</td>
<td>Winterhanf</td>
<td>15</td>
<td>118,5</td>
<td>60 [ne]</td>
<td>160 [ne]</td>
<td>2,67</td>
</tr>
<tr>
<td>[W]</td>
<td>9</td>
<td>Winterhanf</td>
<td>6</td>
<td>121,5</td>
<td>60 [ne]</td>
<td>120 [ne]</td>
<td>1,99</td>
</tr>
<tr>
<td>[W]</td>
<td>10</td>
<td>Winterhanf</td>
<td>23</td>
<td>99,5</td>
<td>60 [ne]</td>
<td>120 [ne]</td>
<td>0,85</td>
</tr>
<tr>
<td>[W]</td>
<td>11</td>
<td>Winterhanf</td>
<td>9</td>
<td>115,0</td>
<td>60 [ne]</td>
<td>120 [ne]</td>
<td>2,84</td>
</tr>
<tr>
<td>[W]</td>
<td>12</td>
<td>Winterhanf</td>
<td>5</td>
<td>108,0</td>
<td>60 [ne]</td>
<td>120 [ne]</td>
<td>1,78</td>
</tr>
<tr>
<td>[L]</td>
<td>13</td>
<td>leicht geröstet</td>
<td>45</td>
<td>109,5</td>
<td>60 [ne]</td>
<td>120 [ve]</td>
<td>2,19</td>
</tr>
<tr>
<td>[S]</td>
<td>14</td>
<td>stark geröstet</td>
<td>52</td>
<td>126,0</td>
<td>60 [ne]</td>
<td>120 [ve]</td>
<td>2,21</td>
</tr>
<tr>
<td>[L]</td>
<td>15</td>
<td>leicht geröstet</td>
<td>46</td>
<td>121,0</td>
<td>40 [ne]</td>
<td>120 [ve]</td>
<td>1,94</td>
</tr>
<tr>
<td>[N]</td>
<td>16</td>
<td>Nessel</td>
<td>31</td>
<td>154,0</td>
<td>40 [ne]</td>
<td>120 [ve]</td>
<td>1,95</td>
</tr>
<tr>
<td>[N]</td>
<td>17</td>
<td>Nessel</td>
<td>35</td>
<td>126,5</td>
<td>40 [ne]</td>
<td>120 [ve]</td>
<td>1,05</td>
</tr>
<tr>
<td>[S]</td>
<td>18</td>
<td>stark geröstet</td>
<td>51</td>
<td>121,0</td>
<td>40 [ne]</td>
<td>120 [ve]</td>
<td>2,23</td>
</tr>
<tr>
<td>[S]</td>
<td>19</td>
<td>stark geröstet</td>
<td>53</td>
<td>122,5</td>
<td>80 [ne]</td>
<td>120 [ve]</td>
<td>2,24</td>
</tr>
<tr>
<td>[L]</td>
<td>20</td>
<td>leicht geröstet</td>
<td>47</td>
<td>94,0</td>
<td>80 [ne]</td>
<td>100 [ve]</td>
<td>2,49</td>
</tr>
<tr>
<td>[N]</td>
<td>21</td>
<td>Nessel</td>
<td>33</td>
<td>133,0</td>
<td>80 [ne]</td>
<td>100 [ve]</td>
<td>0,90</td>
</tr>
<tr>
<td>[W]</td>
<td>22</td>
<td>Winterhanf</td>
<td>18</td>
<td>107,0</td>
<td>40 [ne]</td>
<td>100 [ve]</td>
<td>2,20</td>
</tr>
<tr>
<td>[L]</td>
<td>23</td>
<td>leicht geröstet</td>
<td>49</td>
<td>151,5</td>
<td>60 [ve]</td>
<td>100 [ve]</td>
<td>2,27</td>
</tr>
<tr>
<td>[W]</td>
<td>24</td>
<td>Winterhanf</td>
<td>3</td>
<td>112,5</td>
<td>60 [dp]</td>
<td>100 [dp]</td>
<td>3,16</td>
</tr>
<tr>
<td>[L]</td>
<td>25</td>
<td>leicht geröstet</td>
<td>48</td>
<td>106,0</td>
<td>60 [dp]</td>
<td>100 [dp]</td>
<td>2,22</td>
</tr>
<tr>
<td>[S]</td>
<td>26</td>
<td>stark geröstet</td>
<td>58</td>
<td>103,5</td>
<td>60 [dp]</td>
<td>100 [dp]</td>
<td>2,66</td>
</tr>
<tr>
<td>[S]</td>
<td>27</td>
<td>stark geröstet</td>
<td>60</td>
<td>98,5</td>
<td>40 [dp]</td>
<td>120 [dp]</td>
<td>2,75</td>
</tr>
<tr>
<td>[S]</td>
<td>28</td>
<td>stark geröstet</td>
<td>59</td>
<td>109,0</td>
<td>80 [dp]</td>
<td>120 [dp]</td>
<td>2,35</td>
</tr>
<tr>
<td>[L]</td>
<td>29</td>
<td>leicht geröstet</td>
<td>44</td>
<td>101,5</td>
<td>80 [dp]</td>
<td>100 [dp]</td>
<td>2,37</td>
</tr>
<tr>
<td>[L]</td>
<td>30</td>
<td>leicht geröstet</td>
<td>43</td>
<td>86,0</td>
<td>40 [dp]</td>
<td>120 [dp]</td>
<td>2,24</td>
</tr>
<tr>
<td>[W]</td>
<td>31</td>
<td>Winterhanf</td>
<td>8</td>
<td>121,0</td>
<td>40 [dp]</td>
<td>120 [dp]</td>
<td>2,43</td>
</tr>
<tr>
<td>[W]</td>
<td>32</td>
<td>Winterhanf</td>
<td>22</td>
<td>116,0</td>
<td>80 [dp]</td>
<td>120 [dp]</td>
<td>2,36</td>
</tr>
<tr>
<td>[W]</td>
<td>33</td>
<td>Winterhanf</td>
<td>21</td>
<td>107,5</td>
<td>60 [dp]</td>
<td>120 [dp]</td>
<td>2,50</td>
</tr>
<tr>
<td>[N]</td>
<td>34</td>
<td>Nessel</td>
<td>30</td>
<td>156,5</td>
<td>40 [dp]</td>
<td>120 [dp]</td>
<td>1,34</td>
</tr>
<tr>
<td>[N]</td>
<td>35</td>
<td>Nessel</td>
<td>38</td>
<td>129,0</td>
<td>80 [dp]</td>
<td>120 [dp]</td>
<td>1,22</td>
</tr>
<tr>
<td>[N]</td>
<td>36</td>
<td>Nessel</td>
<td>32</td>
<td>131,5</td>
<td>60 [dp]</td>
<td>80 [dp]</td>
<td>1,21</td>
</tr>
<tr>
<td>[S]</td>
<td>37</td>
<td>stark geröstet</td>
<td>55</td>
<td>99,5</td>
<td>60 [dp]</td>
<td>120 [ve]</td>
<td>2,40</td>
</tr>
<tr>
<td>[L]</td>
<td>38</td>
<td>leicht geröstet</td>
<td>42</td>
<td>112,0</td>
<td>60 [dp]</td>
<td>120 [ve]</td>
<td>2,49</td>
</tr>
<tr>
<td>[W]</td>
<td>39</td>
<td>Winterhanf</td>
<td>11</td>
<td>119,5</td>
<td>60 [dp]</td>
<td>100 [ve]</td>
<td>1,65</td>
</tr>
<tr>
<td>[W]</td>
<td>40</td>
<td>Winterhanf</td>
<td>13</td>
<td>106,5</td>
<td>60 [dp]</td>
<td>100 [ve]</td>
<td>1,01</td>
</tr>
<tr>
<td>Code</td>
<td>Versuch</td>
<td>Material</td>
<td>Big Bag</td>
<td>Masse [kg]</td>
<td>$n_{w1}$ [min⁻¹] Anordnung</td>
<td>$n_{w2}$ [min⁻¹] Anordnung</td>
<td>Massestrom [t h⁻¹]</td>
</tr>
<tr>
<td>------</td>
<td>---------</td>
<td>---------------</td>
<td>---------</td>
<td>------------</td>
<td>-----------------------------</td>
<td>-----------------------------</td>
<td>-------------------</td>
</tr>
<tr>
<td>[W]</td>
<td>41</td>
<td>Winterhanf</td>
<td>17</td>
<td>105,0</td>
<td>60 [ve]</td>
<td>100 [ve]</td>
<td>2,42</td>
</tr>
<tr>
<td>[W]</td>
<td>42</td>
<td>Winterhanf</td>
<td>7</td>
<td>117,0</td>
<td>40 [ve]</td>
<td>100 [ve]</td>
<td>2,41</td>
</tr>
<tr>
<td>[W]</td>
<td>43</td>
<td>Winterhanf</td>
<td>19</td>
<td>108,0</td>
<td>80 [ve]</td>
<td>100 [ve]</td>
<td>2,30</td>
</tr>
<tr>
<td>[L]</td>
<td>44</td>
<td>leicht geröstet</td>
<td>41</td>
<td>112,0</td>
<td>60 [dp]</td>
<td>120 [ve]</td>
<td>2,19</td>
</tr>
<tr>
<td>[W]</td>
<td>45</td>
<td>Winterhanf</td>
<td>16</td>
<td>113,0</td>
<td>60 [dp]</td>
<td>120 [ve]</td>
<td>2,14</td>
</tr>
<tr>
<td>[W]</td>
<td>46</td>
<td>Winterhanf</td>
<td>24</td>
<td>107,0</td>
<td>60 [dp]</td>
<td>120 [ve]</td>
<td>2,75</td>
</tr>
<tr>
<td>[W]</td>
<td>47</td>
<td>Winterhanf</td>
<td>10</td>
<td>106,5</td>
<td>60 [dp]</td>
<td>120 [ve]</td>
<td>1,53</td>
</tr>
<tr>
<td>[S]</td>
<td>48</td>
<td>stark geröstet</td>
<td>54</td>
<td>121,0</td>
<td>60 [dp]</td>
<td>120 [ve]</td>
<td>2,64</td>
</tr>
<tr>
<td>[S]</td>
<td>49</td>
<td>stark geröstet</td>
<td>56</td>
<td>105,0</td>
<td>60 [dp]</td>
<td>120 [ve]</td>
<td>1,70</td>
</tr>
<tr>
<td>[N]</td>
<td>50</td>
<td>Nessel</td>
<td>36</td>
<td>134,5</td>
<td>60 [dp]</td>
<td>120 [ve]</td>
<td>1,98</td>
</tr>
<tr>
<td>[N]</td>
<td>51</td>
<td>Nessel</td>
<td>34</td>
<td>136,0</td>
<td>40 [dp]</td>
<td>100 [ve]</td>
<td>2,16</td>
</tr>
<tr>
<td>[V/H]</td>
<td>52</td>
<td>VOFA mit Hammermühle</td>
<td>0</td>
<td>75,0</td>
<td>60 [dp]</td>
<td>120 [ve]</td>
<td>1,74</td>
</tr>
<tr>
<td>[V/H]</td>
<td>53</td>
<td>VOFA mit Hammermühle</td>
<td>0</td>
<td>104,2</td>
<td>60 [dp]</td>
<td>120 [ve]</td>
<td>2,52</td>
</tr>
<tr>
<td>[V]</td>
<td>54</td>
<td>VOFA</td>
<td>0</td>
<td>108,0</td>
<td>60 [dp]</td>
<td>120 [ve]</td>
<td>1,98</td>
</tr>
<tr>
<td>[V]</td>
<td>55</td>
<td>VOFA</td>
<td>0</td>
<td>84,0</td>
<td>40 [dp]</td>
<td>100 [ve]</td>
<td>0,91</td>
</tr>
</tbody>
</table>
13 Literaturverzeichnis


Thermopal (2010). Leicht, stabil und ökologisch: Thermopal bringt neuartige Platte aus Hanf auf den Markt. [Hrsg.] Thermopal GmbH / Pfleiderer Holzwerkstoffe GmbH. *Pressemitteilung.* 2010


