
RADD/raddstar

A Rule-based Database Schema

Compiler, Evaluator, and Optimizer

Von der Fakultät Mathematik, Naturwissenschaften und Informatik

der Brandenburgischen Technischen Universität Cottbus

zur Erlangung des akademischen Grades

Doktor der Naturwissenschaften

(Dr.rer.nat.)

genehmigte Dissertation

vorgelegt von

Diplom-Informatiker

Martin Steeg

geboren am 15. Februar 1965 in Weisel

Gutachter: Prof. Dr. Bernhard Thalheim

Gutachter: Prof. Dr. Dennis E. Shasha

Gutachter: Prof. Dr. Hartmut Wedekind

Tag der mündlichen Prüfung: 20. Oktober 2000

RADD/raddstar

A Rule-based Database Schema

Compiler, Evaluator, and Optimizer

Martin Steeg

Brandenburg University of Technology at Cottbus

Computer Science Institute

PO Box 101344
03013 Cottbus (Germany)

Technical Note. The document has been typeset using LATEX2e and TEX3.14159. The

RADD/raddstar system described here was developed under Linux, kernel version 1.1.53,

2.0.34, 2.1.127, 2.2.7, and 2.2.13, on a 686 PC, and under Solaris 2.5.1 on a Sun Sparc.

On both platforms, Linux and Solaris, X11 with the K-Desktop environment (KDE) was

used as window system. The diagrams and screendumps have been generated using xfig,

xwd, xpr, xpaint, and kpaint. Some hacks were applied to the included Postscript files

that were generated by xpr or xpaint, to scale and position the graphics appropriately.

Theoretical computer science has now undergone several decades of develop-

ment. The “classical” topics of automata theory, formal languages, and

computational complexity have become firmly established, and their im-

portance to other theoretical work and to practice is widely recognized.

Stimulated by technological advances, theoreticians have been rapidly ex-

panding the areas under study, and the time delay between theoretical

progress and its practical impact has been decreasing dramatically.

Michael Garey and Albert Meyer,

in the Series Foreword to

Foundations of Computing.

Contents

I Database Design and Database Maintenance 1

1 Introduction 5

1.1 Motivation and Overview . 5

1.2 Traditional Database Design . 6

1.3 The Database Optimization Problem . 7

1.3.1 The Normalization Approach to Database Optimization 7

1.3.2 The Transaction Runtime Tuning Approach 9

1.3.3 The Rule-Triggering System Approach 9

1.3.4 The Web Application Design Approach 9

1.4 Conceptual Database Design Optimization 11

1.4.1 Conceptual Database Optimization Aspects 11

1.4.2 Principles of Conceptual Schema Optimization 12

1.4.3 Physical Schema can still be optimized further 13

1.5 Related Work . 13

1.6 Outline of the Thesis . 15

2 Traditional Data Models and Data Representation Concepts 17

2.1 The Entity-Relationship Model . 18

2.2 The Hierarchical Model and the Network Model 21

2.2.1 The Hierarchical Data Model (Hierarchical Model) 21

2.2.2 Integrity Constraints in Hierarchical Databases 22

2.2.3 Hierarchical DBMSs . 23

2.2.4 The Network Data Model (Network Model) 24

2.2.5 Integrity Maintenance in Network Databases 26

2.2.6 Implementing the Network Database 27

2.2.7 Maintaining the Network Database 28

2.3 The Relational Data Model (Relational Model) 31

2.3.1 Integrity Constraints . 32

2.3.2 Normal Forms for Relational Schemata 36

2.3.3 Further Normalization . 38

i

2.3.4 Further Data Dependencies for Relational Databases 41

2.3.5 Relational Database Implementation 43

2.4 Summary and Outlook . 48

3 New-Generation Database Design and Database Management Approaches 51

3.1 Functional and Semantic Data Models . 52

3.1.1 The Functional Data Model and the DAPLEX Language 52

3.1.2 The Semantic Data Model (SDM) 54

3.1.3 The IFO Database Model . 57

3.2 Object Models . 60

3.2.1 The Booch Method . 60

3.2.2 The Object Modeling Technique (OMT) 61

3.2.3 The Coad/Yourdon Method . 64

3.2.4 Using Object Models for Database Design? 68

3.3 Enhanced Data Modeling, Database Management, and Database Specifi-

cation Concepts . 68

3.3.1 The Object-Role Model (ORM) . 68

3.3.2 Extensions of the Relational Data Model 71

3.3.3 The Data Model used in the RADD Approach 86

3.4 Summary and Outlook . 96

II Analysing Database Designs 97

4 Database Optimization Scenarios 101

4.1 Database Optimization Scenarios . 101

4.1.1 Conceptual, Logical, and Physical Data Representation 102

4.1.2 Lock Tuning and Transaction Chopping 108

4.2 Application Scenario: Conceptual Database Optimization based on In-

tegrity Maintenance and Schema Transformation 112

4.2.1 Repairing the incomplete Database Design 115

4.2.2 Optimizing the Example Schema 116

4.2.3 Summary . 119

4.3 Summary and Outlook . 119

5 Integrity Maintenance, Conceptual Schema Mapping, and Fitness Eval-

uation 121

5.1 Integrity Maintenance and Schema Transformation 122

5.1.1 Error Prevention Properties . 122

5.1.2 When do Transformations take place? 124

ii

5.1.3 General and Special Integrity Maintenance Rules 124

5.2 Schema Transformation Operations . 125

5.2.1 Impact of Transformation to Integrity Maintenance 125

5.2.2 Basic Schema Transformation Operations 126

5.3 Cost Evaluation and Reflection of Internal Transactions to the Conceptual

Schema . 130

5.3.1 Evaluation of the Basic Operation Costs 131

5.3.2 Transaction Extensions . 137

5.3.3 Transaction Graph Mappings and Cost Evaluation 141

5.4 Summary and Outlook . 144

6 Type Inference and Functional Schema Representation 145

6.1 Specifying and Analysing Databases using Algebraic Specification Techniques146

6.2 Functional Implementation of the RADD/raddstar 148

6.2.1 The Standard ML of New-Jersey Programming Language 148

6.2.2 Type Inference in Functional Languages 152

6.3 The RADD/raddstar Database Type System and the RADD* Data Model 164

6.3.1 RADD* Database Schema and -Structures 164

6.3.2 RADD* Constraints . 168

6.3.3 RADD* Type System and Subtyping Rules 169

6.3.4 RADD* Internal Schema . 170

6.4 Summary and Outlook . 171

7 Conceptual Specification Language 173

7.1 CSL Property and Requirement Specifications 174

7.1.1 Maintaining Database Population Information 175

7.1.2 Deriving and Advising Schema Transformations 176

7.2 CSL Functional Specifications . 177

7.2.1 Defining and Using Application Functions 178

7.2.2 Describing Database Operations . 180

7.3 CSL Control Structures and Database Application Programming Extensions181

7.3.1 Syntax of the CSL Commands . 181

7.3.2 Semantics of the CSL Commands 181

7.3.3 Database Schemata and their Subschemata 185

7.4 Summary and Outlook . 189

III Conceptual Database Design Optimizer 191

8 Conceptual Database Design Optimizer 195

iii

8.1 System Architecture of RADD and raddstar 195

8.1.1 The RADD/raddstar Subsystem . 197

8.1.2 The Graphical User Interface of the RADD/raddstar 201

8.2 Specifying Additional Requirements . 202

8.2.1 Tuple Numbers . 203

8.2.2 Behavior Specifications . 204

8.2.3 Database Functions . 205

8.3 Schema Reviewing and Optimization . 205

8.3.1 Schema Reviewing . 205

8.3.2 Bottleneck Specification and Schema Optimization 207

8.3.3 Optimized Schema . 209

9 Conclusions 215

Appendix 217

A Implementation of a Type-Checking Mini ML Compiler 217

A.1 Basic Types of the Mini ML Compiler . 217

A.2 Mini ML Parser . 229

A.2.1 Lexical Analyser . 229

A.2.2 Parser . 231

A.3 The Mini ML Compiler . 233

A.3.1 The Compiler/Expression Evaluator 233

A.3.2 The Main Structure . 240

A.3.3 Application Scenario . 241

B Specification of the Schema Transformation and Optimization Rules 243

B.1 Rules for Hierarchical Transformation . 243

B.1.1 Transformation Rule ”h1” . 243

B.1.2 Transformation Rule ”h2” . 243

B.2 Rules for Network Transformation . 244

B.2.1 Transformation Rule ”n1” . 244

B.2.2 Transformation Rule ”n2” . 244

B.3 Rules for Relational Transformation . 244

B.3.1 Transformation Rule ”r1” . 244

B.3.2 Transformation Rule ”r2” . 244

B.4 Rules for Object-Relational Transformation 245

B.4.1 Transformation Rule ”or1” . 245

B.4.2 Transformation Rule ”or2” . 245

iv

B.5 Rule for Object-Oriented Transformation 245

B.5.1 Transformation Rule ”o1” . 245

B.6 Rules for Conceptual Schema Optimization 246

B.6.1 Optimization Rule ”t1” . 246

B.6.2 Optimization Rule ”t2” . 246

C Development and Test Environment 247

C.1 Operating Systems and Development Tools 247

C.2 Standard-ML of New-Jersey (SML/NJ) . 247

C.2.1 SML/NJ 0.93 . 247

C.2.2 CML 0.9.8 . 248

C.2.3 eXene 0.4 . 248

C.2.4 Port to SML/NJ 1.10 . 250

C.3 Postgres . 251

C.4 Year 2000 (Y2K) Tests . 251

D Catalog of Terms and Abbreviations 253

E Bibliography 263

E.1 Data Models and Database Management Systems 263

E.2 Formal Database Specification Approaches 270

E.3 Functional Languages . 271

E.4 The RADD Project . 273

v

vi

List of Figures

1.1 Different Approaches to Database Development 6

1.2 Traditional Database Design Approach: Requirements Analysis, Concep-

tual Design, Logical Design, Logical to Internal Schema Transformation,

and Internal Schema Tuning. 8

1.3 Enhanced Database Design Approach: Conceptual Design, Conceptual

Tuning, Logical Design, Logical to Internal Schema Transformation (In-

ternal Schema Tuning). 12

1.4 Road Map to read the Thesis. 16

2.1 Entity-Relationship Schema for the Company Database. 19

2.2 Organization of Records in a Hierarchical Database. 21

2.3 Logical Tree Organization of Record Types in Hierarchical Databases. . . . 22

2.4 Associations between Record-Types, and Virtual Parent-Child Records. . . 23

2.5 Bachmann Diagram (Network) for the Company Database. 24

2.6 Physical Network Schema for the Company Database. 25

2.7 The Network Schema for Implementation of the Company Database. . . . 28

2.8 Definition of the Record- and Set-Types for the Company Database. 29

2.9 The Relational Schema for Implementation of the Company Database. . . 43

2.10 Definition of the Tables, Keys, Foreign-Keys, Indices, Triggers, and Views

for the Company Database. 45

3.1 Functional Data Model of the Company Database. 54

3.2 Multiple properties of the ”PARTICIPANTS” subclass. The circles denote

classes and are labeled with the class names. The arrows which are labeled

by a name denote member attributes, with the arrow head (angle) pointing

to the attribute’s value class. For transparency, only some of the possible

attributes are included here. 55

3.3 IFO Schema of the Employee/ProjWorker-works on-Project/Project-Leader-

leads-Project Section of the Company Schema. 57

3.4 IFO Fragment ”PROJECTSTAFF”. 59

3.5 C++ Definition/Implementation of the Employee Class. 60

vii

3.6 OMT Object Model of the Company Database. 61

3.7 Coad/Yourdon Model of the Company Database. 63

3.8 Coad/Yourdon Model: Subject ”Company”. 66

3.9 Coad/Yourdon Model: Subject ”Contract”. 67

3.10 Modeling Concepts of the NIAM and Object-Role Model (ORM). 69

3.11 ORM Company Schema. 70

3.12 GemStone/OPAL Definition of the Employee Class. 75

3.13 O2 classes Employee, works for, ProjLeader, ProjWorker, and works on. . . 78

3.14 PostgreSQL Creation of Tables, Views, Triggers, and Rules. 80

3.15 Oracle Procedure Definition of make manager. 82

3.16 HERM Representation of the Company Schema. 88

3.17 ERM- and HERM-Representations of Subtyping (is-a) Relationships. . . . 89

3.18 Graphical Modeling of Integrity Constraints using the HERM. 90

3.19 RADD Representation of Integrity Constraints. 91

3.20 RADD Representation of the Company Schema. 93

3.21 RADD Representation of the Employee Type, including the Attribute View

on the Employee Type (lower left corner), and the Attribute Editor. 94

3.22 RADD Representation of the acquires Type, including the Attribute View

on the acquires Type. 95

4.1 Entity-Relationship, NIAM, and IFO Representation of a binary many-to-

many Association. 102

4.2 Entity-Relationship and NIAM Representation of the binary many-to-many

Association (Attributes included). 103

4.3 Relational Representation of the binary many-to-many Association. 103

4.4 Relational Data Schema “Account”. 104

4.5 Alternative Relational Data Schema “Account”. 104

4.6 Chopping Graph without SC-Cycle. 111

4.7 Chopping Graph with SC-Cycle. 111

4.8 Chopping Graph without SC-Cycle. 111

4.9 Department-manages-Employee-works for-Part of the Company Schema. . 113

4.10 SQL-Commands for Creation and Repair of the Database. 114

4.11 Internal Schema (Physical Schema). 114

4.12 SQL-Commands for Optimization of the Database. 116

4.13 Specification of a Conceptual Schema Optimization Rule. 117

4.14 Optimized Conceptual Schema. 118

5.1 General and Special Behavior Rules. 124

5.2 group (s1,s2) (m,n) . 126

viii

5.3 separate s1 [s2] . 126

5.4 nest (s1,s2) tset . 127

5.5 unnest s1 {a2} . 127

5.6 clusterize {S1,B,C,D} . 129

5.7 Different Kinds of Physical Data Organization. 134

5.8 Mutual dependent Structures. 138

5.9 Adding the Finiteness Condition. 138

5.10 Mapping Transaction Graphs to evaluate Conceptual Transaction Costs. . 142

6.1 Algebraic Specification of a ”relation” Class– with Generic ”select”, ”in-

sert”, and ”delete” Operations. 147

6.2 Overloading an Operator in Standard ML of New-Jersey (SML). 149

6.3 Another Kind of Operator Overloading using SML. 150

6.4 Abstract Systax Tree of the ”fac” Function Definition with λ-Abstraction. 156

6.5 The Functions to obtain the most Concrete Type for Type Variables from

the Type Schemata. 159

6.6 The Function to generalize Type Variables in the Type Schemata. 160

6.7 The Type Unification Function(s). 163

6.8 RADD/raddstar Representation of the ”Employee” Structure. 165

7.1 The Tuple Number Dialogue of the RADD/raddstar. 175

7.2 SQL Schema Definition Code generated by the RADD/raddstar. 185

7.3 CSL Startup Code to Initialize the Set of Relational Transformation Rules. 186

7.4 Matrix presenting the Conceptual Schema Transactions and their Costs. . . 187

7.5 Substituting the Subschema {Employee,works for} by the grouped Structure.188

7.6 Exported HTML Form for the {Employee} Subschema. 189

8.1 The RADD Workbench and its Subsystem raddstar (RADD/raddstar). . . 196

8.2 RADD/raddstar GUI Control Flow and Process Architecture. 198

8.3 RADD/raddstar Listener GUI Control Flow and Process Architecture. . . 199

8.4 Specifying the Tuple Numbers for the Classes of the Schema. 203

8.5 Specifying Behavior for the Graphical Schema. 204

8.6 Matrix presenting the Transactions of the Company Schema. 206

8.7 Optimized Company Schema. 210

8.8 Transaction Costs of the Optimized Schema, after Adding the Indices. . . . 212

8.9 Matrix presenting the Transactions of the Optimized Company Schema. . . 213

ix

x

List of Tables

2.1 Employee Relation. 33

2.2 Decomposing the Employee Relation. 33

2.3 Adding Another Record to the Employee Relation. 34

2.4 Axioms for Functional Dependencies. 34

2.5 Decomposing the Employee Relation according Functional Dependencies. . 35

2.6 Algorithm which derives a minimal set of Relation Schemata that is 3NF. . 38

2.7 A Relation with unkowns. 40

2.8 A Relaion with possible MDs, which generate additional Tuples. 41

2.9 Normalizing the Relation of Table 2.7. 41

2.10 Normalizing the Relation of Table 2.8. 42

3.1 Examples of Dynamic Integrity Constraints. 71

3.2 Nested Relation combining the Populations of Table 2.9 and Table 2.10. . . 73

4.1 Access Profiles for the Data Structure “ACCOUNT”. 105

5.1 Cost Primitive Functions used by the RADD/raddstar. 131

5.2 Cost Parameter Functions used by the RADD/raddstar 132

xi

Abstract

Database design typically results in SQL create table commands and integrity constraints

which are specified by foreign-keys, cascading deletes, etc. Specific products of the im-

portant database vendors provide a limited form of higher level design of the database

relations and their associations. The design is then very close to physical design of the

schema which is implemented under the associated DBMS. This design and specification

approach has a rather limited scope and is difficult to handle. And, data profiles– such

as the velocity, priority, and frequency of transactions, or the tuple numbers of relations

–are also not considered by this traditional approach to database design and database

application development. This way, operational behavior is not considered and can not

be improved during database design.

Recent information system development approaches, starting with the design of the

logical database schema by means of the database design tool of the DBMS vendor and

then constructing the database applications with the help of a Web application builder,

also do not consider these operational behavior details. Rather, they restrict the designer

to construct the schema in a special way. This often is in contradiction with the actions

which are necessary to optimize database performance.

In order to overcome the data modeling problems which are recognized at time of

database maintenance, we developed an approach to database optimization at the con-

ceptual level. We use an extension of the entity-relationship model, the Higher-order

Entity-Relationship Model (HERM), and the workbench RADD developed for support-

ing HERM specifications. Although a high level of abstraction is provided in order to be

user-friendly, in RADD data structures and integrity constraints can be specified together

with data profiles, operations, and other application requirements.

In the thesis we present and discuss the RADD/raddstar system, which is the subsys-

tem of RADD used to specify additional processing requirements, to evaluate and verify

behavior properties, and to optimize the conceptual schema. We invest special interest

on previous approaches to database modeling and database optimization, and define the

data model that is used for RADD/raddstar’s internal evaluations (RADD*). RADD*

represents the items of the conceptual and internal schema by functional terms, and en-

ables the user to add database application functions and behavior specifications to the

graphical RADD database design. This way, we are able to analyse maintenance aspects

of the designed schema and to find possible contradictions and performance bottlenecks.

With or without the additional requirements that are specified by the database designer,

the generation of schemata for implementation under consideration of, but independent

from a specific DBMS can be used for the analysis of the given design, for the discussion of

bottlenecks, and for the generation of design schemata with better operational behavior.

Part I

Database Design and Database

Maintenance

In the real world an object simply exists, but within a programming language

each object has a unique handle by which it can be uniquely referenced.

The handle may be implemented in various ways, such as addresses, array

index, or unique value of an attribute.

James Rumbaugh et al.,

in [RBP+91].

Chapter 1

Introduction

The thesis focusses on analysis and optimization of structural and operational dependen-

cies during conceptual database schema design. The goal is to detect and solve problems

which possibly appear when the database is running under a database management system

(DBMS). The conceptual database optimizer that has been developed in this work anal-

yses the correspondence between the HERM/RADD1 conceptual database schema which

is given or under design, and the operational performance and behavior of the database

system that will be implemented based on that conceptual schema, using a DBMS.

1.1 Motivation and Overview

Traditional database development is based on waterfall approaches. The designer starts

with requirement analysis, designs the conceptual schema, and translates it to the logical

schema. Then, the logical schema is implemented using a special DBMS. This way,

traditional data-driven approaches to information system development do not consider

operational behavior in detail. Recent database design approaches, which start with

designing the logical schema with the help of the design tool of the DBMS vendor, do

also not consider these operational behavior details, but rather restrict the designer to

construct the schema in a special way. This is often in contradiction with the actions

which are necessary to optimize database performance.

In order to overcome the data modeling problems which are recognized at time of

database maintenance, we developed an approach to database optimization at the con-

ceptual level. We use an extension of the entity-relationship model, the Higher-order

Entity-Relationship Model (HERM), and the Rapid Application and Database Develop-

ment (RADD) workbench supporting HERM specifications. In RADD, data structures

and integrity constraints can be specified together with data profiles, operations, and

1HERM/RADD entity-relationship schemata are used for illustration purposes in this work.

6 Part I Database Design and Database Maintenance

other processing requirements. In RADD, integrity constraints are not only considered as

structural dependencies in form of inheritance and reference which are graphically spec-

ified (IS-A,REF), but also formally specified as cardinality constraint (CC), functional

dependency (FD), inclusion dependency (ID), exclusion dependency (ED), afunctional

dependency (AD), and path constraint (PREF,PCC,PFD,PID,PED,PAD).

Figure 1.1[a] and Figure 1.1[b] illustrate the differences between the traditional approach

to database design and the RADD approach to database design.

(user)
views

external

x-th
normal form

operationalstructural

normalized

operational
performance

database
schema

database
schema

developed
at beginning

implemented

Design Information Type :

database schema

semantical

static dynamic

[a] The Classical “Waterfall” Approach.

external

views
(user)

performance
schema

benchmark

normal form
x-th

operationalsemanticalstructural

implemented

database
schema

developed
at beginning

database schema

database schema
oriented

implementation

operational
performance

data profiles
& transactions

[b] RADD’s Data Profile oriented Approach.

Figure 1.1: Different Approaches to Database Development

In the thesis we present and discuss the RADD/raddstar system, which is the subsystem of

RADD used to specify database processing requirements, to evaluate and verify behavior

properties, and to optimize the conceptual schema. RADD/raddstar uses a high level

of abstraction to allow user-friendly formal specifications, which can also be introduced

in a comfortable way by means of a graphical user interface. (RADD/raddstar GUI

respectively RADD/raddstar Listener GUI.)

1.2 Traditional Database Design

Traditionally. database design is a process of three major steps. The database designer

starts with (1.) requirement acquisition, (2.) designs the conceptual schema, and (3.)

developes internal data strutures with which the database is implemented. According to

this, the architecture of databases has been commonly accepted as three-layered archi-

tecture, with external, conceptual, and internal view. The external view describes the

application users’s views to the database. These views are based on the appearing masks

Ch. 1 Introduction 7

to input new data or update existing data. Nowadays, such actions are performed by

GUIs and Web browsers, like ”Netscape” or ”Internet Explorer”, or Web applications

which are implemented for special purposes. E.g., Java applets which are called from

hypertext markup language (HTML) or extensible markup language (XML) documents

and contain compiled code that is downloaded to the client, perform tasks such as re-

trieving and updating the database on the Web server. These Web tools allow to modify

databases in a comfortable way.

Conceptual data models traditionally were considered as the hierarchical data model,

the network (data) model, and the relational model of data (relational data model). These

support modeling of “normal” data structures, i.e. structures that are of type traditionally

used in computer applications, like boolean, integer, float, string, or combinations of these

types (records).

For the mid of the 70’s implementation independent data models, the Entity-Relation-

ship Model (ERM) [Che76], Nijssen’s Information Analysis Method (NIAM) [Nij77, VB82],

Functional Data Models (FDMs) [KP76, Shi81], and Semantic Data Models (SDM,IFO)

[HM81, AH87] have been proposed. The latter models focus rather on what kind of in-

formation must be stored by the database than on how to represent the information by

the computer. This way, they provide a larger degree of data independence. Therefore,

the former “conceptual” data models (hierarchical, network, relational) are called “logi-

cal” data models today, while they represent an interface between the “new” conceptual

models and the database implementation with the help of a DBMS.

Figure 1.2 presents the proceeding of the traditional database design approach using

conceptual, logical, and DBMS data models. The conceptual data model is used for

requirement analysis and conceptual modeling, such that it provides the external and

conceptual views to the database. The logical data model is used to provide the conceptual

view in the implementation language of the DBMS to the database, called logical view.

And, the data model of the chosen DBMS provides the internal view to the database.

1.3 The Database Optimization Problem

Database optimization (database tuning) is the task of making a database run more quickly

[Sha92]. There are different approaches to database optimization.

1.3.1 The Normalization Approach to Database Optimization

Using the relational model of data for database design [Cod70, Cod79], it has often been

argued that normalization is a good approach to avoid insertion, deletion, and update

anomalies, and so, to provide correct operational behavior of the database applications.

But, although the result of the normalization process preserves functional dependencies, it

8 Part I Database Design and Database Maintenance

i1

i2

i4
i7

i5

i6

i3
i8

i9

i10
i11

i12

P e r f o r m ecna

P

(implemented database schema)

c1
c2

c3

l1
l2

l3

l4
l5

Internal View

Logical View

Conceptual View

External Views

a

n

d

e

p

e

d

D

a

c

n

e

I

e

t

Figure 1.2: Traditional Database Design Approach: Requirements Analysis, Conceptual

Design, Logical Design, Logical to Internal Schema Transformation, and Internal Schema

Tuning.

was farreaching ignored that the relation schemata which are resulting from the normaliza-

tion process define new inclusion dependencies. These must be additionally maintained,

and, their maintenance is then due to applications, or their control (and possibly, enforce-

ment) is implemented by database triggers and stored procedures. The normalization

approach also requires that joins have to be applied to put the data into relation again,

which are required by online applications or batch transactions, and which were previously

stored by one relation and are spread over many relations after normalization.

Object-oriented database design approaches often give an impression that the imple-

mentation’s data structures can be mapped closely to the real world data, and sometimes

ignore that this may no longer preserve the integrity constraints which are underlying the

data, or that it may not provide good operational behavior.

These actions, normalization and object-oriented structuring, employ the database

management system with additional tasks and can make the whole database slower. The

object-oriented policy of splitting application code into smaller parts– such that equiva-

lent code fragments are used by different modules and programs although they are im-

plemented only once (reusage) –sometimes conflicts with the goal of making the database

application efficient.

Ch. 1 Introduction 9

1.3.2 The Transaction Runtime Tuning Approach

Transactions are sequences of select, insert, delete, and update operations either which

are all successful and have effect to a new database state (commit), or else, at least one

of these operations fails such that none of the operations of that sequence has effect to a

new database state (abort or rollback).

Normally, the first time operational behavior and performance are looked at is when

the database schema is implemented with the help of the chosen DBMS, the database is

filled with a large amount of data, and the reaction time of the applied transactions is

found to be not appropriate; i.e., it is not sufficient enough. Then, logical and physical

(internal) database tuning actions which usually add indices to the internal schema, but

may also restructure the physical structures and their connections completely, are applied.

1.3.3 The Rule-Triggering System Approach

Active database management systems (ADBMSs, see [DBB+88, CW94, AHW95]) which

employ an event-condition-action (ECA) rule-triggering mechanism for transaction main-

tenance may be seen as an extension of relational and object-oriented DBMS technol-

ogy. ADBMSs have been developed for application in computer-aided design (CAD) and

computer-integrated manufacturing (CIM).

Rule-triggering systems (RTSs) are well-usable to decouple applications from database

maintenance, since the DBMS can automatically perform maintenance tasks as soon as

certain events occur. This allows to define additional constraints to the database which

were normally implemented by applications, such that the applications need no longer

to maintain the database’s integrity. This way, although the internal database schema

may be not completely normalized and applications do also not take care for protect-

ing integrity constraints on special user actions, integrity constraints can be preserved.

The important relational database management vendors of today have incorporated rule-

triggering mechanisms into their systems, such that the database developer can specify

the database schema and according integrity maintaining rules (triggers).

However, as demonstrated in [ST94a, SST94], the RTS approach must be used with

caution, since a database schema with carelessly specified triggers can invoke transactions

producing database states which are far away from the desired result.

1.3.4 The Web Application Design Approach

Nowadays, design approaches such that the database design tool provided by the DBMS

vendor, e.g. Designer 2000 (Oracle) or SQL-Designer (Sybase), is used for conceptual,

logical, and physical design, or object-oriented database design approaches [Car94] are

10 Part I Database Design and Database Maintenance

applied. These tools are used especially for the construction of today’s Web and Web-

based database applications.

However, although one could assume that these tools transparently explain the struc-

tural and operational dependencies to the designer, e.g. foreign-keys, secondary indices

& database triggers and their relation to select, insert, delete & update operations, these

tools are not only limited that they do support one special DBMS, but also that they

require the database designer to construct the schema in a special way. This does not

necessarily model the objects of the real-world as they are. For instance, the relational

database design tools do not make transparent why they force the designer to construct the

database schema in a hierarchical way.2 This enforces that important database processing

aspects are omitted during data design, since they can not be represented structurally

using these database design tools. Also, the possibilities to specify integrity maintaining

rules are not or only in a rather limited form available using these design tools (relational

or post-relational).

The specification and verification of integrity maintaining rules is up to the database

administrator (DBA) group, and, although claimed by a range of authors today there is

no commonly accepted object-oriented data model ([ABD+89, Car94]), object-relational

data model ([DD95]), or active database standard ([Con96]). There is also no general

specification model for designing the new-generation database applications, nor is there

any (commercial) design tool which allows to specify and analyse the requirements of

these database applications, and to infer whether the design of the structures and the

corresponding database triggers is good or not.

For the given reasons, the traditional database design approaches as well as the re-

cent database design approaches are not sufficient. The recent design approaches with

the help of the logical design tools of the DBMS vendors are not sufficient, since they

do not overcome the performance problems which did appear after traditional database

design. Beyond this, recent database structuring and database application structuring

approaches do rather strongen than remedy database performance problems: Possible

implementations of the schema are not considered and transactions are not acquired and

not prototyped during first phases, since tools which generate and analyse transaction se-

quences in advance of database implementation (according the chosen DBMS) are rather

rare. However, most important transactions are often known in advance of system imple-

mentation and should be specified at an early stage [EN89].

Since the physical tuning actions, which are necessary and are applied after logical

database design with the help of the database command line interfaces by the DBA

2One good aspect of the invention of the relational data model [Cod70] was once seen in the property
to not necessarilly construct hierarchical database schemata– the hierarchical data model and the network
data model did require the database schema to be necessarily hierarchical.

Ch. 1 Introduction 11

group, do not adapt the conceptual and logical representation of the database and do

not change the external views of the database users, a misbalance between the database’s

internal representation and the database’s external representation often appears after tun-

ing. Therefore, whenever designing databases for practical applications it is desirable to

find already during design acceptable compromises between necessary maintenance of in-

tegrity constraints and structuring of database application code, and efficient operational

behavior on the other hand.

1.4 Conceptual Database Design Optimization

In this work, we present an approach to extend database design such that operational

behavior and performance can already be looked at during conceptual design time. This

requires that details for transformation from the conceptual schema to the internal schema

which is used for implementation with the help of a special DBMS and the implementa-

tion’s behavior must already be considered during conceptual design. However, the person

who is performing the conceptual database design must not be confronted with details of

the database implementation.

So, conceptual database design optimization can be done the following way:

1. The system (the conceptual database design optimizer) automates the database

design transformations, and, different transformation kinds must be used such that

the different results are compared and the best transformation is chosen.

2. The system supports the evaluation of the fitness of the operations and transactions

that are identified on the internal schema, and reflects the fitness of the internal

operations to fitness of conceptual operations which are presented to the designer.

3. The system enables schema restructuring according the bottlenecks which the data-

base designer agrees to, such that it is possible to show the database designer alter-

native design representations of the mini world that is considered.

4. But, the system has to hide the data processed internally (because they may not

be understandable to the database designer), and reason in the database designer’s

language why modifications of the schema are proposed or made automatically.

1.4.1 Conceptual Database Optimization Aspects

Population aspects of the internal database influence the response time of database oper-

ations drastically. We have therefore to consider these population aspects. These include

the uniformity of data, tuple numbers (numbers of tuples) or correlations between them,

and criteria whether certain sets of the database are changed frequently or not.

12 Part I Database Design and Database Maintenance

D

a

t

a

i1

i2

i4
i7

i5

i6

i3

c5

c4
c6

c7

i8

P

I

n

d

e

p

e

d

e

n

c

e

e r f o r m ecna

P
c1

c2

c3

l1
l2

l3

l4
l5

Internal View

Logical View

Conceptual View

database schema)

(implemented

i11

i10

i9

l7

l6
l9

l10

l11

l8

Figure 1.3: Enhanced Database Design Approach: Conceptual Design, Conceptual Tun-

ing, Logical Design, Logical to Internal Schema Transformation (Internal Schema Tuning).

Implementation aspects to be considered by the conceptual database design optimizer

are anomalies, referential dependencies, costs of join operations, and triggering actions.

These criteria, population and implementation aspects, are typically used for physical

design and restructuring decisions only, because these criteria are too early omitted in

“normal” database design approaches. But, most often they can already be inferred during

database design. The aim of the current work is not to adapt the objects of the mini world

to the conceptual, logical, or internal database schema, but to adapt the database schema

to the objects of the real world, i.e. to discuss the semantics of the objects and the

problems which are detected according the behavior of transactions with the conceptual

designer.

1.4.2 Principles of Conceptual Schema Optimization

Figure 1.3 illustrates the proceeding of conceptual database design optimization:

The conceptual database schema c1 is inspected for its most obvious implemen-

tation schema (internal schema). The implementation schema i3 is inspected

for its bottlenecks, and how it is possible to tune (optimize) the database

system.

Ch. 1 Introduction 13

From this internal design information we reflect to the conceptual design as

follows:

1. Bottlenecks detected on the internal schema are located on the conceptual

schema.

2. The conceptual designer is informed on bottlenecks of the given schema

in a rather informal way, i.e. by using terms that are presented in the

conceptual schema. A modified conceptual schema c7 is generated and

proposed to the conceptual designer.

Whenever the designer accepts the schema that is proposed by the system–

or considers the proposed schema and eliminates the bottlenecks of her/his

conceptual schema –, then it is possible to derive the logical schema l6 or l8

and to generate the more optimal internal schema i8 directly, on the basis of

the conceptual database schema.

1.4.3 Physical Schema can still be optimized further

Several problems of schema tuning (optimization) can not be solved only during con-

ceptual design, and by logical design neither. Bottlenecks are sometimes DBMS specific,

such that there can not be given general arguments for a designed schema’s “well-fitness”.

But, as Figure 1.3 (and the introducing conceptual database optimization scenario at the

beginning of Chapter 5) illustrate, certain bottlenecks can be omitted by inspecting the

implementation schema that can be derived in a straight-forward manner from the given

conceptual schema. In this way, the task of database schema optimization can– at least

partially –be performed during conceptual design. This adds a new dimension of trans-

parency to the whole database design process– since optimization can be moved to earlier

design phases where, consequently, the optimization aspects can be discussed with the

database designer, and not only with the DBA group.

1.5 Related Work

Su examines in [Su85] data profiles and their relation to schema design. Wiederhold

[Wie87] works out exhaustive considerations on database operation complexities. Also,

[CDKK85] give in the The Design and Implementation of the Wisconsin Storage Sys-

tem a good examination and argumentation for the design issues of a general applicable

and extensible database storage manager. Korth and Silberschatz present in [KS91] con-

siderations on benefits and drawbacks of different physical data organizations and their

14 Part I Database Design and Database Maintenance

appropriaty for certain applications. Shasha covers in [Sha92] the most principled pro-

ceeding to database tuning. He uses different scenarios and brings many aspects together,

which were not considered by previous approaches to database tuning. Dunham [Dun98]

gives in the handbook an exhaustive documentation on operating system and database

performance tuning.

Details of schema fitness evaluation and possible conceptual to internal transforma-

tions can be found at different places. Hainaut gives an evaluation framework for schema

fitnesses based on a cost function approach [Hai89]. Halpin [Hal90, Hal91] is the first one

using the term Conceptual schema optimization. Campbell [Cam94] considers “anchors”

that are found in the information structures and are not changed, even if the database

schema will be tuned. Van Bommel [BWL94, Bom94] shows how different internal rep-

resentations of a conceptual schema can be derived such that it is possible to choose the

“best”. Van Bommel uses a data profile approach based on tuple numbers. The doctoral

thesis [Bom95] summarizes van Bommel’s approach.

Comparison of the RADD/raddstar Approach to the other Database Opti-

mization Approaches.

The latter mentioned authors, Hainaut, Halpin, Campbell, and van Bommel and their

co-workers use schema mutations which derive optimal implementation schemata from a

given conceptual schema. I.e., the term optimization of these works must rather be looked

at what we here denote as transformation. Furthermore, although the cost functions given

in these works seem to state plausible and well-designed estimations, they omit– like

several normalization proposals did before –dependencies of database operations, which

are result of references and cardinality constraints, for instance.

The purpose of this document is another, i.e. not to give a cost function approach

for conceptual database design only, but also to relate to what’s going on in a practical

database environment. Therefore, we use a hybrid version of schema valuation and opti-

mization that combines both, conceptual database representations and physical (internal)

cost estimations. To present the internal costs to the conceptual designer we use a con-

ceptual schema to internal schema mapping that uses references of the internal structures

to the conceptual structures from which they were derived, called preceders. By means

of the preceder mapping, the contents and costs of conceptual transactions are evaluated

and bottlenecks are marked on the conceptual schema.

In contrast to the other approaches to logical and internal database optimization, such

as [Sha92] and [Dun98], the approach presented here intends to optimize the conceptual

view to the database, and not its logical or physical representation. The approach given

here constructs a conceptual schema from a conceptual schema, such that the new schema

has the properties of the conceptual data model that was used to construct the given

Ch. 1 Introduction 15

conceptual schema. Additionally, the internal schemata which are used to evaluate the

fitness of the conceptual schema, to detect bottlenecks on that schema, and to gather

criteria for better conceptual schema design, can be shown to the database designer and

exported to the data definition language of the DBMS which is used to implement the

database. We generate a special form of SQL-92 create table, index, view, and procedure

definition statements, that is, as we expect, also well usable for the forthcoming SQL

database standard.

1.6 Outline of the Thesis

The thesis is structured into three parts:

Part I describes database design methologies and strategies to model databases, and

presents the database design strategy of the RADD workbench.

Part II describes the underlying theoretical concepts and the implementation of the

RADD/raddstar Conceptual Database Design Optimizer.

Part III presents an application scenario of the RADD/raddstar Conceptual Database

Design Optimizer and gives concluding remarks on the approach.

Figure 1.4 presents a road map to read the thesis.

The reader who wants to quickly read the thesis, may follow the arrow labeled ”q” and

skip Chapter 2 to 8. The reader who is interested in the results of schema evaluation,

transformation, and optimization, may follow the arrow labeled ”o” and continue with

Chapter 8, which contains the application scenario of the RADD/raddstar Conceptual

Database Design Optimizer.

Chapter 2 presents the data models and database management system types which were

traditionally used and which we have mentioned in this beginning Chapter. Chapter 3

continues, by presenting data models including advantageous data representation con-

cepts. Chapter 2 and 3 give an impression on some DBMS implementation concepts as

well. The reader may skip certain Sections of Chapter 2 and Chapter 3, and, for instance,

read only about relational databases and the RADD database design model. Hence, the

reader follows the arrow labeled ”d”, and continues with Chapter 8 which contains the

application scenario.

16 Part I Database Design and Database Maintenance

1. Motivation and Overview Part I Database Design and Database Maintenance

3. New-Generation Database Design and Database Management Approaches

2. Traditional Data Models and Data Representation Concepts

adoq

 Mapping, and Fitness Evaluation

9. Conclusions

8. Conceptual Database Design Optimizer

5. Integrity Maintenance, Conceptual Schema

Part III Conceptual Database Design Optimizer

Part II Analysing Database Designs

6. Type Inference and Functional Schema Representation

7. Conceptual Specification Language

4. Database Optimization Scenarios

r

a

Figure 1.4: Road Map to read the Thesis.

The reader who is interested in database optimization scenarios, in the conceptual mod-

eling concepts of RADD and in the conceptual design specification language provided by

the RADD/raddstar system should follow the arrow labeled ”r”, and the one who also

wants to know about the implementation of the RADD/raddstar system should follow

the arrow labeled ”a” and read the whole thesis.

Chapter 2

Traditional Data Models and Data

Representation Concepts

A data model is a group of concepts for specifying a database, that has two parts ([Ull88a]):

1. A notation for describing data, and

2. A set of operations used to manipulate that data.

A database management system (DBMS) is a collection of programs to create and main-

tain a database. These programs are used as a general purpose software system for

specifying, constructing, and maintaining a database for various applications. In com-

parison to file management systems, advantages of DBMSs are the integration of data

and application programs, the support for multiple user views, and the description of the

database’s structure by the database itself (by means of special tables storing informa-

tion about all attributes, tables, indices, view, and so forth, called “catalog” or “data

dictionary”).

In Chapter 2 we present data models that were traditionally used for modeling the

section of the real world for which the database is needed, called mini world. After re-

quirements collection, the mini world is described by a conceptual schema. Section 2.1

gives an overview on data modeling concepts by means of a conceptual schema, introduc-

ing the entity-relationship model of Chen [Che76]. For illustration purpose, this Section

uses a Company Schema, which is a modified version of that found in Elmasri and Na-

vathe [EN89], and, from which we will use a part to illustrate conceptual database design

optimization in Chapter 4.2. The Company Schema used in the current Chapter will be

extended and adapted by representation concepts of the other data models in the following

Sections. The hierarchical data model and the network model (Section 2.2) are described

next. Then, we present the relational data model (Section 2.3). In Section 2.2 and 2.3

we also consider some implementation concepts of hierarchical, network, and relational

DBMSs. Section 2.4 summarizes the considerations of the Chapter and gives an outlook

18 Part I Database Design and Database Maintenance

on the data representation concepts that are used by new-generation database systems,

which will be considered in Chapter 3.

2.1 The Entity-Relationship Model

In contrast to the data models which were traditionally used for database design, the

entity-relationship model (ERM) focusses rather on what kind of information is to be

stored, from the conceptual viewpoint, than on how to represent it by the computer. It is

closer to the users’ perceptions such that it forms a language for requirements acquisition–

which is done as the first step of the database design process and constructs the database

model from the external users’ views. The hierarchical data model, the network model,

and the relational data model, which preceded the ERM as conceptual data models, are

today rather looked at as data models for providing the result of conceptual schema

to physical schema mapping, representing the conceptual schema in the implementation

language of the DBMS.

A diagram of the ERM models the mini world based on the following concepts:

1. entity types, which model objects that are living independently from others in the

mini world, respectively; in the entity-relationship (ER) diagram entity types are

represented by boxes;

2. relationship types, which model objects that are not living independently from oth-

ers in the mini world and are used to model associations between the entity objects;

in the ER diagram relationship types are represented by vertices;

3. attributes, which describe properties of the entity and relationship objects; in the

ER diagram attributes are represented by circles;

4. and multiplicities, on the relationship types, which describe how much objects of

the first entity type have connection to objects of the second entity type; in the

ER diagram multiplicities are drawn near the connecting lines between entity and

relationship types.

Example. (Company Schema)

1. A company is organized into departments. Each department may have several loca-

tions, and it has a name, a number and an employee who manages the department.

We keep track of the start date when that employee started managing the depart-

ment.

Ch. 2 Traditional Data Models and Data Representation Concepts 19

2. A department has a number of projects, each of which has a name, a number, a

single location, a project start date, and a duration.

3. We store each employee’s firstname, lastname, title, social security number (ssn),

address, sex, and salary. An employee works for one department and has skills

according which he his scheduled on projects. He works on several projects, which

are not necessarily controlled by the department he is working for. We keep track

on the number of hours per week that an employee works on each project.

This mini world is represented by the ER diagram (schema) in Figure 2.1.

Department

controls

Project

Ssn

m

1

1

m

1

m

m
1

Pnumber

Location

Birthdate

Lastname

Firstname

Name

Salary

Hours

Title

Address

1
1

ProjStartDate

Dnumber

Sex
leads

Duration

Employee

works_on

works_for

manages

Locations

Name

Skills

StartDate

Figure 2.1: Entity-Relationship Schema for the Company Database.

The attributes Dnumber, Pnumber and Ssn can be used to determine the entities

Department, Project, and Employee uniquely. Therefore, they are underlined in Figure

2.1. We also call them key attributes, or simply keys. The attributes named Locations

and Skills, on the other hand, can be multivalued . Therefore, they are drawn using

double-lined circles.

For the relationship types of this schema, we have not drawn key attributes. In case

of many-to-many (m : m) relationship types, the instances of the relationship types are

normally uniquely identified by the combination of the according entities’ key attributes.

For example, works on records are determined by the values of the Employee.Ssn and

Project.Pnumber. The relationship types which are 1 : m need only the key attributes

of the many (m) side to provide uniqueness of their instances. For the relationship

types which are 1 : 1, we choose one of the entity types, from which the relationship

type then gets its key attributes. E.g. for the manages relationship type, {Ssn} as

20 Part I Database Design and Database Maintenance

well as {Dnumber} could be chosen as keys, such that they are candidate keys. How-

ever, since manages models the property how a Department sees its manager (which

is an Employee), it is more natural to assign manages the key of Department, that is

{Dnumber}.

So, for this example the key mapping for the physical design level can be given as follows:

• The physical Department type gets the key {Department.Dnumber},

• the physical Employee type gets the key {Employee.Ssn},

• the physical Project type gets the key {Project.Pnumber},

• the physical works for type gets the key {Employee.Ssn},

• the physical manages type gets the key {Department.Dnumber},

• the physical works on type gets the key {Employee.Ssn, Project.Pnumber},

• the physical leads type gets the key {Project.Name},

• and the physical controls type gets the key {Project.Name}.

However, an entity type is not restricted to have only one key attribute, but this is

the most frequent case. It it also possible that a many-to-many relationship type gets

additional key attributes– besides the key attributes which it inherits from the entity

types. Assume, an Employee works on a Project 3 hours on one weekday and 6

hours on another weekday, and we wanted to keep track not only on the total time

which he works on that project per week, but also on the individual time according

the different weekdays. Then we had to add an attribute– e.g. Weekday –to the

works on relationship type, such that on the physical level the key of works on were

{Employee.Ssn, Project.Pnumber, works on.Weekday}. This consideration could be

continued, e.g. by presupposing that the employee works on the same project and same

weekday more than one period of time, and so forth. However, to keep the schema sim-

ple here, we assume that the company only keeps track on the hours per week which an

employee works on a project.

Introducing artificial keys during conceptual database design. If an entity-

relationship schema is transformed to a physical database schema, then most of the entity

types which have not already an integer-typed key get an additional integer-typed key,

such as Employee.ID. Such artificial keys are frequently used in database realizations

for the following reasons:

1. They can be used to substitute multi-column keys or unique indices on more than

one column, which generally are expensive in maintenance.

Ch. 2 Traditional Data Models and Data Representation Concepts 21

2. And, they provide faster query evaluation, especially if the key of the physical

database structure would otherwise have a long attribute (which is character-typed

a.s.o.), or has three, four or more attributes.

On the other hand, artifical keys additionally require the generation of unique key values,

and, if there is an attribute which uniquely determines the objects of the structure, like

Employee.Ssn, and there is an additional artifical key, like Employee.ID, then both

attributes must be kept uniquely all the time. (For reason that the artifical key does not

automatically provide that the real key is a key anymore!)

Therefore, the database design tools which advise to conceptually model ID– or

number –attributes, such as ErWIN or the design tools of the relational DBMS ven-

dors (e.g. Oracle, Sybase, or Informix), are not to be considered as conceptual database

design tools– from the author’s viewpoint – since they already introduce implementation

details into the high-level design of the database.

2.2 The Hierarchical Model and the Network Model

This Section surveys on the hierarchical and the network data model, and gives in Section

2.2.6 an example of coding the Company Schema using a network DBMS.

ssn

. . .

sex salary ssn’

title’ sex’ salary’ startdate’birthdate’

firstname lastname lastname’firstname’birthdate

Figure 2.2: Organization of Records in a Hierarchical Database.

2.2.1 The Hierarchical Data Model (Hierarchical Model)

The hierarchical data model it the oldest of the conceptual data models and supports dif-

ferently structured data of variable length, which are physically stored in heaps. For illus-

tration let us assume that an employee e1 works for a department and another employee

e2 manages the department, such that e1 has attributes Ssn, Firstname, Lastname,

Birthdate, Address, Sex, and Salary, and e2 has the additional properties Title and

StartDate. This can be physically represented like shown in Figure 2.2.

22 Part I Database Design and Database Maintenance

Project

p1 p2 p3. . .e4e3e2e1

Employee

Department

Figure 2.3: Logical Tree Organization of Record Types in Hierarchical Databases.

2.2.2 Integrity Constraints in Hierarchical Databases

The hierarchical organization of data records is intuitive to human thinking which struc-

tures the world in a hierarchical tree-organized manner, using roots which do have subn-

odes which continously do have subnodes again, until the leaves are reached. See Figure

2.3. The tree-organized structuring implies that inheritance constraints are built in each

schema. These are:

1. Each record except a root record can not exist without having a parent record, such

that records of the child record sets must ever be connected to a parent record, and

the parent record can not be deleted from the parent record set as long as children

records exists that are connected to it.

2. And, if a record logically has more than one parent (like the instances of many-

to-many relationship types in the ERM), the record must be duplicated for each

parent.

Therefore, a drawback of the internal tree structure of hierarchical databases is the prob-

lem of redundancy: using tree storage the same data may be represented twice or more.

Consider the schema shown in Figure 2.3 and let us assume that the employee e2 works

on project p1, such that– naturally –the p1 sees e2 as one its participants. This latter as-

sociation could be understood as a function (or relationship type) has participants from

Project to Employee.

To represent this kind of association between child records of different paths in the tree,

the hierarchical model makes use of records which form the association only. Consider

the hierarchical schema in Figure 2.4. Here we have two records modeling the association

between e2 and p1, the EwP record and the PhE record. Therefore, a better way is to

model (and to implement) one record (EwP ′) which gives the association, and another,

so-called virtual parent-child record (V PCR PhE ′), which is a pointer to the association

Ch. 2 Traditional Data Models and Data Representation Concepts 23

record from the other path of the tree. In Figure 2.4 we also see another use of VPCRs.

That is the Manager record, which represents the special manager role of the Employee

e4, and, which has a pointer to the root of the tree. Using such records, it is possible to

bypass the hierarchy in hierarchical databases.

E

P

w

Project

p1 p2 p3. . .e4e3e2e1

Employee

Department

P

E

E
w

P’

is-a

Ma

na

ger

P h E’

h

VPCR

Figure 2.4: Associations between Record-Types, and Virtual Parent-Child Records.

2.2.3 Hierarchical DBMSs

Illustrative examples of hierarchical database applications, and of concepts to implement

databases by use of IBM’s hierarchical DBMS IMS are given in [KL78]. Hierarchical

DBMSs make use of physical data storage techniques which apply additional indices to the

records that are putted in heaps. For example, HISAM (Hierarchical Index Sequential

Access Method) is such a storage method. The storage techniques of the IMS system are

discussed in [KL78] as well.

Chapter 11 of [EN94] explains which way the Company schema is implemented using

IMS. The record types which are used by the hierarchical DBMSs are similar those which

we will present by the network database implementation code in Figure 2.8. We omit

therefore the code representation for the hierarhical implementation of the Company

Schema here.

24 Part I Database Design and Database Maintenance

2.2.4 The Network Data Model (Network Model)

Comparing the entity-relationship model (Section 2.1) with the hierarchical data model

(Section 2.2.1) one can recognize a discrepancy between these methodologies:

• The ERM uses a notation, which is based on entity and relationship types repre-

senting the entity sets (called entity occurence sets) and the relationship sets (called

relationship occurence sets); as we will see in the forthcoming Sections, this enables

us to specify the semantics of the ERM in a fashion of logic formulae, based on

equations and predicates.

• The hierarchical data model bases on directed graphs which are specifycing rather

the programmatical issues to implement and traverse (or navigate) the database,

from the viewpoint of the operations which have to perform these tasks. For reason

of the directed connections, associations which are many-to-many, like the m : m

relationship type works on in Figure 2.1, are not directly supported by the hi-

erarchical model, but must be represented from both viewpoints, the one of the

Employee and the one of the Project, which requires to add a separate record-type

in the hierarchical representation (PhE respectively PhE ′).

Department Employee

employs

manages

controls

Project

leads

has_participants

Figure 2.5: Bachmann Diagram (Network) for the Company Database.

We are now introducing the network data model which is based on directed graphs (net-

works) as well. A familiar representation of network schemata is given by Bachmann

diagrams. Figure 2.5 shows the Bachmann diagram according the ER-Schema in Fig-

ure 2.1. Here, the relationship type that was named works for in Figure 2.1 is named

employs, and the relationship type works on has now the name has participants.

In comparison to the arrows in hierarchical schemata which have the meaning of

pointer of a record to another record (one-to-one mapping), the arrows in the Bach-

Ch. 2 Traditional Data Models and Data Representation Concepts 25

mann diagrams specifiy an association between a record– called owner –and a set of

records– called members–, which is a one-to-many mapping. For instance, the arrow from

Department to Employee which is labeled employs in Figures 2.5 specifies a one-to-many

owner-member relationship between Department and Employee. To provide better un-

derstanding of owner-member relationships we use in the sequel relationships which have

one angle on the owner-side and two angles on the member-side (←→→).

There is a difference between the logical network schema and the physical network

schema. Figure 2.5 contains two mutual owner-member relationships, which are employs

and manages, and has participants and supervises, respectively.

Department Employee

controls

Project

Manager

employs

managed_by

managing

has_leader

is_a_project_leader

Leader

has_participants

Figure 2.6: Physical Network Schema for the Company Database.

These are considered as many-to-many relationships by the network implementation, such

that additional logical record-types (record-type is analogous to entity-type of the ERM)

must be added. These additional structures are called kett-entities.

Assume Manager and Supervisor are the kett-entities that are added to the schema

in Figure 2.5, then Figure 2.6 shows how the physical network schema for the Com-

pany database looks like. This way, the latter schema specifies additional owner-member

sets (one-to-many relationship types) which are Department-Manager (managed by),

Employee-Manager (managing), Project-Leader (has leader), and Employee-Leader

(is a project leader). The other owner-member sets, Department-Employee (employs),

Project-Employee (has participants), and Department-Project (controls) were already

part of the conceptual representation in Figure 2.5.

The hierarchical model and the network model are similar, considering their concepts.

E.g. they have in common that they specify the database according the navigational

semantics of their operations. Additionally, they have a property making them object-

26 Part I Database Design and Database Maintenance

oriented in some sense [Ull88a], namly their physical handling of records by addresses.

These can be looked at close to the representation of object identification mechanisms in

object-based database models (refer to Section 3.1.3 and 3.2).

2.2.5 Integrity Maintenance in Network Databases

The network database implementation makes use of so-called set-insertion and set-retention

options (integrity constraints) which are specified for the owner-member sets. Let us il-

lustrate these options refering to the physical network schema shown in Figure 2.6.

Set-Insertion Options.

1. Automatic. Whenever a new record is added to the member set then it is added

automatically to the owner-member set as well; for instance, if automatic is specified

according the owner-member relationship employs and its Employee member-record

sets, then a new record which is inserted into the Employee set, is also connected

to some member set of the employs relationship. The member-record set (current

record set), which the new Employee is connected to, is determined by the current

owner of the employs set, that is the current record in the Department record set.1

2. Manual. A new record which is added to the member set is connected explicitely

to one of the owner-member sets; for instance, if manual is specified according the

owner-member relationship managed by and its Manager member-record sets, then

a new record which is inserted into the Manager set will be connected manually by

the application to some member set of the managed by relationship.

Set-Retention Options.

1. Mandatory. The owner-record of the owner-member set can not be deleted if

there is still any member in the member set for which it is the owner; for instance,

if mandatory is specified according the owner-member relationship employs and its

Employee member-records, then an employs record can be deleted only after all

records of the employs member set which have the Department as owner are either

deleted or connected to another member set of the employs relationship.

2. Fixed. Like in mandatory, a record can not live independently from an owner.

Moreover, once a member record is inserted into an owner-member set, it is fixed.

That is, it can not be re-connected to another member set. Consider the owner-

member relationship managed by of Department and Manager and assume it is

1The resposibilty to set the current record set correctly is due to the programmer.

Ch. 2 Traditional Data Models and Data Representation Concepts 27

specified fixed according Manager; then, a manager represented by a record in the

Manager set which manages not anymore the Department, must be deleted, but

can not be changed to become the manager of another Department.

3. Optional. An owner-record may be not an owner or a member-record may be not

connected to any member set of the owner-member relationship, respectively; as-

sume a Project may not be controlled anymore by a Department, e.g. because that

controlling Department was closed. Then the set-retention option of the Project

member set of the controls relationship is specified optional, such that a Project

can be made independent from any Department.

Useful Combinations of Insertion and Retention Options. Although not for-

bidden by the Codasyl specifications, not all combinations of insertion and rentention

options make sense. Assume insertion is automatic for the Employee member records of

the employs owner-member relationship (between Department and Employee); that is,

an Employee member record is forced to be connected to an employs set. Then, it may

not be wishful to use retention optional, since this would make it possible to disconnect

Employees from their employs set, as if insertion were manual. Accordingly, the in-

sertion/retention options manual-mandatory and manual-fixed should be used neither,

such that we propose to use only the following combinations of insertion and retention

options: automatic-mandatory, automatic-fixed, and manual-optional.

Record Positioning in Sets. The records in the member sets of owner-member re-

lationships can be ordered ascending or descending by fields, such that whenever a new

record is inserted into the member set, it is positioned at the according place. In his

coding, the programmer can also use first, last, next, and prior commands to position

records at the according places in the sets.

2.2.6 Implementing the Network Database

In Section 2.2.4 we have shown only the names of the record types of the network data-

base schema. In Figure 2.7 we see the more concrete structuring of the record types

Department, Employee, and Project.

The schema in Figure 2.7 includes that a Department can supervise other Departments,

and reversally, a Department can be supervised by another Department. But, we have

not used separate record types for the different roles of the supervises relationship such

that it is represented by the record type SupervisingDepartment only. Here, we use the

28 Part I Database Design and Database Maintenance

Pnumber Location ProjStartDate DurationName LeaderSsn

Project

Firstnames Lastname Title

Name

Employee

Ssn Birthdate Address Sex Role

all Depts

System

DeptName Salary

Department

Dnumber Name Locations

Pnumber HoursEmpSsn

MgrStartDateDeptNumber MgrSsn

employs

has_leader
has_participants

controls

manages

SupervisingDepartment

SD_Number

supervises

Figure 2.7: The Network Schema for Implementation of the Company Database.

foreign-key key attribute SD Number representing the supervised by role of that associ-

ation, which is a valid option. That a SD Number in the SupervisingDepartment record

is also a Dnumber in a Department record can be ensured either by the specification of

the network database schema or by the applications which are used to modify the data-

base. This way, the relationship type supervised by is not specified by an owner-member

set in Figure 2.8. The same way we must take care that a DeptName in the Employee

record is really a Name in a Department record. The EmpSsn and Pnumber could be

assumed to be foreign-keys as well. As we see in Figure 2.8, these constraints are specified

by the implementation code for the network database.

We have also used a separate record type (EMP NAME) to implement the subrecord

Name which is part of the Employee record. The owner-member set EMP NAMES

which we use to relate employees and their names, is implemented as one-to-one relation-

ship type in Figure 2.8.

2.2.7 Maintaining the Network Database

Network database applications were traditionally implemented in Cobol or Pascal, such

that a separate record was used for each record and set type of the network database

schema. E.g., in a Pascal application interface a record variable for Employees could be

defined as follows:

Ch. 2 Traditional Data Models and Data Representation Concepts 29

SCHEMA NAME IS COMPANY

RECORD NAME IS DEPARTMENT
DUPLICATES ARE NOT ALLOWED FOR DNUMBER
DUPLICATES ARE NOT ALLOWED FOR NAME

DNUMBER TYPE IS NUMERIC INTEGER
NAME TYPE IS CHARACTER 20
LOCATIONS TYPE IS CHARACTER 20 VECTOR

RECORD NAME IS MANAGES
DUPLICATES ARE NOT ALLOWED FOR DEPTNUMBER
DUPLICATES ARE NOT ALLOWED FOR MGRSSN

DEPTNUMBER TYPE IS NUMERIC INTEGER
MGRSSN TYPE IS NUMBERIC 9
MGRSTARTDATE TYPE IS CHARACTER 11

RECORD NAME IS SUPERVISINGDEPARTMENT
DUPLICATES ARE NOT ALLOWED FOR SD_NUMBER

SD_NUMBER TYPE IS NUMERIC INTEGER

RECORD NAME IS EMPLOYEE
DUPLICATES ARE NOT ALLOWED FOR SSN

SSN TYPE IS NUMBERIC 9
BIRTHDATE TYPS IS CHARACTER 11
ADDRESS TYPE IS CHARACTER 30
SEX TYPE IS CHARACTER 1
DEPTNAME TYPE IS CHARACTER 20
SALARY TYPE IS NUMERIC (8,1)

RECORD NAME IS EMP_NAME
DUPLICATES ARE NOT ALLOWED FOR FIRSTNAMES, LASTNAME

FIRSTNAMES TYPE IS CHARACTER 15 VECTOR
LASTNAME TYPE IS CHARACTER 20
TITLE TYPE IS CHARACTER 10

RECORD NAME IS PROJECT
DUPLICATES ARE NOT ALLOWED FOR PNUMBER

PNUMBER TYPE IS NUMBERIC (10,2)
NAME TYPS IS CHARACTER 30
LOCATION TYPE IS CHARACTER 20
PROJSTARTDATE TYPE IS CHARACTER 11
DURATION TYPE IS NUMERIC (5,1)

RECORD NAME IS HAS_PARTICIPANTS
DUPLICATES ARE NOT ALLOWED FOR EMPSSN, PNUMBER

EMPSSN TYPE IS NUMBERIC 9
PNUMBER TYPE IS NUMBERIC (10,2)
HOURS TYPE IS NUMERIC (5,1)

SET NAME IS ALL_DEPTS
OWNER IS SYSTEM

ORDER IS SORTED BY DEFINED KEYS
MEMBER IS DEPARTMENT

KEY IS ASCENDING DNUMBER

SET NAME IS SUPERVISES
OWNER IS SUPERVISINGDEPARTMENT
MEMBER IS DEPARTMENT

KEY IS ASCENDING DNUMBER
INSERTION IS MANUAL

SET NAME IS EMP_NAMES
OWNER IS EMPLOYEE

ORDER IS SYSTEM DEFAULT
DUPLICATES ARE NOT ALLOWED

MEMBER IS EMP_NAME
KEY IS FIRSTNAMES, LASTNAME
INSERTION IS AUTOMATIC
RETENTION IS MANDATORY

SET NAME IS EMPLOYS
OWNER IS DEPARTMENT

ORDER IS SORTED BY DEFIBED KEYS
MEMBER IS EMPLOYEE

INSERTION IS AUTOMATIC
RETENTION IS MANDATORY
CHECK IS DEPTNAME IN EMPLOYEE =

NAME IN DEPARTMENT

SET NAME IS E_MANAGES
OWNER IS EMPLOYEE

DUPLICATES ARE NOT ALLOWED
MEMBER IS MANAGES

INSERTION IS MANUAL
RETENTION IS OPTIONAL
DUPLICATES ARE NOT ALLOWED
SET SELECTION IS BY APPLICATION

SET NAME IS D_MANAGES
OWNER IS DEPARTMENT

KEY IS NAME
MEMBER IS MANAGES

INSERTION IS MANUAL
RETENTION IS OPTIONAL
DUPLICATES ARE NOT ALLOWED

SET NAME IS E_WORKS_ON
OWNER IS EMPLOYEE
MEMBER IS HAS_PARTICIPANTS

INSERTION IS AUTOMATIC
RETENTION IS FIXED
DUPLICATES ARE NOT ALLOWED
SET SELECTION IS BY APPLICATION

SET NAME IS P_HAS_PARTICIPANTS
OWNER IS PROJECT
MEMBER IS HAS_PARTICIPANTS

INSERTION IS MANUAL
RETENTION IS OPTIONAL
DUPLICATES ARE NOT ALLOWED

SET NAME IS HAS_LEADER
OWNER IS PROJECT

DUPLICATES ARE NOT ALLOWED
MEMBER IS EMPLOYEE

INSERTION IS MANUAL
RETENTION IS OPTIONAL

SET NAME IS CONTROLS
OWNER IS DEPARTMENT
MEMBER IS PROJECT

INSERTION IS MANUAL
RETENTION IS OPTIONAL
DUPLICATES ARE NOT ALLOWED

Figure 2.8: Definition of the Record- and Set-Types for the Company Database.

30 Part I Database Design and Database Maintenance

type
FirstnameRecord =
record
FIRSTNAME: packed array [1..15] of char;
next: ^FirstnameRecord

end;
EmpNameRecord =
record
FIRSTNAMES: ^FirstnameRecord;
LASTNAME: packed array [1..20] of char;
TITLE: packed array [0..10] of char

end;
var
employee:
record
SSN: packed array [1..9] of char;
NAME: EmpNameRecord;
BIRTHDATE: packed array [1..11] of char;
ADDRESS: packed array [0..30] of char;
SEX: char;
SALARY: real

end

Then, the following Pascal fragment with embedded statements of the network data ma-

nipulation language (DML) can be used to fetch the employee ”Jon Smith” and print his

birthdate:

with employee.NAME
do begin
new(FIRSTNAMES); FIRSTNAMES->FIRSTNAME := ’John’; FIRSTNAMES->next := nil;
LASTNAME := ’Smith’

end;
$FIND ANY employee.NAME WITHIN EMP_NAMES USING FIRSTNAMES, LASTNAME;
if DB_STATUS = 0
then begin
(* the EMP_NAMES cursor as well as the EMPLOYEE cursor *)
(* are now on the emp_name and employee record "Jon Smith" *)
$FIND ANY EMPLOYEE;
if DB_STATUS = 0
then begin
$GET employee;
writeln(employee.NAME.FIRSTNAMES->FIRSTNAME,’ ’,

employee.NAME.LASTNAME,’ was born:’);
writeln(employee.BIRTHDATE)

end
end

So far, to give the reader an impression of realization and application implementation

on network databases. But, for reason of space further details like the STORE and

MODIFY commands are ommited here. If he wishes to know more about these things,

the interested reader is directed to according publications, Codasyl [DTG71, DTG79] or,

for example, [Oll78]. Chapter 10 in [EN94] also gives examples to understand implemen-

tation techniques for network databases. Network DBMSs are, for instance, IBM’s IDMS

or Siemens’s UDS. The code presented in this Section is valid for the IDMS system.

Ch. 2 Traditional Data Models and Data Representation Concepts 31

Properties which are important for this work. The essential aspect for this work

is to see the navigational semantics of hierarchical and network database applications,

processing each record as a separate item, which is reasoned by the underlying data

model and the database management system implemented on top of this model. This

makes them inefficient for evaluations on record sets, like, for example, determining the

average age of the employees or summing up their salaries.

2.3 The Relational Data Model (Relational Model)

In contrast to the hierarchical data model and the network model, the relational data

model specifies properties of data based on record sets, and not on the special records.

Since it fundamentally bases on the following three concepts only, the relational model

[Cod70, Cod79] is sometimes looked at to be (too) simple in structure:

1. attributes, which are of atomar domains, such as boolean, integer, character, but

may not be composite or multivalued, that is, they must not be records, lists, or

sets;

2. relation schemata (~record types), which represent objects in the real world or

relations between them, and are sequences of attributes;

3. and relations, which are sets of records (or tuples) that are described by the relation

schemata.

Besides these structural concepts, the relational data model (relational algebra) defines a

set of operators:

1. Projection (π). The projection of a relation (table) R on the attribute sequence

X is defined by considering only the attributes (columns) of X in that order. In

relational algebra, the projection is described by a term like πX(R). However, we

will use R[X] to describe the projection of relation R on the attributes X.

2. Selection (σ). The selection of a relation R according a predicate p generates the

set of all tuples of R for which p holds. We write σp(R).

3. Join (1). The join between two relations, R1 and R2, with an equal attribute set

X in their schemata, and S1 is the relation schema of R1, S2 is the relation schema

of R2, means to build the product of all tuples t1∈R1 and t2∈R2 such that t1[X] =

t2[X], and finally projecting the result set on S1 ∪ (S2\X). We write R11R2.

Furthermore, the relational data model presupposes that there are generic database re-

trieval and update operations , like select, insert, delete, and update, in SQL. Generic

32 Part I Database Design and Database Maintenance

means that they are applicable for all relations in the database and are used to change

their contents, such that no special operations for the different sets need to be designed.

(Note that we use ”operator” and ”operation” in a different meaning here: an operator

is meant to deliver a term which can be used in further terms, whereas an operation is

understood as a procedure that invokes some status change on the objects with which it

works.)

2.3.1 Integrity Constraints

Integrity constraints have special meaning according relational databases because they

are essential for the design of relation schemata. In this section we consider static in-

tegrity constraints; we call integrity constraints static if they are considering only single

transactions– like the insert, delete and update operation (in SQL) –which lead either to

a correct or else to an incorrect database state, and so, are commited or aborted (rolled

back). On the other hand, we call integrity constraints dynamic if they are used for the

representation of the behavior of the database during its lifetime. This way, compos-

ite transactions, such as an insert operation that triggers another insert operation, are

considered by dynamic integrity constraints which will be described in Section 3.3.2.1.

Static integrity constraints are classified into domain constraints and data dependencies.

2.3.1.1 Domain Constraints

Domain constraints restrict the domain of attributes, such as the age of a person, which

must not be negative. They are defined on min/max values or on a special discrete set,

such as ”month” which must be in {Jan,Feb,Mar,Apr,May,Jun,Jul,Aug,Sep,Oct,Nov,Dec}.2

Convention. In the following, we use a,b,c,... as denoters for attributes, X,Y ,Z for at-

tribute sets (or for attribut sequences), t (with underscripts) for tuples, R (with under-

scripts) for relations, and S (with underscripts) for relation schemata, respectively.

2.3.1.2 Functional Dependencies (FDs)

A functional dependency X → Y defines a mapping between the instances of two attribute

sets, such that each distinct value (tuple) of the first set (X) uniquely determines a value

(tuple) of the second set (Y).

Definition (Functional Dependency). Let R be a relation, S be the schema of R, and X,Y

⊆ S, then

2Today, domain constraints in SQL are usually implemented by CHECK clauses which are appended
to the column definitions of the create table statements.

Ch. 2 Traditional Data Models and Data Representation Concepts 33

X → Y ::=

∀ t1, t2 ∈ R: t1[X]=t2[X] =⇒ t1[Y]=t2[Y].

That is, whenever two tuples t1 and t2 of a relation R with attributes (relation schema)

S, such that X,Y ⊆ S match on X, then they also match on Y . Recall the ER-Schema in

Figure 2.1. Table 2.1 shows a relation which represents the occurence set of the Employee

entity type.

Ssn Firstname Lastname Title Birthdate Address Sex Salary

12349875 David Miller Dr. 1966/04/23 Berlin m 117,000
78654312 Sven Martin 1965/04/15 Paris m 98,000
23456798 Mary-Ann Miller 1965/04/15 Berlin f 98,000
34215672 Jon Smith 1949/11/17 Kingston m 250,000

Table 2.1: Employee Relation.

Here, the Employee’s social security number (Ssn) determines his Firstname, Lastname,

Title, Birthdate, Address, Sex and Salary, the Employee’s Firstname and Lastname

together determine his Ssn, Firstname, Lastname, Title, Address, Sex and Salary,

and the Employee’s Lastname determines his Address, such that we have:

• {Ssn} → {Firstname,Lastname,Title,Birthdate,Address,Sex,Salary}
• {Firstname,Lastname} → {Ssn,Title,Birthdate,Address,Sex,Salary}
• {Lastname} → {Address}

This way, another representation of the database could be given by the relations shown

in Table 2.2.

Ssn Firstname Lastname Address

12349875 David Miller Berlin

78654312 Sven Martin Paris

23456798 Mary-Ann Miller Berlin

34215672 Jon Smith Kingston

Firstname Lastname Title Birthdate Sex Salary

Jon Smith 1949/11/17 m 250,000

David Miller Dr. 1966/04/23 m 117,000

Mary-Ann Miller 1965/04/15 f 98,000

Sven Martin 1965/04/15 m 98,000

Table 2.2: Decomposing the Employee Relation.

However, the third functional dependency, {Lastname} → {Address}, is not given when

a further tuple is added to the relation, as shown in Table 2.3.

34 Part I Database Design and Database Maintenance

Ssn Firstname Lastname Title Birthdate Address Sex Salary

12349875 David Miller Dr. 1966/04/23 Berlin m 117,000
78654312 Sven Martin 1965/04/15 Paris m 98,000
23456798 Mary-Ann Miller 1965/04/15 Berlin f 98,000
34215672 Jon Smith 1949/11/17 Kingston m 250,000
78124367 Susan Smith 1957/07/12 New York f 140,000

Table 2.3: Adding Another Record to the Employee Relation.

Axioms for Functional Dependencies and Decompositions of Relation Sche-

mata. Functional dependencies are the fundamental of lossless decompositions of rela-

tion schemata. The axioms (Amstrong axioms) which hold for functional dependencies

are informally described by Table 2.4.

Decomposition and Composition. Many authors consider functional dependencies

only in the from {X} → a such that the right-hand-side is a single attribute. But,

we consider here the right-hand-sides as sets, such that functional dependencies can

be decomposed and composed without loss of information. That is

1. from X → {a,b,c,d,...} we can derive X → {a}, X → {b}, and so forth,

2. and, if X→Y and X→Z, then X → Y ∪Z holds as well.

Inclusion. For each attribute set X and attribute set Y such that Y⊆X
X → Y holds.

Augmentation. For any attribute a:

if X→Y , then X∪{a}→Y .

Transitivity. Transitivity holds for functional dependencies:

X→Y ∧ Y→Z =⇒ X→Z.

Table 2.4: Axioms for Functional Dependencies.

From the axioms, we can evaluate minimal covers of the sets of functional dependencies

(FDs). E.g. there exists an algorithm that evaluates a minimal set of functional depen-

dencies from a given FD set, such that all functional dependencies (the closure) can be

evaluated from the minimal set, by using the axioms in Figure 2.4. E.g., for the FDs

of the relation in Figure 2.3, {Ssn}→{Firstname,Lastname,Title,Birthdate,Address,
Sex,Salary} and {Firstname,Lastname}→{Ssn,Title,Birthdate,Address,Sex,Salary},
we obtain the minimal set of functional dependencies

• {Ssn} → {Firstname,Lastname}, and

• {Firstname,Lastname} → {Title,Birthdate,Sex,Salary}.

Ch. 2 Traditional Data Models and Data Representation Concepts 35

The decomposition of the Employee relation according these FDs is shown in Figure 2.5.

R1

Ssn Firstname Lastname

12349875 David Miller

78654312 Sven Martin

23456798 Mary-Ann Miller

34215672 Jon Smith

78124367 Susan Smith

R2

Firstname Lastname Title Birthdate Address Sex Salary

Jon Smith 1949/11/17 Kingston m 250,000

Susan Smith 1957/07/12 New York f 140,000

David Miller Dr. 1966/04/23 Berlin m 117,000

Mary-Ann Miller 1965/04/15 Berlin f 98,000

Sven Martin 1965/04/15 Paris m 98,000

Table 2.5: Decomposing the Employee Relation according Functional Dependencies.

Since now joining the two relations of the decomposition, such that t1 is a tuple of relation

R1, t2 is a tuple of relation R2, and

t1[Firstname,Lastname] = t2[Firstname,Lastname] ,

restores the old relation (Table 2.3), this decomposition is also denoted lossless.

Key Dependencies (KDs). A key dependency is a special functional dependency, such

that the left-hand-side determines all attributes of the relation schema. Considering the

first example relation of this Section (Table 2.1) with its functional dependencies,

1. {Ssn} → {Firstname,Lastname,Title,Birthdate,Address,Sex,Salary},

2. {Firstname,Lastname} → {Ssn,Title,Birthdate,Address,Sex,Salary},

3. and {Lastname} → {Address},

the 1st FD and the 2nd FD are key dependencies, whereas the 3th FD ({Lastname} →
{Address}) is not a key dependency. Considering the second example relation (Table 2.3)

both functional dependencies are key dependencies.

In the decomposition of the second relation (Table 2.5) we did choose {Ssn} as the key

of R1

• thus creating the functional key dependency

{Ssn} → {Firstname,Lastname},

and {Firstname,Lastname} as the key of R2

• thus creating the functional key dependency

{Firstname,Lastname} → {Title,Birthdate,Address,Sex,Salary}.

However, as one might infer from the axioms in Table 2.4, this is not the only possibility

for the lossless decomposition of the relation in Table 2.5.

36 Part I Database Design and Database Maintenance

2.3.1.3 Inclusion Dependencies (IDs)

Functional dependencies (FDs) are considered as intrarelational. Inclusion dependencies,

on the other hand, are considered as interrelational; that is, they specify equalities between

values (or combinations of values) which are contained in different relations. An inclusion

dependency Rx[X] ⊆ Ry[Y] specifies that all tuples in Rx[X] must be contained in Ry[Y].

Definition (Inclusion Dependency). Let Rx, Ry be relations, Sx be the schema of Rx, Sy

be the schema of Ry, such that X⊆Sx and Y⊆Sy, and the attributes of the sequences X

and Y are pairwise type-compatible, then

Rx[X] ⊆ Ry[Y] ::=

∀ tx ∈ Rx: ∃ ty ∈ Ry: ty[Y]=tx[X]

Consider relation R1 and relation R2 in Table 2.5. Here, the following inclusion depen-

dencies are given

• R1[Firstname,Lastname] ⊆ R2[Firstname,Lastname], and

• R2[Firstname,Lastname] ⊆ R1[Firstname,Lastname],

because the tuple sets of R1 and R2 are equal on the attributes [Firstname,Lastname].

Such mutual inclusion dependencies are rather unfrequent. Therefore, let us consider

the following example: A Manager is an Employee, and the Manager relation has

the schema {Ssn,DeptNumber} and key {Ssn}. Thus, we obtain Manager[Ssn] ⊆
Employee[Ssn], but Employee[Ssn] ⊆ Manager[Ssn] does not hold.

Referential Dependencies (REFs). Since relational databases are value-based, ref-

erential dependencies are value-based as well– unlike the pointers of hierarchical databases

and network databases. Therefore, referential dependency and inclusion dependency in

relational databases are often used as synonyms, because the values of tx[X] (tx is tuple

in Rx) are used as reference to a tuple ty in Ry (tx[X] = ty[Y]). The latter mentioned ID

Manager[Ssn] ⊆ Employee[Ssn] is a typical referential dependency.

2.3.2 Normal Forms for Relational Schemata

Normal forms are describing the transformation of a single relation schema into a set of

relation schemata such that

• the mapping of data is non-redundant (the same relations between data are not

repeated),

• functional dependencies are controlled by the structuring of the new schemata,

• and operations (insert, delete, update) do not generate undesired results, according

that FDs are violated.

Ch. 2 Traditional Data Models and Data Representation Concepts 37

2.3.2.1 First Normalform (1NF)

One of the most fundamental assumptions of the relational data model is that data is

represented in the form of flat tables, called first-normalform assumption. This way a

relation attribute is not allowed to carry values of records, lists, or sets, for instance.

However relational database implementations which use repeating groups of attributes,

e.g. Firstname1, Firstname2, and Firstname3, are sometimes considered to be not

1NF, although this is not really true– because of the atomar domains (of Firstname1,

Firstname2, and Firstname3, respectively).

(NF)2 Relations. Relation schemata which really use record-typed, list-typed, or set-

typed attributes, are called non-first-normal-form ((NF)2). As we will see in Section

3.3.2, normalization can also take place for such (NF)2 relations. However, we will

characterize the traditional normal forms firstly.

2.3.2.2 Second Normalform (2NF)

Second normalform (2NF) is based on the concept of full functional dependency. Con-

sider the left relation in Table 2.2, which contains the functional dependencies {Ssn}
→ {Firstname,Lastname} and {Lastname} → {Address}. Since {Lastname} is not

a key for that relation, the functional key dependency {Ssn,Lastname} → {Address}
is contained in the relation as well, such that {Address} is not anymore fully functional

dependent on the candidate key {Ssn,Lastname}. Therefore, this relation is said to be

not 2NF. Second normalform (2NF) requires relations to contain no partial FDs and to

use minimal keys.

2.3.2.3 Third Normalform (3NF)

Third normalform (3NF) requires that no transitive functional dependencies are contained

in a single relation schema. Consider again the relation shown in Table 2.3. From the min-

imal set of functional dependencies for this relation, {Ssn} → {Firstname,Lastname}
and {Firstname,Lastname} → {Title,Birthdate,Address,Sex,Salary} we can derive

{Ssn} → {Title}, which is transitive and included in that relation. Therefore, the re-

lation in Table 2.3 is not 3NF. However, the relations R1 and R2 in Table 2.5 are 3NF,

because no transitive functional dependency is contained in one of the relations, R1 or

R2. 3NF can be derived for each relation schema R and set of functional dependencies F

using the algorithm shown in Table 2.6.

2.3.2.4 Boyce-Codd Normalform (BCNF)

Boyce-Codd normalform (BCNF) restricts each functional dependency to be a key depen-

dency (the left-hand-side of each functional dependency must be a superkey for the relation

38 Part I Database Design and Database Maintenance

1. Find a minimal cover Fmin from the set of functional dependencies F .

2. As long as there are f1 = A→B and f2 = A→C in Fmin (with equal left-hand-sides)

add A → B∪C to Fmin, and delete f1 and f2.

3. Create a separate relation for each functional dependency in Fmin; that is, foreach

A→B ∈ Fmin create a relation based on the schema, A∪B, and the key A. Let the

set of the new relations be RS.

4. If there is no relation schema R′ in RS, such that the key of R′ functionally deter-

mines (directly or indirectly, by the axioms in Table 2.4) all attributes in R, then

add a relation to RS such that its schema is a common key for all attributes of

the relations in RS. That is, unite all keys (sets of key attributes) of the relation

schemata in RS, whose key is not contained in any set of non-key attributes (right-

hand-side of a functional dependency in Fmin) of some other relation schema in RS.

The union of those keys is used to create a separate relation, whose key is the whole

schema of that relation.

5. Delete all relations R1 from RS, whose schema is contained in another R2 in RS,

and attach the functional dependency from which R1 was constructed to R2.

Table 2.6: Algorithm which derives a minimal set of Relation Schemata that is 3NF.

schema in which the attributes of the functional dependency are included). BCNF includes

3NF, but, presupposing that the set of normalized result schemata does not contain any

relation schema that is included in another relation schema in that set, BCNF can not be

derived for each relation schema and set of functional dependencies (as it is possible for

3NF). Assume a relation schema R is given by the attribute set {a,b,c}, and the set of

functional dependencies is {{a,b}→{c},{c}→{a}}. Thus, R is in 3NF, but not in BCNF,

because {c} of the FD {c}→{a} is not a superkey of R.

For this example, the 3NF normalization algorithm in Table 2.6 generates firstly two

relation schemata, R1 = {a,b,c} and R2 = {c,a}, but then deletes R2 (by the 5th step),

since its attribute set is included in R1, such that we have the non-(super)key functional

dependency {c}→{a} in R1 again.

2.3.3 Further Normalization

2.3.3.1 Multivalued Dependencies (MDs)

For reason of the first-normalform assumption, the relational model does not support

domains for more than one value, such as list and set. To consider such non-atomic

Ch. 2 Traditional Data Models and Data Representation Concepts 39

values as well, Fagin introduced multivalued dependencies (MDs) in 1977 [Fag77]. MDs

are specifying mappings between attributes X and Y such that each tuple on X is related

to a set of tuples on Y . Formally, an MD can be described as follows:

Definition (Multivalued Dependency). Let R be a relation, S be the schema of R, X,Y ⊆
S, Z = S\(X∪Y) and Z 6=6 0, then

X →→ Y ::=

∀ t1,t2 ∈ R: t1[X]=t2[X] ∧ t1[Y] 6=t2[Y] ∧ t1[Z]=t2[Z]

∧ ∃ t3 ∈ R: t3[X]=t1[X] ∧ t3[Y]=t1[Y] ∧ t3[Z]6=t1[Z] =⇒
∃ t4 ∈ R: t4[X]=t1[X] ∧ t4[Y]=t2[Y] ∧ t4[Z]=t3[Z]

A functional dependency can be considered as a special case of multivalued dependency,

such that the instance of the attribute set of the right-hand-side is only a singleton set.

Equality-generating and Tuple-generating Dependencies. FDs are considered as

equality-generating dependencies, since they specify restrictions on the equality of tuples

that must be given by a concrete database instance at any time. IDs and MDs require

the existence of additional tuples in database relations. They are therefore called tuple-

generating.

2.3.3.2 Fourth Normalform (4NF)

Fourth normalform (4NF) was developed to resolve these problems of additional tuples

that have to exist or must be generated:

A relation R with schema S is in 4NF, if for each non-trivial MD X →→ Y

in F+, which is the cover of the functional and multivalued dependencies F ,

of the dependencies defined for R, X is a superkey of R.

This way, relations of a 4NF database must have only attributes of a functional or mul-

tivalued dependency; there must not be a relation that has more than one multivalued

dependency, such that the tuple-generating property of an MD is implicitely given. For

reason that an FD is a special case of an MD restricting that the right-hand-side at-

tribute set has only instances which are singleton sets, a relation schema that is 4NF is

also BCNF.

2.3.3.3 Join Dependencies (JDs)

A join dependency (JD) is based on the fact, whether the join of sub-relations (R11R21...)

which are won by decomposing a relation R into R1,R2,... restores R or not. If R

is decomposed into R1,R2,R3,R4 and R11R21R31R4 = R then the join dependency

JD(R,{R1,R2,R3,R4}) is said to hold.

40 Part I Database Design and Database Maintenance

Multivalued dependencies (MDs) are a special case of join dependency, such that a

relation is decomposed into two sub-relations only. So, if there is a relation R with schema

S and X,Y ,Z ⊂ S, Z = S\(X∪Y), X →→ Y , then after decomposing R into R1 with

schema X∪Y and R2 with schema X∪Z, the join dependency JD(R,{R1,R2}) holds.

2.3.3.4 Fifth Normalform (5NF)

Fifth normalform (5NF) is given for a relation R if not any join dependency of sub-

relations of R holds. Otherwise, to transform R into 5NF, it must be decomposed into

the sub-relations for which the join dependency holds.

2.3.3.5 Domain-Key Normalform (DKNF)

The idea of domain-key normalform (DKNF) is to consider all possible constraints, which

hold for a relation. That are domain constraints and data dependencies (FD,ID,MD,JD)

as well. Besides the domain constraints considered in Section 2.3.1.1, domain constraints

are also given by the equality-generating property of FDs, for instance. Consider the

relation in Table 2.7, where δ1 and δ2 represent unknowns.

Firstname Lastname Department Manager

David Miller Computer Science Miller
Sven Martin Computer Science Miller
Mary-Ann Miller Mathematics Newman
Jon Smith Computer Science δ1

Susan Smith Mathematics δ2

Table 2.7: A Relation with unkowns.

From the relation we could assume the FD {Department} → {Manager}, which could

be derived from the upper two tuples. This way, we could assign the following values to

the unknowns: δ1=”Miller” and δ2=”Newman”.

In Table 2.8 we see another relation. Let us assume that for the relation in Table 2.8 the

following MDs hold

{Firstname,Lastname} →→ {Project} and {Firstname,Lastname} →→ {Skill}.

But then, presupping that the relation contains the seven upper tuples, the last two

tuples (Jon,Smith,Analysis,Engineering) and (Jon,Smith,Analysis,Physics) must be

contained as well.

On the other hand, if it is really known that the FD {Department} → {Manager} is

valid for the relation in Table 2.7 and the two above MDs are valid for the relation in

Table 2.8, then the equality-generation and tuple-generation must take place. The best

way to do that is to normalize the relations according 3NF (Table 2.7) and 4NF (Table

Ch. 2 Traditional Data Models and Data Representation Concepts 41

Firstname Lastname Project Skill

Sven Martin Development Computers
Sven Martin Analysis Computers
Sven Martin Development Philosophy
Sven Martin Analysis Philosophy
David Miller Documentation Computers
David Miller Analysis Computers
Mary-Ann Miller Analysis Mathematics
Jon Smith Implementation Engineering
Jon Smith Analysis Physics
Susan Smith Analysis Philosophy
Jon Smith Analysis Engineering
Jon Smith Implementation Physics

Table 2.8: A Relaion with possible MDs, which generate additional Tuples.

2.8): the relations are decomposed, such that the relations of the decomposition are in a

normalized form, respectively. Table 2.9 and 2.10 show how the normalized relations look

like.

Firstname Lastname Department

David Miller Computer Science
Sven Martin Computer Science
Mary-Ann Miller Mathematics
Jon Smith Computer Science
Susan Smith Mathematics

Department Manager

Computer Science Miller
Mathematics Newman

Table 2.9: Normalizing the Relation of Table 2.7.

However, as we have seen by the example relations, normalization is not a panacea for

database design; even though it deletes multiple functional and multivalued dependencies

from a single relation schema it generates inclusion dependencies which must be addition-

ally maintained be the DBMS.

2.3.4 Further Data Dependencies for Relational Databases

In Section 2.3.1 and 2.3.3 we have already considered functional dependencies (FDs),

key dependencies (KDs), inclusion dependencies (IDs), referential dependencies (REFs),

multivalued dependencies (MDs), and join dependencies (JDs). These dependencies are

equality-generating or tuple-generating. We will now present three additional dependency

types, such that the first one generally can not be classified as equality-generating or tuple-

generating, and the last two ones are neither equality-generating nor tuple-generating.

42 Part I Database Design and Database Maintenance

Firstname Lastname Project

Sven Martin Development
David Miller Documentation
David Miller Analysis
Mary-Ann Miller Analysis
Jon Smith Implementation
Jon Smith Analysis
Susan Smith Analysis

Firstname Lastname Skill

Sven Martin Computers
Sven Martin Philosophy
David Miller Computers
Mary-Ann Miller Mathematics
Jon Smith Engineering
Jon Smith Physics
Susan Smith Philosophy

Table 2.10: Normalizing the Relation of Table 2.8.

The first type of data dependency which we will consider now, are cardinality constraints.

The others are exclusion dependencies and afunctional dependencies, which may be char-

acterized as unequality-generating.

2.3.4.1 Cardinality Constraints (CCs)

In this work we use cardinality constraints instead of multiplicities, which we had used

in Figure 2.1. These may also be specified for entity-relationship schemata, and are here

considered in the meaning of participation constraints, such that card(R1,R2) = (m,n)

with relations R1 and R2 expresses that each member of relation R2 has at least m and

at most n associated tuples in relation R1. Whenever we use cardinality constraints in

the graphical schema (entity-relationship schema, relational schema, or as we will see,

object model) we draw the cardinality (m,n) on the line or arrow between R1 and R2,

such that it is closer to the second relation type (respectively entity type, relationship

type, or class), R2.

2.3.4.2 Exclusion Dependencies (EDs)

An exclusion dependency (ED) describes that the value sets (or tuple sets) of two relations–

or projections of relations –are mutual exclusive. Assume the mutual exclusion is for the

attribute sequence X of relation Rx and the attribute sequence Y of relation Ry, which

is denoted by the term Rx[X]‖Ry[Y].

Definition (Exclusion Dependency). Let Rx, Ry be relations, Sx be the schema of Rx, Sy

be the schema of Ry, X⊆Sx, Y⊆Sy, and the attributes of the sequences X and Y are

pairwise type-compatible, then

Rx[X] ‖ Ry[Y] ::=

∀ tx ∈ Rx: 6 ∃ ty ∈ Ry: ty[Y]=tx[X]

That tuples which are in Ry[Y] must not be in Rx[X] (∀ ty ∈ Ry: 6 ∃ tx ∈ Rx: tx[X]=ty[Y])

is given implicitely. This way the tuple sets are distinct (Rx[X]∩Ry[Y] = 6 0).

Ch. 2 Traditional Data Models and Data Representation Concepts 43

2.3.4.3 Afunctional Dependencies (ADs)

Functional dependencies (X → Y) describe a unique mapping from the attribute set of the

left-hand-side (X) to the attribute set of the right-hand-side (Y). This restricts tuples

to be equal on Y whenever tuples are equal on X. An afunctional dependency (AD)

describes the opposite case. That is, two tuples t1,t2 in a relation R must not be equal

on Y whenever they are equal on X. Formally, an afunctional dependency (X 6→ Y) is

specified by:

Let R be a relation, S its schema, X,Y ⊂ S.

X 6→ Y ::=

∀ t1,t2 ∈ R, t1<>t2: t1[X]=t2[X] =⇒ t1[Y] 6=t2[Y].

However, since ADs are specially considered by the semantics acquisition part of the

RADD project (see for instance [Alb94])), they are not looked at any further here.

The unequality-generating property of EDs and ADs makes it not possible to imple-

ment them by the structure of the database such that they were considered by normal-

ization and a special normal form.

2.3.5 Relational Database Implementation

Recall the ER representation of the Company Schema (Figure 2.1) and the network im-

plementation schema of it (Figure 2.7). Figure 2.9 shows the relational database schema

that implements the Company database.

DeptLoc
Dnumber
Location

works_on
EmpSsn

ProjNumber
Hours

Name

Project
Pnumber

Duration
ProjStartDate

Location
LeaderSsn
ContrDept

Department
Dnumber

Name
MgrSsn

MgrStartDate
SuperDept

supervises

controls

works_for

leads

works_on
has_workers

located

managed_by
Employee

Ssn
Birthdate

Firstname1
Firstname2
Firstname3
Lastname

Title
Address

Sex
Role

Skill1
Skill2
Skill3

Salary
DeptName

Figure 2.9: The Relational Schema for Implementation of the Company Database.

44 Part I Database Design and Database Maintenance

2.3.5.1 Properties of the Relational Database Implementation

As mentioned above, the schema of a relational database need not necessarily to be

hierarchical. So, Figure 2.9 contains the relation Employee which has a foreign-key

to Department (DeptName) which represents his works for property, and reversally,

Department has with the Department Manager attribute (MgrSsn) a foreign-key to

Employee. Department has another foreign-key attribute (SuperDept) which is a refer-

ence to the Department which supervises that Department (if there is one). This way,

the relational code (SQL-code) for the definition of these tables, their keys and foreign-

keys, as well as for definition of the indices, views, and triggers can be given as shown in

Figure 2.10.

In the CREATE TABLE statements for the Department relation in Figure 2.10, we

have left the MgrSsn attribute with null (there is no NOT NULL clause for that at-

tribute), such that it is possible to insert the first Department without having already

the Employee who is the Department’s manager:

insert into Department (Dnumber,Name)

values (’11.3.1’,’Computer Science’);

Subsequently it is possible to insert the Departments which are dependent on the Com-

puter Science department, e.g.:

insert into Department (Dnumber,Name,SuperDept)

values (’11.3.2’,’Software Development’,’11.3.1’);

We have also included the attribute Role in the Employee relation which is used to rep-

resent the according role of the employee. The allowed values for the Role attribute are

’m’, ’l’, ’w’, ’s’, and ’a’, which is ensured by the CHECK clause in the lines which spec-

ify that attribute. For these roles we have created the updatable VIEWs DeptManager,

Secretary, and Assistant. Views are updatable if they are specified for only one rela-

tion (such that they do not formulate a join or contain sub-selects). ProjLeader and

ProjWorker are not updatable. Views are insertable if all mandatory attributes (NOT

NULL attributes) are included in the select statement’s attribute list. In this example,

the WITH CHECK OPTION clause of the view definitions for DeptManager, Secretary,

and Assistant automatically takes care that the correct value is used whenever an insert

statement is issued according that view. Hence, it is possible to specify the command

insert into DeptManager

(Ssn,Role,Birthdate,Sex,Firstname1,Lastname,Title,Skill1,DeptName,Salary)

values

(’123456789’,’m’,’1996/04/23’,’m’,’David’,’Miller’,’Dr.’,

’Computers’,’Computer Science’,’117000’);

which the DBMS handles as if the following command were used:

Ch. 2 Traditional Data Models and Data Representation Concepts 45

CREATE TABLE Department (
Dnumber DECIMAL(6,2) NOT NULL,
Name CHAR(20) NOT NULL,
MgrSsn DECIMAL(9),
MgrStartDate DATETIME,
SuperDept DECIMAL(6,2),
CONSTRAINT DeptPK_a1 PRIMARY KEY (Dnumber),
CONSTRAINT DeptFK_a6 FOREIGN KEY (SuperDept)

REFERENCES Department(Dnumber)
);

CREATE UNIQUE INDEX DeptUX_a2 ON Department(Name);

REVOKE UPDATE ON Department.Dnumber,Department.Name
FROM ALL;

CREATE TABLE DeptLoc (
Dnumber DECIMAL(6,2) NOT NULL,
Location VARCHAR(20) NOT NULL,
CONSTRAINT DLocPK_a2 PRIMARY KEY (Location),
CONSTRAINT DLocFK_a1 FOREIGN KEY (Dnumber)

REFERENCES Department(Dnumber)
ON DELETE CASCADE

);

CREATE INDEX DLocIX_a1 ON DeptLoc(Dnumber);

CREATE TABLE Employee (
Ssn DECIMAL(9) NOT NULL,
Role CHAR(1) NOT NULL
CHECK (Role IN (’m’,’l’,’w’,’s’,’a’)),

Birthdate DATETIME NOT NULL,
Sex CHAR(1) CHECK (Sex IN (’m’,’f’)),
Firstname1 VARCHAR(15) NOT NULL,
Firstname2 VARCHAR(15),
Firstname3 VARCHAR(15),
Lastname VARCHAR(20) NOT NULL,
Title VARCHAR(10),
Address VARCHAR(40),
Skill1 VARCHAR(20) NOT NULL,
Skill2 VARCHAR(20),
Skill3 VARCHAR(20),
DeptName VARCHAR(20) NOT NULL,
Salary FLOAT NOT NULL,
CONSTRAINT EmpPK_a1 PRIMARY KEY (Ssn)

);

CREATE INDEX EmpIX_a25 ON Employee(Firstname1,Lastname);
CREATE INDEX EmpIX_a15 ON Employee(DeptName);

CREATE TRIGGER EmpTriggerDept
AFTER INSERT OR UPDATE ON Employee FOR EACH ROW

DECLARE dummy VARCHAR(20);
BEGIN

SELECT Name INTO dummy FROM Department
WHERE Name = :NEW.DeptName;

IF SQLCODE <> 0 THEN
raise_application_error(-11179, ’Department ’ ||

:NEW.DeptName || ’ does not exist!’);
END IF;

END;

CREATE TABLE Project (
Pnumber DECIMAL(12) NOT NULL,
Name VARCHAR(30) NOT NULL,
ContrDept DECIMAL(6,2) NOT NULL,
LeaderSsn DECIMAL(9) NOT NULL,
Location VARCHAR(20) NOT NULL,
ProjStartDate DATETIME,
Duration SMALLFLOAT,
CONSTRAINT ProjPK_a1 PRIMARY KEY (Pnumber),
CONSTRAINT ProjFK_a3 FOREIGN KEY (ContrDept)

REFERENCES Department(Dnumber),
CONSTRAINT ProjFK_a4 FOREIGN KEY (LeaderSsn)

REFERENCES Employee(Ssn)
);

CREATE INDEX ProjIX_a2 ON Project(Name);

CREATE TABLE works_on (
EmpSsn DECIMAL(9) NOT NULL,
ProjNumber DECIMAL(12) NOT NULL,
Hours SMALLFLOAT,
CONSTRAINT woPK_a12 PRIMARY KEY (EmpSsn,ProjNumber),
CONSTRAINT woFK_a1 FOREIGN KEY (EmpSsn)

REFERENCES Employee(Ssn),
CONSTRAINT woFK_a2 FOREIGN KEY (ProjNumber)

REFERENCES Project(Number)
);

ALTER TABLE Depparmemt ADD (
CONSTRAINT DeptFK_a3 FOREIGN KEY MgrSsn

REFERENCES Employee(Ssn);
);

CREATE INDEX woIX_a2 ON works_on(ProjNumber);

CREATE TRIGGER handle_dept_ins
AFTER INSERT ON Department

BEGIN
IF :NEW.MgrSsn IS NOT NULL THEN

UPDATE Employee SET Role = ’m’ WHERE Ssn = :NEW.MgrSsn;
END IF;

END;

CREATE TRIGGER handle_dept_del
AFTER DELETE ON Department
FOR EACH ROW

BEGIN
IF :OLD.MgrSsn IS NOT NULL THEN

UPDATE Employee SET Role = ’a’ WHERE Ssn = :OLD.MgrSsn;
UPDATE Employee SET Role = ’w’ WHERE Ssn = :OLD.MgrSsn

AND Ssn IN (SELECT EmpSsn FROM works_on);
UPDATE Employee SET Role = ’l’ WHERE Ssn = :OLD.MgrSsn

AND Ssn IN (SELECT LeaderSsn FROM Project);
END IF;

END;

CREATE TRIGGER handle_dept_upd
AFTER UPDATE ON Department
FOR EACH ROW

BEGIN
IF :OLD.MgrSsn IS NULL and :NEW.MgsSsn IS NOT NULL
OR :OLD.MgrSsn IS NOT NULL and :NEW.MgsSsn IS NULL
OR :OLD.MgrSsn <> :NEW.MgsSsn THEN
UPDATE Employee SET Role = ’a’ WHERE Ssn = :OLD.MgrSsn;
UPDATE Employee SET Role = ’w’ WHERE Ssn = :OLD.MgrSsn

AND Ssn IN (SELECT EmpSsn FROM works_on);
UPDATE Employee SET Role = ’l’ WHERE Ssn = :OLD.MgrSsn

AND Ssn IN (SELECT LeaderSsn FROM Project);
UPDATE Employee SET Role = ’m’ WHERE Ssn = :NEW.MgrSsn;

END IF;
END;

CREATE VIEW DeptManager
(Ssn,Role,Birthdate,Sex,Firstname1,Firstname2,Firstname3,
Lastname,Title,Address,Skill1,Skill2,Skill3,DeptName,Salary)

AS SELECT Ssn, Role, Birthdate, Sex, Firstname1, Firstname2,
Firstname3, Lastname, Title,, Address,
Skill1, Skill2, Skill3, DeptName, Salary

FROM Employee WHERE Role = ’m’
WITH CHECK OPTION;

CREATE VIEW ProjLeader
(Ssn,Role,Birthdate,Sex,Firstname1,Firstname2,Firstname3,
Lastname,Title,Address,Skill1,Skill2,Skill3,DeptName,Salary)

AS SELECT Ssn, Role, Birthdate, Sex, Firstname1, Firstname2,
Firstname3, Lastname, Title,, Address,
Skill1, Skill2, Skill3, DeptName, Salary

FROM Employee
WHERE Role = ’l’ OR Ssn IN (SELECT LeaderSsn FROM Project);

CREATE VIEW ProjWorker
(Ssn,Role,Birthdate,Sex,Firstname1,Firstname2,Firstname3,
Lastname,Title,Address,Skill1,Skill2,Skill3,DeptName,Salary)

AS SELECT Ssn, Role, Birthdate, Sex, Firstname1, Firstname2,
Firstname3, Lastname, Title,, Address,
Skill1, Skill2, Skill3, DeptName, Salary

FROM Employee
WHERE Role = ’w’ OR Ssn IN (SELECT EmpSsn FROM works_on);

CREATE VIEW Secretary
(Ssn,Role,Birthdate,Sex,Firstname1,Firstname2,Firstname3,
Lastname,Title,Address,Skill1,Skill2,Skill3,DeptName,Salary)

AS SELECT Ssn, Role, Birthdate, Sex, Firstname1, Firstname2,
Firstname3, Lastname, Title,, Address,
Skill1, Skill2, Skill3, DeptName, Salary

FROM Employee WHERE Role = ’s’
WITH CHECK OPTION;

CREATE VIEW Assistant
(Ssn,Role,Birthdate,Sex,Firstname1,Firstname2,Firstname3,
Lastname,Title,Address,Skill1,Skill2,Skill3,DeptName,Salary)

AS SELECT Ssn, Role, Birthdate, Sex, Firstname1, Firstname2,
Firstname3, Lastname, Title,, Address,
Skill1, Skill2, Skill3, DeptName, Salary

FROM Employee WHERE Role = ’a’
WITH CHECK OPTION;

Figure 2.10: Definition of the Tables, Keys, Foreign-Keys, Indices, Triggers, and Views

for the Company Database.

46 Part I Database Design and Database Maintenance

insert into Employee

(Ssn,Role,Birthdate,Sex,Firstname1,Firstname2,Firstname3,

Lastname,Title,Address,Skill1,Skill2,Skill3,DeptName,Salary)

values

(’123456789’,’m’,’1996/04/23’,’m’,’David’,NULL,NULL,

’Miller’,’Dr.’,NULL,’Computers’,NULL,NULL,’Computer Science’,’117000’);

However, the following would be rejected by the DBMS

insert into DeptManager

(Ssn,Role,Birthdate,Sex,Firstname1,Lastname,Title,Skill1,DeptName,Salary)

values

(’123456789’,’w’,’1996/04/23’,’m’,’David’,’Miller’,’Dr.’,

’Computers’,’Computer Science’,’117000’);

because DeptManager is restricted have the role ’m’, but this statement uses ’w’ as value

for the Role attribute.3

Updating the Department’s Dnumber or Name is forbidden by the REVOKE state-

ment. But, since it is not forbidden to update theMgrSsn, MgrStartDate, and SuperDept

attribute of the Department relation, David Miller can subsequently become really the

manager of the Computer Science department:

update Department set MgrSsn = ’123456789’ where Dnumber = ’11.3.1’;

2.3.5.2 Properties of some Special RDBMSs

Relational DBMSs (RDBMSs) of today, e.g. Ingres, Informix, Oracle, or Sybase, use

data storage techniques based on ISAM and Btree organization. We will consider these

in the Cost Model Section of the RADD/raddstar Conceptual Database Design Opti-

mizer (Chapter 5). However, some important properties of relational database and data-

base application implementations which are essential for the behavior considerations and

transaction cost evaluations, such that we want to mention them already here, are:

1. Flexible data types. RDBMSs of today support more flexible data types than those

originally considered by the relational data model. These are, for instance, variable-

length character strings (varchar), unlimited text strings (text), or large objects

(binary large objects BLOBs, or character large objects CLOBs). LOBs allow to

store individual forms of data by the database, such as scientific data or images.

2. SQL interfaces. In the past, often third-generation-language (3GL) programs were

used. These base on a programming language, such as C, and embed SQL statements

by means of special directives. Then a preprocessor had to be run on that embed-

ded SQL programs to produce the pure code which is understandable to the (C-)

3Unfortunately, traditional RDBMSs, such as Informix, Ingres, or Oracle7, do not support view inserts,
such that when issuing insert into DeptManager the Role value– which is always ’m’ –could be omitted.

Ch. 2 Traditional Data Models and Data Representation Concepts 47

compiler. RDBMSs of today provide higher level fourth-generation-language (4GL)

interfaces whose language includes SQL and procedural programming language el-

ements, such as declaration of variables and cursors, or use of loops. Dynamic SQL

which is applicable in 3GL and 4GL programs allows to code SQL statements into

strings which are dynamically constructed, and to PREPARE and EXECUTE them.

This way, applications which support functionalities that are normally reserved to

the database administration tools, e.g. creatdb or SQLDBA, can be created.

3. Locks.

(a) General lock handling. Some RDBMSs handle transactions such that the one

who issues the database retrievals sets the access permissions for himself. E.g.,

an Ingres user must specify if he wants to read only data that are in commit-

ted state, or he wants to do “dirty reads” as well, by the SET LOCKMODE

SESSION command. The user of Informix or Oracle who makes modifications

to the data, sets the authorizations whether other users have read access to

the data which are currently modified by him– by specifying “exclusive” and

“shared” locks with the help of the LOCK TABLE command. The user of

Oracle also has the possibility to establish transactions as read-write or read-

only, and to determins (by the isolation level) whether as transaction issuing

a DML statement fails (serializable) or waits (read committed) when wanting

to read data that are locked by another, uncommitted transaction.

(b) Granularity of locks. Locks can be set on sets of relations, that the user wants

to modify (or read), single relations, or single records. Options for relation and

record locking are specified by the create table or alter table commands, e.g.

“LOCK MODE IS ROW”.

(c) Locks on data that are read by the transaction herself. It is further possible

that the DBMS allows or allows not to change the content of a table that is

currently read– even if it is read by the same user who makes the modification.

This can usually be configured by the startup files for the database server

processes, so using Oracle by the initDB.ora file. This file defines buffer sizes for

undoing transactions and the concurrent execution of database modifications

(shared pool size) and for the maximum number of operations which include

retrievals (open cursors). Besides select and special cursor operations that are

specified by means of a select statement, insert operations which include a check

for foreign-key values, e.g. the insert operation on the Employee relation which

ensures that the value of DeptName is contained as Name in Department,

are using such cursors. Therefore, having defined the open cursors value high

enough in the initDB.ora file, it is possible to have an application interface

which has a range of drop-down lists that are filled using database selects, and

48 Part I Database Design and Database Maintenance

to issue the command

delete from Department
where SuperDept is not null
and not Dnumber in (select SuperDept from Department)
and not Name in (select DeptName from Employee)
and not Dnumber in (select ContrDept from Project);

to delete all Departments which have not anymore employees and projects,

and are also not supervising other Departments. The standard parameters of

Informix, on the other hand, report such a command with a lock conflict (“NO

MORE LOCKS AVAILABLE”), for reason that the Department relation is

contained in the first sub-select.

(d) Two-phase locking (2PL). The relational DBMSs mentioned here support two-

phase locking and the two-phase commit protocol. That is, if two transactions

are running concurrently and are sharing some records (or tables) which they

read and/or modify, and a transaction waits for a record that is locked by the

other transaction for a short time, then the transaction that wants to commit

sends a signal ready to commit to the DBMSs. Only if both transactions were

successful, the DBMSs registers their commited results by a new database

state, otherwise it rejects their modifications. This avoids that transactions

may work with database records which are immediately locked and perhaps

modified by other transactions that do no commit.

(e) Savepoints. Some DBMSs, e.g. Ingres, additionally support savepoints which

can be set during the operation sequences of transactions, such that it is pos-

sible to issue partial transaction rollbacks (which are performed by rollback to

savepoint commands), and to restart operating using the database state at the

savepoint.

4. Further reading. These RDBMS functionalities are defined in the SQL-92 documents

[X3.92], and can also be looked at more closely by inspecting special DBMS manuals,

such as [Syb93] or [PLSQL95].

2.4 Summary and Outlook

The data models and database management concepts presented in this Chapter provide

the design and maintenance of data for traditional database applications. That is, data

which normally can be represented in the form of flat tables, and, integrity constraints

which do not need to be controlled by active elements, but can be implemented by the

the database structure.

But as we have seen by the examples of the database implementation code, today’s

database applications sometimes use unclean representations of data, since the correct

Ch. 2 Traditional Data Models and Data Representation Concepts 49

representation can not be represented in a consistent way by the concepts provided by

the used data model and DBMS. As examples, consider

• the attribute DeptName of the Employee type in Figure 2.7 and 2.8, or the re-

peating groups in Figure 2.10 which are represented by the attributes Firstname1,

Firstname2, Firstname3 and Skill1, Skill2, Skill3,

• or, the trigger definitions shown in Figure 2.10, which are used to confirm that

Employee.DeptName is in Department.Name, and to assign an employee his ac-

cording role in the Company (DeptManager, ProjLeader, ProjWorker, Secre-

tary, or Assistant).

Integrity control can already be specified during design and not only after the database

is installed. Therefore, new-generation database concepts need to consider any form of

structured data as well as active integrity control mechanisms, for purpose to repair

incorrect and incomplete structural database design decisions immediately.

We will consider these new requirements to data models and database management

systems in Chapter 3.

Chapter 3

New-Generation Database Design

and Database Management

Approaches

In Chapter 2 we have presented traditional database design and management concepts.

The network model already included concepts that were omitted by the relational data

model: set-typed attributes and one-to-many relationships which are contained in the

same record sets. Also, in traditional database systems, new database states are generated

only by applications which are again maintained by the users, and are invoking the insert,

delete, or update operations. But, new-generation database applications like computer

integrated manufacting (CIM), computer aided design (CAD), or Web database interfaces

require the additional consideration of temporal relations, which– once they are introduced

into the database– cause the database management system to generate new database

states by means of invoking additional actions.

In this Chapter we will consider the new structural requirements as well as the re-

quirements to perform database maintenance tasks automatically:

1. Attribute types for structured and collection-typed data, as well as attribute types

which can be defined by the user.

2. Encapsulation, which is the linkage of the data structures with exectable code.

3. Inheritance, which gives objects their extensibility. New data structures (“classes”)

that are derived from anothers inherit all properties of that other class, and have

also the properties that are added to it.1

4. Polymorphism, which we have not considered till now.

5. Database triggers, which are used to trigger additional actions as soon as certain

events occur, such as database changes which are the result of an insert, delete, or

1The ”is a” relation between ”Employee” and ”Manager” that was shown in Figure 2.4, describes
some limited form of inheritance. Although a very weak kind, multiple inheritance was also given by the
many-to-many relationship types of Figure 2.1.

52 Part I Database Design and Database Maintenance

update operation, or of a complex user transaction.

6. New concepts of graphical user interfaces, such as HTML pages which are provided

by the Web server to perform retrievals and changes on a database.

Chapter 3 is organized as follows. Firstly, Section 3.1 considers functional and semantic

data models, which are often looked at as the origin of developing new-generation data

representation and database management concepts. This is continued with the approach

to database design, that is used by object-oriented database design methodologies in

Section 3.2. Section 3.3 presents additional enhanced data modeling concepts, which

are refered to in the forthcoming Chapters. Section 3.4 summarizes the data models

discussed in this Chapter, and gives an outlook how these data models are considered by

the RADD/raddstar conceptual database design optimizer.

3.1 Functional and Semantic Data Models

Functional data models have once been developed to give foundation for the implemen-

tation of persistent programming languages which are retaining data after the program

is ended, such that they can be used again when the program is newly started. Semantic

data models were considered already in the seventies, as a reaction to the simplicity of

the relational data model. In these models, any semantics that could not be modeled by

means of relations, is embedded in application code.

Although the semantic and functional data models have never gained interest using

them as basis for implementing new-generation object-oriented DBMSs in the ending 80’s

and beginning 90’s, their concepts had strong influences on the developmemt of these

systems. So, some ODBMSs borrowed a range of concepts from these models. In this

Section we will consider three of these data models. The first is the functional data

model and the language DAPLEX developed by Shipman [Shi81]. Then we condider the

semantic data model (SDM) of Hammer and McLeod [HM81]. The last model considered

in this Section is the IFO data model of Abiteboul and Hull [AH87], which was developed

from the functional data model and SDM, and is today frequently used for modeling

object database systems.

3.1.1 The Functional Data Model and the DAPLEX Language

The functional data model was introduced by Kershberg and Pacheco [KP76], and refined

by Sibley and Kershberg [SK77]. Shipman [Shi81] uses DAPLEX as the database modeling

and manipulation language to implement the functional data model. The base constructs

of DAPLEX are entity and function. In the functional data model, we can consider

Project and Employee as entities with the function has participants to map one to the

Ch. 3 New-Generation Database Design and Database Management Approaches 53

other: a DAPLEX function is used to map one entity to a set of entities, similar the

owner-member relationship types of the network model.

Real world situations are presented in the DAPLEX model as either ”primitive” or

”derived” properties. E.g. from the primitive property a project has participants (which

are the participants of that project), we could derive the property that one of these

participants leads the project (is the project leader). Furthermore, the functional data

model is based, as its name says, on the concepts of handling functions and function

evaluations as values, like functional programming languages do. This way, queries and

updates can be expressed by including and combining query results as well as navigation

paths in their formulation. They have not necessarily to be implemented in a step after

step manner like procedural programming lanuages require, such that new declarations

and assignments are continously used.

Example of a DAPLEX query. Assume, a department of the company has allocated a new

project for that it needs an employee with skill ”Mathematics”, who is not still available.

Then it may look for a project which has some participant with skill ”Mathematics”, and

is able to release this participant for the new project. For this purpose, to find out the

project(s) from which the department can get a participant, the following query

Which are the projects on which an employee with skill ”Mathematics” works?

can be expressed in DAPLEX as

FOR EACH Project
SUCH THAT FOR SOME has_participants(Project)

SUCH THAT FOR SOME Employee(has_participants)
Name(Skill(has(Employee))) = "Mathematics"

PRINT Name(Project)

Like in the hierarchical model and network model, a query or update in the functional

model as well as a functional data schema modeling the static aspects of the mini world,

is represented by a directed graph.

In the graphical representation of a DAPLEX functional data model, the functions are

represented by arrows with a single angle (for functions which evaluate to exactly one

value) or by arrows with two angles (for functions which can evaluate to more than one

value2). The arrows which are connecting attributes, are drawn by arrows with a single

angle. In Figure 3.1 we show the functional data model of the Company Schema, in

which we have, for reason of better understandability, not included all attributes that

were shown in the entity-relationship schema of Figure 2.1.

2Arrows with two angles can be considered similar the multivalued dependencies of the relational
model (Section 2.3.3.1). Multivalued dependencies for relational databases were introduced by Fagin
[Fag77], long after they were considered by the network model and the functional data model.

54 Part I Database Design and Database Maintenance

Skill Project
Name

STRING

Employee Department
employs

Name

Namehas_workershas

Pnumber

Lastname

Firstname

controls

Location

located

Dnumber

Ssn

SCS
NUMBER

may_lead

can_manage

Figure 3.1: Functional Data Model of the Company Database.

3.1.2 The Semantic Data Model (SDM)

The semantic data model was proposed by Hammer and McLeod [HM81] considering

that the Codasyl proposal for database management and the hierarchical data model ex-

hibit compromises between the desire to provide a user-oriented database organization and

the desire to provide efficient storage and manipulation facilities, and that the relational

database model stresses the separation of user-level database specifications and underlying

implementation detail (data independence).

The SDM therefore presupposes that (1.) a database must be viewed as collection of

entities, (2.) the collection of these entities must be viewed as classes, (3.) the classes

are not independent, but logically connected, (4.) the classes and the whole database

are described by attributes mapping their characteristics, such that there are attributes

whose values can be derived from others, and (5.) there are several ways of defining inter-

class connections and deriving attribute values from values of other attributes, which are

depending on the most common types of information redundancy in database applications.

This way, basic concepts of the SDM are:

1. classes, which are mapping collections of entities, and are distinguished into base

classes whose instances are living independently in the real world, like entity types

in the ERM, and nonbase classes,

2. interclass connections, which are subclass connections like ”is-a” relationship types

in the ERM, grouping connections (binary relationship types in the ERM), and

multiple interclass connections (relationship types with arity >2 in the ERM),

3. attributes, which describe the properties of the classes and the interclass connections,

and

4. name classes, which can be considered as atomar domains, such as integers, strings,

etc., and are used as buildings blocks for the classes and the attributes.

Ch. 3 New-Generation Database Design and Database Management Approaches 55

To illustrate the data presentation of the SDM, let us take a look at Figure 3.2.

PROJECTS

PARTICIPANTS

EMPLOYEES

is_a

HOURS

works_on

invested

assigned

has_participants

Figure 3.2: Multiple properties of the ”PARTICIPANTS” subclass. The circles denote

classes and are labeled with the class names. The arrows which are labeled by a name

denote member attributes, with the arrow head (angle) pointing to the attribute’s value

class. For transparency, only some of the possible attributes are included here.

Figure 3.2 models the PARTICIPANT view of an EMPLOYEE who works on a PROJ-

ECT. For the participation on the PROJECT, HOURS are assigned to the EMPLOYEES,

which are invested by them into the PROJECTS. The PROJECT sees the PARTICI-

PANTS as its workers (has participants), and the EMPLOYEES may be PARTICI-

PANTS of the PROJECTS.

Since the SDM uses no graphical description per se, like that shown in Figure 3.2, it

defines a formal description language to model the mini world. So the mini world of Figure

3.2 is formally specified by the following SDM description (also called SDM schema),

where the attributes of EMPLOYEES and of PROJECTS are included:

EMPLOYEES
description all people who are working for departments of the company
class attributes

Ssn
value class PERSON__SSNS
may not be null
not changeable

Name
description

the name of an employee consists of an (ordered) set of firstnames
and a lastname, and may include a title

valus class PERSON__NAMES
may not be null

Birthdate
value class DATES
may not be null

Address
value class STRINGS

Sex
value class SEXES
may not be null

Salary
value class INTEGERS where >=10000

identifiers
Ssn
Name

PROJECTS

56 Part I Database Design and Database Maintenance

description projects which are acquired and performed by the company
member attributes

has_participants
value class PARTICIPANTS
multivalued

invested
value class HOURS
multivalued

class attributes
Pnumber

value class PROJECT__NUMBERS
may not be null
not changeable

Name
value class STRINGS
may not be null

Location
description the location where project grew works (free text)
value class STRINGS
may not be null

ProjStartDate
description the estimated start date of the project
value class DATES

Duration
description the estimated duration of project in months
value class INTEGERS where >=1

identifiers
Pnumber

HOURS
description the hours which are assigned to an employee to work on a project

value class INTEGERS
PARTICIPANTS

description all employees which are participants on a project
member attributes

is_a
value class EMPLOYEES
may not be null

works_on
value class PROJECTS
multivalued

assigned
value class HOURS

identifiers
is_a

PERSON__SSNS
interclass connection subclass of STRINGS where format is number where integer

PERSON__NAMES
Firstnames

value class STRINGS
may not be null
multivalued

Lastname
value class STRINGS
may not be null

Title
value class STRINGS

SEXES
interclass connection subclass of STRINGS where format is "male" or "female"

DATES
description calendar dates in the range "1/1/1998" to "12/31/2005"
interclass connection subclass of STRINGS where format is

month number where >=1 and <=12
"/"
day number where >=1 and <=31
"/"
year number where integer and >=1998 and <=2005
where if month = 4 or = 6 or = 9 or = 11 then day <=30

and if month = 2 then if year = 2000 or = 2004 then day <=29 else day <=28
ordering to year, month, day

PROJECT_NUMBERS
description numbers which given for projects of the company
interclass connection subclass of STRINGS where format is

year number where integer and >=1998 and <=2005
"."
month number where integer and >=1 and <=12
"."
num number where integer >=1

Ch. 3 New-Generation Database Design and Database Management Approaches 57

In the SDM schema, EMPLOYEES is a base class, and PROJECTS and PARTICIPANTS

are nonbase classes. HOURS, PERSON SSNS, PERSON NAMES, SEXES, DATES,

and PROJECT NUMBERS are name classes. These as well as the classes’ attributes

which are not using name classes defined here, are built from predefined name classes

(INTEGERS, STRINGS, etc.). The name classes defined here are built from predefined

name classes as well, and add lower and upper bounds, or special formats, or use ag-

gregations (PERSON NAMES). Note that interclass connections (“relationships”) are

included in the class specifications.

We have not included all possible features in the SDM schema, but we think that it

is enough to give the reader an impression of the specification techniques of SDM.

3.1.3 The IFO Database Model

The IFO data model was proposed by Abiteboul and Hull [AH87] as a formal semantics

database model. It provides the graphical notation of the database’s structural com-

ponent and the specification of data manipulation, and claims to specify the integrity

component as well. Furthermore, it tries to give lead to the hierarchical construction of

database schemata, which the authors presuppose as a necessary condition for a rigorous,

mathematical investigation of semantic database issues.

Project
Leader

Name

Lastname

Title

Ssn

Employee
Pnumber

Location
Project

works_on

ProjStartDate
Firstname

Project
Worker

NUMBER

STRING

Name

STRING

DATE

STRING

Duration

INTEGER

Salary

Sex

Address

Birthdate

STRING

INTEGER

STRING

STRING

NUMBER

DATE

INTEGER

INTEGER

Hours

Figure 3.3: IFO Schema of the Employee/ProjWorker-works on-Project/Project-Leader-

leads-Project Section of the Company Schema.

Basic IFO data model constructs are (1.) objects and object-types, (2.) fragments, and

(3.) ISA-relationships. For illustration purpose, let us consider these concepts using the

58 Part I Database Design and Database Maintenance

diagram in Figure 3.3, which contains the SDM schema specified in Section 3.1.2 and adds

the Employee’s role Project Leader:3

Object types are collections of objects having the same characteristics and correspond

to classes in the SDM. IFO considers three kinds of object types: printable object

types, abstract object types, and free object types.

1. Printable object types are collections of values having predefined types, such

as integer, string, etc. They are used as basis for input and output between

objects, and correspond to value sets in the ERM and relational model, to

name classes in SDM and to Lexical Object Types (LOTs) in the ORM, which

will discuss in Section 3.3.1. Printable object types are graphically represented

by squares and may be annotated by their types. In Figure 3.3 we see the

printable object types Pnumber, Name, etc., which where attributes in the

ER-Schema (Figure 2.1) and name classes in the SDM schema (Section 3.1.2).

2. Abstract object types are representing objects of the mini world living indepen-

dently from others, like entity types in the ERM, base classes in the SDM, and

Non-Lexical Object Types (NOLOTs) in the ORM. Abstract object types are

graphically represented by diamonds. Figure 3.3 contains the abstract object

types Employee and Project.

3. Free object types represent entities which are subtypes of ISA relationships.

Free object types are graphically represented by circles. Figure 3.3 contains

the free object types Project Leader, Project Worker, and works on.

Cartesian products which build n-tuples from object types. In the graphical IFO no-

tation cartesian products are represented by crossed circles. In Figure 3.3 we see the

cartesian product Name which combines the Employee’s Firstnames, Lastname,

and Title.

Groupings which correspond to the procedure of forming finite sets of objects of a given

structure type. Groupings are graphically represented by multiply crossed circles. In

Figure 3.3 we see the grouping of Firstname, that builds the multivalued attribute

which is part of the Employee’s Name (Firstnames).

Specialization. To represent specialization, IFO uses ISA inheritance relationship types.

In the graphical representation, ISA relationship types are drawn by wide unfilled ar-

rows. Figure 3.3 contains the ISA relationship types between the subclasses Project

Leader and Project Worker, and the superclass Employee. Additionally, we see

the ISA relationship types between the subclass works on and the superclasses

3The description is partly taken over from Hanna [Han95].

Ch. 3 New-Generation Database Design and Database Management Approaches 59

Project Leader and Project Worker. This way, single inheritance as well as mul-

tiple inheritance are supported.

Generalization. Besides specialization (ISA relationship types), IFO proposes general-

ization as a second kind of inheritance. Generalization is used to model situations

when distinct preexisting classes are used to form a new virtual type.4 General-

izations are graphically represented by wide filled arrows. However, [AH87] defines

generalization such that the subtype shall pass its attributes to the supertype, which

is semantically incorrect, and omits a clear proposal to which inheritance type the

constraint types, “covers” and “disjoint”, that are given according the subclasses

may overlap or not, should be mapped, such that it leaves it unclear when to use

specialization and when to use generalization. For reason of this unclear concept,

we do not present IFO generalizations here.

Fragments are used by the IFO the same way they are used to represent functions in the

FDM of Shipman (Section 3.1.1), but are restricted to model one-to-one associations

between two objects. In Figure 3.4 we have represented an IFO fragment, named

Project

Project
Worker

has_workers

PROJECTSTAFF

member attributes:

Projects

value class Project

Participants

Ssn
Ssn

value class NUMBER Ssn

ISA Employee

Pnumber

value class ProjectWorker

Figure 3.4: IFO Fragment ”PROJECTSTAFF”.

PROJECTSTAFF . The fragment shows the path for the functional evaluation

by which a Project can determine his participants.

However, IFO does not introduce new semantic concepts that were not already considered

by the FDM (Section 3.1.1) or the SDM (Section 3.1.2), but makes rather the notation of

database semantics clumsy and ambigous, because it provides many concepts for repre-

senting the same aspects while it omits concepts for representing other aspects. E.g., IFO

omits many-to-many relationship types, or does not use a notation to represent cardinality

constraints.

4A virtual type is presented only by the instances of the preexsting classes, but has no own physical
attributes which carry values.

60 Part I Database Design and Database Maintenance

3.2 Object Models

Object models claim to give a natural view to the real world, by modeling data containers

(“classes”) as well as the operations which are performed by the objects of the classes, or

are applied to them (“methods”).

In this Section we present some object data models which are popular and frequently

used for implementation under object-oriented programming languages, such as C++, and

for object modeling. The Section shows how different the approaches to object modeling

are, and also, how different their consideration of concepts is, such that they are the less

or the more suitable for database modeling.

// dates
typedef struct { short day, month, year; } Date;

// the list of Firstnames
typedef struct SFns { char Firstname[15]; struct SFns *next; } *Firstnames;

typedef struc { Firstnames firstnames; char lastname[20]; char *title; } Name;

// the set of Skills
typedef struct SSkls { char skill[20]; struct SSkls *left, *right; } *Skills;

class Employee {
public:

Name *getname();
Firstnames firstnames(Name *name);
char *lastname(Name *name);
char *title(Name *name);
...

private:
char Ssn[9];
Name Name;
Date Birthdate;
char Sex;
...
Employee(char *ssn,char **fns,char *ln,char *tit,char sex,Date bd,float sal,char *dept,char* ad,Skills skls);
~Employee();

};

Employee::Employee(char *ssn,char **fns,char *ln,char *tit,char sex,Date bd,float sal,char *dept,char* ad,Skills skls)
{

strcpy(Ssn,ssn);
strcpy(Name.lastname,ln);
int i; Firstnames h;
for(Name.firstnames=NULL,i=0; fns && fns[i]; i++)
{ new(h); strcpy(h->firstname,fns[i]); h->next=NULL; if(!i) Name.firstnames=h; h=h->next; }

Name.title=(tit) ? strdup(tit) : NULL;
...

};

Figure 3.5: C++ Definition/Implementation of the Employee Class.

3.2.1 The Booch Method

The Booch method [Boo94] considers that the real world is too complex to understand

it as a whole such that a good approach is to decompose it into smaller units. This way

decomposition, abstraction, and hierarchy play important roles in Booch’s approach to

object-oriented analysis and design.

The Booch method supports single and multiple inheritance; ”is a” hierarchies are

considered as the most important hierarchy types and as an essential element of object-

oriented systems. They describe generalization/specialization. On the other hand, ”part

of” hierarchies describe aggregation relationships.

Ch. 3 New-Generation Database Design and Database Management Approaches 61

Like in other object models, the basic concepts of the Booch method are classes and

objects; refering to these parts we could consider the Employee entity-type of Figure 2.1

as a class that is in C++ represented with external interfaces (“public” methods) and an

internal representation (“private” attributes), shown in Figure 3.5. Here, for simplicity

we did not make use of “protected” attributes and methods, that are seen by objects of

the subclasses only, and we did not show “virtual” methods which can be overridden by

subclasses of Employee.

Beyond the concepts of class structuring that it defines and illustrates and object-

oriented programming of it in C++, the Booch method does not define a graphical nota-

tion for the representation of classes, objects, and their interrelationships. We therefore

break at this point, in order to continue with object models which possess a graphical

notation and can be used for database design as well.

3.2.2 The Object Modeling Technique (OMT)

The object modeling technique (OMT) has been developed at General Electric by James

Rumbaugh and colleagues, and was published in 1991 [RBP+91]. It is based on traditional

structured methods and offers a rich and detailed notation, which is sometimes a little bit

unreadable for the one who is not primarly and continously concerned with data modeling.

The OMT notation has roots in the entity-relationship model and adds operations and

other annotations to it.

Department
LineStaff

Department

SCS

Location

Project

Duration
ProjStartDate

Location
Name

Pnumber

StartDate

Project
Leader

Hours

Department
Manager

Secretary

Department

Dnumber
Name

Salary
Sex

Address
Birthdate

Title
Lastname
Firstname

Ssn

Employee
1 +1

1 +

supervises

manages

employs

Hours

leads

1

1

1

1

subset

1 + 1-3

1 +

1

has_participants

Worker
Project

Figure 3.6: OMT Object Model of the Company Database.

Object modeling with OMT is based on three modeling steps. The first step is to develope

the object model (OM) of the mini world that is under consideration, next for each object

a dynamic model (DM) is built, and finally, flows of data are modeled by means of data

62 Part I Database Design and Database Maintenance

flow diagrams, which are called functional model (FM) in OMT.

The diagram in Figure 3.6 shows how the Company Schema is represented as object

model (OM) in OMT. In the OM the lines between the boxes (classes) represent the asso-

ciations between the object (relationship types). The associations can have a name which

is drawn near by the line. As in the ERM, the associations can have attributes, which

are attached by means of a semicircle arc to the association. The OM uses triangles for

generalizations/specializations (”is a” relationship types) which are empty if the objects

of the superclass are either one of the objects of the subclasses (“distinct specialization”).

The diagram in Figure 3.6 defines the objects of the superclass Department as belonging

either to Staff Department or to Line Department. An attribute called “discrimina-

tor” which is annotated to the triangle (not shown here) can also be used to differentiate

to which of the subclasses the object of the superclass belongs. An other example, of a

“non-distinct specialization”, is represented by the filled triangle between the superclass

Employee and her subclasses DeptManager, ProjLeader, ProjWorker, Secretary, and

possibly further subclasses which must not be explicitely specified.

Associations can also be ternary, quarternary, and so forth, which we have not (al-

ready) included in the Company Schema and are therefore omitted here. We have rep-

resented the classes including their attributes (Dnumber, Name, etc.) which is not

necessary, but better to provide a complete design. The unfilled circle at the Department

head of the line mapping the supervises association denotes a zero-or-one cardinality– it

were (0, 1) using the notation of Section 2.3.4.1. If such a circle is filled, like the one at the

Project head of the has participants association, then it denotes a zero-or-one-to-many

cardinality such that the lower and the upper bound are left open– it were (0, .) using the

notation of Section 2.3.4.1. Other types of cardinality constraints, like (1, 1) or (1, 3), are

explicitely drawn by means of the according annotations, e.g. 1 or 1-3.

The database schema of this Section shows another aspect which we have not con-

sidered till now, namly that the one who leads the project (ProjLeader) must work

on that project. In Figure 3.6 we have modeled this by the includes triangle between

the leads and the has participants (works on) association. This gives the diagram a

clear non-misunderstandable meaning– considering the database implementation that is

derived from the OM.

However, although the OMT provides a rich and expressive notation framework it con-

fuses a little bit by using different notation kinds; the cardinality notation is an example

for such a non-unique modeling tool that is included by OMT. For example, the cardinality

constraints represented by the filled and unfilled circles of the employs, has participants,

and supervises associations, headed at Department, Project, and Department, respec-

tively, can be expressed by 0-m or 0-1 annotations as well. This would make them conform

with the other cardinality annotations.

Ch. 3 New-Generation Database Design and Database Management Approaches 63

acquires

meetings

Hardware

Name

Software

Name

Staff

supervises

Department

Hours

Assistant
Personel

Department
Manager

StartDate

manages

Secretary

leads

Leader
Project

CalculatesProjBudget

Salary
Sex

Employee

Ssn
Firstname
Lastname

Birthdate
Title

Address

(1,1)

Department

Dnumber
Name

employs

Locations

Project

Pnumber
Name
Location
ProjStartDate
Duration

implements

(1,.)

(1,3)

has_workers

Customer

Name
Address

has
prefers

(1,1)

(1,.)

Contract

ContractNumber
Location
StartDate
Duration

(1,.)

includes

Price

Vendor

VendorName

(1,.)

(0,1)
Product

ProductNumber
Price

Document

Documentstyle

DocumentID
DocumenttitleDescription

Description
Date

Installation Maintenance/
Support

Date_to
Date_from

controls

(0,1)

(1,.)

Department
Line

(1,1)

(1,1)

(1,1)

(1,1)

(1,.)

provides

works_on

Hours

Worker
Project

Figure 3.7: Coad/Yourdon Model of the Company Database.

64 Part I Database Design and Database Maintenance

3.2.3 The Coad/Yourdon Method

Like the OMT, the Coad/Yourdon method owes a lot of the tradition of entity-relationship

models. E.g., the use of cardinality notation and the expliciteness of attributes are some

of these features. The Coad/Yourdon method can be used for object-oriented analysis

(OOA) as well as object-oriented design (OOD). It includes the following concepts:

Classes, which represent collections of objects with the same properties. In the Coad/

Yourdon method, abstract classes are distinguished from concrete classes. Abstract

classes (which are drawn by solid boxes in the graphical model) form abstractions

of objects that are living in the real world, that have no concrete instances– like

virtual classes in C++ –, whereas concrete classes (arc boxes) represent concrete

objects. A class is specified by her class name, her attributes, and her services, like

a “Department employs Employees” such that a service “employs” is attached to

the “Department” class.5 The attributes of the abstract classes as well as of the

concrete classes describe their properties, and the services (methods) describe their

behavior.

Attributes, which represent properties of the objects, such as the “name” of a “Depart-

ment”, the same way like attributes in the relational model and the OMT.

Services, which are a synonym for functions or methods, in other data and object models.

In contrast to the attributes that are properties of the objects (instances), services

are considered to be connected to classes, like in object-oriented programming lan-

guages.

Gen/Spec connectors, which– like in the OMT –model the specialization of superclasses

to their more concrete instances, which are represented by the subclasses. Super-

classes and subclasses are normally not distinguished graphically in the Coad/Your-

don method, besides that the superclass is drawn above the Gen/Spec symbol and

the subclasses are drawn below the Gen/Spec symbol. However, in most cases the

superclass is modeled by an abstract class which is assumed to have no concrete

instances, such that it is represented only by the attribute values of her subclasses,

and the subclasses are modeled by concrete classes. Consider the Employee class

in Figure 3.7, which we have represented as an abstract class. That Coad/Yourdon

diagram proposes, whenever using an SQL database implementation, to implement

Employee by a view that unites the classes Department Manager, Project Leader,

Project Worker, Secretary, and Assistant Personel, which is different from that

representation we have used in the create statements of Figure 2.10.

5This make not be seen as intent of the Coad/Yourdon method, but since Coad/Yourdon does not
attach names to the connectors (associations, or relationship types), we have encoded these names here
by services carrying the name of the association.

Ch. 3 New-Generation Database Design and Database Management Approaches 65

Whole/Part connectors, are types of relationships between structures such that the

objects of the Whole-side of the connector are considered as possessor (owner) of

the objects of the Part-side of the connector.

Instance Connectors, which can be compared to many-to-many relationship types in

the ERM. But, in contrast to the many-to-many relationship types of the ERM (and

OMT) many-to-many connectors in Coad/Yourdon can not have attributes. There-

fore, if he wants to represent a many-to-many relationship type with attributes the

designer has to use a separate class for the association, which has the attributes and

is many-to-one connected to each of the classes of the original many-to-many rela-

tionship type. Accordingly, Whole/Part connectors of the Coad/Yourdon method

can also not have attributes.

Cardinality Constraints are used in Coad/Yourdon diagrams as well. For example,

in Figure 3.7 the cardinality on the Employee head of the Whole/Part connection

between Project and Employee (has workers), which is (1, 3), specifies that every

Employee works on at least 1 Project and at most 3 Projects.6

Figure 3.7 shows the Coad/Yourdon model of the Company database. The diagram now

includes another section of the mini world which we are considering here, representing

that projects are contracted with a customer:

1. A project is acquired by some employee of the company. Most times, department

managers or project leaders acquire new projects, but we do not want to exclude that

any other kind of employee acquires a new project. We keep track on the meetings

that where made under participation of this employee, to acquire the project.

2. Once a project is confirmed, the company makes a contract with the customer from

which the project was acquired. We keep track on the customer’s name and address.

Furthermore, each contract is assigned a unique contract number, a location, a start

date, a duration, and a price. The project implements that contract, and a contract

is implemented by exactly one project. However, to continue a project additional

contracts can be made which are then implemented by the same project.

3. Each contract includes products which are assigned a product number and a price

within the contract. Products can be of different types: installation tasks, main-

tenance support, documents, hardware, or software. We keep track on the instal-

lation’s description and date, on the maintenance support’s description, start date

6We use here the same notation for cardinality constraints, as introduced in Section 2.3.4.1. Normally,
in Coad/Yourdon diagrams annotations like 1-3 and 1 are used to represent cardinality contraints (1, 3)
and (1, 1), respectively.

66 Part I Database Design and Database Maintenance

(Date from), and ending date (Date to), on the software’s name, and on the hard-

ware’s name.

4. If the product is provided from a third party, such as hardware and software which

are delivered by another company, then we keep track on the vendor who provides

that product. For simplicity, the vendor is stored only by his name in our database

(V endorName). We keep track on the vendors which are prefered by the customer.

Staff

supervises

Department

Hours

Assistant
Personel

Department
Manager

StartDate

manages

Secretary

leads

Leader
Project

CalculatesProjBudget

(1,1)

Department

Dnumber
Name

controls
employs

Locations

(1,1)

Salary
Sex

Employee

Ssn
Firstname
Lastname

Birthdate
Title

Address

(1,1)

(1,1) (1,3)

(1,1)

(1,.)

Company
AssitantPersonel

Department

Employee

Secretary

(0,1)

Department
Line

StaffDepartment

LineDepartment

Project

ProjectLeader

(1,1)

Pnumber
Name
Location
ProjStartDate
Duration

Project

has_workers

(1,1)

Hours

Project
Worker

ProjectWorker

DpertmentManager

Figure 3.8: Coad/Yourdon Model: Subject ”Company”.

Further concepts of the Coad/Yourdon method which we have not already mentioned are:

Message Transport connectors. The modeling of messages in Coad/Yourdon is based

on concepts of the Smalltalk programming language. In Smalltalk, a “message”

which is comprised of the following information:

1. the object to which the message is send, called receiver;

2. the method which shall be applied to the object, called method-selector;

3. and the arguments which are passed to that method.

The object which invokes the method– that sends a message to the method –is

considered as sender. In the Coad/Yourdon model, message passing of objects is

specified by senders and receivers as well. These can be attached to classes and are

indicated by arrows in the graphical Coad/Yourdon representation. E.g., in Figure

3.7 and 3.8 the arrow from the ProjLeader class to the Department class specifies

ProjLeader as sender and Department as receiver. We have further represented

this message passing functionality by the method CalculatesProjBudget. But,

in RADD we are not considering applications which have active objects such as

Ch. 3 New-Generation Database Design and Database Management Approaches 67

graphical user interfaces (GUIs) that use callback functions to define the behavior

of push buttons, etc., while we are designing databases for storage of passive objects.

However, as we will see in Section 7.2.1 such functionalities– if necessary –could be

specified in the RADD/raddstar using the conceptual specification language (CSL).

Subjects, which are considered as collections of classes belonging together, and the asso-

ciations which are linking them (Gen/Spec, Whole/Part, and Instance connectors).

In this sense, they model a section of the mini world containing objects which can

be considered independently from objects of other sections of the whole mini world

that is modeled.

Hardware

Name

Software

Name

Customer

Name
Address

has
prefers

(1,.)

Contract

ContractNumber
Location
StartDate
Duration

(1,.)

includes

Price

Vendor

VendorName

(1,.)

(0,1)
Product

ProductNumber
Price

Document

Documentstyle

DocumentID
DocumenttitleDescription

Description
Date

Installation Maintenance/
Support

Date_to
Date_from

(1,1)

Contract

Salary
Sex

Employee

Ssn
Firstname
Lastname

Birthdate
Title

Address

Contract

Customer

Document

Employee
Project

Pnumber
Name
Location
ProjStartDate
Duration

implements

acquires

meetings

(1,.)

acquires

Vendor

Software

Project

Product

Hardware

Installation

Maintenance/Support

(1,.)

provides

Figure 3.9: Coad/Yourdon Model: Subject ”Contract”.

Subjects of the Coad/Yourdon Model. As mentioned above, Coad/Yourdon models

can be specialized into smaller sections, which are represented by the subjects. E.g., the

model in Figure 3.7 can decomposed into two subjects, once according the working staff

of the company, and once according the contracts which are implemented by the projects

that are allocated by the company. Thus, we have the model also represented as subjects

Company (which is shown in Figure 3.8) and Contract (which is shown in Figure 3.9).

68 Part I Database Design and Database Maintenance

3.2.4 Using Object Models for Database Design?

This Section did not survey on all possible object models, and did also not consider all of

the “fine” features which are additionally provided by some object models. The Section

did rather concentrate on three methologies which are popular and frequently used in

commercial environments.

Although Booch claims to support the design of relational databases as well, his

method concentrates rather on the desgin of applications that have data in main memory.

So, it omits important features which are necessary for database modeling. These missing

features are, for instance, integrity constraints, relational operators, or principles of data-

base maintenance by manipulation and query languages like SQL. Beyond this, Booch

does not define a notation for the graphical design, but uses C++ program examples.

The Coad/Yourdon method omits n-ary relationship types (n > 2), and also its rep-

resentation concepts for generalization/specialization are not as complete as in OMT.

But, it is simple and gives a unary notation for database designs. Both, OMT and the

Coad/Yourdon method, give clear and non-misunderstandable data models for those ap-

plications which do not need or are not managed by means of complex data structures,

like traditional (and current) relational databases. But, object models do not have direct

support for representation of advantageous attribute structures, such as records, lists, and

sets, and for integrity constraint types as usually required by database realizations, such

as key and foreign-key attributes.

3.3 Enhanced Data Modeling, Database Management,

and Database Specification Concepts

We have seen record- and collection-typed attributes of the network database implementa-

tion in Figure 2.7 and 2.8. In Figure 2.10 we have also shown the implementation of trig-

gers which set the Role attribute of the Employee records correctly, after a Department

is assigned a new manager. Therefore, enhanced database modeling concepts need to

include the construction and use of types for new-generation database applications, i.e.

lists, arrays, sets, records, and so forth, and to support for the informal specification of

database triggers as well. In this Section, we will consider these concepts.

3.3.1 The Object-Role Model (ORM)

Nijssens Information Analysis Method (NIAM) was introduced as a kind of binary entity-

relationship model (binary relationship types only) by G.M.Nijssen [Nij77]. Relationship

types are called fact types in NIAM, and role names as well as a range of integrity con-

Ch. 3 New-Generation Database Design and Database Management Approaches 69

straints may be annotated on fact types. The Object-Role Model (ORM) is a recent dialect

of the NIAM. Figure 3.10 shows the graphical notation concepts of the NIAM.

Birthdate

Employee

Employee

Employee

Employee

Ssn

Skill

Address

u

Project

Department

leads

has

works
on

has

has

manages

Lastname

Employee

workers

manager

leader

�

�

Firstnames

Name

Figure 3.10: Modeling Concepts of the NIAM and Object-Role Model (ORM).

The basic concepts of NIAM are lexical object-types (LOTs), represented by Birthdate,

Ssn, and Skill, and non-lexical object-types (NOLOTs), represented by Employee, Name,

Project, and Department. LOTs can be compared to attributes, and NOLOTs to entity

types of the ERM, respectively. However, ERM attributes whose values may not be

described and generated in natural language terms, such as a book’s ISBN , are considered

also as NOLOTs as well. Also, composite attributes– like Name in the upper schema of

the right side– must be represented as NOLOTs. Therefore, the ORM makes not anymore

a rigorous distinction between LOTs and NOLOTs.

The double-headed arrows in Figure 3.10 which are drawn above (or below) the fact

types are uniqueness constraints. These can be modeled for a single role of the fact

type, such as for the role on the right-hand-side of the fact type between Employee and

Birthdate (Employee determines Birthdate, Employee→Birthdate), can be modeled

for both roles, such as on both roles of the fact type connecting Employee and Ssn,

respectively, which describes Ssn as the unique key of Employee, or can be modeled

on both roles together, such as the double-headed arrow on the roles of the fact type

connecting Employee and Skill, which is describing a multivalued fact. The ∧ symbols,

for instance on the line between Employee and the fact type between Employee and

Skill, describe all constraints. That means, that each Employee must participate in the

set of the fact type between Employee and Skill, which expresses that each Employee

has at least one Skill. All constraints are used to describe the NOT NULL property of

single-valued attributes as well.

70 Part I Database Design and Database Maintenance

�

manager
has

works
for

employs

manages

Sex

Address

Birthdate

Title

u

Lastname

Firstnames

Firstname

Name

Location

Department

controls

ProjStartDate Duration

controled
by

Name

Dnumber

Pnumber Name Location

Project

leads

has_workers

works_on

Ssn

�

Hours

time

has_leader

Skill

�

Salary

StartDate

Employee

Figure 3.11: ORM Company Schema.

The upper diagram of the right side of Figure 3.10 shows another type of uniqueness con-

straint. The arc with the circle labeled u indicates that the combination of Firstnames

and Lastname uniquely determines Name ({Firstnames,Lastname} → Name). If, fur-

thermore, {Name} where a key attribute set of Employee, then this would describe

{First- names,Lastname} as an alternate key of Employee (assuming that Ssn is the

primary key).

The lower diagram on this side presents further constraint types which are supported

by NIAM and ORM. In this diagram we have also annotated the role names on the fact

types. We have already noted in Section 3.2.2 and 3.2.3 that the project leader ususally

works on that project. This inclusion constraint is represented in the lower diagram by

the arrow and the subset (⊆) symbol, which are between the fact type with roles leads

and has leader and the fact type with roles works on and has workers. However, such

constraints between fact types may be not related to both roles of the fact type (to the

combination of the roles, respectively). Constraints may also be related to only one role

of the fact types. Suppose, a department manager can never be a project leader the same

time. In NIAM and ORM, this is expressed as indicated by the line with the circle labeled

×, between the manages and leads role.

Ch. 3 New-Generation Database Design and Database Management Approaches 71

The ORM like the one used in van Bommel [Bom95] employs also n-ary (n > 2) fact

types. Figure 3.11 gives an impression how the entity-relationship schema of Figure 2.1

could look like in the ORM. According the SQL unique index definition in Figure 2.10,

we have added here that Name is an alternate key of Department.

Note, that in the schema in Figure 3.11 Skill and Firstname are attributes which

are connected by a multivalued fact to the Employee entity and Firstnames attribute,

which represents that they are sets (lists). The modeled inclusion contraints (⊆) and

exclusion constraints (×), proposes the database implementation to use triggers for their

realization.

3.3.2 Extensions of the Relational Data Model

In this Section we present concepts to specify the invocation of the additional actions

which are necessary to restore consistent database states (considering rule triggering sys-

tems, RTSs), and introduce the nested relational model.

3.3.2.1 Specification and Maintenance of Dynamic Constraints

In the late 80’s, the DBMSs invoking additional tasks on database modifications were

considered as active DBMSs (ADBMSs). During the last years most relational, object-

relational, and object-oriented DBMS vendors have integrated so-called event-condition-

action (ECA) rule-triggering mechanisms into their systems. That is, as soon as an event

occurs, such as an insert, delete, or update operation, the condition is checked, and, if it

is true, the DBMS invokes the action. This is called the rule fires. It should be clear that

the action herself can trigger another action in turn, for reason that another (or maybe,

the same) ECA rule fires since its event occurs and condition becomes true, after the first

rule fires.

C1. The old salary of a person can not be higher than the recent salary of a

person, otherwise the persons must distinct.

C2. If the count of passengers of a flight is higher than the capacity of the

airplane used for that flight, then reschedule those passengers which are

overbooked to other fights and provide information about their reschedul-

ing.

Table 3.1: Examples of Dynamic Integrity Constraints.

To determine the behavior of the specified database rules is a non-trivial task (refer

to [CW90, AHW95]), and there exist some analysis techniques which demonstrate how

inconsistent database rule specifications can be detected. E.g., [ST94a, SST94] exhibit

on deriving triggering rules automatically from the set of integrity constraints for a given

72 Part I Database Design and Database Maintenance

database schema, and show which problems may occur, especially when different kinds of

integrity constraints, such as IDs and EDs, are used together.

On the design level, ECA rules can be specified by integrity constraints like shown

in Table 3.1. Generally, these kinds of integrity constraints are called dynamic, but we

see that the property dynamic is not that the constraint itself is dynamic, and therefore

changeable, as one could assume. The constraint (C1, respectively C2) itself is rather

static, but, the condition which it specifies is dynamic and uses either historical infor-

mation (on its own value), like done by C1, or else operates on the database to evaluate

whether the condition is true or not, like done by C2. In either case the constraint may be

violated, but the dynamic constraint specifies the repairing action to make it valid again.

A problem of first ADBMSs was that too much computing power was consumed when-

ever the DBMS was waiting for events to occur and conditions to become true. Therefore,

ADBMSs and so, all DBMSs of today which include rule-triggering mechanisms, avoid

permanent checking if an event of some rule occurs (and the condition is true) by using

a transaction scheduler. Transaction schedulers control all running transactions of the

database (and so, the insert, delete, and update operations). They perform tasks such as

calling the transactions according their priority as well. E.g., if a transaction T1 must be

applied before a transaction T2, then the scheduling T1 and T2 after T1 is given. Is such

a requirement not given (T2 may be applied before T1), then the scheduler can apply T2

and T1 after T2, although T1 may have been required firstly by the applications.

Also, some ADBMSs, e.g. HiPAC [DBB+88], use so-called situation action rules, to

describe the coupling of the transactions. That is, two dependent transactions can be

coupled immediate, deferred, or separate, such that they are called by the ADBMS imme-

diately, with refrerence to an according delay, or independently. E.g., the rescheduling of

the overbooked passengers in C2 must be done immediately, but the informing of these

passengers according that they are assigned to other flights may be done with a delay

(deferred).

The complete execution sequence of such nested transactions like described by C2,

may be aborted (rolled back) whenever an error occurs in some child-transaction. In such

a case, the tuple which is responsible that a flight becomes overbooked, is not inserted in

the database such that the flight also does not become overbooked. (If it is not possible

to schedule a passenger who wants to get a flight that is already booked out to another

alternative flight, then the passenger can not get any flight.) Such transaction rollbacks

can be implemented for the constraint C1 as well using todays RDBMSs, by implementing

an after-update trigger which raises an error if not new.salary≥old.salary, for the record

before update, old, and the record after update, new.

Ch. 3 New-Generation Database Design and Database Management Approaches 73

3.3.2.2 The Nested Relational Model

The representation concepts for relationships between data, of the hierarchical data model

and the network model, respectively, are associations between parent and children records,

such that they represent one-to-many mappings that can be assumed as hierarchally

organized tables containing many children records for each parent.

In the SQL create table statements for the relational database in Figure 2.10, we have

used two such relationship types in the Employee relation, where we implemented the

Firstnames attributes and Skills attributes as repeating groups, respectively. However,

there is no support in SQL to transfer these flattened lists respectively sets back to their

original meaning, such that the application interface must make the user aware how he

has to understand and maintain the values of the Firstnames and Skills columns.

Department Manager
Employee

Name
[Firstname] Lastname

{Skill} {Project}

Computer Science Miller David Miller Computers
Documentation
Analysis

Sven Martin
Computers
Philosophy

Development

Jon Smith
Engineering
Physics

Implementation
Analysis

Mathematics Newman
Mary

Ann Miller
Mathematics Analysis

Susan Smith Philosophy Analysis

Table 3.2: Nested Relation combining the Populations of Table 2.9 and Table 2.10.

As a way out of this dilemma, the nested relational model considers the properties of

handling record-typed and multivalued data. A nested relation allows each component of

a tuple to be either atomic or another nested relation, which may itself be nested several

levels deep. According [PBGG89], the nested relational model can be informally described

as follows:

1. Attributes, can be either of atomar domains (Section 2.3) or composed; “composed”

means that sets of attributes can be composed in turn, as well as that attributes

may represent multivalued sets.

2. Relation schemata are sets of the possibly composite or multivalued attributes.

3. And, relations, which are sets of the records described by the relation schemata,

and are containing the values of the possibly composite or multivalued attributes.

74 Part I Database Design and Database Maintenance

Figure 3.2 shows the nested relation representing the database population of the relations
that were shown in Figure 2.9 and 2.10. One can recognize, that the nested relation maps
the following FDs and MDs:

Department → Manager (* each Department has one Manager *)
Department →→ Employee (* each Department employs a set of Employees *)
Employee → Employee.Name (* each Employee has one Name *)
Employee.Name →→ Employee.Name.F irstname (* each Employee’s Name consists of Firstnames *)
Employee.Name → Employee.Name.Lastname (* each Employee’s Name consists of a Lastname *)
Employee.Name → Employee.Name.T itle (* an Employee’s Name may contain a Title *)
Employee →→ Skill (* each Employee has some Skills *)
Employee →→ Project (* each Employee works on some Projects *)

such that we have different forms of nesting:

• the MD Employee.Name →→ Employee.Name.F irstname specifies a list-typed

nesting,

• the MDs Department →→ Employee, Employee →→ Skill, and Employee →→
Project specify set-typed nestings,

• and, the FD Employee → Employee.Name represents the unique mapping of each

Employee entity to her composite attribute Name.

Nested Relations and Normalization. For reason that the relation in Figure 3.2

represents these functional and multivalued dependencies directly, in a partitioned form,

that relation is said to be partition join normalform (PNF), as defined by [RK87, RKS88].

On the other hand, we see that special values like the Skills ”Computers” and ”Philos-

ophy”, or the Project ”Analysis” are represented more than once in that relation. This

is for reason of the hierarchical tree-construction of the PNF relation, and extends if the

values (”Computers”, ”Philosophy”, and ”Analysis”) were not only simply structured, i.e.

strings, but were complex objects.

In such cases the maintenance workload for handling the complex objects which are

contained in the subrelations (called “buckets”) would be high and expensive. Therefore,

in [MNE96] a normalform for nested relations, called nested normalform (NNF), is pre-

sented, which extends PNF and considers these undesired anomalies which are possible

in PNF relations.

3.3.2.3 Concepts and Properties of New-Generation DBMSs

Even though most object models– also the ones which were more recently proposed than

those which we considered in Section 3.2.1 - 3.2.3 –do not support the representation

of record and collection types directly, it may be a little bit wondering that all object-

oriented DBMSs (ODBMSs) which were developed since the ending 80’s and beginning

Ch. 3 New-Generation Database Design and Database Management Approaches 75

90’s, and their underlying data models consider these new database types. This may be

reasoned by the fact that network DBMSs already considered these requirements, and

most ODBMSs owed lot of the tradition of network DBMSs.

Let us survey on some of the new-generation DBMSs. In the following, we give an

overview on the GemStone, Ontos, and O2 ODBMSs, the Postgres object-relational

DBMS (ORDBMS)7, and finally, we consider the Oracle8 ORDBMS and Oracle Web

Application Server.8

GemStone has been developed rooted on the Smalltalk object model as a kind of

object-oriented database programming language. The global architecture of GemStone is

partitioned into (1.) Stone processes, which communicate with the operating system and

manage the read/write operations to secondary storage, (2.) Gem processes, which admin-

istrate object-identities and offer the application interface, and (3.) client applications.

GemStone was developed by a crew headed by David Maier, using C as implementation

language, and its first commercial version was already released at the end of 1987.

GemStone’s schema definition language OPAL provides a Smalltalk like structuring

of classes, and instance and class variables. Like in Smalltalk, in OPAL user-defined

classes are considered as subclasses of Object.9 The predefined classes Set, Bag, and

Array, as well as numerous database types, e.g. DateT ime, Character, Number and

String, and the constraints definition for the instance variables, give GemStone the

DBMS flavor and help to prepare the user-defined classes for database usage. Figure

3.12 shows how the Employee class is defined in OPAL, presupposing that the classes

EmplName, SetOfSkill, and Department were previously defined by the user.

Object subclass ’Employee’
instVarName: #(’ssn’ ’birthdate’ ’emplname’ ’address’ ’sex’ ’skills’ ’dept’ ’salary’)
classVars: #()
constraints: #[#[#ssn,String],

#[#birthdate,DateTime],
#[#emplname,EmplName],
#[#address,String],
#[#sex,Character],
#[#skills,SetOfSkill],
#[#dept,Department],
#[#salary,Number]].

Set subclass: ’SetOfEmpl’
constraints: Employee.

Figure 3.12: GemStone/OPAL Definition of the Employee Class.

GemStone does not provide generic database operators, like SQL’s select10, insert, delete,

7Parts of this overview on new-generation DBMSs are taken from [Heu92] and [Kim95].
8The overview on Oracle8 and Oracle Web Application Server is based on [PLSQL98] and [GCS+97].
9In Smalltalk, everything is considered as an object, so a type is considered as an object as well.

10Do not confuse GemStone’s selector method select with the SQL-select operator.

76 Part I Database Design and Database Maintenance

and update, but it provides the constructor and selector methods for objects as provided

by Smalltalk. So, if we have created an object of the class Department called deptinst,

then we can retrieve all departments that have employees working for that department

which have skill ”Mathematics” by the following command:

(deptinst select: { :someempl | someempl.dept = deptinst

and someempl.hasSkill: [’Mathematics’] })

In this example, someempl.dept delivers the dept of the employee pointed to by the

introduced instance variable someempl, and someempl.hasSkill returns true or false

according the employee has the skill which is passed as parameter to the hasSkill method

(’Mathematics’). For the example database population of Table 2.9 and 2.10, or Table

3.2, this expression returns the singleton set which contains the department with name

”Mathematics” and manager ”Newman”.

Properties. All objects which are created are automatically persistent. To hold these

data, GemStone uses page and object buffers. It provides physical storage structures

for simple objects, like booleans, integers, or object identifiers, as well as for record-

typed objects and for collection-typed objects, i.e. for Bag with its subclass Set and

for SequencableCollection with its subclasses Array and String. Objects which are of

complex, i.e. non-simple, type can be stored such that its values reside close to each

other and in sequence of the attribute order of that class. To invoke this physical storage

operation, a method called cluster must be called explicitely for that object. GemStone

uses equality indices which point to instances of simple objects, e.g. integers or strings,

and identity indices which point to complex objects. Identity indices can only be used

to ascertain whether objects are identical or not, but not whether all the values by which

they are represented are equal.

GemStone provides two different kinds of transaction management and concurrency

control. The first is optimistic concurrency control such that the user works on the phys-

ical database that is also used by the other users. The second is pessimistic concurrency

control where the system creates a shadow image of the database for each user session,

such that updates are only stored on that shadow image, unless the user invokes per

System commitTransaction the physical transfer of his local image to the global data-

base. Clearly, the commitTransaction can only succeed if there is not any conflict or

integrity violation. The user can also delete his local image, and start a new session with

a fresh image. This is done by means of the System abortTransaction command.

Ontos. The client/server architecture of Ontos is similar to that of GemStone, but its

database kernel and data model are rooted in the C++ class hierarchy. This way, the basic

type constructor of Ontos is given by the class aggregate, and set, list, and association

Ch. 3 New-Generation Database Design and Database Management Approaches 77

are special subclasses of aggregate. These predefined classes have standard methods, for

example iterators which are used to traverse the set or list. Ontos considers a class to

have one instance (like a module), which has a set of the actual objects as component.

By means of a meta schema concept, Ontos can represent different relationship types

between classes, which can be annotated cardinalities or can be signed as inverse. Inverse

relationship types can be compared to relational database triggers implementing exclusion

constraints, such as setting the MgrSsn attribute to NULL for a Department whose

manager (Employee.Ssn) becomes a Project leader. Recall the SQL code presented in

Figure 2.10.

As GemStone, Ontos considers user-defined classes as subclasses of object; these must

have certain properties which include a constructor and some necessary methods. By

means of classify commands, classes which are described by the C++ class definition

are loaded into the database, and are thereby made persistent. Ontos distinguishes two

kinds of object identity. The first is direct references which can be compared to the

physical address of the object or record, the second is transparent references which can

be compared to unique key values in relational databases. Accordingly, the objects of

the classes are physically either unordered arrays which are accessed by means of linear

hashing, or so-called dictionaries which are implemented by Btrees.

The objects are loaded from secondary storage to main memory by the activate com-

mand, and the content of an object is written back to secondary storage by the deactivate

command. Ontos provides nested transactions, such that for objects which are activated

on different levels (separate, in their sets, or including all component objects) different

lock levels are set. Then, on occurence of conflicts of different transactions which are

accessing the same elements according exceptions and exception handlers can be used to

generate and to resolve conflicts, such that transactions are aborted or transactions which

recognize incorrect database states or receive exceptions from other transactions can be

continued. The start of the transaction can be provided a set of parameters, describing

the kind of buffering of the objects or how the possible conflicts shall be resolved.

Unfortunately, Ontos provides no high level data manipulation language, and the

transaction definition for these actions is also not described by some declarative language

like SQL, such that it is due to the application programmer to use the right C/C++

statements that the objects are read and written appropriately, and no data inconsistences

are generated.

O2. The O2 system was developed from 1986 as a common project by a crew headed

by Francois Bancilhon at INRIA, Paris, and its first commercial version was released in

1991. An important part of O2 is the Wisconsin Storage System (WiSS) [CDKK85], which

realizes the secondary storage accesses and page buffers, and is responsible for concurrency

78 Part I Database Design and Database Maintenance

control and recovery as well. Primary storage structures of the WiSS are sequential files,

dense Btrees, and linear (extensible) Hashing.

The object manager is that part of O2 that manages the object identities and records,

provides the O2SQL generic operations, select, insert, delete, and update, and is re-

sponsible for the object persistence, cluster-structures, and indices. It maps the object

representations to the WiSS physical storage representation. The O2 schema manager is

resposible for the classes, methods, and the names of the persistent objects. The WiSS,

the object manager, and the schema manager build the O2 engine, which has serveral

external database programming language interfaces, such C, C++, O2C, or O2SQL, on

base of which– in turn –a couple of so-called O2Tools are implemented.

O2 Schema Definition and Operations. As basic types, O2 provides boolean, character,

integer, real, string, and bits. Furthermore, the type constructors tuple, list, set (bag),

and unique set (set) can be used to construct complex types. These types are used to

specify the attributes of the classes of an O2 schema. The type of an attribute can

be another, previously defined class as well, which is then looked at as a reference to

that other class. Like relational DBMSs, O2 stores the meta information of the schema,

that is the description of the classes, attributes, and methods, by classes again (“data

dictionary”).

Let us consider a database strucuture which is defined using O2SQL.11 Figure 3.13

shows the definition of the classes Employee, works for, ProjLeader, ProjWorker,

and works on, assuming that the classes Department and Project have already been

defined.

CLASS Employee
TYPE TUPLE(Ssn: ARRAY(CHARACTER,9) NOT NULL UNIQUE,

Birthdate: DATE NOT NULL,
Sex: CHARACTER NOT NULL,
Name: TUPLE(Firstnames: UNIQUE SET OF STRING

NOT NULL,
Lastname: STRING NOT NULL,
Title: STRING),

Address: STRING,
Skills: SET OF STRING NOT NULL,
Salary: REAL NOT NULL);

CLASS works_for
TYPE TUPLE(Empl: Employee UNIQUE,

Dept: Department);

CLASS ProjWorker INHERITS Employee
TYPE TUPLE(HoursTotalPerWeek: REAL)
METHOD My_Projects: STRING SET;

CLASS ProjLeader INHERITS ProjectWorker;

CLASS works_on INHERITS ProjectWorker Project
TYPE TUPLE(Hours: REAL NOT NULL)
RENAME ProjectWorker.Name TO EmplName
RENAME Project.Name TO ProjName;

Figure 3.13: O2 classes Employee, works for, ProjLeader, ProjWorker, and works on.

The schema definition in Figure 3.13 shows the structural inheritance between the su-

perclass Employee and its subclasses ProjWorker and ProjLeader, respectively, as well

as the multiple inheritance of works on according ProjWorker and Project. Because

of the name conflict according the Name attribute which is part of the ProjWorker

11O2SQL did also serve as basis for the ODMG [Car94] specification of the object database definition
and query language OQL.

Ch. 3 New-Generation Database Design and Database Management Approaches 79

(Employee) class as well as of the Project class, this conflict is resolved by renaming

these attributes in the subclass works on.12

There exist a couple of operators for each of the types and type constructors, such as

unique addition of a new element to a set, or iterators for working with those elements

of a set (or list, or bag) for which a predicate holds, e.g. for <elem> in <set> where

<predicate>. In the example of Figure 3.13, the methodMy Projects of the ProjWorker

class is only described by its signature. Its implementation must be given in C, C++, or

O2C. The following code shows how it is implemented in O2C, which includes O2SQL:

METHOD BODY My_Projects: SET(STRING) IN CLASS ProjWorker

{ RETURN

SELECT p->ProjName

FROM p IN works_on

WHERE p->Ssn = self->Ssn }

Here, self denotes the ProjWorker himself, who inherites the attribute Ssn from the

Employee class; the works on class inherits the attributes Project.Name (as ProjName)

and ProjWorker.Ssn. Attributes of an O2 schema can also be marked READ, such as,

for instance, Project.Pnumber which should be read only, and PRIV ATE or PUBLIC.

To provide efficient access paths to the objects, O2 also supports– as mentioned above

–indices, and cluster trees which assign a collection of objects to a special part of the

physical storage. E.g. the command

CLUSTER TREE FOR CLASS works_on ASC Pnumber

causes the O2 DBMS to place the works on records physically close to the other works on

records of the same Project (presupposing that Projects are identified by Pnumber).

Postgres. Postgres was developed by a crew headed by Michael Stonebreaker since 1986,

as the successor of the Ingres DBMS. Some concepts developed in the Postgres project

had also influence on the commercial Ingres releases 6.3 and 6.4, and many new features,

like collection-typed and user-definable attributes, and encapsulation concepts, which are

used together to form ADTs, were used in the OpenIngres version which is distributed

by Computer Associates (CA, see [ASK94]), as the latest Ingres versions were. Also,

since the mid of the 90’s commercial versions based of the root Postgres technology were

available with Illustra, that has meanwhile been bought by Informix. CA’s current object-

oriented DBMS is Jasmine, which could be looked at as a successor of OpenIngres and

was developed by a group headed by Alan Gupta, a well-known developer of RDBMS

technology.13

12Although here both inherited Name attributes were renamed, it would suffice to rename only one of
the Name attributes to keep the schema consistent and avoid the name conflict.

13That Jasmine is a successor of OpenIngres is my impression, since they use terms in the Jasmine
publications which I did already see in the OpenIngres publications, but nowhere else.

80 Part I Database Design and Database Maintenance

The type system of Postgres is based on the data types traditionally used by RDBMSs,

and furthermore, the [n] and [] type construtors, which are used for fixed-length and

variable-length arrays, and the object identifier attribute type (OID), whose values are

used to reference tuples of other relations. The OID values are system maintained and

can only be read by the application, although they may be used as foreign keys. Postgres

distinguishes base relations from derived relations, such that derived relations are defined

in a view-like manner and can be used as attribute values in other relations. Postgres

allows single and multiple inheritance, such that the latter excludes conflicts by forbidding

inconsistent hierarchies. The hierarchy of the database structures, however, is a type

hierarchy which supports tuple types only.

LOAD ’/home/steeg/WWW/docs/T_EName.so’;

CREATE FUNCTION EName_in(opaque) RETURNS EName

AS ’/home/steeg/WWW/docs/T_EName.so’ LANGUAGE ’c’;

CREATE FUNCTION EName_out(opaque) RETURNS opaque

AS ’/home/steeg/WWW/docs/T_EName.so’ LANGUAGE ’c’;

CREATE TYPE EName (INTERNALLENGTH=34,INPUT=EName_in,OUTPUT=EName_out);

-- SQL does not distinguish uppercase/lowercase: EName_in -> ename_in (in C)

CREATE TABLE Employee (

-- Ssn DECIMAL(9) NOT NULL,

-- Postgres does not support DECIMAL as type of key attributes

Ssn CHAR(9) NOT NULL,

Role CHAR(1) NOT NULL CHECK (Role IN (’m’,’l’,’w’,’s’,’a’)),

Birthdate DATE NOT NULL,

Sex CHAR(1) NOT NULL CHECK (Sex IN (’m’,’f’)),

Name EName,

Address VARCHAR(40) NOT NULL,

Skills VARCHAR(20)[] NOT NULL,

DeptName VARCHAR(20) NOT NULL,

Salary FLOAT,

PRIMARY KEY (Ssn)

);

-- Ensuring that DeptName is really in Department:

-- we have defined a procedure check_foreign_key()

CREATE TRIGGER DeptNameInDept AFTER INSERT OR UPDATE ON Employee FOR EACH ROW

EXECUTE PROCEDURE check_foreign_key(OID,’Employee’,’DeptName’,’Department’,’Name’);

CREATE VIEW ProjLeader AS

SELECT Ssn, Birthdate, Sex, Name, Address, Skills, DeptName, Salary

FROM Employee WHERE Role = ’l’;

-- Defining the Insertion Rule for ProjLeader

CREATE RULE pl_ins AS ON INSERT TO ProjLeader

DO INSTEAD INSERT INTO Employee VALUES (NEW.Ssn,

’l’, -- marks that the Employee is a ProjLeader

NEW.Birthdate,NEW.Sex,NEW.Name,NEW.Address,NEW.Skills,NEW.DeptName,NEW.Salary);

Figure 3.14: PostgreSQL Creation of Tables, Views, Triggers, and Rules.

Integrity Maintenance and Operations. In contrast to most other object-oriented DBMSs,

Postgres includes trigger definitions for integrity control and invocation of additional

actions as well. Beyond the usage of triggers used in most RDBMSs of today which are

specified for inserts, deletes, and updates on single relations, in Postgres triggers as well as

rules can also be defined for views. The native query language of Postgres, POSTQUEL,

which is the successor of the QUEL that was used by Ingres, supports recursive queries

as well. Meanwhile, POSTQUEL has been substituted by PostgreSQL, but PostgreSQL

Ch. 3 New-Generation Database Design and Database Management Approaches 81

took over many of its powerful features. So, the powerful Rule-System which provides–

beside the triggers –the creation and maintenance of any kind of updatable view, such

that views can be used to perform the correct actions on the base tables.

Example. The definition of the Employee relation, the ProjLeader view, and the Rule

which rewrites inserts on the view ProjLeader to the Employee base table, is shown in

Figure 3.14.14

In PostgreSQL, it is also simply possible to specify subtyping of relations, by means of

an INHERITS clauses that is appended to the CREATE TABLE statement. However,

the construction of composite types, like the EName which is used in Figuer 3.14, or of

array types that do not have collection elements based an simple SQL types, is a little

bit troublesome. The usage of these attribute types is not as simple as, for example,

demonstrated by the Employee class definition in Figure 3.13. But it must be noted that

Postgres is not a commercial DBMS, but a prototype.

Oracle8 and Oracle Web Application Server. Like GemStone, Ontos, and O2,

Oracle is a commercial DBMS. Oracle8 is an object-relational DBMSs which is extending

the features of the latest Oracle7 release (Oracle 7.3.4). The features which were already

contained in, or which can be looked at as orthogonal to features implementable in the

programming language interface (PL/SQL) of the previous release, include:

1. Packaging. Packages allow to bundle logically related types, variables, cursors, and

procedures, which are used as shared resources in application development. They

consist of (1.) a specification interface to the application (signature), and (2.)

a body which implements the specification. Packages are built by means of the

CREATE PACKAGE command.

2. Database procedures and functions. An Oracle database procedure is a PL/SQL

block that implements a subprogram which can be called from other parts of the

database. Figure 3.15 shows how a proceduremake manager could be implemented.

Like in PostgreSQL, in Oracle8 a database function provides an interface to a data-

base module that is implemented in a second- or third-generation-language run-time

library. Functions are registered by means of the CREATE FUNCTION command.

PL/SQL procedure as well as function implementations may contain code for han-

dling and/or raising exceptions.

3. Redefining database inserts, deletes, or updates. Like shown by the CREATE RULE

pl ins AS ... statement in Figure 3.14, the user of Oracle8 has the possibility to

redefine inserts, deletes, or updates as well, such that other commands are issued

instead of them. This is done by means of CREATE TRIGGER commands which

14For some details on the implementation of this example, see Appendix C.3.

82 Part I Database Design and Database Maintenance

PROCEDURE make_manager (EmpSsn DECIMAL(9)) IS
DeptNumber DECIMAL(6);
OldSsn DECIMAL(9) := NULL;
...

BEGIN
SELECT d.Dnumber,d.MgrSsn INTO DeptNumber,OldSsn

FROM Department d,Employee e WHERE e.DeptName = d.Name;
IF OldSsn IS NOT NULL THEN

IF OldSsn <> EmpSsn THEN
...

END IF;
...

END IF;
UPDATE Department SET MgrSsn = EmpSsn, MgrStartDate = TODAY WHERE Dnumber = DeptNumber;
UPDATE Employee SET Role = ’m’ WHERE Ssn = EmpSsn;

EXCEPTION
WHEN %NOTFOUND THEN

raise_application_error(-17234,’Internal error make_manager (MgrSsn ’
|| TO_CHAR(EmpSsn) || ’)’);

END;

Figure 3.15: Oracle Procedure Definition of make manager.

contain an INSTEAD OF clause. By this, it is for instance possible to define general

view inserts which are performing the proper operations on the base tables of that

view.

The data abstraction (ADT) features which are absolutely new in Oracle8, include:

1. Collection types. Oracle8 supports the collection types TABLE and VARRAY

(variable-size arrays) which may be used in the attribute definitions of the create

table commands.

2. Record types. Record types can be defined in PL/SQL as well, can have attributes

of collection types, and may be nested in turn– by means of including attributes of

other record types. This is unlike in Postgres, where record types (like the EName

type, Figure 3.14) must be realized using dynamic link libraries that are always

implemented in an external language.

3. Object types. Like in Postgres, object types in Oracle8 are defined and made per-

sistent by means of create table commands. However, the create table commands in

Oracle8 may contain MEMBER PROCEDURE and MEMBER FUNCTION clauses

as well, which are used to attach instance methods to the class and give the data

definition language a proper object-oriented flavor.

Oracle Web Application Server. The Web Server cardridges distributed by Oracle provide

interfaces which simply allow to construct Web pages (HTML and/or JavaApplets) that

interact with the Oracle database. Here, PL/SQL data manipulation commands which

do not include the creation of new and drop of existing database objects, like tables,

indices, triggers, procedures, or functions, are sent to the Oracle database server. Then,

the select, insert, delete, or update is performed on the database, such that subsequently

Ch. 3 New-Generation Database Design and Database Management Approaches 83

the results of the select query invoked by the user are displayed by a (new) form in the

browser, or the user is notified about the success of his action, that triggered an insert,

delete, or update on the remote machine.

3.3.2.4 The ”D” Database Model

The ”D” database model was proposed Darwen and Date [DD95] to give firm direction to

future database management development. The authors believe that the new generation

of database management systems must be firmly rooted in the relational data model and

consider object-oriented features of databases as well, but they restrict that attemps to

move forward, if it is to stand the test of time, must reject SQL unequivocally.

”D” can be considered as a framework defining schema implementation aspects, using

future DBMSs. So, ”D” is not a model for designing a database, that has a graphical

notation and defines the constructs which are to be used, but rather describes an abstract

form of a data model, by giving prescriptions, proscriptions, and very strong suggestions

for that. These are taken from the relational data model and the different object-oriented

approaches to database design:

The Prescriptions from the Relational Model include that

1. domains are described by sets of values,

2. values can be scalars (which are described by single attributes like in the rela-

tional model, i.e. they need not to be embodied by an object),

3. tuples are constructed from values, such that the nth value of the tuple is

described by the according nth domain and the n domains (and values) of the

tuple need not necessarily be distinct (this way, a named attribute does not

describe a domain, but rather a type, like boolean, integer, string of length 20,

...),

4. operators like equality (=,6=) and those which embody or evaluate to truth

values (like true, false, not, and, or, in, if -then-else, ...) as well as traditional

infix operators for numbers (+, −, ∗, /, <, ≤, ...) must be predefined,

5. relations are sets of tuples, such that the relation is described by a heading

which is the domain of each tuple,

6. relation variables relvars are variables described by a domain that is the head-

ing of relation (a relvar is called base if its heading is given by relation, or

derived if its heading is defined for some evaluation procedure on the data-

base), and, a set of integrity constraints, each of which may be related to one

or more than one relvar,

7. a database variable dbvar is a set of relvars,

8. transactions interact with exactly one dbvar, and distinct transactions can

interact with distinct dbvars, such that distinct dbvars are not necessarily

84 Part I Database Design and Database Maintenance

disjoint, and, transactions can dynamically change their dbvars by adding or

removing relvars,

9. operators for create and destroy of domains, variables (relvars, or dbvars) and

integrity constraints must be provided, such that the create operator associates

a candidate key to each base relvar,

10. relational algebra operators (e.g. π, σ, 1) must be supported, and it must

be permitted to assign the evaluation of the operator’s invocation to tuple

variables or relvars,

11. operators to create and destroy named functions by means of specified rela-

tional expression shall be support, and the invocation of a function defined

this way must be permitted within relational expressions as well,

12. and, every dbvar shall include a set of relvars describing the structure of the

dbvar; it means: a data dictionary or catalog.

The Prescriptions from the Object-oriented Model include that

1. invocations of functions, database procedures, etc. must be checked at compile-

time,

2. single and multiple inheritance shall be supported,

3. ”D” shall be computational complete, that includes that each result of a data-

base evaluation (which is stored in a relvar) must be usable as subexpression

in other evaluations,

4. and, ”D” shall support nested transactions, e.g. it shall support that a trans-

action T1 starts another transaction T2 such that T1 and T2 interact with the

same dbvar, but may be executed asynchronously, and the abort (rollback) of

T1 respectively T2 causes that the other transaction does not generate a new

database state, although the other transaction may have commited before.

The Proscriptions from the Relational Model describe that no construct of ”D”

depends on the ordering of the attributes in a relation or on the ordering of the tuples in

a relation (set-semantics !), and whenever two tuples t1 and t2 of a relation are distinct,

then there must be at least one attribute which carries a different value for t1 and t2. ”D”

must support nullalble attributes (attributes which can carry a NULL), and no candicate

key of a relation shall include a nullable attribute. There shall be no construct which

relates to the ”physical” or ”storage” or ”internal” representation of a tuple.15 There

shall also be no one-tuple-at-a-time operations on relations, like today’s insert operation.

However, if the insert operation wants to add only one tuple to a relation, then this could

be performed by assigning the union of itself and a set which does contain only this one

15Like the hierarchical and the network data model do, and, as we will see, some object-oriented DBMSs
include.

Ch. 3 New-Generation Database Design and Database Management Approaches 85

tuple to the relation. One-tuple-at-a-time delete, update, and retrieval operations shall

be categorically forbidden, and ”D” shall also not include specific support for ”composite

domains” or ”composite columns”– since such functionality is already included by the

domain support that is desribed by the three first prescriptions from the relational model.

The Proscriptions from the Object-oriented Model require that a relvar should

never be considered as a domain and no value (scalar or any other kind) shall possess any

kind of ID that is somehow different from a value of the real world.16 ”D” shall also not

include concepts like ”protected” or ”friends” instance variables which are included in

object-oriented programming languages, since these properties could be managed by the

system’s authorization mechanism.

The very strong suggestions from the Relational Model include that is shall

be possible to specify one or more candidate keys for a relvar such that one is chosen

as the primary key for the relation, and it should be possible to generate key values by

the system, when necessary. ”D” shall support referential constraints (foreign-keys)

and referential actions, such as cascading deletes. Furthermore, the ability is desirable

(although not completely feasible) to infer candidate keys for every relation R in D,

such that candidate keys of R become candidate keys of R′ when R is assigned to R′,

and information about these candidate keys of R should be made available to the user of

D. ”D” should provide (1.) some convenient quota queries, like ”find the three youngest

employees”, such that those queries are not bundled to an ordered list, (2.) convenient

means of expressing the generalized transitive closure of a graph relation (e.g. a Person

relation which has a foreign-key attribute for the Person’s father and mother), including

the features of generalized concatenation and aggregation, and (3.) parameters of relation-

valued functions to represent tuples and scalars. A mechanism for dealing with ”missing

information” should be provided as well. SQL should be implementable in ”D”. This

shall not stress the fact that ”D” becomes a superset of SQL, nor that ”D” should be an

extension of SQL, but rather that a “converter” translates SQL-code into ”D”-code and

the evaluations in ”D” are transferred back into the SQL format. This way, it may be

desirable to have cross-compilers which translate “old application code” with statements

in SQL or Embedded SQL into new application code with statements in ”D”.

The very strong suggestions from the Object-oriented Model describe that

some form of type inheritance shall be supported which was already described by the

second prescription from the object-oriented model above, but, ”D” should not include

a priciple of implicite type conversion (it should be typed), and also not, that functions

have a special receiver parameter.17 Constructors for ”collection” types, list, array, and

set, shall be supported by ”D”, such that if C is a collection type other than relation,

16No artifical keys.
17Refer to the according Section in the description of the Coad/Yourdon Model [3.2.3].

86 Part I Database Design and Database Maintenance

then conversion functions shall be supported for transforming C into a relation type

(transforming the values of C into a relation), and transforming relation types into C

(transforming a relation, which has the necessary properties, into values of C). And, ”D”

should be based on single-level storage. That is, there should be no difference whether

a piece of data resides in main memory, cache, secondary storage, etc.

3.3.3 The Data Model used in the RADD Approach

The data model used in the RADD workbench is based on the HERM extended entity-

relationship model. In this Section we will present firstly the HERM model, and show

then how it is used in the RADD workbench and what are the differences between the

graphical RADD data model and the HERM.

3.3.3.1 The HERM Data Model

The Higher-order Entity-Relationship Model (HERM) [Tha89, Tha97] is based concepts

of extended entity-relationship and relational data modeling concepts. It models database

structures such that advantageous data representation concepts are considered, like that

which are included by the nested relational model presented in Section 3.3.2.2. In the

HERM, integrity constraints can be specified as expressive as the those of the ORM

presented in Section 3.3.1 as well.

In HERM, the following are considered as structures:

1. Attributes, which are identified by a name that is unique according the entity or re-

lationship type, and are either of usual flat type (boolean, string, numeric, int, float,

date), composite (record-typed), or nested (list, set, bag). Attributes are nullable or

not (WITH NULL,NOT NULL).

2. Entity types, which consist of a name, a non-empty set of attributes S, called

schema, and a non-empty set of key attributes K, such that the key attributes are

a subset of the schema, K ⊆ S.

3. Relationship types, which consist of a name, a set of attributes s, a set of referenced

structures r (called parent structures)– which are entity, relationship, and cluster

types, respectively –, and a non-empty set of key attributes k. References can

be annotated role names, integrity constraints, a ”K”-item which models that the

reference transmits the key from the parent structure to the child structure, and can

be nullable or not (WITH NULL,NOT NULL). A nullable reference can not transmit

the key from the parent structure to the child structure. The key of a relationship, k,

is a subset of the union of s and the key attributes of those parent structures in r from

which the relationship type inherits the key (indicated by the ”K”-references). In

Ch. 3 New-Generation Database Design and Database Management Approaches 87

the graphical representation of the HERM, references are indicated by an arrow from

the child structure (subtype) to the parent structure (supertype). A relationship

type is said order-1 if all parent structures are entity types (entity types can be

looked at as order-0 relationship types), otherwise the order of that relationship

type must be greater than the order of all parent structures, respectively.

4. Cluster types, which are union types and comprise a set of references to entity or

relationship types, which has at least two elements. In the HERM, cluster types are

considered as parts of relationship types, such that a cluster type is referenced by a

relationship type. This way, the relationship type that has a reference to the cluster

type is used to map the attributes of that union type. The semantics of a cluster

type C = {R1, ..., Rn} is that each element of the occurence set of C is either R1 or

... or Rn, such that the occurence sets of the Ri are disjoint, respectively (distinct

union). This way, a cluster type may not be defined for some subtypes of a common

supertype because these are not necessarily distinct. The order of cluster types is

defined analogously to that of relationship types.

Hierarchical database schemata. By the order property, a relationship or cluster

type can not have a reference to itself, nor can it transitively reference itself, such that

the structures of a HERM schema are always hierarchically ordered.

Figure 3.16 shows the HERM representation of the Company Schema. Here, the nodes

labeled DeptManager, ProjLeader, ProjWorker, Secretary, and Assistant represent

weak entity types; that is, they model objects which have no own identification, but

inherit it from other objects, namly from the Employee entities. However, for reason of

this property they are looked at rather as relationship types by the HERM, and normally,

they are characterized only by a relationship type that has only one reference, called

unary relationship type.

To illustrate the differences between the modeling concepts of the traditional ERM and

most extended ERMs, and the HERM, let us take a look at Figure 3.17. In the left

schema of Figure 3.17, the Student subtype is connected to the supertype Person by an

is-a relationship type. In the right HERM schema, Student is a relationship type that

has a reference to Person. The left schema forces that the attribute StudNr is chosen

as primary key of Student, whereas the right schema leaves it open whether to choose

PersNr or StudNr as primary key of Student. Besides that, the right HERM schema is

more compact, and, in our eyes, this is also a more obvious and direct representation of

that subtyping relationship.

88 Part I Database Design and Database Maintenance

Employee

Project

employs

Department
Manager

Secretary

Assistant
Personel

manages

Software

Hardware

acquires

Ssn

Project
Worker

Project
Leader

(1,1)

Name

Department

leads

controls

(1,1)

supervisee

(1,.)
(1,1)

(0,1)

supervises

Contract

(1,1)

Document

Product

Installation

Maintenance/
Support

Date
Description

Date_from
DocumentID

Price
distributes

Documentname

Name

Name

(0,1)

(1,.)

includes
prefers

Customer

Vendor

{Participants}

Place

Date

Name

Location

Duration

Pnumber

Description

mandatory/
optional

Documentstyle

ProductNumber

Name

{Locations}

Dnumber

[Firstnames]

Lastname

Title

Salary

Sex

Address

{Meetings}

Name

Address

VendorName

(1,1)

Birthdate

supervisor

ContractNumber

Duration

StartDate

Location

Price

Date_to

(1,.)

(0,1)

(0,1)

(0,1)
(1,1)

(1,.)

ProjStartDate

works_on

Hours

(0,1)

StartDate

Figure 3.16: HERM Representation of the Company Schema.

The following surveys on the integrity constraint types that are included by the HERM:

1. Cardinality constraints (CCs) are defined as participation constraints, according the

cardinality constraints in Section 2.3.4.1.

2. Functional, inclusion, and exclusion dependencies (FDs,IDs,EDs) are specified in

the usual way which is known from the relational data model, and are as defined in

Section 2.3.1 to 2.3.4.

3. Key dependencies (KDs), as a special case of FDs, are in the graphical HERM design

represented by the combination of the underlined attributes (key attributes) and key

attributes which are inherited by means of the ”K”-marked edges (references), as

mentioned in the description of the structures.

Ch. 3 New-Generation Database Design and Database Management Approaches 89

is_a

Student

StudNr

Student

is_a

(0,1)

StudNr

Person

Sex

Address

Name

Title

Birthdate

Person

Sex

Address

Name

Title

Birthdate
PersNr

PersNr
[Firstname]

Lastname

Lastname

[Firstname]

Figure 3.17: ERM- and HERM-Representations of Subtyping (is-a) Relationships.

4. Afunctional dependencies (ADs) specify the opposite of functional dependencies

in sense that there are only relations between the instances of the left-hand-side

attributes and right-hand-side attributes that violate the according FD. This is like

the definition of ADs in Section 2.3.4.

Another definition of ADs is given in [Alb94]. It considers an AD X 6→ Y as a con-

traint such that least two tuples t1 and t2 exist, where t1[X]=t2[X] and t1[Y]6=t2[Y].

The definition of [Alb94] does not require that all distinct tuples must be different

on the right-hand-side (Y), whenever they match on the left-hand-side (X).

5. Path dependencies state a more general kind of the above dependency types (CCs,

FDs,IDs,EDs,KDs,ADs). The generalization is that the objects of the dependency

(left-hand-side and/or right-hand-side) do not only state a single structure, like

entity, relationship, or cluster type, but can be a combination of several structures

whose instance sets are considered to be joined. An example of a path constraint is

a database consisting of

• entity types bus-driver, bus, bus-type, driving-licence,

• and relationship types drives, has-type, has-licence,

such that we can specify the following path constraint:

The bus-driver who drives the bus must have a driving-licence for the type

(bus-type) of that bus.

We will show in Section 6.3 how path constraints are represented by terms in the

RADD/raddstar data model. For more information on path constraints the inter-

ested reader may also refer to [Tha91] or [Tha97].

90 Part I Database Design and Database Maintenance

Figure 3.18 shows how integrity constraints can be graphically represented using HERM.

Project
Leader

Department
Manager

c

Employee

Project
Worker

is_a is_ais_a

Figure 3.18: Graphical Modeling of Integrity Constraints using the HERM.

The schema in Figure 3.18 omits ”K”-labels on the ”is a”-edges from the subtypes Depart-

ment Manager, Project Leader, and Project Worker to the supertype Employee. How-

ever, the inheritance of the key of Employee to its subtypes is given implicitely by the

”is a” relationship types.

Database Operations. In contrast to the (new) conceptual data models which we

have presented above, HERM considers operations as well. In the HERM, a conceptual

schema is specified by a triple S = (Struc,Σ, Ops) modeling the structures, semantics,

and operations of the database, respectively. Generally, it can be assumed that the

operations are generated on base of the structures and integrity constraints such that

Ops = GenericOps(Struc,Σ).

E.g., for a relational database schema which is specified by SQL create table statements

(like the ones in Figure 2.10) the operations select, insert, delete, and update are directly

generated on basis of the structure of the database relations. This way, whenever a

relation R1 ∈ Struc references a relation R2 ∈ Struc, then for a tuple of t1 ∈ R1 which

references a tuple t2 ∈ R2 (by means of a foreign-key), t2 must be inserted before t1, such

that we can say that insertR1(t1) specializes to a transaction:

insertR1(t1) ::= insertR2(t2); insertR1(t1)

Recall the SQL code examples and their descriptions which we have presented in Sec-

tion 2.3.5.1. In the create table statements of Figure 2.10, the Employee relation had

the column DeptName implementing an “application-maintained” foreign-key to the

Department relation, and the trigger EmpTriggerDept was used to ensure that each

DeptName value of the Employee relation isDepartment.Name. This way, aDepartment

Ch. 3 New-Generation Database Design and Database Management Approaches 91

must be inserted before an Employee is inserted, who is working for that Department.

This way, we could say that

insertEmployee specializes to insertDepartment; insertEmployee.

The generation of such specializations of single transactions (insert, delete, update) to

“complete operations” were already considered by the GCS approach of [ST92] and

[ST94b]. This has been implemented in the RADD/raddstar system by means of trans-

action extensions, which we will present in Section 5.3.2.

3.3.3.2 The Data Model of the RADD Workbench

The data model used in the RADD workbench has small differences to the HERM, rea-

soned by the concepts of the graphical editor that was used as basis for RADD. In the

RADD schema editor, the structures of the schema are represented by nodes, and the

references of the relationship and cluster types, as well as the attribute connections (in

the attribute tree view) of the entity and relationship types are represented by edges. This

way, the RADD schema editor can not graphically represent edges between edges such

that the ID and the ED of Figure 3.18 are represented as shown by Figure 3.19.

Figure 3.19: RADD Representation of Integrity Constraints.

92 Part I Database Design and Database Maintenance

In Figure 3.19, the subset node (⊆) denotes the ID

ProjLeader→Employee ⊆ ProjWorker→Employee,

and, the distinct node (‖) models the ED

DeptManager→Employee‖ProjWorker→Employee‖Secretary→Employee‖Assistant→Employee.

As mentioned in Section 3.3.3.1, ADs are in [Alb94] defined differently from that definition

given in Section 2.3.4.3 and used in [Tha97]. The definition of [Alb94] is the way, ADs

ase considered by RADD. (Refer to [AAB+95, AAS97a, AAS97b].)

RADD Database Modeling Examples. In Figure 3.20, 3.21, and 3.22 we show screen

shots illustrating the design of the Company Schema using RADD.

• Figure 3.20 shows the complete Company Schema, additionally including a Contract

part, which shows that a project is ”acquired” from a ”customer” by an employee

of the company. Furthermore, it shows that a contract ”includes” ”products” which

can be ”installation” and ”maintenance” (or support) tasks, technical ”documents”,

”software”, and ”hardware”. If these products are delivered by a third party– like

hardware and software, which are bought from another company – then the customer

may ”prefer” a ”vendor” who can ”deliver” that product.

• Figure 3.21 shows the attribute view of the Employee entity type. In the lower left

subframe, we see the Employee entity type and the structuring and datatypes of

its attributes. We recognize that the database designer modeled Employee.Name

as record-typed attribute, where the list-typed Firstnames attribute has again

a Firstname sub-attribute. The upper right subframe shows the index of all

Employee attributes, and the lower right subframe shows the attribute editor where

the database designer maintains the Ssn attribute.

• Figure 3.22 gives another view, which shows the acquires relationship type and its

attributes, in the lower left subframe.

Ch. 3 New-Generation Database Design and Database Management Approaches 93

Figure 3.20: RADD Representation of the Company Schema.

94 Part I Database Design and Database Maintenance

Figure 3.21: RADD Representation of the Employee Type, including the Attribute View

on the Employee Type (lower left corner), and the Attribute Editor.

Ch. 3 New-Generation Database Design and Database Management Approaches 95

Figure 3.22: RADD Representation of the acquires Type, including the Attribute View

on the acquires Type.

96 Part I Database Design and Database Maintenance

3.4 Summary and Outlook

The database management system concepts considered in this Chapter provide the main-

tenance of new-generation database applications. That is, structured data, control of

automatical data updates, and data that is provided and accessed not only by single

servers, or database client/server architectures, but also distributed and maintainable by

networks, such as from HTML pages on the Web browser, or Java applets which are

executed from the Web browser.

The data models of this Chapter provide the design of new-generation database appli-

cations. However, most of the data models and database design tools used to implement

them have certain restrictions, which make the model not generally applicable. We think

that the requirement to use only hierarchical databases is to restrictive.18 More con-

cretely, we think that a database design must be strictly hierarchical, but a database

realization need not necessarily to use a fully hierarchical schema. But, most data models

and database design tools of today are limited in the form that the database schema that

is generated from these can only be fully hierarchical. The HERM and the RADD data

model force the designer to construct a rigorous hierarchical conceptual database schema

as well. However, they do not exclude that the internal schema which is used for the

database implementation may be not completely hierarchical.

The ”D” model of Section 3.3.2.4 is the most abstract data model presented here. It

includes most of the new-generation database features. A disadvantage of the ”D” data

model is that it does not define a graphical notation. But, as we will see in Section 6.3,

concepts of the RADD/raddstar data model and the conceptual specification language

(CSL) can be compared to the concepts proposed for the ”D” data model, although ”D”

has some features which are not included there and the data model of Section 6.3 has

some properties which are not included or forbidden by the ”D”.

18Note, that even the result of the different relational database normalization approaches was a database
implementation schema, that was not necessarily hierarchical.

Part II

Analysing Database Designs

Database tuning is the activity of making a database run more quickly. ”More

quickly” usually means higher troughput, though it may mean lower re-

sponse time for some applications.

To make a system run more quickly, the database tuner may have to change

the way applications are constructed, the data structures and parameters

of a database system, the configuration of the operating system, or the

hardware. The best database tuners therefore like to solve problems re-

quiring broad knowledge of an application and of the computer system.

Dennis E. Shasha,

in the Preface of [Sha92].

Chapter 4

Database Optimization Scenarios

In Section 2.2.6, 2.3.5, and 3.3.2 we have shown some characteristics of database man-

agement systems concerning their logical data mapping and interface that they offer to

the database administrator and application programmer. Now, in contrast to the data

representation and integrity maintenance concepts which are typically used by the new-

generation Web database tools which were described in Chapter 3, this Chapter concen-

trates on the logical and physical storage organization of typical database management

system implementations, and associates them with database optimization scenarios.

The Chapter is organized as follows. In Section 4.1, we illustrate some examples

for database optimization. Previous works of the author concerning transaction imple-

mentations did concentrate on redesigning database schemata and transactions for the

purpose of making database states more consistent and transactions run quicker. These

experiences as well as differences of the RADD/raddstar approach to previous database

optimization approaches are described in Section 4.1.1. Section 4.1.2 decribes a formal

approach to transaction performance tuning, the Transaction Chopping algorithm, which

is found in [Sha92], Chapter 2, pp. 16-20, and Appendix A2. In Section 4.2, we give an

illustrating example for optimization of a relational SQL database schema, which demon-

strates how integrity maintenance and selection of the database schema that is used by

the implementation influence each other. In this Section, we will give a short introduction

to the reflection of the performance and behavior bottlenecks to the conceptual schema,

which is realized by the RADD/raddstar. Section 4.3 gives a summary of the Chapter,

and an outlook how we continue in the subsequent Chapters of Part II.

4.1 Database Optimization Scenarios

This Section exhibits on some database optimization scenarios. More scenarios are found

in Database Tuning ([Sha92]) and the Database Performance Tuning Handbook ([Dun98]),

from which ideas for this work have been won. Own experiences of the author are included.

102 Part II Analysing Database Designs

Section 4.1.1 describes how database performance is improved by using different concep-

tual, logical, and physical data representations. Section 4.1.1 considers normalization and

denormalization as well. As said in Section 1.3.1 and Section 2.3, normalization does not

ever have advantages over denormalization, but in some situations normalization is also

unadvantegeous. This is also mentioned in Database Tuning and the Database Perfor-

mance Tuning Handbook. However, regarding this point we do not completely agree with

the authors of Database Tuning and the Database Performance Tuning Handbook, while

there are more situations than those mentioned, where denormalization is the necessary

mean to tune an existing database system. Section 4.1.1 gives an introduction of this ap-

proach. Section 4.1.2 introduces the Transaction Chopping algorithm of Database Tuning,

which makes transactions smaller for the purpose of increasing concurrency of database

applications.

4.1.1 Conceptual, Logical, and Physical Data Representation

The same semantics of a modeling discourse (i.e., of the “mini world”) can be expressed

using different conceptual data models. Figure 4.1 shows that is generally possible to

model the same mini world using different conceptual data models.

A B C

A B C

A

B

CA C

M N

Figure 4.1: Entity-Relationship, NIAM, and IFO Representation of a binary many-to-

many Association.

It should be clear that modeling the same semantics requires the more or the less effort,

depending on the data model in use. To enlighten this statement, look at the more

detailed data schemata (Attributes included) in Figure 4.2, which model the same real

world entities, once by the ERM and once by the NIAM.

Implementation-oriented logical data models introduce most often concepts which are

assumed valid for each member of the according DBMS class. As mentioned in the

Introduction, Section 1.2, the relational model of data ([Cod70]) generally does not permit

to use collection-typed attributes in sense of list, set, bag, and so on, because this violates

Ch. 4 Database Optimization Scenarios 103

A B C

A C

u

B

a

b

c

d e

g

h

f

a

c
d e

h

g

f

(1,.){ b }

Figure 4.2: Entity-Relationship and NIAM Representation of the binary many-to-many

Association (Attributes included).

the first-normalform assumption (1NF, refer to Section 2.3.2.1). Also, the new generation

relational DBMSs, such as Oracle8, do not permit to introduce these types directly, but

only by means of tables and types that are previously created. Therefore the relational

data model(s) often introduces relations into a data schema, that are actually not “stand-

alone” real world entities, but are used to represent collection-typed attributes. (Refer to

[TDF86], the data model proposed there seems to make no differences from this viewpoint

of the “relational world”.)

4.1.1.1 Denormalization / Vertical Decomposition

Figure 4.3 represents the relational data schema for the ERM schema and NIAM schema

in Figure 4.2.

Table_B Table_C

Column_a’

Column_g’

Column_h’

Column_d

Column_e

Column_f

Column_g

Column_h

Table_A

Column_a

Column_c

Column_a

Column_b

Table_A_b

Figure 4.3: Relational Representation of the binary many-to-many Association.

Illustration. The schema of Figure 4.3 represents the collection-typed attribute {b}
which is represented by the circle labeled {b} in the ERM schema and by the multivalued

104 Part II Analysing Database Designs

fact between the nodes labeled A and b in the NIAM schema, by a separate relation,

Table A b. The key of Table A b is its whole relation schema, namly the combination of

(Column a,Column b). However, even if attribute {b} of Figure 4.2 is an attribute where

exactly one b-value for each a-value is the most common case, and no or more than one

value in {b} states an unfrequent exception, then it could also be reliable

1. to denormalize the schema, that is to represent {b} as a repeated attribute b1,b2,...

of the “parent” relation Table A (such that the b1,b2,... are nullable, respectively),

2. or, to vertically decompose the schema (Column a,Column b,Column c), such that we

use a relation with schema (Column a,Column b,Column c) holding the first b-value

for each a-value, and a relaton with schema (Column a,Column b) holding the other

b-values (those b-values for which an a-value has more than one b-value)

and not to represent this association by the separate “child” relation Table A b. This

requires (1.) that applications need to transfer the flattened attribute {b} to a set of

values, or (2.) to use union selects to retrieve the data of this new mapping from the

database. However, most applications transfer the data which they retrieve from the

database as well, and union selects are generally much less costly than joins. These new

structural mappings of the database relations, (1.) and (2.), improve select and insert,

delete, update performance as well. (Refer also to [CG93].)

4.1.1.2 Schema Selection and Physical Database Structure

The latter consideration forces the fact that instantiation-related criteria must be strongly

noticed, even if they could be used to simplify the database implementation schema, and

so, the internal representation of the conceptual schema. As another example, let us

consider the data schema mapping bank accounts in Figure 4.4.

ACCOUNT

ACCOUNT_NO

SUBSCRIBER_NAME

AMOUNT_CURRENT

AMOUNT_PREVIOUS

DATE_CURRENT

DATE_PREVIOUS

CREDIT_MAX

Figure 4.4: Relational Data

Schema “Account”.

ACCOUNT

ACCOUNT_NO

SUBSCRIBER_NAME AMOUNT_CURRENT

DATE_CURRENT

AMOUNT_PREVIOUS

DATE_PREVIOUS

c = (1,1)

CREDIT_MAX

ACCOUNT_CURRENT

ACCOUNT_NO

Figure 4.5: Alternative Relational Data Schema

“Account”.

Ch. 4 Database Optimization Scenarios 105

This schema maps correctly the functional dependency ACCOUNT NO → (SUBSCRIBER -

NAME, CREDIT MAX, AMOUNT CURRENT, DATE CURRENT, AMOUNT PREVIOUS, DATE -

PREVIOUS), but does it provide good performance ?

To examine this question, let us consider the data profile in Table 4.1, that presents the

relative number of selects, inserts, deletes, updates on the relation ACCOUNT.

ACCOUNT relative nr. relative nr. relative nr. relative nr.
of selects of inserts of deletes of updates

ACCOUNT NO 2500 1 (1) -

SUBSCRIBER NAME 500 1 (1) (1)

CREDIT MAX 2500 1 (1) 6

AMOUNT CURRENT 3000 1 (1) 1500

DATE CURRENT 3000 1 (1) 1500

AMOUNT PREVIOUS 3000 1 (1) 1500

DATE PREVIOUS 3000 1 (1) 1500

Table 4.1: Access Profiles for the Data Structure “ACCOUNT”.

The Table identifies that AMOUNT CURRENT, DATE CURRENT, AMOUNT PREVIOUS and

DATE PREVIOUS are frequently updated. It seems therefore appropriate to hold the values

of these attributes on a seperate relation such that the according items can be quickly

accessed and updated. The schema according that fact is presented by Figure 4.5.

Data Clustering. Some database management systems, such as Oracle, allow to cluster

two relations together, based on the key of one of the relations. The example which we

used in Section 4.1.1.1 could alternatively be implemented using data clustering. The

example of the current Section is also an application for data clustering. But, data

clustering does not have advantages only. It has the advantage that queries on the cluster

key are fast, but full table scans (the whole relation is retrieved) are somewhat slower,

and also, inserts can cause overflow chaining. For more detailed information, see Database

Tuning, Chapter 4.4.

References. There is an example similar the example of the current Section in [Sha92].

Additionally, data profile (access profile) considerations and their relation to optimization

of database schemata are presented in [Su85]. Also, [Bom95] considers the according tuple

numbers of data structures. As we will see, we need to consider both, relative operation

frequencies and relative tuple numbers– and, we need to relate them to each other.

106 Part II Analysing Database Designs

4.1.1.3 Schema Efficiency depends upon the Application Scenario

In this Section, we want to give an overview on the items which are necessary to perform

database optimization (“database tuning”), and which of these items need to be considered

by the RADD/raddstar.

Note that the subject of the thesis is

developing efficient conceptual database schemata; that is, to find the concep-

tual schema that provides an efficient or the most efficient implementation of

the mini world.

Schema efficiency can be considered as several properties:

(1) The schema implies as less as possible anomalies under consideration of operational

maintenance. (duplicate keys, missing foreign-keys, a.s.o.)

(2) The Space occupied by the schema’s objects is minimal.

(3) The complexity (Time) of the operations identified on the schema which are evalu-

ated on basis of a chosen cost function is minimal.

(4) The (sum of the) operation complexities for a certain subset of often required oper-

ations which are identified on the schema is minimal.

(5) The set of operation complexities for a certain subset of often required operations

which are identified on the schema is optimal under restriction that there is no

runaway on the operation’s complexity set that must be considered as a bottleneck.

All these aspects, respectively the proceedings that consider them (normalization, denor-

malization, decomposition, clustering, . . .), have certain benefits. But, which aspect to

consider more appropriately normally depends upon the use of the whole database sys-

tem; that is, the database with its relations and the applications using the database. This

way, schema efficiency is strongly depending on the application scenario.

4.1.1.4 Exhibit on the Schema Efficiency Properties

Consideration (1) specifies an argument that is traditionally, especially in relational data-

base design, used to argue for normalization. Normalization aims to transforming a given

database schema which is comprised of structures Struc and integrity constraints (seman-

tics) Sem, to a new database schema (Struc′, Sem′) such that the new schema maps the

same mini world and redundancies are no longer contained in the new schema. Normal-

ization is the typical viewpoint of traditional database management guides, traditional

database design tools, and also picked up by textbooks like [Ull82, Win85, Eve88, RM92]

and some recent database transformation proposals, e.g. [FV94, FV95].

Ch. 4 Database Optimization Scenarios 107

Almost Valid Functional Dependencies. The envisioned target of consideration

(2) mostly conincides with the target of consideration (1). But, although almost all

normalization proposals refer to “lower storage complexity” it is often forgotten that

exceptions for functional dependencies formally require to further normalize an existing

database schema, but increase storage complexity as well. Assume, there is a relation

schema R = (A,B,C,D) which stores 10,000 tuples. However, 9,998 tuples fulfill the

functional dependency A→ (B,C,D), but 2 of the 10,000 tuples (only) fulfill A→ (B,D)

and (A,B)→ C. So, A→ (B,C,D) doesn’t hold for R. Thus, we would have to normalize

R into R1 = (A,B,D) and R2 = (A,B,C). Assume (arbitrarily) each attribute, A,B,C,

and D, has size 10. Then, the first database (with the non-normalized relation R) occupies

400,000 bytes, while the second database (with relations R1, R2) occupies 600,000 bytes.

Aspect (3) covers more appropriately such cases, in sense that now the operation

complexity is considered. For example, for the above two database schemata ({R} and

{R1,R2}), to add one new (A,B,C,D) tuple to the database we must invoke only 1 insert

operation for the first database schema, while we have to invoke 2 insert operations for

the second database schema. Also, if we want to retrieve a certain item from the database,

e.g. (A,B,C,D) WHERE A = ’my name’, then we can get this tuple directly from the first

database, whereas we must perform a possibly “expensive” join (R1 1 R2) to retrieve the

item from the second database.

Consideration (4) and (5) consider global and general optimization criteria for operation

complexities. Consideration (5) takes into account that although the sum of operation

complexities is minimal, there is not a certain operation– possibly an often required and

very important operation –that is a runaway w.r.t. its complexity, and must therefore be

considered as a bottleneck.

The ONF Assumption. Recall case (2) and (3). The wisdom of some lecture books

that Space and Time are mutual exclusive (also mentioned in [Bom95]), is not necessarily

correct. In general, there is no overall sentence to formally express the dependence of

a Space and Time complexity in databases. The assumption of the NIAM / ORM re-

searchers group is to provide an optimal normalform (ONF) schema whenever the data

schema is in fifth normalform (5NF) and the number of relations is minimal. This was

published in [LN88] and is found in many NIAM / ORM papers.

But, the considerations at the end of Paragraph Illustration in Section 4.1.1.1 deviate

from such assumptions. Such assumptions have to be looked at as desires, since generally

third normalform (3NF) is available for each relational database schema, but not BCNF,

and therefore not 4NF and not 5NF. Absolutely in contrast to the ONF assumption is also

the data profile example in Section 4.1.1.2, which shows that the higher relation number

provides the schema which is the optimal according performance issues.

108 Part II Analysing Database Designs

For these reasons, we must consider database implementation and population aspects as

well. Implementation aspects are anomalies, referential dependencies, cost of join op-

erations and pre-required operations or triggering actions. Population aspects are the

uniformity of data, tuple numbers or correlations between them (relative tuple numbers),

and criteria whether certain sets are changed frequently or not. These criteria are typically

used for physical and logical database tuning after the problems of the running production

database recognized. But, most often they are already known in advance of implementa-

tion, when conceptually designing the database. However, since knowing that a relational

database management system (of today) does not support structured and nested domains

(records, collection types) directly, these design criteria are often too early omitted, what

disables safely extending the database schema whenever new requirements are specified.

4.1.2 Lock Tuning and Transaction Chopping

We have mentioned in Section 2.3.5.2 that locks can impact applications to behave incon-

sistently (because “no more locks available”). On the other hand, if they are set and not

immediately released, they can create crucial performance bottlenecks, e.g. if a long-time

transaction sets locks and other transactions are waiting for data which are locked by that

transaction. In worst case– but that most often occurs only if the transaction and lock

dependencies are incorrectly implemented –deadlocks are created.

4.1.2.1 Lock Tuning

According to these Scenarios, Database Tuning proposes the following measures to tune

locking:

1. Eliminate locking when it is unnecessary.

2. Take advantage of transactional context to chop transactions into smaller parts.

3. Weaken isolation guarantees when the application allows it.

4. Use special system facilities for long reads.

5. Select the appropriate granularity of locking.

6. Change your data description data during quiet periods only. (Data Definition

Language Statements are harmful.)

7. Think about partitioning.

8. Circumvent hot spots.

9. Tune the deadlock interval.

Furthermore, locking is unnecessary if only one transaction runs at a time, e.g. at initial-

ization time or base data load time, or if all transactions are read-only. And, reducing

Ch. 4 Database Optimization Scenarios 109

overhead by suppressing the acquisition of locks may not be an enormous performance

gain, but the gain it does provide should be exploited.

4.1.2.2 Transaction Chopping

The purpose of Transaction Chopping is making transactions smaller– that is shorter –

for the purpose of increasing available concurrency. Making transactions shorter has two

effects on performance:

1. The more locks a transaction requests, the more likely it is that it will have to wait

for some other transaction to release the lock.

2. The longer a transaction T executes, the more time another transaction will have

to wait if it is blocked by T .

The Transaction Chopping algorithm uses simple graph theoretical ideas to break up

transactions in a safe way, such that the different pieces have no longer control depen-

dencies among themselves, can be executed in parallel. The assumptions for transaction

chopping are as follows

1. All transactions that will run in some interval can be identified.

2. The goal is to achieve full isolation (degree 3, consistency).

According the terms which we mentioned in Section 2.3.5.2, this is equivalent to:

(a) The same data item x is read and/or modified by the same transaction T only (i.e.,
at most) once. A transaction must read a data item x, before it writes it. A data
item x can have multiple “shared” locks (i.e., locks which are set by transactions for
the purpose to read x only, but not to modify it), or otherwise, one “exclusive” lock
(a lock which is set for the purpose to modify x; i.e., to write x).

(b) It follows, that a transaction T which intends to modify some x must request an
“exclusive” lock. This can be provided by the DBMS only if no “shared” lock is set
on x. Otherwise, if a “shared” lock is set on x, T must wait for the “shared” lock
(all “shared” locks) be released.

(c) It follows furthermore, that no transaction reads data which are modified by other
transactions at the same time (“no dirty reads”). Otherwise, if a transaction T

needs to read a data item x which is modified by some other transaction at the same
time (i.e., x is locked “exclusive” by the other transaction), T must wait for the
“exclusive” lock on x be released.

(d) Locks on read data are released by a modifying transaction T when T commits,
but not before. (Otherwise, a data item x which was read by T , may already have
been modified by some other transaction that completes before T , although the
computations of T base on the x that did have a state different from that which it
has in the database when T completes.)

110 Part II Analysing Database Designs

(e) Pieces of a “long” transaction which are writing an object x (like T11, T12, and
T112, shown in the examples below) send a prepare to commit,1 by which the
“exclusive” lock on x is released.

3. If a piece of a transaction which is chopped up makes one or more calls to rollback,

and other pieces may have committed before, the database state must be the same

as if the original transaction rollbacks.

4. Program variables which are not in the database, and which are modified by a

transaction that completes but does not commit (rollbacks), must be in consitent

states after transaction completion.

5. If a failure occurs, it is possible to identify which transactions completed before the

failure and which ones did not.

The correctness of transaction choppings is characterized by two kinds of edges:

• C edges (conflict). Two pieces p and p′ from different original transactions are in

conflict if there is at least one data item x that both access and at least one modifies.

• S edges (siblings). Two pieces p and p′ are siblings if they come from the same

transaction T .

An SC-Cycle in a chopping graph identifies conflicts between transactions. That is, the

transaction have then been broken up so far that possibly dead locks can occur.

Consider the following example of the transactions T1, T2, and T3, which perform read

accesse (R) and write accesses (W , “modifications”) on the data items x and y.

T1: R(x) W(x) R(y) W(y)
T2: R(x) W(x)
T3: R(y) W(y)

Using these transactions, there is no lock conflict, because either T1 or T2 modify data

item x without critical dependence on the order, and either T1 or T3 modify data item y

without critical dependence on the order. However, the transactions T1, T2, and T2 can

only be parallelized partially. That is:

• if T1 is started before T2, then T2 can not start until T1 completes (issuing a

commit or rollback); so, T2 may wait for T1’s W (y), although T2 does neither read

nor write the data item y,

• if T1 is started before T3, then T3 can not start until T1 completes (issuing a

commit or rollback),

• if T3 is started before T1, and then T1 (which must wait for T3 to complete, before

it can do the R(y)) is started, T2 must wait until T1 completes,

1We presuppose that we are using a DBMS supporting the Two-Phase Locking (2PL) protocol.

Ch. 4 Database Optimization Scenarios 111

• if T2 is started before T1, and then T1 (which must wait for T2 to complete) is

started, T3 must wait for T1 to be completed; in this case, there is no parallel

execution, such that the transaction execution is serialized.

We can break up T1 into T11 which reads and modifies x and T12 which reads and

modifies y.

T11: R(x) W(x)
T12: R(y) W(y)

There is also no lock problem now, the chopping graph is shown in Figure 4.6.

T3

T12T11

C

T2

C

S

Figure 4.6: Chopping Graph without SC-Cycle.

But, now

• if T2 is started before T11, and then T11 (which must wait for T2 to complete) is

started, T3 must not wait for T11 to be completed (but only, and only if started

previously, for T12, which can be executed in parallel to T11); in this case, the

parallel execution is possible, such that the transaction execution needs not be

serialized, like in the latter case above.

T3

T12

T2

C

SS
T111 T112

C C

S

Figure 4.7: Chopping Graph with SC-

Cycle.

T3

T12

T2

C

SS
T111 T112

C

S

Figure 4.8: Chopping Graph without SC-

Cycle.

112 Part II Analysing Database Designs

We could further split T11 into T111 and T112.

T111: R(x)
T112: W(x)

Figure 4.7 shows the according chopping graph, which contains an SC-Cycle. (If T111,

which does issue the write W (x), issues R(x) and after that T (2) issues R(x), then T2

waits for T1 (i.e., T112) to release the “shared” lock set by T111, and T112 waits for T2

to release the “shared” lock.)

By contrast, if T2 consists of R(x) only

T1: R(x) W(x) R(y) W(y)
T2: R(x)
T3: R(y) W(y)

we can break up T1 such that we get

T111: R(x)
T112: W(x)
T12: R(y) W(y)
T2: R(x)
T3: R(y) W(y)

and there is no SC-Cycle. This is represented by Figure 4.8.

In Database Tuning, it is shown that an incorrect chopping can not be made correct again

by further breaking up transactions. Furthermore, it presents and proves the Transaction

Chopping algorithm which finds the optimal chopping. However, for reasons of space we

can not present the algorithm and its prove here. So, the interested reader is directed to

Database Tuning, Appendix A2 ([Sha92]).

4.2 Application Scenario: Conceptual Database Op-

timization based on Integrity Maintenance and

Schema Transformation

Let us consider a part of the conceptual schema, its implementation by a relational data-

base, and the implementation’s optimization. The schema described by the following

scenario is a subschema of the Company schema that we did already present.

A company is organized into deparments. A department has employees which are work-

ing for the department, such that one employee manages that department. An employee

works for exactly one department. We keep track on the department’s number (Dnumber),

name, and locations. We keep track on the employee’s social security number (Ssn), birth-

date, name, address, sex, and salary. The name of an employee consists of a sequence of

Ch. 4 Database Optimization Scenarios 113

Employee

Ssn

manages

Name

Department
Name

{Locations}

Dnumber

[Firstnames]

Lastname

Title

Birthdate

Salary

Sex

Address

c7 c2

c3c6

works_for c1 = (1,1)

c4 = (0,1)c5 = (1,1)

StartDate

Figure 4.9: Department-manages-Employee-works for-Part of the Company Schema.

firstnames, a lastname, and eventually a title. We keep further track on the start date the

employee who is the department manager begins managing that department.

Figure 4.9 shows the HERM entity-relationship schema describing that scenario. The

schema contains the entity types Employee and Department and the relationship types

works for and manages. For illustration purposes, we have labeled the cardinality con-

straints and arrows (references, referential constraints) here:

(c1) the cardinality constraint on the reference (works for,Employee),

(c2) the reference works for → Employee,

(c3) the reference manages → Employee,

(c4) the cardinality constraint on the reference (manages,Employee),

(c5) the cardinality constraint on the reference (manages,Department),

(c6) the reference manages → Department, and

(c7) the reference works for → Department.

The description of the scenario specifies 1:1 associations between Employee and works for,

and Department and manages. These are graphically represented by the references and

the (1,1)-cardinality constraints which are labeled (c1,c2) and (c5,c6), respectively, such

that the conceptual schema suggests to group the according types when implementing

the database. Following that suggestion, we get a schema with the grouped structures

(Employee,works for) and (Department,manages).

Figure 4.10 shows how the relational database would be implemented in SQL according

these design informations:

• Paragraph (1) shows how the database schema is realized when relating strictly to

the demands of the conceptual schema (Figure 4.9). One can easily recognize that,

whenever implementing the schema that way, a tuple can be neither inserted into

the Emp table, which corresponds to the (Employee,works for) structure, nor into

114 Part II Analysing Database Designs

(1)
CREATE TABLE Dept
(Dnumber DECIMAL(6,2) PRIMARY KEY,

Name CHAR(20) NOT NULL,
Locations VARCHAR(60) NOT NULL,
MgrSsn DECIMAL(9) NOT NULL,
MgrStartDate DATE

) ;

CREATE TABLE Emp
(Ssn DECIMAL(9) NOT NULL PRIMARY KEY,

Birthdate DATE NOT NULL,
Sex CHAR(1) NOT NULL

CHECK (Sex IN (’m’,’f’)),
Firstnames VARCHAR(30) NOT NULL,
Lastname VARCHAR(20) NOT NULL,
Title VARCHAR(10),
Address VARCHAR(40),
Salary FLOAT CHECK (Salary > 5000),
DeptNum DECIMAL(6,2) NOT NULL

CONSTRAINT emp_dept REFERENCES Dept
) ;

ALTER TABLE Dept ADD CONSTRAINT dept_mgr
FOREIGN KEY (MgrSsn) REFERENCES Emp ;

(2)

(2a)
ALTER TABLE Emp MODIFY DeptNum NULL ;

(2b)
ALTER TABLE Emp DISABLE CONSTRAINT emp_dept ;

(2c)
ALTER TABLE Emp DROP CONSTRAINT emp_dept ;

CREATE TRIGGER emp_dept
AFTER INSERT OR UPDATE ON Emp
FOR EACH ROW
WHEN (NOT NEW.DeptNum IN

(SELECT Dnumber FROM Dept))
BEGIN
INSERT INTO Dept

(Dnumber,Name,Locations,MgrSsn)
VALUES (NEW.DeptNum,

concat(NEW.Lastname,"’s Dept"),
concat(TO_CHAR(NEW.DeptNum),"’s Loc"),
NEW.Ssn) ;

END ;

Figure 4.10: SQL-Commands for Creation and Repair of the Database.

the Dept table, which corresponds to the (Department,manages) structure. For

illustration purposes, we have included the representation of this implementation

using entity-relationship modeling concepts in Figure 4.11.2

Ssn

Name

Name

{Locations}

Dnumber

[Firstnames]

Lastname

Title

Birthdate

Salary

Sex

Address

MgrStartDate

c7’

c4’ = (0,1)c3’

DeptNum

MgrSsn

EmpDept

Figure 4.11: Internal Schema (Physical Schema).

• Paragraph (2) shows how the database schema can be repaired. The alter statement

of (2a) drops Emp.DeptNum’s NOT NULL constraint. Alternatively, (2b) can be

used to disable the referential constraint emp dept. It can be re-enabled after the

Department managers and the Departments have been inserted. Paragraph (2c)

shows how the referential constraint emp dept is substituted by a trigger. The

trigger generates automatically the Department as soon as an Employee emp is

2Although using entity types and relationship types this schema is not considered a conceptual schema
(a HERM respectively RADD schema, refer to the description of the properties of a HERM schema in
Section 3.3.3.1), since it models cyclic referential dependencies between the structures Emp and Dept.

Ch. 4 Database Optimization Scenarios 115

inserted such that emp.DeptNum doesn’t already exist in Dept.Dnumber. Until

now, the combination of (1) and (2c) could be seen as the best choice.

• Paragraph (3) in Figure 4.12 continues on the create and alter statements of (1)

and the changes made by the alter table and create trigger statement of (2c). (3a)

adds a constraint that causes automatical delete of Employees (Emp) whose De-

partment (Dept) has been deleted. (3b) adds a trigger that ensures that the inserted

or updated Employee who becomes a Department manager does really manage only

one Department (constraint c4 in Figure 4.9). Paragraph (3c) shows how the Dept

and Emp tables are restructured. The MgrSsn and MgrStartDate columns (at-

tributes) are removed from the Dept table and MgrStartDate is added as an op-

tional attribute to the Emp table. Then, the view Department is created to substi-

tute the old Dept table. The integrity maintenance w.r.t. Department managers is

now controlled by the new trigger emp dept which ensures that the first Employee

who is inserted to work for the new Department is considered as the Department’s

manager. Also, by the trigger there can be no other Employee of the same Depart-

ment for which Emp.MgrStartDate is NOT NULL, such that he is considered as

the Department’s manager.

• The latter SQL database schema is not represented anymore by the conceptual

schema of Figure 4.9. Furthermore, the actions (2c) and (3c) gently presuppose

that the Department manager must work for the same Department, which was not

represented by the first conceptual schema– although this information was already

included in the scenario description. We need to mention, that in real life one also

can often observe that design informations are acquired and verified again while or

after the database schema is installed.

Hence, according the database schema resulting from (1), (2c), and (3c), the conceptual

schema should be modified such that it is easier to find a correct and efficient implemen-

tation.

4.2.1 Repairing the incomplete Database Design

It is clear that correctness and efficiency of database operations, like select, insert, delete,

and update in SQL, often can be improved by using internal schemata which differ from

the given conceptual or logical database schema. These aspects take especially then place

when complex transactions reveal performance and/or consistency problems. Internal

design considers the concrete operations and transactions more appropriately in terms of

behavior, generated transaction results, and performance, such that, like illustrated in

Figure 1.2 and shown by the optimization scenario of this Section, the internal design can

repair conceptual and logical database design mistakes, after it recognizes them.

116 Part II Analysing Database Designs

(3)

(3a)
ALTER TABLE Emp
ADD CONSTRAINT emp_dept_del

FOREIGN KEY (DeptNum)
REFERENCES Dept ON DELETE CASCADE ;

(3b)
CREATE TRIGGER emp_1mgr
AFTER INSERT OR UPDATE ON Dept
FOR EACH ROW
WHEN ((SELECT count(*) FROM Dept

WHERE MgrSsn = NEW.MgrSsn) > 1)
BEGIN

raise_application_error(-20477,
’A Department Manager must not manage

more than one Department !’) ;
END;

(3c)
DROP TRIGGER emp_dept ;

ALTER TABLE Dept
REMOVE (MgrSsn, MgrStartDate) ;

(3c, continued)
ALTER TABLE Emp ADD MgrStartDate DATE ;

CREATE VIEW Department AS
SELECT
Dept.*,Emp.Ssn MgrSsn,Emp.MgrStartDate
FROM Dept,Emp

WHERE Dept.Dnumber=Emp.DeptNum
AND Emp.MgrStartDate IS NOT NULL ;

CREATE TRIGGER emp_dept
AFTER INSERT OR DELETE OR UPDATE ON Emp
BEGIN
IF (SELECT DeptNum,count(*) FROM Emp

WHERE MgrStartDate IS NOT NULL
GROUP BY DeptNum HAVING count(*)<>1)

THEN
raise_application_error(-20478,
’Violated Constraint:

Each Department must have exactly one
Manager in the Employee Relation !’) ;

END IF ;
END ;

Figure 4.12: SQL-Commands for Optimization of the Database.

Points of view how to make database applications run more quickly have already been

outlined by different authors [Gil91, Sha92, CG93]. In addition, DBMS manuals [Syb93,

PLSQL95] give guidelines how to improve database performance. In Section 4.1 we have

explained RADD/raddstar’s and Database Tuning’s ([Sha92]) approach to database op-

timization.

Hence, mistakes which are made in early database modeling phases can be remedied

by later phases. This kind of design repair can be done either by

1. selecting a different schema in advance of implementation, or else, by

2. restructuring the schema of the database that is already running.

But, as mentioned in Chapter 1, these approaches are often difficult to handle because

they require changes to the database such that the changed internal views may not be

represented externally anymore, and vice versa. This way, modifying or extending the

database requires to repeat the whole design process once more.

Therefore, a better strategy is to make the designer aware about possible mistakes

which he makes during information acquisition and conceptual design. Thus, we have to

find a way back to reason about performance and consistency problems of the internal

database schema, in order to apply conceptual database design optimization.

4.2.2 Optimizing the Example Schema

Let us recall the conceptual schema of Figure 4.9, and its internal schema implementation

and optimization, which were presented by the SQL-code in Figure 4.10 and Figure 4.12.

Ch. 4 Database Optimization Scenarios 117

On basis of the given schema which is represented by the SQL-code in paragraph (1) of Fig-

ure 4.10, we must additionally generate (remove) Employee (Department) items on insert

(delete) of Department (Employee). Under these circumstances, the transaction contents

and the costs of insert into/delete from Employee, insert into/delete from works for, in-

sert into/delete from Department, and insert into/delete from manages can be assumed

high, such that these operations could be considered as operational bottlenecks. This

is caused by the additional operations which are required by the applications or auto-

matically generated by the database procedures and triggers, whenever the mentioned

operations are invoked.

add conceptual optimization rule:
when bottleneck(delete,s1) and bottleneck(delete,s2)
and entity s1 and entity s2
and exists s3,s4:

((dcycle [s1,s3,s2,s4] or dcycle [s1,s4,s2,s3])
and compatible [s3,s4])

do
separate (group (s3,s4) (.,.)) [s4]

Figure 4.13: Specification of a Conceptual Schema Optimization Rule.

This set of (additional) operations may result in operation cycles, especially on deletions.

That is, the whole database can be made empty by an delete operation that is invoked.

To remedy this drawback, let us consider the conceptual schema optimization rule which

is defined in Figure 4.13.3 The rule specifies, that whenever the delete is an operational

bottleneck for structure s1 and structure s2 of the current conceptual schema, respectively,

and these bottlenecks result from a “delete-cycle”:

• delete s1 invokes delete s3 (assuming, that s3 has a reference to s1), delete s3

invokes delete s2, delete s2 invokes delete s4 (assuming, that s4 has a reference to

s2), and delete s4 invokes again delete s1

– or –

• delete s1 invokes delete s4 (assuming, that s4 has a reference to s1), delete s4

invokes delete s2, delete s2 invokes delete s3 (assuming, that s3 has a reference to

s2), and delete s3 invokes again delete s1

then the structures which have references to the entity structures, s3 and s4, must be

inspected. If the structures s3 and s4 are “compatible” then they can be grouped to

one structure, such that subsequently the one which has been grouped to the other is

3A syntactically different version of this rule is found in [Ste95] and [Ste96]. However, this version of
the optimization rule is compatible with the CSL specification language of the RADD/raddstar, that we
will present in Chapter 7.

118 Part II Analysing Database Designs

extracted from the other again. So, the new extracted structure (s4) has only a reference

to the other new structure (which was constructed by grouping the original s3 and s4),

but no longer to the entity structures s1 and s2.

Note: The rule specified in Figure 4.13 is not only restricted to direct references between struc-
tures, and therefore immediate invocations of deletes. The sfdcycle function considers also tran-
sitive invocations of deletes, such that transitive references are considered as well. E.g., we could
have a path s1 ¡- s3 ¡- s5 -¿ s2 ¡- s4 -¿ s1 with high delete complexities for delete s3 and delete
s4 such that the rule applies and generates s1 ¡- (s3,s4) ¡- s5 -¿ s1 .

Employee

Ssn

manages

Name

Department
Name

{Locations}

Dnumber

[Firstnames]

Lastname

Title

Birthdate

Salary

Sex

Address

c7 c2
works_for c1 = (1,1)

StartDate
c5’ = (1,1)

c4’ = (0,1)

c3’

Figure 4.14: Optimized Conceptual Schema.

In this example, the manages and works for relationship structures are compatible such

that they can be grouped. This generates a new structure with an optional (nullable)

attribute StartDate. Subsequently, the conceptual database optimizer re-generates the

old relationship structures from this new structure. In the optimization of Figure 4.9, this

results in the extraction of manages with its original attribute set ({StartDate}) from

the grouped structure (works for,manages), such that the optimized conceptual schema

looks like shown in Figure 4.14. To preserve the semantics of the given schema of Figure

4.9, we need to add the following constraints to the new schema:

(c3’) a new reference manages → works for,

(c4’) card(manages, works for) = (0, 1), and

(c5’) card(manages,Department) = (1, 1).

The adding of these constraints must be automatically done by the conceptual database

design optimizer. We refer to the new constraints of the optimized conceptual schema as

c3’, c4’, and c5’– as they present the modified constraints c3, c4, and c5 of Figure 4.9.

(The conceptual database optimizer has to retain the structures and connections between

the structures, which were given for the original schema.)

Ch. 4 Database Optimization Scenarios 119

The optimized conceptual schema (Figure 4.14) and the new constraints c3’, c4’, and c5’

correspond to the implemented database schema that has been generated by the SQL-

Commands of paragraph (1), (2c), and (3c). The referential constraints of manages– the

references of manages to Department (c6) and to Employee (c3)– appear now as the

reference from manages to works for (c3’).

4.2.3 Summary

In this scenario, it is not hard to see that:

1. The new schema provides a consistent and efficient implementation (new tuples can

always be inserted into the Department relation).

2. And more important: the new schema models the mini world completely.

(The Employee who manages the Department also works for that Department!)

4.3 Summary and Outlook

The Chapter presents some database optimization scenarios and shows how criteria for

database optimization are recognized and won. Furthermore, the Chapter introduces how

transactions and transaction costs are evaluated by the RADD/raddstar.

Section 4.1 described the presuppositions of the conceptual schema optimization ap-

proach of the RADD/raddstar. In Section 4.1.1 we described some database optimization

scenarios. A reference according lock and transaction tuning (Transaction Chopping,

[Sha92]) has been presented in Section 4.1.2. We consider these transaction locking con-

cepts by the cost model of the RADD/raddstar, which adds additional terms to the costs

of the transactions whenever it recognizes that the nesting is too deep.

In Section 4.2, we gave a short introduction to the reflection of the performance and

behavior of the internal schema bottlenecks to the conceptual schema. We showed that

it does not necessarily become necessary to optimize the internal database schema, since

we are able to optimize the conceptual database schema during design.

The optimization scenario of Section 4.2 was presented by the author in [Ste96]. The

scenario is here adapted considering the changes which have meanwhile been made ac-

cording

• the transformation operations & transaction evaluations (Chapter 5),

• the compilation kernel (Chapter 6),

• and the conceptual specification language (CSL, Chapter 7)

of the RADD/raddstar.

Chapter 5

Integrity Maintenance, Conceptual

Schema Mapping, and Fitness

Evaluation

From the database optimization scenarios of Chapter 4 we obtain the cost model that has

been realized in the RADD/raddstar, and evaluate the fitness of database operations that

are used by the physical structures of the database (“physical costs”). That we consider

the physical cost terms is for reason that the fitness evaluation for the conceptual database

schema consists of

1. a conceptual schema to internal schema transformation,

2. the evaluation of transactions on the internal schema,

3. the estimation of the internal transactions’ operational fitness,

4. and the reflection of the internal transactions’ contents and costs to transactions

and operation costs which are presented to the conceptual database designer.

The Chapter presents the specification, transformation, and optimization terms as well

as the cost model that have been realized in the RADD/raddstar system.

The Chapter is organized as follows. Section 5.1 gives an overview on the depen-

dencies between integrity maintenance and schema transformations. In Section 5.2, we

show the predefined schema transformation operations of the RADD/raddstar. Section

5.3 describes the cost model and how the reflection of the operation costs and detected

bottlenecks which are evaluated for the internal schema, to the conceptual schema is im-

plemented. The conceptual bottleneck representation makes the database designer aware

about possible design untidynesses and problems that may occur at time of the later

database maintenance. Section 5.4 gives a summary of the Chapter, and an outlook on

the usage of the presented fitness evaluation concepts in the RADD/raddstar.

122 Part II Analysing Database Designs

5.1 Integrity Maintenance and Schema Transforma-

tion

The structure of the database schema, and the integrity maintenance and behavior of

running transactions, on the other hand, are connected to each other, such that the

choice of the database schema influences the contents of the transactions, and in turn,

the behavior of the transactions can influence the choice of the database schema.

As we have mentioned in Section 3.3.2, Section 4.1.2, and Section 4.2, problems ac-

cording integrity maintenance of the internal schema, e.g. preserving key and foreign-key

dependencies by the implemented operation sequences of transactions, or controlling in-

tegrity constraints by rules (triggers), may not make the internal database schema efficient.

E.g., it may raise lock scheduling errors, and so, not allow fast analysis of queries and

updates such that the cost for preparing queries and updates is high. These situations

occur, if the internal schema’s structuring is not transparent to the DBMS and the time

consume for analysis of the dependencies is high. (Refer to [Gün95].)

Therefore we propose, and have realized in the RADD/raddstar, another approach

which makes the internal schema that is used for the evaluation of the conceptual schema’s

fitness simpler according the structures, their dependencies, and the integrity constraints

remaining in the internal database schema.

5.1.1 Error Prevention Properties

As mentioned by the database optimization scenario of Section 4.2, the RADD workbench

(the RADD/raddstar) presupposes error prevention properties for the transactional be-

havior in case of integrity violation. The error prevention properties can be expressed

by means of behavior options, and may be specified more detailed by behavior rules

that can include function calls. The behavior options are specified in RADD/raddstar

a little bit similar the Codasyl specifications of insertion and retention options, shown

in Section 2.2.5, such that they provide a simple specification interface for the database

designer. However, instead of using insertion and retention options only, we provide

“insertionOption”, “deletionOption”, “updateChiOption”, and “updateParOption”, and

cascading behavior can be specified not only for deletes (like in Codasyl and today’s SQL),

but also for inserts and updates. The behavior options are related to references of the

structures, e.g. R1 which has a reference to R2, such that R2 is the parent structure (e.g.

an entity type) and R1 is the child structure (e.g. a relationship type), or, to cardinal-

ity constraints (CCs), functional dependencies (FDs), inclusion dependencies (IDs), and

exclusion dependencies (EDs).

The term insertionOption specifies what to do, if a new record (or object) is inserted

into the set of R1 (R1
t, called occurence set of R1– refer to Section 5.3.1.1) and the

Ch. 5 Integrity Maintenance, Conceptual Schema Mapping, and Fitness Evaluation 123

referenced record does not (already) exist in R2
t. The term deletionOption specifies

what to do with the records in R1
t for which the referenced record is deleted from R2

t.

Since we do consider update operations as well, we have included “updateChiOption”

and “updateParOption”. Hence, in a value-oriented, equality and set-semantics based

database– i.e. a relational database with keys as unique values in the according column(s)

of a table, and foreign-keys which are equal to some key-value(s) of the referenced table –,

updateChiOption specifies what to do, if a record of R1
t is updated such that it has a new

foreign-key, and the foreign-key is not (already) key in R2
t. The term updateParOption

specifies what to do, if the key of some record in R2
t is updated such that there are now

records in R1
t, which have foreign-keys that have no more equal keys in R2

t.

The behavior options of the RADD/raddstar can be set to the following values, which

informally specify the behavior of the running database’s transactions:

1. Restrict. Cancellation of the transaction as soon as any data inconsistency ap-

pears; that is, the transaction is aborted (rolled back) such that the complete old

database state, as it was before invoking the transaction, is restored.

2. Cascade. This means invoking repairing actions as soon as data inconsistencies

appear; e.g., if– on an insert operation –the referenced record (object) is missing in

the parent structure’s occurence set, then it is generated as well, or, if– on a delete

operation –a record (object) is deleted from the parent structure’s occurence set,

for which still references from the child structure’s occurence set exist, then these

records (objects)– whose reference was deleted –are deleted as well.

3. Set Null. If some record (object) of the parent structure’s occurence set, for which

still referencing child records (objects) in the child structure’s occurence set exist, is

deleted, then the corresponding child references are set to “null” (in case that they

are allowed to have null references; if they are not allowed to have null references,

the transaction is rolled back).

4. Set Default. On insert of some new record (object) into the child structure’s

occurence set, a default record (object) of the parent structure’s occurence set is

used as reference from the new record. This default record in the parent structure’s

occurence set must never be deleted. If a record (object) of the parent structure’s

occurence set, for which still child records exist is deleted, then the references of the

corresponding child records are set to the default record in the parent structure’s

occurence set.

The set null and set default options are usually used in cases where either ref-

erential values are not known, or else, referenced values are deleted from the target set of

a referential constraint. They may also be used, if the according user interfaces do only

allow to input data for a certain subset of the relation’s attributes.

124 Part II Analysing Database Designs

5.1.2 When do Transformations take place?

During the transformation process, the (transformation rule/integrity constraint)-pair

that fires is checked against all modeled and implicite constraints and behavior rules.

Then, a decision procedure determines whether the rule/contraint-pair fires actually, i.e.

whether the transformation is applied or not. E.g., if the database designer explicitely

specifies on insert cascade rules or models nullable references in the graphical RADD

design, then a transformation action, like those which are given for the 1:1-associations

(Employee,works for) and (Department,manages) of the Company Schema, respectively,

is not mandatorily applied. For example, the rule

For Ref works for → Employee : on insert cascade

implies that the default transformation rule which is given for the constraints works for

→ Employee and card(works for, Employee) = (1, 1) is not applied, because items of

Employee and works for will be inserted into the database the same time– for reason of

the cascade rule which we assume to be implemented by a trigger.

This way, we consider

1. the insert operation for Employee to include the insert operation for works for,

2. or else, the insert operation for Employee to be not autonomous, but always trig-

gered by the insert operation for works for.

In both cases, we can presuppose that the related Employee and works for records are

inserted into the database the same time, which is done by an database application.

General:

on insert cascade,

on delete cascade,

on update parent do

if nullable(child) then set null else set default fi,

on update child cascade;

Special:

on insert Department {Department=d} do

if not (d in manages->Department)

then insert manages {Department=d,...} fi,

for CC(manages,Department) is (.,.) :

on delete restrict;

Figure 5.1: General and Special Behavior Rules.

5.1.3 General and Special Integrity Maintenance Rules

Figure 5.1 shows example specifications for general and special behavior rules of the Com-

pany Schema. Note, that by the behavior options (restrict, cascade, set null, set default)

we do not necessarily require the conceptual designer to describe explicitely the actions

that are needed to maintain the integrity constraints of the database which is implemented

for the Company Schema. That is, to specify or implement the concrete application code,

and therefore, to go into details of the database and application realization– although it

is possible to derive the database schema implementation and the application procedure

code in a straight forward manner from the integrity rules.

Ch. 5 Integrity Maintenance, Conceptual Schema Mapping, and Fitness Evaluation 125

5.2 Schema Transformation Operations

Since transactions must preserve integrity constraints which are designed for the database–

either by key and foreign-keys (respectively references between structures), or else, by

database rules (triggers) and procedures, which, again, must be correctly specified to

implement the designed integrity constraint(s) correctly –we have to retain the integrity

constraints of the conceptual database design during conceptual schema to the internal

schema transformation, although they may be represented another way on the internal

schema. As we have mentioned in Section 4.2 and 1.4, we preserve the original integrity

constraints of the conceptual schema during optimization as well. This way, we can use

the same operations for conceptual schema to internal schema transformation, and for

conceptual schema optimization.

Let us consider what are in general the impacts of schema transformation to integrity

maintenance.

5.2.1 Impact of Transformation to Integrity Maintenance

The transformation of the structures and integrity constraints, between the conceptual

and the internal schema, respectively, has the effect that

• collapsing of structures leads to drop of structure references and integrity con-

straints, and

• separating of structures (e.g., for reason to maintain static and dynamic data of the

same conceptual structure separately, or, to represent collection-typed attributes

of the conceptual schema by a hierarchical or relational database schema) leads to

adding new references and integrity constraints.

Thus, the internal representation of the conceptual schema is defined by a set of new

structures and a set of new constraints. To keep track which transformations we are mak-

ing, and which are the structures from which the new internal structures are generated,

we use special pointers from the new structures to the old structures. These pointers are

called preceders.

5.2.1.1 Preceders

If a new structureEmp is generated by groupingEmployee and works for, then Employee

and works for are considered as preceders of Emp. Integrity constraints (references, car-

dinality constraints, and keys, FDs, IDs, and EDs) do have preceders as well, such that

we can determine from which constraint a new constraint has been generated, for the

internal schema and the optimized conceptual schema, respectively. So, if we assume an

126 Part II Analysing Database Designs

operational bottleneck, then it is always possible for us to determine which graphically

modeled or specified constraint of the conceptual schema is responsible for the bottleneck.

The constraints of the set of new constraints have to be considered only when the

database system is implemented and transactions are running. So, they are considered

only when valuating the given database design. Furthermore, we use conceptual and

internal transaction graphs to provide a mapping between the internal and conceptual

transaction contents, and, to evaluate the costs of the transactions which we present to

the conceptual database designer. (The mapping will be presented in Section 5.3.3.)

s1 s2

s4

s5

s6

s7

s4’

s2’

s3

s3’

s5

s7’

s6

s8

s8

c = (m,n)

c3

c4

c6

c5
c7

c8

c3’

c4’

c7’

c8’

c5’

c6’

Figure 5.2: group (s1,s2) (m,n)

s1

s1’

s3

s4

s4’

s5

s5

s6

s6

s2’

s3’

c’ = (m’,n’)

c3

c5

c4

c3’

c4’
c6’

c6

c5’

Figure 5.3: separate s1 [s2]

5.2.2 Basic Schema Transformation Operations

The RADD/raddstar schema transformer and optimizer provide five basic transformation

operations: group, separate, nest, unnest, and clusterize. These reflect transformations

like generation of repeating groups (group), extracting structures from other structures

(separate), nesting of structures into other structures (nest), unnesting of structured or

collection-typed attributes (unnest), and generation of unions, which are clusters in the

RADD and HERM data model (clusterize). Additionally, the database designer has

the opportunity to define own schema transformation operations using the conceptual

specification language (CSL).

The basic transformation operations are presented in Figure 5.2, 5.3, 5.4, 5.5, and 5.6.

Note: For reason to concentrate on the important aspects of the schema transformation opera-
tions, we have ommited the labels for the referential dependencies (references) in these Figures.

Ch. 5 Integrity Maintenance, Conceptual Schema Mapping, and Fitness Evaluation 127

s3

s4

c3

c4

s1 s2

c6

c5

s3’

c3’

c4’

s1’

c5’

s5

s5

s6

c6’

s6’
s4

c = (m,n)

\{ a2’ \}

Figure 5.4: nest (s1,s2) tset

\{ a2 \}

c3

s3

s4

s5

s6

s1

c5

c6

c4

s1’
c’

s2’

c5’

c6’

s3’

c3’

s4 c4’

s6’

s5

Figure 5.5: unnest s1 {a2}

The meaning of the transformation operations is as follows:

group (s1,s2) (m,n). The group operation collapses two structures (s1,s2) to one in-

ternal structure (s2′). A negative m or n, where m is not equal to -1 (-1 encodes

“dot”, or unknown) encodes that the group operation has to specialize to nest or

clusterize. (If m is −1 then m as treated as if it were 0.) If group specializes to nest

or clusterize, then a procedure evaluates the specialized transformation operation

and the parameters of the specialized transformation operation which uses the the

plau card() function (refer to Section 5.3.2.4). Otherwise, each object in s2t has at

least m and at most n objects in s1t, a structured (record-typed) attribute of s1

is repeated m times mandatory (not null) and n−m times optional (with null) in

the new structure s2′. Also, all references to the previous s1 and from the previous

s1 are replicated m times mandatory and n − m times optional. For instance, as

Figure 5.2 shows, if m = 2 and n = 3 then two not null arrows and one with null

arrow, to and from the new structure s2′ are generated, respectively.

The group operation includes transformation of all integrity contraints which did

reference a structure that is transformed. These are the cardinality constraints c3,

c4, c5, c6, c7, and c8 (in Figure 5.2, which are transformed to c3′, c4′, c5′, c6′, c7′,

and c8′, respectively. The group operation includes transformation of all structures

which did reference one of the stuctures s1 and s2. So s3, s4 and s7, which are

transformed to s3′, s4′ and s7′, which have now a reference to the new structure

s2′. Further structures which reference structures which have been transformed, are

transformed as well, and all constraints which are connected transformed structures

are transformed as well, such that possibly the operation can escalate such that all

128 Part II Analysing Database Designs

structures and constraints of the schema are transformed. But, the group operation

does not repeatedly transform a structure that has already been transformed in the

same transformation step, such that the termination of the transformation operation

is given.

Preceders. Structure s2′ gets preceder set {s1,s2}, constraint s3′ has preceder

s3, s4′ has preceder s4, s7′ has preceder s7, and so forth for the structures and

constraints which are additionally transformed, because they had a reference to s2,

s3, s4, s7,

separate s1 [s2]. The separate operation separates one or more structures (in Figure 5.3

only one structure, which is contained as set-, bag-, list-, or record-typed attribute

in s1) from a structure (s1). The structures, which shall be separated must be given

the function by the second list-parameter. If the first structure (s1) is not contained

in this list, it is internally added to it. If only one structure (assume s2′) is sep-

arated from the original structure (s1), the function subtracts the references from

and to s2′ from s1 and generates s1′ and s2′ as new structures. The transformation

of additional structures and integrity constraints and the escalation on the trans-

formation of additional structures and integrity constraints is similar those of the

group operation. Also the generated reference and cardinality constraint between

the new s1′ and s2′ is similar the handling of the group operation, except that it is

in reverse order.

Preceders. Both structures, s1′ and s2′, get preceder set {s1}. The preceders of

the integrity constraints (cardinalities), and the additional structures and integrity

constraints, which are generated by escalation of the transformation, are set corre-

sponding the preceder settings of the group operation.

nest S1 S2 C . The nest operation (Figure 5.4) nests a structure S2 into S1. S2 is

transformed to a nested attribute of S1’ (here, the set-typed attribute s2’). The

transformation of additional structures and integrity constraints and the escalation

on the transformation of additional structures and integrity constraints is similar

those of the group operation.

Preceders. S2’ gets preceder set {S1,S2}.

New Attributes. Attribute s2’ represents the nested structure S2.

unnest S1 a . The unnest operation separates a nested attribute (array-, set- or bag-

typed, in Figure 5.5 the set-typed attribute a) from a structure (S1). The result

of this operation are two new structures (S1’,A’). The transformation of additional

Ch. 5 Integrity Maintenance, Conceptual Schema Mapping, and Fitness Evaluation 129

structures and integrity constraints and the escalation on the transformation of ad-

ditional structures and integrity constraints is similar those of the group operation.

Preceders. S1’ gets preceder set {S1}.

New Structures. A’ represents the unnested attribute a.

clusterize {S1,B,C,D} . The clusterize operation takes a relationship structure (S1),

its referenced cluster and the structures which are referenced by the cluster (B,C,D),

and generates one internal structure (S1’). The transformation of additional struc-

tures and integrity constraints and the escalation on the transformation of additional

structures and integrity constraints is similar

Preceders. S1’ gets preceder set {S1}, E’ gets preceder set {B,E}, G’ gets preceder

set {C,G}, I’ gets preceder set {D,I}.

New Structures and References. S1’ does not anymore reference the cluster,

instead S1’ optionally references now F, H and J. S1’ is now referenced by E’, G’

and I’.

S1

C3
C5

C7C2

C4
C6

a

C1

S1’

(null) C3’

(null) C5’

(null) C7’C2’

C4’

C6’

a’

C1’

E

B

F G

C

H JI

D

E’

F

G’ H

I’

J

Figure 5.6: clusterize {S1,B,C,D}

There is also a transformation operation, called mk kettentity, which we have not ex-

ported, and can therefore not be used in transformation rules which are specified by the

database designer. The mk kettentity transformation operation is called from the sepa-

rate transformation operation, and provides the generation of kett-entities for a schema

which has mutual references, such as the internal schema in Figure 4.11. It is used for

network and object-oriented target schema generations. These data models do not allow

130 Part II Analysing Database Designs

to have mutual references in the schema (which are many-to-many relationships on the

conceptual representation), such that such references are resolved by kett-entities. Al-

though the hierarchical data model does also not allow to have mutual references, here,

in contrast to the network and object-oriented model, transformations of mutual refer-

ences are omitted, since they are never generated during the transformation– for reason

that the given conceptual schema is always hierarchical and there must be no hierarchical

transformation rule that makes an intermediary schema non-hierarchical.

5.3 Cost Evaluation and Reflection of Internal Trans-

actions to the Conceptual Schema

RADD/raddstar’s cost model is comprised of

• basic operation costs, these are used to evaluate complexities of retrievals, inserts,

deletes, and updates,

• transactions extensions, which are describing the contents of transactions that are

generated by an insert, delete, or update operation, and

• transaction graph mappings, which translate the transactions of the internal schema

which is derived from the conceptual schema to the transactions the designer is

looking at (conceptual transactions), and evaluate their costs.

The basic operation costs are evaluated independently from integrity maintaining actions.

The transaction extensions evaluate transaction graphs, which contain the actions and

triggered actions which are necessary to generate or restore consistent database states.

The basic operation cost terms are attached to the nodes of the transaction graphs and

are furthermore used in equations to estimate the relative time and performance of the

running database’s transactions.

The functions and parameters used to evaluate the costs of the database operations

are presented in Section 5.3.1. Section 5.3.2 describes the rewriting of the database op-

erations to their specializations. Specializations are the sets of the operations and all

operations which they depend on, whenever an operation, such as insert, delete, or up-

date is invoked by the DBMS. Then, integrity maintenance possibly requires to invoke

other operations (if cascade, set null, or set default is specified)– or to reject the invoked

operation whenever the other operations on which the invoked operation is depending,

were not previously executed (if restrict is specified). As mentioned at the end of Section

3.3.3.1, the specializations evaluated by the RADD/raddstar are similar to the specializa-

tions evaluated by the GCS algortihm, which considers the case on integrity enforcement

(cascade) [ST92, ST94b]. In Section 5.3.3 we describe how the internally evaluated op-

eration contents and costs are mapped to operation contents and costs of the conceptual

schema, and how they are presented to the database designer.

Ch. 5 Integrity Maintenance, Conceptual Schema Mapping, and Fitness Evaluation 131

5.3.1 Evaluation of the Basic Operation Costs

Several approaches to fitness evaluation of database operations and to query optimization

in relational databases have been proposed, e.g. [Wie87, Gil91, CBC93]. The authors of

reference [CBC93] use a refinement of the involved actions which are necessary to perform

selects, inserts, deletes, and updates. In RADD/raddstar we use a similar refinement and

evaluate the costs of the basic actions that are necessary to perform the retrieve (select),

insert, delete, and update operations firstly. For the evaluation of the basic operation

costs we define three types of terms:

1. cost primitive functions,

2. cost parameter functions (related to physical access and modification costs), and

3. balancing parameters, which are used to balance the costs of the different operation

and action types upon themselves.

which are calculated by the cost parameter functions.

ploc(Rt) locate the data item in Rt

psto(Rt) store the data item in Rt

prem(Rt) remove the data item from Rt

pmod(Rt) modify the data item in Rt

pfet(R) fetch the data item of Rt

ridx(Rt) reorganize the related indices of Rt

rbuc(Rt) reorganize the hash buckets of Rt

rsto(Rt) reorganize the whole storage of Rt

Table 5.1: Cost Primitive Functions used by the RADD/raddstar.

5.3.1.1 Cost Primitive Functions

The cost primitive functions describe the costs of actions which are necessary to maintain

the data and the files in which the data are stored physically, e.g. locating the tuple,

fetching the tuple, or storing the tuple. We do not consider costs of actual internal

actions and disk management operations since they depend on the implementation of

the DBMS and the characteristics of the physical file and directory organization. We

use rather abstractions of these different physical actions. This way, the cost primitive

functions state a couple of terms which are used to assemble a general framework that can

be adapted by parameters according different issues. The cost primitive functions used

by RADD/raddstar are shown in Table 5.1. In the table, R denotes a structure, and Rt

132 Part II Analysing Database Designs

a) Heap pr(Rt) = nh ∗ logtuple#(Rt)
2

b) Linked Lists pr(Rt) = nl∗tuple#(Rt)

c) ISAM pr(Rt) = ni ∗ (1 + log
tuple#(Rt)
fanout)

d) Traditional Btrees (Sparse Btrees) pr(Rt) = nb ∗ (1 + log
tuple#(Rt)
blocksize/reclen(R))

e) Dense Btrees pr(Rt) = nb ∗ (1 + log
tuple#(Rt)
blocksize/keylen(R))

f) Extensible Hashing pr(Rt) = nh
′ ∗ (1+ρcollision(Rt)) ∗ nh

′′
∗keylen(R)

nh
′′′

g) Wisconsin Storage System (WiSS) pr(Rt) = npw ∗ nw ∗ (1 + log
tuple#(Rt)
blocksize/keylen(R))

n
′

pw ∗ nw
′ ∗ (1+ρcollision(Rt)) ∗ nw

′′
∗keylen(R)

nw
′′′

Table 5.2: Cost Parameter Functions used by the RADD/raddstar

denotes the occurence set of R at time t– that means the set of all instances of structure

R at a special point of time t –, respectively.

5.3.1.2 Cost Parameter Function

The cost parameter function relates to the type of physical data organization. We have

realized cost parameter functions on the basis of Heap data organization (Heap), linked

lists as used by network DBMSs (LList), index sequential access method (ISAM), sparse

clustering and dense non-clustering Btrees (Btree,DBtree), extensible Hash(ing) (EHash),

and wisconsin storage system (WiSS) data organization. The WiSS is a combination of

dense Btrees (e) and extensible Hash (f), and chooses automatically the storage structure,

that is the more appropriate. In the WiSS, also the three width of the Btrees (that is the

number of children tree nodes per level, called fanout) and the hash bucket size (that is

the maximum number of pointers of each of the boxes on the left of the picture labeled (f)

in Figure 5.7, all these boxes together are called the bucket space) are more flexible than

in the normal dense Btree (e) and Hash (f) organization. This enables the WiSS to store

value sets of collection-typed and record-structured attributes. As mentioned in Section

3.3.2.3, the underlying storage manager of O2 is based on the WiSS. (For the WiSS, refer

to [CDKK85].)

Table 5.2 shows how the cost parameter function pr(R
t) is evaluated for the physical data

organizations. In the table, the function tuple#(Rt) denotes the number of tuples (tuple

number) of Rt. Of course, this is not the real tuple number of the concrete database

Ch. 5 Integrity Maintenance, Conceptual Schema Mapping, and Fitness Evaluation 133

instance, since we are still in the phase of database design. The database is not realized

yet, and a structure (R1) has not already instances which are her occurence set (R1
t).

But, we acquire an approximation of the tuple numbers from the database designer, and,

in the case that no tuple numbers is given for some structure we use a heuristics based

on the modeled integrity constraints, to approximate the tuple number of that structure.

E.g. if the database designer specifies that R2
t has 859 tuples, and there is a cardinality

constraint card(R1, R2) = (2, 5), then R1
t must have between 1718 and 4295 tuples. In

this case, we assume that tuple#R1
t is
√

1718 ∗ 4295 =̃ 2716.1 The items n..., fanout,

and blocksize in Table 5.2 are balancing parameters, which are described below.

5.3.1.3 Balancing Parameters

The more specific criteria for the cost approximations of the data manipulation operations

(retrieve, insert, delete, update) are provided by the balancing parameter sets. These are

used for the possible combinations of transformation type (hierarchical, network, rela-

tional, ...) and storage organization (Heap, LList, ISAM, Btree, ...). The balancing

parameters of the several sets are initially set to default values, and can be configured by

the ”.raddstar” startup file and the <filename>.csl CSL specification files, as well as

by the graphical user interface (GUI) of the RADD/raddstar. By means of the GUI, the

cost evaluation can be easily adjusted according the database designer’s wishes.

For the cost parameter functions we use the following balancing parameters:

1. Heap organized databases are generally scanned from the beginning to the end,

until the searched item is found. However most DBMSs who support this type of

storage organization (for instance, hierarchical DBMSs and the relational Ingres

DBMS) perform a search which is based on a sorted binary index-tree, according a

given indexed attribute or attribute set. The cost parameter function considers this

frequent option of heap organized databases. We use the balancing parameter nh

here, to give the evaluated cost term the correct weight.

2. The cost parameter function for Linked Lists assumes that the average cost is in

general linear to the associated tuple number (occurence set size). The record

sets are scanned completely, since they are not indexed (full table scan). Here,

we use the parameter nl to give the costs the correct weight. (The function for

Linked Lists can also be used to provide approximations for an object-identification

mechanism if this is physically realized via arrays or vectors.)

3. For ISAM organized data we assume that the access costs are logarithmic with the

1The heuristics that we have implemented also works, if for none of the structures the database
designer specifies a tuple number.

134 Part II Analysing Database Designs

Key

... ...

... ...

Key

... ...

... ...
Key

a) Heap
b) Linked Lists (as used by network DBMSs)

1

1

3

3

2

2

2

f

c) ISAM (Index Sequential Access Method)

d) Btree (traditional, leafs contain the indexed data records)

f) Hashing (location of data records evaluated by a function)

e) Btree (dense, leafs have pointers to the data records)

Figure 5.7: Different Kinds of Physical Data Organization.

Ch. 5 Integrity Maintenance, Conceptual Schema Mapping, and Fitness Evaluation 135

tuple number and fanout. Here, ni as well as fanout are the parameters which

influence the result of the cost parameter function.

4. Traditional Btree (sparse Btree) organized databases do data accesses that are log-

arithmic with the tuple number and the fraction of the blocksize (e.g. 4096) and

record length.

5. Dense Btree databases perform accesses that are logarithmic with the tuple number

and the fraction of the blocksize and key length. In case of tuple storage, removal,

modification, fetch, and secondary storage reorganization, the cost parameter func-

tion uses the record length (reclen) instead of keylen.

6. In the case of (extensible) Hash(ing) we make special assumptions, about some pa-

rameter function ρcollision(), which describes the probability that a bucket overflows,

and, the whole bucket space must be reorganized. These situations can only occur

on insertions and updates of data. We assume that ρcollision() is dependent upon the

chosen bucket size bc, the frequency of modification requirements fm(,) and some

uniformity uf() of key data according to the (maximal) hash prefix:

ρcollision(Rt) = fm(op,Rt) ∗ uf(Rt)
bc

fm(,) itself depends upon the occurence set Rt and the operation type – on deletes or retrievals it

is 0, and on updates it is only relevant if the updated columns are hashed. uf() depends on the

tuple number uf(Rt) = nh
′′′ ∗ tuple#(Rt), and bc is the bucket size.

7. The WiSS cost parameter function is a combination of the evaluation functions of

dense Btrees and extensible Hash. Here, we use the parameters npw, nw, npw
′

and

nw
′

to schedule the probabilities which physical storage mapping has been taken.

The balancing parmeters nw
′′

and nw
′′′

are used the same way as nh
′′

and nh
′′′

in

the Hash cost parameter function.

To balance the cost of the different actions upon the different operations of the considered

data manipulation language (such as select, insert, delete, and update in SQL) we use the

following parameters:

• blo – denotes the relative cost to locate the item

• bi – relative cost to store the item

• bd – relative cost to remove the item

• bu – relative cost to modify the item

• bf – relative cost to transfer the item from secondary storage to main memory

• bxo – relative cost for index reorganization

• bbo – relative cost for bucket space reorganization

136 Part II Analysing Database Designs

• bso – relative cost for reorganization of the primary data file

where blo,bxo,bbo, and bso depend on the operation type o (retrieve, insert, delete, update).

In the cost model, the cost of an invoked operation (basic operation cost) is represented

by a term Cb(opst), such that op is the operation (retrieve, insert, delete, or update)

and st is the structure to whose occurence set the operation is applied: opst, such as

insertDepartment or deleteEmployee denotes an operation that is executed by the DBMS.

Examples for evaluating cost terms:

• For a relational database which uses dense Btrees we assume the cost to retrieve

one data record as follows:

Cb(retrieveRt) = ploc(R
t)+pfet(R) = blr∗nb∗(1 + log

tuple#(Rt)
blocksize/keylen(R))+bf∗reclen(R)

where ploc(R
t) is the time to locate the item and pfet(R) is the time to transfer the

item to main memory.

• The operation complexities for retrievals, inserts, deletes and updates in extensible

Hash organized databases are as follows:

1. Cb(retrieveRt) = ploc(R
t) + bf∗pfet(R)

2. Cb(insertRt) = ploc(R
t) + bi∗psto(Rt) + bbi∗rbuc(Rt) + bsi∗rsto(Rt)

3. Cb(deleteRt) = ploc(R
t) + bd∗prem(Rt) + bbd∗rbuc(Rt)

4. Cb(updateRt) =

(a) ploc(R
t)+pmod(R

t)+bbu∗rbuc(Rt) (non-destructive)

(b) ploc(R
t) + pmod(R

t) + bbu∗rbuc(Rt) + bsu∗rsto(Rt) (destructive)

Comments:

The traditional sparse Btree cost model uses the same functions as the dense

Btree model except that the reclen is used in any case (instead of keylen),

and, the balancing parameters are configured differently. The Hash data or-

ganization may retain allocated memory space for data records if the data

record is updated on its hashed attributes (“non-destructive”), or free this

space (“destructive”). This is considered by the balancing parameter bsu. For

the WiSS data organization type we use the dense Btree model to evaluate

complexities for ordinary structures and the extensible Hash model for struc-

tures that are grouped into other structures (nested structures), and for nested

(collection-typed, record-typed) attributes,

At this point, we can continue the conceptual schema analysis process by inspecting what

happens on the physical schema according transactions and their dependencies.

Ch. 5 Integrity Maintenance, Conceptual Schema Mapping, and Fitness Evaluation 137

5.3.2 Transaction Extensions

Transaction extensions are used to reprensent the sequence (or set) of operations that is

invoked by a single update operation, considering the maintenance of integrity constraints

(by keys or foreign-keys) and the firing of associated database triggers. The transactions

are represented by (invoked) insert, delete, or update operations, and the resulting se-

quences (sets) of subtransactions which contain retrieve (select), insert, delete, and update

operations. These sequences are enriched by control flow elements, such as if-then-else-

fi-statements, brackets (“(” . . . “)”), null operations (“skip”), raising of errors (whenever

conditions occur, that are not appropriate), messages with which the DBMS notifies the

applications about these errors, and error handling, to not abort transactions whenever

errors are raised from triggered subtransactions.

In [Ste95] we have presented a rule set named event-constraint-condition-action (EC2A)

that contains 14 restrict, 16 cascade, and 14 set null or set default rules, with which it

is possible to derive the set of subsequent operations of the invoked insert, delete, and

update operations directly from the given data schema and its behavior rules. The EC2A

rules describe how a correct database on that a possibly integrity violating operation is

applied is transferred to a database which again has a corrent state.

5.3.2.1 Computing the Transactions

The EC2A rule model that is implemented in the RADD/raddstar is applicable in general,

i.e., for the ability to specify structural constraints (keys and references), the approach of

rule triggering systems, and the integrity maintenance by application programs. In this

context, we do not care whether there is an implemented key or reference (e.g., a foreign-

key and, maybe, an on delete cascade-clause, in a relational SQL database), or, there is

a rule (trigger), database procedure or procedure in the application program, which is

maintaining the integrity constraints.

The transformation operations group, nest, and clusterize (refer to Section 5.2.2),

delete references and cardinality constraints from the schema. This way, the internal

schema that is generated by the transformation, is simpler than the given conceptual

schema because integrity constraints have been dropped. Nevertheless, a range of in-

tegrity constraints is also present in the internal schema, and, the transformation gener-

ates some new integrity constraints, which must be maintained additionally. The internal

dependencies between structures (references) and the new cardinality constraints, FDs,

IDs, and EDs are rewritten to operation dependencies by the RADD/raddstar.

Example. Assume there is a structure R1 which references another structure R2.

Then, the insertR1 operation either demands that the R2 object which it wants to set

the reference to, does already exists in R2
t (“ON INSERT RESTRICT”), or otherwise

insertR1 must trigger insertR2 (“ON INSERT CASCADE”).

138 Part II Analysing Database Designs

5.3.2.2 Finiteness Condition of the Transaction Content Rewriting

However, in the latter case of the examples in Section 5.3.2.1 (“ON INSERT CASCADE”),

it may be that the new object in R2
t wants to insert again new objects into R1

t, e.g. if

there is a cardinality constraint card(R1, R2) = (2, 5); that means each object of R2
t has

at least 2 and at most 5 R1 objects. Then a normal rewrite system which derives from the

reference R1 to R2 that insertR1 triggers insertR2 , and from this cardinality constraint

that insertR2 triggers insertR1 , will not terminate. Let us illustrate such a situation by

another example. Figure 5.8 shows a database schema which is cyclic. Therefore, the

operations which are implied by the schema at top of Figure 5.8 are cyclic as well. Every

insert into some set (R1
t, or R2

t) triggers a new insert into the other set. Even, if we have

many structures which are participating in the cycle it seems to be a bad task to detect

and to evaluate the behavior of the invoked insert operation.

Therefore, we evaluate the operations as if each operation on some occurrence set

returns to the same object (and stops) once an operation of the same type (insert, delete,

update) which is related to the same set is required, that is found in the set of the

previously evaluated operations. This lets the transaction evaluation process terminate

at any time. Such a “finite” evaluation of the operations is shown in Figure 5.9.

R R1 2

(m1,n1)

(m2,n2)

i

i

i

i

i

i

i

i11

21

12

22

13

23

14

24

insert

...

insert

insert

insert

insert

insert

insert

insert
insert

Figure 5.8: Mutual dependent Structures.

i

ii

ii

i

11 21

41

31

61

51

insert insert

insert

insert

insert

insert

Figure 5.9: Adding the Finiteness Condi-

tion.

5.3.2.3 Behavior Computation by Rules

The insert operations in Figure 5.8 and Figure 5.9 are examples of operations sequences

which are used by rule triggered integrity corrections. We presuppose that using tra-

Ch. 5 Integrity Maintenance, Conceptual Schema Mapping, and Fitness Evaluation 139

ditional DBMSs similar situations can occur– e.g. if applications are used to maintain

integrity constraints. Therefore, we can use rules to represent behavior on the inter-

nal representation (internal schema). As mentioned above, these rules are applicable in

general, i.e. the ability to specify integrity enforcement by structural constraints (“ON

DELETE CASCADE”), the approach of rule triggering systems, or integrity maintenance

by application programs.

Correct Database States. Assume, structure R1 has a reference to structure R2 and

there is a related cardinality constraint card(R1, R2) = (m,n). If we restrict us to insert

and delete as invoked operations, and to cascade and rollback as behavior options, and

further we assume that the database state was correct, then we can describe the transitions

which produce a correct database state again as follows:

1. On insert of an i1 into R1
t:

• if there is no i2 in R2
t such that i1 has a reference to i2 then insert such an i2

into R2
t an check if m > 1: in this case invoke now m− 1 inserts into R1

t such

that these new objects of R1
t have also a reference to i2; otherwise, rollback

the transaction.

• if there is an i2 in R2
t such that i1 has a reference to i2 and the number of all

i1’s which have references to i2 is already greater than or equal to m and also

the number is lower than n then skip; or otherwise, the number is equal to n,

either delete one object from R1
t which has a reference to i2, or else, rollback

the transaction.

2. On insert of an i2 into R2
t:

• if m ≥ 1 then invoke m inserts of objects into R1
t which have a reference to

i2; or otherwise, rollback the transaction.

3. On delete of an i1 from R1
t:

• if there were m objects in R1
t which have references to the object in R2

t as i1

has then invoke an insert of another object into R1
t which has now a reference

to the same object in R2
t that i1 had; or otherwise, rollback the transaction.

4. On delete of an i2 from R2
t:

• if there were objects in R1
t which have references to i2 then delete all these

objects from R1
t; or otherwise, rollback the transaction.

From these informal descriptions, we can obtain rules for integrity maintenance. Let us

consider a schema with mutual dependencies where the structure R1 has a reference to

the structure R2, and R2 has a reference to R1 such that card(R1, R2) = (m1, n1). The

arrow from R1 to R2 specifies implicitely a card(R2, R1) = (1, 1), i.e. every object of R1
t

has exactly one object in R2
t. Together with the cardinality constraint card(R1, R2) =

(m1, n1), this can be used to derive the following rules:

140 Part II Analysing Database Designs

1. ON INSERTR1(i1):
if 6 ∃i2 ∈ R2

t : i1 → i2 then INSERTR2(i2
′ |
i1→i2

′)
else

if |i1
′ |
i1
′→i2∈R2

t | = n then ROLLBACK else SKIP fi
fi

2. ON INSERTR2(i2):
m1 * INSERTR1(i1|i1→i2)

3. ON DELETER1(i1):
if |i1

′ ∈ R1
t|
i1
′→(i1→i2)

| ≤ m then ROLLBACK else SKIP fi

4. ON DELETER2(i):
|i1 ∈ R1

t|i1→i2 | * DELETER1(i1
′ ∈ R1

t|
i1
′→i2)

Remarks. Firstly, in this rule set it doesn’t matter whether R2 has also a reference to

R1, as the schema in Figure 5.8 specifies. This situation (of Figure 5.8) is considered by

another rule set that must be combined with the above rules. Secondly, we have omitted

operations which are probably producing undesired results (e.g., an insert operation that

triggers a delete operation). But, if we have a general constraint set, such as FDs, IDs,

and EDs together, then delete operations can also appear in the operation sequence of

an insert operation, or insert operations may also appear in the operation sequence of a

delete operation, although the delete operation may not be triggered immediately by the

insert, and the insert operation may not be triggered immediately by the delete.

5.3.2.4 Estimating how often Operations require other Operations

In the rule set we show how often integrity repairing actions are necessary, e.g. by the m1

* INSERT From these numbers (m1) we can derive plausibilities which form a weight

describing the probability we expect a database operation to trigger or require another

database operation.

The plausibility Function. Let o1, o2 be update operations, o1, o2 ∈ {insert, delete,

update}. R1, R2 are structures and the parameter types of o1, o2. R1 has a reference to

R1, e.g. R1 is a relationship structure and R2 is an entity structure to which R1 has

an arrow. Let the associated cardinality constraint be card(R1, R2) = (m,n). Then, to

estimate how often an operation on set R2
t triggers or requires– such that the transaction

may be rolled back –an operation on set R1
t, we evaluate the following plausibility:

βo2R2
o1R1

= avg(m,n)∗
√
m√

n
∗

√
tuple#(R2)√

tuple#(R2)+
√
tuple#(R1)

Otherwise, to estimate how often an operation on set R1
t triggers or requires an operation

on set R2
t, we evaluate:

βo1R1
o2R2

=
√
n+1

avg(m,n)∗
√
m+1
∗

√
tuple#(R1)√

tuple#(R1)+
√
tuple#(R2)

Ch. 5 Integrity Maintenance, Conceptual Schema Mapping, and Fitness Evaluation 141

For reason that update operations must refer to both cases each time (required by insert

and delete), here we do something special. In general, we assume the necessity for required

suboperations 0.5 times as much as the necessity for the corresponding insert’s or delete’s

suboperations. But, the user can change the multiplier according the DBMS’s transaction

processing. E.g., if the expected DBMS performs destructive updates (updates are realized

by deletes and subsequent inserts), the multiplier can be set to 1. This effects that the

complexity of the update operation is evaluated by considering the completely weighted

complexities of the according insert’s and delete’s suboperation sequences.

The plau card Function. The cardinality constraint which is required for the cost

estimation may be not specified or may be specified only partially. We set m = 0 if the

lower bound is not given. If the upper bound is unspecified then we use n=max(m ∗
3, 20). For the computation of the plausibilities, the related cardinalities of functional

dependencies are treated like (1,1)-cardinality constraints, and those of inclusion and

exclusion dependencies are treated like (1,.)-cardinality constraints. These cardinalities

are evaluated by the plau card function, which also determines cardinalities on arrows

(references) for which no cardinality constraints are specified. The plau card function

considers the whole database schema. That is, the set of all structures, the set of all

integrity constraints and the tuple numbers which either are specified by the database

designer or else are inferred by the heuristics: From other tuple numbers, the structure

references, and the associated integrity constraints.

The plau card function is also applied whenever conceptual structs and unions are

transformed to record, list, set, or bag typed attributes of the internal schema, or at-

tributes of the conceptual schema are represented by internal structs or unions.

For integrity maintaining operations on structures that are transformed to internal set

structures, we do something special. Assume R1 has a reference to R2, and R1 has also a

reference to R3. The transformation groups R2 and R1 to some new structure R
′
2 with a

set-typed attribute of R1. Hence, the new structure R
′
2 has references to R3 in the internal

schema. Then the plausibility between R2
′

and R3 (βo2
R
′
2

o2R3
) is multiplied by the term:

tuple#(R1)
tuple#(R2)

.

5.3.3 Transaction Graph Mappings and Cost Evaluation

For the computation of the transaction costs, the RADD/raddstar infers transaction

graphs from the internal schema and the conceptual schema. They represent the invoked

operation and annotated operation sequences, which are together necessary to perform

the insert, delete, or update operation. Retrieve (or select) operations are not mapped

142 Part II Analysing Database Designs

to real transaction graphs since they do not require other suboperations, i.e. retrievals,

inserts, deletes, or updates. The inference process is performed continuously until an

equal operation call (insert, delete, update) on the same set is detected (for reason of the

finiteness condition that we apply, refer to Section 5.3.2.2). Then, the algorithm stops

for termination reasons. By considering the subtransaction sequences, inconsistences can

be detected – e.g., an insert operation that undesirably triggers a delete operation from

the same set. If such a situation is recognized, the RADD/raddstar notifies the database

designer that he probably specified an inconsistent conceptual design.

RADD/raddstar uses the transaction graphs to construct equation systems. The root

node which represents the invoked operation and its first level children nodes are mapped

to a cost equation. Let us assume that, in a Company, Employees are working on Projects,

and the works on structure is repesented by a nested attribute of the Employee structure

of the internal schema.2 Consider the left-most double-lined node labeled Insert(Emp) in

Figure 5.10, where Emp and Proj represent the structures of the internal schema. The

complexity of the insertEmp operation is evaluated by the equation

C(insertEmp) = Cb(insertEmp)+C(retrieveProj)+βinsertEmpinsertProj∗C(insertProj).

The set of all cost equations of the internal schema is then solved, and the costs for the

according nodes are annotated on the transactions graphs.

Insert(Emp)

CC c1

R c2

R c7

Retrieve(Employee)

Insert(Employee)

Update(Emp)

Rollback(Update(Emp))

Insert(Employee)

R i7

R i7

R i3

CC i4

Retrieve(works_on)

Insert(works_on)

Retrieve(Proj)

Insert(Proj)

Insert(Project)

Retrieve(Project)

Insert(works_on)
Retrieve(Proj)

Insert(Proj)

Retrieve(Proj)

Delete(Proj)

Retrieve(Proj)

Figure 5.10: Mapping Transaction Graphs to evaluate Conceptual Transaction Costs.

2Using Oracle8 [Oracle8] this can be implemented by a works on attribute with type varray[n] of

integer, such that each element of the array is a foreign-key to the Project relation, for example.

Ch. 5 Integrity Maintenance, Conceptual Schema Mapping, and Fitness Evaluation 143

Transaction graphs are evaluated for the conceptual schema too, such that the contents

and the costs of the internal schema transaction nodes are mapped to transactions that

the designer is looking at. The arrows in Figure 5.10 show how the costs of the transac-

tion nodes of the internal schema are mapped to the transaction nodes of the conceptual

schema. Here, the double-lined nodes contain the basic operation costs of the internal

transactions, and the subtransactions of the internal transactions are represented by the

nodes with the solid lines. The subtransactions relate to the causing constraint of the

internal schema, respectively. The dashed nodes and lines show the transactions which

are presented to the database designer (conceptual transactions). The dotted nodes which

have no equivalent node in the sequences of the internal schema transactions are omit-

ted. This way, the internal transactions’ contents are used to evaluate the conceptual

transactions’ contents.

The conceptual transactions’ cost evaluation. The conceptual transactions’ costs

are not evaluated by equations for the conceptual transactions and their subtransactions,

but by their equivalents on the internal transactions. To enlighten this, let us consider the

following example: The transaction contents of insertEmp and updateEmp are mapped to

conceptual insertEmployee and insertworks on operations, such that the conceptual trans-

action contents are based on the following internal actions

• insertEmp which rewrites to insertEmp, retrieveProj, insertProj, and

• updateEmp which rewrites to updateEmp .3

Thus, the internal transaction contents as well as their annotated costs are evaluated and

presented to the database designer as

• insertEmployee which is presented as insertEmployee, and

• insertworks on which is presented as insertworks on, retrieveProject, insertProject .

Finally, a heuristics performs a cost value adaption such that the database designer does

not wonder about the composition of the conceptual transaction cost value. I.e., the

conceptual transaction cost is made the sum of the transaction’s basic operation cost and

the costs of its subtransactions.

3And, some other operations which are not important for the evaluations considered here.

144 Part II Analysing Database Designs

5.4 Summary and Outlook

The Chapter shows how transactions and transaction costs of the internal schema are eval-

uated by the RADD/raddstar. The internal transactions’ contents and costs of the several

nodes of the generated transaction graphs are then mapped to “conceptual” transactions,

which are presented to the database designer. Since the framework for the transaction

cost evaluation is originated by the author, and was presented in [Ste96], we have set only

a few external references in this Chapter.

For detailed physical aspects such as the behavior and time consume of read(), write(),

or lseek() disk operations and hard-disk management, the interested reader is directed to

[Wie87] and [KS91]. In [CBC93] an approach was presented to compute optimal indices

for relational databases. This approach uses basic operations and therefore, complexities

for (sub-)operations that are necessary to perform selects, inserts, deletes, and updates

in a relational database– similar to our evaluation of basic operation costs. For the

definition of transaction extensions, and how they are used to represent operations which

are invoked from (other) insert, delete, or update operations refer to [CFPT94, RR94].

If we have a specification of a more general constraint set, such as functional, inclusion,

and exclusion dependencies together, then delete operations can be triggered by a rule

for an insert operation, although the deletes are not triggered directly by the insert. We

do not consider this in special details in the RADD/raddstar, but we notify the database

designer on the probably inconsistent schema specification. The evaluation of transaction

specializations in the RADD/raddstar is related to the greatest consistent specialization

(GCS) approach of Schewe and Thalheim [ST92]. For exhibitions on this approach, the

interested reader may refer to [ST94a, ST94b, SST94, ST98].

The transaction and transaction cost evaluation, the plausibility and plau card func-

tion, and the transaction cost mapping, as presented in this Chapter, are used in the

RADD/raddstar to identify bottlenecks of the conceptual schema, and to gather criteria

for better schema design and automatic conceptual schema restructuring. We will refer

to these concepts in Chapter 8.

Chapter 6

Type Inference and Functional

Schema Representation

The construction of a database design tool such that

1. the basic constructs of the data schema are considered,

2. additional requirements can be introduced to the schema, and

3. properties can be derived from it, in order to improve the schema,

needs a formal theoretical foundation ([Bac91]). This is the more important, since we

provide transformations of the database schema, and store the transformations that were

applied to the schema (the schema transformation history) by the schema itself.

Since some first steps in order to implement the database specification and analysis

tool were made using an algebraic specification language, and, the final tool has been

realized using a functional programming system, this Chapter gives firstly an overview

on algebraic specification and functional programming techniques, and defines then the

RADD/raddstar data model (RADD*).

The Chapter is organized as follows. Section 6.1 gives a short example on how a

database system can be described using algebraic specification techniques. Section 6.2

gives an introduction to the functional implementation and the type inference concepts,

which are used for evaluation of the database designer’s specifications as well as for

RADD/raddstar’s schema transformaion operations. Then, in Section 6.3 we define the

RADD* data model, which was implemented using the Standard ML of New-Jersey func-

tional programming language, and stores the database designer’s behavior specifications

of method definitions that are formulated in language close to Standard ML. Finally, Sec-

tion 6.4 summarizes this Chapter and gives an outlook how the RADD* data model is

used to store the specifications of the conceptual specification language (CSL), that we

will present in Chapter 7.

146 Part II Analysing Database Designs

6.1 Specifying and Analysing Databases using Alge-

braic Specification Techniques

Algebraic specification is used to give formal mathematical foundation and specify for the

properties of objects. Abstract data types (ADTs) which are usually called classes, can be

prototypically designed, or specified and analysed using algebraic specification techniques.

A lot of attention and effort has once been invested in algebraic specification of database

systems. The works of [EW78, EKW79, Bro87, FSS88], for example, consider a concrete

discourse and specify the operations that insert the items into– delete the items from–the

sets of the database. However, these works are based on a given environment, such that

new aspects require a new algebraic specification, respectively. Also, the work [Sch91]

which claims to give a general technique for automatic translation of a HERM database

schema into an algebraic specification, refers to a concrete environment for which the

according algebraic specification is given. Database specification approaches which claim

to be more general, e.g. [AE91, Gog93, PCO95], on the other hand, do not consider what

is really happening when a database is running under use of a special DBMS or one of a

DBMS class, like a relational, object-relational, or object-oriented DBMS.

In this work, we have developed an approach which is more general than the mentioned

database specification approaches. Our approach considers the generic operations that

are provided by DBMSs (select, insert, delete, update), and beyond this, a database type

system for that allows

1. to map all items which are identified in the underling conceptual database schema

of the graphical RADD database design editor, and

2. to characterize the type system used for the conceptual schema’s implementation.

Algebraic Specifications. Algebraic specifications comprise algebraic specifications

that were previously designed, sorts (”SORTS”) which describe the types that are used,

operators (”OPS”) which describe the signatures of the used functions, exceptions (”EXS”)

which are used to raise errors on exceptional situations, and equations (”EQS”) which

describe the properties of the operators by means of the state after the operator’s appli-

cation. For the description of the equations, variables (”VARS”) are used. The variables

are of the sorts which are inherited from the previously designed algebraic specifications,

of the sorts which are given as sort parameters– in case of parameterized ADTs (PADTs)

–, or of the sorts which are explicitely listed within the current algebraic specification. For

these latter kinds of sorts, the current algebraic specification defines then the constructors

and the destructors (or selectors).

Assume we want to describe how a structure is used and maintained by a relational

DBMS. Hence, we could specify a PADT relation which takes the attributes attrs and

Ch. 6 Type Inference and Functional Schema Representation 147

the key attributes keys as parameters. The algebraic specification defining this PADT is

shown in Figure 6.1.

SPEC relation(attrs,keys) IS
bool + int + tuple(attrs) + set(tuple) +
SORTS relation
OPS select : set * (tuple -> bool) -> set

project : set * attrs -> set
insert : set * tuple -> set
delete : set * (tuple -> bool) -> set
count : set -> int

EXS duplicate
VARS a: attrs; p: tuple -> bool; s: set; t: tuple;
EQS select (add(s,t),p) =

if p(t) == true then add(select(s,p),t) else select(s,p) fi
select (empty,p) = empty
project (add(s,t),a) = add(project(s,a),t.a)
project (empty,a) = empty
insert (s,t) =
if t.keys in project(s,keys) then raise duplicate else add(s,t) fi

delete (add(s,t),p) =
if p(t) then delete(s,p) else add(delete(s,p),t) fi

delete (empty,p) = empty
count (add(s,t)) = 1 + count(s)
count (empty) = 0

END SPEC

Figure 6.1: Algebraic Specification of a ”relation” Class– with Generic ”select”, ”insert”,

and ”delete” Operations.

In the specifciation of Figure 6.1, the operators insert and delete may be considered as

the constructors of the relation sort, and the operators select, project, and count may be

considered as the destructors of the relation sort.

The object specification system OBJ3 [GWM+91] which is built on top of the Lisp

functional programming language, has been used firstly in this work in order to implement

a type system for the RADD data model, and to prototype the specified RADD data

schemata by defining problem specific database functions. For instance, we did implement

SQL-like insert and delete operations which toke the structure (relation type) and the

tuple to be inserted or deleted as parameters– like shown in Figure 6.1. However, the

evaluation of the OBJ3 specification has been shown to be so much as complex, that the

underlying lisp system could not manage the evaluation complexity when using database

structures with three ore more attributes.

Therefore, we broke the experiments using an algebraic specification system as imple-

mentation language, and continued with implementing the basic data types, operations,

and modules using the ML functional language. We implemented a type system for the

RADD data model in Caml-light [Mau93] firstly, and continued then realizing schema

evaluation and valuation functions using Standard ML of New-Jersey.

148 Part II Analysing Database Designs

6.2 Functional Implementation of the RADD/radd-

star

A programming language is called “functional” whenever its basic construct of program

structuring is function and its primary control structure is that of function application.

For example, the Lisp programming language [Mac62] is called a functional language

because it possesses these properties. New-generation functional programming languages

are not anymore as strict functional as the Lisp language, but include also declarative

elements. The main advantage of new-generation functional programming languages– in

comparison to procedural programming languages, like Pascal or C –is to express the

return value of a function as a formal specification. Also, many functional languages

provide an orthogonal use of control and user-defined constructs, such that, for example,

an if-then-else construct can be considered as a function that returns the then-value if the

predicate evaluates to true, or otherwise the else-value. A function itself can also have

function parameters– then, the function is called a higher-order function –or in turn, it

may return a function as result.

The following can be considered as new-generation functional languages: SASL [Tur76],

Miranda [Tur85], and ML (“meta language”) [GMM+78, Mil87]. SASL and Miranda per-

form lazy evaluation, that is, arguments which are passed to a function are not evaluated

when the function is called, but only when they are needed within the called function.

Most ML dialects do eager evaluation, which means that arguments are evaluated before

they are passed to a function.1

The specification character of the new-generation functional languages provides the

benefit that they are well usable for the implementation of term-rewriting systems and

theorem provers, or tools for algebraic specification. Therefore, these tools are often built

on top of functional languages, because the functional language has direct support for the

construction of the elements which are used in the clauses and equations.

6.2.1 The Standard ML of New-Jersey Programming Language

Lisp as well as Miranda have an untyped semantics in sense that functions may be passed

parameters of several data types, like integer and float. An advantage of untypedness

is that a function describing the same behavior on different types, like sqrt(n), can be

applied to n:integer or n:float, and is everytime preserving the same property, namly

sqrt(n)∗sqrt(n) = n. In contrast, ML has a strongly-typed semantics, that means that

functions for floats can not implicitely be used for integers as well, and also infix operators,

1There exist also ML dialects which use lazy evaluation, e.g. Lazy ML developed at the University of
Göteborg, Sweden.

Ch. 6 Type Inference and Functional Schema Representation 149

like +,−, ∗, / can not be used with arguments of different types on the left-hand and on

the right-hand side.

6.2.1.1 Some Specifics of the Standard ML of New-Jersey System

Although strongly typed, polymorphic function applications can be simulated in Standard

ML of New-Jersey (SML) using function or operator overloading– for which an example

is shown in Figure 6.2.

Standard ML of New Jersey, Version 0.93, February 15, 1993

val it = () : unit

- Integer.+;

val it = <primop> : int * int -> int

- Real.+;

val it = <primop> : real * real -> real

- overload newplus : ’a * ’a -> ’a as Integer.+ and Real.+;

overload

- newplus;

std_in:3.1-3.7 Error: overloaded variable cannot be resolved: newplus

- newplus(1,3);

val it = 4 : int

- newplus (1.0,3.0);

val it = 4.0 : real

- infix newplus;

- 1.0 newplus 3.0;

val it = 4.0 : real

- 1.0 newplus 3;

std_in:7.1-7.13 Error: operator and operand don’t agree (tycon mismatch)

operator domain: real * real

operand: real * int

in expression:

newplus : overloaded (1.0,3)

-

Figure 6.2: Overloading an Operator in Standard ML of New-Jersey (SML).

Operator Overloading. In Figure 6.2, the newplus operator is overloaded with the

+ for integer (Integer.+) and the + for float (real, Real.+). In the signatur description
′a ∗ ′a → ′a the ′a is a type parameter, respectively. The signature expresses that

newplus takes two arguments of the same type and returns a value of that type. Newplus

was then testet on a few examples ((1,3), (1.0,3.0), (1.0,3.0), (1.0,3)) where the last two

examples use newplus as infix operator. Newplus on (1.0,3) failed since the first and the

second argument were not of the same type. This is for reason that given an expression

like x + y, SML derives the most general type of the arguments, which was (int,int),

(real,real), (real,real), (real,int) in the four examples, respectively. This generated the

exception on the last example, which evaluated to the type combination (real,int) that

does not match ′a ∗ ′a .

So, 1.0 + 3 is an invalid SML expression. This enforces, that coercion functions, that

are functions that convert the type of an argument or function parameter, must be used in

150 Part II Analysing Database Designs

these cases. E.g. real is the coercion function to convert an integer to the corresponding

float (‘float’ is sometimes called ‘real’, but I like the type denotation ‘real’, since it is also

the name of the SQL type). Therefore, 1.0 + (real 3) is a type-correct SML expression.

In the example of Figure 6.2 ′a is a type parameter, but we could also define the

newplus function as shown in Figure 6.3, such that newplus is restricted to take equality

type parameters and also delivers a value of an equality type as result. Using an equality

type is a more restrictive declaration but makes sense, since the plus operation is only

known for equality types (such as int and real).

The distinction between equality types and types is that equality types cannot be

function types. Reference values which are constructed using the ref function (ref :
′a → ′a ref) have equality types as well: ′a ref is always an equality type, although ′a

may be not an equality type.

The following signature, ′′a ∗ ′′a → ′′a, describes newplus such that it can be applied

only to values of an equality type.

Standard ML of New Jersey, Version 0.93, February 15, 1993

val it = () : unit

- overload newplus : ’’a * ’’a -> ’’a as Integer.+ and Real.+;

overload

-

Figure 6.3: Another Kind of Operator Overloading using SML.

Parametric Polymorphism and Union Types. Although strongly typed, SML sup-

ports polymorphism by means of parametric types and union types. Parametric types

are types that have a so-called type parameter, e.g. ′a of the built-in parametric type
′a list. Union types, on the other hand, possess an indicator for the actual type, e.g.

datatype ′a option = NONE | SOME of ′a declares type option as either NONE (i.e.

nothing), or something, SOME, of type ′a.

Call-by-Value and Call-by-Reference Evaluation. As mentioned above, the eval-

uation regime of SML is eager evaluation. The evaluation is also strict call-by-value, i.e.

the argument retains the same value even after the called function has terminated. Inter-

pretative programming languages, like Basic, offer call-by-name evaluation which allows

to refer to and update variables in global pools. The counterpart of call-by-value pass-

ing in procedural programming languages is call-by-reference. Call-by-reference argument

passing can be simulated using certain ML hybrids, like Caml Light [Mau93] where it is

possible to define mutable fields in record-types that can be changed by assigning them

new values. For change of values (by functions etc.), SML supports references whose con-

tent can be newly assigned. Allowing only a reference’s content to be updated enforces

a clean programming style and avoids side-effects, which may lead to inconsistences and

bugs.

Ch. 6 Type Inference and Functional Schema Representation 151

Also, in contrast to other ML dialects, e.g. Caml Light, the ref function of SML creates a

handle to a unique object which is equal to the object the ref function is applied to. This

way, only the content of that reference is changed when the reference is newly assigned, but

the original object remains unchanged. So, SML expressions like ref 5 = ref 5 deliver

false.2

SML as Implementation Language for Algebraic Specification Tools, Theorem

Provers, and Database Research Tools. The theorem prover Isabelle has been build

on top of SML at the University of Edinburgh [Pau90]. Isabelle, more specific its release

of 1990, was once considered to be involved in this work, since it states a generic theorem

prover supporting several different logics, and so, several different type systems. In this

way, also a general type system for databases could be defined (implemented) on top of

it. In addition, the CRML system developed on basis of SML at the Oregon Graduate

Institute for Science & Technology, Portland, has been considered for this research. CRML

enables to reflect structures internally compiled into an abstract machine code by the SML

interpreter, to their external representation, i.e. to the SML input statements that have

been used to create the internal code representation. CRML is used in the German joint

research project CROQUE to examine and develope new query optimization strategies

for object-oriented database management systems.

6.2.1.2 The SML Module System: Modules (Structures) and Parameterized

Modules (Functors)

As shown by Figure 6.2 and 6.3, SML maintains modules which define data types, values,

and operators, such as Integer and Real. Modules are called structure in SML, and have

signatures which can be explicitely specified by the programmer, such that only the types

and operators declared in the signature are exported from the structure. Furthermore,

in SML not only data types can be parameterized, but also structures– like templates in

C++ and other object-oriented programming languages. These parameterized structures

are called functor.3

In SML, functors may be parameterized by one or more structures, such that the

functor parameters can be restricted to previously specified signatures. E.g.,

functor RuleInterpreterEnv (structure Io : RULEINTPARSERIO) : RULEINTERPRETERENV =

struct

...

end

2The ref function of SML works similar the Object-ID (oid) generation mechanisms in object-oriented
databases.

3In category theory, a functor describes the homomorphical mapping from objects and arrows of one
category into another.

152 Part II Analysing Database Designs

declares the functor RuleInterpreterEnv to have a parameter structure that matches the

signature RULEINTPARSERIO, and it restricts RuleInterpreterEnv to match signature

RULEINTERPRETERENV. Then, if a structure (assume CIO) matches RULEINTPARSE-

RIO, a new structure RiEnv can be defined by

structure RiEnv = RuleInterpreterEnv(structure Io = CIO)

Higher-order functors. The structures which are constructed by means of a functor can

be used in turn to parameterize other functors. E.g.,

functor RuleInterpreterFun (structure RE : RULEINTERPRETERENV) : sig ... end =

struct

...

end

structure RuleInterpreter = RuleInterpreterFun(structure RE = RiEnv)

declares RuleInterpreterFun as functor whose parameter structures (of signature RULEIN-

TERPRETERENV) are built by means of a functor as well, and then the actual structure

RuleInterpreter is defined by using the RiEnv that was previously constructed by means

of a functor.

Value Functors. Normally, in SML a functor is parameterized by a structure such

that the data types, values, and operators of the parameter structure give the functor its

proper behavior. However, an undocumented feature of SML is that a functor may also

be parameterized by a value, function, or combination of them only. E.g.,

functor ExportRS (val pr : string -> unit and perr : string -> unit) =

struct

...

end

is such an application of a value parameterized functor definition.4 The meaning of the

functions pr and perr which are the parameter functions of ExportRS, is that they print

a string to std out and std err, respectively.

6.2.2 Type Inference in Functional Languages

Procedural programming languages often have a type system which is static such that

type errors are detected at compile-time. E.g., Pascal is such a language that requires the

programmer to declare each variable with its type and rejects typing errors immediately.

On the other hand, new object-oriented languages, like C++, offer polymorphism and

operator overloading, such that the type-compatibility can not completely checked at

compile-time and type errors can occur at run-time.

4To implement the RADD/raddstar, we once have exploited this feature to extend the Concurrent
ML system (CML) [Rep91, Rep93] such that it simulates a multiprocessor engine.

Ch. 6 Type Inference and Functional Schema Representation 153

As we have seen above, SML supports operator overloading, but it supports typed (para-

metric) polymorphism too:

Standard ML of New Jersey, Version 0.93, February 15, 1993

val it = () : unit

- fold;

val it = fn : (’a * ’b -> ’b) -> ’a list -> ’b -> ’b

- fold (fn (a,b) => a::b) ["What","is","your","name","?"];

val it = fn : string list -> string list

- it["==>>","my","name","is","Martin","Steeg"];

val it =

["What","is","your","name","?","==>>","my","name","is","Martin","Steeg"]

: string list

-

In this example, the fold function takes a function that converts a tuple of type ’a * ’b

to a value of type ’b, a list of type ’a list, and a value of type ’b, such that finally again

a value of type ’b is returned. As the example shows, SML reduces the type parameters

to their most concrete types, such that the type inference reduces ’a to string and ’b

to string list.

Other frequently used type parametric functions of SML are

• map : (’a -> ’b) -> ’a list -> ’b list

• hd : ’a list -> ’a (head)

• tl : ’a list -> ’a list (tail)

• or the ◦-function which combines two functions (f ,g) to one function (f ◦ g)

o : (’a -> ’b) * (’c -> ’a) -> ’c -> ’b.

In RADD/raddstar, we have implemented a type inference mechanism, which is based on

λ-calculus and extends the previously presented type systems and type inference systems

(see [Bru62, Mil78, Fai85, BO96]) to combine databases’ and programming environments’

type systems. This type system will be presented in Section 6.3.

To give the reader an introduction to the type inference techniques that are imple-

mented in the RADD/raddstar, we will now develope a small functional language and its

type system. The language supports function parameters which are passed and processed

using λ-abstraction techinque as well as pattern matching. The type inference system of

the RADD/raddstar specification language (CSL) and the RADD* data model (Section

6.3) are an extension of the type system and the type inference system that we present

in the following.5

6.2.2.1 A Functional Language with λ-Abstraction and Pattern Matching

Most procedural and functional programming languages are bootstrapable, that is, they

can be used to implement the language by the language herself. E.g., it is possible to
5The functional language presented here is a modified version of the Caml-light implementation of a

simple language (ASL) that is described in [Mau93] Chapter 12 - 16, implemented in SML.

154 Part II Analysing Database Designs

write a Pascal or C program that implements again the Pascal- or C-compiler. Although

SML is rather used as an interpreter with a top-level loop that offers the programming

interface to the user and evaluates the commands of the user immediately, similar features

are applicable as well.

The language that we want to provide the designer to specify the database should be

capable of both:

1. to use parameters which are specialized by the function body that evaluates the

result, and

2. to use patterns which may derive the function signature and result immediately.

Suppose we want to define a function which evaluates the faculty of a number, then the

function could be defined by the following declaration:

fun fac n = if n = 0 then 1 else n * fac(n-1) fi

or, alternatively by:

fun fac 0 = 1 | n = n * fac(n - 1)

The upper definition of the faculty function is according to lambda-abstraction, which

means to declare the variables of the function as

fac = λn.(if n = 0 then 1 else n * fac(n-1) fi)

such that the λn is used to introduce the variable n and can be read as for all n

The lower definition of the faculty function additionally uses pattern-matching in the

first clause (0 = 1), to ascertain whether the argument passed to the fac function is 0 or

not. To represent these definitions internally, we must map them by means of an abtract

syntax tree that contains the elements of this declaration. The syntax tree is generated

by the parser of the functional language.

Parsing. Assume the syntax of the language is given by the following BNF grammar:

stmt ::= <fundef> | <valdef> | <value>

fundef ::= ‘fun’ <ident> <parm> ‘=’ <value> { ‘|’ <parm> ‘=’ <value> }*

valdef ::= ‘val’ <ident> ‘=’ <value>

parm ::= <ident>
| <bool> | <int> | <string>
| ‘(’ <parm> { ‘,’ <parm> }* ‘)’

value ::= <ident>
| <bool> | <int> | <string>
| ‘(’ <value> { ‘,’ <value> }* ‘)’
| ‘fn’ <parm> ‘=>’ <value> { ‘|’ <parm> ‘=>’ <value> }*
| ‘if’ <value> ‘then’ <value> ‘else’ <value> ‘fi’
| <value> <op> <value>
| <value> <value>

Ch. 6 Type Inference and Functional Schema Representation 155

such that <ident> are identifiers consisting of characters and numbers and beginning with

a character, <bool>, <int>, and <string> are values of the according type– identifiers

and these values are already recognized by the lexical analyser, and <op> are operators

(”=”,”<”,”<=”,”>”,”>=”,”<>”,”+”,”-”,”*”,”/”) which are used infix. The last value

rule, ”value ::= ... <value> <value>”, considers applications of functions to values. The

operators ”=”,”<”,”<=”,”>”,”>=”, and ”<>” have the signature

’a * ’a -> bool

and, the operators ”+”,”-”,”*”, and ”/” have the signature6

int * int -> int.

Preparation of the Compilation Process. After parsing we have to translate the included

identifiers to variables and the ”<value> <op> <value>” expressions to applications.

The first step after successful parsing is to initialize a variable environment which

contains all identifiers that are bound to values, such as ”+” which is bound to a function

of type int * int -> int. When we recognize an identifier on the left-hand-side of a

statement, that is an ”<ident>” in the ”fundef” or ”valdef” rule or an ”<ident>” which

is included in the ”<parm>” list of a ”fundef” or in the ”<parm>” after the symbol

‘fn’, then we transform it to a variable which is appended at the end of that variable

environment. Whenever we recognize an identifier on the right-hand-side then we check

the variable environment for the last occurence of a variable with that name, and if found

we equalize the right-hand-side identifier to that variable. Otherwise (“not found”), we

raise an exception (SUnbound of string) according that unbound identifier.

Expressions with infix operators are stored by VALLIST expressions, after parsing.

Since the infix operators are similar the SML infix operators, we transform 5+7 (which is

represented by VALLIST[VI 5,VOP"+",VI 7] firstly) to expressions that are as if we had

read +(5,7)– that is an application of the ”+”-function to the tuple (5,7) –stored by

the term VAPP(<+fn>,VPARMS[VI 5,VI 7]).

Abstract Systax Trees. Assume we have coded and the operators ”+”, ”-”, ”*”, ”/”

as VVAR 0, VVAR 1, VVAR 2, VVAR 3, respectively. and the equality-operator ”=” and the

comparison operators ”<”,”<=”,”>”,”>=”,”<>” as VVAR 4, VVAR 5, VVAR 6, VVAR 7,

VVAR 8, VVAR 9, respectively. Furthermore, we consider integers (VI), tuple parameters

(VPARMS), function applications (VAPP), function definitions (VFNDEF), and if-then-else-

fi (VBRANCH) as node types. As mentioned above, besides the operators =,+,−, ∗, /, the

new identifiers introduced by the function definition are considered as variables as well,

such that fac is represented as VVAR 10 and its parameter n is represented as VVAR 11.

6In SML and in the RADD/raddstar specification language (CSL), the operators ”+”,”-”,”*”, and ”/”
are applicable to integers and floats (reals) such that they have the signature ’a * ’a -¿ ’a, respectively.

156 Part II Analysing Database Designs

("n")

("*")

VAPP

VPARMS

("n")

("n")

("fac")

VAPP

VPARMS

VAPP

VPARMS
("-")

("fac")

VFNDEF

VFNDEF

(" if - then - else - fi ")
VBRANCH

("n")

VAPP

VPARMS

VI 0

VI 1

VI 1

("=")

VVAR 10

VVAR 11

VVAR 4

VVAR 11

VVAR 2

VVAR 11

VVAR 10

VVAR 1

VVAR 11

Figure 6.4: Abstract Systax Tree of the ”fac” Function Definition with λ-Abstraction.

Then, the faculty function definition which was given firstly can be represented by the

abstract syntax tree shown in Figure 6.4.

6.2.2.2 Representation of Basic Types and Typing Rules.

Expressions of the functional language that we present in this Section as well as of the

RADD/raddstar conceptual specification language (CSL) that we will present in Chapter

7 are evaluated performing static type-checking. Static type-checking means to complete

type-checking before evaluation, which makes run-time type tests unnecessary. The type

synthesis that we perform is comprised of

1. a set of typing rules, also called type system, and

2. a type-checking algorithm.

Before moving to the typing rules and the type-checking algorithm, let us firstly give

the SML types that we use for the representation of the expressions and the types of

the functional language. Above, we already mentioned that we use VB, VI, VS, VPARMS,

VVAR, VAPP, VBRANCH, VFNDEF, VID, VALLIST, and VOP, to represent the definitions and

expressions that we have parsed and prepared for compilation. Assume we have defined

the SML type system to represent the functional language such that compiled functions

are stored by VFUN terms. Furthermore, we use VNULL as a special value to represent

“nothing”, e.g. the binding of variables which are generated by preparing the parsed

expression for compilation.

Ch. 6 Type Inference and Functional Schema Representation 157

Thus, the SML datatypes for the representation of statements (”stmt”), values (”value”),

and the types of values (”vtype”) are given as follows:

datatype stmt = FUNDEF of ident * (value * value) list
| VALDEF of ident * value
| NULLSTMT
| QUIT

and value = VB of bool
| VI of int
| VS of string
| VPARMS of value list
| VVAR of (string * (value ref * vtype ref)) list ref * int
| VAPP of value * value
| VBRANCH of value * value * value
| VFUN of (value -> value) * vtype
| VFNDEF of (value * value) list
| VID of ident
| VALLIST of value list
| VOP of string
| VNULL

and vtype = bool_t
| int_t
| string_t
| parms_t of vtype list
| fun_t of vtype * vtype
| typevar of vtype ref list ref * int
| noninit_t

and vtypesc = Forall of vtype list * (vtype ref list ref * int)

type vartype = vtype ref list ref * int
type varenv_t = string * (value ref * vtype ref) list

Type System. For these values (”value”) and types (”vtype”) we want to explain the

typing rules and type inference rules in the following. In the functional language a type

is either:

• boolean (bool t), integer (int t), or string (string t),

• or, for tuples, a product type (parms t),

• or, a type variable (typevar)

• or, a function type τ1 → τ2 (represented by fun t(τ1,τ2)), where τ1 and τ2 are types.

A type variable (typevar) firstly is bound as an unknown (noninit t) that we must evaluate

to become a more concrete type. E.g., if we evaluate the type of the faculty function, its

type is initially unknown (noninit t), then the type becomes a function type (fun t(typevar

...,typevar ...)), and finally we obtain the concrete type (fun t(int t,int t)), which is eval-

uated from the clause that defines the function (respectively from the clauses, in the

definition of the faculty function which was last given, and which uses pattern-matching).

158 Part II Analysing Database Designs

Type Environments and Type Schemata. As in [Mau93], a type schema is a type

where some variables are distinguished as being generic. We have implemented type

variables and type schemata a little bit different from that given in [Mau93] Chapter 16,

here:

1. Type variables consist of a reference to a list of type (vtype) references. We call such

a list a type environment. In RADD/raddstar different type environments are used.

This is for reason to manage the different database schemata and subschemata.

2. In the functional language as well as in the RADD/raddstar specification language,

a type schema is represented by the vtypesc SML datatype, and keeps track of type

variables that are equalized to other types or type variables. The most general type

of the vartype ((vtype ref list ref * int) in the Forall of ...), that is,

the most general type of the second component of the tuple, is either the typevar of

this vartype, in case that the vtype list is empty (nil), or else, the head of that

vtype list.

Typing Rules. A typing rule is written as a fraction where the numerator is called the

premise and the denominator is called the conclusion, and looks like

P1 . . . Pn
C

expressing the following: In order to prove C, it is sufficient to prove P1 ... and Pn

[Mau93]. If the premise of the typing rule is empty the rule is called an axiom. Further-

more, the premises and the conclusions are written as implications

Γ ` e : τ

which is read as under the type schemata Γ the expression e has the type τ .

• The typing rules for boolean, integer, and string values are axioms.

Γ ` VB b : bool t
(BOOL)

Γ ` VI i : int t
(INT)

Γ ` VS s : string t
(STRING)

• The typing rule for tuples considers the types of the tuple components and generates

a product type which is represented as parms_t of the list of these types.

Γ ` e1 : τ1 ∧ . . . ∧ Γ ` en : τn
Γ ` VPARMS[e1,...,en] : parms t[τ1,...,τn]

(TUPLE)

Ch. 6 Type Inference and Functional Schema Representation 159

(* findtypeenv : vtype -> vtype *)
fun findtypeenv typ =

let fun findtypeinenv [] =
raise TypingBug("type not found in env")

| findtypeinenv (Forall(rl,vt)::l) =
if typevar vt = typ orelse
(* if two type vars specifiy the same reference,

they are the same *)
(case vt of (e’,p’) =>

case typ of typevar(e,p) => nth(!e’,p’) = nth(!e,p))
then
case rl of

a::_ => a
| _ => typevar vt

else findtypeinenv l
in
case typ of

parms_t l => parms_t(map findtypeenv l)
| fun_t(t1,t2) => fun_t(findtypeenv t1,findtypeenv t2)
| typevar _ =>

(findtypeinenv(get_current_env()) handle _ => typ)
| t’ => t’

end
(* typeofvar : varenv_t ref * int -> vtype *)
fun typeofvar (e,p) =

(case nth(!e,p) of
(_,(_,t)) =>
case !t of

typevar(e,p) =>
(case !(nth(!e,p)) of

noninit_t => typevar(e,p)
| t’ => t’)

| t’ => t’)

Figure 6.5: The Functions to obtain the most Concrete Type for Type Variables from the

Type Schemata.

• Type variables are already assigned a more concrete type, or otherwise, they are

represented in the actual type schemata. Like [Mau93], we denote this typing rule

tautology.

Γ ` V V AR(, (e, p)) : typeofvar(e, p)
(TAUT)

The typeofvar function is used to obtain the actual type of the variable, such

that– in case it is a typevar at the end of the type inference process –the function

findtypeenv is applied to that typevar to find the type from the type schemata Γ.

Refer to Figure 6.5 for the implementation of these functions.

Generic Instances of Type Variables. A generic instance of a type variable is a

substitution of that type variable with a type that is more concrete, but can again contain

type variables. E.g., for the first definition of the faculty function

fun fac n = if n = 0 then 1 else n * fac(n-1) fi

the type inference algorithm assigns the type

fun_t(’a,’a)

160 Part II Analysing Database Designs

(* val geninstance : vtypesc -> vtype *)
fun geninstance (Forall(gv,tau)) =

let fun ginstance (parms_t l) = parms_t(map ginstance l)
| ginstance (fun_t(t1,t2)) = fun_t(ginstance t1,ginstance t2)
| ginstance (tv as typevar(e,p)) =

(case !(nth(!e,p)) of
parms_t l => parms_t(map ginstance l)

| fun_t(t1,t2) => fun_t(ginstance t1,ginstance t2)
| noninit_t => findtypeenv tv
| t’ => ginstance t’)

| ginstance noninit_t = raise TypingBug"geninstance"
| ginstance t’ = t’

in
ginstance(typevar tau)

end

Figure 6.6: The Function to generalize Type Variables in the Type Schemata.

denoting that fac has type ’a and n = if n = 0 then 1 else n * fac(n-1) fi has

type ’a. Then, the type of the clause in substituted by fun_t(’b,’b), such that the type

variable ’a becomes fun_t(’b,’b) too. The clause assigns ’b to the variable n, and from

the n = 0 expression we obtain ’b as int_t.

We finally have to verify that the type of the expressions 1 and n * fac(n-1) also

reduce to int_t. We obtain this way the type of the faculty function, which we did

initially set to the type variable ’a, as

fun_t(int_t,int_t).

Free and Bound Type Variables. A vartype vt of a type schema Forall(l,vt) is said

free, if the list l is nil, because then it is not bound to another more concrete type. The

same way, if a type variables occurs in vt, e.g. if vt was ’a and after ’a is substituted

by another type

’a ==>> fun_t(’b,’b)

then ’b is said free in Forall(l,vt) if ’b is not member of l. Note, that after the

substitution ’a is not anymore free, such that it is said bound (namely to fun_t(’b,’b)).

For these aspects we have implemented the functions varsoftype, unknownsoftype, and

unknownsofenv

val varsoftype : vtype -> vartype list
val unknownsofenv : vtypesc list -> vartype list
val unknownsoftype : vtypesc list * vtype -> vartype list

which evaluate the vartypes of a type (varsoftype), all unknowns of the type schemata

(unknownsofenv), and the unknowns of a given type (unknownsoftype), respectively. The

evaluation of the varsoftype function corresponds to all type variables in a type, the

evaluation of the unknownsofenv function corresponds to all free type variables in the

type schemata, and the evaluation of the unknownsoftype function corresponds to the

free type variables in a type. The geninstance function represents the instantiation of a

Ch. 6 Type Inference and Functional Schema Representation 161

type schema. This function makes use of the above functions and its implementation is

shown in Figure 6.6.

The substitution of type variables, called generic instantiation in [Mau93], is con-

sidered by the next two rules, where we use the latter two of the discussed functions

(unknownsoftype,geninstance).

• The following rule considers the generic instantiation of type variables.

Γ ` e : (σ as typevar(e, p)) σ′ = geninstance(Forall([], (e, p)))

Γ ` e : σ′
(INST)

• The next rule considers the generalization of a type whose vartypes are bound in

the type schemata.

Γ ` e : (σ as typevar(e, p)) α 6∈ unknowsoftype(Γ, σ)

Γ ` e : Forall(typevar α :: [], (e, p))
(GEN)

Typing Applications, Conditionals, and Function Patterns. In the list of typing

rules and type inference rules above, we still have not considered applications of func-

tions to expressions, if-then-else-fi constructs (conditionals), and the parameters which

are introduced after the ”fun” and ”fn” tokens of the functional language.

• The type of an application of an expression (of a function) e1 to another expression

e2 is considered by the following rule.

Γ ` e1 : fun t(τ1,τ2) Γ ` e2 : τ1

Γ ` V APP (e1, e2)) : τ2

(APP)

• The type of a conditional (if-then-else-fi) is given by a boolean expression for the

predicate, and by two expressions after the then and after the else which must be

of the same type (τ). Then, the conditional is also of type τ .

Γ ` e1 : bool t Γ ` e2 : τ Γ ` e3 : τ

Γ ` V BRANCH(e1, e2, e3) : τ
(BRANCH)

• The typing rule for a function which is defined by a single clause only is shown

below.

Γ ` e1 : τ1 Γ ` e2 : τ2

Γ ` V FNDEF ((e1, e2) :: []) : fun t(τ1,τ2)
(FN1)

162 Part II Analysing Database Designs

• Thus, we can check the type of a function with more than a single clause recursively

by the following rule.

Γ ` V FNDEF (c1 :: []) : τ1 Γ ` V FNDEF (l as c2 ::) : τ2

Γ ` V FNDEF (c1 :: l) : unify(τ1, τ2)
(FN2)

The rule evaluates the type which is the most general according the first clause

and the rest of the clauses. The unification of the types is done by means of the

unify function which equalizes type variables and whose implementation is shown

in Figure 6.7. Note, that the unify function raises a TypingBug exception if the

types τ1 and τ2 can not be unified.

6.2.2.3 From Value Representations to Functions: Compiling the Syntax

Tree into Code that can be Immediately Executed.

After type inference and type-checking, the abstract syntax tree of Figure 6.4 can be

compiled into code that is executable under a run-time system, which is able to interprete

the compiled expressions. In SML, the symbol fn introduces an unnamed function. Thus,

the function declarations which are stored as VFNDEF terms are compiled into executable

functions (VFUN terms) using the following SML function:

fun fnevaluate’ (id,_) ([],_) = raise TypingBug"empty function list"

| fnevaluate’ env ((v1,v2)::l,fun_t(t1,t2)) =

VFUN(fn v =>

if unify2(v,v1)

then vevaluate env v2 else fnevaluatep env (v,t1,l),fun_t(t1,t2))

As mentioned above, the expression compiler of the RADD/raddstar as well as the Mini

ML Compiler introduced here are based on λ-calculus. The compile-functions make use

of a fixpoint combinator (the Z-Fixpoint combinator) for evaluation of recursive func-

tion applications. The code of the Mini ML Compiler is shown in Appendix A. The

reader who is interested in the design and implementation of functional languages, and

their compilation techniques, may also refer to [Mau93], or [Mau95], Chapter 12 - 16,

respectively.

Ch. 6 Type Inference and Functional Schema Representation 163

fun shorten t = shorten’(rtnormalize t)
and shorten’ (parms_t l) = parms_t(map shorten l)

| shorten’ (fun_t(t1,t2)) = fun_t(shorten t1,shorten t2)
| shorten’ (tv as typevar(e,p)) =

(case shorten(!(nth(!e,p))) of
typevar(e’,p’) =>
(shorten (!(nth(!e’,p’)));
e :=
map (
fn rt => if rt = nth(!e,p) then nth(!e’,p’) else rt

) (!e);
tv)

| _ => tv)
| shorten’ t = t

and unify (tau1,tau2) =
(case (shorten tau1,shorten tau2) of

(noninit_t,t2) => t2
| (t1,noninit_t) => t1
| (bool_t,bool_t) => bool_t
| (int_t,int_t) => int_t
| (string_t,string_t) => string_t
| (parms_t l1,parms_t l2) =>

if length l1 <> length l2 then
raise TypingBug("between "^(descrtype(parms_t l1))^" and "^(descrtype(parms_t l2)))

else
(let val l1r = ref l1 val ret = ref[] in

app (
fn l2e =>
(ret := (!ret)@[(unify(hd(!l1r),l2e))]; l1r := tl(!l1r))

) l2;
parms_t(!ret)

end
handle _ =>
raise TypingBug("between "^(descrtype(parms_t l1))^" and "^(descrtype(parms_t l2))))

| (fun_t(t11,t12),fun_t(t21,t22)) =>
(fun_t(unify(t11,t21),unify(t12,t22))

handle _ =>
raise TypingBug("between "^(descrtype(fun_t(t11,t12)))^" and "^(descrtype(fun_t(t21,t22)))))

| (tv1 as typevar(e1,p1),tv2 as typevar(e2,p2)) =>
if nth(!e1,p1) <> nth(!e2,p2) then
(e1 :=

map (
fn rt => if rt = nth(!e1,p1) then nth(!e2,p2) else rt

) (!e1);
tv1)

else tv1
| (t1,tv2 as typevar(e2,p2)) =>

if not(occursintype (e2,p2) t1) then
(set_vartype (e2,p2) t1; tv2)

else raise TypingBug("between "^(descrtype t1)^" and "^(descrtype tv2))
| (tv1 as typevar(e1,p1),t2) =>

if not(occursintype (e1,p1) t2) then
(set_vartype (e1,p1) t2; tv1)

else raise TypingBug("between "^(descrtype tv1)^" and "^(descrtype t2))
| (t1,t2) =>

raise TypingBug("between "^(descrtype t1)^" and "^(descrtype t2)))

Figure 6.7: The Type Unification Function(s).

164 Part II Analysing Database Designs

6.3 The RADD/raddstar Database Type System and

the RADD* Data Model

The structural part of the RADD/raddstar database type system and the RADD* data

model are based on the functional architecture and the representation of data that we

have presented in Section 6.2. The RADD* data model supports most of the features of

the data models that we have discussed in Chapter 2 and Chapter 3. Although we are

using only a couple of concepts, such that some concepts which are included by the object

models presented in Section 3.2 are not considered, we think that the RADD* data model

has all the necessary features to perform reasonable and complete database modeling.

E.g., RADD* supports all features that we presented in Section 3.3.

Beyond this, the RADD* is used by the RADD/raddstar system to represent the

database’s maintenance, to evaluate the fitness of the database schema that is under

design, and to gather criteria for schema optimization.

In this Section, we introduce firstly the concepts of RADD*’s structural mapping

and show then how the integrity constraints are represented. The behavioral part of the

RADD* classes stores the method declarations given in the CSL conceptual specification

language, that we will look at more closely in Chapter 7. The methods can be added to

the structures of the graphical RADD design using the CSL shell, which is the terminal

interface of the RADD/raddstar and also part of its graphical user interface (GUI).

6.3.1 RADD* Database Schema and -Structures

The RADD* data model is an extension of the Entity-Relationship and Behavior Model

(ERBM) which has been presented in [Ste96]. For evaluation reasons, RADD* stores the

database structures and operations by terms. The database operations retrieve (select),

insert, delete, and update as well as a number of other functions are predefined terms.

The predefined database operations can be used with all functions and values which are

either predefined or otherwise introduced by the designer using the CSL language. The

database structures which are considered, are attribute, struct, union, and path.

6.3.1.1 Attribute

Attributes are defined by a 3-tuple of a name, a type, and a null-indicator. Functional

attributes– class functions & values and member functions & values –are added to the

classes of the graphical RADD database design using CSL. If an attribute is representing

a CSL member function or value, then the null-indicator is omitted and the “attribute”

has a slot carrying that member function or value instead.

Ch. 6 Type Inference and Functional Schema Representation 165

Basic (“non-functional”) attributes are flat (bool, int, smallint, float, decimal, character,

date, time, etc.), structured (records), nested (set, bag, array, vector), or references.

Typically, an attribute can have any type that is considered by the RADD* type system

(Section 6.3.3). Attributes and composite attributes (records) are constructed using the

RADD entity-relationship editor. Tuples (of record-typed attributes) which are specified

in the graphical RADD database design, are represented in the RADD* the same way.

Consider the ”Employee” entity-structure in Figure 4.9 and Figure 3.16.

Figure 6.8 shows the GUI of the RADD/raddstar system and how the ”Employee”

structure is formally presented to the database designer.

Figure 6.8: RADD/raddstar Representation of the ”Employee” Structure.

6.3.1.2 Schema, Struct, Union, and Path

Entity and relationship structures of the graphical RADD database design are represented

by RADD* Structs. RADD clusters are represented by RADD* Unions. (Refer to Section

3.3.3.1.) Furthermore, Paths are considered by the RADD*, as they are by the HERM and

the RADD data model. Struct, Union, and Path are the building blocks of the RADD*

Schema.

Schema. A schema is comprised of an id, a set of structures (struct,union), an integrity

constraint set, a set of behavior rules, a set of schema functions & values, and a storage

parameter describing the default storage organization of the structures. Each of the

constraints in the integrity constraint set has references to the structures (or to paths

166 Part II Analysing Database Designs

of the structures) of the same schema. The behavior rules are used as default rules for

integrity maintaining activities of transactions (general rules), e.g.

for Ref child->parent: on insert cascade

which specifies cascading insert operations: If the target value (foreign-key) is not already

contained in the referenced relation (“parent”) then an associated record (or object) has

to be generated. Behavior rules are otherwise attached to the integrity constraints and

structure references of the schema; these latter behavior rules are called special rules, and

they override the general rules which are attached to the schema.

Struct. A struct is an 8-tuple (I,R,S,K,M ,T ,O,P). I is a tuple consisting of the id

of that struct and a (possibly empty) set of ids of components (in the graphical RADD

design, a struct can be nested). The components are structs or unions. R is a (possibly

empty) set of references to other structures. Each element of R consists of

1. a reference to a struct or union,

2. a key-indicator (the struct inherits its key or a part of its key by the reference),

3. a null-indicator,

4. optionally, a role (ISA, PART, MAYBE, or another user-defined ROLE), and

5. a possibly empty set of behavior options and specifications.

S is an ordered set of attribute references (the struct’s schema), and K is the key set,

such that each element is also an attribute reference. Key-attributes must be in S or in

the key-attribute sets of the referenced structures for which the key-indicator is true. M

is an ordered set of application module declarations, i.e. CSL class functions & values,

which are attached to the “classes” and not to members of the classes. Each element of

M consists of a triple which is comprised of

1. the declaration’s unique identification that is coded as a string,

2. a precompiled syntax tree of that declaration, where identifiers of the parsed CSL

statement are replaced by typed (and possibly bound) variables, and

3. the compiled declaration.

T represents the expected tuple number (number of tuples) of the struct. The tuple

number is optional, and it may be ’defined’, ’assumed’, ’greater than or equal to’, ’lower

than or equal to’, ’greater than or equal to and lower than or equal to’, or ’unknown’.

Since the tuple number is optional, if it is ‘unknown’ then it is interpreted as if it were not

defined. The O component consists of a tuple of (1.) the physical storage organization

used for the primary key, i.e. the default storage which is inherited from the schema or else

a special kind: Heap, ISAM, EHash, . . . , and (2.) the physical organization of secondary

indices. The storage organizations can be maintained by use of the CSL modify command,

Ch. 6 Type Inference and Functional Schema Representation 167

and each storage organization is annotated configuration parameters (block size, fanout,

bucket size, . . .). P is a set of preceders. Preceders are references to previous structures

from which the actual structure is obtained. The conceptual structures of the given

schema have no preceders. If a structure is newly generated by the transformation or

optimization, the preceders are set in the new struct accordingly.

Union. A union is defined by a 4-tuple (I,R,T ,P). I is the id of that union. R is a non-

empty set of references to other structures (struct or union), each of which is constructed

similar a struct reference but omits the null-indicator (the reference is always nullable).

T and P are the same as the tuple numbers (T) and preceders (P) of a struct.

Path. Paths can be looked at as collections of structures (attribute, entity, relationship,

cluster) that are connected some way. In RADD*, an attribute, a structure (struct,union),

a projection of a path on another path, a join, a cartesian product, a union (which is not

the same as the union structure), or a reference of a path to a structure can be a path.

Furthermore, if p is a path then pt denotes the concrete instantiation of p at time t. That

is, pt represents the set of p-instances at time t. Concrete instantiations are defined for

projections, joins, unions etc. as well (e.g. pt[X]). If u is a member (tuple) of pt (u ∈ pt),
then u[X] denotes the projection of u on schema X. So, u ∈ pt =⇒ u[X] ∈ pt[X]. A path

p1 is said nullable in path p2 if the concrete instantiation of p1[p2] (i.e. the set p1t[p2])

can have a member which contains a NULL.

Each structure of the RADD database design workbench is maintained by an RADD*

handle (id) which is unique according to the schema. If a structure s1x of schema S1

is equal to a structure s2y of schema S2, then s1x and s2y are maintained by the same

handle. A schema S must not contain two structures sx, sy (sx 6= sy) such that sx and sy

have the same handle (id).

In HERM and RADD, a relationship type is said order-1 if all parent structures are

entity types (entity types can be looked at as order-0 relationship types), otherwise the

order of that relationship type must be greater than the order of all referenced structures,

respectively. The order of cluster types is defined accordingly; a cluster type which has

only references to entity types is said order-1, otherwise its order is greater than the

highest order of the referenced relationship types.

RADD relationship types are represented by structs with a non-empty set of refer-

ences in RADD*, RADD higher-order relationship types are represented by structs with

references to structs which have references in turn. Accordingly, RADD entity types are

represented by RADD* structs with no references. It is possible that a RADD* structure

of an internally used database schema directly or indirectly (transitively) references it-

self. This way, the order can not necessarily be evaluated for all structures of an internal

RADD* schema. This kind of “cyclicity” is not possible for HERM or RADD relationship

168 Part II Analysing Database Designs

or cluster types, nor is it possible for structures of a conceptual RADD* schema, such

that the order is given for the structures of these schemata.

Key-attributes are represented in the graphical HERM or RADD entity-relationship

schema by underlined items (on an empty node-type). For example, a key attribute

Employee.Ssn is represented in RADD* by means of a structure ’Employee’ with key ’{ref

ssn}’, where ’ssn’ is the attribute with name ”Ssn”.

6.3.2 RADD* Constraints

The definition of KDs, CCs, FDs, IDs, and EDs is equal to that given in [PBGG89, Tha91],

besides the fact that left-hand-side and right-hand-side are not related to values only, but

can also be containers of complex objects (classes, which are here represented by structs,

unions, attributes, references, their combinations etc.).

References (REFs), indicated by arrows between structures in the graphical RADD

design, are represented by references of RADD* structs and unions. Cardinality con-

straints (CCs) which are defined in the graphical RADD design near the arrows are

represented by associated RADD* constraints. Functional dependencies (FDs), inclusion

dependencies (IDs), exclusion dependencies (EDs), afunctional dependencies (ADs), and

path constraints are considered as well. The definition of RADD* constraints is derived

from the relational data model and its operators, but, as mentioned above, considers

object semantics and pointer semantics as well.

In HERM and RADD, paths are used to specify complex conditions for the database’s

maintenance. An example of a path constraint is a database consisting of

• entity structures: bus-driver, bus, bus-type, driving-license,

• and relationship structures: drives, has-type, has-license,

such that we can specify the following path constraint:

The bus-driver who drives a bus must have a driving-license for that bus (for

the type [bus-type] of the bus).

Then, this is represented in RADD* by a term like the following:

ID(REF (JOIN(REF (JOIN(bus-driver,drives),bus),has-type),bus-type),

REF (JOIN(bus-driver,has-license),bus-type))

Ch. 6 Type Inference and Functional Schema Representation 169

6.3.3 RADD* Type System and Subtyping Rules

In Section 6.2.2, we did describe how the type inference system of the RADD/raddstar,

which is based on the λ-calculus, is implemented. In this section, we want to give the

reader an overview what types are considered by the RADD* data model, because the

type inference system evaluates these types.

6.3.3.1 Properties of the Type System

In RADD*, a type is either

• a denotator type τ , such that τ may be one of the basic types mentioned in 6.3.1.1,

• a record type which is represented by a list of attributes–

like the schema of a struct (see also Section 6.3.1.1), or

• an arrow type τ1 → τ2.

Furthermore, types can be constructed (and are inferred) in the usual way of functional

type systems (product types, sum types). Variables and expressions of denotator types

and types of records which have only attributes of denotator types can be used with the

comparison operators = and <>, whereas arrow types can not. Arrow types are used

to represent the type of functions and functions can not be compared. The types of

references to functions and the types of records which have only attributes of denotator

types are also considered as denotator types.7

E.g., if a function takes an integer argument and evaluates a boolean, then its type is

int → bool. A function may be curried, assume

substr : string -> int -> int -> string

is such a curried function. Then, the expression substr "myname" evaluates again a

function, which has the type int -> int -> string.

The types int, float, smallint, smallfloat, dec, date, time, money, etc. describe primitive

types that are found in hierarchical, network, and relational databases. Hence, these

are represented as axioms in the RADD* type system. The type character represents a

single character, and the type binary represents a single byte in the RADD* type system,

respectively. The types set, bag, array, vector, ref, and record are the type constructors.

New types can be created using the type constructors and the types which are already

defined. The type inference rules which are used to obtain the types of the functional

expressions, derive types in the opposite way.

7Denotator types are sometimes called equality types. Refer also to [BO96].

170 Part II Analysing Database Designs

6.3.3.2 Type Equivalence Rules and Subtyping Rules

The SQL types char and varchar need not to be considered separately in the RADD* type

system, since they are generated using the type constructors array and vector. Array

and vector have the usual meaning, such that the SQL type “char” is considered as one-

dimensional array of the character type, and “varchar” is considered as one-dimensional

vector of the character type. A vector’s maximal length can be undertermined (possibly

infinite). This is then encoded by a −1 length. A one-dimensional vector of infinite

length describes what is usually understood as a list. The type (constructor) mappings

are described by type equivalence rules, e.g. [(τ ,-1)] vector = τ list.

Subtyping. W.r.t. the relation ≤t which is transitive and antisymmetric, the following

subtyping rules are considered by the RADD* type system:

• character ≤t binary,

• smallint ≤t int,

• int ≤t smallfloat,

• smallfloat ≤t float,

• dec(len=n,...) ≤t [(character,n)] array, and

• ’a array ≤t ’a vector.

Unlike other typed functional languages, such as Standard ML of New-Jersey, this allows

to have functional expressions like 1.2 * 3 which use arguments of different types on the

left-hand-side (float) and right-hand-side (int)– although the * infix operator of RADD*

has the type

* : (’a,’a) -> ’a

where ’a is a type parameter, respectively.

6.3.4 RADD* Internal Schema

The constructs we use for the internal schema are an extension of the conceptual schema

constructs, and are given as follows.

Definition (Internal Schema). An internal database schema needs not necessarily to be

acyclic:

• Attributes can additionally have the following types: oid, attr ref, and structure

pointer. which denote the usual constructs for a database implementation schema,

object identifier and reference to an attribute or structure.

• Entities are considered as above, but they are now specified by a 4-tuple (n,A,K,P)

where P is a set of references to the preceding (conceptual) structures.

Ch. 6 Type Inference and Functional Schema Representation 171

• Relationships may directly or transitively reference themselves. For permission of a

cyclic data schema, condition (order) is not required for the internal schema. Like

entities, relationships are now specified by (n,F,A,K,P).

• Clusters are represented by relationships with optional parent structures, i.e. the

internal schema does not contain any cluster.

The internal representation is defined by a new structure set and a new constraint set.

Actually, we do not distinguish between types for conceptual and internal structures:

the precederer component P of each conceptual structure is always the empty set. Also,

the constraint types are specified conceptually as well as internally by the same type

constructors. Cardinality constraints are specified by a 5-product (P1,P2,c,b,P) where

P is a set of references to the preceding constraints, and the other constraint types are

represented by a 4-product (P1,P2,b,P) where P– as for the entities and relationships –is

empty, for all conceptual constraints, respectively.

6.4 Summary and Outlook

The Chapter gives an overview on the functional concepts of the RADD/raddstar imple-

mentation, and on the system’s database schema representation.

The RADD* data model which was defined in Section 6.3, is used for the conceptual

schema’s representation as well as for the internal schema’s representation. The behavior

options which are specified by the database designer, and the functional declarations which

she/he adds to the graphical RADD database design, are either stored by the RADD*

schema (“schema” functions & values), or else, directly attached to the structures (classes)

of that schema (“class” respectively “member” functions & values).

The following Chapter (Chapter 7) presents the CSL conceptual specification language,

which is used to control, invoke, and maintain the activities of the RADD/raddstar system.

CSL enables the database designer to add the functional declarations to the graphical

RADD database design:

1. In form of transformation rules, general behavior specifications, and schema func-

tions & values, which are attached to the schema,

2. and, in form of special behavior specifications and class and member functions &

values, which are attached to the classes and connections.

Chapter 7

Conceptual Specification Language

In Chapter 6 the functional implementation of the RADD/raddstar was described:

• we showed the type inference algorithm– as implemented in the system (Section

6.2), and

• gave an overview on the representation concepts by defining the data model that

we are using (Section 6.3).

In this Chapter we will present the specification language of the RADD/raddstar system,

called conceptual specification language (CSL).

The commands of the CSL can be distinguished in the following groups:

1. session control commands,

2. object specification commands,

3. object description commands, and

4. functional specifications.

The session control commands include the loading of a new database schema, the reviewing

and the optimization of the schema, and the invocation of the tuple number interface. Be-

yond these, the user has the ability to set some global variables, such as whether the trans-

formation or optimization of the schema is done interactively or not, or which type of tran-

formation to use (hierarchical,network,relational,object-relational,object-oriented)– this is

specified by the user by means of the set command. The latter type of global variable

assignment can also be done using CSL reference value assignments (:=), but it its more

secure to modify these options using the set command, since this way the environment

is also set appropriately. Changing these values by the buttons of the graphical user

interface– shown in Figure 6.8 –is equivalent to using the set command for their modifi-

cation.

174 Part II Analysing Database Designs

The object specification commands are the attachment of the behavior specifications and

methods to the classes of the graphical RADD database design.

The object description commands are introduced by the desc (describe) keyword,

and are used to describe the structures, integrity constraints, triggers, or transactions,

which are defined for the current conceptual schema, the optimized schema, or the schema

used for the internal cost evaluations (internal schema). As shown by the Employee; com-

mand in Figure 6.8, some of these terms– like the structures (‘classes’) of the conceptual

schema –can also alternatively be described by reference to the according CSL value.

The functional specifications comprise the SML1 like value and function definitions

that can be given by the database designer (user). These user-defined values and functions

as well as the predefined values and functions are used in the behavior specifications and

methods.

The Chapter is organized as follows. Firstly, in Section 7.1 we give an introduction

to the property and requirement specification in the RADD/raddstar. Then, in Section

7.2, the functional specification language part of CSL is presented. This part of CSL

is an extension of the small functional, SML like language that we presented in Section

6.2. The database programming extensions of CSL are more appropriately considered in

Section 7.3, and, Section 7.4 summarizes the Chapter.

7.1 CSL Property and Requirement Specifications

Knowing the information system dynamics supports the process of inductive design de-

cisions. These infomations are important when one wants to model the database system

correctly, considering which parts of the schema need to be strongly normalized, and which

parts or sets of structures can be collapsed to improve retrieval performance. For these

reasons, today there exist a couple of conceptual modeling tools (for relational DBMSs)

which allow to model schemata that are either not completely normalized or deliberately

denormalized.

However, the decision whether the internal database schema has to be strongly normal-

ized, or if a denormalized internal schema can be used, should not be given at conceptual

design time, but informations to support these decisions can already be acquired during

conceptual design. Criteria to support these decisions are– for instance –the population

sizes of the structures of the designed conceptual schema.

In contrast to what traditional lecture books (e.g. [Vos87, Ull88b, Dat92, RM92])

are teaching about relational database designer and normalization, collapsing structures,

e.g. an entity structure and a relationship structure, can improve retrieval performance

1SML is used as synonym for Standard ML of New-Jersey, the functional language which we discussed
in Section 6.2.1 and with which RADD/raddstar is implemented.

Ch. 7 Conceptual Specification Language 175

as well as insert, delete, and update performance. E.g. in [Ste95], it has been shown

that for the Company schema and its tuple numbers, the internal schema containing an

Employee structure with a repeating group of Project-references has better retrieval per-

formance and update behavior properties than one with a separate Employee, works on,

and Project structure, respectively.

The following Section shows how the according design information neccessary for the

decision whether to use a normalized of denormalized internal database schema is intro-

duced into and maintained by the RADD/raddstar system.

7.1.1 Maintaining Database Population Information

Whenever, a new data dictionary of the RADD entity-relationship editor is loaded into

the RADD/raddstar, the system looks for an according tuple number specification file at

the same place, and– if found –loads the tuple numbers from it. The CSL language is

then used to aquire, change, and store the tuple numbers. An interactive dialogue which

presents and acquires tuple numbers for the structures of the current conceptual schema

is shown in Figure 7.1.

CSL> load DD from "Company.dd";
..
..
..
..
..
...[opening Company.tunums]
File "Company.tunums" successfully loaded [3 TupleNumbers].

Data Dictionary "Company" successfully loaded from Company.dd
(8 Structures, 7 Constraints, 0 Behavior Options).

Press <enter> to continue=>
CSL> enter tuple numbers;

NOTICE: This is a very simple, interactive Menu.
It allows you to enter expected Numbers of Tuples for the modeled Structures. Yo
u may skip the current structure by typing a blank ’ ’ or zero ’0’, step back to
the previous structure by ’-1’, or cancel the menu by ’-2’

Tuple Number for Type ’Department’ [4] >>
Tuple Number for Type ’Employee’ [760] >>
Tuple Number for Type ’works_for’ [=760?] >>
Tuple Number for Type ’manages’ [=4?] >>
Tuple Number for Type ’Project’ [17] >>

Figure 7.1: The Tuple Number Dialogue of the RADD/raddstar.

The dialogue in Figure 7.1 shows that the data dictionary ”Company.dd” is loaded into

the RADD/raddstar, such that the tuple number specification file ”Company.tunums”

was loaded as well. The user entered then the CSL command enter tuple numbers– to

maintain the tuple numbers of the Company schema. Here, the line

Tuple Number for Type ’works_for’ [=760?] >>

176 Part II Analysing Database Designs

indicates, that the tuple number of ”works for” ([=760?]) was not defined in the ”Com-

pany.tunums” file, but can be inferred from the tuple numbers defined there and the

integrity constraints which are given for the schema.

7.1.2 Deriving and Advising Schema Transformations

The graphical RADD conceptual design schema does not already contain information how

to realize the database internally. That is, this schema posseses the following properties:

1. By the HERM order requirement (Section 3.3.3.1) the graphical schema does not

contain mutual references or cycles, neither explicite nor implicite.

2. The graphical schema is usually completely normalized, since the database designer

need not to use repeating groups etc.– for reason that list, set, and record-typed

attributes are supported by the HERM and RADD data model.

However– as mentioned in Section 6.3.4–, a schema that is generated by the RADD/radd-

star transformation, to evaluate the behavior and performance of the conceptual schema,

may be cyclic and can have repeating groups as well (in case of a relational transfor-

mation). Furthermore, the transformations which are performed do not only refer to

the transformation rules, but also to the transaction and behavior properties which are

specified for the schema. So, if there is a transformation rule which says to group two

structures of the entity-relationship schema to one internal structure, but there is also

an ON-INSERT-CASCADE rule between the two structures, then the structures are not

grouped (collapsed), since we assume that the user wants to see the actions which are

necessary for integrity maintenance between these structures.

Example. Assume, the database designer specifies an ON-INSERT-CASCADE rule for

the reference from works for to Employee:

CSL> for Ref works_for->Employee:
> on insert cascade;
Adding 1 new rules to schema Company.

From this behavior rule specification, RADD/raddstar assumes that the designer does

not want the structures Employee and works for to be collapsed on the internal schema:

The specified on insert cascade would never take place since it were given implicitely

all the time, by the collapsed internal structure (Employee,works for).

On the other hand, it is not convenient to control transformation processes only by

behavior specifications, Therefore, we give the database designer also the opportunity to

explicitely forbid transformations:

CSL> add transformation rule:
> do not group(Employee,works_for);
Adding new global transformation rule as "g1".

Ch. 7 Conceptual Specification Language 177

In the example, the database designer explicitely specifies a ”global” transformation

rule (which was named ”g1”, by the system) that disallows to collapse Employee and

works for to one internal structure, by the transformer of the RADD/raddstar. The

designer may also specify rules, which advise the transformer to do transformations that

are not given implicitely.

7.2 CSL Functional Specifications

In Section 7.1 we gave some examples of adding properties and requirements to the datbase

schema using CSL. Besides the restrict, cascade, set null, and set dafault behavior options

which we already presented in Chapter 5, RADD/raddstar allows also to use behavior

specifications with the help of user-defined database functions and IF-THEN-ELSE-FI

statements, such that transactions can be specified in a programmatical way. The values

and functions that are defined in the SML like language (which is an extension of that

introduced in Section 6.2) can be used as functional values per se, and can also be attached

to the classes of the graphical RADD database design.

Generally, CSL provides the following term and function application constructs for en-

riching the conceptual schema with database application semantics:

• The terms select, insert, delete, and update are used as denoters for database

operations– RADD/raddstar uses the so constructed operation terms of the behavior

and transformation rules– e.g. (insert,Employee) or (insert,Employee{Name=”Vic-

tor H.”, Bdate=”11-01-59”, Salary=54000, ...}), to evaluate transactions and nec-

essary sub-transactions.

• The functions entity, relationship, cluster, component and tcomponent are used as

testing operations for the item of the data schema; e.g., if Employee is an entity type

then entity Employee returns true, or if manages directly or transitively references

Employee then tcomponent manages Employee returns true.

• The functions compatible, highcomplexity and attrsize are used as property evalua-

tors.

• The functions group, separate, nest, unnest and clusterize are the schema transfor-

mation operations.

• And, as introduced in Section 6.2, the operators ”+”, ”−”, ”∗”, ”/”, ”˜” (unary

minus), and ”ˆ” (string concatenation) are the primitive operators, ”=”, ”<”, ”<=”,

”>=”, ”>”, and ”<>” are the comparison operators, and ”:=” is the assignment

operator.

178 Part II Analysing Database Designs

The syntax of CSL functional expressions is similar the syntax of the small functional

language given in Section 6.2.2, and has additionally the following characteristics:

1. The infix operators ”+”, ”-”, ”*”, and ”/” have the signature ’a * ’a -> ’a ,

such that the type allows them to be used for integers as well as for floats.

2. The type system is more flexible and richer than that of the functional language of

Section 6.2.2. So, traditional database types like the SQL-type DATE, and collection

types (set, bag, list, array, vararray) are included.

3. Reflective Type System. Like RDBMSs which use some special tables as a catalog to

describe the structure of the database, in the RADD/raddstar the structures of the

conceptual schema are abstract data types (classes) which are represented as CSL

values. It follows that the Employee entity type of the Company schema which is

maintained as a class, can be used in any CSL expression as if it were a value. So,

terms like Employee– or the attributes of the classes, like Birthdate –can be used as

constant values in the definitions of new values and functions, and the specifications

of transactions, transformations etc.

4. The symbol ”this” is used to refer to the current object of a class. E.g., if a member

funcation is attached to the Employee class, then this.Birthdate can be used to

refer to the Birthdate of the current Employee.

7.2.1 Defining and Using Application Functions

Values, i.e. constants, can be defined in CSL by expressions of the form:

‘val’ < ident > ‘=’ < cslval >

and functions by:

‘fun’ < value > < par > ‘=’ < cslval > { ‘|’ < par > ‘=’ < cslval > }∗

where < cslval > is a constant, a CSL-defined value, or a CSL expression:

cslval ::= < const > |
< ident > |
‘fn’ < par > ‘=>’ < cslval > { ‘|’ < par > ‘=>’ < cslval > }∗ |
‘let’ <decl>∗ ‘in’ <cslval> { ‘;’ <cslval> }∗ ‘end’ |
‘(’ <cslval> { ‘,’ <cslval> }∗ ‘)’ |
< cslval > < op > < cslval > |
< cslval > < cslval >

Like already mentioned, the syntax of CSL is an extented form of the syntax of the

functional language given in the Parsing paragraph of Section 6.2.2. Note, that like in

SML the symbol ‘fn’ introcuces the definition of a function which has no own identification

and is therefore handled as a value only. In CSL, the primer application of the ‘fn’ symbol

is to specify patterns when defining curried functions.

Ch. 7 Conceptual Specification Language 179

An example of a (predefined) curried function is given by the group function:

CSL> group;
it : (struc,struc) -> (int,int) -> struc = <function>
CSL> val Emp = Employee;
Emp : struc = {Salary: float not null,

Sex: char(1) not null,
Address: varchar(30),
Name: {Firstnames: list(varchar(15)) not null,

Lastname: varchar(20) not null,
Title: varchar(10)} not null,

Birthdate: date not null,
Ssn: decimal(9) not null}

CSL> group(Emp,works_for);
it : (int,int) -> struc = <function>
CSL> it(0,1);

it : struc = {Salary: float not null,
Sex: char(1) not null,
Address: varchar(30),
Name: {Firstnames: list(varchar(15)) not null,

Lastname: varchar(20) not null,
Title: varchar(10)} not null,

Birthdate: date not null,
Ssn: decimal(9) not null,
Department: struc ref}

Here, the expression group(Emp,works_for) evaluates a new function that takes a tuple

of type int∗int as argument and evaluates a struc (class) in turn. The attributes of the

class that are generated by the group (Employee,works for) (0,1) are shown after the

it : struc = line. The type of all structures is ”struc”. By the val Emp = Employee

command the type of the Employee class is described, and RADD/raddstar presents then

the type of the Employee class to the database designer as a “value” of the following form:

{Salary: float not null,
Sex: char(1) not null,
Address: varchar(30),
Name: {Firstnames: list(varchar(15)) not null,

Lastname: varchar(20) not null,
Title: varchar(10)} not null,

Birthdate: date not null,
Ssn: decimal(9) not null}

The concrete structure of Employee which is maintained by RADD/raddstar is considered

if expressions (functions,values) which use the Employee class are evaluated.

Besides ”struc”, RADD/raddstar types are ”unit”, ”bool”, ”int”, ”real”, ”number”,

”date”, ”string”, ”data schema”, the generic types ”tuple”, ”list” and ”set”, and ”func-

tion”. RADD/raddstar maintains the RADD SQL-2 types char, float and decimal by

”string”, ”real” and ”number”, respectively. The RADD/raddstar internal description of

the database attribute types, e.g. list(varchar(15)), is converted to the according rep-

resentation, e.g. varray of varchar(15), when the database schema is exported to an

external language or SQL-dialect, such as Oracle8.

180 Part II Analysing Database Designs

7.2.2 Describing Database Operations

The group function of the above examples is a database schema transformation opera-

tion. As shown, such CSL functions can be used in other functional expressions as well.

RADD/raddstar’s type evaluation and inference for CSL functional expression takes care

that only complete and type-correct applications are used. Complete and type-correct

applications are considered whenever the database designer adds application code to the

functions of the graphical RADD schema as well.

Consider the following fragment where the user adds an age function to the Employee
class:

CSL> today;
it : unit -> date = <function>
CSL> today();
it : date = 1999/12/15
CSL> add class Employee:
> fun age() = today() - 20;
Typing error in function age:
(date,date) -> date applied to ((unit -> date) -> unit,int)
CSL> add class Employee:
> fun age() = today() - this.Birthdate;
this.age : unit -> date = <function>

By means of adding operations to the classes of the graphical RADD design, the user

has also the possibility to define insert, delete, update, and retrieve (select) operations,

and so, to overwrite the default operations which we assume to be given by the DBMS.

This corresponds to the CREATE RULE pl ins AS ... statement in Figure 3.14 and the

CREATE VIEW ... INSTEAD OF ... view inserts which we did mention in the Oracle8

paragraph of Section 3.3.2.3.

Application functions and behavior of database operations. If an insert, delete,

update, or retrieve operation is “redefined” by means of a class method with the same

name, then the default behavior rule or behavior specification of the database designer (as-

sume on-insert-cascade for the CC(works for,Employee)) is omitted by the RADD/radd-

star transaction evaluator, whenever the redefined operation includes the according trig-

gered operation (e.g., if Employee.insert contains insert(works for)). Furthermore, in

such a case the insert(works for) operation is assumed never to trigger insert(Employee)

in turn.

Ch. 7 Conceptual Specification Language 181

7.3 CSL Control Structures and Database Applica-

tion Programming Extensions

In this Section, we give an overview on the conceptual specification language (CSL) which

is RADD/raddstar’s user interface.

7.3.1 Syntax of the CSL Commands

CSL has the following control statements:

ctlstm ::= load { DD | CSL } from <string> ‖
export { DD | CSL | SQL | form } for <subschema> to <string> ‖
load tuple numbers from <string> ‖ export tuple numbers to <string > ‖
enter tuple numbers ‖ define <constraint> ‖ <behavior-rule> ‖
drop rule (<behavior-rule>) ‖ drop rule <string> ‖
add [<schema-type>] { transformation | optimization } rule : <when-rule> ‖
transform <subschema> ‖ review <subschema> ‖ optimize <schema> ‖
replace <subschema> with <cslval> ‖ describe <string> ‖
set <ident> = <cslval> ‖ add class <ident> : [member] <csldef> ‖
modify schema to <storage> ‖ modify class <ident> [”{”<attrs>”}”] to <storage> ‖
<csldef> ‖ <cslval> ‖
help ‖ quit

behavior-rule ::=
for <constraint> : <behavior> ‖
operation (<databas-operation> , <structure>) is [not]

{ frequently required | rarely required | of high priority | of low priority }

when-rule ::=
when <condition> do <action>

7.3.2 Semantics of the CSL Commands

The ‘help’ and ‘quit’ commands are used for giving a help dialogue and ending the CSL

session, respectively. The token <csldef> denotes CSL function and value definitions,

CSL values (<cslval>) are arithmetic expressions, function calls, or simply, bound iden-

tifiers; the syntax of which is close to Standard ML ([Mil87]). An example of a CSL

function definition is given by the following clause in the style of λ-abstraction ([Mau93],

Ch. 12 - 16):
fun fac n = if n = 0 then 1 else n * fac(n-1) fi

Alternatively, this (schema) function can be defined using pattern matching:
fun fac 0 = 1 | n = n * fac(n - 1)

In both examples, the fac symbol appearing on the right-hand-side of the clauses (bodies)

is bound to the identifier after the fun symbol (parameter list). Recursion has been

implemented using a fix-point combinator.

182 Part II Analysing Database Designs

In a CSL value definition, a symbol appearing in the body is not bound to the symbol

that is defined on the left-hand-side, e.g.:

val fac = fac

binds fac to the value (or function) fac that must have been defined previously. If a

symbol in the body is not bound, an exception is raised (SUnbound of string).

The upper ‘load’ commands are used to load a data dictionary of the RADD schema

editor (”.dd”) or CSL specification file (”.csl”) into the RADD/raddstar.2 Here and in

the other commands, the filename (<file>) must be a string which is enclosed by quotes,

such as ”Company.dd” or ”Company.csl”. The associated ‘export’ commands are used for

exporting data dictionaries and CSL files from RADD/raddstar. Here, a complete schema

or a subschema of the conceptual, optimized, or internal schema can be exported. The

schema is described by the optional word ‘conceptual’, ‘internal’, or ‘optimized’, followed

by the string ‘schema’ or a subschema specification. A subschema specification begins

with the string ‘SubSchema’ and a left curly bracket (‘{’) followed by a comma-separated

list of identifiers,3 and is closed by a right curly bracket (‘}’). By means of the ‘export’

‘form’ command, it is possible to export Web (HTML) forms for subschemata, by which

database relations can be retrieved, inserted, deleted, and updated using an interface to

a DBMS, which maintains a sample database for the design.

The ‘load’, ‘export’, and ‘enter’ ‘tuple’ ‘numbers’ commands are used to load, export,

and define (or modify) the tuple numbers of the current conceptual schema. For the

current conceptual schema the database designer may want to specify additional integrity

constraints, which can be done with the help of the ‘define’ command. With the help of

the ‘for’ command, he can attach behavior rules to the constraints which are contained in

the graphical conceptual schema, or which he defined by means of the ‘define’ command.

In this context, the constraint (<constraint>) may be ‘all’ ‘constraints’, ‘all’ ‘FDs’, ‘all’

‘IDs’, ..., or a special constraint of the current schema (KD,REF,CC,FD,ID,ED,AD).

By the ‘for’ command, he can attach behavior rules to the constraints which are

already contained in the graphical conceptual schema, or which he defined by the ‘define’

command. In this content the constraint (< constraint >) may be ‘all’ ‘constraints’, ‘all’

‘FDs’, ‘all’ ‘IDs’, ..., or a special constraint of the schema (KD,REF,CC,FD,ID,ED,AD).

The behavior rules (< behavior >) have the form shown in Figure 5.1. That is, for

instance,

on update parent do if nullable(child) then set null else set default fi .

2The data dictionaries of the RADD schema editor are normally loaded at invocation time of
RADD/raddstar; then, ‘-LOADDD’ and the filename are given as command line arguments.

3The RADD/raddstar compiler checks that the identifiers which are used in the subschema specifica-
tion are structures of the schema.

Ch. 7 Conceptual Specification Language 183

When the user specifies a new behavior rule for an integrity constraint, then the (possibly

empty) list of previously specified rules for that constraint is appended by the new behav-

ior specification. When the database designer uses the ‘drop’ to delete a behavior rule,

then this behavior specification is deleted from the list. The last behavior rule of that list

is namly always considered when evaluating transactions for the database schema, such

that, for instance, an on-insert-cascade covers a previously specified on-insert-restrict

for the same constraint. But, after dropping the on-insert-cascade for that constraint,

the on-insert-restrict is valid again. In the ‘drop’ ‘rule’ command, < behavior − rule >
denotes the combination of the integrity constraint and the behavior rule as specified by

the ‘for’ command, e.g.

drop rule (for Ref manages-¿Department: on insert cascade) .

When the user specifies a new behavior rule for an integrity constraint, then the (possibly

empty) list of previously specified rules for that constraint is appended with the new

behavior rule. When the database designer uses the ‘drop’ ‘rule’ command to delete a

behavior rule, this behavior rule is deleted from the list. The last behavior rule of that list

is always considered when evaluating transactions for the database schema. This way, an

on-insert-cascade covers a previously specified on-insert-restrict for the same constraint.

But, after dropping the on-insert-cascade for that constraint, the on-insert-restrict is

valid again. In the first ‘drop’ ‘rule’ command, the <behavior-rule> denotes the CSL rule

that has been defined previously. This can be a maintenance rule as specified by the ‘for’

command, or else an operation property, which is defined by the ‘operation’ command.

The second ‘drop’ ‘rule’ command is used to drop a transformation or optimization rule

(when-rule), which was assigned a unique name by the system (<string>).

The ‘describe’ is used to describe the structure of objects of the schema, and the ‘set’

command is used for assigning global variables of the RADD/raddstar, such as the kind

of transformation or optimization (interactively or not). By means of the ‘set’ command

also the type of the transformation rules to use and the cost model can be set. For each

transformation rule set, 2 - 5 cost models are applicable.

By means of the ‘add’ ‘class’ command, the designer can add class functions & values

or member functions & values to the classes (remember the description of attributes in

Section 6.3.1.1). Member functions & values are automatically recognized, either when

the keyword ‘member’ prefixes the function or value definition or else when the keyword

“this” is used in the body of the definition, The keyword “this” is also the only way to

call the member functions & values from other function or value definitions for that class.

Assume, a member function “age” is added to the Employee class

CSL> add class Employee:
> fun age() = this.Birthdate - today();
this.age : unit -> date = <function>

184 Part II Analysing Database Designs

Thus, this.age can be used only by other member functions & values of Employee, or by

database operations (retrieve, insert, delete, update) which are working with the Employee

set. A member function or value can be accessed (and is protected) the same way an

attribute is.

A member value which is added by means of the ‘add’ ‘class’ command is like an

attribute, despite the following exceptions:

1. The member value has no null-indicator, such that it is always not null.

2. Whenever the body of the value definition clause specifies a constant (and not an

attribute, like this.Birthdate), the member value is a fixed value that can not be

changed anymore, and then it also is the same for all objects of the class.

An exception of this non-changability of member values which are constants may be seen

in the use of references; although these are also static values in ML (and so in CSL), their

content can be changed every time using the “:=” operator. The content of a reference

value, which has possibly been changed, can be retrieved using the “!” operator. Member

attributes which are references can be used as communication channel by the objects of

a class (or between objects of different classes), since as soon as one object changes the

reference value’s content all other objects see that new content (“state”).

The ‘modify’ commands are used to change the storage organization which is used

as the default for the classes of the schema, which are not assigned a special primary

storage organization, to modify the primary storage organization of a class (i.e., the pri-

mary storage organization of the class’ member set), or to define and maintain additional

secondary indices. These are then represented appropriately on the internal schema, and,

for the internal schema, SQL schema definition code can be directly generated using the

‘export’ ‘SQL’ command.4 The following gives an example.

CSL> export SQL for optimized schema to "../../TeX/tmp/Company.sql";

done.

Here, the file ”Company.sql” is written in the directory ”../../TeX/tmp”.

This file contains

• Create table, primary-key, foreign-key, alter table, create index, create trigger and

create procedure statements, where the triggers and stored procedures are derived

from the logically specified behavior specifications and CSL functions.

• Advices for time of implementation of foreign-keys, even if they cannot be imple-

mented directly (because of foreign-key cycles), and hints for the enabling/disabling

foreign-keys as well as for the use of the stored procedures.

4Actually, the conceptual or optimized schema as is can be exported to SQL, and also the sets of
hierarchical, network, and object-oriented transformation rules can be used to generate an internal schema
which is exported to SQL.

Ch. 7 Conceptual Specification Language 185

This way, the system generates on the basis of a graphical conceptual database design

and the logical definition of procedures and database functions (CSL interface) a complete

database schema for implementation under a special DBMS, that contains important

realization hints. An excerpt from the generated SQL code for the (optimized) Company

schema is shown in Figure 7.2.

Figure 7.2: SQL Schema Definition Code generated by the RADD/raddstar.

7.3.3 Database Schemata and their Subschemata

At the beginning of Section 7.3, we have mentioned how subschemata are desribed in

CSL. In this Section we will explain how they can be used in the RADD/raddstar. Let

us consider how database schemata are transformed, reviewed, and optimized firstly.

7.3.3.1 Transforming the Conceptual Schema (The Transformer)

The conceptual schema (or any particular subschema, of the conceptual, the current inter-

nal, or the optimized schema) is transformed by means of the ‘transform’ command. Ac-

cording the chosen schema or subschema, the transformer of the RADD/raddstar selects

the set of transformation rules for that schema type, and performs either an interactive

or a non-interactive transformation of the schema.

The transformation operations which are used in the predefined transformation rule

sets, are the group, separate, nest, unnest, and clusterize operation which were described

in Section 5.2.2. Figure 7.3 shows, how the predefined rules for relational transformations

are defined.

186 Part II Analysing Database Designs

(* Transformation rule "r1" *)
add relational transformation rule:
when CC(s1,s2) is (m,n)
and component s1 s2
and m >= 1
and (n = 1 or (attrsize s1 (m,n)) < !rMaxRepGrpSize)

do
group (s2,s1) (m,n)

;

(* Transformation rule "r2" *)
add relational transformation rule:
when CC(s1,s2) is (0,1)
and component s1 s2
and emptySchema s1

do
group (s2,s1) (0,1)

;

Figure 7.3: CSL Startup Code to Initialize the Set of Relational Transformation Rules.

The two transformation rules shown in Figure 7.3 are examples for the ‘add’ (transfor-

mation rule) command of CSL. After it has been started, RADD/raddstar looks firstly

for an initialization file ”.raddstar”. If it finds this file, either in current directory or

in the user’s home directory, then it loads its default transformation rules and behavior

specifications from that file. Subsequently– if it is invoked with ”-LOADDD” < file > on

the command line– RADD/raddstar loads the data dictionary specified by the < file >,

e.g. ”Company.dd”. As mentioned in Section 7.1.1, with the ”Company.dd” also a tuple

number file ”Company.tunums” is loaded whenever it exist in the same directory as the

”Company.dd”. After the tuple number file, a CSL specification that exists in the same

directory is loaded; in the example of ”Company.dd” this were ”Company.csl”. The trans-

formation rules and behavior specifications in the loaded database schema’s specification

file (”Company.csl”) override the rules and settings which are given by the ”.raddstar”

file. And, of course, the ”.raddstar” file and the ”Company.csl” file may contain again

‘load’ ‘CSL’ commands, e.g. the ”.raddstar” file can contain commands for loading gen-

eral transformation rules from other CSL files. The specification files for the optimization

rules have the same structure as those with the transformation rules.

CSL forbids to use ‘load’ ‘DD’ commands in CSL files: this type of command is

allowed only for interactive usage. And, as mentioned above, the type of the performed

transformation and the decision whether the transformation is interactive or not, depend

on some global variables (typeOfTransformation,kindOfTransformation) that can be assigned

by the user (with help of the assignment operator, ”:=”), but should better be set by

means of the ‘set’ command.

7.3.3.2 Reviewing the Conceptual Schema (The Reviewer)

After the database designer (user) has possibly defined additional constraints and main-

tenance rules for the graphical entity-relationship schema, the schema fitness evaluation

(“reviewing”) can be invoked. This is done by means of the ‘review’ command, which

includes a non-interactive transformation in case that the conceptual or optimized (con-

ceptual) schema is reviewed– to evaluate transactions. If the internal schema is reviewed

the schema is not transformed by the review process. The reviewer displays an X-window

which shows the transactions of the (conceptual) schema, their costs, and, if the user

Ch. 7 Conceptual Specification Language 187

clicks on the cost term with the middle mouse button the according transaction’s sub-

transactions and their cost terms.

Figure 7.4: Matrix presenting the Conceptual Schema Transactions and their Costs.

Figure 7.4 shows how the reviewer presents the transaction cost matrix to the user. Here,

the costs which are assumed to be bottlenecks of the schema are red, whereas the others

are green. By use of the right mouse button the user has the possibility to unmark the

assumed bottleneck (which changes the color of the cost term from red to green), or

otherwise, to mark costs as bottlenecks that are not “high”, and so, that are not assumed

to be bottlenecks by the RADD/raddstar (then, the color of the cost term changes from

green to red). According the diffferent database operation types (insert, delete, update,

and retrieve), and according the “bottlenecks” of the previous schema of the optimized

conceptual schema, the thresholds which make the operational costs to bottlenecks that

are presented to the user (red) or not (green), are different.

7.3.3.3 Optimizing the Conceptual Schema (The Optimizer)

The optimize command can only be invoked for a complete schema, such that as the

< schema > token of this syntax rule only a schema and not a subschema must be

used. That is, the word ‘schema’, which may be prepended by the word ‘conceptual’,

‘internal’, or ‘optimized’– like in the subschema specification. If ‘conceptual’, ‘internal’,

and ‘optimized’ are omitted, then the conceptual schema is optimized.

The optimizer considers the bottlenecks which are finally marked in the cost matrix

that is displayed by the reviewer. E.g., the highcomplexity function of the optimization

rule used in Section 4.2 (Figure 4.13) returns true if and only if the operation is marked as

bottleneck in the reviewer’s cost matrix. This way, if the user unmarks a bottleneck, then

this is also not considered as a bottleneck by the schema optimization process. Besides

defining own, special schema optimization rules, this is the only place where the user has

influence to the schema optimization process.

188 Part II Analysing Database Designs

7.3.3.4 Subschemata

As described above a subschema specification is beginning with the string ‘SubSchema’,

and has then a left curly bracket (‘{’), a list of identifiers which are checked– by the CSL

compiler –to be structures of the current conceptual schema, and finally, a closing right

curly bracket (‘}’).

CSL> group(Employee,works_for) (1,1);

it : struc = {Name: {Firstnames: list(char(15)) not null,
Lastname: char(20) not null,
Title: char(10)} not null,

Birthdate: date not null,
Ssn: decimal(9) not null,
Address: char(33),
Sex: char(1) not null,
Salary: decimal(12) not null,
Department: struc ref}

CSL> replace SubSchema{Employee,works_for} with it;
Transformer: 1 transformations have been applied to the conceptual schema.

Figure 7.5: Substituting the Subschema {Employee,works for} by the grouped Structure.

Modifying Subschemata. The modification of a subschema is done by means of the

‘replace’ command. By the replace command a subschema (or schema) is substituted

by another (sub-) schema, such that the references are set appropriately. Figure 7.5

gives an example how the {Employee,works for} subschema is replaced by the grouped

(Employee,works for) structure.

Generating Web (HTML) Forms for Subschemata. With the help of a subschema

specification it is possible to modify particular parts of the conceptual, internal, or op-

timized schema, and also, to generate Web (HTML) forms which are providing a user-

interface to the database.5 E.g., an HTML form for the {Employee} subschema (the

Employee structure) is generated by the following command:

CSL> export form for SubSchema{Employee} to "../tmp/e1.html";

File "../tmp/e1.html" exists! Do you want to overwrite [N/y] ? y

OK - overwriting file ../tmp/e1.html

done.

The form which is generated by that export command is shown in Figure 7.6.

5The select, insert, delete, and update operations which are available with the ”Retrieve”, ”Save”,
”Delete”, and ”Update” button of this mask will be posted to a PostgreSQL database. The interface
that provides this functionality is currently in work.

Ch. 7 Conceptual Specification Language 189

Figure 7.6: Exported HTML Form for the {Employee} Subschema.

7.4 Summary and Outlook

The Chapter presented the syntax of the design specification language that is provided

by the RADD/raddstar, called conceptual specification language (CSL). The CSL com-

mands may be distinguished into the following classes: session control commands, object

specification commands, object description commands, and functional specifications. For

reason that the different classes of the CSL commands are interrelated, we did use a

separate Section for each class, but presented them in their context.

1. For the session control commands and the object specification commands we gave

some examples in Section 7.1 and considered them again in Section 7.3.

2. And, the object description commands and the functional specifications were con-

sidered in Section 7.2.

In the following Chapter we will present a complete specification and optimization scenario

of the latter Company schema– which was shown in Figure 3.16. We will also give some

additional explanations for using the graphical interface of the RADD/raddstar, which

was shown in Figure 6.8.

Part III

Conceptual Database Design

Optimizer

... knowing the relative importance of the various transactions and the ex-

pected rates of their invocation plays a crucial part of physical database

design. It is true that only some of the transactions are known at de-

sign time. After the database system is implemented, new transactions

are continously identified and implemented. However, the most important

transactions are often known in advance of system implementation and

should be specified at an early stage.

R. Elmasri and S.B. Navathe,

in [EN89].

Chapter 8

Conceptual Database Design

Optimizer

In Section 3.3.3.1 and 3.3.3.2 we gave an overview on the HERM and RADD data model,

which serve as basis for the RADD/raddstar internal data model. The RADD/raddstar

internal data model (RADD*) was defined in Section 6.3. In Section 6.2 we also introduced

the basics of the functional compilation kernel, which serves for the type-checking and

evaluation of the CSL functional specifications that we considered in detail in Chapter 7.

Now, this Chapter describes the system architecture of the RADD/raddstar and

presents an application scenario of the RADD/raddstar. The application scenario shows

how the conceptual database design optimizer interacts with the designer and supports

him in specifying additional semantics and requirements, and in improving the schema.

The Chapter is organized as follows. Section 8.1 gives an overview on the components

of the RADD workbench, and especially on the system architecture of the RADD/raddstar.

Section 8.2 shows how additional requirements are specified for the graphical RADD data-

base design. Section 8.3 illustrates how the RADD/raddstar reviews the schema, marks

probable bottlenecks, and how the bottlenecks can be adjusted by the database designer.

It shows further how raddstar optimizes the database schema, considering the additionally

introduced requirements and marked bottlenecks. Section 8.3 also demonstrates how the

finally optimized database schema is made available for reload into the graphical RADD

schema editor, and how the tuple numbers and CSL specifications are stored in files for

later use.

8.1 System Architecture of RADD and raddstar
Figure 8.1 shows the system architecture of the RADD (Rapid Application and Database

Development) workbench and its subsystem raddstar (RADD/raddstar). The magenta

box contains the components of the raddstar, and the blue box contains the other RADD

components. The green box shows the files which are used for interaction between RADD

and raddstar.

196 Part III Conceptual Database Design Optimizer

Strategy
Advisor

Transformer

Tiny
DBMS

Database
Sample

Acquisition
Semantics

export DD for ... to "..."

export SQL for ... to "..."

Data
Dictionary

NLI

RADD Schema Editor

raddstar

Reviewer

CSL Language
Interface

CSL-compiled

Internal Code

Rule

"Optimizer"

TA-Presenter

Specifications

Tuple Numbers

Behavior

Design

Base

is_a

Person

Professor

lecture

load DD from "..."

<ascii-file with SQL-Commands>

Figure 8.1: The RADD Workbench and its Subsystem raddstar (RADD/raddstar).

Ch. 8 Conceptual Database Design Optimizer 197

The data dictionaries of the RADD schema editor (the editor used for the graphical

entity-relationship design) serve as the communication interfaces between the following

components of the workbench:

• the RADD Schema Editor,

• the Natural Language Interface (NLI),

• the Semantics Acquisition,

• the Strategy Advisor, and

• the RADD/raddstar.

The RADD schema editor, the natural language interface, the semantics acquisition, and

the strategy advisor are described in other publications, e.g. [BDT94, Alb94, AAB+95],

such that we do not describe them in further detail here.

In Figure 8.1 a RADD subsystem named Tiny DBMS (TDBMS, and a Sample Data-

base) is shown as well. The TDBMS once was a component of the RADD/raddstar, which

could be used to prototype the user’s database design, declarations, and specifications in

a “real” database environment, using an SQL-like database language extension of CSL.

E.g., in [AAS97a] and [AAS97b] examples were given how the classes of the graphical

design and database views can be combined– using the TDBMS interface. However, we

deleted the TDBMS again, because there were conflicts with the type inference system

of the CSL compiler, and this DBMS functionality is now replaced by the PostgreSQL

database interface mentioned in Section 7.3.3.4. For reason that the DBMS interface is

not included in the RADD/raddstar yet, it is not refered anymore in the following. The

DBMS (Postgres) interface will be available as soon as possible, and– as Figure 7.6 shows

–Web (HTML) forms that will make use of the interface can already be generated.

8.1.1 The RADD/raddstar Subsystem

As figured by the green frame and the boxes ”Data Dictionary”, ”Behavior Specifications”,

and ”Tuple Numbers” in Figure 8.1, the communication between the schema editor and

the raddstar subsystem is realized by different file formats:

1. The data dictionary file format (”.dd”), which stores all information necessary to

maintain the graphical entity-relationship design. The raddstar system is usually

invoked from the schema editor, such that it loads the data dictionary at startup.1

2. The tuple numbers file format (”.tunums”), which declares tuple numbers (numbers

of tuples) for the structures that are defined by the data dictionary. The tuple

number files are generated and maintained by the raddstar.

1The other RADD components, the NLI, the semantics acquisition, and the strategy advisor, are also
invoked from the RADD schema editor.

198 Part III Conceptual Database Design Optimizer

3. The CSL file format, which contains statements of the CSL database design specifi-

cation language that was developed in this work. The generation and maintenance

of these files is up to the RADD/raddstar as well.

Figure 8.2 shows the control flow and process architecture of the RADD/raddstar.

Reviewer

CSL Language
Interface

CSL-compiled

Internal Code

Rule

"Optimizer"

TA-Presenter

Specifications

Tuple Numbers

Behavior

Design

Base

Transformer

raddstar

GUI

Listener

Figure 8.2: RADD/raddstar GUI Control Flow and Process Architecture.

The most important part of the RADD/raddstar system is a Listener that is controling

the buttons of the GUI and the CSL shell, which is the RADD/raddstar command line

interface and part of the RADD/raddstar GUI. All user actions– which are made either by

entering CSL commands or else by clicking on the buttons of the GUI –are directed to the

Listener firstly, and are then, after successful (or erroneous) interpretation, send to items

of the GUI. The Listener takes care that no button action and CSL input is made during

the review or optimization process, and it synchronizes the buttons upon themselves. For

instance, the Listener invokes the update of the pulldown lists of the buttons labeled

”Path(parent)”, ”Path(child)”, and ”Constraint”, which are shown in Figure 6.8, after a

new data dictionary is loaded into the RADD/raddstar.

In Figure 8.2 the green double-headed arrow between the box ”CSL Language Inter-

face” and the circle ”Listener” indicates the control flow which is passed from the CSL

shell to the Listener, and from the Listener to the CSL shell, on the other hand. The blue

double-headed arrows between the boxes ”Behavior Specifications” and ”Tuple Numbers”

and the circle ”Listener” indicate the control flow between these interfaces and the Lis-

tener. The blue arrows from the Listener to the boxes ”Transformer” and ”Reviewer”

indicate that the Listener invokes these processes (schema transformation and schema

Ch. 8 Conceptual Database Design Optimizer 199

optimization). The rules used for schema transformation and schema optimization, which

are defined by means of the ”.raddstar” startup file or by the CSL shell, are stored by

the ”Design Rule Base”. The schema transformation and schema optimization write the

results that they evaluate as ”CSL-Compiled Internal Code” to the raddstar kernel, as

does the Listener for the user’s function and value defintions that it gets from the CSL

shell.

Another architecture is

1. running the CSL shell (the ”CSL Language Interface”) in an X-terminal (xterm),

2. and running the graphical elements by a separate GUI.

This implementation has been shown to run more stable compared to the RADD/raddstar

GUI, which has problems with “reviewing” large schemata, such as the extended Company

schema which contains 28 entity, relationship, and cluster types. The latter architecture

consisting of the ”Listener”, the ”Listener GUI”, and the ”xterm” which is running the

CSL shell, is shown in Figure 8.3.

CSL Language
Interface

Reviewer

CSL-compiled

Internal Code

Rule

"Optimizer"

TA-Presenter

Specifications

Tuple Numbers

Behavior

Design

Base

Transformer

raddstar
Listener

Listener GUI

xterm

Figure 8.3: RADD/raddstar Listener GUI Control Flow and Process Architecture.

In addition to the buttons of the RADD/raddstar GUI, the RADD/raddstar Listener GUI

has at the top a line which displays messages that are sent to the Listener. Since there is

no other difference according the functionalty between the architecture shown in Figure

8.2 and the architecture shown in Figure 8.3, in the following we do not explicitely mention

that difference of the GUI and the GUI/xterm. That is, in the following ”CSL shell” and

”CSL language interface” refer to both, the CSL shell running in the RADD/raddstar

200 Part III Conceptual Database Design Optimizer

GUI and the CSL shell running in the xterm. Accordingly, the references to the buttons

of the RADD/raddstar GUI refer to both, the buttons of the RADD/raddstar GUI shown

in Figure 6.8 and the buttons of the Listener GUI. The code shown in Appendix C.2.2 and

Appendix C.2.3 gives an impression of the implementation of the Listener, the Listener

GUI, and the CSL shell which is running in the xterm.

Although we had described the following commands already in Chapter 7, for the reader

who wants to read the thesis quickly, here is a survey on them:

1. Besides loading the current schema of the schema editor at startup time, the data-

base designer has the ability to load a new schema into raddstar by the load data-

dictionary command of the CSL language (load DD from "..."). Whenever a

new data dictionary is loaded into raddstar, maybe at startup time, maybe by ex-

plicitely entering this command, the tuple numbers and the CSL specifications are

also loaded into the raddstar, if the according files exist. For instance, when raddstar

is invoked from the schema editor with the data dictionary ”Company.dd”, it looks

for ”Company.tunums”– to get the tuple numbers –, and for ”Company.csl”– to get

the CSL specifications –and loads these files as well.

2. The conceptual schema, the internal schema2, and the optimized (conceptual) schema

can be exported in data dictionary format, such that they can subsequently be

loaded into the schema editor. The schemata of the different types can also be ex-

ported into ascii files with SQL data definition language (DDL) statements. The ex-

ported SQL files contain the necessary code to create the tables (relations), foreign-

keys (references), views, and triggers for the database.

3. The database designer can define additional constraints and maintenance rules for

the graphical entity-relationship schema and invoke the schema fitness evaluation

(“reviewing”) and optimization. For this purpose, the RADD/raddstar graphical

user interface provides a shell to invoke these processes and to enter CSL specifica-

tions.

4. At startup time, the raddstar looks firstly for an initialization file ”.raddstar”, from

which it then loads its default transformation rules and behavior specifications. The

transformation rules and behavior specifications in the ”.raddstar” file, which is in

the CSL format, override the rules and settings which are compiled into the system.3

An impression of the RADD/raddstar’s graphical user interface was given by Figure 6.8.
2The internal database schema, that is derived from the conceptual schema to evaluate the operational

behavior and the fitness of the operations.
3The current RADD/raddstar system does not anymore make use of precompiled schema transfor-

mation rules– like CoDO [Ste96] did. So, the initial transformation and optimization rules must (!) be
loaded by means of the ”.raddstar” file, from according CSL files, or must be entered on the interactive
CSL shell. The CSL code for the definition of these rules is shown in Appendix B.

Ch. 8 Conceptual Database Design Optimizer 201

8.1.2 The Graphical User Interface of the RADD/raddstar

In the graphical user interface (see Figure 6.8), the CSL shell is placed on the right.

Above of the CSL shell, on the right of the upper button line, the graphical user interface

has three buttons (”Tuple Numbers”, ”Review Schema”, ”Optimize Schema”), which are

shortcuts for some actions which can be invoked from the CSL shell:

• enter tuple numbers (invocation of the tuple number editor),

• review conceptual schema, and

• optimize conceptual schema.

The three buttons on the left of the upper button line are shortcuts for CSL commands

as well, and are used for file maintenance (”Load DD”, ”Export DD”, ”Export SQL”).

That are the CSL commands

• load DD from "<filename>",

• export DD for conceptual schema to "<filename>", and

• export SQL for conceptual schema to "<filename>".

These buttons are related to the input field right of the ”Filename:” label, whose value is

used as <filename> for these actions.

Behavior Specification Buttons. There is another menu (a matrix) below the ”File-

name:” label and the input field right of the label, which is used for entering the behav-

ior specifiations: the designer can so comfortably specify ”on insert {restrict,cascade,set

null,set default}” and ”on delete {restrict,cascade,set null,set default}” options, for the

parent and child structure (”Paths”) which are selected on the buttons labeled ”Path(par-

ent)” and ”Path(child)”, and for the constraint on the button labeled ”Constraint”.

The database designer can switch to another matrix with buttons for ”on update(child)

{restrict,cascade,set null,set default}” and ”on update(parent) {restrict,cascade,set null,

set default}” options, by clicking on the ”Ins/Del”-button, on the left upper corner of

the matrix. The three buttons, ”Path(parent)”, ”Path(child)”, and ”Constraint”, have

pulldowns which are listing the possible parent and child structures, or the constraints of

the currently loaded schema. If the database designer does not select special parent and

child structures and no special constraint, the system assumes that he makes the spec-

ification for the whole schema; that is, for all structures and constraints of the current

schema (general behavior specification). If he selects a parent or child structure and/or a

special constraint, raddstar handles it as a special behavior specification.

202 Part III Conceptual Database Design Optimizer

Initially loaded CSL Files. The global behavior specifications should be predefined by

the ”.raddstar” file (or the <filename>.csl file), since otherwise raddstar’s precompiled

global behavior specifications (which are ”on insert restrict”, ”on delete cascade”, ”on

update(Parent) set null”, and ”on update(Child) cascade”) are used. As Figure 6.8 shows,

the current setting for the global behavior specifications is ”on insert cascade” and ”on

delete cascade”, such that the default option ”on insert restrict” was overridden by either

the ”.raddstar” or the ”Company.csl” file.

Transformation Types and Cost Models. Below the matrix for defining the be-

havior specifications is a button by which the database designer can select his prefered

transformation type. Every transformation type is represented by the transformation

rules for this type. The transformation rules are maintained by the CSL language and are

initialized by the ”.raddstar” (respectively <filename>.csl) file. Also, every transforma-

tion type is related to a set of different cost models, such as ISAM, Traditional Btree,

Dense Btree, or Extensible Hash. One of these is the default cost model for the trans-

formation type, which is then initially set for that transformation type. The cost model

that is actually set, is used together with the transformed conceptual schema and the

set of behavior specifications (”on insert cascade”, etc.) to evaluate the contents and the

complexities of the select, insert, delete, and update operations, for the structures of the

conceptual schema.

From Figure 6.8 we recognize, that the current setting of the transformation type is

Relational, which is shown right of the button, and the current setting of the cost model

is Traditional Btree, which is indicated by the button labeled ”Btree”. For each cost

model the user has the ability to configure its ”Balancing Parameters”, which give the

evaluated cost term or cost term which is to be evaluated, the less or the more weight, such

that the behavior estimator of the raddstar (”Reviewer”, Figure 8.1) evaluates different

complexities for select, insert, delete, and update operations.

8.2 Specifying Additional Requirements

After the user has finished the graphical design, the schema that he designed can be

annotated with additional requirements. The additional requirements can be

• tuple numbers which are specified according the entity, relationship, and cluster

types of the conceptual schema (“classes”),

• behavior specification which are defined for the integrity constraints, and

• database functions which are annotated to the schema, or, to the classes– in a fashion

of class or member functions.

Ch. 8 Conceptual Database Design Optimizer 203

8.2.1 Tuple Numbers

The tuple numbers are used for the evaluation of the complexities of the transactions

which are generated for the conceptual schema. The select, insert, delete, and update

operations, and the operations which are possibly triggered by them have other complex-

ities depending on the tuple numbers of the database relations, e.g. if the tuple number is

higher then an insert operation is more expensive. Also, if an insert operation can trigger

another insert operation or requires that another insert operation is executed previously,

then the cost of the first insert operation includes (a part of) the cost of the second insert

operation.4

Assume the conceptual RADD (HERM) schema shown in Figure 3.16 has been loaded

in the raddstar. The data dictionary (”Company28.dd”) contains 28 entity, relationship,

and cluster types. Also, a tuple specification file (”Company28.tunums”) has been loaded

in the raddstar, that defines tuple numbers for 8 types of the graphical design. Then,

the tuple numbers can be adjusted and specified using the tuple number dialogue, which

can be invoked either by entering the enter tuple numbers command or by pressing the

”Tuple Numbers” button. The dialogue is shown in Figure 8.4.

Figure 8.4: Specifying the Tuple Numbers for the Classes of the Schema.

The tuple number dialogue shows how the database designer defines and fixes the tuple

numbers for some classes, for which no tuple numbers where defined in the tuple number

specification file, such that the system tries to infer them from the given tuple numbers

of connected structures and the cardinality constraints.
4For details of the cost model and the transaction evaluation refer to Chapter 5.

204 Part III Conceptual Database Design Optimizer

Representation by the data model. According the RADD* data model that we

defined in Section 6.3, the tuple numbers are internally represented by the ’TupleNum-

ber’ slots of the Structs (RADD/HERM entity and relationship types) and the Unions

(RADD/HERM cluster types).

8.2.2 Behavior Specifications

Figure 8.5 shows how behavior specifications are added to the integrity constraints of the

graphical design.

Figure 8.5: Specifying Behavior for the Graphical Schema.

The behavior specifications are used for the evaluation of the conceptual schema trans-

actions, and have also influence to the schema transformation processes. Presuppose,

the supervises class has a reference to the Project class, and the according cardinality

constraint is (1,1) (card(supervises, Project) = (m,n)). Furthermore, assume a trans-

formation rule says to group (collapse) all structures which are 1:1. Then, if a behavior

specification on-insert-cascade is given for the reference or for the cardinality constraint,

Project and supervises are not grouped by the transformation. On the internal schema

that is used to evaluate the transactions, the on-insert-cascade would otherwise not ap-

pear in form of a triggering action– since the two structures of the conceptual schema

were grouped to one internal structure. This would us not enable to present the trigger-

ing action for which he specified the on-insert-cascade to the database designer.

Representation by the data model. According the RADD* data model that we

defined in Section 6.3, the behavior specifications are internally represented by the ’be-

Ch. 8 Conceptual Database Design Optimizer 205

havior option/specification set’ slots of the references of Structs (RADD/HERM entity

and relationship types) and Unions (RADD/HERM cluster types).

8.2.3 Database Functions

Database functions are specified by means of the add class feature of the specification

language. An example is shown in Figure 6.8.

Whenever functions are added to the classes of the graphical design, then (1.) the iden-

tifiers are checked for their binding (in the add class example in Figure 6.8, this is

bound to (a member record of) the Employee class), (2.) the functional declaration is

type checked and compiled,5 and (3.) the function is added to the classes internal repre-

sentation.

Representation by the data model. According the RADD* data model that we

defined in Section 6.3, the database functions are internally represented by the ’applica-

tion modules’ slots of the Structs (RADD/HERM entity and relationship types) and the

Unions (RADD/HERM cluster types).

8.3 Schema Reviewing and Optimization

After the user has specified additional requirements– which is an optional feature, he needs

not to do that –the conceptual schema must be reviewed to gather criteria for schema

bottlenecks and optimization.

8.3.1 Schema Reviewing

According the adjusted tuple numbers, the behavior specifications, and the functions

that are added to the classes, the behavior estimator of the RADD/raddstar (Reviewer)

presents the cost matrix in Figure 8.6 to the user.

From the cost matrix, it is easy to recognize that the database user may be confronted

with unreliable response times when performing some operations. So, under certain cir-

cumstances

• the insert operation for the entity types Assistant, Department, DeptManager,

Employee, Product, ProjLeader, ProjWorker, Secretary, the relationship types

acquires, includes, works for, and works on, and the cluster type Cl19,

5The CSL functional specification language, its type inference and compilation, are described in the
second Section of Chapter 6.

206 Part III Conceptual Database Design Optimizer

Figure 8.6: Matrix presenting the Transactions of the Company Schema.

• the delete operation for Assistant, Customer, Department, DeptManager, Docu-

ment, Employee, Hardware, Installation, Maintenance, Product, ProjLeader,

ProjWorker, Project, Secretary, Software, V endor, acquires, includes, works -

for, works on, and Cl19, and

• the update operation for Assistant, Department, DeptManager, Employee, Proj-

Leader, ProjWorker, Secretary, works on, and works for

may be possible bottlenecks.

Discussion. Whether this operational behavior is really a bottleneck of the schema

depends upon the frequency and priority the mentioned operations are required. More

specific:

• if insertion is an often required operation for the entity types, then the insert oper-

ation creates a crucial bottleneck;

• if it is necessary to delete frequently records of the entity and relationship types,

then the delete operation has higher complexity;

• the update operation for the entity types Assistant, Department, DeptManager,

Employee, ProjLeader, ProjWorker, and Secretary, and for the relationship

types works for and works on could be considered as relatively complex.

Ch. 8 Conceptual Database Design Optimizer 207

Therefore, we can derive that

1. if we need frequently the above mentioned operations then we must recommend that

• the manages type is a subtype of works for identifying the special role of

department managers

• the types DeptManager, ProjLeader, and ProjWorker are marking special

roles of the Employee and seem to be dummy types

(therefore, we could reason whether these types could alternatively be repre-

sented as an attribute– representing that special role)

• the relationship types controls and leads are both associated 1:1 to the Project

entity type (this way, it were possible to group these types to one new rela-

tionship type);

2. if the entity occurence sets are not changed frequently then above discussed rela-

tionship types should be grouped in the case that their update operations get a very

high frequency and priority

3. the insert, delete, and update operations for works for and works on should be

considered as important in frequency and priority; a requirement that confirms this

high priority can be that updating an Employee to work on a new or another

Project is an action that is frequently executed by the database user interfaces;

therefore, we can ask for criteria identifying that this type should be used to create

a separate data file.

Specific restructuring suggestions and how the suggestions are specified by the database

designer are discussed below. Further rules for optimization can be developed in accor-

dance to tuning techniques of the chosen DBMS.

8.3.2 Bottleneck Specification and Schema Optimization

In figure 8.4, we showed how the user maintains the tuple numbers. We also showed in

Figure 8.5, how he can graphically introduce the behavior specifications. We discuss now

how he specifies further properties of the data profile of the conceptual schema. These

additional capabilities of conceptual database specification using RADD/raddstar consist

of

• specifying integrity maintaining rules,

• informally specifying which operations are frequently required and have high prior-

ity, and which are not frequently required and have no high priority, and

• defining primary storage organizations and indices for reasons of faster query pro-

cessing.

208 Part III Conceptual Database Design Optimizer

8.3.2.1 Integrity Maintaining Rules

The subtransaction sequence of the insertworks on operation in Figure 7.4 contains no

operations which retrieve and modify the Employee set, although insert into the works on

set normally either requires a previous insert of the associated Employee, or else triggers

an insert into the Employee set. This is not the case because the works on structure has

been grouped into the Employee structure– by the transformation to the internal schema.

But maybe, the user wants to see how the transaction insertworks on works. For example,

it is possible that he specifies

for Ref works_on->Employee: on insert cascade;

or

for Ref works_on->Employee: on update child cascade;

such that the according grouping is not done, since, for reason of the user’s cascade rule,

the RADD/raddstar derives that the user wants to see the content of the transaction.

This way, the user has influence to the transformation process, but he has also the op-

portunity to explicitely advise the system to do or to omit transformations, e.g.:

CSL> add objectrelational transformation rule:

do not group (Employee,works_on);

Adding new objectrelational transformation rule as "o3".

Given such a rule, the raddstar does not group (Employee,works on) when deriving the

internal schema. On the other hand, if at a later date, the user wants to drop a behavior

rule (or transformation rule) again, he can use the ‘drop’ ‘rule’ command, e.g.

drop rule (for Ref works_on->Employee: on insert cascade);

and

drop rule "o3";

8.3.2.2 Operation Frequencies and Priorities

The user can informally specify that operations are frequently required, and that they

have high priority:

CSL> operation (update,Employee) is of_high_priority;

property added.

CSL> operation (update,Employee) is frequently_required;

property added.

CSL> operation (delete,Project) is not frequently_required;

property added.

Ch. 8 Conceptual Database Design Optimizer 209

If an operation is frequently required or has high priority, then the threshold where it is

assumed to be a bottleneck is lower. E.g., an insert operation with cost 9.8 is considered

a bottleneck and an operation with cost 9.3 is considered not to be a bottleneck. But an

insert operation with cost 8.0 which is ”frequently required” is considered a bottleneck as

is an operation with cost 6.6 which is ”frequently required” and ”of high priority”.

8.3.3 Optimized Schema

Figure 8.7 shows what the optimized conceptual schema that is evaluated by the RADD/-

raddstar system, looks like. The items of the data profile (tuple numbers, integrity main-

taining rules, operation properties, transformation rule, optimization rule) that we men-

tioned in the Section had influence in the optimization of the schema.

The schema is now reviewed again. The applications used for the reviewing and optimiza-

tion, and the cost matrix for the “optimized” schema are shown in Figure 8.9, at the end

of the Section.

8.3.3.1 Adding Physical Data Access Methods

As we see from the cost matrix in the lower right corner in Figure 8.9 some opera-

tions are now more expensive or not much less expensive. E.g., the deleteEmployee or the

insertworks on operation. This can be reasoned by the new schema which has a lower num-

ber of structures, such that a particular structure may now have more attributes, and by

the fact that works on is now no longer a part of the Employee set of the internal schema.

But, in the RADD/raddstar the user can assign storage options to the structures of the

conceptual schema which make query processing and the associated update operations

(insert, delete, update) quicker.

Assume, most times the Company has relatively less personel according the allocated

projects. Then, for a newly started project it may be necessary to get personel from other

projects, that are still available according the hours they are scheduled on projects. This

way, it may be wishful to attach special storage organizations to the structures (primary-

key based organizations) and to attribute combinations (secondary indices), which are

frequently required, e.g. in join operations. The following dialogue shows how the user

‘modifies’ the storage organizations.6

CSL> modify class Employee{Salary} to Btree;

==>> adding secondary index of type "Btree" to Employee{Salary}.

6Normally, a structure can have only one clustering index, such as ”Btree” (traditional, sparse and
clustering Btrees). But remember that the user has chosen the ”DBtree” model (dense non-clustering
Btrees) as his prefered primary storage organization.

210 Part III Conceptual Database Design Optimizer

Employee

Project

employs

Software

Hardware

acquires

Ssn

(1,1)

Name

Department

(1,1)

supervisee

supervises

Contract

(1,1)

Product

Installation

Date
Description

Date_from
DocumentID

Price
distributes

Documentname

Name

Name

(0,1)

(1,.)

includes
prefers

Customer

Vendor

{Participants}

Place

Date

Name

Location

Duration

Pnumber

Description

mandatory/
optional

Documentstyle

ProductNumber

Name

{Locations}

Dnumber

[Firstnames]

Lastname

Title

Salary

Sex

Address

{Meetings}

Name

Address

VendorName

(1,1)

Birthdate

supervisor

ContractNumber

Duration

StartDate

Location

Price

Date_to

(0,1)

(0,1)

(1,.)

ProjStartDate

Assistant

Employee_Role

Document

Maintenance/

Secretary

works_on

Hours

StartDate

manages

(1,1)

(1,.)

(1,1)

controls

DeptManager
(0,1)

(1,3)

(1,.)

(1,1)

supervises

Figure 8.7: Optimized Company Schema.

Ch. 8 Conceptual Database Design Optimizer 211

CSL> EHash;

it : storage_organization = EHash;

CSL> modify class works_on{Employee} to it;

==>> adding secondary index of type "EHash" to works_on{Employee}.

CSL> modify class works_on{hours} to Isam;

==>> adding secondary index of type "Isam" to works_on{hours}.

CSL> modify class works_on{Project} to Btree;

==>> adding secondary index of type "Btree" to works_on{Project}.

The impacts of these attachments of storage organizations are as follows

1. the command which adds a (clustering) Btree index to Employee{Salary} allows
that range queries on the Salary are executed fast; that is, if a query like

select e.* from Employee e where Salary < 60000

is an often required query, then this index is appropriate to make the query run fast.

2. the command which adds an EHash index to works_on{Employee} allows that point
queries on the Employee-Project association are quickly executed. This is necessary
if queries like the following have higher priority

select p.Name,e.*,w.Hours from Project p,works_on w,Employee e

where p.ProjNumber = w.Project and w.Employee = e.Ssn

order by p.Name,e.Name.Lastname

3. the command which adds an Isam index to works_on{hours} is appropriate if the
total time which the Employees work on a particular Project is often computed

select p.ProjNumber,p.Name,sum(w.Hours) from Project p,works_on w

where p.ProjNumber = w.Project

group by p.ProjNumber,p.Name

4. the command which adds a (clustering) Btree index to works_on{Project} provides
that the number of Employees which are working on a Project can be computed
efficiently

select p.ProjNumber,p.Name,count(e.*) from Project p,works_on w,Employee e

where p.ProjNumber = w.Project and w.Employee = e.Ssn

group by p.ProjNumber,p.Name

The modify statements described here are only a few examples for optimizing (query)

processing on the Company Schema. The new cost evaluation which is shown below has

been generated adding some more secondary indices, and modifying the primary indices

such that the storage allocation (on inserts) and the storage reorganization (on inserts

and updates) work faster. For more examples and a detailed discussion how to use indices

and primary storage organizations, the reader may refer to [Wie87], [KS91], and [Sha92].

212 Part III Conceptual Database Design Optimizer

Figure 8.8: Transaction Costs of the Optimized Schema, after Adding the Indices.

As mentioned in Section 6.3, the storage options are annotated to the structures, and are

considered in the cost evaluation of the associated operations.

The cost matrix in Figure 8.8 shows how some costs are decreasing considering the in-

dices and primary storage organizations, which have been specified for the the optimized

schema. Further, the user can experiment to improve the performance by using differ-

ent balancing parameters, block size, bucket size, fanout, etc. Their relative size can be

configured using the RADD/raddstar GUI and the RADD/raddstar Listener GUI.

Exporting the optimized schema. Finally, the optimized schema can be exported to

a Data Dictionary for the RADD schema editor, and the internal schema can be exported

to SQL create table und index commands.

Figure 8.9: Matrix presenting the Transactions of the Optimized Company Schema.

214 Part III Conceptual Database Design Optimizer

Chapter 9

Conclusions

The tool presented here supports database design according to practical design issues,

which include the performance of batch transactions and the reponse time of user-interface

actions. Practical issues are also the consistent behavior of the database applications, and

performance is not only reaction time of selects, inserts, deletes and updates, or, reaction

time of database access in certain user menus, but also, that data can be quickly retrieved,

generated, modified, or deleted.

The latter aspects create requirements of the user-interfaces’ easy-usability, where

it is often desired to introduce related data by a single menu action, but not on basis

of many hierachical dependent menu paths which must be traversed by the user. This

can require to omit normalization or to denormalize database schemata, such that simpler

menu paths can be provided. This, in turn, can cause problems of inconsistent or blocking

transactions.

The RADD workbench and the RADD/raddstar system consider these criteria of (in-

ternal) database design, and are supporting the design of correct and application-reliable

conceptual schemata. This way, database restructuring or redesigning requirements once

performance and/or consistency problems are detected, can be farreaching avoided.

Storing the History of the Database Design and Transformation Process. A

feature which is often omitted in other database design approaches, that has been realized

in the RADD/raddstar, is to preserve, store, maintain, and reuse historical aspects during

the database design and transformation process. Additional requirements can be specified

after the graphical database design, by means of the CSL language and the graphical

user interface of the RADD/raddstar. After these actions, RADD/raddstar evaluates the

conceptual schema on the basis of a rule-driven mechanism to support

• Schema Transformation,

• Operational Cost Evaluation, and

• Bottleneck Detection and Visualization.

216

The results of the RADD/raddstar’s evaluation can then be used to optimize the concep-

tual schema– with the help of the database designer who can agree or deny the system-

detected bottlenecks.

RADD/raddstar is implemented on top of the Standard ML of New-Jersey functional

programming system (SML/NJ 0.93). Although it provides with CSL a specification

language that has a declarative flavor, its compilation and evaluation kernel is a pure

functional machine which is based on the λ-calculus.

The RADD/raddstar system can read specifications for graphical database designs–

more specific, the data dictionaries of the Cottbus University toolbox for Rapid Ap-

plication and Database Development (RADD). The system is able to export internally

evaluated, optimized conceptual data schemata in the RADD language. The RADD*

data model presented in Chapter 6 states a superset of different database views, i.e. con-

ceptual schemata (of ER models, object models, ORM, etc.) and hierarchical, network,

relational, object-relational, and object-oriented databases. The behavior specification

interface (CSL) permits the user to introduce behavior rules for the conceptual schema,

which are later used in the database schema definition. Terms like ”on insert set default”

or ”on delete cascade” are examples for such behavior rules.

Acknowledgements. I primarily want to thank Prof. Thalheim of Cottbus Technical

University who supported this work. I also like to thank the colleagues and a former

colleague of IABG, who carefully read the thesis and helped to improve it.

Appendix

Appendix A

Implementation of a Type-Checking

Mini ML Compiler

This Chapter presents the code of the Standard ML like functional language that we have

discussed in Chapter 6.2.2. The code of this Chapter also represents the basic evaluation

and compilation kernel of the RADD/raddstar.

A.1 Basic Types of the Mini ML Compiler

(*
* RSsml.sml
*
* Raddstar Structured Meta Language
* Expression Compiler -- Basic Structures and their Constructors/Destructors
*
* Copyright Martin Steeg, 1996 - 1999
*)

signature RSSML =
sig

exception SUnbound of string
exception TypingBug of string

val in_l : ’’a * ’’a list -> bool
val posl : ’’a list * ’’a -> int
val subl : ’’a list -> ’’a list -> ’’a list
val make_ulist : ’’a list -> ’’a list

val is_rssml_op : string -> bool
val prio_rssml_op : string -> int

type ident

exception UNcaught of ident

val IT : ident
val FIX : ident

val make_ident : string -> ident
val stringof_ident : ident -> string

val psln : unit -> unit
val psln2 : unit -> unit
val say : string -> unit

type vartype

218 Appendix

type varenv_t

datatype stmt = FUNDEF of ident * (value * value) list
| VALDEF of ident * value
| NULLSTMT
| QUIT

and value = VB of bool
| VI of int
| VS of string
| VPARMS of value list
| VVAR of varenv_t ref * int
| VAPP of value * value
| VBRANCH of value * value * value
| VFUN of (value -> value) * vtype
| VFNDEF of (value * value) list
| VID of ident
| VALLIST of value list
| VOP of string
| VNULL

and vtype = bool_t
| int_t
| string_t
| parms_t of vtype list
| fun_t of vtype * vtype
| typevar of vartype
| noninit_t

and vtypesc = Forall of vtype list * vartype

val varsoftype : vtype -> vartype list
val is_fully_initialized_type : vtypesc list * vtype -> bool
val unknownsoftype : vtypesc list * vtype -> vartype list
val unknownsofenv : vtypesc list -> vartype list

val make_typesc : varenv_t -> vtypesc list
val reset_vartypes : unit -> unit
val get_current_env : unit -> vtypesc list
val set_current_env : vtypesc list -> unit
val make_new_typevar : vtype ref list ref * vtypesc list ref -> vtype
val make_typevar : unit -> vtype

val is_initialized_type : vtype -> bool

val stringof_value : value -> string

val descrtype : vtype -> string
val get_vartype : vartype -> vtype
val set_vartype : vartype -> vtype -> unit
val findtypeenv : vtype -> vtype
val dispatch : varenv_t ref * string -> value
val vtypeofv : value -> vtype
val typeofvar : varenv_t ref * int -> vtype
val vtcomp : vtype * vtype -> bool
val occursintype : vartype -> vtype -> bool

val make_venv : (string * value) list -> varenv_t
val make_vvar : varenv_t ref * string -> value
val vnormalize : varenv_t ref -> value -> value
val vnormalizel : varenv_t ref -> value -> value

val local_venv : varenv_t ref

end

structure RSsml : RSSML =
struct

exception SUnbound of string
exception TypingBug of string

fun in_l (e,[]) = false
| in_l (e,a::l) = if e=a then true else in_l(e,l)

infix 9 in_l

fun posl (l,e) = posl’(0,l,e)
and posl’ (_,[],_) = ~1

Ch. A Implementation of a Type-Checking Mini ML Compiler 219

| posl’ (n,a::l,e) = if a = e then n else posl’(n+1,l,e)

fun sube [] a = []
| sube (b::bs) a = if a = b then bs else b::(sube bs a)

and subl l [] = l
| subl l (b::bs) = subl (sube l b) bs

fun make_ulist [] = []
| make_ulist (a::l) =

if a in_l l then make_ulist l else a::make_ulist l

(* search a value in a field of a list *)
fun findlist value f g def [] = def

| findlist value f g def (b::bs) =
if value = (f b) then g b else findlist value f g def bs

(* select the values of the list satisfying condition described by f *)
fun filterlist [] _ = []

| filterlist (a::l) f =
if f a then a::filterlist l f else filterlist l f

val rssml_op_tab =
ref [("+",6), ("-",6), ("*",7), ("/",7),

("=",5), ("<",5), ("<=",5), (">",5), (">=",5), ("<>",5),
(":=",3)]

fun is_rssml_op s = s in_l (map (fn (a,_) => a) (!rssml_op_tab))

fun prio_rssml_op s =
if is_rssml_op s
then findlist s (fn (a,_) => a) (fn (_,b) => b) ~1 (!rssml_op_tab)
else raise(TypingBug(s^" is no infix operator"))

fun make_rssml_op (s,p) =
rssml_op_tab := (filterlist (!rssml_op_tab) (fn (a,_) => a<>s)) @ [(s,p)]

datatype ident = IDENT of int

exception UNcaught of ident

val init_ident_env =
["it",

"not",
"if", "then", "else", "fi",
"true", "false",
"fun", "val", "fn",
"fix"

]

val IT = IDENT 0
val FIX = IDENT((length init_ident_env)-1)

type ident_entry = {b: bool ref, i: string}

type ident_entry_list = ident_entry list

val gident_env = map (fn id => {b=ref true,i=id}) init_ident_env

val lident_env = ref gident_env

fun position_ienv s =
let val ret = ref ~1

val pos = ref 0
val e = ref (!lident_env)

in
while !ret = ~1 andalso (!e) <> [] do
case hd(!e) of

{b=ref true,i=id} =>
if s=id then ret := !pos else (e := tl(!e); pos := !pos+1)

| _ => (e := tl(!e); pos := !pos+1);
if !ret = ~1
then raise(SUnbound s)
else !ret

end

fun append_ienv s =
case (findlist s (fn {b=_,i=id} => id) (fn {b=b,i=_} => (b,true)) (ref false,false) (!lident_env)) of

220 Appendix

(ref true,_) => ()
| (b,true) => b := true
| _ => lident_env := (!lident_env) @ [{b=ref true,i=s}]

fun stringof_ienv env n =
(case nth(!env,n) of

{b=ref true,i=id} => id
| _ => raise(SUnbound ("*** No valid id on position "^(makestring n)^" of ident_env ***")))

handle Nth =>
raise(SUnbound ("*** No id on position "^(makestring n)^" of ident_env ***"))

fun make_ident id = (append_ienv id; IDENT(position_ienv id))

fun stringof_ident (IDENT i) = stringof_ienv lident_env i

(* some definitions for the Scanner and Parser *)
val psln = fn() => output(std_out,"RSsml> ")
val psln2 = fn() => output(std_out,"> ")
val say = fn s => output(std_out,s)

datatype stmt = FUNDEF of ident * (value * value) list
| VALDEF of ident * value
| NULLSTMT
| QUIT

and value = VB of bool
| VI of int
| VS of string
| VPARMS of value list
| VVAR of (string * (value ref * vtype ref)) list ref * int
| VAPP of value * value
| VBRANCH of value * value * value
| VFUN of (value -> value) * vtype
| VFNDEF of (value * value) list
| VID of ident
| VALLIST of value list
| VOP of string
| VNULL

and vtype = bool_t
| int_t
| string_t
| parms_t of vtype list
| fun_t of vtype * vtype
| typevar of vtype ref list ref * int
| noninit_t

and vtypesc = Forall of vtype list * (vtype ref list ref * int)

type vartype = vtype ref list ref * int

(* val varsoftype : vtype -> vartype list *)
fun varsoftype typ =

let fun vars vs (parms_t l) =
fold (fn (a,b) => b@a) (map (vars []) l) vs

| vars vs (fun_t(t1,t2)) = vs@(vars [] t1)@(vars [] t2)
| vars vs (tv as typevar(e,p)) = vs@[(e,p)]@(vars [] (!(nth(!e,p))))
| vars vs _ = vs

in
make_ulist(vars [] typ)

end

(* val is_fully_initialized_type : vtypesc list * vtype -> bool *)
fun is_fully_initialized_type (_,noninit_t) = false

| is_fully_initialized_type (sce,parms_t l) =
let val ret = ref true in
app (fn t => ret := ((!ret) andalso is_fully_initialized_type (sce,t))) l;
!ret

end
| is_fully_initialized_type (sce,fun_t(t1,t2)) =

is_fully_initialized_type (sce,t1) andalso is_fully_initialized_type (sce,t2)
| is_fully_initialized_type (sce,typevar(e,p)) =

let fun isfivt [] = false
| isfivt (Forall(rl,t)::l) =

if t=(e,p) then
case rl of a::_ => is_fully_initialized_type(sce,a) | _ => false

else isfivt l
in
isfivt sce

Ch. A Implementation of a Type-Checking Mini ML Compiler 221

end
| is_fully_initialized_type _ = true

(* val unknownsoftype : vtypesc list * vtype -> vartype list *)
fun unknownsoftype (sce,typ) =

fold (fn (vt,l) => if is_fully_initialized_type(sce,typevar vt) then l else vt::l) (varsoftype typ) []

(* val unknownsofenv : vtypesc list -> vartype list *)
and unknownsofenv sce =

make_ulist(fold (fn (Forall(_,vt),e) => (unknownsoftype(sce,typevar vt))@e) sce [])

(* varenv_t defines the type of the local var env *)

type varenv_t = (string * (value ref * vtype ref)) list

(*
* The local var env
* that will be initialized at the end
*)

val local_venv = ref([] : varenv_t)

local

(* (!type_env) holds the vartypes of the current expression *)
val type_env = ref(ref([] : vtype ref list))
(* (!typing_env) associates the vartypes with their bindings *)
val typing_env = ref([] : vtypesc list)

in

val make_typesc =
fn venv =>
fold (fn (a,b) => (map (fn (e,p) => Forall([],(e,p))) a)@b)
(map (fn (_,(_,t)) => varsoftype(!t)) venv) []

val reset_vartypes = fn () =>
(type_env := ref[];
typing_env := make_typesc(!local_venv))

val get_current_env = fn () => !typing_env
val set_current_env = fn sc => typing_env := sc

val make_new_typevar =
fn (typenv,env) =>

(typenv := (!typenv)@[(ref noninit_t)];
let val (e,p) = (typenv,length(!typenv)-1) in
env := (!env)@[(Forall([],(e,p)))];
typevar(e,p)

end)

val make_typevar = fn () => make_new_typevar(!type_env,typing_env)

end (* local *)

fun is_initialized_type noninit_t = false
| is_initialized_type (typevar _) = false
| is_initialized_type _ = true

fun stringof_value v = stringof_value’ v
and stringof_value’ (VB true) = "true"

| stringof_value’ (VB false) = "false"
| stringof_value’ (VI i) = makestring i
| stringof_value’ (VS s) = "\""^s^"\""
| stringof_value’ (VPARMS l) =

let val r = ref"" in
app (fn v => r := (!r)^(if !r = "" then "" else ",")^(stringof_value v)) l;
"("^(!r)^")"

end
| stringof_value’ (VVAR(e,p)) = (case nth(!e,p) of (n,_) => "Var(\""^n^"\")")
| stringof_value’ (VAPP(v1,v2)) = "("^(stringof_value v1)^")"^(stringof_value v2)
| stringof_value’ (VBRANCH(p,v1,v2)) = "if "^(stringof_value p)^" then "^(stringof_value v1)^

" else "^(stringof_value v2)^" fi"
| stringof_value’ (VFUN _) = "<function>"
| stringof_value’ (VFNDEF l) = "fn "^(let val r = ref "" in

222 Appendix

app (
fn (e,v) =>
r := (!r)^(if !r = "" then ""

else "|")^
(stringof_value e)^"=>"^(stringof_value v)

) l; !r end)
| stringof_value’ (VID i) = stringof_ident i
| stringof_value’ (VALLIST l) = "("^(let val r = ref "" in

app (
fn e => r := (!r)^(if !r = "" then ""

else ",")^(stringof_value e)
) l; !r end)^")"

| stringof_value’ (VOP s) = s
| stringof_value’ _ = "<null>"

fun descrtype bool_t = "bool"
| descrtype int_t = "int"
| descrtype string_t = "string"
| descrtype (parms_t(t::[])) = descrtype t
| descrtype (parms_t l) =

let val r = ref"" in
app (fn t => r := (!r)^(if !r = "" then "" else ",")^(descrtype t)) l;
"("^(!r)^")"

end
| descrtype (fun_t(t1,t2)) =

(case t1 of
fun_t _ => "("^(descrtype t1)^")"

| _ => (descrtype t1))^" -> "^(descrtype t2)
| descrtype (typevar(e,p)) =

(case findtypeenv(typevar(e,p)) of
typevar(e,p) =>

(case !(nth(!e,p)) of
noninit_t =>
let val pos = ref 0 val pr = ref 0 in
app (
fn t =>
(if !pr < p then

case !t of
noninit_t =>
(case findtypeenv(typevar(e,p)) of

typevar(e’,p’) =>
if nth(!e’,p’) = nth(!e,p) then inc pos else()

| _ =>
())

| _ => ()
else();
inc pr)

) (!e);
"’"^(chr(ord"a"+(!pos)))

end
| t’ =>

descrtype t’)
| t’ =>

descrtype t’)
| descrtype _ = "<bogus>"

and get_vartype (e,p) =
findtypeenv (typevar(e,p))

handle _ => typevar(e,p)

and set_vartype (e,p) typ =
if is_initialized_type typ then
settypeenv (e,p) typ

else if not(is_initialized_type(!(nth(!e,p)))) then
case typ of

typevar(e’,p’) =>
(* We need to equalize the var types and all references to the same *)
if nth(!e,p) <> nth(!e’,p’) orelse (e,p) <> (e’,p’) then
settypeenv (e,p) typ

else
()

| _ =>
()

else
()

and subtracttype (parms_t l) typ = app (fn t => subtracttype t typ) l

Ch. A Implementation of a Type-Checking Mini ML Compiler 223

| subtracttype (fun_t(t1,t2)) typ = (subtracttype t1 typ; subtracttype t2 typ)
| subtracttype (tv as typevar(e,p)) typ = subtypeenv (e,p) typ
| subtracttype t’ _ = ()

and subtypeenv tv typ =
let fun subtypeinenv [] = []

| subtypeinenv (Forall(sce,vt)::l) =
if vt = tv then Forall(sube sce typ,vt)::l else Forall(sce,vt)::subtypeinenv l

in
set_current_env(subtypeinenv(get_current_env()))

end
and findtypeenv typ =

let fun findtypeinenv [] =
raise TypingBug("type not found in env")

| findtypeinenv (Forall(rl,vt)::l) =
if typevar vt = typ orelse
(* if two type vars specifiy the same reference,

they are the same *)
(case vt of (e’,p’) =>

case typ of typevar(e,p) => nth(!e’,p’) = nth(!e,p))
then
case rl of

a::_ => a
| _ => typevar vt

else findtypeinenv l
in
case typ of

parms_t l => parms_t(map findtypeenv l)
| fun_t(t1,t2) => fun_t(findtypeenv t1,findtypeenv t2)
| typevar _ =>

(findtypeinenv(get_current_env()) handle _ => typ)
| t’ => t’

end
and settypeenv tv typ =

let fun settypeinenv [] =
raise TypingBug"internal error: type not found in env!"

| settypeinenv (Forall(rl,vt)::l) =
if vt = tv then
case rl of

[] => Forall(typ::[],vt)::l
| a::_ =>

if vtcomp(a,typ) then Forall(typ::rl,vt)::l else
raise TypingBug("between "^(descrtype a)^" and "^(descrtype typ))

else
Forall(rl,vt)::settypeinenv l

in
set_current_env(settypeinenv(get_current_env()))

end

and dispatch (venv,s) =
let val ids = map (fn(id,_) => id) (!venv) in
if s in_l ids then
let val ret = ref VNULL

val fnd = ref false
in
app (
fn (i,(v,_)) =>
if not(!fnd) then
if i=s then (fnd := true; ret := !v) else()

else()
) (rev(!venv));
!ret

end
else raise(SUnbound s)

end

and vtypeofv (VB _) = bool_t
| vtypeofv (VI _) = int_t
| vtypeofv (VS _) = string_t
| vtypeofv (VPARMS (v::[])) = vtypeofv v
| vtypeofv (VPARMS l) = parms_t(map vtypeofv l)
| vtypeofv (VVAR(e,p)) = typeofvar(e,p)
| vtypeofv (VAPP(v1,v2)) =

let val t1 = vtypeofv v1 and t2 = vtypeofv v2 in
case t1 of

fun_t(t11,t12) => if vtcomp(t11,t2) then t12 else
raise TypingBug("the types "^(descrtype t11)^" -> "^

(descrtype t12)^" and "^(descrtype t2)^" are not compatible")

224 Appendix

| typevar(e,p) =>
(case !(nth(!e,p)) of

noninit_t => fun_t(t1,t2)
| t’ => fun_t(t’,t2))

| noninit_t => fun_t(t1,t2)
| _ => raise TypingBug("the types "^(descrtype t1)^" and "^(descrtype t2)^" are not compatible")

end
| vtypeofv (VBRANCH(_,v1,_)) =

vtypeofv v1
| vtypeofv (VFUN(_,t)) = t
| vtypeofv _ = noninit_t

and typeofvar (e,p) =
(case nth(!e,p) of

(_,(_,t)) =>
case !t of

typevar(e,p) =>
(case !(nth(!e,p)) of

noninit_t => typevar(e,p)
| t’ => t’)

| t’ => t’)
and vtcomp(noninit_t,_) = true

| vtcomp(_,noninit_t) = true
| vtcomp(typevar(e1,p1),t2) =

vtcomp(case findtypeenv(typevar(e1,p1)) of
tv1’ as typevar(e1’,p1’) =>
if nth(!e1,p1) = nth(!e1’,p1’) then noninit_t else tv1’

| t1’ => t1’,
t2)

| vtcomp(t1,typevar(e2,p2)) =
vtcomp(t1,

case findtypeenv(typevar(e2,p2)) of
tv2’ as typevar(e2’,p2’) =>
if nth(!e2,p2) = nth(!e2’,p2’) then noninit_t else tv2’

| t2’ => t2’)
| vtcomp (parms_t l1,parms_t l2) =

if (length l1) = (length l2) then
let val ret = ref true and lr = ref l1 and rr = ref l2 in
while !ret andalso (case !lr of [] => false | _ => true) do
if ((vtcomp(hd(!lr),hd(!rr))) handle _ => false)
then (lr := tl(!lr); rr := tl(!rr)) else ret := false;

!ret
end

else
false

| vtcomp (fun_t(fun_t(t1,t2),t3),t4) =
((vtcomp(t1,t3)) handle _ => false) andalso

((vtcomp(t2,t4)) handle _ => false)
| vtcomp (t1,fun_t(fun_t(t2,t3),t4)) =

((vtcomp(t2,t4)) handle _ => false) andalso
((vtcomp(t1,t3)) handle _ => false)

| vtcomp (fun_t(t1,t2),fun_t(t3,t4)) =
((vtcomp(t1,t3)) handle _ => false) andalso

((vtcomp(t2,t4)) handle _ => false)
| vtcomp (t1 as fun_t _,t2) =

(case t1 of
fun_t(t11,t12) =>
(case t2 of

fun_t(t21,t22) => vtcomp(t11,t21) andalso vtcomp(t12,t22)
| _ => vtcomp(t11,t2))

| _ => t1 = t2)
| vtcomp (t1,t2 as fun_t _) =

(case t2 of
fun_t(t21,t22) =>
(case t1 of

fun_t(t11,t12) => vtcomp(t21,t11) andalso vtcomp(t22,t12)
| _ => vtcomp(t21,t1))

| _ => t1 = t2)
| vtcomp(t1,t2) = t1 = t2

and occursintype (e,p) (parms_t(a::[])) =
occursintype (e,p) a

| occursintype (e,p) (parms_t(a::l)) =
occursintype (e,p) a orelse occursintype (e,p) (parms_t l)

| occursintype (e,p) (fun_t(t1,t2)) =
occursintype (e,p) t1 orelse occursintype (e,p) t2

| occursintype (e1,p1) (typevar(e2,p2)) =
nth(!e1,p1) = nth(!e2,p2) orelse

Ch. A Implementation of a Type-Checking Mini ML Compiler 225

(case findtypeenv(!(nth(!e2,p2))) of
typevar(e2’,p2’) =>
if nth(!e2’,p2’) <> nth(!e2,p2)
then occursintype (e1,p1) (typevar(e2’,p2’)) else false

| t’ => occursintype (e1,p1) t’)
| occursintype t1 t2 =

false

(*
* The operators for the local var env,
* that will be defined at the end
*)

val make_venv = fn env => map (fn (a,b) => (a,(ref b,ref(vtypeofv b)))) env

val make_vvar = fn (env,id) =>
(env := (!env)@make_venv[(id,VNULL)];
case nth(!env,length(!env)-1) of

(_,(_,rt)) => rt := make_typevar();
VVAR(env,length(!env)-1))

(*
* The value normalization functions
*)

fun vnormalize venv (VPARMS(v::[])) = vnormalize venv v
| vnormalize venv (VPARMS l) =

let val r = ref[] in app (fn v => r := (!r)@[(vnormalize venv v)]) l; VPARMS(!r) end
| vnormalize venv (VAPP(v1,v2)) = VAPP(vnormalize venv v1,vnormalize venv v2)
| vnormalize venv (VFNDEF matchlist) =

VFNDEF(map (fn (a,b) => (vnormalizel venv a,vnormalize venv b)) matchlist)
| vnormalize venv (VID i) =

let val id = stringof_ident i
val p = ref(length(!venv)-1)
val pos = ref ~1
val f = ref VNULL

in
app (
fn (a,(b,_)) =>
if !pos = ~1 andalso a = id then
(pos := !p;
f := !b;
case !f of

VNULL (* left-hand-side variable *) => f := VVAR(venv,!pos)
| _ (* !b was a proper value *) => ())

else dec p
) (rev(!venv));
case !f of

VNULL => raise SUnbound id
| _ => !f

end
| vnormalize venv (VALLIST l) =

vnormalizelist venv (map (vnormalize venv) l)
| vnormalize _ v = v

and vnormalizel venv (VPARMS(v::[])) = vnormalizel venv v
| vnormalizel venv (VPARMS l) =

let val r = ref[] in app (fn v => r := (!r)@[(vnormalizel venv v)]) l; VPARMS(!r) end
| vnormalizel venv (VAPP(v1,v2)) =

raise TypingBug"application on left-hand-side"
| vnormalizel venv (VFNDEF matchlist) =

raise TypingBug"function definition on left-hand-side"
| vnormalizel venv (VID i) =

make_vvar(venv,stringof_ident i)
| vnormalizel venv (VALLIST l) =

raise TypingBug"infix expression on left-hand-side"
| vnormalizel venv v = v

and vnormalizelist venv (v::[]) = vnormalize venv v
| vnormalizelist venv (v1::op1::v2::[]) =

(case vnormalize venv op1 of
VOP s1 =>
if is_rssml_op s1 then
let val o1’ = dispatch(venv,s1)

val v1’ = vnormalize venv v1
val v2’ = vnormalize venv v2

in
vnormalize venv (VAPP(o1’,VPARMS[v1’,v2’]))

226 Appendix

end
else
vnormalize venv (VPARMS(v1::op1::v2::[]))

| op1’ =>
vnormalize venv (VPARMS(v1::op1’::v2::[])))

| vnormalizelist venv (v1::op1::v2::op2::v3::l) =
(case vnormalize venv op1 of

VOP s1 =>
(case vnormalize venv op2 of

VOP s2 =>
if is_rssml_op s1 andalso is_rssml_op s2 then
if prio_rssml_op s1 >= prio_rssml_op s2 then
let val o1’ = dispatch(venv,s1)

val v1’ = vnormalize venv v1
val v2’ = vnormalize venv v2
val op1ap = vnormalize venv (VAPP(o1’,VPARMS[v1’,v2’]))

in
vnormalizelist venv (op1ap::op2::v3::l)

end
else
vnormalizelist venv (v1::op1::vnormalizelist venv (v2::op2::v3::l)::[])

else
vnormalize venv (VPARMS(v1::op1::v2::op2::v3::l))

| _ =>
vnormalize venv (VPARMS((v1::op1::v2::op2::v3::l))))

| _ =>
vnormalize venv (VPARMS((v1::op1::v2::op2::v3::l))))

fun veq (v1,v2) =
let val (v1’,v2’) = (vnormalize local_venv v1,vnormalize local_venv v2)

val (t1,t2) = (vtypeofv v1,vtypeofv v2) in
if vtcomp(t1,t2) then veq’(v1,v2) else
raise TypingBug((descrtype t1)^" compared with "^(descrtype t2))

end
and veq’ (VB b1,VB b2) = b1 = b2

| veq’ (VI i1,VI i2) = i1 = i2
| veq’ (VS s1,VS s2) = s1 = s2
| veq’ (VPARMS l1,VPARMS l2) =

length l1 = length l2 andalso
let val ret = ref true

val l1r = ref l1
in
app (
fn l2e =>
(if !ret then

if not(veq(hd(!l1r),l2e)) then ret := false else()
else();
l1r := tl(!l1r))

) l2;
!ret

end
| veq’ _ = raise SUnbound"operator \"=\" not implemented for these types"

and vlt (v1,v2) =
let val (v1’,v2’) = (vnormalize local_venv v1,vnormalize local_venv v2)

val (t1,t2) = (vtypeofv v1’,vtypeofv v2’)
in
if vtcomp(t1,t2) then vlt’(v1’,v2’) else
raise TypingBug((descrtype t1)^" compared with "^(descrtype t2))

end
and vlt’ (VB b1,VB b2) = not b1 andalso b2

| vlt’ (VI i1,VI i2) = i1 < i2
| vlt’ (VS s1,VS s2) = s1 < s2
| vlt’ (VPARMS l1,VPARMS l2) =

length l1 = length l2 andalso
let val ret = ref true

val l1r = ref l1
in
app (
fn l2e =>
(if !ret then

if not(vlt(hd(!l1r),l2e)) then ret := false else()
else();
l1r := tl(!l1r))

) l2;
!ret

end
| vlt’ _ = raise SUnbound"operator \"<\" not implemented for these types"

Ch. A Implementation of a Type-Checking Mini ML Compiler 227

and vle (v1,v2) =
let val (v1’,v2’) = (vnormalize local_venv v1,vnormalize local_venv v2)

val (t1,t2) = (vtypeofv v1’,vtypeofv v2’)
in
if vtcomp(t1,t2) then vle’(v1’,v2’) else
raise TypingBug((descrtype t1)^" compared with "^(descrtype t2))

end
and vle’ (VB b1,VB b2) = not b1 orelse b2

| vle’ (VI i1,VI i2) = i1 <= i2
| vle’ (VS s1,VS s2) = s1 <= s2
| vle’ (VPARMS l1,VPARMS l2) =

length l1 = length l2 andalso
let val ret = ref true

val l1r = ref l1
in
app (
fn l2e =>
(if !ret then

if not(vle(hd(!l1r),l2e)) then ret := false else()
else();
l1r := tl(!l1r))

) l2;
!ret

end
| vle’ _ = raise SUnbound"operator \"<=\" not implemented for these types"

and vgt (v1,v2) =
let val (v1’,v2’) = (vnormalize local_venv v1,vnormalize local_venv v2)

val (t1,t2) = (vtypeofv v1’,vtypeofv v2’)
in
if vtcomp(t1,t2) then vgt’(v1’,v2’) else
raise TypingBug((descrtype t1)^" compared with "^(descrtype t2))

end
and vgt’ (VB b1,VB b2) = b1 andalso not b2

| vgt’ (VI i1,VI i2) = i1 > i2
| vgt’ (VS s1,VS s2) = s1 > s2
| vgt’ (VPARMS l1,VPARMS l2) =

length l1 = length l2 andalso
let val ret = ref true

val l1r = ref l1
in
app (
fn l2e =>
(if !ret then

if not(vgt(hd(!l1r),l2e)) then ret := false else()
else();
l1r := tl(!l1r))

) l2;
!ret

end
| vgt’ _ = raise SUnbound"operator \">\" not implemented for these types"

and vge (v1,v2) =
let val (v1’,v2’) = (vnormalize local_venv v1,vnormalize local_venv v2)

val (t1,t2) = (vtypeofv v1’,vtypeofv v2’)
in
if vtcomp(t1,t2) then vge’(v1’,v2’) else
raise TypingBug((descrtype t1)^" compared with "^(descrtype t2))

end
and vge’ (VB b1,VB b2) = b1 orelse not b2

| vge’ (VI i1,VI i2) = i1 >= i2
| vge’ (VS s1,VS s2) = s1 >= s2
| vge’ (VPARMS l1,VPARMS l2) =

length l1 = length l2 andalso
let val ret = ref true

val l1r = ref l1
in
app (
fn l2e =>
(if !ret then

if not(vge(hd(!l1r),l2e)) then ret := false else()
else();
l1r := tl(!l1r))

) l2;
!ret

end
| vge’ _ = raise SUnbound"operator \">=\" not implemented for these types"

and vne (v1,v2) = not(veq(v1,v2))

228 Appendix

fun evopa (oper,v1,v2) =
let val v1’ = case vnormalize local_venv v1 of

VI _ => v1
| VVAR(e,p) => case nth(!e,p) of (_,(v,_)) => !v

val v2’ = case vnormalize local_venv v2 of
VI _ => v2

| VVAR(e,p) => case nth(!e,p) of (_,(v,_)) => !v
in
case v1’ of VI i1 =>

(case v2’ of VI i2 =>
VI(case oper of "+" => i1+i2 | "-" => i1-i2 | "*" => i1*i2 | "/" => i1 div i2)

| _ => raise TypingBug(oper^" applied to "^(descrtype(vtypeofv v1’))^"*"^
(descrtype(vtypeofv v2’))))

| _ => raise TypingBug(oper^" applied to "^(descrtype(vtypeofv v1’))^"*"^
(descrtype(vtypeofv v2’)))

end

(* the infix operators ... *)
val init_venv =
[("+",VFUN(fn VPARMS[v1,v2] => evopa("+",v1,v2),fun_t(parms_t[int_t,int_t],int_t))),
("-",VFUN(fn VPARMS[v1,v2] => evopa("-",v1,v2),fun_t(parms_t[int_t,int_t],int_t))),
("*",VFUN(fn VPARMS[v1,v2] => evopa("*",v1,v2),fun_t(parms_t[int_t,int_t],int_t))),
("/",VFUN(fn VPARMS[v1,v2] => evopa("/",v1,v2),fun_t(parms_t[int_t,int_t],int_t))),
("=",VFUN(fn VPARMS[v1,v2] => VB(veq(v1,v2)),

fun_t(let val nt = (reset_vartypes(); make_typevar()) in parms_t[nt,nt] end,bool_t))),
("<",VFUN(fn VPARMS[v1,v2] => VB(vlt(v1,v2)),

fun_t(let val nt = (reset_vartypes(); make_typevar()) in parms_t[nt,nt] end,bool_t))),
("<=",VFUN(fn VPARMS[v1,v2] => VB(vle(v1,v2)),

fun_t(let val nt = (reset_vartypes(); make_typevar()) in parms_t[nt,nt] end,bool_t))),
(">",VFUN(fn VPARMS[v1,v2] => VB(vgt(v1,v2)),

fun_t(let val nt = (reset_vartypes(); make_typevar()) in parms_t[nt,nt] end,bool_t))),
(">=",VFUN(fn VPARMS[v1,v2] => VB(vge(v1,v2)),

fun_t(let val nt = (reset_vartypes(); make_typevar()) in parms_t[nt,nt] end,bool_t))),
("<>",VFUN(fn VPARMS[v1,v2] => VB(vne(v1,v2)),

fun_t(let val nt = (reset_vartypes(); make_typevar()) in parms_t[nt,nt] end,bool_t)))]

(* Initializing the local var env *)

val _ = local_venv := make_venv init_venv

end (* RSsml *)

Ch. A Implementation of a Type-Checking Mini ML Compiler 229

A.2 Mini ML Parser

A.2.1 Lexical Analyser

The lexical analyser of this Section must be translated into pure SML code using sml-lex.

(*
* RSsml.lex
*
* Raddstar Structured Meta Language
* Expression Compiler -- Scanner
*
* Copyright Martin Steeg, 1996 - 1999
*)

structure Tokens = Tokens

type pos = int
type svalue = Tokens.svalue
type (’a,’b) token = (’a,’b) Tokens.token
type lexresult = (svalue,pos) token

val pos = ref 0
val eof = fn () => Tokens.EOF(!pos,!pos)

structure KeyWord : sig
val find : string ->

(int * int -> (svalue,int) token) option
end =

struct

val TableSize = 211
val HashFactor = 5

val hash = fn s =>
fold (fn (c,v)=>(v*HashFactor+(ord c)) mod TableSize) (explode s) 0

val HashTable = Array.array(TableSize,nil) :
(string * (int * int -> (svalue,int) token)) list Array.array

val add = fn (s,v) =>
let val i = hash s
in Array.update(HashTable,i,(s,v) :: (Array.sub(HashTable, i)))
end

val find = fn s =>

let val i = hash s
fun f ((key,v)::r) = if s=key then SOME v else f r

| f nil = NONE
in f (Array.sub(HashTable, i))
end

open Tokens

val _ =
(List.app add

[
("fun",FUN),
("val",VAL),
("fn",FN),
("if",IF),
("then",THEN),
("else",ELSE),
("fi",FI)

])
end

%%
%header (functor RSsml_ParserLexFun(structure Tokens : RSsml_Parser_TOKENS));

%s C COMMENT;
alpha=[A-Za-z_\.#$];

230 Appendix

digit=[0-9];
ws = [\ \t];

%%

<INITIAL>\^C => (raise LrParser.ParseError);
<INITIAL>\^D => (Tokens.EOF(!pos,!pos));
<INITIAL>\n => (inc pos; RSsml.psln2(); lex());
<INITIAL>\"[^"]*\" => (let val tok = substring(yytext,1,(String.length yytext)-2)

in Tokens.STRING(tok,!pos,!pos) end);
<INITIAL>{ws}+ => (lex());
<INITIAL>"(" => (Tokens.LPAR(!pos,!pos));
<INITIAL>"," => (Tokens.COMMA(!pos,!pos));
<INITIAL>")" => (Tokens.RPAR(!pos,!pos));
<INITIAL>"+" => (Tokens.OP("+",!pos,!pos));
<INITIAL>"-" => (Tokens.OP("-",!pos,!pos));
<INITIAL>"*" => (Tokens.OP("*",!pos,!pos));
<INITIAL>"(*" => (YYBEGIN C; lex());
<INITIAL>"/" => (Tokens.OP("/",!pos,!pos));
<INITIAL>"<" => (Tokens.OP("<",!pos,!pos));
<INITIAL>"<=" => (Tokens.OP("<=",!pos,!pos));
<INITIAL>">" => (Tokens.OP(">",!pos,!pos));
<INITIAL>">=" => (Tokens.OP(">=",!pos,!pos));
<INITIAL>"<>" => (Tokens.OP("<>",!pos,!pos));
<INITIAL>":=" => (Tokens.OP(":=",!pos,!pos));
<INITIAL>"!" => (Tokens.IDENT(RSsml.make_ident"!",!pos,!pos));
<INITIAL>\; => (Tokens.SEMI(!pos,!pos));
<INITIAL>"=>" => (Tokens.IMPLIES(!pos,!pos));
<INITIAL>"=" => (Tokens.EQ(!pos,!pos));
<INITIAL>"|" => (Tokens.BAR(!pos,!pos));
<INITIAL>"_" => (Tokens.UNDERBAR(!pos,!pos));

<INITIAL>{digit}+ => (Tokens.INT
(revfold (fn (a,r) => ord(a)-ord("0")+10*r)

(explode yytext) 0,
!pos,!pos));

<INITIAL>{alpha}({alpha}|{digit})* => (if RSsml.is_rssml_op yytext then
Tokens.OP(yytext,!pos,!pos)

else
case KeyWord.find yytext of

SOME kwv => kwv(!pos,!pos)
| _ =>

let val new = ref false
val tnm = RSsml.make_ident yytext
handle (RSsml.SUnbound _) =>
(new := true; RSsml.make_ident yytext)

in
Tokens.IDENT(tnm,!pos,!pos)

end);

<INITIAL>. => (RSsml.say("RSsml: ignoring bad character \""^yytext^"\"");
lex());

<C>\n+ => (pos := (!pos) + (String.length yytext); lex());
<C>[^()*\n]+ => (lex());
<C>"(*" => (lex());
<C>"*)" => (YYBEGIN INITIAL; lex());
<C>[*()] => (lex());

Ch. A Implementation of a Type-Checking Mini ML Compiler 231

A.2.2 Parser

The parser of this Section must be translated into pure SML code using sml-yacc.

(* RSsml.grm, Raddstar Structured Meta Language Expression Compiler -- Parser *)

%%

%eop EOF SEMI

%pos int

%left NOT
%left OP
%left EQ

%term EOF | SEMI
| NOT | OP of string | EQ
| UNDERBAR | BOOL of bool | INT of int | STRING of string
| IDENT of RSsml.ident
| LPAR | COMMA | RPAR
| IF | THEN | ELSE | FI
| FUN | VAL | FN | IMPLIES | BAR

%nonterm START of RSsml.stmt
| FUNDEF of RSsml.stmt
| FUNMATCHLIST of (RSsml.value * RSsml.value) list
| FUNMATCH of RSsml.value * RSsml.value

| VALDEF of RSsml.stmt
| APPL of RSsml.value | APII of RSsml.value | APARMS of RSsml.value list
| VALUE of RSsml.value | PARMS of RSsml.value list
| OPER of string
| FNDEF of RSsml.value
| FNMATCHLIST of (RSsml.value * RSsml.value) list
| FNMATCH of RSsml.value * RSsml.value

%name RSsml_Parser
%header (functor RSsml_ParserLrVals(structure Token : TOKEN))

%noshift EOF

%%

START : FUNDEF (FUNDEF)
| VALDEF (VALDEF)
| APPL (RSsml.VALDEF(RSsml.IT,APPL))
| (RSsml.NULLSTMT)

FUNDEF : FUN IDENT FUNMATCHLIST (RSsml.FUNDEF(IDENT,FUNMATCHLIST))

FUNMATCHLIST:
FUNMATCH ([FUNMATCH])

| FUNMATCHLIST BAR FUNMATCH (FUNMATCHLIST@[FUNMATCH])

FUNMATCH: VALUE EQ APPL (VALUE,APPL)

VALDEF : VAL IDENT EQ APPL (RSsml.VALDEF(IDENT,APPL))

APPL : APII (APII)
| FNDEF (FNDEF)
| IF APPL THEN APPL ELSE APPL FI(RSsml.VBRANCH(APPL1,APPL2,APPL3))
| APPL APII (RSsml.VAPP(APPL,APII))
| APPL OPER APPL (case APPL1 of

RSsml.VALLIST l1 =>
RSsml.VALLIST(l1@[RSsml.VOP OPER]@(case APPL2 of

RSsml.VALLIST l2 => l2
| _ => [APPL2]))

| ap => RSsml.VALLIST([ap]@[RSsml.VOP OPER]@(case APPL2 of
RSsml.VALLIST l2 => l2

| _ => [APPL2])))

APARMS : APPL ([APPL])
| APARMS COMMA APPL (APARMS@[APPL])

APII : VALUE (VALUE)
| LPAR APARMS RPAR (RSsml.VPARMS APARMS)

232 Appendix

VALUE : IDENT (RSsml.VID IDENT)
| BOOL (RSsml.VB BOOL)
| INT (RSsml.VI INT)
| STRING (RSsml.VS STRING)
| UNDERBAR (RSsml.VNULL)
| LPAR PARMS RPAR (RSsml.VPARMS PARMS)

OPER : OP (OP)
| EQ ("=")

PARMS : VALUE ([VALUE])
| PARMS COMMA VALUE (PARMS@[VALUE])

FNDEF : FN FNMATCHLIST (RSsml.VFNDEF FNMATCHLIST)

FNMATCHLIST:
FNMATCH ([FNMATCH])

| FNMATCHLIST BAR FNMATCH (FNMATCHLIST@[FNMATCH])

FNMATCH : VALUE IMPLIES APPL (VALUE,APPL)

Ch. A Implementation of a Type-Checking Mini ML Compiler 233

A.3 The Mini ML Compiler

A.3.1 The Compiler/Expression Evaluator

(*
* RSsmlComp.sml
*
* Raddstar Structured Meta Language
* Expression Compiler
*
* Copyright Martin Steeg, 1996 - 1999
*)

signature RSSMLCOMP =
sig
type stmt
val compile : stmt -> bool

end

structure RSsmlComp : RSSMLCOMP =
struct

open RSsml

infix 9 in_l

fun set_type_type (parms_t l) typ2 =
(case typ2 of

parms_t l2 =>
if length l = length l2 then
let val tr = ref l2 in
app (fn t => (set_type_type t (hd(!tr)); tr := tl(!tr))) l

end
else
raise TypingBug("types "^(descrtype(parms_t l))^" and "^(descrtype(parms_t l2))^

" are not compatible")
| _ =>

raise TypingBug("types "^(descrtype(parms_t l))^" and "^(descrtype typ2)^
" are not compatible"))

| set_type_type (fun_t(t1,t2)) typ2 =
(case typ2 of

fun_t(t21,t22) =>
(set_type_type t1 t21; set_type_type t2 t22)

| _ =>
raise TypingBug("types "^(descrtype(fun_t(t1,t2)))^" and "^(descrtype typ2)^

" are not compatible"))

| set_type_type (tv as typevar(e1,p1)) typ2 =
(case typ2 of

typevar(e2,p2) =>
if nth(!e2,p2) <> nth(!e1,p1) then set_vartype (e2,p2) tv else()

| _ =>
set_vartype (e1,p1) typ2)

| set_type_type typ1 typ2 =
if vtcomp(typ1,typ2) then()
else
raise TypingBug("types "^(descrtype typ1)^" and "^(descrtype typ2)^" are not compatible")

(*
* The implementation of the type inference algorithm
*
* The functions of this coding are borrowed from Mauny 1993 and Mauny 1995
*)

fun shorten t = shorten’(rtnormalize t)
and shorten’ (parms_t l) = parms_t(map shorten l)

| shorten’ (fun_t(t1,t2)) = fun_t(shorten t1,shorten t2)
| shorten’ (tv as typevar(e,p)) =

(case shorten(!(nth(!e,p))) of
typevar(e’,p’) =>
(shorten (!(nth(!e’,p’)));
e :=
map (

234 Appendix

fn rt => if rt = nth(!e,p) then nth(!e’,p’) else rt
) (!e);

tv)
| _ => tv)

| shorten’ t = t
and generalizetype (gamma,tau) =

Forall(map typevar (subl (varsoftype(typevar tau)) (unknownsofenv gamma)),tau)
and geninstance (Forall(gv,tau)) =

let fun ginstance (parms_t l) = parms_t(map ginstance l)
| ginstance (fun_t(t1,t2)) = fun_t(ginstance t1,ginstance t2)
| ginstance (tv as typevar(e,p)) =

(case !(nth(!e,p)) of
parms_t l => parms_t(map ginstance l)

| fun_t(t1,t2) => fun_t(ginstance t1,ginstance t2)
| noninit_t => findtypeenv tv
| t’ => ginstance t’)

| ginstance noninit_t = raise TypingBug"geninstance"
| ginstance t’ = t’

in
ginstance(typevar tau)

end
and typesynthi (env as (_,venv),gamma) =

fn VPARMS l =>
unify(parms_t(map (typesynthi (env,gamma)) l),

parms_t(rev(map (typesynthi (env,gamma)) (rev l))))
| VVAR(e,p) =>

(case nth(!e,p) of (n,(_,rt)) =>
(case !rt of

typevar(e’,p’) => findtypeenv(typevar(e’,p’))
| t => ltnormalize t))

| VAPP(v1,v2) =>
let val vt2 = typesynthi (env,gamma) v2 in
case (ltnormalize(unify(typesynthi (env,gamma) v1,

fun_t(vt2,make_typevar())))
handle _ => raise TypingBug((descrtype(vtypeofv v1))^" applied to "^

(descrtype(vtypeofv v2)))) of
fun_t(t1,t2) =>
(set_type_type t1 (ltnormalize vt2);
t2)

| t’ =>
raise TypingBug("suspicious evaluation of unify ["^(descrtype t’)^"]")

end
| VBRANCH(p,v1,v2) =>

let val pt = typesynthi (env,gamma) p
val v1t = typesynthi (env,gamma) v1
val v2t = typesynthi (env,gamma) v2

in
(unify(pt,bool_t); unify(v1t,v2t))

handle _ =>
raise TypingBug("if-then-else-fi: (bool,’a,’a) -> ’a used with ("^(descrtype pt)^

","^(descrtype v1t)^","^(descrtype v2t)^")")
end

| VFNDEF fl =>
let val fl’ = map (fn (l,r) => (levaluate env l,revaluate env r)) fl in
typesynthi’ (env,gamma) fl’

end
| v’ => vtypeofv v’

and typesynthi’ (env,gamma) fl =
let val (lt,rt) = (ref noninit_t,ref noninit_t) in
app (
fn (l,r) =>
let val vt = case make_typevar() of typevar(e,p) => (e,p)

val (ltyp,rtyp) = (typesynthi (env,gamma@[(Forall([],vt))]) l,
typesynthi (env,gamma@[(Forall([],vt))]) r)

val ltyp’ = unify(!lt,ltyp)
handle _ => raise TypingBug("between "^(descrtype(fun_t(!lt,!rt)))^" and "^

(descrtype(fun_t(ltyp,rtyp))))
val rtyp’ = unify(!rt,rtyp)

handle _ => raise TypingBug("between "^(descrtype(fun_t(!lt,!rt)))^" and "^
(descrtype(fun_t(ltyp,rtyp))))

in
lt := ltyp’; rt := rtyp’

end
) fl;
fun_t(!lt,!rt)

end

Ch. A Implementation of a Type-Checking Mini ML Compiler 235

and unify (tau1,tau2) =
(case (shorten tau1,shorten tau2) of

(noninit_t,t2) => t2
| (t1,noninit_t) => t1
| (bool_t,bool_t) => bool_t
| (int_t,int_t) => int_t
| (string_t,string_t) => string_t
| (parms_t l1,parms_t l2) =>

if length l1 <> length l2 then
raise TypingBug("between "^(descrtype(parms_t l1))^" and "^(descrtype(parms_t l2)))

else
(let val l1r = ref l1 val ret = ref[] in

app (
fn l2e =>
(ret := (!ret)@[(unify(hd(!l1r),l2e))]; l1r := tl(!l1r))

) l2;
parms_t(!ret)

end
handle _ =>
raise TypingBug("between "^(descrtype(parms_t l1))^" and "^(descrtype(parms_t l2))))

| (fun_t(t11,t12),fun_t(t21,t22)) =>
(fun_t(unify(t11,t21),unify(t12,t22))

handle _ =>
raise TypingBug("between "^(descrtype(fun_t(t11,t12)))^" and "^(descrtype(fun_t(t21,t22)))))

| (tv1 as typevar(e1,p1),tv2 as typevar(e2,p2)) =>
if nth(!e1,p1) <> nth(!e2,p2) then
(e1 :=

map (
fn rt => if rt = nth(!e1,p1) then nth(!e2,p2) else rt

) (!e1);
tv1)

else tv1
| (t1,tv2 as typevar(e2,p2)) =>

if not(occursintype (e2,p2) t1) then
(set_vartype (e2,p2) t1; tv2)

else raise TypingBug("between "^(descrtype t1)^" and "^(descrtype tv2))
| (tv1 as typevar(e1,p1),t2) =>

if not(occursintype (e1,p1) t2) then
(set_vartype (e1,p1) t2; tv1)

else raise TypingBug("between "^(descrtype tv1)^" and "^(descrtype t2))
| (t1,t2) =>

raise TypingBug("between "^(descrtype t1)^" and "^(descrtype t2)))

(*
* The RSsml specific type unification functions
*)

and ltnormalize (parms_t(t::[])) = ltnormalize t
| ltnormalize (fun_t(t1,t2)) =

let val t1’ = ltnormalize t1 and t2’ = ltnormalize t2 in
case t1’ of

fun_t(t11’,_) =>
if vtcomp(t11’,t2’) then
let val nt2’ = unify(t11’,t2’) handle _ => t2’ in
fun_t(t1’,nt2’)

end
else
fun_t(t1’,t2’)

| _ => fun_t(t1’,t2’)
end

| ltnormalize (typevar(e,p)) =
(case nth(!e,p) of rt =>

(case !rt of
noninit_t => findtypeenv(typevar(e,p))

| t => ltnormalize t))
| ltnormalize t = t

and rtnormalize (parms_t(t::[])) = rtnormalize t
| rtnormalize (fun_t(fun_t(t1,t2),t3)) =

let val (ft’,t3’) = (rtnormalize(fun_t(t1,t2)),rtnormalize t3) in
case ft’ of

fun_t(t1’,t2’) =>
if vtcomp(t1’,t3’) then t2’
else
raise TypingBug("types "^(descrtype(fun_t(t1’,t2’)))^" and "^

(descrtype t3’)^" could not be unified")
| _ =>

fun_t(ft’,t3’)

236 Appendix

end
| rtnormalize (fun_t(ityp,otyp)) = fun_t(rtnormalize ityp,rtnormalize otyp)
| rtnormalize (typevar(e,p)) =

(case nth(!e,p) of rt =>
(case !rt of

noninit_t => findtypeenv(typevar(e,p))
| t => rtnormalize t))

| rtnormalize t = t

and setvvar (e,p) v =
(case nth(!e,p) of (_,(rv,_)) => rv := v)

(*
* The value evaluation and normalization functions
*)

and vevaluate (env as (_,venv)) v =
vevaluate’ env (revaluate env v)

and vevaluate’ env (VPARMS l) = VPARMS(map (vevaluate’ env) l)
| vevaluate’ _ (VVAR(e,p)) = (case nth(!e,p) of (_,(v,_)) => !v)
| vevaluate’ env (VAPP(v1,v2)) =

let val v2’ = vevaluate’ env v2 in
case vevaluate’ env v1 of

VFUN(f,t) =>
f v2’

| v1’ =>
raise TypingBug("value "^(stringof_value v1’)^" applied to "^(stringof_value v2’))

end
| vevaluate’ env (VBRANCH(p,v1,v2)) =

(case vevaluate’ env p of
VB b => if b then vevaluate’ env v1 else vevaluate’ env v2)

| vevaluate’ env (VFNDEF l) = fnevaluate env l
| vevaluate’ env v = v

and levaluate (env as (_,venv)) v = levaluate’ env (vnormalizel venv v)
and levaluate’ _ (VB b) = VB b

| levaluate’ _ (VI i) = VI i
| levaluate’ _ (VS s) = VS s
| levaluate’ env (VPARMS l) = VPARMS(map (levaluate’ env) l)
| levaluate’ _ (vv as VVAR _) = vv
| levaluate’ _ VNULL = VNULL
| levaluate’ _ v =

raise TypingBug("unexpected left-hand-side value: "^(stringof_value v))
and revaluate (env as (_,venv)) v =

revaluate’ env (vnormalize venv v)
and revaluate’ _ (VB b) = VB b

| revaluate’ _ (VI i) = VI i
| revaluate’ _ (VS s) = VS s
| revaluate’ env (VPARMS(v::[])) = revaluate env v
| revaluate’ env (VPARMS l) = VPARMS(map (revaluate env) l)
| revaluate’ env (VVAR(e,p)) =

(case nth(!e,p) of
(_,(v,_)) => case !v of VNULL => VVAR(e,p) | v’ => v’)

| revaluate’ env (VAPP(v1,v2)) = VAPP(revaluate env v1,revaluate env v2)
| revaluate’ env (VBRANCH(v1,v2,v3)) =

VBRANCH(revaluate env v1,revaluate env v2,revaluate env v3)
| revaluate’ _ (f as VFUN _) = f
| revaluate’ env (VFNDEF l) = fnevaluate env l
| revaluate’ _ (VOP oper) = VOP oper
| revaluate’ _ VNULL = raise SUnbound"right-hand-side value: null"

and fevaluate env (VFUN(f,_),arg) = f(vevaluate env arg)
| fevaluate env (VVAR(e,p),arg) =

(case nth(!e,p) of
(_,(ref(VFUN(f,t)),_)) =>
fevaluate env (VFUN(f,t),arg)

| (_,(ref v,_)) =>
raise TypingBug((stringof_value v)^" applied to "^(stringof_value arg)))

| fevaluate env (v,arg) =
raise TypingBug((stringof_value v)^" applied to "^(stringof_value arg))

and fnevaluate (id,venv) fl =
fnevaluate’ (id,venv)
let val varlist =

map (
fn (l,r) =>
let val venv’ = ref(!venv) in
(levaluate (id,venv’) l,revaluate (id,venv’) r,venv’)

end
) fl

Ch. A Implementation of a Type-Checking Mini ML Compiler 237

val (lt,rt) = (ref noninit_t,ref noninit_t)
in
(map(

fn (lval,rval,venv’) =>
case typesynthi’ ((id,venv),make_typesc(!venv’)) [(lval,rval)] of

fun_t(ltyp,rtyp) =>
let val ltyp’ = unify(!lt,ltyp)

handle _ => raise TypingBug("between "^(descrtype(fun_t(!lt,!rt)))^" and "^
(descrtype(fun_t(ltyp,rtyp))))

val rtyp’ = unify(!rt,rtyp)
handle _ => raise TypingBug("between "^(descrtype(fun_t(!lt,!rt)))^" and "^

(descrtype(fun_t(ltyp,rtyp))))
in
lt := ltyp’;
rt := rtyp’;
(lval,rval)

end
| t’ =>

raise TypingBug("typesynthi’ (VFNDEF ...) evaluates "^(descrtype t’))
) varlist,
fun_t(!lt,!rt))

end
and fnevaluate’ (id,_) ([],_) = raise TypingBug"empty function list"

| fnevaluate’ env ((v1,v2)::l,fun_t(t1,t2)) =
VFUN(fn v =>

if unify2(v,v1)
then vevaluate env v2 else fnevaluatep env (v,t1,l),fun_t(t1,t2))

and fnevaluatep (id,_) (_,_,[]) = raise UNcaught id
| fnevaluatep env (v,t1,(v1,v2)::l) =

if unify2(v,v1)
then vevaluate env v2 else fnevaluatep env (v,t1,l)

and unify2 (v,v1) =
unify2’(v,v1)
handle _ => raise TypingBug((descrtype(vtypeofv v1))^" and "^

(descrtype(vtypeofv v))^" are not compatible")
and unify2’ (v,v1) =

(case v1 of
VB b1 =>
(case v of

VB b => b = b1
| VVAR(e,p) => (setvvar (e,p) v1; true))

| VI i1 =>
(case v of

VI i => i = i1
| VVAR(e,p) => (setvvar (e,p) v1; true))

| VS s1 =>
(case v of

VS s => s = s1
| VVAR(e,p) => (setvvar (e,p) v1; true))

| VPARMS l1 =>
(case v of

VPARMS l =>
let val ret = ref true val l1r = ref l1 in
app (
fn v =>
(if !ret

then ret := unify2(v,hd(!l1r)) else();
l1r := tl(!l1r))

) l;
!ret

end)
| VVAR(e,p) => (setvvar (e,p) v; true)
| VNULL => true
| _ => raise TypingBug"warning: not yet implemented")

(*
* The functions for the final type and value evaluation
*)

fun set_valtype_env (env as (id,venv)) (va,typ) =
let val (va’,typ’) = (vnormalize venv va,ltnormalize typ) in
if not(vtcomp(vtypeofv va’,typ’)) then
raise TypingBug("between "^(descrtype(vtypeofv va’))^" and "^(descrtype typ’))

else
set_valtype_env’ env (va’,typ)

end

238 Appendix

and set_valtype_env’ env (va,typ) =
case va of

VPARMS l =>
let val tr = ref(case (ltnormalize typ) of parms_t l => l) in
VPARMS(map (fn v => set_valtype_env’ env (v,let val t = hd(!tr) in tr := tl(!tr); t end)) l)

end
| _ =>

if (case va of VFUN _ => true | VVAR _ => true | _ => false) then
let val sce = get_current_env()

val new = ref[]
fun evalnew (sce,parms_t l) = app (fn t => evalnew(sce,t)) l

| evalnew (sce,fun_t(t1,t2)) = (evalnew(sce,t1); evalnew(sce,t2))
| evalnew (sce,tv as typevar(e,p)) =

let fun findtl [] = raise TypingBug"typevar not found in env"
| findtl (Forall(l,vt)::r) =

if vt = (e,p) then l
else if occursintype (e,p) (typevar vt) then []
else findtl r

in
(case findtl sce of

a::_ => evalnew(sce,a)
| _ =>

if tv <> typ andalso occursintype (e,p) typ
andalso not(tv in_l (map ! (!new)))
then new := (!new)@[(ref tv)] else())

handle _ => ()
(* ignore TypingBug, since typevar may have been re-assigned previously *)

end
| evalnew _ = ()

fun subst (parms_t l) = parms_t(map subst l)
| subst (fun_t(t1,t2)) = fun_t(subst t1,subst t2)
| subst (tv as typevar(e,p)) =

(case posl(map ! (!new),tv) of
~1 => tv

| n => typevar(new,n))
| subst t’ = t’

fun replace typ =
let val ret = subst typ in
app (fn tr as ref(typevar _) => tr := noninit_t | _ => ()) (!new);
ret

end
in
app (
fn (Forall(l,vt)) => evalnew(sce,typevar vt)

) sce;
case va of

VFUN(f,_) => VFUN(f,replace typ)
| VVAR(e,p) =>

case nth(!e,p) of (_,(_,rt)) => (rt := replace typ; va)
end

else (* nothing to do *)
va

fun headt (fun_t(t1,_)) = t1
| headt t = t

and tailt (fun_t(_,t2)) = t2
| tailt t = t

and firstt (fun_t(t1,fun_t(t2,t3))) = fun_t(t1,firstt(fun_t(t2,t3)))
| firstt (fun_t(t1,t2)) = t1
| firstt t = t

and lastt (fun_t(_,t2)) = lastt t2
| lastt t = t

(*
* The Z-Fixpoint combinator implements recursive function evaluation
*)

val fix =
VFUN(fn f =>

case VFUN(fn x =>
case vevaluate (FIX,local_venv) x of VFUN(x,xt) =>

case vevaluate (FIX,local_venv) f of VFUN(f,ft) =>
f(VFUN(fn VFUN(z,zt) =>

case x(VFUN(x,xt)) of
VFUN(y,_) => y(VFUN(z,zt)),
headt ft)),

vtypeofv f)

Ch. A Implementation of a Type-Checking Mini ML Compiler 239

of VFUN(y,yt) =>
y(VFUN(fn x =>

case vevaluate (FIX,local_venv) x of VFUN(x,xt) =>
case vevaluate (FIX,local_venv) f of VFUN(f,ft) =>

f(VFUN(fn VFUN(z,zt) =>
case x(VFUN(x,xt)) of

VFUN(y,_) => y(VFUN(z,zt)),
headt ft)),

headt yt)),
fun_t(fun_t(noninit_t,noninit_t),fun_t(noninit_t,noninit_t)))

fun compile (FUNDEF(i,l)) =
let val _ = reset_vartypes()

val newfun = stringof_ident i
val newvenv = ref(!local_venv)
val newpos = length(!newvenv)

(* newpos will be the position of newfun in the newvenv *)
val f = make_vvar(newvenv,newfun)
val l’ = map (fn (l,r) => (levaluate (i,newvenv) l,revaluate (i,newvenv) r)) l
val t’ = typesynthi’ ((i,newvenv),make_typesc(!newvenv)) l’

in
case vevaluate (i,newvenv) (VAPP(fix,VFNDEF[(f,fnevaluate’ (i,newvenv) (l’,t’))])) of

v as VFUN(f,_) =>
let val v’ = set_valtype_env (i,newvenv) (v,t’) in
print("val "^newfun^" : "^

(descrtype(vtypeofv v’))^
" = "^

(stringof_value v’)^"\n");
setvvar (newvenv,newpos) v’;
local_venv := (!local_venv)@make_venv[(newfun,v’)]

end
| v’ => raise TypingBug("fun "^newfun^" does not evaluate to function!"^

"("^(stringof_value v’)^")");
true

end
| compile (VALDEF(i,e)) =

let val _ = reset_vartypes()
val newval = stringof_ident i
val newvenv = ref(!local_venv)
val e’ = vnormalize newvenv e
val t’ = typesynthi ((i,newvenv),make_typesc(!newvenv)) e’

in
case vevaluate (i,newvenv) e’ of

v =>
let val v’ = set_valtype_env (i,newvenv) (v,t’) in
print("val "^newval^" : "^

(descrtype(vtypeofv v’))^
" = "^

(stringof_value v’)^"\n");
local_venv := (!local_venv)@make_venv[(newval,v’)]

end;
true

end
| compile _ (* QUIT *) =

false

end (* RSsmlComp *)

240 Appendix

A.3.2 The Main Structure
(*
* RSsmlMain.sml
*
* Raddstar Structured Meta Language
* Expression Compiler -- Main Structure
*
* Copyright Martin Steeg, 1996 - 1999
*)

signature RSSMLMAIN =
sig
val loop : unit -> unit

end

structure RSsmlMain : RSSMLMAIN =
struct
open RSsml RSsmlComp

structure RSsml_ParserLrVals =
RSsml_ParserLrVals(structure Token = LrParser.Token);

structure RSsml_ParserLex =
RSsml_ParserLexFun(structure Tokens = RSsml_ParserLrVals.Tokens);

structure RSsml_Parser =
Join(structure LrParser = LrParser

structure ParserData = RSsml_ParserLrVals.ParserData
structure Lex = RSsml_ParserLex)

val invoke = fn lexstream =>
let val print_error = fn (s,i:int,_) =>

say("Error, line " ^ (makestring i) ^ ", " ^ s ^ "\n")
in
RSsml_Parser.parse(0,lexstream,print_error,())

end

fun parse() =
let val lexer = RSsml_Parser.makeLexer (fn _ => input_line std_in)

val _ = RSsml_ParserLex.UserDeclarations.pos := 0
val dummyEOF = RSsml_ParserLrVals.Tokens.EOF(0,0)
val dummySEMI = RSsml_ParserLrVals.Tokens.SEMI(0,0)
fun loop lexer =

let val (result,lexer) = invoke lexer in
let val (nextToken,lexer) = RSsml_Parser.Stream.get lexer in
if RSsml_Parser.sameToken(nextToken,dummyEOF) then QUIT
else if RSsml_Parser.sameToken(nextToken,dummySEMI) then result
else loop lexer

end
end

in
loop lexer

end

fun loop() =
(psln();
if (compile(parse())

handle
SUnbound s =>
(print("Unbound variable or identifier: "^s^"\n"); true)

| TypingBug s =>
(print("Typing error: "^s^"\n"); true)

| UNcaught id =>
(print("Uncaught match exception in function "^

(stringof_ident id)^"\n"); true)
| RSsml_Parser.ParseError =>

(print("parse error\n"); true))
then loop()
else())

end

val doit = RSsmlMain.loop

Ch. A Implementation of a Type-Checking Mini ML Compiler 241

A.3.3 Application Scenario

RSsmlComp.sml:246.9-247.69 Warning: match nonexhaustive
VB b => ...

RSsmlComp.sml:128.25-128.68 Warning: match nonexhaustive
typevar (e,p) => ...

signature RSSMLCOMP =
sig

type stmt
val compile : stmt -> bool

end
structure RSsmlComp : RSSMLCOMP
[opening RSsmlMain.sml]
signature RSSMLMAIN = sig val loop : unit -> unit end
structure RSsmlMain : RSSMLMAIN
val doit = fn : unit -> unit
val it = () : unit
val it = () : unit
- doit();
RSsml> fun fac 0 = 1 | n = n*fac(n-1);
val fac : int -> int = <function>
RSsml> fun fib n = if n<=1 then 1 else fib(n-1)+fib(n-2) fi;
val fib : int -> int = <function>
RSsml> fun o(j,k) = fn x => j(k x);
val o : (’a -> ’b,’c -> ’a) -> ’c -> ’b = <function>
RSsml> o(fn (m,n) => fib(if m<n then fac m else fac n fi),fn j => j;
Error, line 0, syntax error

parse error
RSsml> o(fn (m,n) => fib(if m<n then fac m else fac n fi),fn j => j);
val it : (int,int) -> int = <function>
RSsml> o(3,4);
Typing error: (’a -> ’b,’c -> ’a) -> ’c -> ’b applied to (int,int)
RSsml> it(3,4);
val it : int = 13
RSsml> val k = o;
val k : (’a -> ’c,’b -> ’a) -> ’b -> ’c = <function>
RSsml> (k(fn (m,n) => fib(if m<n then fac m else fac n fi),fn j => j)) 2;
Typing error: (int,int) -> int applied to int
RSsml> (k(fn (m,n) => fib(if m<n then fac m else fac n fi),fn j => j)) (7,3);
val it : int = 13
RSsml> fib 13;
val it : int = 377
RSsml> val it = () : unit
-

Appendix B

Specification of the Schema

Transformation and Optimization

Rules

This Chapter shows the schema transformation and optimization rules which are (usually)

preloaded by load CSL from ”...” commands in the ”.raddstar” initialization file of the

RADD/raddstar system.

B.1 Rules for Hierarchical Transformation

B.1.1 Transformation Rule ”h1”

add hierarchical transformation rule:

when CC(s1,s2) is (1,1)

and component s1 s2

do

group (s2,s1) (1,1)

B.1.2 Transformation Rule ”h2”

add hierarchical transformation rule:

when Reference s1->s2

and exists s3:

(component s1 s3 and tcomponent s3 s2)

do not

group (s2,s1)

244 Appendix

B.2 Rules for Network Transformation

B.2.1 Transformation Rule ”n1”

add network transformation rule:

when CC(s1,s2) is (m,n)

and component s1 s2

and m >= 1

and n <= !nMaxRepGrpSize

do

nest (s2,s1) list_t_

B.2.2 Transformation Rule ”n2”

add network transformation rule:

when Reference s1->s2

and component s2 s1

do

separate s1 [s2]

B.3 Rules for Relational Transformation

B.3.1 Transformation Rule ”r1”

add relational transformation rule:

when CC(s1,s2) is (m,n)

and component s1 s2

and m >= 1

and (n = 1 or (attrsize s1 (m,n)) < !rMaxRepGrpSize)

do

group (s2,s1) (m,n)

B.3.2 Transformation Rule ”r2”

add relational transformation rule:

when CC(s1,s2) is (0,1)

and component s1 s2

and emptySchema s1

do

group (s2,s1) (0,1)

Ch. B Specification of the Schema Transformation and Optimization Rules 245

B.4 Rules for Object-Relational Transformation

B.4.1 Transformation Rule ”or1”

add objectrelational transformation rule:

when CC(s1,s2) is (m,n)

and component s1 s2

and m >= 1

and (n = 1 or (attrsize s1 (m,n)) < !rMaxRepGrpSize)

do

group (s2,s1) (m,n)

B.4.2 Transformation Rule ”or2”

add objectrelational transformation rule:

when CC(s1,s2) is (0,1)

and component s1 s2

and emptySchema s1

do

group (s2,s1) (0,1)

B.5 Rule for Object-Oriented Transformation

B.5.1 Transformation Rule ”o1”

add objectoriented transformation rule:

when CC(s1,s2) is (m,n)

and component s1 s2

and n <> ~1

do

nest (s2,s1) set_t_

246 Appendix

B.6 Rules for Conceptual Schema Optimization

B.6.1 Optimization Rule ”t1”

add conceptual optimization rule:

when bottleneck(delete,s1) and bottleneck(delete,s2)

and entity s1 and entity s2

and exists s3,s4:

((dcycle [s1,s3,s2,s4] or dcycle [s1,s4,s2,s3])

and compatible [s3,s4])

do

separate (group (s3,s4) (.,.)) [s4]

B.6.2 Optimization Rule ”t2”

In contrast to the rules above, this is a special optimization rule for the Company schema.
Refer also to [AAS97a, AAS97b].

add conceptual optimization rule :

when component r2 r1 and CC(r2,r1) is (m,n)

and component r3 r1 and CC(r3,r1) is (p,q)

and m=p and n=q

and exists r4,r5,r6:

(component r2 r4

and component r5 r4 and CC(r5,r4) is (1,1)

and component r3 r6 and component r5 r6)

do

separate (group (group (group (r4,r5) (1,1),r2) (.,.),r3) (.,.)) [r4,r5]

Appendix C

Development and Test Environment

C.1 Operating Systems and Development Tools

The version of RADD/raddstar that has been used to generate the screendumps of this

work has been developed under a Linux Slackware 96 distribution, which was continously

upgraded to more actual software packages, e.g. XF86Free-3.3.2, K-Desktop Environment

version 1.1, glibc6 (libc2), and the Linux kernel 2.2.13. To verify that the extensions of

CML (see C.2.2) and eXene (see C.2.3) have the same behavior on different platforms,

the system has been tested on a Sun Sparc 20 with 64 Mbytes of RAM. All tests (as well

as the Y2K test, see C.4) were successful.

C.2 Standard-ML of New-Jersey (SML/NJ)

The SML/NJ Compiler (SML) was used as basis to implement the RADD/raddstar.

Concurrent ML (CML) and eXene which are used in the RADD/raddstar are versions

that have been extended. We have verified, that hese extensions have no impact on

different behavior of the programming examples which are distributed with CML and

eXene. That is, not using the extended features, CML and eXene behave as they were.

Documentation about the extensions and how they can be used to implement your own

X11-based applications, can be provided along with the source code of RADD/raddstar.

C.2.1 SML/NJ 0.93

The SML version used to compile the RADD/raddstar system is Standard-ML of New-

Jersey (SML/NJ) version 0.93. Under Solaris the distribution that came originally from

Princeton University (ftp://ftp.princeton.edu/pub/ml) is used. Under Linux a distribu-

tion of SML/NJ 0.93 which was found on diana.ibr.tu-bs.de is used. The Linux SML/NJ

0.93 version does only compile under early Linux distributions (such as Slackware 2.01,

248 Appendix

which includes the 1.0.9 Linux kernel and the GNU C-Compiler (gcc) version 2.5.8 gener-

ating a.out executables). Therefore, the Linux SML executable (which is actually used)

is in a.out format, but not in ELF. However, the Year 2000 (Y2K) Tests (Section C.4)

with this executable were successful.

C.2.2 CML 0.9.8

The Concurrent ML (CML) code has been extended in Winter 1994/95 to run multiple

CML machines under the same SML simultaneously. The CML 0.9.8 as was, permits only

one RunCML.doit() function to be started and after that the “shell” (or function) that

called the RunCML.doit() is blocked. By the modifications that we made, the “shell”

is not blocked after calling RunCML.doit(). However, to start another RunCML.doit()

the application must call ContCML.doit() which re-initializes respectively re-creates the

static variables of the CML kernel, firstly. Look at the following code, which is taken from

the RADD/raddstar structure XListener, that runs the Listener and the Listener GUI.

fun listen’ (debugFlags, options) = (
XDebug.init debugFlags;
(* MS/991107: the next command spawns the thread for the listener *)
RunCML.doit (fn () => run_listener options, SOME 20);
(* MS/991107: the next two commands spawn the thread for the gui and the csl_loop *)
ContCML.doit(fn () => RE.say("Starting the RADD* Listener GUI ...\n"), NONE);
RunCML.doit (fn () => run_listener_gui options, SOME 20);
(* MS/991213: the next command signal that CML has been started, but reads

must not be requested from the CSL-Shell of the GUI (xrim_inch) *)
RE.Static.CmlIsRunning := true;
RE.Static.CslShellGUI := false;
(* reading the ".raddstar" startup file *)
readStartup();
(* Command line parameter handling *)
interprete options true COMLINEPARMS
(* (true/COMLINEPARMS) indicates that CML is running *))

fun listen options = let open ScanDD.UserDeclarations
in sayDev := TERMDOT; listen’([],options) end

C.2.3 eXene 0.4

The SML/NJ lib (smlnj-lib-0.2) include loads have been changed such that eXene, which

is the graphical user interface of SML/NJ and based on CML, loads the Unix library

functions which are implemented by unix-env.sml and unix-path.sml as well. The

eXene basics has been extended, whereby changeable widgets and changeable boxes were

implemented. Look at the following code which is also taken from the RADD/raddstar

structure XListener, that runs the Listener and the Listener GUI.

val lnMsgChan = (channel() : string chan)
(* channel to display the messages sent to the listener in the listener GUI *)

fun run_listener options =
let fun quit root = (delRoot root; RunCML.shutdown())

fun listener() =
let fun inLoop() = (* watching the in channel *)

let val index = save_typing_env() in
case sync(receive XRIM.xrim_inch) of

Ch. C Development and Test Environment 249

XRIM.XRI_RULE HELP => (send(lnMsgChan,"help"); help())
| XRIM.XRI_RULE QUIT =>

(case !wroot of
SOME root => (send(lnMsgChan,"quit"); quit root)

| _ => ())
| XRIM.XRI_RULE r =>

((interprete options true r;
case r of

LOADDD fnam =>
(send(lnMsgChan,"load DD from \""^fnam^"\"");
print"send(XRIM.xrim_ctlch,XRIM.XRI_CHANGEBUTTONS...)\n";
send(XRIM.xrim_ctlch,XRIM.XRI_CHANGEBUTTONS);
print"sent.")

| LOADCSL fnam =>
(send(lnMsgChan,"load CSL from \""^fnam^"\""))

| LOADML fnam =>
(send(lnMsgChan,"load ML from \""^fnam^"\""))

| CSL _ =>
(send(lnMsgChan,"CSL command"))

| _ => restore_typing_env index)
handle ParseError =>

(send(lnMsgChan,"*** parse error ***");
restore_typing_env index;
RE.say "Parse Error\n"; RE.psln())

| (SUnbound s) =>
(send(lnMsgChan,"*** unbound variable or identifier ***");
restore_typing_env index;
RE.say("Unbound variable or identifier: "^s^"\n"); RE.psln())

| (TypingBug s) =>
(send(lnMsgChan,"*** typing bug ***");
restore_typing_env index;
RE.say("Typing error: "^s^"\n"); RE.psln()))

| XRIM.XRI_MESSAGE s => RE.say s
| XRIM.XRI_GETLINE l => l := RE.get_input_line (!RE.instrmr)
| _ => ();

inLoop()
end

in
spawn inLoop;

()
end

in
listener()

end

fun run_listener_gui options = let
val root = mkRoot (displayScreenHost options)
val _ = wroot := SOME root
val (lnmes,lncur,lnpos) = (ref "",ref "-",ref 1)
val MessageFont = "7x13"

fun messageBox root = let
val msgLabel = Label.mkLabel root {

label="Listener:",
foregrnd=NONE,
backgrnd=NONE,
font=SOME MessageFont,
align=HLeft

}
val _ = (lnmes := ""; lncur := "-"; lnpos := 1) (* initialize on call *)
val msgText = Label.mkLabelC root {

label=(!lnmes),
curpos=(!lnpos),
foregrnd=SOME(W.EXB.whiteOfScr (screenOf root)),
backgrnd=NONE,
cforegrnd=SOME(W.EXB.blackOfScr (screenOf root)),
cbackgrnd=NONE,
font=SOME MessageFont,
align=HLeft

}
val setFn = fn () => Label.setLabelC msgText (!lnmes,!lnpos)
val _ = setFn()

fun msgCtlLoop() = (* watching the ctl channel *)
(case sync(receive lnMsgChan) of

message =>
(lnmes := ("received ==>> "^message);

250 Appendix

lnpos := (String.size message)+1;
setFn());

msgCtlLoop())

val layout = (Shape.fixSize (Box.widgetOf(Box.mkLayout root (Box.VtCenter[
Box.Glue {nat=5, min=5, max=NONE},
Box.HzCenter
[Box.Glue {nat=6, min=6, max=NONE},
Box.HzCenter [Box.WBox (Label.widgetOf msgLabel)],
Box.Glue {nat=6, min=6, max=NONE},
Box.WBox
(Shape.fixSize (

Box.widgetOf(Box.mkLayout root
(Box.WBox(Label.widgetOf msgText))),

let open G in SIZE{wid=250,ht=18} end)),
Box.Glue {nat=6, min=6, max=NONE}],

Box.Glue {nat=6, min=6, max=NONE}])),
let open G in SIZE{wid=660,ht=50} end))

in
spawn msgCtlLoop;
layout

end

val behBttnBox = Box.cWBox (mkBehBttns root options)

fun mk_gui () =
(Shell.mkCShell

(Box.widgetOfCB
(Box.mkLayoutCB root

(Box.cVtLeft[
Box.cGlue {nat=6,min=6,max=NONE},
Box.cBoxOfB (Box.WBox (messageBox root)),
Box.cGlue {nat=6,min=6,max=NONE},
(Box.cHzCenter

[Box.cGlue {nat=3,min=3,max=NONE},
Box.cVtLeft
[(Box.cVtCenter

([Box.cHzCenter[behBttnBox],
Box.cGlue {nat=2,min=2,max=NONE}]))],

Box.cGlue {nat=3,min=3,max=NONE},
Box.cBoxOfB(Box.VtCenter([
Box.WBox (Shape.mkRigid (mkFileOpBttns root)),
Box.Glue {nat=2,min=2,max=NONE},
Box.WBox(Box.widgetOf(Box.mkLayout root

(Box.WBox (Shape.mkRigid (mkReviewBttns root))))),
Box.VtLeft
([Box.Glue {nat=4,min=4,max=NONE},

Box.WBox(Shape.mkRigid(mkTransfBttn root)),
Box.Glue {nat=0,min=0,max=NONE}]

@ [(slidersBox root)])
])),
Box.cGlue {nat=3,min=3,max=NONE}])])),

NONE,
{win_name = SOME "RADD/raddstar Listener GUI",
icon_name = SOME "RADD/raddstar Listener GUI"}))

in
setOptions{ins=(TaExtension.getInsertionOption()),

del=(TaExtension.getDeletionOption())};
Shell.initC (mk_gui());
setSliders root;
RE.Static.initprompt();
RE.set_prfun (fn s => (RE.output(!RE.outstrmr,s); RE.flush_out(!RE.outstrmr)));
set_prfun (fn s => RE.say("\n"^s^" ..."));
if not("-LOADDD" in_l options) then RE.psln() else();
()

end

C.2.4 Port to SML/NJ 1.10

A first try to port the modified versions of CML and eXene to the actual Standard-ML

of New-Jersey (SML/NJ 1.10) failed. As soon as possible CML and eXene used here, as

well as the RADD/raddstar will be ported to SML/NJ 1.10 (or later).

Ch. C Development and Test Environment 251

C.3 Postgres

The programming example in Section 17 has been developed using a modified version of

the postgresql-6.5-beta1 distribution and a shared library, implemented by the author.

1. Modified PGSQL-Parser and Data Dictionary.

The parser of Postgres was modified such that the language allows to define attribute

types char(n1)[n2] and varchar(n1)[n2] where n1 and n2 are numbers, respectively.

Accordingly, we have inserted data dictionary tuples to consider these types, which

are not supported by the postgresql-6.5-beta1 distribution as is. I.e., we have ex-

tended the Postgres type system such that the char and varchar types have been

made avalaible as base types for arrays.

2. Shared library T EName.so.

We have programmed a module T EName.c and generated the shared library

T EName.so, which implements the Employee-Name type

• the size of EName is 34 byte:

Firstnames(which is a pointer to an array of char[15] fields, => 4 bytes)

Lastname which is char[20], and Title which is char[10]

• the input and output functions are:

EName* ename in(char* str) and char* ename out(EName* name)

C.4 Year 2000 (Y2K) Tests

Unix operating systems store the time in a pointer to a signed long (type time_t *),

beginning at the 1st of 1970 0:00 Greenwich Mean Time (GMT) which equals zero. Unix

operating systems have normally no problem with the Y2K, besides it is an older release of

the operating system (such as Sun Solaris 2.5.1, or earlier), and applications use functions

to convert the Unix internal time format to the “readable” time format; i.e., something

like “YYYY:MM:DD:hh:mm:ss” (which is stored by means of the C-type struct tm *).

The critical time conversion functions are the following two functions, which are not

correctly implemented in the C-library (libc.so) of Solaris 2.5.1, or ealier:

• localtime(), which converts from the Unix time format (time_t *) to the “readable”

format (struct tm *), and

• mktime(), which does the opposite (struct tm * converted to time_t).

Under Solaris 2.5.1, for a date in 1999 localtime returns the year 99. If the Unix time is

over the Year 2000, then localtime returns the year - 1900; that is, 100 for the Year 2000,

101 for the Year 2001, and so forth. The mktime function works incorrectly if the year is

252 Appendix

greater than 99. Then, it returns a -1, which represents the 31st of December 1969 23:59

59 seconds.

As far as I have inspected the source code of Standard ML of New-Jersey Version 0.93,

which was used to implement the RADD/raddstar, it does not make any time conversion,

but maintains the Unix internal time only. Besides that, the RADD/raddstar system was

tested on a 686-PC with a 1997 Bios running a 1996 Linux distribution (the SML compiler

used was still a.out format, built on a 1994 Linux distribution), such that the time was

set to and over the 1st of January 2000. I compiled and tested the system completely

with the date set over 2000 on both platforms, and I could not recognize any difference

to the behavior when the machine (686 resp. Sparc) was running with the date set 1999.

The date and time conversion functions which are used in the RADD/raddstar, have

been implemented especially for that purpose and are working correctly. (Refer to the

example shown in Section 7.2.2.)

Appendix D

Catalog of Terms and Abbreviations

1NF. First normal form → Normalization. Refer to Section 2.3.2.1.

2NF. Second normal form → Normalization. Refer to Section 2.3.2.2.

3NF. Third normal form → Normalization. Refer to Section 2.3.2.3.

4NF. Fourth normal form → Normalization. Refer to Section 2.3.3.2.

5NF. Fifth normal form → Normalization. Refer to Section 2.3.3.4.

AD. Afunctional Dependency → Integrity Constraint.

Additional Requirements. Refer to Section 8.2.

Algebraic Specification. Refer to Section 6.1.

Application Programming. Refer to Section 7.3.

Attribute. A field of a Structure that carries a value of a certain type (integer, string,

etc.). Refer to Section 2.1.

BCNF. Boyce-Codd normal form → Normalization. Refer to Section 2.3.2.4.

Balancing Parameter. Refer to Section 5.3.1.3.

Basic Schema Transformation Operation. Refer to Section 5.2.2.

Behavior Option. Specification for control of the behavior on database modifications

by the DBMS (restrict, cascade, set null, set default). Refer to Section 5.3.2.

Behavior Specification. Specification for control of the behavior on database modi-

fications by the DBMS. For simplication, RADD/raddstar supports → Behavior

Options. Refer to Section 5.3.2.

254 Appendix

Booch Method. An object-oriented design method based on decomposition, abstrac-

tion, and hierarchy. Refer to Section 3.2.1.

Btree. B-tree access and storage method for databases (“clustering index”). See Sections

2.3.5.2, 5.3.1.1, 5.3.1.2, and 5.3.1.3.

CC. Cardinality Constraint → Integrity Constraint.

CSL. Conceptual Specification Language. A database design specification and program-

ming language with functional → SML-like extensions. CSL is the command-line

user interface of the RADD/raddstar. Refer to Chapter 7.

Coad/Yourdon Method. An object-oriented database design method. Refer to Sec-

tion 3.2.3.

Control Structures. Refer to Section 7.3.

Constraint → Integrity Constraint.

Correct Database States. Refer to Section 5.3.2.3.

Cost Evaluation. Refer to Section 5.3.3.

Cost Parameter Function. Refer to Section 5.3.1.2.

”D” Database Model. An specification of concepts for new-generation databases com-

bining concepts of the→ Relational Data Model and Object-oriented Data Models.

Refer to Section 3.3.2.4.

DBA → Database Administrator.

DBMS → Database Management System.

Database. A collection of data which is typically stored structurally in the form of

tables– in contrast to data stored by a → File System. (See Chapter 2.)

Database Administrator. Person who is resposible for the administrative tasks of a

→ Database, such as creating the database, starting and shutting down database

services, creating and enlarging tablespaces, rollback segments, and logfiles, making

backups, monitoring transactions, etc.

Database Design. Designing the → Structures and → Relationships of a → Database

for implementations under a → DBMS.

Database Design Repair. Refer to Section 4.2.1.

Ch. D Catalog of Terms and Abbreviations 255

Database Management System. A collection of programs to create and maintain a→
Database. The programs of a Database Management System are used as a general

purpose software system for specifying, constructing, and maintaining the database

for the various applications who need to access and modify the data.

Database Trigger. An action (A) that is automatically performed by the → DBMS as

soon as a special condition (C) occurs after happening of an event (E). All modeling,

specification and implementation techniques for Database Triggers use the ECA

model or some variant of it. Refer to Section 1.3.3.

DBtree. Dense B-tree access and storage method for databases (“non-clustering index”).

See Sections 2.3.5.2, 5.3.1.1, 5.3.1.2, and 5.3.1.3.

Dynamic Constraint. Special kind of→ Integrity Constraint having dynamic behavior.

Refer to Section 3.3.2.1.

ECA. Event-condition-action → Database Trigger.

EC2A. Event-constraint-condition-action. The→ Transaction Extension and evaluation

model of the RADD/raddstar.

ED. Exclusion Dependency → Integrity Constraint.

EERM → Extended Entity-Relationship-Model.

ERM → Entity-Relationship-Model.

Extended Entity-Relationship-Model. All extensions of Chen’s Entity-Relationship-

Model of 1976 are today denoted as extended Entity-Relationship-Model. There are

several kinds of extensions, e.g. record-typed, list-typed or set-typed attributes or

the annotation of new kinds of integrity constraints. (See Chapter 3.)

Entity-Relationship-Model. A methology for specifying a database by means of enti-

ties (entity is the type of an object of the real world) and relationsships (relationship

is the type of an association between objects of the real world). Entities and Rela-

tionships have attributes desribing the properties of the according object, e.g. the

name of a Person or the date a Person marries another. It is also possible to define

integrity constraints for entities and relationships, e.g. the Person’s name attribute

is called a key if it can be used to identify a Person uniquely in the Company (that

is, no two persons in the database have the same name). The Entity-Relationship-

Model originally was introduced by Peter Chen in 1976. (See Section 2.1.)

Error Prevention Properties. Refer to Section 5.1.1.

256 Appendix

FD. Functional Dependency → Integrity Constraint.

File System. A collection of directories and files. Directories contain directories and

files. First generation databases (as well as unfortunately some “object-oriented”

databases) were mapped with the help of file systems (i.e., to directories and files).

Fitness Evaluation. Refer to Section 5.3.3.

Functional Specifications. Refer to Section 7.2.

GUI. Graphical User Interface.

GemStone. Object-oriented DBMS. Refer to Section 3.3.2.3.

HERM → Higher-order Entity-Relationship-Model.

Higher-order Entity-Relationship-Model. An extended Entity-Relationship-Model

which adds relationsships between relationsships to the ERM methology. The

Higher-order Entity-Relationship-Model has been proposed by Bernhard Thalheim

in 1989. (See Section 3.3.3.1.)

HTML. Hypertext Markup Language. A programming language for the design of Web

sites.

Hash. Hash(ing) access and storage method for databases. See Sections 2.3.5.2, 5.3.1.1,

5.3.1.2, and 5.3.1.3.

Heap. Heap access and storage method for databases. See Sections 2.3.5.2, 5.3.1.1,

5.3.1.2, and 5.3.1.3.

Hierarchical Data Model. A data model based on hierarchical ordering of the data.

Refer to Section 2.2.

Hierarchical Model. → Hierarchical Data Model.

ID. Inclusion Dependency → Integrity Constraint.

IFO. A formal semantics database model. Refer to Section 3.1.3.

ISAM. Index-Sequential Access Method. See Sections 2.3.5.2, 5.3.1.1, 5.3.1.2, and 5.3.1.3.

Informix. A Relational DBMS. Refer to Section 2.3.5.

Ingres. A Relational DBMS. Refer to Section 2.3.5.

Insertion Option. → Behavior Specification for the control of insertions in network

databases. Refer to Section 2.2.5.

Ch. D Catalog of Terms and Abbreviations 257

Integrity Constraint. A presupposition necessary for consistency of the data. E.g., a

key attribute identifies an object uniquely in a set of objects. Or, the Person’s

name is used to identify each Employee uniquely (in a small Company): There can

be no two Persons (Person records in the database) having the same name. Or, an

inclusion dependency specifes that the values of an attribute must exists as values

of another attribute (of probably, a different relation). (For detailed explanation of

Integrity Constraints, refer to Section 2.3.1.)

Integrity Maintenance. Techniques to ascertain the integrity of data in the database.

This can be done by installing the → Relation Schema such that → Integrity Con-

straints can not be violated by the database operations (refer to Section 2.2.5, 2.3.2

and 2.3.3) or by invoking subsequent→ Repairing Actions which migrate temporar-

ily inconsistent databases to consistent ones (refer to Section 3.3.2.3).

Kett-Entity. Record type to represent many-to-many relationships in the network data

model. Refer to Section 2.2.4.

Key → Key-Attribute.

Key-Attribute → Integrity Constraint.

LList. Linked List access and storage method for databases. See Sections 2.2.4, 2.3.5.2,

5.3.1.1, 5.3.1.2, and 5.3.1.3.

Lock Tuning. → Tuning the operating of the DBMS according the locks it is setting on

the data sets. Refer to Section 4.1.2.

ML. Meta Language. A functional programming language. Refer to Section 6.2.

(NF)2. Non-first normal form → Normalization. Refer to Section 2.3.2.1.

NIAM. Nijssens Information Analysis Method. A database modeling and specification

technique considering database types (lexical object types, LOTs→ Attribute; non-

lexical object types, NOLOTs→ Structure), facts between the LOTs and NOLOTs

(→ Relationships), and populations of the LOTs, NOLOTs, and facts.

Nested Relational Model. Extended → Relational Data Model. Refer to Section

3.3.2.2.

Network Data Model. A data model based on network-like connected data. Refer to

Section 2.2.

Network Model. → Network Data Model.

258 Appendix

Normalization. A technique to reduce overhead in a set of → Relation Schemata by

generating a new set of relation schemata for the purpose to reduce the cost of →
Integrity Maintenance. Refer to Section 2.3.2 and 2.3.3.

O2. Object-oriented DBMS. Refer to Section 3.3.2.3.

OMT → Object Modeling Technique.

ONF. Optimal Normal Form → Normalization. Refer to Section 4.1.1.4.

ORM → Object Role Model.

Object Role Model. A variant of the → NIAM. Refer to Section 3.3.1.

Object Modeling Technique. An object-oriented database design model. Refer to

Section 3.2.2.

Optimization. Improving something that it behaves optimally.

Oracle7. A Relational DBMS. Refer to Section 2.3.5.

Oracle8. An Object-Relational DBMS. Refer to Section 3.3.2.3.

Ontos. Object-oriented DBMS. Refer to Section 3.3.2.3.

PAD. Path Afunctional Dependency → Path, → Integrity Constraint.

PCC. Path Cardinality Constraint → Path, → Integrity Constraint.

PED. Path Exclusion Dependency → Path, → Integrity Constraint.

PFD. Path Functional Dependency → Path, → Integrity Constraint.

PID. Path Inclusion Dependency → Path, → Integrity Constraint.

PREF. Path Reference → Path, → Integrity Constraint.

Path. Paths can be looked at as collections of structures (attribute, entity, relationship,

cluster) that are connected some way. Typically a path is a join between two or

more → Structures (S1 1 S2 . . .) such that this is used to specify a more general

type of → Integrity Constraint.

Path Dependency. → Integrity Constraint, → PAD, PCC, PED, PFD, PID, PREF.

(Refer to Section 6.3.1.2.)

plausibility Function. Refer to Section 5.3.2.4.

Ch. D Catalog of Terms and Abbreviations 259

plau card Function. Refer to Section 5.3.2.4.

Population Information. Refer to Section 7.1.1.

Postgres. Object-oriented DBMS (Postgres should be classified as an rather Object-

Relational DBMS). Refer to Section 3.3.2.3.

Preceder. Refer to Section 5.2.1.1.

RADD* Data Model. The data model representing the types of the internally pro-

cessed data of the RADD/raddstar. Refer to Section 6.3.

REF. Reference → Integrity Constraint.

RTS. Rule-Triggering-System. See → Database Trigger.

Relation. A set of tuples having all the same → Structure. See → Relation Schema.

Relation Schema. A set of → Attributes used to describe the types and labels of the

fields of a tuple (record) in a set of tuples (→ Relation, all tuples must be of the

same type.)

Relational Data Model. A data model based on sets of tuples describing relations

between the values of the tuples (→ Relation Schemata). Refer to Section 2.3.

Relational Model → Relational Data Model.

Requirements’ Specification. Refer to Section 8.2.

Repairing Actions. Actions to repair temporarily inconsistent database states by means

of → Database Triggers. See also → Integrity Maintenance.

Retention Option. → Behavior Specification for the control of deletions in network

databases. Refer to Section 2.2.5.

SDM. Semantic Data Model. Refer to Section 3.1.2.

SML. Standard ML of New-Jersey. Refer to Section 6.2.

SQL → Structured Query Language.

SQL-2 → SQL-92.

SQL-3 → SQL-99.

SQL-92. The SQL specification of 1992, also known as SQL-2.

260 Appendix

SQL-99. The SQL specification of 1999/2000, also known as SQL-3. SQL-3 is supported

(e.g. Oracle8) or will be supported by the new-generation DBMSs. Refer to Section

3.3.2.3.

Schema Reviewing. Refer to Section 8.3.

Schema Optimization. Refer to Section 8.3.

Schema Transformation Operation. Refer to Section 5.2.

Schema Transformations. Refer to Section 7.1.2.

Structure. A structure with labeled fields (→ Attribute) used to hold tuple data. In

this work, the term Structure is used to describe what is denoted record type in the

→ Hierarchical Data Model and → Network Data Model, and what is denoted →
Relation Schema in the → Relational Data Model. Refer to Section 6.3.

Structured Query Language. Programming language for structural definition and main-

tenance (retrievals, insertions, deletions etc.) of a database. SQL today is used as

the standard programming interface of almost all commercial DBMSs.

Sybase. A Relational DBMS. Refer to Section 2.3.5.

System Architecture. Refer to Section 8.1.

Transaction. A database operation or sequence of database operations (insertions, dele-

tions, updates, retrievals) that are only valid as a whole, and so, generate a new

database state only as a whole. If one of the operations in the sequence of database

operations fails, all other operations, even if they or some of them succeeded, are

rejected by the → DBMS.

Transaction Chopping. A → Tuning technique by means of breaking → Transactions

into smaller parts. Refer to Section 4.1.2.

Transaction Extension. Extending database operations (→ Transactions) such that

new transactions are generated containing all necessary actions for deriving a con-

sistent database state (→ Integrity Maintenance). Refer to Section 5.3.2.

Transaction Graph Mapping. Refer to Section 5.3.3.

Trigger → Database Trigger.

Tuning. Improving something such that it behaves more well. In the context of database

tuning, Tuning and → Optimization are often used as synonyms.

Ch. D Catalog of Terms and Abbreviations 261

Typing Rules. Rules for the derivation of types from patterns in sentences of a pro-

gramming language such as → SML or → CSL. Refer to Section 6.2.2.2.

Union. A variant (or “union”) type. In this work, Union is used to describe the structure

of a set of tuples having a variant type. In contrast, → Structure describes a non-

variant type.

VPCR. Virtual Parent-Child Record. Refer to Section 2.2.2.

WiSS. Wisconsin Storage System. See Sections 5.3.1.1, 5.3.1.2, 5.3.1.3, and 3.3.2.3.

Appendix E

Bibliography

E.1 Data Models and Database Management Sys-

tems

[ABD+89] M.P. Atkinson, F. Bancilhon, D.J. DeWitt, K. Dittrich, D. Maier, and

S. Zdonik. The object-oriented database system Manifesto. In [KNN89],

pages 40 – 57, 1989. 2

[AH87] S. Abiteboul and R. Hull. IFO: A Formal Semantic Database Model. ACM

ToDS, 12(4):525 – 565, December 1987. 1.2, 3.1, 3.1.3, 9

[AHW95] A. Aiken, J.M. Hellerstein, and J. Widom. Static analysis techniques for

predicting the behavior of active database rules. ACM ToDS, 20(1):3 – 41,

March 1995. 1.3.3, 3.3.2.1

[ASK94] ASK. “OpenIngres” heißt der neue ASK-Sprößling. Datenbank Fokus, pages

30 – 33, 03/04 1994. (in German). 17

[BO96] P. Bunemann and Atsushi Ohori. Polymorphism and Type Inference in Data-

base Programming. ACM ToDS, 21(1):30 – 76, March 1996. 6.2.2, 7

[Bom94] P.van Bommel. Experiences with EDO: An Evolutionary Database Opti-

mizer. In Data & Knowledge Engineering, 13, pages 243 – 263, 1994. 1.5

[Bom95] P.van Bommel. Database Optimization - An Evolutionary Approach. PhD

thesis, Katholieke Universiteit Nijmegem, 1995. 1.5, 3.3.1, 4.1.1.2, 4.1.1.4

[Boo94] G. Booch. Object-oriented Analysis and Design. Addison-Wesley, 2nd edition,

1994. 3.2.1

264 Appendix

[BWL94] P.van Bommel, ThP.v.d. Weide, and C.B. Lucasius. Genetic algorithms for

optimal logical database design. In Information and Software Technologie,

number 12 in 36, pages 725 – 732, 1994. 1.5

[Cam94] L. Campbell. Adding a New Dimension to Flat Conceptual Modeling. In

First International Conference on Object-Role Modelling ORM-1, July 1994.

1.5

[Car94] R.G.G. Cartell, editor. The Object Database Standard: ODMG-93. Morgan-

Kaufmann, 1994. 1.3.4, 2, 11

[CBC93] S. Choenni, H. Blanken, and T. Chang. Index selection in relational data-

bases. IEEE Computing Surveys, pages 491 – 496, 1993. 5.3.1, 5.4

[CDKK85] H. Chou, D. DeWitt, R. Katz, and T. Klug. Design and Implementation of

the Wisconsin Storage System (WiSS). In Software Practice and Experience,

15(10), 1985. 1.5, 15, 5.3.1.2

[CFPT94] S. Ceri, P. Fraternali, S. Paraboschi, and L. Tanca. Automatic Generation

of Production Rules for Integrity Maintenance. ACM ToDS, 19(3):367 – 422,

September 1994. 5.4

[CG93] P. Corrigan and M. Gurry. ORACLE Performance Tuning. O’Reilly & As-

sociates, Inc., 1993. 4.1.1.1, 4.2.1

[Che76] P.P.S. Chen. The Entity-Relationship Model: Towards a Unified View of

Data. ACM ToDS, 1(1):1 – 36, March 1976. 1.2, 2

[Cod70] E.F. Codd. A Relational Model for Large Shared Data Banks. Comm. of the

ACM, 13(6):197 – 204, 1970. 1.3.1, 2, 2.3, 4.1.1

[Cod79] E.F. Codd. Extending the database relational model to capture more mean-

ing. ACM ToDS, 4:397 – 434, Dec. 1979. 1.3.1, 2.3

[Con96] The ACT-NET Consortium. The Active Database Management System Man-

ifesto: A Rulebase of ADBMS Features. ACM Sigmod Record, 25(3):40 – 49,

September 1996. 2

[CW90] S. Ceri and J. Widom. Deriving production rules for constraint maintenance.

In Proc. 16th Conf. on Very Large Data Bases, pages 566 – 577. Morgan

Kaufman Publishers, 1990. 3.3.2.1

[CW94] S. Chakravarty and J. Widom, editors. Research Issues in Data Engineering:

Active Databases. Proc., Houston, 1994. 1.3.3

Ch. E Bibliography 265

[Dat92] C.J. Date. An Introduction to Database Systems. Addison-Wesley, 4th edi-

tion, 1992. 7.1

[DBB+88] U. Dayal, B. Blaustein, A. Buchmann, U. Chakravarthy, M. Hsu, R. Ledin,

D. McCarthy, A. Rosenthal, S. Sarin, M.J. Carey, M. Livny, and R. Jauhari.

The HiPAC Project: Combining Active Databases and Timing Constraints.

ACM Sigmod Record, 17(1), March 1988. 1.3.3, 3.3.2.1

[DD95] H. Darwen and C.J. Date. The Third Manifesto. ACM Sigmod Record,

24(1):39 – 49, March 1995. 2, 3.3.2.4

[DTG71] DTG. Committee on Data System Languages (Codasyl) – Database

Task Group Report. ACM Press, New York, April 1971. 2.2.7

[DTG79] DTG. Report of the database description language committee. Information

Systems, 3:247 – 320, 1979. 2.2.7

[Dun98] J. Dunham. Database Performance Tuning Handbook. McGraw-Hill, 1998.

1.5, 1.5, 4.1

[EG97] D.W. Embley and R.C. Goldstein, editors. Conceptual Modeling – ER’97,

16th International Conference on Conceptual Modeling, San Diego, November

1997. E.4

[EN89] R. Elmasri and S.B. Navathe. Fundamentals of Database Systems. Ben-

jamin/Cummings, 1989. 2, 2, III

[EN94] R. Elmasri and S.B. Navathe. Fundamentals of Database Systems. Ben-

jamin/Cummings, 2nd edition, 1994. 2.2.3, 2.2.7

[Eve88] G. Everest. Database Management. McGraw-Hill, 1988. 4.1.1.4

[Fag77] R. Fagin. Multivalued dependencies and a new normal form for relational

databases. ACM ToDS, 2(3):262 – 278, 1977. 2.3.3.1, 2

[FSS88] J. Fladeiro, A. Sernadas, and C. Sernadas. Knowledgebases as structured

theories. In Proc. 8th Int. Conf. on Foundations of Software Technology

and Theoretical Computer Science, volume 338 of LNCS, pages 469 – 486.

Springer-Verlag, 1988. 6.1

[GCS+97] Rick Greenwald, John Davidson Conley III, Steve Shiftett, Joseph Duer,

Jeffrey Dwight, Simeon Greene, Alexander Newman, and Scott Williams.

Using Oracle Web Application Server 3. Que, December 1997. 8

266 Appendix

[Gil91] Dov Gilor. SQL/DS Performance. John Wiley & Sons, Inc., 1991. 4.2.1,

5.3.1

[Gün95] M. Günther. SQL-Dilemma. iX, pages 160 – 164, June 1995. 5.1

[Hai89] J.-L. Hainaut. A generic entity-relationship model. In Information System

Concepts: An In-depth Analysis, Amsterdam, The Netherlands, 1989. Else-

vier Science Publishers. 1.5

[Hal90] T.A. Halpin. Conceptual schema optimization. Australian Computer Science

Communications, 12(1):136 – 145, 1990. 1.5

[Hal91] T.A. Halpin. A fact-oriented approach to schema transformations. In

MFDBS’91, volume 495, pages 342 – 356. LNCS, 1991. 1.5

[Han95] M.S. Hanna. A Close Look at the IFO Data Model. ACM Sigmod Record,

24(1):21 – 26, March 1995. 3

[Heu92] A. Heuer. Objekt-orientierte Datenbanken. Addison-Wesley, 1992. (in Ger-

man). 7

[HM81] M.M. Hammer and D.J. McLeod. Database Description with SDM: A Se-

mantic Database Model. ACM ToDS, 6(3):351 – 386, September 1981. 1.2,

3.1, 3.1.2

[ILR95] J. Iirari, K. Lyytinen, and M. Rossi, editors. Proc. 7th Int. Conf. on Ad-

vanced Information System Engineering, CAiSE’95, number 932 in LNCS,

Jyväskÿlä, Finland, June 14 - 16 1995. E.4

[Kim95] Won Kim, editor. MODERN DATABASE SYSTEMS – The Object Model,

Interoperability and Beyond. ACM Press, 1995. 7

[KL78] Dan Kapp and Joseph F. Leben. IMS Programming Techniques – A Guide

to Using DL/1. Van Nostrand Reinhold Company, 1978. 2.2.3

[KNN89] W. Kim, J.-M. Nicolas, and S. Nishio, editors. Proc. 1st Int. Conf. on Deduc-

tive and Object-Oriented Databases, Kyoto, December 1989. Elsevier. E.1

[KP76] L. Kershberg and J.E.S. Pacheco. A Functional Database Model. Technical

report, Pontificia Universidade Catolica do Fio de Janeiro, Brazil, February

1976. 1.2, 3.1.1

[KS91] H.F. Korth and A. Silberschatz. Database System Concepts. McGraw-Hill,

1991. 1.5, 5.4, 47

Ch. E Bibliography 267

[LN88] C.M.R. Leung and G.M. Nijssen. Relation Database Design using the NIAM

Conceptual Schema. Information Systems, 13(2):219 – 227, 1988. 4.1.1.4

[MNE96] Way Yin Mok, Yiu-Kai Ng, and David W. Embley. A normalform for pre-

cisely characterising redundancy in nested relations. ACM ToDS, 21(1):77 –

106, March 1996. 3.3.2.2

[Nij77] G.M. Nijssen. Current Issues in Conceptual Schema Concepts. In Architecture

and Models in Data Base Systems, pages 31 – 65. North-Holland, 1977. 1.2,

3.3.1

[Oll78] T.William Olle. The Codasyl Approach to Data Base Management. John

Wiley & Sons, Inc., 1978. 2.2.7

[Oracle8] Oracle. Oracle8, 1998. (Online HTML Documentation for Oracle 8.05

DBMS). 2

[PBGG89] J. Paredaens, P.D̃e Bra, M. Gyssens, and D.Ṽan Gucht. The Structure of the

Relational Database Model. EATCS Monographs on Theorethical Computer

Science. Springer-Verlag, Berlin, 1989. 3.3.2.2, 6.3.2

[PCO95] J.A. Pastor-Collado and A. Olivé. Supporting Transaction Design in Con-

ceptual Modelling of Information Systems. In LNCS 932, 1995. 6.1

[PLSQL95] Oracle. Oracle – Server SQL Reference. Release 7.2, April 1995. (Edited by

Brian Linden). 4, 4.2.1

[PLSQL98] Oracle. PL/SQL User’s Guide and Reference. Release 8.0, June 1998. (Online

HTML Documentation). 8

[RBP+91] J. Rumbaugh, M. Blaha, W. Premerlani, F. Eddy, and W. Lorensen. Object-

oriented Modelling and Design. Prentice Hall, Englewood Cliffs, New Jersey,

1991. I, 3.2.2

[RK87] M.A. Roth and H.F. Korth. The design of non-1NF relational databases into

nested normal form. Proc. ACM SIGMOD Int. Conf. on Management of

Data, 16(2), May 1987. 3.3.2.2

[RKS88] M.A. Roth, H.F. Korth, and A. Silberschatz. Extended algebra and calculus

for nested relational databases. ACM ToDS, 13(4):389 – 417, December 1988.

3.3.2.2

[RM92] A. Raihä and H. Manila. The Design of Relational Databases. Addison-

Wesley, 1992. 4.1.1.4, 7.1

268 Appendix

[RR94] A. Rosenthal and D. Reiner. Tools and Transformations – Rigorous and

Otherwise – for Practical Database Design. ACM ToDS, 19(2):167 – 211,

June 1994. 5.4

[Sha92] D.E. Shasha. Database Tuning – A Principled Approach. Prentice Hall, 1992.

1.3, 1.5, 1.5, II, 4, 4.1, 4.1.1.2, 4.1.2.2, 4.2.1, 4.3, 47

[Shi81] D. Shipman. The Functional Data Model and the Data Language DAPLEX.

ACM ToDS, 6(1):140 – 173, March 1981. Also found in [ZM90]. 1.2, 3.1,

3.1.1

[SK77] E.H. Sibley and L. Kershberg. Data architecture and data model considera-

tions. pages 85 – 96, June 1977. 3.1.1

[SST94] K.-D. Schewe, D. Stemple, and B. Thalheim. Higher-level genericity in object-

oriented databases. In S. Chakravarty and P. Sadanandan, editors, Proc.

COMAD, Bangalore, 1994. 1.3.3, 3.3.2.1, 5.4

[ST92] K.-D. Schewe and B. Thalheim. Computing consistent transactions. Technical

Report CS-08-92, University of Rostock, December 1992. 3.3.3.1, 5.3, 5.4

[ST94a] K.-D. Schewe and B. Thalheim. Achieving Consistency in Active Databases.

In S. Chakravarty and J. Widom, editors, Proc. RIDE-ADC, Houston, 1994.

1.3.3, 3.3.2.1, 5.4

[ST94b] K.-D. Schewe and B. Thalheim. A computational approach to consistency

enforcement. In Proc. of the Int. Workshop on Combining of Declarative and

Object-Oriented Databases, pages 111 – 124, 1994. 3.3.3.1, 5.3, 5.4

[ST98] K.-D. Schewe and B. Thalheim. On the Strength of Rule Triggering Systems

for Integrity Maintenance. In Australian Database Conference, January 1998.

5.4

[Su85] S.S. Su. Processing-Requirement Modeling and Its Application in Logical

Database Design, pages 151 – 173. 1985. 1.5, 4.1.1.2

[Syb93] Inc. Sybase. Transact-SQL User’s Guide, September 1993. 4, 4.2.1

[TDF86] T. Teorey, Yang D., and J.P. Fry. A Logical Design Methology for Relational

Databases Using the Extended Entity-relationship Model. ACM Computing

Surveys, 18(2):197 – 222, June 1986. 4.1.1

[Tha89] B. Thalheim. The Higher-order Entity-Relationship-Model and (DB)2. In

LNCS, volume 364, pages 382 – 397. Springer-Verlag, 1989. 3.3.3.1

Ch. E Bibliography 269

[Tha91] B. Thalheim. Dependencies in Relational Databases. Teubner Verlag, Leipzig,

1991. 5, 6.3.2

[Tha96] Bernhard Thalheim, editor. Conceptual Modeling – ER’96, 16th International

Conference on Conceptual Modeling, Cottbus (Germany), October 1996. E.4

[Tha97] B. Thalheim. Fundamentals of Entity-Relationship Modeling. Springer-

Verlag, 1997. 3.3.3.1, 5, 3.3.3.2

[Ull82] J.D. Ullmann. Principles of Database Systems. Computer Science Press,

Rockville, Maryland, 1982. 4.1.1.4

[Ull88a] J.D. Ullmann. Principles of Database and Knowledge-Base Systems, vol-

ume 1. Computer Science Press, Rockville, Maryland, 2nd edition, 1988. 2,

2.2.4

[Ull88b] J.D. Ullmann. Principles of Database and Knowledge-Base Systems. Com-

puter Science Press, Rockville, Maryland, 2nd edition, 1988. 7.1

[VB82] G.M.A Verheyen and J.van Bekkum. NIAM: An Information Analysis

Method, pages 1– 53. Informatica B.V. and Control Data. Nijssen Advieus-

bureau, The Netherlands, December 1982. 1.2

[Vos87] G. Vossen. Datenmodelle, Datenbanksprachen und Datenbankmanage-

mentsysteme. Addison-Wesley, 1987. (in German). 7.1

[Wie87] G. Wiederhold. File Organization for Database Design. McGraw-Hill, 1987.

1.5, 5.3.1, 5.4, 47

[Win85] J.J.V.R. Wintraekken. Informatie Analyse volgens NIAM. North-Holland,

1985. (in Dutch). 4.1.1.4

[X3.92] ANSI X3.135-1992. American National Standard for Information Systems –

Database Languages – SQL. ANSI, November 1992. 4

[ZM90] StanleyB. Zdonik and David Maier. Readings in Object-Oriented Database

Systems. Morgan Kaufmann, San Mateo, California, 1990. E.1

270 Appendix

E.2 Formal Database Specification Approaches

[AE91] S. Antoy and C. Egyhazy. Modelling Databases using Algebraic Specification.

(Preprint), 1991. 6.1

[Bro87] M. Broy. Specification of a Railway System. Technical Report MIP-8715,

Universität Passau, 1987. (in German). 6.1

[EKW79] H. Ehrig, H.-J. Kreowski, and H. Weber. Neue Aspekte algebraischer Spezi-

fikationsschemata für Datenbanksysteme. In IFB 21 Proc. Workshop Formale

Modelle für Informationssysteme, pages 181 – 198. Springer-Verlag, 1979. (in

German). 6.1

[EW78] H. Ehrig and H. Weber. Algebraic specification schemes for data base systems.

In Proc. 4tn Conf. on Very Large Databases, Berlin, 1978. 6.1

[Gog93] M. Gogolla. Spezifikation von Datenbanken mit Troll Light. Technical report,

Universität Braunschweig, 1993. (in German). 6.1

Ch. E Bibliography 271

E.3 Functional Languages

[Bru62] N.De Bruijn. Lambda-calculus notation with nameless dummies, a tool for

automatic formula manipulation. Indag. Math., 1962. 6.2.2

[Fai85] J. Fairbairn. Design and implementation of a simple typed language based

on the lambda-calculus. Technical Report 75, University of Cambridge, 1985.

6.2.2

[GMM+78] M. Gordon, R. Milner, L. Morris, M. Newey, and C. Wadworth. A metalan-

guage for interactive proofs in lcf. In Symp. on Princ. Prog. Lang., pages 119

– 130. ACM, 1978. 6.2

[GWM+91] J.A. Goguen, T. Winkler, J. Meseguer, K. Futatsugi, and J.-P. Jouannad.

Introducing OBJ*. Technical report, Michaelmas, DRAFT: August 14, 1991.

6.1

[Mac62] J. MacCarthy. Lisp 1.5 Programmer’s Manual. Cambridge, Mass., 1962. 6.2

[Mau93] M. Mauny. Functional programming using Caml Light. Technical report,

INRIA, Paris, 1993. 6.1, 6.2.1.1, 5, 6.2.2.2, 6.2.2.2, 6.2.2.2, 6.2.2.3, 7.3.2

[Mau95] M. Mauny. Functional programming using Caml Light. Technical report,

INRIA, Paris, January 1995. (Caml Light version 0.74). 6.2.2.3

[Mil78] R. Milner. A proposal for type polymorphism in programming. Computing

Systems, 17:348 – 375, 1978. 6.2.2

[Mil87] R. Milner. A Proposal for Standard ML. In Proc. ACM Conference on Lisp

and Functional Programming, 1987. 6.2, 7.3.2

[Pau90] L.C. Paulson. Isabelle: The next 700 theorem provers. In P. Odifreddi, editor,

Logic and Computer Science, pages 361 – 386. Academic Press, 1990. 31

[Rep91] John H. Reppy. Cml: A higher-order concurrent language. In Proc. SIG-

PLAN’91 Conf. on Programming Language. Design and Implementation,

pages 293 – 305, June 1991. 4

[Rep93] John H. Reppy. CML: A Higher-order Concurrent Language. Cornell Uni-

versity, February 15, 1993. 4

[Tur76] D. Turner. SASL language manual. Technical report, St. Andrews University,

1976. 6.2

272 Appendix

[Tur85] D. Turner. Miranda: a non-strict functional language with polymorphic

types. In Functional Programming Languages and Computer Architecture,

volume 201 of Lecture Notes in Computer Science, pages 1 – 16, 1985. 6.2

Ch. E Bibliography 273

E.4 The RADD Project

[AAB+95] M. Albrecht, M. Altus, E. Buchholz, A. Düsterhöft, and B. Thalheim. The

Rapid Application and Database Development (RADD) workbench – A com-

fortable database design tool. In [ILR95], 1995. 3.3.3.2, 8.1

[AAS97a] M. Albrecht, M. Altus, and M. Steeg. Conceptual Data Modeling, Implemen-

tation Prototyping, Transformation, and Application Design – An Animating

Approach using RADD. In ADBIS – Conference on Advanced Techniques

in Databases and Information Systems, St. Petersburg (Russia), September

1997. 3.3.3.2, 8.1, B.6.2

[AAS97b] M. Albrecht, M. Altus, and M. Steeg. Modeling of Behavior of Databases:

A Transformational Approach using RADD. In [EG97], November 1997.

3.3.3.2, 8.1, B.6.2

[Alb94] M. Albrecht. Semantikakquisition im Reverse-Engineering. Technical Report

I - 4/1994, TU Cottbus, Institut für Informatik, June 1994. (in German).

2.3.4.3, 4, 3.3.3.2, 8.1

[Bac91] P. Bachmann. Antrag zur Gewährung einer Sachbeihilfe durch die Deutsche

Forschungsgemeinschaft zur Thematik Modellierung von Struktur, Semantik

und Verhalten von Datenbanken – operationale Spezifikation –, September

1991. 6

[BDT94] E. Buchholz, A. Düsterhöft, and B. Thalheim. Exploiting Knowledge Gained

from Natural Language for EER Database Design. Technical Report I -

10/1994, Cottbus Technical University, 1994. 8.1

[FV94] C. Fahrner and G. Vossen. A survey of database design transformations

based on the entity-relationship model. Technical Report 14/94-1, Institut

für Wirtschaftsinformatik, Universität Münster, 1994. 4.1.1.4

[FV95] C. Fahrner and G. Vossen. A Survey of Database Design Transformations

Based on the Entity-Relationship Model. Data & Knowledge Engineering,

15:213 – 250, March 1995. 4.1.1.4

[Sch91] O. Schreyer. Ein Konzept zur automatischen Übersetzung eines Herm-

Datenbankentwurfs in eine algebraische Spezifikation, 1991. Diplomathesis

(in German). 6.1

[Ste95] M. Steeg. CoDO – The Cottbus Conceptual Database Optimizer – and its

Extensible Rule Model EC2A. Technical Report I - 2/1995, Cottbus Technical

University, Computer Science, July 1995. 3, 5.3.2, 7.1

274 Appendix

[Ste96] M. Steeg. The Conceptual Database Design Optimizer CoDO – Concepts,

Implementation, Application. In [Tha96], 1996. 3, 4.3, 5.4, 6.3.1, 3

	I Database Design and Database Maintenance
	Introduction
	Motivation and Overview
	Traditional Database Design
	The Database Optimization Problem
	The Normalization Approach to Database Optimization
	The Transaction Runtime Tuning Approach
	The Rule-Triggering System Approach
	The Web Application Design Approach

	Conceptual Database Design Optimization
	Conceptual Database Optimization Aspects
	Principles of Conceptual Schema Optimization
	Physical Schema can still be optimized further

	Related Work
	Outline of the Thesis

	Traditional Data Models and Data Representation Concepts
	The Entity-Relationship Model
	The Hierarchical Model and the Network Model
	The Hierarchical Data Model (Hierarchical Model)
	Integrity Constraints in Hierarchical Databases
	Hierarchical DBMSs
	The Network Data Model (Network Model)
	Integrity Maintenance in Network Databases
	Implementing the Network Database
	Maintaining the Network Database

	The Relational Data Model (Relational Model)
	Integrity Constraints
	Normal Forms for Relational Schemata
	Further Normalization
	Further Data Dependencies for Relational Databases
	Relational Database Implementation

	Summary and Outlook

	New-Generation Database Design and Database Management Approaches
	Functional and Semantic Data Models
	The Functional Data Model and the DAPLEX Language
	The Semantic Data Model (SDM)
	The IFO Database Model

	Object Models
	The Booch Method
	The Object Modeling Technique (OMT)
	The Coad/Yourdon Method
	Using Object Models for Database Design?

	Enhanced Data Modeling, Database Management, and Database Specification Concepts
	The Object-Role Model (ORM)
	Extensions of the Relational Data Model
	The Data Model used in the RADD Approach

	Summary and Outlook

	II Analysing Database Designs
	Database Optimization Scenarios
	Database Optimization Scenarios
	Conceptual, Logical, and Physical Data Representation
	Lock Tuning and Transaction Chopping

	Application Scenario: Conceptual Database Optimization based on Integrity Maintenance and Schema Transformation
	Repairing the incomplete Database Design
	Optimizing the Example Schema
	Summary

	Summary and Outlook

	Integrity Maintenance, Conceptual Schema Mapping, and Fitness Evaluation
	Integrity Maintenance and Schema Transformation
	Error Prevention Properties
	When do Transformations take place?
	General and Special Integrity Maintenance Rules

	Schema Transformation Operations
	Impact of Transformation to Integrity Maintenance
	Basic Schema Transformation Operations

	Cost Evaluation and Reflection of Internal Transactions to the Conceptual Schema
	Evaluation of the Basic Operation Costs
	Transaction Extensions
	Transaction Graph Mappings and Cost Evaluation

	Summary and Outlook

	Type Inference and Functional Schema Representation
	Specifying and Analysing Databases using Algebraic Specification Techniques
	Functional Implementation of the RADD/raddstar
	The Standard ML of New-Jersey Programming Language
	Type Inference in Functional Languages

	The RADD/raddstar Database Type System and the RADD* Data Model
	RADD* Database Schema and -Structures
	RADD* Constraints
	RADD* Type System and Subtyping Rules
	RADD* Internal Schema

	Summary and Outlook

	Conceptual Specification Language
	CSL Property and Requirement Specifications
	Maintaining Database Population Information
	Deriving and Advising Schema Transformations

	CSL Functional Specifications
	Defining and Using Application Functions
	Describing Database Operations

	CSL Control Structures and Database Application Programming Extensions
	Syntax of the CSL Commands
	Semantics of the CSL Commands
	Database Schemata and their Subschemata

	Summary and Outlook

	III Conceptual Database Design Optimizer
	Conceptual Database Design Optimizer
	System Architecture of RADD and raddstar
	The RADD/raddstar Subsystem
	The Graphical User Interface of the RADD/raddstar

	Specifying Additional Requirements
	Tuple Numbers
	Behavior Specifications
	Database Functions

	Schema Reviewing and Optimization
	Schema Reviewing
	Bottleneck Specification and Schema Optimization
	Optimized Schema

	Conclusions

	 Appendix
	Implementation of a Type-Checking Mini ML Compiler
	Basic Types of the Mini ML Compiler
	Mini ML Parser
	Lexical Analyser
	Parser

	The Mini ML Compiler
	The Compiler/Expression Evaluator
	The Main Structure
	Application Scenario

	Specification of the Schema Transformation and Optimization Rules
	Rules for Hierarchical Transformation
	Transformation Rule "h1"
	Transformation Rule "h2"

	Rules for Network Transformation
	Transformation Rule "n1"
	Transformation Rule "n2"

	Rules for Relational Transformation
	Transformation Rule "r1"
	Transformation Rule "r2"

	Rules for Object-Relational Transformation
	Transformation Rule "or1"
	Transformation Rule "or2"

	Rule for Object-Oriented Transformation
	Transformation Rule "o1"

	Rules for Conceptual Schema Optimization
	Optimization Rule "t1"
	Optimization Rule "t2"

	Development and Test Environment
	Operating Systems and Development Tools
	Standard-ML of New-Jersey (SML/NJ)
	SML/NJ 0.93
	CML 0.9.8
	eXene 0.4
	Port to SML/NJ 1.10

	Postgres
	Year 2000 (Y2K) Tests

	Catalog of Terms and Abbreviations
	Bibliography
	Data Models and Database Management Systems
	Formal Database Specification Approaches
	Functional Languages
	The RADD Project

