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Abstract

We consider semiconductor devices that are composed of two parts, first a meso-
scopic quantum structure constituting the active region, and, second, a classical
environment with larger typical length scales. While in general the classical envi-
ronment should be represented by a drift-diffusion model we consider here only sim-
ple contacts which we take as ideal metals with infinite conductivity. The transport
through the quantum structure is described like in the Landauer-Büttiker formalism
through electronic scattering wave-functions which define the electron density in the
quantum system. Further sources of the self-consistent Coulomb field are layers of
classical charges in the contacts at each of the interfaces to the quantum system.
We present further a capacitance model that takes into account the openness of
the quantum structure and the existence of finite contacts embedding the system.
The analysed structures are considered at very low temperatures. As particular
structures we study simple tunnelling barriers and a field induced two-dimensional
electron gas in a special GaAs/AlxGa1−xAs heterostructure.

For the single-barrier tunnelling structures, the capacitance presents oscillations
with applied bias, with maxima every time a (Fabry-Perot like) resonance crosses
the chemical potential in the source reservoir. Furthermore, at the same voltages,
the conductance exhibits shoulders.

For the field induced two dimensional electron gas, based on our self-consistent
calculations, we are able to perform a detailed analysis of the interaction between
the quantum system and the contact reservoir. We find that the quasi-bound state
that exists in the nearly closed system develops at the transition to the open system
into a separate type of resonance with distinct characteristics. Excellent quantita-
tive agreement shows that this transition is seen in the measured step in the C-V
characteristic on MIS-type semiconductor heterostructure.

The R -matrix method can be used to reduce computing times for the calculation
of transmission probabilities in mesoscopic semiconductor systems. We generalise
results for strictly one-dimensional transport to systems which show confinement
in more dimensions like a point contact. The formalism is applied to a tunnelling
barrier with a Kronig-Penney-type potential modulation in the lateral direction. In
the limit of very high barriers we find resonances which are created by the mismatch
of the wave functions inside and outside the barrier. It is shown that this type of
resonance has a qualitatively different behaviour than resonant tunnelling peaks.
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Chapter 1

Introduction

In the ohmic regime the conductance G of a rectangular three-dimensional conductor
is directly proportional to its cross-sectional surface S and inversely proportional to
its length L

G = σS/L, (1.1)

where the conductivity σ, an intensive quantity, is the same anywhere in the material
and it is a material characteristic. The conductance G is calculated then taking into
account the dimensions of the semiconductor piece [1].

With the permanent requirement in microelectronics for a constant scaling down
in size of integrated circuits appears the normal question: How small can one make
the dimensions before this ohmic behavior breaks down? In this way appears a
new category of systems: the mesoscopic systems are the systems that are much
larger than microscopic objects like atoms, but not large enough to be ’ohmic’ [2].
At low temperatures, the conductance of mesoscopic samples can not be found by
combining the conductivity of its smaller parts, which means that the scaling theory
does not work anymore.

There are three characteristic length scales [3]: i) the Fermi wavelength, λF =
2π/kF , which is related to the Fermi energy of the electrons εF = h̄2k2

F /(2m∗)
(λF ≈ 10nm in semiconductors, λF ≈ 1nm in metals); ii) the mean free path,
l, which is the distance that an electron travels before its initial momentum is
destroyed (l ≈ µm in high-quality semiconductors); and iii) the phase-relaxation
length (also called dephasing length or coherence length) Lφ, which is the distance
that an electron travels before its initial phase is destroyed (Lφ ≈ µm) and is much
larger then the mean free path. These length scales vary widely from one material to
another and are strongly affected by temperature, magnetic fields, etc. A conductor
usually shows ohmic behavior if its dimensions are much larger than any of these
characteristic length scales.

In the last decades, at the beginning of 1980s, it has become possible through the
modern growing techniques [4] MBE (molecular beam epitaxy) and MOCVD (metal-
organic chemical vapor deposition), to grow structures and devices for which the
characteristic dimensions are actually smaller than the appropriate mean free paths
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4 CHAPTER 1. INTRODUCTION

of interest. This provides samples with very intriguing properties: in GaAs/AlxGa1−xAs
semiconductor heterostructures it is possible at low temperatures to reach high
concentrations of transport carriers, Ns = 1011cm−2, with very high mobilities of
106cm2/Vs [5, 6] which allows for construction of very fast devices [7, 8, 9]. But in
such devices, the classical Boltzmann equation it is not anymore suitable for describ-
ing transport properties. To describe transport properties through structures with
dimensions that vary on the order of the de Broglie wavelength of carriers, the non-
locality of the particle invalidates the simplifying approximation of instantaneous (in
both space and time) phase-randomizing collisions, which allows for decoupling of
higher-order particle distributions functions in the Boltzmann equations [2], Chap.
2.7. For structures with characteristic length L smaller than the mean free path
l, i.e. L ¿ l, one may assume that the particles move through the active region
without scattering. This is termed ballistic transport [2]. If the total length of the
system is smaller then the coherence length, i.e. L ¿ Lφ, then the phase coherence
can be maintained over the transport distance so that the electron can be described
by a wave function extended over the whole system.

In conclusion, the mesoscopic devices or nanostructures are the high quality
semiconductor devices for which the characteristic length of the active region can
be comparable to or smaller than the Fermi wavelength λF . The charge carriers can
be described fully in quantum mechanical formalism and very interesting quantum
effects can be exploited [10].

Over the last two decades transport has been investigated in a multitude of
different mesoscopic semiconductor systems [3, 11]. Many phenomena such as the
universal conductance fluctuations [12], the Aharonov-Bohm oscillations [13], the
quantum Hall effect [14] and its quenching in small systems [15], the quantized
conductance in ballistic point contacts [16], Coulomb blockade oscillations[17], and
chaotic dynamics in quantum dots [18] have been discussed in the well known theory
pioneered by Landauer and Büttiker [19, 20, 21, 22, 23] and Tsu and Esaki [24].
This approach describes transport through transmission probabilities of electronic
scattering wave functions. Therefore, the understanding and the practical evaluation
of transmission- and reflection coefficients play a crucial role in many problems of
quantum transport.

Especially when the system involves more than one essential dimension the prac-
tical calculation of the transmission coefficients proves difficult. We distinguish be-
tween two different types of approaches to solve this problem. In the first type the
transmission is calculated directly by numerically solving the Schrödinger equation
for each energy with scattering boundary conditions. Examples for this type are the
recursive Green’s function technique [25, 26] and a similar recursive procedure to
obtain the wave functions directly [27]. This approach has the disadvantage that it
provides no analytical insight. The second type approaches make use of the general
S-matrix theory [28] to reformulate the problem. In this way, it is possible to find
analytical properties as well as to gain numerical advantages. The reference to the
general S-matrix theory is particularly valuable in the discussion of isolated or in-
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teracting transport resonances which can be represented by poles of the S-matrix in
the complex energy plane. Examples for the second type approaches are the spectral
projection method as developed in Refs. [29], the effective Hamiltonian description
[30] and the R-matrix approach which is used in this thesis.

The R-matrix method is a two-step procedure (see Sect. 2.1): At first, the R-
matrix is constructed in a time-consuming step solving the Schrödinger equation
with particular boundary conditions. We call the resulting eigenfunctions Wigner-
Eisenbud functions and the eigenenergies Wigner-Eisenbud energies. Then, the S-
matrix and thus the scattering states which contain information about transmission
between incident and evanescent states are constructed in a relatively fast second
step. This two-step procedure is one of the numerical advantages of the R-matrix
method. The analytical advantage of the R-matrix theory is that it provides a
natural description for resonant transport and transport in multipole devices.

The R-matrix method has originally been developed in the context of scattering
cross sections in nuclear- and atomic physics [31]. More recently the R-matrix
method has been applied to calculate the transmission of electromagnetic modes
in microcavities [32]. The application of the R-matrix technique to mesoscopic
semiconductor systems was demonstrated in an initiating paper by Smrčka [33] for
one-dimensional structures. In a strongly simplified version, namely in the single
level approximation, the R-matrix has also been used in multidimensional systems
to analyze the statistics of isolated tunneling peaks in a Coulomb blockade system
[18, 34, 35].

In many cases a comparison with experimental structures requires the consider-
ation of Coulomb interaction. Therefore we integrated the Coulomb interaction in
the R-matrix scheme on a Hartree level (Sect. 2.4). All the models are performed
at very low temperatures, i.e. T ≤ 4.2K.

The structure of this thesis is as following:

In Chap. 2 we present our model used to treat the transport problems through
mesoscopic structures. The R-matrix method for one-dimensional tunneling systems
is reviewed in Sec. 2.1. After that, we present the calculation of the electronic den-
sity distribution in quantum mechanical formalism and the self-consistent scheme for
open systems in mean-field approximation. We present the two principal concepts
of characterizing transport in mesoscopic structures: the tunneling current and the
capacitance. The tunneling current is calculated in Landauer-Büttiker formalism.
For the capacitance we present a new model which takes into account the openness
of the system and the existence of finite contacts embedding the system. The ca-
pacitance model is based on the ancestry of the carriers and not on their spatial
distribution.

We analyze in Chap. 3 the capacitance of a field induced two dimensional elec-
tron gas (2DEG) sandwiched between a back contact and a blocking barrier. The
peculiarities of the structure are that the quantum system is in contact only with
one reservoir and the blocking barrier suppresses the charge transfer from one side
to the other side of the structure. Based on our models, we perform a detailed anal-
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ysis of the interaction of a quantum system, in our case the field-induced 2DEG,
with the contacts through particle exchange. Our capacitance model provides a very
accurate description of the capacitance measurements performed on the MIS-type
semiconductor heterostructures.

In Chap. 4, we analyze a single-tunneling barrier, which is in contact with two
reservoirs and also a tunneling current flows. There is no spacer between the highly-
doped layers and the tunneling barrier. The same self-consistent scheme for open
systems is used. It is shown that the capacitance exhibits oscillations with applied
bias, with maxima at the same voltages where the conductance presents shoulders.
Furthermore, these voltages correspond to the configurations where Fabry-Perot
resonances cross the chemical potential on the source reservoir.

In Chap. 5 we extend the R-matrix formalism to two-dimensional systems. The
analyzed structure is a tunneling barrier with a periodical lateral modulation. We
consider no applied bias between source and drain contacts and we do not take
into account the Coulomb interaction. For strong modulation we find a transition
from the known quantized conductivity in e2/h of a single point contact for small
average barrier height, to a series of resonant peaks of height e2/h for high barriers.
At weak modulation we demonstrate that the miniband structure of the lateral
dispersion can be resolved in dc transport in the forward direction in the limit of
large average barrier height.

In the last chapter are presented the conclusions of this thesis.



Chapter 2

Formalism and models

The subject of this thesis are quantum semiconductor nanostructures. The quantum
confinement for the nanostructures we consider is achieved through the growth of
heterogeneous layers having different bandgaps which can lead to a quantization
perpendicular to the substrate surface.

The general geometry is sketched in the Fig. 2.1.
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Figure 2.1: General geometry of the samples.

We will restrict our discussion of transport in nanostructures only to the con-
duction band states. The direction of transport is parallel to the growth direction.
The electronic states will be described within the envelope function approximation
[36]. The applicability of the envelope function approximation in mesoscopic sys-
tems has been discussed in a review by Burt [37]. The main achievement of this
approximation is that the wave function in mesoscopic structures can be written as

Φ(r) =
∑

j

φj(r)uj0(r), (2.1)
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8 CHAPTER 2. FORMALISM AND MODELS

where j is the band index and uj0(r) is the periodic part of Bloch functions at k = 0,
which contains the information about the material. φj(r), the so called envelope
function, contains information about the geometrical structure of the sample. The
envelope function equation in the effective mass approximation is a Schrödinger type
equation

(
− h̄2

2

∂

∂z

1

m∗(z)

∂

∂z
− h̄2

2m∗
⊥
∇2
⊥ + V (z)

)
φ(x, y, z) = Eφ(x, y, z), (2.2)

where m∗(z) and m∗
⊥ are the effective mass parallel and perpendicular to the di-

rection of transport, respectively. ∇⊥ is calculated with respect to the direction
perpendicular to the direction of transport. V (z) is the effective potential in the
direction of growth and is mainly given by the conduction-band offsets of the het-
erostructure. It can also include contributions from the ionized dopants, free carriers,
and the applied potential itself, in a self-consistent calculation.

Since for the heterojunction system without lateral gates the potential variation
is only in the direction of growth (in our case z-direction), the solution is separable
as

φn,kx,ky =
1√

LxLy

ψn(z) exp(ikxx) exp(ikyy), (2.3)

corresponding to free electron motion in the plane (x, y) parallel to the interfaces,
with Lx, Ly being the lateral lengths of the system. The one-dimensional eigenfunc-
tions ψn(z) satisfy the equation

− h̄2

2

d

dz

1

m∗(z)

d

dz
ψn(z) + V (z)ψn(z) = εnψn(z), (2.4)

where n labels the eigenstates in the growth direction.

Assuming, for simplicity, parabolic bands, the total energy relative to the band
minima is thus

En,kx,ky =
h̄2(k2

x + k2
y)

2m∗
⊥

+ εn. (2.5)

In Fig. 2.1, VSD denotes the total external bias applied between contacts, while
Vsd will be used further for the bias drop only on the quantum structure. Depending
on how the quantum structure is contacted there can be a difference between these
two quantities.

We will assume further, for simplicity, the same effective mass over the whole
structure. This assumption is correct as long as the analyzed effects are not strongly
influenced by the effective mass variation. One can also choose the same mass over
the whole structure, when the transport time is short and the electron does not feel
the differences in the lattice structure.



2.1. THE R-MATRIX FORMALISM FOR 1D SCATTERING PROBLEMS 9

2.1 The R-matrix formalism for 1D scattering prob-

lems

We will solve the scattering problem (2.4) in the R-matrix formalism. This method
is described in Ref. [93] based on the Lippmann-Schwinger equation for the case
with no applied bias between the contacts in the transport direction. In this section
we will describe this formalism for one-dimensional tunneling systems with a finite
potential difference Vsd between both sides of the barrier. The scattering potential
V (z), Fig. 2.2, is given generally by V = VL in the left (source-) contact, z < −d,
and V = VR for the right (drain-) contact, z > d. Within the scattering area,
−d < z < d, the potential is allowed to vary arbitrarily.

eV

µ

µ
L

L

R

R

sd

barrier

d

V

z

V

V

Figure 2.2: One-dimensional scattering potential. The chemical potentials of the
contacts µL and µR are separated by the applied bias energy eVsd.

2.1.1 General form of scattering states for 1D problems

An effectively 1D scattering process can be described by the time-independent
Schrödinger equation

[
− h̄2

2m∗
d2

dz2
+ V (z)− ε

]
ψ(z, ε) = 0, (2.6)

where V (z) is the scattering potential. Here ε is the kinetic energy in the direction
of transport, given by Eq. (2.5). We split the potential V (z) = V0(z) + ∆V (z) in
an unperturbed potential V0 and a potential perturbation ∆V (z). We choose

V0(z) = VLΘ(−z) + VRΘ(z), (2.7)
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so that ∆V (z) = V (z)− V0(z) vanishes for |z| > d. Equation (2.6) can be rewritten
as [

h̄2

2m∗
d2

dz2
− V0(z) + ε

]
ψ(z, ε) = ∆V (z)ψ(z, ε). (2.8)

We now interpret this equation as an inhomogeneous differential equation, where
the left hand side is the Schrödinger equation of the unperturbed particle, and
the potential on the right hand side is treated as an inhomogeneous term. The
inhomogeneous Schrödinger equation can be solved using the unperturbed Green
function G0(z, z

′; ε) which is the solution of the equation
[

h̄2

2m∗
d2

dz2
− V0(z) + ε

]
G0(z, z

′; ε) = δ(z − z′). (2.9)

Using the matching conditions, the Green’s function G0(z, z
′; ε) can be found ana-

lytically [38], and reads for z′ < 0

G0(z, z
′; ε) =

m∗

h̄2

1

ikL

[
e−ikL(z−z′) +

kL − kR

kL + kR

e−ikL(z+z′)
]
, z < z′

=
m∗

h̄2

1

ikL

[
kL − kR

kL + kR

e−ikL(z+z′) + eikL(z−z′)
]
, z′ < z < 0

=
m∗

h̄2

2

ikL + ikR

e−ikLz′+ikRz, z > 0 (2.10)

whereas for z′ > 0,

G0(z, z
′; ε) =

m∗

h̄2

2

ikL + ikR

e−ikLz+ikRz′ , z < 0

=
m∗

h̄2

1

ikR

[
kR − kL

kL + kR

e−ikR(z+z′) + eikR(z−z′)
]
, 0 < z < z′

=
m∗

h̄2

1

ikR

[
eikR(z−z′) +

kR − kL

kL + kR

eikR(z+z′)
]
, z > z′ . (2.11)

The Schrödinger equation of the unperturbed particle
[
− h̄2

2m∗
d2

dz2
+ V0(z)− ε

]
ψ

L/R
0 (z, ε) = 0 (2.12)

has as solutions the scattering wave functions for a single-step potential, ψ
L/R
0 (z, ε).

Application of standard matching techniques yields [39] Chap. 5.4, for ε ≥ VL ≥ VR

ψL
0 (z, ε) =





exp (ikLz) + kL−kR

kL+kR
exp (−ikLz), z < 0

2kL

kL+kR
exp (ikRz), z > 0

(2.13)

ψR
0 (z, ε) =





2kR

kL+kR
exp (−ikLz), z < 0

exp (−ikRz)− kL−kR

kL+kR
exp (ikRz), z > 0

(2.14)
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There are two orthogonal eigenstates for each energy, ψL
0 and ψR

0 , which have the
physical meaning that a particle of energy ε can be moving to the right (ψL

0 ) or to
the left (ψR

0 ) with the momentum

kL/R =

√
2m∗

h̄2 (ε− VL/R). (2.15)

By means of G0(z, z
′; ε) the Schrödinger equation (2.8) can be transformed to an

equivalent integral equation

ψ(z, ε) = ψ0(z, ε) +
∫ +d

−d
dz′ G0(z, z

′; ε) ∆V (z′)ψ(z′, ε), (2.16)

where ψ0(z, ε) is the solution of the unperturbed Schrödinger equation (2.12). We
have thus obtained the Lippmann-Schwinger equation. It is not really a solution
of the Schrödinger equation, as the unknown wave function ψ(z, ε) still enters the
right hand side of the equation but it provides the required asymptotic form of the
scattering states. Substituting Eqs. (2.10) and (2.11) in Eq. (2.16) we find for
z ≤ −d

ψL(z, ε) = aL(ε) exp (ikLz) + bL(ε) exp (−ikLz), (2.17)

with aL(ε) = 1 and

bL(ε) =
kL − kR

kL + kR

+
m∗

h̄2

1

ikL

∫ 0

−d
dz′

[
eikLz′ +

kL − kR

kL + kR

e−ikLz′
]

∆V (z′)ψL(z′, ε)

+
m∗

h̄2

2

ikL + ikR

∫ d

0
dz′ eikRz′∆V (z′)ψL(z′, ε). (2.18)

For z ≥ d we obtain

ψL(z, ε) = cL(ε) exp (ikRz) + dL(ε) exp (−ikRz), (2.19)

with

dL(ε) = 0

and

cL(ε) =
2kL

kL + kR

+
m∗

h̄2

1

ikL

∫ d

0
dz′

[
e−ikRz′ − kL − kR

kL + kR

eikRz′
]

∆V (z′)ψL(z′, ε)

+
m∗

h̄2

2

ikL + ikR

∫ d

0
dz′ e−ikLz′∆V (z′)ψL(z′, ε). (2.20)

Corresponding results are obtained for ψR: for z ≥ d

ψR(z, ε) = cR(ε) exp(ikRz) + dR(ε) exp(−ikRz), (2.21)
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with dR(ε) = 1 and

cR(ε) =
kR − kL

kL + kR

+
m∗

h̄2

1

ikR

∫ d

0
dz′

[
e−ikRz′ − kL − kR

kL + kR

eikRz′
]

∆V (z′)ψR(z′, ε)

+
m∗

h̄2

2

ikL + ikR

∫ 0

−d
dz′ e−ikLz′∆V (z′)ψR(z′, ε) (2.22)

and for z ≤ −d

ψR(z, ε) = aR(ε) exp(ikLz) + bR(ε) exp(−ikLz) (2.23)

with aR(ε) = 0 and

bR(ε) =
2kR

kL + kR

+
m∗

h̄2

1

ikL

∫ 0

−d
dz′

[
eikLz′ +

kL − kR

kL + kR

e−ikLz′
]

∆V (z′)ψR(z′, ε)

+
m∗

h̄2

2

ikL + ikR

∫ d

0
dz′ eikRz′∆V (z′)ψR(z′, ε). (2.24)

ψL is interpreted as scattering state coming from the left reservoir with an
incident- and a reflected wave described in Eq. (2.17) and a transmitted wave de-
scribed in Eq. (2.19) and ψR has the interpretation of scattering state coming from
the right reservoir with an incident- and a reflected wave described in Eq. (2.21)
and a transmitted wave described in Eq. (2.23).

We then define
tL(ε) = cL(ε) (2.25)

and
tR(ε) = bR(ε) (2.26)

as transmission amplitudes from left to right and right to left, respectively. The
reflection amplitudes are defined analogously:

rL(ε) = bL(ε) (2.27)

and
rR(ε) = cR(ε). (2.28)

These coefficients are functions of the particle energy in direction of transport, ε.
The probability flux density, or ”current”, is defined as [39], Sec. 5.3.,

jz =
h̄

2m∗i

(
ψ∗

d

dz
ψ − ψ

d

dz
ψ∗

)
. (2.29)

Using the asymptotic form of the left incident scattering state, Eq. (2.17), we can
calculate the incident probability current density

jL
inc(ε) =

h̄kL

m∗ |aL(ε)|2 =
h̄kL

m∗ (2.30)
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and the reflected probability current density

jL
refl(ε) =

h̄kL

m∗ |bL(ε)|2. (2.31)

Thus, we can define the reflection coefficient (or reflection probability) as ratio of
reflected current to incident current

RL(ε) =
jL
refl(ε)

jL
inc(ε)

= |bL(ε)|2 = |rL|2. (2.32)

The transmitted probability current density is calculated using Eq. (2.19),

jL
trans(ε) =

h̄kR

m∗ |cL(ε)|2 (2.33)

so that the transmission coefficient (or transmission probability) is the ratio of trans-
mitted current to incident current

TL(ε) =
jL
trans(ε)

jL
inc(ε)

=
kR

kL

|cL(ε)|2 =
kR

kL

|tL(ε)|2. (2.34)

Analogously, we can define the transmission and reflection coefficients for the scat-
tering states coming from the right, TR(ε) = (kL/kR)|tR(ε)|2 and RR = |rR(ε)|2,
respectively. Based on the probability current density conservation, we have for any
energy ε ≥ VL ≥ VR

TL(ε) + RL(ε) = 1, TR(ε) + RR(ε) = 1. (2.35)

Due to time-reversal symmetry, that reflects the microscopic reversibility of quantum
mechanics itself, we have the following symmetry properties

TL(ε) = TR(ε), RL(ε) = RR(ε), (2.36)

showing that the transmission and reflection probabilities are independent of the
direction of the incident wave upon the barrier.

2.1.2 S-matrix formulation of 1D scattering problems

To establish the S-matrix we introduce a decomposition

ψ = ψin + ψout, (2.37)

of a general state ψ = αψL +βψR with α and β complex numbers, into an incoming
part ψin and an outgoing part ψout. This is equivalent to setting other two linear
solutions of the Eq. (2.6) ψin and ψout instead of ψL and ψR. Using the solutions
of the unperturbed system, (2.13) and (2.14), we set for z ≤ −d:

ψin(z, ε) = α exp (ikLz) (2.38)
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and for z ≥ d
ψin(z, ε) = β exp (−ikRz). (2.39)

The corresponding outgoing parts

ψout(z, ε) = ψ(z, ε)− ψin(z, ε) (2.40)

are then
ψout(z, ε) =

[
αrL(ε) + βtR(ε)

]
exp (−ikLz) (2.41)

for z ≤ −d and
ψout(z, ε) =

[
αtL(ε) + βrR(ε)

]
exp (ikRz) (2.42)

for z ≥ d.
The S-matrix is defined as

ψout(z, ε) = S(z,−L)ψin(−L, ε) + S(z,L)ψin(L, ε), (2.43)

mapping the ingoing wavefunction at two points ±L with arbitrary L ≥ d to the
outgoing wavefunction outside of [−L,L]. To establish a relation between the S-
matrix and the transmission- and reflection coefficients we define the 2× 2 - matrix

Ŝ =

[
S(−L,−L) S(−L, +L)
S(+L,−L) S(+L, +L)

]
. (2.44)

Inserting the forms for ψin/out into Eq. (2.43) we obtain
[

rL tR

tL rR

]
=

[
e−i2kLL S(−L,−L) e−i(kL+kR)L S(−L, +L)
e−i(kL+kR)L S(+L,−L) e−i2kRL S(+L, +L)

]
. (2.45)

In this way the transmission and reflection coefficients can be constructed from the
S-matrix at two points ±L. In our formulation, Eq. (2.43), the S-matrix connects
the wave function and not only the coefficients of a linear combination of (plane)
waves. But writing the S-matrix elements for a fixed L, Eq. (2.44), we have the
same expression as in Weisbuch and Vinter [40], Chap. 2, Eq. (33d). The reflection
and transmission coefficients are related to the S-matrix by a similar relation as for
the case of no applied bias [93] which is obtained if we substitute kL and kR by kz.

2.1.3 R-matrix formulation of 1D scattering problems

Next we want to give a practical method for calculating the scattering states and
in turn to calculate the S-matrix, based on the general idea that one can express a
wave function in terms of a suitable orthonormal and complete system of functions.

Such a system of functions is provided by the Wigner-Eisenbud functions χl(z),
used first in nuclear physics [41], which are the solutions of the Schrödinger-type
equation [

− h̄2

2m∗
d2

dz2
+ V (z)

]
χl(z) = εlχl(z), (2.46)
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with the Neumann boundary conditions

dχn

dz

∣∣∣∣∣−L
=

dχn

dz

∣∣∣∣∣L
= 0. (2.47)

The Wigner-Eisenbud energies εl and functions χl(z) are real [41]. These functions
are defined only on the interval [−L,L] . They are an orthonormal and complete
system of functions. Let us demonstrate the orthonormality of this system. We can
write Eq. (2.46) also for l′ index

[
− h̄2

2m∗
d2

dz2
+ V (z)

]
χl′(z) = εl′χl′(z). (2.48)

We multiply (2.46) with χl′(z) and (2.48) with χl(z) and after that we subtract them
and integrate the result over the interval [−L,L]:

− h̄2

2m∗

∫ L

−L
dz

[
χl(z)

d2

dz2
χl′(z)− χl′(z)

d2

dz2
χl(z)

]
= (εl − εl′)

∫ L

−L
dz χl(z)χl′(z)

(2.49)
Integrating the left side by parts and using the boundary conditions (2.47) we have
for l 6= l′

(εl − εl′)
∫ L

−L
dz χl(z)χl′(z) = 0

and that means: ∫ L

−L
χl(z)χl′(z)dz = 0 for l 6= l′ (2.50)

The normalization condition for this system of functions is written as

1

2L
∫ L

−L
χl(z)χl(z)dz = 1 (2.51)

By analogy to the Sturm-Liouville systems, it is assumed the completeness of
this system of functions for the interval [−L,L],

∞∑

l=1

χl(z)χl(z
′) = δ(z − z′) (2.52)

We would like to expand the scattering states in the basis of the Wigner-Eisenbud
functions. We multiply (2.6) by χl(z), conjugate complex (2.46) and multiply it by
ψ(z, ε), subtract both equations and integrate the result over the interval [−L,L].
At the end we obtain:

− h̄2

2m∗

∫ L

−L
dz

[
χl(z)

d2

dz2
ψ(z, ε)− ψ(z, ε)

d2

dz2
χl(z)

]
= (ε− εl)

∫ L

−L
dz ψ(z, ε)χl(z)
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The left side can be integrated by parts and using the Wigner-Eisenbud boundary
conditions (2.47) it is obtained that

h̄2

2m∗

[
χl(−L)

dψ

dz
(−L, ε)− χl(L)

dψ

dz
(L, ε)

]
= (ε− εl)

∫ L

−L
ψ(z, ε)χl(z)dz. (2.53)

At this point we introduce the normal derivative of the wavefunction (which contains
the sign):

ψS(±L, ε) = ± 1

m∗
dψ

dz
(±L, ε) (2.54)

and obtain:

− h̄2

2

χl(−L)ψS(−L, ε) + χl(L)ψS(L, ε)

ε− εl

=
∫ L

−L
ψ(z, ε)χl(z)dz (2.55)

Since {χl(z)} is an orthonormal basis, then we can expand the wave function ψ(z, ε)
in terms of the χl(z) but only for z ∈ [−L,L]:

ψ(z, ε) =
∞∑

l=1

al(ε)χl(z), (2.56)

where

al(ε) =
1

2L
∫ L

−L
ψ(z, ε)χl(z)dz (2.57)

The above expansion is true in the sense of ”mean convergence” as defined in
functional analysis. That means

|ψ(z, ε)−
∞∑

l=1

al(ε)χl(z)|2 → 0 (2.58)

but this is not true locally, as for a particular point z0 one has

ψ(z0, ε) 6←
∞∑

l=1

al(ε)χl(z0) (2.59)

so that we can not write d
dz

ψ(±L, ε) =
∑∞

l=1 al(ε)
d
dz

χl(±L) = 0
Defining Green’s function for the Wigner-Eisenbud problem as

G(z, z′; ε) =
1

2L
∞∑

l=1

χl(z)χl(z
′)

ε− εl

(2.60)

and inserting (2.55) and (2.57) into (2.56) we can write the wavefunctions

ψ(z, ε) = − h̄2

2
[G(z,L; ε)ψS(L, ε) + G(z,−L; ε)ψS(−L, ε)] (2.61)
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We define the R-matrix elements by:

R(z, z′; ε) = − h̄2

2
G(z, z′; ε) = − h̄2

4L
∞∑

l=1

χl(z)χl(z
′)

ε− εl

(2.62)

and obtain the general expression of the wavefunction in terms of its normal deriva-
tives

ψ(z, ε) = R(z,−L; ε)ψS(−L, ε) + R(z,L; ε)ψS(L, ε) z ∈ [−L,L]. (2.63)

Thus, the R-matrix elements relate the total wavefunction to its normal derivatives
at ±L. As it is shown in Eq. (2.62), the R-matrix elements can be constructed
using the Wigner Eisenbud functions. For the one-dimensional case, we find

R(±L,±L) =
h̄2

4L
∞∑

n=1

χn(±L)χn(±L)

εn − ε
, (2.64)

where εn are the eigenenergies associated with the Wigner-Eisenbud problem.

If we want to calculate the normal derivative of the wave function at the points
±L, because of the mean convergence series in (2.64) we have to use the expressions
which are outside of the scattering region (i.e. (2.17) and (2.19) for ψL, and (2.21)
and (2.23) for ψR). The wave function and its first derivative are anyway continuous.

2.1.4 Relation between R- and S-matrix

We will construct further the relation between the R-matrix and S-matrix, where
we define R̂ analogous to Ŝ,

R̂ =

[
R(−L,−L) R(−L, +L)
R(+L,−L) R(+L, +L)

]
. (2.65)

Using the relations (2.38) and (2.41), we can write for z ≤ −d:

dψin

dz
= ikLψin, (2.66)

dψout

dz
= −ikLψout, (2.67)

and using (2.39) and (2.42) for z ≥ d:

dψin

dz
= −ikRψin, (2.68)

dψout

dz
= ikRψout. (2.69)
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The wave functions are decomposed into an incoming- and an outgoing part,



ψ(−L)

ψ(+L)


 =




ψin(−L)

ψin(+L)


 +




ψout(−L)

ψout(+L)


 (2.70)

and we can write



ψS(−L)

ψS(+L)


 =

i

m∗ K̂




ψout(−L)

ψout(+L)


− i

m∗ K̂




ψin(−L)

ψin(+L)


 (2.71)

where K̂ is a 2× 2-matrix with the elements

K̂ =

[
kL 0
0 kR

]
. (2.72)

If we note

Ψ̂ =




ψ(−L)

ψ(+L)


 , Ψ̂S =




ψS(−L)

ψS(+L)


 ,

Ψ̂out =




ψout(−L)

ψout(+L)


 , Ψ̂in =




ψin(−L)

ψin(+L)


 , (2.73)

then we can work in a matrix form

Ψ̂ = R̂Ψ̂S,

Ψ̂S = i
m∗ K̂Ψ̂out − i

m∗ K̂Ψ̂in,

Ψ̂ = Ψ̂out + Ψ̂in,

(2.74)

which implies
i

m∗ R̂(K̂Ψ̂out − K̂Ψ̂in) = Ψ̂out + Ψ̂in. (2.75)

So, we have
( i

m∗ R̂K̂ − 1)Ψ̂out = ( i
m∗ R̂K̂ + 1)Ψ̂in,

Ψ̂out = ŜΨ̂in,
(2.76)

or

(
i

m∗ R̂K̂ − 1)Ŝ = (
i

m∗ R̂K̂ + 1). (2.77)

Finally, for each ε the relation between the R- and the S-matrix [33] is

Ŝ(ε) = −(1− i

m∗ R̂(ε)K̂)−1(1 +
i

m∗ R̂(ε)K̂). (2.78)

This relation is similar with the relation for the case without applied bias [93], only
that the K̂ matrix has another form. The information stored by the S-matrix or by
the R-matrix is the same, one has to choose the suitable procedure to extract it.
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2.1.5 R-matrix representation of the scattering states

The distance between L and d has no relevant importance for the scattering prob-
lem. Considering the boundary points for the Wigner-Eisenbud problem equal to
the boundaries of the scattering region, i.e. L = d, the Wigner-Eisenbud energies
become the eigenenergies of the closed counterpart of our scattering system [42].

So, we have the scattering states in the R-matrix formalism

ψL
n (z) =

1√
Lz





eiknz + rLe−iknz, −Lz/2 ≤ z ≤ −d
R(z,−d)ψL

S (−d) + R(z, d)ψL
S (d), −d ≤ z ≤ d

tLeiknz, d ≤ z ≤ Lz/2
(2.79)

for the wave function coming from the left reservoir, and

ψR
n (z) =

1√
Lz





tRe−iknz, −Lz/2 ≤ z ≤ −d
R(z,−d)ψR

S (−d) + R(z, d)ψR
S (d), −d ≤ z ≤ d

e−iknz + rReiknz, d ≤ z ≤ Lz/2
(2.80)

for the wave function coming from the right reservoir. Lz is the total length of the
structure in the z-direction, which is much larger than the size of the scattering
region (Lz À d). The energy spectrum corresponding to the electron motion in the
direction of transport is quasicontinuous

ε =
h̄2k2

z

2m∗ = εn (2.81)

with kz = 2π
Lz

n = kn, n ∈ N. The total energy of the particle is

En,kx,ky =
h̄2

2m
(k2

x + k2
y) + εn, (2.82)

where kx and ky are the wave vectors associated with the electron free motion in the
direction parallel to the interfaces.

The practical procedure for finding the wave functions is:

• solve the Wigner-Eisenbud problem Eq. (2.46), for the scattering potential
with the Neumann type boundary conditions (2.47). This is done numerically
by standard techniques for solving eigenvalue problems with discrete spectrum.
The Wigner-Eisenbud functions are defined on the interval [−L,L] and they
constitute an orthonormal and complete system of functions Eqs. (2.50), (2.51)
and (2.52).

• for each energy ε construct the R-matrix elements Eq. (2.64) using the Wigner-
Eisenbud energies and functions;
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• for each energy ε construct the S-matrix elements using the simple matriceal
relation (2.78) between R- and S-matrix, where the Λ matrix has the general
form (2.72);

• find for any energy ε the transmission and reflection coefficients, Eq. (2.45);

The decisive advantage of using R-matrix is that it can be calculated from a
given set of Wigner-Eisenbud functions for all energies. Otherwise the trans-
mission coefficients should be calculated solving a Schrödinger equation (2.6)
with scattering boundary conditions for a continuum of energies. This is usu-
ally done in the transfer matrix formalism [43, 44, 45, 92], in which one makes
a piecewise constant approximation for the scattering potential. For every en-
ergy one has to find the wave vectors in each region with constant potential,
after that to compute the transfer matrix elements and to multiply the 2× 2
matrixes. This can be a time consuming computation problem which we want
to avoid.

The R-matrix formalism gives a more accurate description for a general shape
of the scattering potential V (z) and with the help of the Wigner-Eisenbud
functions and energies one can obtain the analytical description of the scatter-
ing problem in terms of the poles of the S-matrix [46]. Furthermore one can
calculate the shape and the width of the tunneling peaks.

• calculate the normal derivative of the wave functions at the boundary points
±d, using the expressions of the wave functions outside the scattering interval;

• use Eq. (2.62) for the R-matrix elements for any z ∈ [−d, d];

• use Eqs. (2.79) and (2.80) for the wave functions.

2.2 Electronic charge density

In this section we would like to present the application of the R-matrix formalism
to the calculation of the electronic charge density distribution in a semiconductor
heterostructure. As it was shown in the previous section, the scattering potential
V (z) varies only in the direction of transport, and it is constant outside the interval
z ∈ [−d, d]. Consequently, the wavefunctions are separable and are given by Eq.
(2.3). z dependent part of the wave functions, the so called scattering functions,
are solutions of the 1D Schrödinger equation (2.6) and are given in the R-matrix
formalism by Eqs. (2.79) and (2.80).

To calculate the electronic charge density in the Landauer-Büttiker formalism,
the electrons can be thought of as two Fermi-gases. First, the electrons coming
from the source contact: They occupy the single-particle scattering states φL

n,kx,ky

according to the Fermi-Dirac distribution function fFD(En,kx,ky − µL), where µL is
the chemical potential of the source contact. Second, the electrons coming from
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the drain contact with single-particle states φR
n,kx,ky

and with the chemical potential
µR of the drain contact. Summing up for all single-particle states the occupation
factor times the localization probability we obtain the electronic density distribution
(which multiplied by −e will give the electronic charge distribution)

ρ(z) = 2
∑

n,kx,ky

fFD(En,kx,ky − µL)|φL
n,kx,ky

|2 + 2
∑

n,kx,ky

fFD(En,kx,ky − µR)|φR
n,kx,ky

|2,

(2.83)

where 2 comes from the spin degeneracy. The electrons are free in the lateral direc-
tions and thus the electronic density distribution is

ρ(z) = 2
∑

n,kx,ky

|ψL
n (z)|2
LxLy

fFD(En,kx,ky − µL) + 2
∑

n,kx,ky

|ψR
n (z)|2
LxLy

fFD(En,kx,ky − µR).

(2.84)

The Fermi-Dirac function

fFD(E − µ) =
1

e
E−µ
kBT + 1

, (2.85)

gives the equilibrium distribution function in the reservoirs.
In the low temperatures limit, µ → EF and the values E

L/R
F − VL/R are fixed by

the doping value in reservoirs through the Sommerfeld model for free electron gas,
with spin, considering all the donors ionized [47]

ND = k3
F /3π2. (2.86)

As Zimmermann suggested in Ref. [48] for donor concentrations larger than
5 × 1016cm−3 an impurity band forms within the conduction band so that even at
low temperature all donors are ionized.

For equal doping we have EL
F − VL = ER

F − VR and the general relation ER
F =

EL
F − eVsd for applied bias Vsd becomes, of course, VR = VL − eVsd.

For large Lx, Ly we can transform the summation (2.84) into an integration, and
for low temperature, where all the states until EF are occupied, one can write

ρ(z) = 2
LxLy

2π

∑
n

∫ k
(n)
F

0
dk k

|ψL
n (z)|2
LxLy

+ 2
LxLy

2π

∑
n

∫ k
(n)
F

0
dk k

|ψR
n (z)|2
LxLy

= 2
1

2π

∑
n

∫ k
(n)
F

0
dk k|ψL

n (z)|2 + 2
1

2π

∑
n

∫ k
(n)
F

0
dk k|ψR

n (z)|2 (2.87)

with k
(n)
F =

√
k2

F − k2
n, where the corresponding kF should be considered for every

integral. Furthermore, because ψL/R
n (z) does not depend on kx and ky, we can

perform the integration over k =
√

k2
x + k2

y, with an upper limit for T = 0K of
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k
L/R
F =

√
2m∗
h̄2 (E

L/R
F − VL/R). Hence, for large Lz we obtain in the zero-temperature

limit

ρ(z) = 2
Lz

(2π)2

[∫ kL
F

0
dkz

(kL
F )2 − k2

z

2
|ψL(kz, z)|2 +

∫ kR
F

0
dkz

(kR
F )2 − k2

z

2
|ψR(kz, z)|2

]
.

(2.88)
The choice of normalization factor 1/

√
Lz in Eqs. (2.79) and (2.80), leads to

a density of charge far away from the scattering area independent of the sample
length. If Lz is infinite then the normalization constant in front of Eq. (2.79) and
(2.80) should be 1/

√
2π instead of 1/

√
Lz.

Eq. (2.88) can be also written for equal doping reservoirs as

ρ(z) = 2
1

2π

Lz

2π

∫ kF

−kF

|ψ(kz, z)|2k2
F − k2

z

2
dkz (2.89)

where the positive wave vectors kz correspond to the scattering wave functions com-
ing from the left, and those for negative values correspond to the scattering wave
functions coming from the right.

To particularize Eq. (2.88) for the case of free electrons (with spin), one has to
consider that Lz|ψ(kz, z)|2 = 1 and thus it is obtained the Sommerfeld expression
for electron concentration in metals.

We would like to point out that the Eq. (2.88) takes into account the continuous
energy spectrum of the incident electrons, which is a key feature of our method.

Numerical procedures
One important goal in an accurate calculation of the charge distribution (2.88)

is the correct integration procedure. We have used the extended trapezoidal rule,
as numerical integration method. We also made use of a basic idea for numerical
implementation of this method: one can double the number of intervals without
losing the benefit of previous work. [49]. The integral is calculated with an user
defined accuracy, which was established at 10−5 or a maximum number of steps, set
at 10000.

Using the analytical description of the poles of the S-matrix [46], we can take
into account the quasi-bound states performing the numerical integration over the
associated peak. This will be analyzed in detail for the capacitance of field induced
2DEG, Chap. 3. An accurate calculation of the electronic density distribution is of
major importance for a self-consistent convergent scheme.

2.3 Poisson equation

In this section we will formulate and solve Poisson equation for effectively one di-
mensional systems, with respect to the transport properties. For the beginning a
number of simplifications are discussed. Most of them are similar to the Poisson
equation for Si/SiO2 system, conditions discussed in detail by Nicollian and Brews
in Ref. [50].
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Poisson equation is
d2ϕ(z)

dz2
= −q(z)

ε0εr

(2.90)

where q(z) is the charge density (C/cm3), ϕ(z) is the electrostatic potential, and
εr is the dielectric permittivity in units of the dielectric permittivity of vacuum, ε0.
The total charge density is

q(z) = e
[
p(z)− ρ(z)−N−

A (z) + N+
D (z)

]
, (2.91)

where

• p(z) is the hole concentration [cm−3]

• ρ(z) is the electron concentration [cm−3]

• N−
A (z) is the ionized acceptor concentration [cm−3]

• N+
D (z) is the ionized donor concentration [cm−3]

2.3.1 Assumptions

We solve the Poisson equation with certain simplifying conditions. These conditions
are:

1. Poisson equation will be solved in one dimension in the direction perpendicu-
lar to the heterostructure interfaces, which is also the direction of transport.
It is reasonable to treat only one dimension because the field under the gate
is uniform and perpendicular to the interface surface. The fringing field at
the gate edge is negligible, affecting an area that extends for only a(n) (oxide)
barrier thickness from the gate periphery. In practice, the gate diameter is or-
ders of magnitude larger than this area. Therefore, edge effects would become
important if the extent of the gate were compared with the barrier thickness.

2. We assume that the impurity concentration in the GaAs is uniform (ND in
the doping region and NA outside). We know that this assumption does not
apply always (for example the thermal treatments causes redistribution of
the impurity concentration at the surface). However, the case of a uniform
impurity distribution is a good introduction.

3. The holes concentration will be neglected in comparison to the electrons con-
centration, because we consider highly n-doped reservoirs.

4. The electrons concentration will be calculated from the Schrödinger equation
(see Sec. 2.2) and not from thermal equilibrium distribution.
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5. Poisson equation will be solved using an approximate charge density. The
charge of the dopant ions is accounted for approximately by smearing out
the ion charge into a uniform background density. This smearing ignores the
discrete nature of these ions as well as statistical variations in their spatial
distributions. The charge of electrons and holes is treated in a self consistent
field approximation. That is, each electron or hole is treated as though it
moved in an averaged field. This average field is computed as the field due to
the average mobile charge density plus the field due to the smeared out the
dopant ion charge. Thus each electron or hole can be treated as an indepen-
dent particle in an (approximate) average field. In this approach the average
carrier distribution is a function only of the average potential, if one ignores
all dependences on more detailed properties of the real potential. Conversely,
the average field also is assumed to depend only on the average carrier and
dopant ion densities, ignoring dependence on more detailed properties of the
charge densities. For very large electron or hole concentrations and also at low
temperatures, the treatment of electrons and holes as independent particles
may fail.

6. Surface quantization is not neglected. Surface quantization occurs as follows:
Suppose that a high electric field (> 106 V/cm) is applied to the structure,
attracting a high concentration of free carriers to the blocking barrier surface.
Because these carriers cannot flow through the barrier, they are trapped in
a narrow potential well at the surface of the barrier. Because the potential
well is very narrow, carrier motion is restricted in a direction perpendicular
to the interfacial plane. In this direction only standing wave patterns are
possible, thus resulting in electric subbands. The energy separation between
energy levels in these subbands become important for low temperatures and
high fields. Although free carriers are quantized for motion perpendicular to
the plane of the interface, they are free to move and are not quantized in
directions parallel to the interfacial plane. Fang and Howard [51] were the
first to demonstrate surface quantization experimentally.

2.3.2 Green’s function for Poisson equation

In this section we would like to present the solution of Poisson equation using Green’s
function for the problem of a volume charge distribution around N objects (metals)
Kj which are at the constant potential Uj, j = 1, N .

Therefore we have to solve the equation

∆ϕ(r) = − 1

ε0εr

q(r) (2.92)

where q(r) is the density of volume charge ([C/m−3]) distributed in the system and
includes the sign of the charge too, with the following boundary conditions
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• lim|r|→∞ ϕ(r) = 0

• ϕ(r) = Uj, r ∈ F (Kj), j = 1, · · · , N .

The solution of the problem is written using Green’s function (see Chap. 3 in
Ref. [52])

ϕ(r) =
∫

V
G(r, r′)q(r′)dr′ − ε0εr

N∑

j=1

Uj

∫

F (Kj)
∇r′G(r, r′)d~f ′ (2.93)

where

a) ∆G(r, r′) = − δ(r−r′)
ε0εr

, r, r′ ∈ V

b) G(r, r′) = 0, r ∈ F (V ), r′ ∈ V

c) lim|r|→∞ G(r, r′) = 0, r′ ∈ V .

1D problem

We can apply the above theory to the one dimensional problem. Charge distribution
is q(z) (in [C/m−3]), l1 ≤ z ≤ l2 and for z ≤ l1 and l2 ≤ z we have metallic contacts
(the potential is constant). So, the boundary conditions become:

ϕ(l1) = U1, ϕ(l2) = U2 (2.94)

The geometry of the problem is sketched in the Fig. 2.3.

l l

ll

1 2

21

U1

U2

q

ϕ
z

z

Figure 2.3: The geometry for the 1D charge distribution with two metallic contacts.

The free space 1D Green’s function for Poisson equation is

G0(z, z
′) = − 1

2ε0εr

|z − z′| (2.95)

to which we can add a homogeneous solution

G̃(z, z′) = Azz′ + Bz + Cz′ + D
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which makes the resulting Green’s function, G = G0 + G̃, obey the boundary con-
ditions (item b) above).

G(z = l1, z
′) = G(z = l2, z

′) = 0, z′ ∈ (l1, l2). (2.96)

If one inserts the expressions for G0(z, z
′) and G̃(z, z′) into relations (2.96) and

equals the coefficients of zz′, z, z′ and the free term from both relations with zero,
one obtains a system which provides the coefficients

B =
1

2ε0εr

l2 + l1
l2 − l1

, D = − 1

ε0εr

l2 · l1
l2 − l1

, A = − 1

ε0εr

1

l2 − l1
, C = B.

Green’s function becomes

G(z, z′) = − 1

ε0εr

[
1

2
|z − z′|+ 1

l2 − l1
z · z′ − 1

2

l2 + l1
l2 − l1

(z + z′) +
l2 · l1
l2 − l1

]
, (2.97)

for l1 ≤ z ≤ l2, l1 ≤ z′ ≤ l2. Inserting this expression in Eq. (2.93) one obtains the
electrostatic potential

ϕ(z) = − 1

ε0εr

∫ l2

l1

(
1

2
|z − z′|+ 1

l2 − l1
z · z′ − 1

2

l2 + l1
l2 − l1

(z + z′) +
l2 · l1
l2 − l1

)
q(z′)dz′

+U1 + (U2 − U1)
z − l1
l2 − l1

, for l1 ≤ z ≤ l2, (2.98)

and the associated potential energy, experienced by an electron,

Vc(z) = −eϕ(z)

=
e

ε0εr

∫ l2

l1

(
1

2
|z − z′|+ 1

l2 − l1
z · z′ − 1

2

l2 + l1
l2 − l1

(z + z′) +
l2 · l1
l2 − l1

)
q(z′)dz′

+V1 + (V2 − V1)
z − l1
l2 − l1

, for l1 ≤ z ≤ l2, (2.99)

where V1 = −eU1 and V2 = −eU2 are the boundary values at the left- and right
contact, respectively; e being the elementary charge, e = 1.60219× 10−19C.

Vc(z) given by Eq. (2.99) is the solution of the 1D Poisson equation for the charge
distribution q(z), inside the interval [l1, l2]. Outside this interval the potential is
constant according to the boundary conditions, Vc(z ≤ l1) = V1 and Vc(z ≥ l2) = V2.
Vc(z) contains also information about the induced sheet charges σ1 and σ2, on the
surface of the metallic contacts.

2.4 Mean-field approximation

If one wants to account for the effects of the (accumulated) charges in the system
on the transport charges and, in turn, on the transport properties, then one has to
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include in the scattering potential the interaction between the charges in the system
(which can be free charges, as electrons, or fix charges, as ionized impurities). This
requires a brief digression on the quantum mechanics of systems with many electrons
and a review of the effects of the Coulomb repulsion between electrons.

In general, the wave function Ψ of a system of N particles must be written as

Ψ = Ψ(r1, r2, ...rN). (2.100)

It is a function of the position coordinates, rj, for each particle j and cannot be
separated generally into individual wave functions.

The many-particle wave function obeys a complex Schrödinger equation. The
Hamiltonian of the electron system,

H =
∑

j

[
− h̄2

2m∗∆j + Vext(rj)

]

︸ ︷︷ ︸
h(rj)

+
1

2

∑

j,k=1

j 6=k

e2

4πε0εr|rj − rk| , (2.101)

has a kinetic energy term for each particle and two potential energy terms. Each
electron experiences the same external potential Vext, which would arise from the
band-offsets of the heterostructure materials Vh, from the interaction with fix ionized
donors VN+

D
and acceptors VN−

A
, and from the applied electric fields Vel,

Vext(r) = Vh(r) + VN+
D
(r) + VN−

A
(r) + Vel(r). (2.102)

The second potential energy term in (2.101) corresponds to a Coulomb repulsion
between each pair of electrons.

This problem it is usually solved in the mean-field approximation, expressing the
many-particle wave function in terms of one-particle states and using the variational
method to determine them.

2.4.1 Hartree approximation

Hartree approximation consists in the assumption that a many-particle wave function
can be expressed as a simple product of one-particle states:

Ψ(r1, r2, ..., rN) = Φ1(r1)Φ2(r2)...ΦN(rN) (2.103)

without taking into account Pauli principle for electrons. Φi(ri) is the one-particle
state of the electron i, which will be determined. A better approximation for the
many-particle wave function (2.100) would be a Slater-determinant which would
count for Pauli principle.

Using the variational method for the energy functional calculated with the Slater-
form of the many-particle wave functions, as it is shown in Appendix A one obtains
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the Hartree-Fock equations (A.31). If one neglects the exchange term (Fock term),
then we obtain the Hartree equations:

h(r)Φαi
(r) +

N∑

τ=1

∫
d3r′

e2|Φατ (r
′)|2

4πε0εr|r− r′|Φαi
(r) = EiΦαi

(r), i = 1, ..., N. (2.104)

We have denoted here Ei instead of εi, because Ei will have the meaning of an
eigenenergy of the 3D eigenvalue problem, while εi will be an eigenenergy of the 1D
eigenvalue problem.

The same equations are obtained using the approximation (2.103) of the many-
particle wave function and the variational method presented in Appendix A. The
Hartree equations give the best approximation to the full N-electron wave func-
tion that can be represented as a simple product of one-electron states (but this is
incompatible with the Pauli principle) [47], p.332.

The equations (2.104) have a direct physical interpretation: The quantity

ρ̃(r′) = −e
N∑

τ=1

|Φατ (r
′)|2 (2.105)

has the meaning of the charge density produced by the occupied one-particle states
|ατ 〉 and produces at r an electrostatic potential

ϕ(r) =
∫

d3r′
ρ̃(r′)

4πε0εr|r− r′| . (2.106)

Note that ρ̃ = −eρ contains the electron charge, while ρ does not. An electron
situated at position r experiences the potential energy VH(r) = −eϕ(r), called
Hartree potential and Eq. (2.104) becomes

[h(r) + VH(r)] Φαi
(ri) = EiΦαi

(ri). (2.107)

Under this form, one can see directly the meaning of mean-field approximation: the
electron moves in the electrostatic potential produced by all other electrons.

For our system, which has an effectively one-dimensional scattering potential so
that the wave function can be separated as in (2.3), the charge density depends only
on z-coordinate (see Eq. (2.88)). In this case, the integral over d3r can be performed
for transverse directions

∫
d3r′

ρ̃(z′)
4πε0εr|r− r′| = −

∫
dz′

ρ̃(z′)
2ε0εr

|z − z′| (2.108)

which gives in fact the electrostatic potential of charges ρ̃(z′) in free one-dimensional
space according to the free-space Green’s function (2.95).

Eq. (2.104) is reduced to the one-dimensional Schrödinger-type equation

h(z)ψαi
(z) +

∫
dz′

e2ρ(z′)|z − z′|
2ε0εr

ψαi
(z) = εiψαi

(z), i = 1, ..., N, (2.109)
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with h(z) = − h̄2

2m∗
d2

dz2 +Vext(z). The electronic density distribution ρ(z) is calculated
fully quantum mechanically, as described in Sec. 2.2, Eq. (2.88).

The total electrostatic potential and the potential produced by the applied elec-
tric fields can be calculated as an effective Coulomb potential Vc(z) = VN−

A
(z) +

VN+
D
(z) + VH(z) + Vel(z) through the Poisson equation, as presented in the Sec. 2.3.

So, the scattering potential in the Schrödinger equation is a superposition of the
band-offsets of the heterostructure materials and the effective Coulomb potential,

V (z) = Vh(z) + Vc(z). (2.110)

The supplementary potential Vc makes the Schrödinger equation a nonlinear
eigenvalue problem, because the potential depends on the wave functions. This
problem is solved iteratively, by self-consistent calculations. Numerical methods are
needed for an accurate solution.

In our mesoscopic system we are interested in a steady state. The system has to
obey two equations in the same time:

• the Schrödinger equation, that describes the quantum features of the system;

• the Poisson equation, that gives the electrostatic potential in the system and
involves an averaging procedure.

The above mentioned equations act complementary: having the potential, the Schrödinger
equation establishes how many charges are in the system, while having the charge
distribution the Poisson equation establishes how the electrostatic potential pro-
duced by these charges looks like. These two equations, acting as two ”forces”, can
be brought in equilibrium only by self-consistent calculations.

The self-consistent calculations were involved in many systems: in the Si/SiO2

systems, for calculating the properties of the silicon space-charge layer [51, 53], in
GaAs-Ga1−xAlxAs heterojunctions [54], for counting the non-vanishing penetration
of the wave functions in the barrier zone, or for counting the influence of the mag-
netic fields parallel to the interfaces [55], in modulation-doped AlxGa1−xAs-GaAs-
AlxGa1−xAs heterostructure [5] for explaining the formation of the 2DEG in this
kind of structures, and for a fully theoretical modeling of modulation-doped double
quantum wells [56]. The self-consistent calculations are also necessary for under-
standing modern quantum structures as single quantum well transistors (SQWT)
[57] or quantum dots [58].

2.4.2 Self-consistent procedure

Contrary to the general self-consistent scheme, known as ”self-consistent field ap-
proximation” [53] (Fig. 2.4a), in which an initial guess for the potential has to be
made, we propose another scheme, for which an initial form for ρ(r) is guessed.
which we call ”self-consistent charge approximation” (Fig. 2.4b). We need this pro-
cedure, because for our interest, the differences between two successive iterations in
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charge should be user defined, which does not happen a priori in the self-consistent
field approximation.

V=V   +f (V   −V   )in out in

out
V

V
in

R−matrix

Poisso
n equation

Green’s fu
nction

ρ
Schrödinger equation

..
ρ=ρ  +  (ρ  −ρ  )fin out in

Schrodinger equation

ρ

ρ
V

out

in Poisson equation

R−matrix

Green’s function

a) b)

Figure 2.4: The self-consistent iterations scheme for a) self-consistent field approx-
imation and b) self-consistent charge approximation. The Schrödinger equation,
solved within the R-matrix formalism, gives for a specified potential and boundary
conditions the wave functions and further one can calculate the charge distribution.
The Poisson equation gives the electrostatic potential of a specified (total) charge
distribution and it is solved by the suitable Green’s function.

To start the procedure, one needs to suppose an initial negative charge distribu-
tion, and we take such one which fulfill the neutrality in the system.

The mixing factor f, which mixes the ”in” and ”out” quantities from one iteration
to give the quantity ”in” for the next iteration

ρin
i+1 = ρin

i + f(ρout
i − ρin

i ) (2.111)

should be chosen particularly for every structure and for every guessed initial charge.
The experience will help a lot for a good choice. This factor can differ from one
iteration to another and this may allow for self controlled convergence procedure.
If the iterations go away from the fix point (convergence point), then this factor
should be decreased. If the iterations follow the right way to the convergence, then
one can accelerate the procedure by increasing this factor. A practical method is to
keep a small factor for the first self-consistent procedures (e.g. first bias) and when
one becomes familiar with the convergence, one can fix this factor f in specified
iterations domain. A concrete discussion about the effect of this factor will be
presented in the Sec. 3.2.

The self-consistent iterations are performed until further iterations do not mate-
rially alter the result (potential or charge distribution), called fix point or convergent
point. The convergent point is achieved when the convergence parameter

ei =

√∑
j(ρin(zj)− ρout(zj))2

min
(√∑

j(ρin(zj))2,
√∑

j(ρout(zj))2
) (2.112)
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is smaller then the user defined convergence limit ε. It is more convenient to work
with absolute differences because at relative differences appear small numbers which
can lead to some unphysical results. At the same time it is more convenient to work
with the differences for the same iteration (’in’ and ’out’) like with the differences
for the successive iterations (’in’ for iteration i and ’in’ for iteration i+1) because in
the latter one appears the mix factor f .

Steps in self-consistent procedure

The procedure for calculating the self-consistent potential distribution and charge
density follows the steps:

1. consider an initial charge distribution ρin(x);

2. calculate the Coulomb potential from the Poisson equation with the help of
the Green’s function;

3. V (z) = Vh(z)+Vc(z), where Vh(z) is the potential coming from the heterostruc-
ture band offsets, and Vc(z) is the Coulomb interaction potential calculated
self-consistently;

4. calculate the free charge density with the help of the Schrödinger equation
ρout(z);

5. consider a mixture ρin(z)+f ·(ρout(z)−ρin(z)) for the next charge distribution;

6. verify if the convergence point is achieved; if not then go back to the point 2.

To solve self-consistently the Poisson equation and the Schrödinger equation is
equivalent with finding the stationary solution of the transport problem.

First guess for the electronic charge

The initial electronic density distribution ρ0 is chosen as depicted in Fig. 2.5: ρ0

differs linearly from the ionized donor N+
D (z) and acceptor N−

A (z) distribution only
around the abrupt variations of the doping profiles. The linear variation is taken of
the order of the screening length λF = 2π/kF , where kF is the Fermi wave number
in the reservoir. The impurities are considered completely ionized

N−
A (z) ≈ NA(z) =





0, z < z1,
NA, z1 < z < z2,
0, z > z2

(2.113)

N+
D (z) ≈ ND(z) =





ND, z < z1,
0, z1 < z < z2,
ND, z > z2

(2.114)
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Figure 2.5: Distribution of the donors ND(z) (solid line), acceptors NA (long dashed
line) and initial electronic density distribution ρ0(z) (dotted line).

From the neutrality condition for the system of electrons and ionized impurities
we determine the parameter α (see Fig. 2.5):

2
ND

2
λF

2
− 2

NA

2
(λF − α)

2
−NA(z2 − z1) = 0. (2.115)

Biased structure

For a biased structure, we have to specify the boundary conditions for the Poisson
equation. The external applied bias Vsd imposes in fact the boundary values for the
scattering potential:

eVsd = EL
F − ER

F = VL − VR (2.116)

where the last identity holds for the same doping in the reservoirs. This condition
becomes now

eVsd = Vh(−d)− Vh(d) + Vc(−d)− Vc(d) (2.117)

which in fact imposes the boundary condition for the Poisson equation Vc(−d) and
Vc(d) (i.e. V1 and V2 in Sec. 2.3.2)

For a closed system, if there is a potential difference between left and right, then
a charge transfer occurs until the inner electric field compensates for the external
electric field. So the system constructs such a dipole momentum against the external
electric field.

For an open system, the charge flows from one side to another, but in front of
the barrier the charge is accumulating and behind of the barrier there is a depletion
region. The dipole momentum is now in the same direction as the external electric
field.

The self consistent procedure for a new applied bias starts from the previous bias
self-consistent solution.
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2.5 Current through mesoscopic structures

In Sec. 2.1 we showed how to calculate for one-dimensional potentials the transmis-
sion and reflection coefficients. Following Ferry [2], Chap.3.3., we want to present
here the calculation of the current flow through a three-dimensional device using
the transmission coefficient.

2.5.1 Coherent tunneling

When we looked at the tunneling process in the previous sections, we considered
a single one-dimensional traveling wave that propagates through the barrier region
and out the other side. As such, we viewed tunneling as an elastic process involving
no loss of energy of the particle. In a real structure, the ideal problem consists of a
plane wave incident on a barrier potential that is semiinfinite in extent in the two
transverse directions and varies only in the third direction. For almost all practical
planar barrier devices, this variation in potential is in the growth direction due to
the bandgap discontinuities of the heterojunction interfaces, the space charge due to
doping and the applied bias. The plane wave has some components of its wavevector
(and hence momentum) in the transverse directions parallel to the barrier. Along
with our assumption that tunneling is an energy conserving process, we will further
assume that the transverse momentum is conserved, that it remains the same be-
fore and after the tunneling. This latter assumption is violated in real structures
if random inhomogeneities exist in the lateral direction, such as interface roughness
and ionized impurities. The main effect is to broaden the effective transmission reso-
nance, reducing the peak-to-valley ration (PVR) of I-V curve in measured structures
compared to the ideal model.

To connect the quantum mechanical fluxes to charge current, we need to in-
troduce the statistical mechanical distribution function to tell us the occupancy
of current-carrying states incident and transmitted on the barriers. Exactly what
distribution function to use is perhaps one of the central issues of describing nonsta-
tionary transport in a phase-coherent system such as the nanostructures discussed
in this thesis. The model we will use, called also Landauer-Büttiker formalism
[19, 24, 21], assumes that we have contacts or reservoirs on the left and right side of
a barrier structure that are essentially in equilibrium and are described by the single-
particle distribution function such as the Fermi-Dirac distribution characterized by
a chemical potential.

The problem is shown in Fig. 2.6 for a generic tunneling barrier. The applied
bias separates the chemical potentials on the left and right by an amount eVsd. The
Hamiltonian on either side of the barrier is assumed separable into perpendicular
(z-direction) and transverse components. If we choose the zero-reference of the
potential energy in the system to be the conduction band minimum on the left,
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Figure 2.6: Band diagram for a tunnel barrier under bias, illustrating charge flow.

Ec,L = 0, the energy of a particle before and after tunneling may be written as

E = ε + Et =
h̄2k2

z,L

2m∗ +
h̄2k2

t,L

2m∗ (2.118)

on the left side, and

E =
h̄2k2

z,R

2m∗ +
h̄2k2

t,R

2m∗ + Ec,R (2.119)

on the right side, where Ec,R is the conduction band minimum on the right side
and kz and kt are the perpendicular and transverse components of the wavevector
relative to the barrier. A single, parabolic, isotropic conduction band minimum
has been assumed for simplicity. Since the transverse momentum is assumed to be
conserved during the tunneling process, then kt,L = kt,R, and the transverse energy
Et,L = Et,R is the same on both sides for the tunneling electron. Therefore, the
z-component of the energy is

ε =
h̄2k2

z,L

2m∗ =
h̄2k2

z,R

2m∗ + Ec,R (2.120)

on the left and right sides of the barrier.
As a further approximation, in order to introduce irreversibility into the formal-

ism, we assume that the contacts are perfectly absorbing. This means that when a
particle injected from one side reaches the contact region of the other side, its phase
coherence and excess energy are lost through inelastic collisions with the Fermi sea
of electrons in the contact. Thus we assume that an electron injected from one
contact at a certain energy E has a certain probability of being transmitted through
the barrier determined by T (E), exits the barrier with the same energy and trans-
verse momentum, and finally is absorbed in the opposite contact, where it loses the
energy and memory of its previous state. Current flow in this picture is essentially
the net difference between the number of particles per unit time transmitted to the
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right and collected versus those transmitted to the left. This view of tunneling is
referred to as coherent since the particles maintain their phase coherence across the
whole structure before losing energy in contacts.

To proceed with this picture, consider the current density perpendicular to the
barrier in the z-direction for a given energy E with corresponding z-component
ε. The incident current density on the barrier from the left due to particles in an
infinitesimal volume of momentum space dkL around kL may be written as

ji = −eD(kL)fL(kL)vz(kL)dkL, D(k) =
2

(2π)3
, (2.121)

where fL is the distribution function on the left side of the barrier, D(k) is the
density of states in k-space (taking in account the spin degeneracy), and the velocity
perpendicular to the barrier from the left is

vz(kL) =
1

h̄

∂E(kL)

∂kz,L

=
h̄kz,L

m∗ (2.122)

using the parabolic relation (2.120). Here we neglect the possibility that the energy
states on the left and right side of the barriers may be quantized due to, for ex-
ample, band bending, and we, therefore, treat the states as three-dimensional. The
transmitted current density from the left to right is simply Eq. (2.121) weighted by
the transmission coefficient

jL =
−2eh̄

(2π)3m∗T (kz,L)fL(kt, kz,L)kz,Ldkz,Ldkt, (2.123)

where T (kz) is the transmission coefficient (see Eq. (2.34)) which for the ideal
case is only a function of the perpendicular momentum and energy. Similarly, the
transmitted current from right to left may be written for the same energy E and ε

jR =
−2eh̄

(2π)3m∗T (kz,R)fR(kt, kz,R)kz,Rdkz,Rdkt. (2.124)

At a given perpendicular energy ε, the transmission coefficient is symmetric (see Eq.
(2.36)) so that T (kz,L) = T (kz,R) = T (ε), where kz,L and kz,R are connected through
the relation (2.120). Further, kz,Ldkz,L = kz,Rdkz,R = m∗dε/h̄2 if we differentiate
both sides of (2.120). Therefore, the net current density in the direction of the
voltage drop is the difference between the left and right currents densities integrated
over all k, or

JT =
2e

(2π)3h̄

∫ ∞

0
dε

∫ ∞

0
dktkt

∫ 2π

0
dθT (ε)[fL(ε, kt)− fR(ε, kt)], (2.125)

where the integration over ε is from zero to infinity because tunneling from right to
left below ε = 0 is forbidden.
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At this point, no further reduction to Eq. (2.125) can be made unless we make
assumptions concerning the nature of the distribution functions on the left and
right sides. The lowest-order approximation is to assume that these distributions
are given by the equilibrium Fermi-Dirac functions determined by the bulk chemical
potentials on the respective sides of the barrier,

fL/R(ε, Et) =
1

1 + exp
(

ε+Et−µL/R

kBT

) , (2.126)

where T is the lattice temperature and µL/R is the chemical potential on the left
and right side, respectively. The difference between the two is just the applied bias,
µL = µR + eVsd. Since the chemical potential is isotropic, the angular integration
gives 2π. Likewise, the integration over perpendicular wavevector may be converted
to an integral over energy. Assuming parabolic bands, Eq. (2.125) becomes

JT =
4πem∗

(2π)3h̄3

∫ ∞

0
dεT (ε)

∫ ∞

0
dEt[fL(ε, Et)− fR(ε, Et)]. (2.127)

For the Fermi function (2.126), the integration over energy is easily evaluated: using
the substitution y = (Et + ε− µ)/(kBT ) one obtains

∫ ∞

0
dEt

1

1 + exp
(

ε+Et−µ
kBT

) = kBT ln
(
1 + exp

(
µ− ε

kBT

))
(2.128)

so that Eq. (2.127) becomes

JT (Vsd) =
em∗kBT

2π2h̄3

∫ ∞

0
dεT (ε) ln

1 + e(µL−ε)/kBT

1 + e(µL−eVsd−ε)/kBT
, (2.129)

sometimes referred to as Tsu-Esaki formula, where the particular form was popu-
larized in connection to resonant tunneling diodes[24].

We would like to emphasize at this point the beauty of this formula: all the
features of the scattering region are behind of the tunneling probability coefficient.
The idea to connect the macroscopic features of the system with the tunneling prob-
ability, a quantum mechanical quantity, was first pointed out by Landauer [19], who
connected the electrical resistivity to the tunneling and reflection probability. The
Eq. (2.129) is a two terminal formula, which was extended by Büttiker to obtain a
multiterminal tunneling formula [21] and so emerges the Landauer-Büttiker formal-
ism. This has been very successful in describing electronic transport in mesoscopic
systems. This formalism can be obtained as a limit from other transport theo-
ries: Datta [59] has shown the evolution from the Keldysh to the Landauer-Büttiker
formalism.

The logarithmic term in Eq.(2.129)

ξ(ε) = ln
1 + e(µL−ε)/kBT

1 + e(µL−eVsd−ε)/kBT
. (2.130)
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is sometimes called the supply function, since it more or less determine the relative
weight of available carriers at a given perpendicular energy.

If one uses the limit

lim
T→0

kBT ln
(
1 + e

µL−ε

kBT

)
= µL − ε (2.131)

calculated with the substitution y = 1/kBT , then Eq. (2.129) becomes for very low
temperatures simply

JT (Vsd) =
em∗

2π2h̄3

[∫ µL

0
dεT (ε)(µL − ε)−

∫ µL−eVsd

0
dεT (ε)(µL − eVsd − ε)

]
, (2.132)

which has a direct physical representation: all the electrons from the left reservoir,
with energies between [0, µL] contribute positively to the current, while the electrons
from right reservoir, between [0, µR] = [0, µL − eVsd] contribute negatively to the
current. For both reservoirs the contribution has the same form: the transmission
probability multiplied with the energy interval between the corresponding chemical
potential and the considered energy. In Eq. (2.132), as expected, does not appear
the dependence on the temperature anymore.

The same result can be obtained if one note that the derivative of the supply
function with respect to the energy, dξ(ε)/dε is a difference of two Fermi-Dirac
distribution functions

ξ′(ε) =
dξ(ε)

dε
= − 1

kBT
[fL(ε, Et)− fL(ε + eVsd, Et)] (2.133)

which is practically a constant for ε ∈ [µL − eVsd, µL] and in turn ξ(ε) is practically
a linear decreasing function on the same interval of energy.

If we now consider current through a resonant structure such as a resonant
tunneling diode (RTD), the current density is dominated by the resonant portion of
the transmission coefficient. For example, if the transmission coefficient is assumed
to be very sharp around ε = εn using the Lorentzian form [2] Chap.3.2,

T (ε) = Tres
Γ2

n/4

Γ2
n/4 + (ε− εn)2

(2.134)

where Γn is the energetic width of the peak n, we can approximate it as a delta
function so that at low temperature, Eq. (2.132) may be integrated to give

JT =
em∗TresΓn

4πh̄3 (µL − εn) 0 < εn < µL, (2.135)

where the asymptotic approximation for the delta function has been employed:

δ(ε− εn) =
1

π
lim

Γn→0

Γn/2

Γ2
n/4 + (ε− εn)2

. (2.136)
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The voltage dependence enters essentially through εn, the resonant energy. We
should mention here that Tres and Γn are also functions on applied bias Vsd. For a
symmetric double barrier, with a linear voltage drop equally divided between the
two barriers (usually the case for non self-consistent calculations), the well is lowered
in potential energy by an amount eVsd/2 with respect to the emitter (the left side),
and is higher in energy than the collector by the same amount. εn may therefore be
replaced in (2.135) by ε0

n− eVsd/2, where ε0
n is the quasi-bound state energy relative

to the well bottom. This gives a sudden turn-on of current when εn = µL, i.e.
eVsd = 2(ε0

n − µL), and cuts off when eVsd = 2ε0
n giving rise to negative differential

resistance (NDR). The peak occurs when εn = 0, giving a peak current density

JP =
em∗TresΓnµL

4πh̄3 . (2.137)

So that, a very simplified model for a J-V curve for a RTD provides at low
temperatures a form represented in the Fig. 2.7.

ε0
n2 sdeVε0

n

J

0

JP

− )2( µL

Figure 2.7: A very simplified model for a J-V curve for a RTD at low temperatures.

As can be seen, the peak current depends physically on the chemical potential
in the emitter, and hence the doping there, as well as on the product of the peak
transmission probability and resonance width. Since both the resonance width and
the resonant transmission amplitude increase as the barrier thickness decreases, thin
barriers are essential for high peak current densities.

In order to calculate the current-voltage characteristics using Eq. (2.129), the
transmission coefficient versus energy is tabulated for each bias point (since the
barrier shape continuously changes as a function of bias), and the integration is
performed numerically for the current.

The optimal conditions for the resonant tunneling through semiconductor quan-
tum structures have been studied [44, 43, 45, 92].

The formula (2.129) will be used in Chap. 4, to calculate the current flow for a
single barrier system, exhibiting Fabry-Perot resonances.
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2.6 Capacitance of mesoscopic structures

Capacitance spectroscopy has proven to be a powerful tool to study quantum semi-
conductor structures because it gives information about the charge density and its
location in the studied system. Examples for structures examined so far are het-
erojunctions [60], simple tunneling barriers as well as multiple barrier structures
[61, 62, 63, 64], superlattices [65, 66], two-dimensional electron systems [67, 68, 69,
70, 71, 72], quantum wires [73], and quantum dots [74, 75]. The investigation of
these systems require the presence of contacts made from a metallization or from a
heavily doped semiconductor material. These contacts are either source- and drain
contacts to apply an external potential or sometimes contacts used to define the
quantum structure itself (see e.g. the use of top gates in Refs. [73, 74, 75]). Because
image charges in the contacts have a major contribution to the charge balance in
small systems the explicit structure of the contacts is important for capacitance
measurements. A second important common feature is the existence of tunneling
currents which cannot be avoided in small structures. Theoretically, this means that
the quantum system is an open system exchanging particles with the environment,
particularly with the source- and the drain contact.

In this section we propose a new capacitance model for a quantum structure
that takes into account both of these fundamental aspects, the openness and the
existence of finite contacts embedding the system.

2.6.1 Charge balance

For a closed system there is no modification of the amount of charge inside the
system at variations of the applied bias. In contrast, for open system there is
particle exchange between the system and the contacts which play the role of the
reservoirs.

For defining the differential capacitance, we need first to define the charges which
belong to the ”plates” of the capacitor. For this it is necessary to make a charge
balance in the system:

• fix charges from the ionized impurities N+
D and N−

A ; these will be connected
to the plates by geometrical consideration,

• transport (free) charges ρ; these will be connected to the plates by ancestry
consideration, i.e. from where the particles are coming;

• the surface charges at the interfaces between the contacts and the system, σ1

and σ2; these will be connected to the plate to which the contact belongs.

So that, in our formalism we allow for net charges everywhere outside the contacts
(‘system charges’ in Fig. 2.8, z1 ≤ z ≤ z2). Inside the contacts there are net charges
in the surface region (‘interface charges’ in Fig. 2.8, −d ≤ z ≤ z1 and z2 ≤ z ≤ d). In
the bulk of the contacts, for |z| > d, there is no net charge and the effective potential
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is flat. In the scattering region defined by −d ≤ z ≤ d we distinguish between free
charges that can be exchanged with the bulk of the contacts and bound charges.
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Figure 2.8: General structure of the considered systems.

At the definition of the ”plate” charges we want to keep the classical meaning
of the capacitance: at a variation of the potential difference between the plates, the
variation of the charges on the plates have to be equal and of opposite sign.

2.6.2 Plate charges Σ1 and Σ2

We use the Gauss law for calculating the sheet charges at the interfaces between the
system and the contacts (see Fig. 2.9) and obtain

σ1 =
ε0εr

e

(
∂Vc

∂z

)

z=−d+δ

, σ2 = −ε0εr

e

(
∂Vc

∂z

)

z=d−δ

(2.138)

where σ1 is placed at z = −d and σ2 at z = d and δ → 0. We have used that outside
the interval [−d, d], the potential is constant according to the local charge neutrality.
The Gauss box is chosen so that δ → 0. Inside the scattering system the Coulomb
potential is given by Eq. (2.99). For the chosen configuration, l1 = −d and l2 = d,
the term (1/2)(l2 + l1)/(l2 − l1)(z + z′), which takes into account the asymmetry in
the boundary position, will be zero. The boundary values V1 and V2, which depend
on the external applied bias VSD, will be calculated from the boundary conditions
for the total potential energy V (z):

V (z = −d) = VL (2.139)

V (z = d) = VR (2.140)
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Figure 2.9: The electrostatic potential and the use of Gauss law for calculating the
sheet charges at the interfaces between the system and the contacts.

so that VL − VR = eVsd, where Vsd is the total bias which drops in the active region
considered in our problem, and it can differ from VSD by a constant, as it will be
presented in the particular analyzed cases. So that the Coulomb potential energy
felt by one electron in the field of all others

Vc(z) =
e

ε0εr

∫ d

−d

(
1

2
|z − z′|+ 1

2d
z · z′ − d

2

)
q(z′)dz′

+V1 + (V2 − V1)
z + d

2d
, for − d ≤ z ≤ d (2.141)

where q(z) = e
[
N+

D (z)−N−
A (z)− ρ(z)

]
. The derivative of the electrostatic poten-

tial Vc is well defined at the points ±d. One can see this, if the modulus function is
expressed in terms of step functions |z − z′| = (z − z′)Θ(z − z′) + (z′ − z)Θ(z′ − z).
Inserting the expression (2.141) of the Coulomb potential in Eqs. (2.138) we obtain

σ1 = −1

2
Q + Π− ε0εr

e

V2 − V1

2d
(2.142)

σ2 = −1

2
Q− Π +

ε0εr

e

V2 − V1

2d
(2.143)

with the notations

Q =
∫ d

−d
q(z)dz, (2.144)

Π =
1

2d

∫ d

−d
zq(z)dz. (2.145)

One can immediately observe that σ1 + σ2 = −Q.
We can construct now the charges on the plates:
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• on the left plate
Σ1 = σ1 + σfree

1 + σbound
1 , (2.146)

• on the right plate
Σ2 = σ2 + σfree

2 + σbound
2 , (2.147)

where

σbound
1 = e

∫ 0

−d
(N+

D (z)−N−
A (z))dz (2.148)

σfree
1 = −e

∫ d

−d
ρ1(z)dz (2.149)

σbound
2 = e

∫ d

0
(N+

D (z)−N−
A (z))dz (2.150)

σfree
2 = −e

∫ d

−d
ρ2(z)dz (2.151)

with ρ1(z) and ρ2(z) the charge density produced by the electrons incident from the
left and right contact, respectively (see Eq. (2.88)):

ρ1(z) = 2
Lz

(2π)2

∫ kF

0
dkz

(k2
F − k2

z)

2
|ψL(kz, z)|2 (2.152)

ρ2(z) = 2
Lz

(2π)2

∫ kF

0
dkz

(k2
F − k2

z)

2
|ψR(kz, z)|2 (2.153)

With the above definitions, the neutrality condition

Σ1 + Σ2 = 0, (2.154)

is implicitly fullfiled.
We can define now the capacitance per area:

C =

∣∣∣∣∣
dΣ1

dVsd

∣∣∣∣∣ =

∣∣∣∣∣
dΣ2

dVsd

∣∣∣∣∣ (2.155)

and with the above expressions we have

dΣ1

dVsd

=
1

2

d

dVsd

(σfree
1 − σfree

2 ) +
d

dVsd

Π− ε0εr

e2d

d(V2 − V1)

dVsd

(2.156)

dΣ2

dVsd

= −1

2

d

dVsd

(σfree
1 − σfree

2 )− d

dVsd

Π +
ε0εr

e2d

d(V2 − V1)

dVsd

(2.157)

which shows that the variation of the Σ1 and Σ2 are equal and with opposite sign
for the same variation of the applied bias. The capacitance per area describes the
absolute value of the net charge coming into the system from either of the contacts
L (left) or R (right) when the voltage is changed. The charge coming from the left
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contact is stored in σ1 and σfree
1 , while the charge coming from the right contact is

stored in σ2 and σfree
2 . In contrast to a plate capacitor the charges belonging to σfree

1

and σfree
2 have a spatial overlap. However both charge types are distinguishable in

our model and there is no exchange between these charges.
Because the capacitance is the derivative of Σ1/2 at the applied bias Vsd, and we

consider that the bound charges N−
A (z) and N+

D (z) do not depend on the applied
bias, then in the definitions of σbound

1/2 , (2.148) and (2.150), it is not important how
the bound charges are associated to the capacitor plates. The integral limits can be
chosen arbitrarily, but should cover the whole system in order to obey the neutrality
condition (2.154).

2.7 Characteristics of GaAs/AlxGa1−xAs/GaAs

structures

One of the most used material for the nanodevices is the ternary alloy system
AlxGa1−xAs, because GaAs and AlAs form a solid solution over the entire com-
position range (0 ≤ x ≤ 1) with very little variation (< 0.15 per cent) of the lattice
constant. These facts mean that semiconductor multilayers of very high quality
with different x values can be relative easy prepared. The most exploited aspect
of the AlxGa1−xAs alloys is their band structure. At x = 0 (i.e. GaAs) we have
a direct-bandgap semiconductor with a room temperature bandgap of 1.42eV. At
x = 1, AlAs is an indirect-gap semiconductor with the minimum energy separation
at the X point. At somewhere about x = 0.45 there is a crossover from direct to
indirect-gap structure [76] Chap.1.6. The transport properties of AlxGa1−xAs near
the indirect-direct crossover are not well known, but majority exploited heterostruc-
ture devices are using alloys with x < 0.4 to ensure a direct-bandgap semiconductor
and to avoid a transition form Γ minimum to X minimum.

Guéret et al. in [77] have accounted for the band-edge effective mass in AlxGa1−xAs
dependence on the Al mole fraction x according to

m∗ = 0.067(1 + 1.244x)m0 (2.158)

where the m0 stands for the free-electron mass.
A recent detailed analysis of the material parameters for different alloys used in

nanodevices is provided by Vurgaftman et al. [78].
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Chapter 3

Capacitance of a field-induced
2DEG

We will consider in this chapter semiconductor devices composed of a small quan-
tum structure as the active device region and two classical environments consti-
tuting the source- and the drain contact. The contacts are taken as free electron
gases with infinite conductivity, whose concentrations define the chemical potentials
in the contacts. The transport through the quantum structure is described in the
Landauer-Büttiker formalism using electronic scattering wave functions which define
the electron density in the quantum system. In our Hartree approximation these
charges and the induced charges in the contacts are the sources of the self-consistent
Coulomb field. As a particular quantum structure we study a GaAs heterostruc-
ture device consisting of a two-dimensional electron gas sandwiched between a gate
contact and an AlGaAs blocking barrier [71]. We demonstrate the quantitative
agreement of our theory with the experimental results.

3.1 The structure

As a particular quantum structure we study a special high-mobility AlGaAs/GaAs
heterostructure device consisting of a two-dimensional electron gas sandwiched be-
tween a back contact and an AlGaAs blocking barrier [71], optimized for investi-
gations of electron systems at low densities [73, 79]. This structure differs from
the semiconductor devices used for magneto-capacitance spectroscopy through the
second metallic electrode buried in the crystal below the 2DEG [80, 81]. The very
good quality of the sample made possible to study the quantum effects.

The AlGaAs/GaAs single-heterojunction structure [71] represented in Fig. 3.1,
consists of a sequence of layers grown on a GaAs substrate, given by, first, 20nm n-
GaAs as a back contact, nSi = 4×1018cm−3 silicon doping, second, 100 nm intrinsic
GaAs as a spacer, with NA = 1015cm−3 residual (nonintentional) p-doping, third, a
short period AlAs/GaAs superlattice: 7x9ML (monolayers) AlAs alternating 6x9ML
GaAs with the total width of 32nm, as a blocking barrier, a thin 9nm GaAs cap

45
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layer and finally a metallization as a top gate. These parameters of the sample (see
Fig. 3.2) define the nominal structure.
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Figure 3.1: The AlGaAs/GaAs heterostructure device [71] and the schematic band
diagram in growth direction.

Here the quantum system basically consists of a field induced two-dimensional
electron gas (2DEG) formed at the interface between the GaAs spacer and the
blocking barrier for gate voltages VG above a certain threshold value.The 2DEG is
separated from the back contact by a wide and shallow tunneling barrier.

The back contact plays the role of a source contact, while the top metallic gate
plays the role of a drain contact. We choose the zero-reference of the potential
energy in the system to be the conduction band minimum on the left, Ec,L = 0.

Conventionally the sign of the VG bias applied between the top gate and the
GaAs substrate is given by the polarity on the gate with respect to the GaAs sub-
strate. Positive bias on the gate attracts electrons to the barrier surface. Making VG

negative with respect to the GaAs substrate repels electrons from the gate surface
and attracts holes to the gate surface.

As well known, the scattering potential in the growth direction breaks the trans-
lational symmetry in this direction, so that the local charge neutrality is destroyed
(but not the total charge neutrality) and the charge distribution has spatial varia-
tions. This process is intensified by the external electric field.

The region between (−d, d) is fully quantum mechanically described. We treat
the metallic gate and the back contact as ideal metals with infinite conductivity
which ensures constant potential outside the scattering region (−d, d) [94]. The
electron motion can be described by the Schrödinger equation (2.2). Because of the
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Figure 3.2: Schematic band diagram of the heterostructure device measured in Ref.
[71]. The structure parameters are: 1.) Top gate metalization, 2.) 9 nm GaAs
cap-layer, 3.) 7x9ML (monolayers) AlAs alternating 6x9ML GaAs (short period
superlattice of width 32nm), 4.) 100 nm GaAs spacer, with NA = 1015cm−3 residual
p-doping, 5.) 20nm GaAs back contact with ND = 4×1018cm−3 silicon doping, 6.) 1
µm GaAs buffer, and 7.) GaAs substrate (semi-insulating). We take εr = 12.5,m∗ =
0.0655m0. The 2DEG is formed at the interface between the GaAs spacer and the
blocking barrier by applying a dc bias between the gate electrode and back contact.
µL is the chemical potential in the back contact, EQ

F is the Fermi level of the 2DEG.
ε0 is the quasi bound level formed in the quantum well in front of the blocking
barrier. eΦBn represents the barrier height of (gate) metal-semiconductor contact.
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translational invariance of our system in the lateral directions the structure allows
for a separable potential,

Veff (r) = V⊥(r⊥) + V (z) (3.1)

where V (z) represents the scattering potential in the growth direction and V⊥(r⊥)
is the potential in the plane parallel to the heterostructure interfaces, and per-
pendicular to the growth direction. We do not have supplementary gate induced
constrictions, so that V⊥(r⊥) is constant and can be taken as zero, V⊥(r⊥) = 0.
In turn, electrons are free in the parallel directions and can be described by plane
waves. Within the standard envelope function approximation, the motion of the
electrons in the growth direction is described by the 1D Schrödinger type equation
(2.6).

The electronic charge is calculated quantum mechanically as in Sec. 2.2. The
Coulomb potential is considered in the Hartree approximation, so that the 1D
eigenvalue problem (2.6) becomes a nonlinear one, which is solved iteratively, self-
consistently, as described in Sec. 2.4.

3.2 Flat band configuration

In order to calculate the self-consistent potential and charge distribution we want to
obtain first the flat band configuration. There are more properties which define the
flat band configuration: in a MOS (metal-oxide-semiconductor) system, the bands
are flat throughout the semiconductor; the hole and electron densities are uniform
throughout the semiconductor and have the same values at the surface as in the
bulk of the semiconductor. If the bands are flat, this provides another condition,
namely the derivative of the potential is zero. This condition will be used also in
our model, so that the flat band configuration is achieved if

dV (z)

dz

∣∣∣∣∣
z0

= 0, (3.2)

where z0 is chosen in our system as the middle of the blocking barrier. This condition
will be automatically fulfilled if we consider an auxiliary symmetrical structure with
similar parameters as the nominal structure: the same width and height of the
blocking barrier, but two identical GaAs spacers on every side of the barrier with
the same size as in the nominal structure, sandwiched by two identical n-GaAs layers
with the same doping as in the nominal structure.

We take the effective mass of the electron in GaAs as the effective mass over the
whole structure m∗ = 0.0655m0, and we consider εr, the relative permittivity, equal
over all the structure and, equal with the value in GaAs, εr = 12.5. The temperature
is considered T ∼= 0K.

The initial negative charge density ρ0 is chosen as a linear profile on the order
of λF around the interfaces between high doped region and undoped region, as it
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Figure 3.3: The self-consistent potential (lower part) and electronic density distri-
bution (upper part) for the auxiliary symmetrical structure, which construction is
based on the nominal structure (see text). The residual NA doping is not taken into
account.

was shown in Sec. 2.4. The self-consistent electronic density distribution does not
depend on this initial guess and this was verified numerically, but a good guess
shortens the convergence time.

We first present in Fig. 3.3 the results for the structure without considering
the residual NA doping of the GaAs layers. In the upper part are presented the
initial electronic charge guess ρ0, the doping profile, ND, ND = 4 × 1018cm−3 in
the contact regions, and the self-consistent electronic density distribution ρ. The
chemical potential is established by the contact doping using Sommerfeld model for
free and independent electron gas [47], Chap.2, EF = h̄2(3π2ND)2/3/(2m∗). For the
considered system EF = 0.1402831eV and the Fermi wave length, λF = 2π/kF , is
λF = 12.8nm.

In the lower part of Fig. 3.3 is presented the heterostructure potential Vh due to
band off-sets and the self-consistent potential energy (solid line) V = Vh +Vc, where
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Vc denotes the Coulomb potential. The chemical potentials, µL and µR, in the left
and right reservoirs, respectively are equal because the structure is symmetric.

As one can see, the self-consistent potential raises on the undoped region with
a quantity, denoted eU (see Fig. 3.2), and remains practically constant over the
undoped semiconductor regions. This quantity, similarly to a p-n junction, can be
called built in potential, and is determined mainly because the doping concentration
changes abruptly at zNd in GaAs semiconductor layer. This quantity will not be
modified by the applied bias. There are some differences between eU and the built-
in potential in a p-n junction: the dependence of eU on other factors, like doping of
the n- and p-regions, length of n- and p-regions, will be analyzed.

To obtain the nominal structure, we cut the symmetrical structure (the self-
consistent potential V and electronic distribution ρ) at the coordinate z = −136nm
(120 nm in front of the blocking barrier) and at z = 25nm (vertical dot-dashed
line; 9 nm behind the blocking barrier) and this will constitute the starting point
for the self-consistent calculations of the nominal structure. We have to work with
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Figure 3.4: The self-consistent electronic density distribution (upper part) and po-
tential Vflat (lower part) for the nominal structure, at the flat band bias V f

G . The
residual NA doping is neglected,
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a symmetrical interval in z, so our structure is between [-80.5, 80.5]nm, because
the total length of the active region is 161nm (20 nm high doped GaAs region, 100
nm spacer, 32 nm barrier, 9 nm cap layer). Now we can give also a quantitative
evaluation of the built-in potential, namely the difference between potential values
at the boundaries after the cutting process:

eU = Vflat(d)− Vflat(−d). (3.3)

In our calculations, eU = 0.13993eV. In the self-consistent calculations for the nomi-
nal structure (i.e. after cutting of the auxiliary structure) the value eU is kept fixed,
this is the reason why a in Eq. (3.3)there is a ’flat’ index. We also consider that
there are no incident waves from the right side (see Fig. 3.2). This is based on the
particular configuration of the analyzed structure: We can neglect the contribution
of the right-incident scattering states because the occupied states in the gate contact
lie about one electron volt below the conduction band edge in the back contact, due
to the large barrier height of (gate) metal-semiconductor contact. [71]

The self-consistent potential and electronic density distribution for flat band
configuration are presented in Fig. 3.4. One can read now the constant potential
values outside the scattering region: i.e. VL = Vflat(−d) and VR = Vflat(d).
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Figure 3.5: The convergence parameter during the iterations in the self-consistent
calculations for auxiliary (dashed line) and nominal structure (solid line). With
dot-dashed line is represented an evolution for out of convergence.

In Fig. 3.5 we plot the convergence parameter Eq. (2.112) during the itera-
tions for the auxiliary symmetrical structure and for the nominal structure. This
parameter gives information about the evolution of the self-consistent calculations.
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The convergence limit is set to ε = 5 · 10−7. Because the starting point for the
nominal structure calculations is part of the self-consistent results for the symmet-
rical structure, the convergence is achieved faster. The evolution of the convergence
parameter depends on the mixing factor f (see Eq. (2.111)). For the auxiliary sym-
metrical structure, we considered f=0.015 for the first 200 iterations, f=0.025 for
the next 100 iterations, and we tried to accelerate the convergence process after the
300-th iteration by increasing f at f=0.04. But the calculations ran out of conver-
gence, which is shown by the dot-dashed line in Fig. 3.5. So, we turned back at
the iteration 330, and we set f=0.03 until convergence was achieved. The changes
in f factor determine slope changes in the plot of convergence parameter. At the be-
ginning of the self-consistent procedure, the evolution of the convergence parameter
is abrupt (especially for the auxiliary symmetrical structure) because of the chosen
start point.

For the nominal structure, f factor was f=0.01 for the first 10 iterations, f=0.015
for the next 100 iterations, increases after that at f=0.02 for the next 100 iterations
and for the last iterations f=0.025.

The flat band structure is obtained for an external applied bias between the back
contact and the top metallic gate (see Fig. 3.2),

eV f
G = eφ1 = eφBn + (µL − eU), (3.4)

and will be taken as reference point for our numerical calculations. eφBn denotes
the barrier height of (gate) metal-semiconductor contact.

3.2.1 NA doping effect

We can now make a discussion about the effect of the residual, unwanted, acceptor
doping NA in the GaAs layer. We consider the following doping profiles

{
ND −NA = 4× 1018cm−3 in contacts

NA −ND = 1015cm−3 in ”undoped” regions
(3.5)

which are introduced in the Poisson equation (2.90) and the effect on the poten-
tial and electronic density distribution for the auxiliary symmetrical structure is
presented in Fig. 3.6.

One can see from Fig. 3.6 that the NA doping rises the potential, so that around
the blocking barrier V > µL, and in turn the electronic charge distribution decreases
drastically around the blocking barrier. The total negative charge density distribu-
tion ρ+N−

A is practically constant and equal with the acceptor doping in the middle
of the structure. The built-in potential is changed with respect to the previous cal-
culations, and has the value eU = 0.14335eV. This value is kept constant, as the
difference between VL and VR, eU = VR−VL, during the self-consistent calculations
for the nominal structure.

The self-consistent potential and electronic density distribution for the nominal
structure, considering the residual NA doping are presented in Fig. 3.7(a) and 3.7(b).
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Figure 3.6: The effect of the acceptor doping NA on the self-consistent potential
and electronic density distribution for the auxiliary symmetrical structure. Middle
part: the self-consistent potential with a detail (upper part) around the chemical
potential and the blocking barrier. Lower part: the self-consistent electronic density
distribution ρ for taking (dashed line) and without taking (dotted line) in account the
NA doping. With solid line is presented the total negative charge density distribution
ρtot = N−
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3.3 Applied bias

In this section we characterize the quasi-bound states which appear at positive
applied bias, and which are directly related to the field induced two dimensional
electron gas (2DEG).

We can see from Fig. 3.8 that the flat band structure is obtained for an applied
positive bias V f

G where eV f
G = eφ1 = eφBn + (µL− eU). The flat band configuration

and the corresponding applied bias will be taken as reference point for our numerical
calculations.
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Figure 3.8: The band diagram scheme for the whole structure: a) for the applied
bias V f

G at which the flat band configuration is obtained and b) for VG > V f
G .
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If we increase the forward bias VG then we can write

eVG = eφ1 + eVg (3.6)

and the quantity Vg will represent further the ”applied” bias on the active structure
between [−d, d].

In Fig. 3.9 it is shown that the quantity eVg is exactly the modification of the
potential energy at the boundary point z = d from the flat band configuration to
the applied bias configuration:

eVg = Vflat(d)− V (d), (3.7)

where Vflat(z) is the potential in the flat band configuration and V (z) is the potential
for the structure under the bias Vg.

eVg

−d bz d z

E=0

c)

Figure 3.9: The band diagram scheme in the scattering region, for flat band con-
figuration (dashed line) and for an applied bias (continuous line), which shows that
eVg is the difference between the potential values at the right boundary point z = d.

3.3.1 Wigner Eisenbud functions

In this section we analyze the effect of the external electrical field on the closed
counter part of our scattering problem, i.e. the effect on the Wigner-Eisenbud
functions. The self-consistent calculations are performed as in Sec. 2.4. The number
of zeros for the Wigner Eisenbud functions, their order, do not change in the self-
consistent procedure. But their form, i.e. the position of their maxima and minima,
changes during iterations, because it is directly related to the form of potential,
calculated iteratively. A typical configuration of the Wigner Eisenbud functions at
the end of the self-consistent procedure is presented in Fig. 3.10 a)
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Figure 3.10: Left: The Wigner Eisenbud functions around the localized one for
applied bias Vg = 20mV. Right: the localized Wigner Eisenbud function for different
applied biases.

Because the Wigner-Eisenbud problem is a closed one, one can discuss about a
localized Wigner Eisenbud function, which in our case is the 6th one in the left part of
Fig. 3.10. In the right part of Fig. 3.10 we can observe how its localization character
changes with increasing applied bias: the maximum of the function increases while
the width of the function and the coupling with the external region decrease.

The energy corresponding to the localized Wigner-Eisenbud function, can be
taken as a first approximation for the energy of the quasi-bound state which appears
by increasing the applied bias. This approach is reasonable for small Vg biases, but
for bigger ones one needs a more accurate method to find the energy and the width
of the quasi-bound state (see Sec. 3.6.1).

3.3.2 Wave functions and quasi bound states

As one can see from Fig. 3.7(a), our potential energy configuration is so that
VL < VR, which means that the Schrödinger equation (2.6) has a continuous non-
degenerate eigenvalue spectrum between VL and VR, and also for this energy interval
can appear quasi-localized states. They are not localized states, because the ener-
gies ε > VR correspond to the classically allowed spectrum so that we call them
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quasi-bound states. Their energies generally manifest as maxima in the tunneling
spectrum. Because of the blocking barrier between the back contact and the top
metallic gate, the tunneling probability is practically zero, so we should find another
quantity on whose structure the presence of the quasi-bound states can be identified.
Such a quantity is the probability distribution density Pε(z) = |ψL(ε, z)|2, to find
an electron in the state ψL(ε, z) in a volume element at the given z-coordinate as is
also suggested recently by Magnus [82].

We plotted in the left part of Fig. 3.11 Pε(z) at a fixed point zp ≤ zb = 39.5nm
for an interval of energies around the energy of the localized Wigner Eisenbud func-
tion. The function Pε(zp) has a peak with the maximum at ε0. We can define an
interval centered on ε0, where the peak extends, and all scattering states with energy
in this interval are referred to as quasi-bound states. This interval becomes smaller
and smaller by increasing the gate voltage Vg and the integration over this interval
for calculating the contribution to charge density Eq. (2.88) should be done finer.
Finding correctly this interval is essential for an accurate determination of the ac-
cumulated charges in the quantum well. If this quantity is over- or under-evaluated
then the self-consistent procedure does not work properly.
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Figure 3.11: Left: The wave function |ψL(ε, zp)|2 at a fixed point zp, for an interval of
energies around the energy of the localized Wigner Eisenbud function. With dotted
line is plotted the potential of the quantum well in front of the blocking barrier, for
Vg = 0.06V . Right: The localized wave function |ψL(ε0, zp)|2 (upper part) and the
corresponding self-consistent potential (lower part) for Vg = 10, 30, 50mV.
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The absolute value of the wave function for the energy ε0 is plotted in Fig. 3.12.
This wave function does not tend to zero at the left edge of the scattering region. Its
oscillations for z ∼ −d shows that the associated state is not totally decoupled from
the left reservoir and consequently not bound. But it is usual to call it quasi-bound
state because the probability distribution density Pε(z) has a very sharp maximum
for this energy as it is shown in the left part of Fig. 3.11 for the fixed point z = zp. In
the same time, this wave function has zero values on the right edge of the scattering
region, which shows explicitly that it is totally decoupled from the right reservoir
(i.e. metallic gate).
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Figure 3.12: The wave function of the quasi-bound state (solid line) and the self-
consistent potential (dotted line) for Vg = 0.03V . The energy and the width of the
quasi-bound state are ε0 = 0.139137eV and Γ = 0.105× 10−3eV, respectively.

The self-consistent potential and electronic density distribution for some applied
biases are presented in Fig. 3.13 a). These figures shows that the two distributions
do not practically change in the back contact region, around zNd = −60.5nm. We
present in Fig. 3.13 b) the potential and the charge density only for the accumulation
layer. Increasing the applied bias, the band bending at the interface between the
GaAs spacer and the blocking barrier increases, forming a quantum well which can
support quasi bound states. The system is open for electron exchange with the
back contact and these states are populated leading to charge accumulation at the
interface between the spacer GaAs layer and the blocking barrier. With applied bias
increases also the accumulated charge in the quantum well, Fig. 3.13 b), upper part.
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Figure 3.13: a) The self-consistent potential (lower part) and electronic density
distribution (upper part) for the nominal structure at biases Vg = 0, 10, 50, 90 mV .
b) Electronic density distribution (upper part) and potential (lower part) in detail
for the accumulation layer.
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3.4 Comparison to the MOS

If we compare our structure with the MOS (metal-oxide-semiconductor) structure,
which was very intensively studied in the Si-SiO2 systems [53], we can observe some
useful similarities but also some differences.

In Fig. 3.14 we sketch the band diagrams for both structures: the MOS structure
(in the upper part) and the GaAs/AlxGa1−xAs heterostructure (in the lower part).

A typical MOS structure with n-type inversion region consists of a p-type semi-
conductor (e.g. silicon), an oxide barrier and metal contact [50]. For the semicon-
ductor region the bulk equations (for charge density, energy levels, ...) are valid
and we can call this ”bulk region”. The chemical potential is equal everywhere in
the semiconductor. The band-bending approximation is valid. This means that the
density of states in the conduction and valence bands is not changed by an elec-
tric field. In the band-bending approximation the effect of an electric field is only
to shift all the energy levels in the conduction and valence bands by a constant
amount determined by the potential at every given point in the semiconductor. The
inversion layer appears at the gate voltage for that the intrinsic Fermi level bends
down to the chemical potential. The active region consists of the depletion region,
of micrometers order, and inversion region, of nanometer order. For high applied
voltages and high electron concentration in the inversion layer the surface quanti-
zation appears, the band-bending approximation is not anymore valid (the density
of states is changed by the electric field) and the quantum mechanical calculations
are necessary [53].

The present structure consists of i.) a heavily doped region of GaAs, for which
the bulk model is taken valid, and the chemical potential is already in the conduction
band, ii.) continued with intrinsic region of the same material GaAs, iii.) a blocking
barrier and iv.) metallic gate. The field induced 2DEG, which constitutes the active
region, appears at the interface between the GaAs spacer and the blocking barrier for
an applied bias for which the conduction band bends under chemical potential. The
active region is of nanometer order and the 2DEG can be in contact with n-doped
region. The barrier, consisting of different layers of GaAs and AlxGa1−xAs may be
penetrable which is a major difference to the classical MOS structures, although
there exist also leakage current for thin oxide barriers. In the present modeling we
do not consider penetrable barriers, so there is no current flow.

Another difference between these two structures is that the distance between
the active region and the ”bulk region” in MOS structure is fixed through the
depletion length, while for the present structure can be engineered in the growing
process. Thus, the free electrons in the active region are for MOS structure far
away from the free carriers in the p-type silicon, while for the present structure the
electrons in the active region can be in contact with the free electrons in the n heavily
doped GaAs region. While for the classical MOS structure, for low gate voltages
a drift diffusion model can be applied, for the present structure purely quantum
mechanically calculations for any applied bias should be performed to find the free
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carriers concentration.
Both structures can be analyzed within capacitance spectroscopy. For both

structures one plate of the capacitor is the metallic gate and the second plate is
the ”bulk material”: semi-infinite p-Si or n-doped GaAs (back gate), respectively.
When the field induced inversion layer or 2DEG, respectively, appears then it plays
the role of the second plate.

3.5 Capacitance

By modulating VG with a small ac voltage, the ac current through the sample can
be measured. The real part of the current depends on the tunnel resistance while
the imaginary component is determined by the capacitance of the structure. The
experimental data [71] were obtained by studying the imaginary component of the
ac current through the sample as a function of the gate voltage (C-V curve), at low
frequency ≈ 100Hz and temperatures ≈ 25mK. The amplitude of the ac voltage
does not exceed 1mV and corresponds to the linear regime. The gate surface is
S = 20× 40µm2.

As we emphasized in Sec. 3.2 the particular configuration of the analyzed struc-
ture (Fig. 3.2) does not allow incident electrons from the right contact (top metallic
gate). That means that only the scattering states incident from the left (back) con-
tact have a contribution to the electronic density distribution. According to Eqs.
(2.152) and (2.153), ρ(z) = ρ1(z) and ρ2(z) = 0.

Following the capacitance model presented in detail in Sec. 2.6, we identify the
free charges in the system with

σfree
1 = −e

∫ d

−d
ρ(z)dz, (3.8)

σfree
2 = 0, (3.9)

and the bound charges with

σbound
1 = e

∫ d

−d
(ND(z)−NA(z))dz, (3.10)

σbound
2 = 0. (3.11)

We consider all impurities completely ionized, N−
A (z) = NA(z) and N+

D (z) = ND(z).
In contrast to Eqs. (2.148) and (2.150), for our structure which does not allow

incident states from the right it is more convenient to associate all fixed charges with
σbound

1 . As was pointed out in Sec. 2.6 these charges do not vary with the applied
bias and consequently have no contribution to the capacitance.

According to the definitions (2.146) and (2.147) we can now express the charges
corresponding to the plates of the capacitor:

Σ1 = σ1 + Q, Σ2 = σ2, (3.12)
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where the sheet charges at the interfaces between the quantum system and the
contacts, σ1 and σ2, respectively, are given by Eqs. (2.142) and (2.143) and Q is
the total electrical charge inside the quantum system, (2.144). We have the general
form (2.154) of the neutrality condition which becomes

σ1 + Q = −σ2 (3.13)

in our particular case. The differential capacitance per area is

C =

∣∣∣∣∣
dΣ1

dVg

∣∣∣∣∣ =

∣∣∣∣∣
dΣ2

dVg

∣∣∣∣∣ . (3.14)

Note that Vsd which appears in Sec. 2.6 means for our structure Vg. The capacitance
given by Eq. (3.14) is presented in Fig. 3.15, together with the quantities Σ1/2, σ1/2

and σfree
1 +σbound

1 . σ1 is constant because the self-consistent potential in the contact
region, −d < z < zNd, does not practically change with applied bias.
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Figure 3.15: Lower part: The areal charge densities defined in our capacitance
model, Σ1/2, σ1/2 and σfree

1 + σbound
1 . Upper part: The capacitance given by Eq.

(3.14), multiplied with the surface S. The residual NA doping is taken into account.

In Fig. 3.16 we present for comparison the experimental data and the capacitance
calculated in our model. Qualitatively, the C-V-traces take the form of a broadened
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step located between a low-voltage, V < V−, and a high-voltage, V > V+, plateau.
Both plateaus have a weak positive slope. We define the center of the step through
the condition d2C/dV 2

g = 0 and V− and V+ correspond to the gate voltages where
|dC/dVg| takes half of its maximum value. Because the work function of the metal
contact is not precisely known we shift the theoretical voltage scale Vg with respect to
the experimental one VG, so that the centers of the steps coincide. The applied bias
for the flat band configuration, which determine the shift between VG and Vg (Eq.
(3.6)) is Φ1 = 0.701V when the NA doping is taken into account, and Φ1 = 0.71V
when NA = 0 (see Fig. 3.2). One can see in Fig. 3.16 that considering the residual
NA doping, the numerical C-V curve closes with the experimental one.
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Figure 3.16: The experimental data and the calculated values for the capacitance of
the nominal structure. Chigh is the high frequencies capacitance limit.

We can estimate the limit values of the capacitance using the classical formula

C =
ε0εr · S

l
, (3.15)

where S is the area of the plates, l the distance between the plates and εr the relative
permittivity of the material between the plates, Fig. 3.17. For our system, εr = 12.5
and S = 800µm2.
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Figure 3.17: The geometrical scheme for the limit values of the capacitance.

At high frequencies the charge is not accumulating at the interface between
the GaAs spacer and the blocking barrier and the capacitance will be determined
regarding the two contacts as the capacitor plates. The distance between the plates
can be taken from the geometrical considerations as l1 = d − zNd = 141nm, which
gives

Cinf = 0.628 pF.

But, the free charges (electrons) from the back contact enter the system, so that a
better evaluation of the distance between plates is given by the experimental value
[71], l1 = lg = 120nm, which leads to

Chigh = 0.7375 pF.

In the opposite limit, for low frequencies, the two dimensional electron gas
(2DEG) is formed in front of the blocking barrier and plays the role of the left
plate of the capacitor. Also in this case, the right plate is the metal gate, so that
the distance between the plates can be considered l2 = d− zb = 41nm which gives

Csup = 2.16 pF.

But the 2DEG is not a δ-charge distribution located at z = zb, as would be considered
within a classical image of the spatial location of the charges in front of the blocking
barrier. So, we should consider the spatial spreading of the 2DEG and should take
the distance between the plates as the experimental value l2 = lg − lw = 50nm. In
this case

C = 1.77 pF,

which is in good agreement with the value of the high voltage capacitance plateau.
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In Fig. 3.16 we indicate by a horizontal line the capacitance limit value Chigh

which is approached in the small voltage regime. For these voltages there are net
charges only in the source contact region of the scattering area (−d ≤ z ≤ zNd) and
these charges are only weakly dependent on the applied bias.

In Fig. 3.18 we plot the numerical values of the capacitance for different struc-
tures at which the distance between the blocking barrier and the doped region,
s = zb − zNd, was modified from 100nm as for the nominal structure to 80nm and
70nm. One can immediately observe, that the value of the low-voltage plateau in-
creases, because the distances between the plates in the Chigh limit decreases. At
s = 70nm the high voltage plateau value is evidently smaller as in other cases. We
think that there is a superposition between the Thomas-Fermi screening length in
the back contact and the penetration length of the wave function of the 2DEG into
the shallow barrier which separates the 2DEG from the back contact. This needs to
be verified in future experiments.
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Figure 3.18: The numerical capacitance values (without considering the NA doping)
for different distances s between the blocking barrier and the doped region, s =
zb − zNd.
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3.5.1 Impenetrable barrier

Our analyzed structure contains a blocking barrier (see Fig. 3.2) which was consid-
ered of 1eV height and it is practically an impenetrable barrier. The self-consistent
calculations for the electronic density distribution, Figs. 3.7(b) and 3.13 b), show
that the penetration of the electrons in the blocking barrier is practically negligi-
ble. In this case one can calculate the capacitance with Gauss’ law as it is done by
Schmerek [79]:

C

S
= ε0εr

∂

∂Vg

(∮

Γ
∇V (z) · nds

)
, (3.16)

where the surface Γ encloses the free charge of the 2DEG and has the boundaries
inside the blocking barrier and inside the back contact (see Fig. 3.19); n is the
external normal at this surface.

ND

+

NA

− ρ
σ1

zbzNd−d z

V(z)
Gauss box

Figure 3.19: The Gauss box which includes the free and bound charges and extends
over the back contact and into the blocking barrier. The potential is plotted with
solid line, the ionized donors distribution N+

D with dashed line and the ionized
acceptors distribution N−

A with dot-dashed line. The gray area corresponds to the
the electronic charge density ρ and the dashed area represents the δ sheet charge,
σ1, at z = −d.

The Gauss’ law gives ∫

V
divEd3r =

∮

Γ
Ends, (3.17)

where V is the volume enclosed by the surface Γ. Because the potential varies only
in the growth direction z, the electric field E has only the z-component different
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from zero. In the back contact (z < −d) the potential is constant (V (z) = VL) so
that the electric field is zero. The right side of the Gauss box is taken exactly at
the beginning of the blocking barrier and the electric field here is

Ez(zb) =
1

e

dV (z)

dz

∣∣∣∣∣
z=zb

, (3.18)

so that ∮

Γ
Ends = S

1

e

dV (z)

dz

∣∣∣∣∣
z=zb

. (3.19)

From the Maxwell equation we have

divE =
e

ε0εr

[N+
D (z)−N−

A (z)− ρ(z)] (3.20)

and performing the integral over the volume V in Eq. (3.17), one obtains the total
charge inside the Gauss box

SQin =
∫

V
divEd3r = S

∫ zb

−d−η
dz(σ1δ(z + d)−N−

A (z) + N+
D (z)− ρ(z))

= S(σ1 + σbound
1 + σfree

1 ), (3.21)

where η > 0. This charge represents in fact the charge on one plate of the capacitor,
Σ1 (Eq. (2.146)), and its variation with applied bias gives the capacitance

C = S
dQin

dVg

. (3.22)

This expression is equivalent with the definition (3.14).
So, we have demonstrated that for a system which contains an impenetrable

barrier the charge on a plate of the capacitor is straightforward obtained with the
Gauss law knowing the potential slope in front of the impenetrable barrier. The
capacitance is given as usual by the variation of the plate charge with respect to
the applied bias. We would like to emphasize, that this method is not anymore
helpful for a penetrable barrier, because the Gauss law takes into account the spatial
distribution of the charges but not their ancestry (i.e. from which reservoir they are
coming)!

3.6 Intermediate resonance

In this section we will analyze the critical voltage regime, i.e. the step in the C-
V curve between the low- and high- voltage plateaus, Fig. 3.20 and we will show
that it can be described by a single resonance which we call intermediate resonance.
We emphasize the excellent quantitative agreement between theory and experiment.
From Fig. 3.20 it can be seen that the step in the C-V characteristic is located in
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a regime of gate voltages where the maximum Vmax of the potential barrier which
separates the back contact from the potential pocket at the interface between the
GaAs spacer and the blocking barrier (see Fig. 3.13) is below the chemical potential,
µL. Consequently there is an open channel of classically allowed motion, Vmax <
ε < µL. This finding resulted in a number of calculations with varying distance of
the back gate to the barrier and varying background doping concentration in the
GaAs-spacer layer.
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Figure 3.20: Upper part: The C-V curve, experimental data [71] (filled circles) and
theory (solid line) in the step region. Lower part: As the result of the complete
numerical calculation the resonance energy εmax (solid line), and the energies ε±
at which the absolute value of the wave function takes half the maximum value at
constant z = zmax (dotted lines). The corresponding values εF

max (filled triangle) and
εF
± (triangle) in the Fano approximation. Shaded area: energies with Vmax < ε < µL.

To analyze the physical process that underlies the step in the C-V curve we plot
in Fig. 3.21 the energy- and space-dependence of the probability distribution density,
Pε(z) = |ψL(ε, z)|2, to find an electron in the state ψL(ε, z) in a volume element at
the given z-coordinate. We would like to point out that the analyzed system has
zero transmission because of the blocking barrier, therefore the appropriate quantity
to study is the probability distribution density.
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Figure 3.21: The energy- and space-dependence of the electron probability distri-
bution density Pε(z)/Pmax for three values of applied bias: a.)Vg = −0.005V , b.)
Vg = 0.01V , and c.) Vg = 0.06V . Pmax = Pεmax(zmax) is the maximum value of Pε(z)
in the considered energy and space domain, and depends on Vg. We can not keep
the same units for all three plots because the total charge in the system varies with
Vg.
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In the low-voltage plateau, Fig. 3.21(a), the wave functions are confined in the
back contact (apart from an exponential decay outside). There is no particular en-
ergy structure of the scattering functions. In contrast, in the center of the step,
around Vc, Fig. 3.21(b), there is a pronounced maximum of P at ε = εmax and
z = zmax which defines the intermediate resonance (IR). The resonance energy lies
in the classically allowed range and the intermediate resonance thus has a Fabry-
Perot character. The spatial center of the intermediate resonance, zmax, is close to
the place of maximum potential,Vmax, i. e. the intermediate resonance is located in
space between the back contact and the potential pocket in which the isolated 2DEG
is formed at higher voltages. Finally, in the high-voltage-plateau, Fig. 3.21(c), the
resonance corresponds to a quasi-bound state (QBS). Because of the weak pene-
tration of the wave functions into the back contact the life time of this resonance
becomes large and its width narrows considerably. Furthermore, zmax is located in
the middle of the potential pocket of the 2DEG.

In the lower part of Fig. 3.20 we show εmax and the energies ε± at which the
probability distribution takes half its maximum value, Pεmax(zmax), at constant z =
zmax (see Fig. 3.21). It is seen that the center of the step in the C-V trace nearly
coincides with the gate voltage at which εmax = µL. Furthermore, the voltage V−
occurs roughly at ε− = µL and the onset of the high-voltage plateau V+ can be
associated with ε+ = µL. This confirms the view that the capacitance step for
an open system is dominated by the IR: At no coupling to the contacts (i.e. a
closed quantum system) one would expect a jump in the capacitance which occurs
if the chemical potential in the back contact reaches a new energy level of the
quantum system (QS). Instead, one sees in the open system a gradual increase of
the capacitance in the voltage regime between V− and V+ whose width is determined
to a great extent by the energetic width of the IR.

3.6.1 Analytical calculations: Fano resonances

To demonstrate further that the step in the C-V-characteristic and the subsequent
high-voltage plateau are dominated by a single resonance which changes its character
from an intermediate resonance to a quasi-bound state, we apply the resonance
theory developed by E.R. Racec and U.Wulf in Ref. [46].

The main idea is to connect directly the probability distribution density Pε(z)
to the current scattering matrix, whose poles in the complex energy plane are asso-
ciated to resonances. Using the expressions (2.79) and (2.80) of the scattering wave
functions inside the scattering region, z ∈ (−d, d), we can write for every energy
ε > max(VL, VR),

(
ΨL(ε, z)
ΨR(ε, z)

)
=

1√
Lz

(
ΨL

S(ε,−d) ΨL
S(ε, d)

ΨR
S (ε,−d) ΨR

S (ε, d)

) (
R(ε; z,−d)
R(ε; z, d)

)
(3.23)
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As follows from Eqs. (2.72)-(2.76)

Ψ̂S =
i

m∗ K̂
(
Ŝ − 1

)
Ψ̂in, (3.24)

where Ŝ is the scattering matrix given by Eq. (2.43) and K̂ is the wave vector
matrix (2.72);

Ψ̂in
L =

(
θ(ε− VL)

0

)
(3.25)

for the scattering state associated with the electron incident from the left contact
and

Ψ̂in
R =

(
0

θ(ε− VR)

)
(3.26)

for electrons incident from the right contact. Now we can write,

(
ΨL

S(ε,−d) ΨL
S(ε, d)

ΨR
S (ε,−d) ΨR

S (ε, d)

)
=

i

m∗ Θ̂(ε)
[
Ŝt(ε)− 1

]
K̂(ε), (3.27)

where

Θ̂(ε) =

(
θ(ε− VL) 0

0 θ(ε− VR)

)
, (3.28)

and Ŝt is the transpose of the scattering matrix. With the definition of the current
transmission matrix [93, 46],

ˆ̃S = K̂1/2ŜK̂−1/2, (3.29)

the expression (3.23) of the scattering wave functions becomes

(
ΨL(ε, z)
ΨR(ε, z)

)
=

i

m∗√Lz

K̂1/2(ε)
(

ˆ̃S(ε)− 1
)

K̂1/2(ε)

(
R(ε; z,−d)
R(ε; z,−d)

)
. (3.30)

Using the relation (2.78) between the R- and S-matrix which can be written into
the equivalent form

ˆ̃S = 1− 2
[
1 + iΩ̂

]−1
, (3.31)

where

Ω̂ = K̂1/2R̂K̂1/2 =
∞∑

n=1

ω̂n

ε− εn

, (3.32)

with

ω̂n = K̂1/2

(
χn(−d)χn(−d) χn(−d)χn(d)
χn(d)χn(−d) χn(d)χn(d)

)
K̂1/2 (3.33)

as if follows from the definition (2.65) of the R matrix.
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Inserting (3.31) in (3.30) one obtains
(

ΨL(ε, z)
ΨR(ε, z)

)
= − 2i

m∗√Lz

Θ̂(ε)K̂1/2(ε)
[
1 + iΩ̂(ε)

]−1
K̂1/2(ε)

(
R(ε; z,−d)
R(ε; z, d)

)
.

(3.34)
From here it is obvious that the scattering wave functions have the same poles in
the complex energy plane as the scattering matrix (see Eq. (3.31)) given by the

zeros of det
[
1 + iΩ̂

]
and these poles are independent on the space coordinate z.

Based on the method described in Ref. [46] we perform an exact reformulation
of Eq. (3.35) in a vicinity of every Wigner Eisenbud energy ελ

(
ΨL(ε, z)
ΨR(ε, z)

)
=

1

ε− ελ − Ēλ(ε)

(
ZL

λ (ε, z)
ZR

λ (ε, z)

)
, (3.35)

where
Ēλ(ε) = −iTr[ω̂λ(1 + iΩ̂λ)

−1], (3.36)

with regular matrix Ω̂λ = Ω̂ − ω̂λ/(ε − ελ). The z dependent part of the scattering
wave functions is given by

(
ZL

λ (ε, z)
ZR

λ (ε, z)

)
= − 2iΘ(ε)

m∗√Lz

K̂1/2(ε)

[
1 + iΩ̂−(ε)

]
(ε− ελ)

det[1 + iΩ̂λ(ε)]
K̂1/2(ε)

(
R(ε;−d, z)
R(ε; d, z)

)
,

(3.37)
with Ω̂−(ε) = Ω̂−1(ε) det Ω̂(ε).

The representation (3.35) of the scattering wave functions has the advantage
that it directly yields the equation

ε̄0λ − ελ − Ēλ(ε̄0λ) = 0 (3.38)

to determine the positions ε̄0λ of the poles in the complex energy plane. From general
theory [83] it follows that the resonance λ corresponds to the pole ε̄0λ. The upper
part of Fig. 3.22 shows the imaginary part of the poles closest to the real axis in
dependence on the gate voltage. It is clearly seen that at the end of the low-voltage
plateau a single pole becomes separated from all other resonances. For simplicity
we denote it with λ = 0 and the associated complex energy with ε̄00 = ε0 − iΓ/2.
For gate voltages larger than Vc this pole corresponds to a narrow resonance so that
in its vicinity the functions ZL

λ (ε, z) and Ēλ(ε) can be linearized and one obtains for
the wave function ψL at a fixed z a Fano distribution

ψL(ε, z) ' iψL(ε0, z)

1
qL(z)

e + 1

e + i
, (3.39)

with a z dependent complex asymmetry parameter

1

qL(z)
=

Γ/2

ZL
λ (ε0, z)

d

dε
ZL

λ (ε, z)

∣∣∣∣∣
ε=ε0

, (3.40)
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Figure 3.22: Upper part: The imaginary part of ε̄0λ (see text) vs. gate voltage Vg.
Lower part: Real part (solid line) and imaginary part (dotted line) of the complex
asymmetry parameter 1/qL(zmax) and the deviation of the maximum of the Fano
distribution from the pole energy (dashed line) at gate voltages for which the Fano
approximation of the wave function is valid. Vc is marked by the vertical dotted
line.

where e = 2(ε − ε0)/Γ. From here the probability distribution density is obtained
as an asymmetric Fano profile at every z coordinate

Pε(z) = Pε0(z)

∣∣∣ 1
qL(z)

e + 1
∣∣∣
2

e2 + 1
. (3.41)

We plot in the lower part of Fig. 3.20 the energy εF
max of the maximum of Pε(zmax)

calculated in the linearized theory Eq. (3.41). Furthermore, we include the energies
εF
± at which the absolute value of the Fano function takes half its maximum value

at constant z = zmax. For voltages larger than Vc there is an excellent agreement
between εF

max and εF
± and their counterparts εmax, ε± resulting from the complete

numerical calculation. In the lower part of Fig. 3.22 we plot the real and the imag-
inary part of 1/qL at z = zmax. For gate voltages in the step region both quantities
are large and cause a distinct separation of ε0 (real part of the pole) and εF

max. This
is the domain of the intermediate resonance (IR) which is characterized by an asym-
metric profile of Pε(zmax). With increasing voltage IR transforms into a quasi bound
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state; the asymmetry decreases to become negligible in the high-voltage plateau and
Eq. (3.41) provides a Breit-Wigner distribution with the symmetry center given by
ε0. Since Γ decreases rapidly with increasing voltage the Breit-Wigner distribution
turns into a δ-function expected for an isolated 2DEG.

3.7 Models for high voltages: quasi bound states

In this section we will analyze the high-voltage plateau in the C-V curve, Fig. 3.20,
and we will show that it is dominated by the quasi-bound state which yields the
2DEG.

As was shown in Sec. 3.2 conventionally Vg = 0 corresponds to the flat band
configuration of the structure for which there are no electrons accumulated at the
interface between the spacer layer and the blocking barrier. The electrons are con-
fined in the region close to the back contact. The electronic density distribution
ρ(z; Vg = 0) is well described by the Thomas-Fermi approximation [84], sometimes
also called semi-classical approximation [48],

ρ(z; Vg = 0) = ρTF (z; Vg = 0) =
∫ d3k

4π3

1

exp
[(

h̄2k2

2m∗ − (µL − eVflat(z))
)
/kBT

]
+ 1

.

(3.42)
We can see from Fig. 3.23 that for the flat band configuration the above formula
provides a very good approximation for the quantum mechanical calculations Eq.
(2.88). The temperature was considered T=4K, and the numerical integration in
(3.42) was performed between ε ∈ (0, 2µL). Increasing Vg a potential quantum well
is formed inside the spacer layer at the interface with the blocking barrier (Fig.
3.11 right, lower part) and new allowed states for electrons appear. These states
are populated with electrons coming from the back contact. The scattering system
is open and allows for the variation of the electron number inside the system. In
other words increasing Vg increases also the charge in the accumulation layer without
modifying the charge distribution in the back contact. The high charge density in
the region close to the back contact screens out the external electric field so that the
potential and, consequently, the electronic density distribution remains practically
unchanged in this region,

ρ(z; Vg) ≈ ρ(z; Vg = 0), for z < zm, (3.43)

where zm denotes the separation point between the domains where different approx-
imations are valid:

• for z < zm the Thomas Fermi approximation is valid;

• for z > zm the 2DEG contribution becomes essential and changes with the
gate bias.
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Figure 3.23: The electron distribution density given by Eq. (2.88) (dashed line) and
in Thomas Fermi approximation (solid line) Eq. (3.42) for the self-consistent flat
band potential. The temperature was considered T=4K. In inset is presented the
difference between both distributions in the region close to the back contact.

The difference between the electronic density distribution for an applied bias and
for flat band configuration gives the charge accumulated in front of the blocking
barrier, regarded as the charge of 2DEG,

eρq(z; Vg) = e (ρ(z; Vg)− ρ(z; Vg = 0)) . (3.44)

For gate biases in the high voltage plateau, Vg > V+, the self consistent electronic
density distribution ρ(z) has a minimum, which we can take as a good approximation
for zm. Furthermore, the whole electron density distribution can be written as

ρ(z; Vg) = ρTF (z : Vg = 0) + ρq(z; Vg). (3.45)

3.7.1 Charge distribution

As we have stated at the end of Sec. 3.6.1, for high gate biases, the 2DEG becomes
quasi isolated and we can use the Fang-Howard test wave functions [51] for describing
the electronic density distribution associated to it:

ρFH(z, Ns, b) = Ns
b3

2
(z − zb)

2e−b(zb−z), (3.46)

which depends on two parameters Ns and b. There are two possible procedures
to determine these parameters. First, we can ask that the maximum of modeled
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Figure 3.24: The electronic density distribution ρq (Eq. 3.44) Vg = 0.185V and
ρFH (Eq. 3.46) with the parameters NS and b determined within the two presented
methods, in the accumulation region and for the whole scattering region in inset.

electronic density distribution coincide with the maximum of the quantum charge
(3.44), ρq,max, located at z0. A distribution of the form (3.46) has the maximum at
zb − z0 = 2/b, so from the previous condition we can find

b = 2/(zb − z0). (3.47)

From the maximum value, we obtain

Ns =
2

b3
ρq,max(z0)

exp(b(zb − z0))

(z0 − zb)2
. (3.48)

The electronic density distribution ρFH with the parameters (3.47) and (3.48) is

represented in Fig. 3.24 as ρ
(I)
FH . We see that these parameters produce an over-

estimation of the electronic density distribution ρq. It is necessary to find a better
method to evaluate these parameters. We construct a function

S(Ns, b) =
1

N

N∑

i=1

[ρFH(zi, Ns, b)− ρq(zi)]
2 , zm < zi < zb (3.49)

where N is the number of grids for the z coordinate, and find the parameters Ns

and b for which this function has a minimum. From a practical point of view,
the parameters given by the first procedure can be used to start the second one.
The electronic density distribution ρFH with Ns and b determined in this way is
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represented as ρ
(II)
FH in Fig. 3.24. We can see that the second procedure yields a

better approximation for the area under the curve which expresses, in fact, the total
amount of charges, Ns. So, Ns and b will be considered further as determined from
the second method: minimum of the function S(Ns, b) and their variation with the
applied bias is presented in Fig. 3.25. We analyze comparatively Ns and the total
number of electrons in the accumulation layer,

Ns,num =
∫ d

−d
ρq(z)dz. (3.50)

For Vg > V+, there are no significant differences between the two quantities and we
can conclude that the Fang-Howard test describes well the charges accumulated in
front of the blocking barrier. As expected, for small biases (Vg < 0.01V ) the model
does not work anymore.

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2
Vg [V]

0

10

20

30

1/
b 

[n
m

]

0

0.1

0.2

0.3

b 
[1

/n
m

]

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2
0

1

2

N
s [

10
11

 c
m

−
2 ] num.

FH

Figure 3.25: Upper part: Ns values obtained by numerical integration of ρq(z) (solid
line) and by fitting ρq(z) with a Fang-Howard test function. Lower part: The model
parameter b and 1/b for Fang Howard test wave functions.

The linear variation of Ns with applied bias, which is known for the strongly
inverted or accumulated space-charge layers [53] p.619, shows that a plane capacitor
is formed between the top gate and the 2DEG. Further, the capacitance for high
voltages can be expresses as variation of the Ns parameter to the applied bias

C = eS
dNs

dVg

, (3.51)

which is represented in Fig. 3.26.
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Figure 3.26: Capacitance vs. gate bias: experimental data (dotted line) and calcu-
lated values in Fang-Howard model, Eq. (3.51), (solid line).

3.7.2 The potential energy

We can model also the potential energy using the same idea: the difference between
the potential energy for an applied bias Vg and for bias zero, should be due to the
quantum charges in the 2DEG

Vq(z; Vg) = V (z; Vg)− V (z; Vg = 0). (3.52)

This is represented in Fig. 3.27.
We can see that for z > zb the potential energy difference is a linear function on

z as in the case of a plane capacitor with the plates at zb and d:

VS(z > zb) = −eVg + e
Ns

ε0εr

(d− z). (3.53)

For only one occupied band in the 2DEG the potential energy for z < zb can be
written as in Ref. [53], p. 463,

VS(z < zb) =
e2

ε0εr

Ns (zb − z) +
e2

ε0εr

∫ zb

z
dz′(z − z′)ρq(z

′). (3.54)

In Fig. 3.28 we represent for −d < z < zb the potential energy modeled through
the Eq. (3.54) with ρq(z) and ρFH(z). The electronic density distribution ρq(z),
calculated numerically, provides a very good approximation for the potential bending
for z < zb, but the slope around−d is not zero, as for Vq(z), because of the differences
in the boundary conditions. The formula (3.54) consider an infinite semiconductor
layer in front of an infinitely high barrier (as in Si/SiO2 system), while our potential
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Figure 3.27: The potential energy for flat band configuration (dotted line), for
Vg = 0.185V (dashed line) and the difference between them, Vq(z), (solid line).

Eq. (2.99) is for a finite system with a constant potential outside the scattering
region (i.e. V (z < −d) = VL). The potential (3.54) calculated with ρFH(z) does
not describe very well the bending for z close to zb because ρFH(z) provides only a
global description of the charges on 2DEG.
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Figure 3.28: Models for the potential energy Vq at Vg = 0.185V. Left part: Vs,
Eq. (3.54), with ρq and ρFH ; Right and upper part Vs for z ∈ [−d, xb] and V2 for
z ∈ [zb, d] with ρq; Right and lower part: the difference to Vq.

The detailed distribution of the charges in 2DEG is not exactly described by
Fang-Howard test wave functions. The slope for z close to −d is better described
because the Fang-Howard test functions consider all the charges in the scattering
region as 2DEG, (i.e. does not consider the interfaces charges σ1). In Fig. 3.29



82 CHAPTER 3. CAPACITANCE OF A FIELD-INDUCED 2DEG

−0.2

−0.15

−0.1

−0.05

0

V
S
 [e

V
]

−80 −60 −40 −20 0 20 40 60 80
z [nm]

−3 10
−4

−2 10
−4

−1 10
−4

0

1 10
−4

V
q−

V
S
 [e

V
]

zb=39.5

Figure 3.29: Models for the potential energy Vq at Vg = 0.185V knowing ρq. Upper
part: Vs, Eq. (3.54), for z ∈ [−d, xb] and VS, Eq. 3.53, for z ∈ [zb, d] Lower part:
the difference to Vq.

we present the differences between the modeled potential and the self-consistent
potential. We can conclude that knowing the potential distribution inside the 2DEG,
the potential can be calculated with a good approximation through the formulae
(3.54) and (3.53).

3.8 Exchange correlations effects

In this section we would like to go beyond the Hartree approximation and to treat an-
other aspect of many-body nature of our problem, namely the exchange-correlations
effects. We will use the same approximation as in Ref. [79], where the exchange
and correlations effects are calculated in the local density approximation (LDA).
This approximation is part of the density-functional theory, and it is an alternative
way to study the exchange-correlations effects on the semiconductor band structure.
Hohenberg, Kohn, and Sham [85] have shown that the density distribution of an in-
teracting electron gas under an external field can be obtained by an one-particle
Schrödinger-type equation containing an exchange correlation potential Vxc in addi-
tion to the usual Hartree and external potentials. So, Schrödinger equation for our
problem (z is the direction of transport) has the form

[
− h̄2

2m∗
d2

dz2
+ Vh(z) + Vc(z) + Vxc(z)

]
ψL/R

n (z) = εnΨL/R
n (z), (3.55)

where Vh(z) is the potential coming from heterostructure band-offsets, Vc(z) is the
Coulomb potential. Vc(z) solves, like in the Hartree approximation, the Poisson
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equation for the total charge in the system

d2

dz2
Vc(z) = − e

ε0εr

[N+
D (z)−N−

A (z) + ρ(z)]. (3.56)

The exchange-correlation potential is given by [79]

Vxc(z) = − 1.22

rs(z)
Ry∗

[
1 + 3.68 · 10−2rs(z) ln

(
1 +

21

rs(z)

)]
, (3.57)

with the dimensionless quantity

rs(z) =
[
4

3
πa∗3ρ(z)

]−1/3

. (3.58)

given only by the mobile electronic charge ρ(z). rs supplies the local character of
the model. The mobile electron charge −eρ(z) is calculated from the electronic wave
functions provided by Schrödinger equation (3.55) using Eq. (2.88). For GaAs, we
have the effective Bohr radius a∗ ≈ 10 nm and Rydberg constant Ry∗ ≈ 5.6meV [79].
Though application of the local density scheme should be restricted to situations
with a slowly varying density, it is well known that the method works surprisingly
well even for systems beyond this limit [79].

Including the exchange-correlations effects, the self-consistent scheme, Fig. 3.30,
changes a little: one has also to calculate from the charge distribution the exchange
correlation potential (3.57) which is added to the Coulomb potential to give the
scattering potential V (z) which enters the Schrödinger equation. We would like
to note that we do not use different mixture coefficients f for the exchange and
Coulomb potential; the mixture is done globally and a good guess for the initial
potential (or charge) will help a lot for a rapid convergence.
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Figure 3.30: The self-consistent iteration scheme considering besides the Hartree
approximation also the exchange correlations effects in LDA approximation. Left
part: starting with a potential guess; Right part: starting with a charge distribution
guess.
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Boundary conditions
We have to establish the boundary conditions for the Poisson equation. They

have to be connected with the boundary conditions for the total potential, which
are written as (see Eq. (3.7))

V (−d) = 0 Vflat(d)− V (d) = eVg. (3.59)

We have

V (−d)− V (d) = Vh(−d)− Vh(d) + Vc(−d)− Vc(d) + Vxc(−d)− Vxc(d)

= −Vflat(d) + eVg, (3.60)

so that we can obtain the boundary conditions for the Coulomb potential (i.e. V1

and V2 in Eq. (2.99))

V1 = Vc(−d) = 0, (3.61)

V2 = Vc(−d)− Vc(d) = −Vflat(d) + eVg −∆h −∆xc, (3.62)

where ∆h = Vh(−d) − Vh(d) is zero for our structure and ∆xc = Vxc(−d) − Vxc(d)
can be calculated having the electron charge distribution.

We present in Fig. 3.31(a) for the flat band configuration the self-consistent
potential and electronic density distribution in LDA approximation, in comparison
with the Hartree approximation. There are no significant differences between both
approximations in the region close to the back contact, z < −40nm. We want to
point out that for LDA calculations the built-in potential, Eq. (3.3), has the value
eU = 0.14676eV.

In Fig. 3.32 we present the self-consistent potential and electronic density dis-
tribution in Hartree and LDA approximation for two applied bias configurations:
Vg = 0.015V which corresponds to the step in the capacitance and Vg = 0.09V , cor-
responding to high voltage plateau. We restrict to the region of the accumulation
layer because only there the differences between both approximations are significant.
For the same applied bias, the exchange correlations effects allow for accumulations
of more electrons at the interface between blocking barrier and GaAs spacer.

The capacitance of the system is calculated using the Gauss law as described
in Sec. 3.5.1. The modeled C-V curve is presented in Fig. 3.33 upper part, to-
gether with the experimental data. We want to point out that the shift between VG

and Vg (Eq. (3.6)), Φ1 = 0.693V , is different from the value provided by Hartree
approximation.

Qualitatively, Fig. 3.33 is similar with Fig. 3.20: for small applied voltages,
there exist also in LDA approximation a classically allowed channel for the electron
motion (shaded area), but the channel is open in a much smaller bias interval then
in Hartree approximation. Consequently, a much steeply step in the capacitance
occurs. However, the step in the capacitance keeps his meaning: it happens on
the region of the biases for which the coupling to the contacts is strong and the
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Figure 3.31: Self-consistent results for the nominal structure at flat band configura-
tion: comparison between Hartree and LDA approximation.
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Vg = 0.015V and b)Vg = 0.09V. Solid and dashed lines correspond to LDA and
Hartree approximation, respectively.
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intermediate resonance (IR) exists in the classically allowed motion channel. Also
in this case Fano approximation (see Sec. 3.6.1) provides a very good description of
the relevant resonance for the capacitance, which evolves with applied bias from an
intermediate resonance to a quasi bound state and after that to a δ function specific
to a closed 2DEG.

3.9 Summary

Here we perform a microscopic study of the interaction of a quantum system, in
our case a field-induced two dimensional electron gas (2DEG), with the contacts
through particle exchange and identify the signature of the electron-electron inter-
action in the capacitance variation with applied bias. The electronic states and
the associated charge distribution in the system are investigated in detail, in the
cases of the Coulomb interaction taken in Hartree- and LDA approximation. These
states depend critically on the strength of the coupling between quantum system
and contacts; we consider here a structure in which the entire transition from weak
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to strong coupling can be examined experimentally and theoretically. This transi-
tion is dominated by a single relevant resonance which changes its character from a
quasi bound state (QBS) for an almost-closed system to an intermediate resonance
(IR) for an open one. As expected, in the weak coupling regime the bound state
of the quantum system turns into a narrow quasi bound state with nearly identi-
cal location in space. We find that with increasing coupling the quasi bound state
turns into an intermediate resonance. In contrast to the quasi bound state the in-
termediate resonance has the following properties: First, it is located in the space
between the probes and the isolated quantum system. Second, it is coupled to the
probes via particles exchange through a classically allowed channel (see shaded area
in the lower part of Figs. 3.20 and 3.33). Third, since the decay of the intermediate
resonance into the probe is classically allowed it has the character of a Fabry-Perot
resonance. Fourth, the intermediate resonance is strongly asymmetric and can well
be described by a Fano distribution with a complex asymmetry parameter. Finally,
if the coupling becomes too strong a resonant state cannot exist any more.

Because of the excellent quantitative agreement with our theory we can demon-
strate that the transition between quasi bound state and intermediate resonance is
directly seen in capacitance experiments by Dolgopolov et al. [71]: The step in C-
V-characteristic associated with formation of the two dimensional electron gas (see
upper part of Fig. 3.20) is broadened because of energetic overlapping of the channel
of allowed classical motion and the intermediate resonance. In our calculations the
classically allowed channel in which the IR exists results only when the Coulomb
interaction between the electrons is taken into account. As long as the system is
open, the Hartree approximation provides a very good mean-field description of the
electron-electron interaction.



Chapter 4

Capacitance of a single-tunneling
barrier

In Chap. 3 we have analyzed a system for which the blocking barrier was supposed to
suppress charge transfer from one contact to another. In this chapter we will analyze
several single-barrier structures with different barrier heights to allow for different
degrees of charge transfer between contacts. Decreasing the height of the barrier,
the Fabry-Perot resonances will be encountered in the capacitance oscillations [94].

We choose for the beginning the same parameters as in Ref. [48], for which the
I − V characteristic has been examined experimentally and theoretically. In that
paper two different theories were employed, one with a semiclassical model and the
other with a quantum model to calculate the electronic density distribution. Both
were found to agree well with the experiments within 10% uncertainty of the fitting
parameters: width and height of the barrier, donors concentration in the contacts,
and the aluminum content in the AlxGa1−xAs barrier layer.

In the first part of this chapter we show that a certain type of small shoulders
in the I − V characteristic resulting from the existence of quasi-bound states in the
barrier should distinguish qualitatively the cases of coherent- or incoherent trans-
port. To bypass the problem that various models can give a good fitting to the I−V
curve, we propose in the second part of the chapter the measurement of the C − V
characteristic as a powerful independent test. Here the quasi-bound states in the
barrier should result in oscillations in the differential capacitance that have a well
defined relation to the shoulders in the I − V curve.

4.1 The structure

The analyzed single-barrier structure consists of a sequence of layers of n-doped
GaAs - AlxGa1−xAs - n-doped GaAs, as depicted in Fig. 4.1b). The AlxGa1−xAs
bilayer will constitute the barrier potential because its band gap is larger than for
GaAs. We point out that there is no spacer (undoped layer) between the n-doped
GaAs layers and the AlxGa1−xAs tunneling barrier. The parameters used for model-

89
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Figure 4.1: (a) General geometry of the considered systems (QS=quantum system)
for capacitance spectroscopy. (b) Specific example for a quantum system: Tunneling
barrier as described in Ref. [48]. The self consistent scattering potential V(z)
(continuous line) is localized in the interval [-d,d] so that V (z < −d) = VL and
V (z > d) = VR, ND (long dashed line) is the donors doping profile and ρ (dotted
line) is the electronic density distribution.
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ing are [48]: relative permittivity εr = 10.9, donor doping concentration in the con-
tacts ND = 1017cm−3, Fermi level EF = 12meV and effective mass m∗ = 0.0655m0.
The height of the tunneling barrier, fixed by the Al content, will be specified for each
structure. If the donor concentration is greater than 5 1016 cm−3 , an impurity band
forms within the conduction band such that even at low temperatures all donors are
ionized. This was suggested by Zimmermann [48] based on the fact that resistivity
of an n-doped GaAs probe (ND ≥ 5 1016cm−3) exhibits very little temperature de-
pendence. Because we analyze structures with n-doped injection layers where the
current is carried mainly by electrons, we can neglect the hole transport.

4.2 Potential and electronic density distributions

For the systems for which the highly doped regions extends until the barrier, there
is not a clear delimitation between the quantum system, for which the quantum
mechanical calculations will be applied, and the contact regions, considered as ideal
metal-like contacts. While the heterostructure potential is set up by the growth
parameters, we have to find a good choice for d so that the Coulomb interaction does
not modify considerably the heterostructure potential outside the interval [−d, d].
The total scattering potential should be localized in the region [−d, d] in order to
apply our R-matrix formalism. This means that the delimiter point d is a free
parameter, and we shall analyze its influence on the calculated data. The regions
z < −d and z > d are the emitter- and the collector electrode, respectively. In
this regions the phase coherence of the scattering functions, which determine the
transport through scattering region −d ≤ z ≤ d, is lost [22]. In consequence, there
is a local charge balance in the electrodes and the total potential is constant.

As we have specified in Sec. 2.1 we solve the scattering problem associated
with the potential given in Fig. 4.1 using the R-matrix formalism. The boundary
points for the Wigner-Eisenbud problem (2.47) are chosen very close to d, namely
L − d = 1 × 10−5nm. In the region [−d, d], the scattering functions are given by
Eqs. (2.79) and (2.80) and we can obtain the electronic density distribution ρ(z) as
described in Sec. 2.2.

To account for the effects of the (accumulated) charges in the system on the
transport properties, we perform self-consistent calculations (see Sec. 2.4). We use
a simplified form for the charge distribution which enters the Poisson equation (2.90)

q(z) = e[N+
D (z)− ρ(z)], (4.1)

where we neglect the hole density and consider no acceptors in the system. For
simplicity, we assume a constant value for the relative permittivity εr in the whole
structure. To ensure charge neutrality of the entire system we allow for contact
charges, distributed as sheet charges at the interfaces z = ±L between the active
region and the contacts. Our self-consistent calculations show that, in fact, the
total scattering potential is independent of the location of the sheet charge and the
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absolute value of the sheet charges σ1/2 is small in comparison with other charges
in the system (see Fig. 4.12).

First, we analyze one of the structures presented by Zimmermann [48], with the
height of the barrier Vb,0 = 33.4meV for Al content x = 0.04. Vb,0 is the height of the
barrier obtained from the conduction band-offsets between GaAs and AlxGa1−xAs.

4.2.1 Without applied bias

We have started the self-consistent calculations with a linear electronic density dis-
tribution around the abrupt variations of the doping profile at the edge of the barrier
(see Sec. 2.4) and we take λF = 10nm and α = 0, because we neglect the residual
NA doping inside de barrier. We computed the electronic density and potential dis-
tribution for different d values between 50nm and 80nm and present here only the
results for d = 50, 60, 66 and 75nm.
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Figure 4.2: The self-consistent potential profile for a single-barrier structure, with
Vb,0 = 33.4meV for d = 50, 60, 66 and 75nm. With dashed line is shown the
heterostructure band-offsets Vh.

To verify the self-consistent procedure, which is applied here for an open system,
both convergence schemes (see Fig. 2.4) were used for comparison. For the self-
consistent charge approximation scheme we started either from a linear distribution
of electronic density distribution around the abrupt variations of the doping or from
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the self consistent charge distribution from a previous d value. In addition we also
varied the mix parameter f . The typical values for f are 1÷5 %. All these attempts
provided for each structure the same convergent point, in the limits of the imposed
accuracy for the self-consistent procedure (i.e. the upper limit imposed for the
convergence parameter ei, Eq. (2.112)). This shows that the numerical method is
consistent.

In Fig. 4.2 we present the self-consistent potential for different d values and no
applied bias (VSD = 0V ). We choose the minimum of the conduction band on the
left side, far from the barrier, as energy reference, EcL = 0. The downward shift of
the barrier due to the self-consistent calculations is 3.20meV (≈ 10% Vb,0), so that
the effective height of the barrier becomes Vb = 30.2meV . The notch which forms
on each side of the barrier proves to be too shallow and narrow to sustain bound
states.

In Fig. 4.3 we present the self-consistent electronic density distribution for dif-
ferent d values and for VSD = 0V . These profiles present Friedel-type oscillations
due to the constant phase difference between the incident and the reflected waves
on the barrier [86].

As shown in Figs. 4.2 and 4.3 the plots for different d values are practically
indistinguishable. Therefore, the choice of d value is unimportant, as long as it is
far enough from the barrier to allow for the first period of the Friedel oscillations of
ρ(z). The Friedel oscillations yield non negligible deviations from the local electrical
neutrality, so that a significant spatial variation of the potential occurs in the region
where they extend and we have to include this domain in the scattering region
(z ∈ [−d, d]).

4.2.2 With applied bias

Further we analyze the effects of the external applied bias. Fig. 4.4 shows the
self-consistent potential and charge-distribution for a single-barrier structure with
Vb,0 = 33.4meV and for d = 75nm for different applied biases VSD = 4, 8 and 12
mV.

Fig.4.5 shows the self-consistent potential and the electronic density distribution
for the same single barrier tunneling structure under the applied bias VSD = 16mV
but for different d values. As one can see, the plots in Fig. 4.5 are practically
indistinguishable which proves the consistency of the numerical method.

From the plot for the electronic density distribution, Figs. 4.4a) and 4.5, one
can observe that in front of the barrier appears an accumulation region, i.e. the
charge density is bigger than for the case without applied bias, and in the same time
behind the barrier appears a depletion region, i.e. the charge density is smaller than
for VSD = 0. Thus, a dipole moment appears parallel to the external electric field.

We did not obtain the bound states in the notch formed in the accumulation
layer which are reported by Zimmerman et al. for VSD = 16mV, but these states
are anyway neglected by them.
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Figure 4.3: The self-consistent electronic density distribution (linear and logarithmic
scale) for a single-barrier structure with Vb,0 = 33.4meV for d = 50, 60, 66 and
75nm. With dashed line is shown the donors doping profile ND.
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Figure 4.4: a) Self-consistent electronic density distribution and b) self-consistent
potential for the single-barrier structure with Vb,0 = 33, 4meV and d = 75nm under
biases VSD = 0, 8 and 16mV.
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bution (lower part) for the single-barrier structure with Vb,0 = 33, 4meV under bias
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4.3 Tunneling current

Using the self-consistent results for the charge distribution and the potential shape
for different applied biases, we can calculate further the tunneling current and the
conductance of the single tunneling barrier system. The tunneling current is given
by the Tsu-Esaki formula (2.129) in terms of the tunneling probability for every
incident electron energy, T (ε). Because the shape of the potential experienced by
the electrons is changing with applied bias, the tunneling probability is also function
of the applied bias VSD. We present in Fig. 4.6 the tunneling probability dependence

0 10 20 30 40 50 60
ε [meV]

0

0.2

0.4
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Figure 4.6: Tunneling probability dependence on the incident energy ε for a single-
barrier structure under applied biases VSD = 0, 8, 16mV. The potential barrier is
presented in Fig. 4.4b).

on the incident energy ε for a single-barrier structure under applied biases VSD =
0, 8, 16mV. The potential shapes of the barrier under these biases are presented
in Fig. 4.4. The tunneling probability exhibits maxima for energies larger than the
height of the barrier, energies which corresponds to Fabry-Perot resonances. They
are also called quasi-bound states, because the corresponding wave functions present
pronounced maxima in the barrier region. One can see that with applied bias the
resonance energies are shifted, approximately with eVSD/2 and also the tunneling
peak value decreases. The tunneling probability is determined only by the scattering
potential, and therefore does not depend on d. Further, in the next calculations we
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consider d = 50nm. In consequence, the tunneling current does not depend on the
positions of the delimiter point d. It was also verified that the tunneling current
does not depend on the boundary points for the Wigner Eisenbud problem ±L.

We plot bellow the experimental data of a single barrier structure presented in
Ref. [48], Figs. 8 and 9, together with the calculated current, varying the parameters
of the structure within 10%. There are three sets of parameters: two of them
inspired by the modeling parameters used in the above cited reference i) the width
of the barrier b = 52.6nm, and the effective height of the barrier Vb = 31.6meV, ii)
b = 51.9nm and Vb = 31.6meV. The height of the barrier, before the self-consistent
calculations, was chosen in the above cases Vb,0 = 35.02meV. As it can be seen in
Fig. 4.7 the calculated I(VSD) characteristics do not provide a very good fitting of
the measured data. We choose the third set of parameters, where we modify the
width of the barrier at b = 55nm, and the height is kept the same Vb,0 = 35, 02meV.
The effective height of the barrier becomes Vb = 31.63meV. For all calculated data,
the temperature is taken T = 4.2K and the area of the sample is 125 × 125µm2.
The conclusion is that, the tunneling current stays within 10%-inaccuracy between
experimental and modeled results due to the same uncertainty of the parameters
defining the structure [48].
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Figure 4.7: Calculated and measured [48] I(VSD). The calculations have been per-
formed keeping the height of the barrier constant Vb,0 = 35, 02meV, and changing
the width of the barrier within 10% b = 51.9, 52, 6 and 55nm.
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4.3.1 Connection between current and quasi-bound states

In the dependence of the current on the bias, even for one barrier, one can observe
”oscillations”, i.e. maxima and minima. This variations are connected to the po-
sitions of the resonances above the barrier. To access these resonances, one needs
to have a small barrier, so that the resonances come under EF and contribute to
the current. For this we analyze further a smaller barrier than that used until now,
namely Vb,0 = 18.4meV and all other parameters remain the same. The effective
height of the barrier after the self-consistent calculations becomes Vb = 17.6meV.
We have also performed non self-consistent calculations, which means that we im-
pose on the heterostructure potential Vh, coming from the band-offsets, a potential
which is flat in the doped layers and varies linearly by the applied bias in the barrier
region. We present in Fig. 4.8 the current dependence on the applied bias VSD, for
the cases of self-consistent and non self consistent calculations, together with the
conductance dependence

G(VSD) = dI(VSD)/dVSD. (4.2)
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Figure 4.8: Calculated I(VSD) (upper part) and G(VSD) (lower part) within self-
consistent (sc) and non self-consistent (nsc) models for a single barrier structure
with Vb,0 = 18.4meV.

We can see from Fig. 4.8 upper part that the current curves are practically
parallel, which means that even for self-consistent calculations the major drop of
the potential occurs in the barrier region. The Coulomb interaction decreases the
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Figure 4.9: Resonance energies as a function of applied bias, for self-consistent
(solid line) and non self-consistent (dashed lines) calculations. With dashed lines
are represented the chemical potential in the left reservoir µL and the effective height
of the barrier Vb. With dotted lines are represented the Fabry-Perot energies for non
self-consistent calculations (see text). In the inset the first two Fabry-Perot wave
functions are shown schematically with their eigenenergies.

effective height of the barrier, yielding a bigger current flow. But the shape of the
barriers top are not really parallel for all biases. If this would be the case, then the
biases where the oscillations occur will differ from one curve to another, but they
are in reality practically the same. From Fig. 4.8 lower part one can observe that
the Coulomb interaction between electrons smoothes the oscillations in the current
(the first derivative is smoother than in the case of non self-consistent calculations).

There are more biases which play an important role in the current curve:

• the bias for which chemical potential on the right side, µR, moves under zero
energy level; at this point the total current flow is given by the current which
flows from left to to right, j = jL and jR = 0.

• each bias at which one (quasi) resonant level moves under µL; at this bias the
current will increase because the transmission coefficient has a maximum for
incident electrons.

• each bias at which one resonance energy moves under ε = 0 level; at this bias
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the current drops because the transmission coefficient maximum is no more
available for the incident carriers.

We present in Fig. 4.9 the dependence of the quasibound states on the applied
bias, for self-consistent and non self-consistent calculations of the scattering poten-
tial. The first quasi resonant level is between µL and ε = 0 for VSD ∈ [18, 32]mV.
G has a minimum (in turn the current has a shoulder) at VSD = 24mV, when the
resonance is entirely in [0, µL] energy interval. The current increases with the ap-
plied bias because the ”off-resonance” transmission coefficients increase, while the
effective tunneling barrier decreases. In Fig. 4.9 the position of the Fabry-Perot
resonances is plotted for the non self-consistent case (the bias drops completely over
the barrier). They are determined through the condition of vanishing wave func-
tions outside the barrier. The positions of the maxima of the tunneling coefficient
in the self-consistent (sc) and in the non self-consistent (nsc) calculation are practi-
cally identical with the energies of the Fabry-Perot resonances revealing the physical
origin of the transmission resonances.

4.3.2 Conductance

Though the differential conductance G is, as expected, a monotonously increasing
function of VSD, it develops two shoulders at VSD = 18mV and VSD = 38mV (see
Fig. 4.8). In the following we want to demonstrate that these shoulders arise when
the energy of the (Fabry-Perot-type) quasi-bound states in the barrier coincides with
the chemical potential in the source contact (see the arrows in Fig. 4.9). As shown
in Fig. 4.10, the quasi-bound states lead to maxima in T (E) below the height of the
tunneling barrier which move to lower energies with increasing VSD. Differentiating
Eq. (2.129) with respect to VSD one obtains:

dJT

dVSD

∝
∫ ∞

0
dε

dT (ε; VSD)

dVSD

ξ(ε; VSD) +
∫ ∞

0
T (ε; VSD)

dξ(ε; VSD)

dVSD

. (4.3)

Since dξ(ε;VSD)
dVSD

= e
kBT

fFD(ε − (µL − eVSD)) is zero for eVSD > µL, i. e. in the
region of interest in Fig. 4.8, then only the term with the derivative of the tunneling
coefficient in Eq. 4.3. gives the variation of the current. When the energy of a reso-
nance approaches from above the Fermi level dT/dVSD is positive for every energy in
[0, µL] (see Fig.4.10(a).). When the resonance falls below the Fermi energy a region
around the Fermi energy appears for which dT/dVSD is negative (Fig.4.10(b).) and
dJT /dVSD increases more slowly (see Fig.4.8). For further increased values of VSD

the resonance vanishes (Fig.4.10(c).). After that, the second quasi-resonance comes
closer to µL (Fig.4.10(d).).
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Figure 4.10: The tunneling coefficient T = kR

kL |tL|2 versus energy for different applied
biases V3 > V2 > V1 and self consistent calculations. With vertical dotted line is
marked the chemical potential in the left reservoir µL.

4.4 Capacitance

In this section we analyze the capacitance (see Sec. 2.6) for a single-barrier structure
with the height of the barrier Vb,0 = 18.4meV . For the considered system, the barrier
allows for a significant tunneling current, so that our capacitance model which takes
into account the openness of the system is suitable. For this system, the Gauss
law can not provide the correct amount of charges on the plates of the capacitor,
because the charge variation on the plates with the applied bias is not equal and of
opposite sign. As it will be shown (Fig. 4.11 left part) at a variation of the applied
bias, the quantity of charges which enter the system from the source differs from
the quantity of charges which go towards the drain. This is a characteristic of open
systems.

To ensure that the potential outside the interval [−L,L] is constant (which is
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equivalent to ensure the charge neutrality in [−L,L]) we place two sheets of charges
σ1 and σ2 at the boundaries ±L. Their sheet densities are given by Eq. (2.138), and
using Eq. (2.141) for the potential we obtain the expressions (2.142) and (2.143)
with the notations (2.144) and (2.145) for the total areal charge (Q) and the dipole
moment (Π). We present in Fig. 4.11 the variation of Q and Π with applied bias
VSD for the analyzed single-barrier structure. It follows that σ1 + σ2 = −Q.
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Figure 4.11: Dependence of the total areal charge Q, and total dipole moment Π on
the applied bias VSD for a single barrier structure with Vb,0 = 18.4meV .

We present in Fig. 4.12 the variation of σfree
1 , σfree

2 and the sheet charges σ1 and
σ2 with applied bias VSD for the analyzed single-barrier structure.
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(Right part) which are symmetric with respect to −Q/2.
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The charges on the plates Σ1 and Σ2 are given by the Eqs. (2.146) and (2.147).
Because σ1 (σ2) is located directly at the left (right) contact and is separated from
the right (left) contact by the barrier it is natural to assume that σ1 (σ2) comes
entirely from the left (right) contact so that Σ1 (Σ2) is the total charge coming from
the left (right) contact. We thus define the differential capacitance per area

C =

∣∣∣∣∣
dΣ1

dVSD

∣∣∣∣∣ =

∣∣∣∣∣
dσ2

dVSD

∣∣∣∣∣ . (4.4)

Since σfree
1 + σfree

2 = Q, this definition satisfies the classical concept of the capaci-
tance, that the variation of Σ1 and Σ2 are equal and with opposite sign. We have
σfree

1 + σfree
2 = Q and σ1 + σ2 = −Q.

We can write C as
C = Cq + C0 − CΠ, (4.5)

where

Cq(VSD) = −1

2

d

dVSD

(σfree
1 − σfree

2 ), CΠ(VSD) =
d

dVSD

Π, C0 =
ε0εr

2L . (4.6)

C0 corresponds to the capacitance of a plane capacitor formed by the source- and
drain contact in the absence of charges between [−L,L]. The differential capacitance
per area depends only on σfree

1 , σfree
2 , and Π entering as independent quantities which

reflect the quantum behavior of the electrons in this system.
We represent in Fig. 4.13 the differential capacitance per area for a single barrier

structure with the height of the barrier Vb,0 = 18.4meV. There are also represented
the contributions C0, Cq and CΠ to the capacitance. To put in evidence the oscilla-
tions in the capacitance, we subtract the value at bias zero, C(VSD)− C(VSD = 0),
and represent this on the right side of Fig. 4.13.

One can see from Fig.4.14 that there are oscillations in the differential capac-
itance where the positions of the maxima are identical with the positions of the
shoulders in the differential conductance, which further are given by the crossing
points between the resonant energies and chemical potential on the left reservoir.
These oscillations are largely due to the function σfree

1 − σfree
2 : When the energy

of the Fabry-Perot state hits the chemical potential on the left side, more electrons
enter the barrier region from the left reservoir. The monotonous increase of C un-
derlying the oscillations is mostly caused by Π. We attribute this to the enhanced
electric field in the barrier which leads to a super proportional increase of Π.

4.5 Summary

We have analyzed a single-barrier tunneling structure in a noninteracting particle
approximation. We provided a quantum mechanical model predicting the charge
distribution in the scattering region and the tunneling currents between source and
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Figure 4.13: As function of applied bias VSD, capacitance per area (left part) and
the differences to the capacitance for bias zero (right part). 1 represents Cq(VSD)−
Cq(VSD = 0) and 2 represents CΠ(VSD = 0)−CΠ(VSD), where Cq and CΠ are defined
by Eq. (4.6).

drain contacts. We performed fully self-consistent calculations (we did not use a
parametrized expression for the electrostatic potential) for an open system in contact
with two reservoirs. We used a new capacitance model for the open systems which
accounts for the openness of the system and the influence of contact embedding the
system. The capacitance exhibits oscillations with maxima every time a (Fabry-
Perot like) resonance crosses the chemical potential in the source reservoir. At the
same biases, the conductance presents shoulders.
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Chapter 5

Laterally modulated tunneling
barrier

In this chapter we extend further the R-matrix formalism to general multidimen-
sional mesoscopic structures, including non resonant transport and transport in the
classically allowed regime [93]. In our case we use semi-infinite homogeneous elec-
tron gases as contacts, which allow us to treat single mesoscopic structures as well
as periodic systems.

After developing the formalism for two-dimensional geometry in Sec. 5.1 we
revisit the resonant tunneling problem of isolated levels in Sec. 5.3. In addition
to Refs. [18, 34] we show that there is a shift between the resonant energies and
the Wigner-Eisenbud energies resulting from components of the Wigner-Eisenbud
functions that are bound to the barrier.

Exploring the regime of classically allowed transport, we apply our results to a
tunneling barrier with a lateral periodic modulation shown in Fig. 5.1. A similar
system was created recently to study, in the ac-transport regime, the wave-mixing
properties of a sequence of quantum point contacts [87]. Here we consider the dc
conductivity in various limits: For strong modulation (large Vm) we find a transition
from the known quantized conductivity in e2/h of a single point contact for small
average barrier height (small V0) to a series of resonant peaks of height e2/h for
high barriers. Similar peaks which result from the mismatch of wave function inside
and outside the scattering region were studied recently in quantum dots in Ref.
[88]. For our system we show that in the classically allowed regime (V0 < E <
V0+2Vm), these resonant peaks only approximately exhibit the usual algebraic Breit-
Wigner distribution. Instead they follow a distribution described by a transcendental
tangent function. At weak modulation we demonstrate that the miniband structure
of the lateral dispersion can be resolved in dc transport in the forward direction in
the limit of large average barrier height (see Fig. 5.1).

107
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Figure 5.1: Laterally modulated tunneling barrier.

5.1 Formalism for two-dimensional systems

5.1.1 Transmission probabilities with the R -matrix

We describe coherent transport in a system with a two-dimensional Hamiltonian

[
− h̄2

2m∗

(
∂2

∂z2
+

∂2

∂y2

)
+ V (z, y)− E

]
Ψ(z, y) = 0. (5.1)

Extension to three dimensions is trivial. In Eq. (5.1), V is the barrier potential
that vanishes outside the scattering region, V (z, y) = 0 for |z| ≥ d. For example
our formalism is directly suitable for tunneling processes of the two-dimensional
electron gas ↔ quantum systems (e.g., quantum dots or array of quantum dots) ↔
two-dimensional electron gas structure. These systems are often created in GaAs
heterostructure using a top gate. For our theory to be applicable, we assume that the
coherence length is larger than the size of the quantum system. Perpendicular to the
tunneling direction the system is periodic in the y-coordinate, V (z, y+a) = V (z, y).
Introducing a Bloch vector ky in the first Brillouin zone [−π/a, π/a] for the scattering
states (see Sect. 5.1.2) we can write

Ψ = ΨL/R;ky ,n(z, y) = eikyy
∑
m

wL/R;ky,n
m (z)ei(2π/a)my. (5.2)

Here ΨL/R;ky ,n is the scattering state that derives from an incoming plane wave from
the left/right reservoir with the momentum in the y direction of ky;n = ky + n2π/a,
and in the z direction of

kz;n =

√√√√2m∗

h̄2

(
E − h̄2

2m∗k
2
y;n

)
, (5.3)
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where we have to take the first branch of the square root function. The functions
wm(z) obey the scattering boundary conditions

wL;ky,n
m (z) =

{
exp[ikz;nz]δm,n + rL;n

m exp[−ikz;mz], for z ≤ −d
tL;n
m exp[ikz;mz], for z ≥ d

(5.4)

and

wR;ky,n
m (z) =

{
tR;n
m exp[−ikz;mz], for z ≤ −d

exp(−ikz;nz)δm,n + rR;n
m exp[ikz;mz], for z ≥ d

(5.5)

Through Eq. (5.3) an interval [mmin,mmax] is defined with m values for which kz;m

is real. The corresponding components of the wave function are free waves. If kz;m is
complex the corresponding component is bound to the barrier. The functions wm(z)
can be formally constructed solving a Lippmann-Schwinger equation with V as the
potential perturbation (see Sect. 5.1.2). However, this approach would, in practical
calculations, require for each energy the solution of an integral matrix equation. To
avoid this problem we follow the scheme described in Ref. [33] for the application of
the R -matrix formalism to one-dimensional transport problems in semiconductor
systems. In the first step we introduce the S -matrix that is defined as usual through
the relation between ingoing and outgoing parts of the wave function (see Sect. 2.1.2)

[
wout(−L)
wout(+L)

]
=

[
S(−L,−L) S(−L, +L)
S(+L,−L) S(+L, +L)

] [
win(−L)
win(+L)

]
, (5.6)

or
wout

m,s =
∑

m′,s′
Sm,s;m′,s′w

in
m′s′ . (5.7)

Equation (5.6) is a matrix equation for each ky where w(±L) = wout(±L)+win(±L)
is a vector containing the components wm(z) = wout

m (z) + win
m(z) at z = ±L. wm(z)

results from a decomposition as in Eq. (5.2), of a general scattering state for given ky

and E (i.e., a superposition of states ΨL/R;ky ,n with different n and different index
L/R). For z ≤ −d, wout

m is the part of wm(z) containing the factor exp[−ikz;mz]
and win is the part containing exp[+ikz;mz]. For z ≥ d, wout

m is the part of wm(z)
containing the factor exp[ikz;mz] and win the part containing exp[−ikz;mz]. L ≥ d
defines an arbitrarily chosen ”surface” of the scattering area. In Eq. (5.7) the index
s = 0 and 1 denotes the argument z = (−1)sL. The derivation of Eq. (5.6) and the
formal definition of the decomposition wm = wout

m + win
m are given in Sect. 5.1.3.

Also in Sect. 5.1.3 we derive the following relations between the S -matrix and the
reflection and transmission coefficients

Smn(−L,−L) = exp [i(kz;m + kz;n)L]rL;n
m , (5.8)

Smn(−L,L) = exp [i(kz;m + kz;n)L]tR;n
m ,

Smn(L,−L) = exp [i(kz;m + kz;n)L]tL;n
m ,

Smn(L,L) = exp [i(kz;m + kz;n)L]rR;n
m .
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The R -matrix is introduced as

wm,s =
∑

m′,s′
Rm,s;m′,s′w

S
m′s′ . (5.9)

As usual the R -matrix relates the value of the wave function to its normal derivatives
wS

m,s = (−1s+1/m∗)∇zwm,s at the surface z = ±L of the scattering area. In order
to construct the R -matrix we start from the Wigner-Eisenbud functions

χl(z, y) = eikyy
+∞∑

m=−∞
ei 2π

a
my vl

m(z), (5.10)

which are the solutions of the Schrödinger equation (5.1) with the boundary condi-
tion

∂

∂z
χl(z = −L, y) =

∂

∂z
χl(z = +L, y) = 0 . (5.11)

The normalization is chosen so that 2Lδl,l′ =
∑

m

∫−L
−L dz vl

m(z)vl′
m(z). The corre-

sponding Wigner-Eisenbud eigenenergies are El. Using standard techniques it can
be shown (see Sect. 5.1.4) that

Rm,s;m′,s′ = − h̄2

4L
∑

l

vl
m(−1sL)vl

m′(−1s′L)

E − El

. (5.12)

with real functions vl
m. Eq. (5.12) shows that R-matrix has the form of a Green’s

function. However, the boundary conditions (5.11) have to be contrasted with ”scat-
tering boundary conditions” (evanescent plane waves outside the scattering area)
for the Green’s functions. In the latter case the transmission coefficients, and there-
fore the S -matrix, follow directly from the Green’s function [25]. Making use of
wS

m = (win
m)S + (wout

m )S = ikz;m/m∗(wout
m − win

m) in Eq. (5.9) we obtain

S = −
(
1− i

m∗Rk
)−1 (

1 +
i

m∗Rk
)

(5.13)

which is the desired formula to express the S -matrix in terms of the R -matrix. Here
(R)m,s;m′s′ = Rm,s;m′s′ , (S)m,s;m′s′ = Sm,s;m′s′ , (1)m,s;m′s′ = δm,m′δs,s′ and km,s;m′,s′ =
δs,s′δm,m′kz;m. In addition to the corresponding result Eq. (2.78) which is in the
space of 2 × 2 matrices, but has the same form as Eq. (5.13) here the index m is
included which describes the lateral modulation.

5.1.2 Scattering states as Bloch functions

In this section we show that the scattering states are Bloch functions as given by
Eq. (5.2), with the boundary conditions of Eqs. (5.4) and (5.5). We obtain a set of
coupled integral equations to determine the Fourier components wL/R;ky,n

m (z).
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We start by recasting the Schrödinger equation [Eq. (5.1)] in the form of a
Lippmann-Schwinger integral equation [89]

ΨL/R;λ(z, y) = ΦL/R;λ(z, y) +
∫ d

−d
dz′

∫
dy′ G0(z − z′, y − y′) V (z′, y′) ΨL/R;λ(z′, y′).

(5.14)
Here ΨL/R;λ are the scattering states, and

ΦL/R;λ(z, y) = exp
[
i
(
ky +

2π

a
n

)
y + (−1)uikz

]
(5.15)

are plane waves which are the solutions of the unperturbed problem (V = 0). We
have u = 0 for ΦL and u = 1 for ΦR, and E = h̄2/2m∗([ky + (2π/a)n]2 + k2).
The unperturbed waves define the channels λ = (ky, n), and k is determined by the
energy E. As usual G0(z − z′, y − y′) is the Green’s function of the unperturbed
problem,

δ(z − z′)δ(y − y′) =

[
E +

h̄2

2m∗

(
d2

dz2
+

d2

dy2

)]
G0(z − z′, y − y′). (5.16)

In our case G0 obeys radiation boundary conditions in the z direction [see Eq. (5.21)]
and periodic boundary conditions in the y direction. In Eq. (5.14) we insert the
barrier potential as

V (z, y) =
∑
m

V bar
m (z) exp

(
i
2π

a
my

)
, (5.17)

and obtain

e−ikyyΨL/R;ky ,n(z, y) = exp
(
i
2π

a
ny + (−1)uikz

)

+
∫ d

−d
dz′

∑
m

V bar
m (z′)

∫
dy′e−iky(y−y′)G0(z − z′, y − y′)

× exp
(
i
2π

a
my′

)
e−ikyy′ΨL/R;ky,n(z′, y′), (5.18)

where we have multiplied both sides with a factor e−ikyy. After the transformation
y −→ y + a the same equation follows for exp[−iky(y + a)]Ψn(z, y + a). Therefore,
we can write

exp(−ikyy) ΨL/R;ky ,n(z, y) =
∑
m

wL/R;ky ,n
m (z) exp

(
i
2π

a
my

)
, (5.19)

which is the desired Bloch-type representation of the scattering states. Inserting
this representation into Eq. (5.18), we find

wL/R;ky ,n
m (z) = δm,n exp [(−1)uikz] (5.20)

+
∫ d

−d
dz′ G0(z − z′, ky +

2π

a
m)

∑

m′
V bar

m′ (z′) w
L/R;ky,n
m−m′ (z′),
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with G0(z − z′, qy) =
∫

dy exp (−iqyy)G0(z − z′, y − y′). To obtain the S -matrix
this set of coupled integral equations may be solved directly and represents thus the
generic alternative to the R -matrix formalism. For each energy E a separate set of
equations must be solved. The advantage of the R -matrix formalism is that one has
to solve an equivalent problem only once to obtain the Wigner-Eisenbud functions
and energies. From these the R -matrix can be calculated for all energies by a simple
summation. The S -matrix can then be found using Eq. (5.13) by an inversion of
a matrix in the Fourier space of the components m which does not contain z as a
degree of freedom, and thus has a dimension smaller by 1 than the problem in Eq.

(5.20). Using standard methods, with kz =
√

2m∗E/h̄2 − q2
y we find

G0(z − z′, qy) = −i
m∗

h̄2

1

kz

exp (+ikz|z − z′|). (5.21)

This expression can be inserted into Eq. (5.20), and we obtain immediately the lower
line in Eq. (5.4) with

rL;n
m = −i

m∗

h̄2kz;m

∑

m′

∫ d

−d
dz′V bar

m′ (z′) exp (ikz;mz′)wL;ky ,n
m−m′ (z′), (5.22)

where kz;m is defined in Eq. (5.3). Analogous expressions can be found for tL;n
m , rR;n

m ,
and tL;n

m .

5.1.3 S -matrix theory

Any scattering wave is composed of incoming and outgoing (scattered) parts:

Ψ = Ψin + Ψout. (5.23)

The S -matrix elements are defined as coefficients between the outgoing and incoming
parts of the scattering waves. Obviously, they can be expressed in terms of the
coefficients tL;n

m , tR;n
m , rL;n

m , and rR;n
m .

In general, an incoming wave can be expressed as linear combination of incident
plane waves:

Ψin(z, y) =
∑
n

anΦ
L;ky,n
in (z, y) (5.24)

=
∑
n

an exp(ikz;nz) exp
[
i
(
ky +

2π

a
n

)
y
]

(5.25)

for z ≤ −d and

Ψin(z, y) =
∑
n

bnΦ
R;ky ,n
in (z, y) (5.26)

=
∑
n

bn exp(−ikz;nz) exp
[
i
(
ky +

2π

a
n

)
y
]

(5.27)
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for z ≥ +d. The corresponding outgoing wave is then:

Ψout(z, y) =
∑
n

an[ΨL;ky ,n(z, y)− Φ
L;ky ,n
in (z, y)] +

∑
n

bnΨR;ky ,n(z, y)

=
∑
n

an

∑
m

rL;n
m exp

[
−ikz;mz + i

(
ky +

2π

a
m

)
y
]

+
∑
n

bn

∑
m

tR;n
m exp

[
−ikz;mz + i

(
ky +

2π

a
m

)
y
]

(5.28)

for z ≤ −d, and

Ψout(z, y) =
∑
n

anΨL;ky;n(z, y) +
∑
n

bn[ΨR;ky ,n(z, y)− Φ
R;ky,n
in (z, y)]

=
∑
n

an

∑
m

tL;n
m exp

[
ikz;mz + i

(
ky +

2π

a
m

)
y
]

+
∑
n

bn

∑
m

rR;n
m exp

[
ikz;mz + i

(
ky +

2π

a
m

)
y
]

(5.29)

for z ≥ d. We now eliminate the coefficients an and bn:

an = eikz;nL 1

a

∫ a

0
dy′ e−i(ky+2π/an)y′ Ψin(−L, y′),

bn = eikz;nL 1

a

∫ a

0
dy′ e−i(ky+ 2π

a
n)y′ Ψin(+L, y′),

and find a general expression of Ψout in terms of Ψin(±L, y):

Ψout(z, y) =
∑
m

exp
[
−ikz;mz + i

(
ky +

2π

a
m

)
y
]

(5.30)

×
[∑

n

rL;n
m exp (ikz;nL)

1

a

∫ a

0
dy′ e−i[ky+(2π/a)n]y′Ψin(−L, y′)

+
∑
n

tR;n
m exp (ikz;nL)

1

a

∫ a

0
dy′ e−i[ky+(2π/a)n]y′Ψin(+L, y′)

]

for z ≤ −d, and

Ψout(z, y) =
∑
m

exp
[
ikz;mz + i

(
ky +

2π

a
m

)
y
]

(5.31)

×
[∑

n

tL;n
m exp (ikz;nL)

1

a

∫ a

0
dy′ e−i[ky+(2π/a)n]y′Ψin(−L, y′)

+
∑
n

rRn
m exp (ikz;nL)

1

a

∫ a

0
dy′ e−i[ky+(2π/a)n]y′Ψin(+L, y′)

]

for z ≥ d. When we further introduce the components

Ψin(z, y) =
nmax∑

m=nmin

ei[ky+(2π/a)m]ywin
m(z) (5.32)
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−d d z

y

a

Figure 5.2: Domain of integration.

and

Ψout(z, y) =
+∞∑

m=−∞
ei[ky+(2π/a)m]ywout

m (z) (5.33)

we obtain the desired formal expression of Eq. (5.6), where the S -matrix is related
to the transmission and reflection coefficients through Eq. (5.8).

Remark The incoming wave has only a finite number of components, whereas
the outgoing wave may contain an infinite number of terms, of which, however, only
a finite number are not damped and may thus carry current.

5.1.4 Construction of the R -matrix

In this section we want to derive Eq. (5.12). We begin with the Schrödinger equations

[
− h̄2

2m∗

(
∂2

∂z2
+

∂2

∂y2

)
+ V (z, y)− ε

]
Ψ(z, y) = 0 (5.34)

and [
− h̄2

2m∗

(
∂2

∂z2
+

∂2

∂y2

)
+ V (z, y)− εl

]
χl(z, y) = 0. (5.35)

Here Ψ is a scattering function and χl is a Wigner-Eisenbud function with given ky.
Multiplying Eq. (5.35) by χ∗l , and integrating the result over the rectangle depicted
in Fig. 5.2 we find that εl are real.

Multiplying Eq. (5.34) by χ∗l , and the complex conjugate of Eq. (5.35) by Ψ,
subtracting both equations, and integrating the result over the same rectangle, we
obtain

− h̄2

2m∗

∫
dz dy[Ψ∇2χ∗l − χ∗l∇2Ψ] = (ε− εl)

∫
dz dy Ψχ∗l . (5.36)
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Using Green’s second theorem we can express the area integral on the left-hand side
of the above equation as a contour integral

− h̄2

2m∗

∫ a

0
dy [(Ψ∇zχ

∗
l − χ∗l∇zΨ)|z=L − (Ψ∇zχ

∗
l − χ∗l∇zΨ)|z=−L]

+
h̄2

2m∗

∫ +L

−L
dz [(Ψ∇yχ

∗
l − χ∗l∇yΨ)|y=a −Ψ∇yχ

∗
l − χ∗l∇yΨ)|y=0]

= (εl − ε)
∫

dz dy Ψχ∗l . (5.37)

Due to the periodicity in the y direction, the second integral on the left-hand side
of Eq. (5.37) vanishes. Because of the boundary condition (5.11) for the Wigner
Eisenbud functions we can drop terms with ∇zχ

∗
l in the first integral and we can

write

− h̄2

2

∫ a

0
dy

[
χl(L, y)∗

1

m∗∇zΨ(L, y)− χl(−L, y)∗
1

m∗∇zΨ(−L, y)
]

= (ε− εl)
∫

dz dy Ψχ∗l . (5.38)

If we replace Ψ in Eq. (5.34) with χl′ , and ε with εl′ , and repeat the procedure in this
case we obtain that the right-hand side of Eq. (5.38) vanishes. This proves directly
the orthogonality of the χl. Because of the structural similarity of Eqs. (5.35) and
(5.11) to a Sturm-Liouville problem here we simply assume completeness,

Ψ(z, y) =
∑

l

alχl(z, y), (5.39)

with

al =
1

2La

∫ L

−L
dz′

∫ a

0
dy′χ∗l (z

′, y′)Ψ(z′, y′). (5.40)

Inserting Eq. (5.39) into Eq. (5.38) leads to the following expression for Ψ

Ψ(z, y) =
∫ a

0
dy′ [R(z, y;−L, y′)ΨS(−L, y′) + R(z, y; +L, y′)ΨS(+L, y′)], (5.41)

with the R -matrix

R(z, y, ; (−1)s′L, y′) = − h̄2

4La

∑

l

χl(z, y)χ∗l (−1s′L, y′)
ε− εl

. (5.42)

Writing Eq. (5.42) for the argument z = (−1)sL and inserting expansions (5.2) for
the scattering states and Eq. (5.10) for the Wigner-Eisenbud functions, we immedi-
ately obtain Eqs. (5.9) and (5.12).
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5.2 Conductance

We define the current density averaged over one period in the y direction, j̄z =∫ a
0 dyjz(y, z0)/a, z0 fixed, and write j̄z = j̄L

z − j̄R
z where j̄L/R

z is the z component of
the density of the current coming from the L/R reservoir with

j̄L/R
z = 2

∑

ky∈1.B.z.

mmax∑
n=mmin

∑

k

fFD(E − µL/R)
1

a

∫ a

0
dy〈ΨL/R;ky ,n|ĵz|ΨL/R;ky,n〉,

(5.43)

and E = h̄2(k2 +k2
y;n)/(2m∗). Inserting Eqs. (5.2), (5.4), and (5.5) one finds (z0 ≥ d

for j̄L
z and z0 ≤ −d for j̄R

z )

1

a

∫ a

0
dy〈ΨL/R;ky ,n|ĵz|ΨL/R;ky,n〉 =

1

a

eh̄

2m∗i

∫ a

0

[
(ΨL/R;ky ,n)∗

∂

∂z
ΨL/R;ky ,n

−ΨL/R;ky,n ∂

∂z
(ΨL/R;ky ,n)∗

]

=
h̄e

m∗

mmax∑
m=mmin

|tL/R;n
m |2km, (5.44)

with e = −|e|. Since we used as incident waves unnormalized plane waves [see
Eq. (5.15)] which corresponds to Lz = Ly = 1 we set

∑
ky
→ Ly/(2π)

∫
dky →

1/(2π)
∫

dky and
∑

k → 1/(2π)
∫

dk to obtain

j̄L/R
z =

2eh̄

(2π)2m∗

∫ π/a

−π/a
dky

mmax∑
m,n=mmin

∫ ∞

0
dkfFD(E − µL/R)km|tL/R;n

m (E)|2.

(5.45)

We now for fixed n substitute E = h̄2(k2 + k2
y;n)/(2m∗) and dk/dE = m∗/kn;z(E)h̄2

[see Eq. (5.3)] to find

j̄L/R
z =

2e

h̄(2π)2

∫ π/a

−π/a
dky

mmax∑
m,n=mmin

∫ ∞

E0

dEfFD(E − µL/R)kz;m(E)|tL/R;n
m (E)|2k−1

z;n(E)

=
e

h̄(2π)2

∫ π/a

−π/a
dky

mmax∑
m,n=mmin

∫ ∞

E0

dEfFD(E − µL/R)|S̃m,0/1;n,1/0|2. (5.46)

Here

S̃m,s;m′,s′ = k1/2
z;mSm,s;m′,s′k

−1/2
z;m′ (5.47)

is the current transmission matrix, and E0 = h̄2k2
y;n/(2m∗). From Eq. (5.13) we

obtain

S̃ = −1− iΩ

1 + iΩ
= 1− 2

1 + iΩ
, (5.48)
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with

Ωm,s;m′,s′ = − h̄2k1/2
z;mk

1/2
z;m′

4Lm∗
∑

l

vm
l (−1sL)vm′

l (−1s′L)

E − El

. (5.49)

The current transmission matrix is symmetric: S̃m,s;m′,s′ = S̃m′,s′;m,s. Going back to
Eq. (5.46) we thus obtain

j̄z =
2e

h̄(2π)2

∫ π/a

−π/a
dky

mmax∑
m,n=mmin

∫ ∞

E0

dE [fFD(E − µL)− fFD(E − µR)] |S̃m,0;n,1|2.

(5.50)

In this paper we are interested in the limit of small applied potentials ∆Vsd and zero
temperature, e.g., µL ≡ EF = µR + e∆Vsd. We use fFD(E − EF )− fFD(E − EF +

e∆Vsd)
T→0−→ e∆Vsdδ(E − EF ) and find

G ≡ Ia

∆Vsd

=
j̄za

∆Vsd

=
e2

hπ

∫ π

−π
dk̃y

mmax∑
m,n=mmin

|S̃m,0;n,1(EF )|2, (5.51)

where G is the conductance, Ia is the current through one period, and k̃y = kya.

5.3 Single-level approximation

In this section our general formalism is specialized to the case of resonant tunneling
through a single isolated level. We assume the validity of a single-level approxima-
tion for the R -matrix with the resonant level λ:

Ω =
∑

l

~αl ⊗ ~αl

E − El

≈ ~αλ ⊗ ~αλ

E − Eλ

, (5.52)

where the vectors ~αl are given by

(~αl)m,s =
ih̄

2
√

m∗Lk1/2
z;mvm

l (−1sL), (5.53)

and ⊗ denotes the dyadic product. The approximation Eq. (5.52) holds when the
separation of the Wigner-Eisenbud energies is much larger than the width of the
resonant level, so that we can neglect the influence of the nonresonant levels. With
standard procedures described in the first of Ref. [31] [see also Eq. (5.69)] we then
find

1

1 + iΩ
= 1− i

~αλ ⊗ ~αλ

E − Eλ −∆ + iΓ
2

, (5.54)

with
Γ

2
+ i∆ =

−h̄2

4m∗L
∑
m

kz;m

[
vm

λ (−L)2 + vm
λ (L)2

]
. (5.55)
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The relevant current transmission coefficients are thus

|S̃m,0;m′,1|2 =
Γ0

m,λΓ
1
m′,λ

(E − Eλ −∆)2 + Γ2/4
, (5.56)

with

Γs
m,λ =

h̄2

2m∗Lkz;mvm
λ (−1sL)2. (5.57)

Here m and m′ are restricted to modes that propagate in the z direction. The
denominator in Eq. (5.56) corresponds to a Breit-Wigner distribution with a width
given by Γ. Such a distribution follows from the general R -matrix theory [31] and
can also be derived in other approaches [90]. In our specialization of the R -matrix
theory to laterally modulated tunneling barriers the intensity of the Bragg reflections
is described by the enumerator and can be determined from the Wigner-Eisenbud
functions. In addition to Ref. [34] there is a shift ∆ between the position of the
resonances and the Wigner-Eisenbud energy Eλ in the single-level approximation.
As Eq. (5.55) shows, this shift arises from the components of the Wigner-Eisenbud
functions with complex kz;m which are bound to the barrier region. If we neglect
those components we can directly compare our results with Eq. (5) of Refs. [34].
First, we identify the lead index i with our s and the channel index c with m. In
agreement with Ref. [34] it results that |Γ| = ∑

m(Γ0
m,λ + Γ1

m,λ). Second, we identify

yi
cλ →

√
h̄2/(4m∗L)vm(−1sL) and compare Eq. (5.57) with Eq. (6) from Ref. [34].

It directly follows that the penetration factor P i
c defined in the latter equation is

exactly equal to 1 for the considered type of systems. In Ref. [34] the penetration
factor has been estimated to be smaller then or equal to 1. In Sec. 5.4.1 it shown that
our formalism directly applies to single tunneling structures which are the subject
of Ref. [34].

5.4 Laterally modulated barrier

To explore the features of our R -matrix formalism we consider transport through
a barrier with a periodic lateral structure. It will be shown that this system has
interesting resonant and nonresonant features in the classically allowed regime. As
a specific example we choose a rectangular barrier in the z direction of height V0

and width 2d with a superimposed Kronig-Penney-type potential in the y direction
with a modulation strength Vm (see Fig. 5.1)

V (z, y) = [Θ(z + d)−Θ(z − d)] [V0 + 2VmΘ(|y| − s)] , (5.58)

for −a/2 < y ≤ a/2 and V (z, y + a) = V (z, y) and s < a/2 (see Fig. 5.1). We
work with the boundary condition of vanishing derivative of the Wigner-Eisenbud
functions at L = d. The potential is then separable in the interval [−L,L], and the
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Wigner-Eisenbud functions take the product form

χl(z, y) = χky ,ν,nz(z, y) =

√
2

(1 + δnz ,0)
cos

[
(z + d)

nzπ

2d

]
gky,ν(y), (5.59)

where nz is the number of nodes in the z direction. gky ,ν are the eigenfunctions of
the Kronig-Penney Hamiltonian

[
− h̄2

2m∗
∂2

∂y2
+ 2VmΘ(|y| − s)− Ek.p.

ky ,ν

]
gky,ν(y) = 0. (5.60)

The Wigner-Eisenbud eigenenergies are

Eky ,ν,nz = Ek.p.
ky,ν +

h̄2

2m∗

(
nzπ

2d

)2

+ V0 =

[
εk.p.
ky ,ν +

n2
z

4
+ V̄0

]
En, (5.61)

where εk.p. and V̄0 are normalized to the energy En = h̄2/(2m∗)(π/d)2. Note, that
the Wigner-Eisenbud functions are independent of V0 which enters the R-matrix
only through a shift of the Wigner-Eisenbud energies as described in Eq. (5.61).

We first consider the situation of strong modulation that we define through the
absence of a markable ky dispersion of the εk.p. (see the inset in Fig. 5.3). In this
limit of vanishing overlap of the wave functions in the y direction we can write

gky,ν(y) ≈ gny(y) =
1√
s

sin

[
(ny + 1)π

2s
(y + s)

]
, (5.62)

in the potential well (|y| < s) and gky ,ν(a > |y| > s) = 0. Here ny ≥ 0 is the number
of nodes in the y-direction. For the Wigner-Eisenbud energies we obtain

εky,ν,nz ≈ εny,nz =
1

4

(
d2

s2
(ny + 1)2 + n2

z

)
+ V̄0, (5.63)

which agree with the positions of the energy bands in the inset of Fig. 5.3, and
with the Wigner-Eisenbud energies plotted with symbols in this figure. For V0 = 0
a sequence of point contacts in the y direction with a width of 2s and a lateral
distance of a results. For V0 À Vm one obtains a laterally modulated tunneling
barrier. The change of the transport properties in the transition between these
extremes is demonstrated in Fig. 5.3. For V0 = 0 we find a quantized conductance
in units of e2/h, which is the signature of a single point contact [16]. As expected,
when the Fermi energy reaches one energy out of the series of Wigner-Eisenbud
energies with nz = 0, the plateau is changed. With increasing V0 the plateaus of the
conductance decrease and single conductance peaks develop. Note that in Fig. 5.3
on the x-axis we plot the energy EF − V0 which is the part of the kinetic energy of
the incident electrons that exceeds the potential minimum of the barrier. On this
energy scale the position of the peaks is independent of V0. The open symbols in
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Figure 5.3: Conductance vs chemical potential for a structure with a = 4d and
s = a/4. The potential modulation is V̄m = 50, and V̄0 varies between 0 (dot-
dashed line), 2 (dashed line), and 16 384 (solid line). Inset: εk.p.

ky ,ν for the first four
degenerate Bloch bands (ν = 1, 2, 3, and4) in the first Brillouin zone. The position
of the Wigner-Eisenbud energies for nz = 0 (full circles), nz = 1 (triangles up),
nz = 2 (triangles down), and nz = 3 (diamonds).
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Fig. 5.3 mark the positions of the Wigner-Eisenbud energies for nz 6= 0 which are
found to be identical with the energies of the conductance peaks. Further increasing
V0, only the conductance peaks remain, and their peak value goes to 2e2/h.

The mismatch of the wave functions inside and outside the barrier can provide an
intuitive explanation for the conductance peaks at large V0. Outside the barrier the
kinetic energy of the electrons is drastically enhanced by V0. This generally means
a small lateral momentum inside the barrier and a large lateral momentum outside
the barrier. As consequence, the overlap of the wave function in the y direction at
the interfaces (z = ±d) becomes small and the electron wave is reflected. Neglecting
again the overlap of the wave functions in the y direction we describe the resonant
states as standing waves in the interval −d ≤ z ≤ d,

Ψres ≈ 1√
sd

sin

[
(ny + 1)π

2s
(y + s)

]
sin

[
(nz + 1)π

2d
(z + d)

]
, (5.64)

within the potential well (|y| < s). The energies of these states are

εres =
1

4

(
d2

s2
(ny + 1)2 + (nz + 1)2

)
+ V̄0. (5.65)

The resonance energies εres describe well the position of the resonances in Fig. 5.3
and correspond to the Wigner-Eisenbud energies given in Eq. (5.63) for nz 6= 0.

An analytical description of the considered conductance peaks in the classically
allowed transport regime will demonstrate that there are qualitative differences to
the resonant tunneling peaks described in Sec. 5.3: We start by writing Ω as

Ωm,s;m′,s′ ≈ k1/2
z;mvm

Ny
k

1/2
z;m′vm′

Ny

m∗ ρs;s′(E − ENy)

= A0~α0 ⊗ ~α0 + A1~α1 ⊗ ~α1, (5.66)

with

ρs;s′(E − ENy) = − h̄2

4L
∑
nz

φnz(−1sL)φnz(−1s′L)

(E − ENy)− Enz

, (5.67)

(~αi)m,s = −1isk1/2
z;mvm

Ny
/(m∗)1/2, (5.68)

and 2Ai = ρ0;0 + (−1)iρ0;1, i = 0 and 1. In the first step of Eq. (5.66) we write
the Wigner-Eisenbud functions [see Eq. (5.10)] as a product vl

m(z) = vm
ny

φnz(z) with
the eigenenergies El = Eny + Enz . We thus assume a general separable potential
V (z, y) = V (z, y + a) with vanishing overlap in the y-direction and wave functions
characterized by the number of nodes ny in the y direction and nz in the z direction.
We further assume a strong quantization in the y direction, so that we can expect,
for an energy range E ≈ ENy + V0, that only Wigner-Eisenbud levels with ny = Ny

contribute. The second step of Eq. (5.66) is correct for a barrier that is symmetric
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with respect to the plane z = 0, so that ρ0;0 = ρ1;1. With the scalar product
(~α0, ~α1) = 0 it is easy to show that

1

1 + iΩ
= 1− iA0~α0 ⊗ ~α0

1 + i(~α0~α0)A0

− iA1~α1 ⊗ ~α1

1 + i(~α1~α1)A1

. (5.69)

The square of the current transmission matrix can therefore be expressed as a prod-
uct

|S̃m,0;m′,1|2 = F(m,m′; Ny)G(E; Ny). (5.70)

Here
F(m,m′; Ny) = 4kz;m(vm

Ny
)2kz;m′(vm′

Ny
)2/u2 (5.71)

is a normalized function [
∑

m,m′ F(m,m′; Ny) = 1] with u given by the scalar product

(~α0, ~α0) =
∑
m,s

(~α0)
2
m,s = u + iv = (~α1, ~α1). (5.72)

The function F involves only modes with real kz;m′ and describes the intensity of
the Bragg reflexes in dependence of their order. Further,

G(E; Ny) =
∣∣∣∣

A0u

1− A0v + iA0u
− A1u

1− A1v + iA1u

∣∣∣∣
2

(5.73)

yields the energy distribution. In Eq. (5.73) resonant transport can occur if either
the first factor with A0 or the second factor with A1 shows resonant behavior.

The case of the single-level approximation can be recovered assuming that only
one relevant Wigner-Eisenbud level λ = (Nz, Ny) contributes, and

ρs;s′(E − Eλ) ≈ − h̄2

4L
φNz(−1sL)φNz(−1s′L)

E − Eλ

, (5.74)

with Eλ = ENy + ENz . Depending on the parity of the state φNz either A0 or A1

vanishes. We obtain the Breit-Wigner distribution given in Eqs. (5.56) and (5.57).
However, the conductance peaks of Fig. 5.3 in the classically allowed transport

regime show qualitative differences from the resonant tunneling resonances with a
Breit-Wigner distribution. To demonstrate this point we evaluate the sum over
nz in Eq. (5.67), which can be done analytically in our simple system using the
z-dependent factor of the Wigner-Eisenbud functions in Eq. (5.59). We find

Ω0 = A0u = −
∑

m kz;m(vm
Ny

)2

kb

cot (kbd) (5.75)

and

Ω1 = A1u =

∑
m kz;m(vm

Ny
)2

kb

tan (kbd), (5.76)

where
kbd = π

√
ε− εNy − V̄0. (5.77)
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[Note the normalization of Eq. (5.61], ENy = εNyEn). For large V0 we can write

(kz;md/π)2 ≈ V̂0, and since kz;m is real it follows that v is equal to zero and therefore

vanishes in Eqs. (5.72) and (5.73). In the limit V̂0 → ∞ the factor in front of the
cotangent (tangent) diverges in Eq. (5.75) [Eq. (5.76)]. Therefore, outside a small
interval around the zeros of either tangent or cotangent G(E, Ny) vanishes in accord
with Eq. (5.73). Only close to the zeros of tan (kbd) can the function Ω1 become
small and G(E,Ny) approach unity. (As will be shown later, for the zeros with
Nz = 0 the function Ω1 does not become small.) An analogous finding results in the
zeros of cot (kbd). The zeros of tan and cot are found at 2kbd = Nzπ, Nz = 0, 1, 2...,
which, according to Eq. (5.77), corresponds to energies

ε0 = εNy +
N2

z

4
+ V̄0. (5.78)

Again assuming a y dependence of the Wigner-Eisenbud functions as in Eq. (5.62),
it follows that εNy = (d2/s2)(Ny + 1)2/4. Equation (5.78) then represents the same
condition as Eq. (5.63) which does not describe the conductance peaks correctly. To
show that our analytical approach nevertheless reproduces the correct condition of
Eq. (5.65), and to calculate the shape of the conductance peaks, we write ε = δε+ε0,
and for small δε and Nz 6= 0 obtain the expression

Ω0/1 =
2
√

V0

Nz

tan (π δε/Nz) (5.79)

for Ω0 and Ω1, which goes to zero for δε → 0. Therefore, conductance peaks can
be expected around these ε0. However, for Nz = 0 one obtains Ω0/1 = πV0, which
diverges uniformly around ε0. This means that G(E, Ny) and the conductance vanish
around the ε0 with Nz = 0 in Eq. (5.78). We thus obtain Eq. (5.65) as a condition
for the resonant tunneling peaks. From Eq. (5.79) it follows directly that

G(δε, Ny, Nz 6= 0) =

[
1 +

4V0

N2
z

tan 2(π δε/Nz)

]−1

. (5.80)

In contrast to the Breit-Wigner distribution in resonant tunneling, for the resonances
in the classically allowed region we obtain a transcendental distribution.

The conductance follows from Eq. (5.51). Since there is no overlap of the wave
functions in the y direction, the integral

∫ π
−π dk̃y reduces to 2π, and it is found that

G =
2e2

h
G(δε,Ny, Nz) (5.81)

in the vicinity of ε = εNy + εNz . This formula reproduces the numerical results to
a great precision (deviations are not visible in the graphical resolution of Fig. 5.3).
The maximum of the conductance peaks of 2e2/h results from the fact that the max-
imal value of G(δε, Ny, Nz) is 1. The peaks shown in Fig. 5.3 are very narrow, so that
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ε ¿ 1, and in tan 2(α δε) ≈ (α δε)2[1 + (2/3)(α δε)2 + ...], we can neglect α = π/Nz,
the fourth order term in e. This leads back to a Breit-Wigner distribution like Eq.
(5.56) with ∆ = 0 and Γ/ε0 = N2

z /(π
√

V0). Using Eq. (5.57) we find, in the single-
level approximation of Sec. 5.3, Γ/ε0 =

√
V0/π. This expression predicts that the

linewidth grows with V0, that it is independent of Nz, and also includes a conduc-
tance peak at Nz = 0. These predictions are in clear contradiction to the numerical
results, and show the failure of the single-level approximation. We thus state that in
contrast to the tunneling regime isolated resonances in the classically allowed regime
generally cannot be described in a single-level approximation. Though resonances
might have a shape similar to a Breit-Wigner distribution in general, their shape
deviates, and the width calculated in the single level approximation is wrong.

The energy dependence of the conductance at weak lateral modulation is shown
in Fig. 5.4 with V̄m = 0.2. The small modulation strength is defined through the
band structure εk.p.

ky,ν , which is depicted in Fig. 5.5: A nearly free-electron dispersion
with energy gaps at the edge and in the center of the first Brillouin zone results for
ν ≥ 2. The lowest subband ν = 1 is flat. For vanishing V0 only the lowest plateau
in the conductance with G = 2e2/h is developed. Higher plateaus are very strongly
washed out. As expected, the change in the plateaus coincides with the position
of the Wigner-Eisenbud bands for nz = 0. Broader energy bands lead to softer
transitions between the less-developed plateaus. With increasing V0 the plateaus
vanish and broad maxima develop, first at Wigner-Eisenbud energy bands with ν =
1. For very large V0 the conductance maxima develop a fine structure that directly
reflects the density of all Wigner-Eisenbud states with nz 6= 0: The conductance
vanishes in the band gaps of the Wigner-Eisenbud spectrum, and develops van Hove
singularities at the band edges.

5.4.1 Transport through a single structure

In this section we want to generalize our formalism to systems consisting of a single
lateral structure. The situation is illustrated in Fig. 5.6. In Fig. 5.6(b) a single basis
structure of length Ly = a is depicted. In the center of the basis there is a quantum
system QS which is restricted to the range −s/2 ≤ y ≤ s/2. Outside this interval
there is a barrier which is homogeneous in the y direction. In Fig. 5.6(a) a system
with N = 3 repetitions of the basis and length Ly = Na is shown. In both cases
we require periodic boundary conditions at y = ±Ly/2 so that the allowed wave
vectors are kn

y = n2π/Ly with n = 0,±1,±2, .... By definition the primitive lattice
vector of the periodic system is given by k0 = 2π/a = Nπ/Ly. The first Brillouin
zone defined by −k0/2 < ky ≤ k0/2 thus contains N elements ki

y −N/2 < i ≤ N/2.
The ideal periodic structure is obtained in the limit Ly →∞ with N = Ly/a →∞,
where a is constant. The single structure results in the limit Ly → ∞ and N = 1.
The length Ly = a is increased by keeping a QS which is between −s/2 < y < s/2
constant, and extending the unstructured barrier for Ly/2 ≥ |y| ≥ s/2. For N = 1
we only have one element in the first Brillouin zone with i = 0 and thus ky = 0.
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Figure 5.4: Conductance vs the chemical potential at T = 0 for a structure with
a = 4d and s = a/4 with V̄m = 0.2. In the upper part, V̄0 = 0 (solid line) and
4 (dash-dotted line). In the lower part V̄0 = 64 (dash-dotted line, values must be
multiplied by 2) and 16 384 (solid line). The extent of the energy bands εk.p.

ky ,ν +n2
z/4

is plotted for nz = 0 (circles, upper part for ν = 1, 2, and3), nz = 1 (triangles up,
upper and lower parts) nz = 2 (triangles down, lower part), and nz = 3 (diamonds,
lower part).
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Figure 5.5: The lowest-energy bands εk.p.
ky,ν in the first Brillouin zone for the structure

in Fig. 5.4.

The expansion of the scattering states given in Eq. (5.2) then is

Ψ(z, y) = ΨL/R;n(z, y) =
∑
m

wL/R;,n
m (z)ei(2π/L)my . (5.82)

ΨL/R;,n(z, y) derives from an incoming plane wave from the left-/right reservoir with
the momentum in the y direction of kn

y = ky;n = n2π/Ly. We can adopt all results

for ky = 0 in Sec. 5.1. In Sec. 5.2 we have to perform the replacement
∫

dk̃y →
2π

∑
k̃y

δk̃y ,0 in Eq. (5.51) to obtain

G =
I

Vsd

=
2e2

h

mmax∑
m,n=mmin

|S̃m,0;n,1|2. (5.83)

5.5 Summary

We derived a theory in the R -matrix formalism that is applicable to multidimen-
sional mesoscopic semiconductor nanostructures, including nonresonant transport
and transport in the classically allowed regime. As an example, coherent transport
through a tunneling barrier with a lateral periodic modulation was discussed. For
high barriers, resonances result at strong lateral modulation in the classical trans-
port regime that show qualitative differences from resonant tunneling peaks. At
weak lateral modulation the mini-band structure of the lateral dispersion can be
resolved in the dc transport and van Hove singularities occur.
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Figure 5.6: Scattering potentials.
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Chapter 6

Conclusions

We have analyzed open quantum semiconductor nanostructures in non-interacting
particle approximation at very low temperatures. We have provided a quantum
mechanical model predicting the charge distribution in the scattering region and
the capacitance of this region as well as the tunneling currents between source and
drain contacts.

The scattering wave functions are calculated in the R-matrix formalism. To
consider the effect of the charge accumulation in the quantum system, we have
performed fully self-consistent calculations in the mean-field approximation taking
properly into account the open nature of the system. Exploiting the analytical
properties of the scattering matrix we find its resonant poles and we count exactly
the contribution of the quasi-bound states to the charge density.

For characterizing the transport in the mesoscopic structures we have calculated
the tunneling current and the capacitance of the quantum system. The tunneling
current is evaluated using the Landauer-Büttiker formalism. For the capacitance,
we proposed a new model which takes into account the openness of the system and
the presence of the contacts embedding the system. Based on our self-consistent
calculations, we are able to perform a detailed analysis of the interaction between
the quantum system and the contact reservoir. The capacitance model has been
applied to describe two types of quantum heterostructures.

First we analyze an electron system coupled only with a probe (contact) and
separated from another one by a blocking barrier. Decreasing this coupling by in-
creasing applied bias a broadened step in the C-V characteristic is obtained. We
find that the quasi-bound state that exists in the nearly closed system develops at
the transition to the open system into a separate type of resonance with distinct
characteristics: in contrast to the quasi-bound state i) it is localized in the space be-
tween the probe and the isolated quantum system, ii) its energy lies in the classically
allowed regime, and iii) its line shape is strongly asymmetric. Excellent quantitative
agreement shows that this transition is seen in capacitance experiments on a MIS-
type semiconductor heterostructure: the measured step in the C-V-characteristic
associated with the formation of a field induced two dimensional electron gas is due
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to the formation of this asymmetric resonance.
For an open quantum system in contact with two reservoirs our model can also

describe the capacitance when a current flows through the structure. The capaci-
tance presents oscillations with maxima every time a (Fabry-Perot like) resonance
crosses the chemical potential in the source reservoir. At the same biases the con-
ductance presents shoulders.

We have extended the R-matrix formalism to general multidimensional meso-
scopic structures, including non resonant transport and transport in the classically
allowed regime. We have analyzed a tunneling barrier with a lateral periodic mod-
ulation. For strong modulation we find a transition from the known quantized
conductivity in e2/h of a single point contact for small average barrier height, to a
series of resonant peaks of height e2/h for high barriers. We have shown that in the
classically allowed regime, the resonant peaks only approximately exhibit the usual
algebraic Breit-Wigner distribution. Instead they follow a distribution described by
a transcendental tangent function. At weak modulation we have demonstrated that
the miniband structure of the lateral dispersion can be resolved in dc transport in
the forward direction in the limit of large average barrier height.



Appendix A

Hartree-Fock equations

The Hartree-Fock approximation [91] consists in the assumption of the many-particle
wave function as Slater determinant

Ψ(r1, r2, ..., rN) =
1√
N !

∑

P∈SN

(−1)χP ΦP (1)(r1)ΦP (2)(r2)...ΦP (N)(rN), (A.1)

where P is a permutation of N numbers, from the total possible permutations SN ,
χP is the parity of the permutation P and Φα(r) is the one-particle wave function,
which will be determined through variational calculations. The form (A.1) has the
correct symmetry: the wave function changes sign, when the position of two particle
is interchanged,

Ψ(..., rk, ..., rj, ....) = −Ψ(..., rj, ..., rk, ....), (A.2)

which is a general statement of the Pauli exclusion principle for fermions. An im-
portant special case is that the wave function vanishes if the two coordinates are
equally. We will use further the ”bra-ket” notations:

〈r|α〉 = Φα(r) (A.3)

so that we can write

|Ψ〉 =
1√
N !

∑

P∈SN

(−1)χP |αP (1)〉(1)|αP (2)〉(2)...|αP (N)〉(N), (A.4)

where |αP (i)〉(i) represents the one-particle state of the electron i. α is a general
notation for the quantum numbers set which characterizes the one-particle state.

From the quantum mechanics it is known that for a given Hamiltonian H the
energy functional

E =
〈Ψ|H|Ψ〉
〈Ψ|Ψ〉 (A.5)

has an absolute minimum for the ground state |Ψ0〉. If one does not know the
groundstate, then we choose a family of kets that depends on a certain number of
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parameters α1, ..., αN . We calculate the mean value of the Hamiltonian H and we
minimize it with respect to the parameters αi. This is the variational method.

If we want to count only the interaction between pair of electrons, the Hamil-
tonian H has two components H = H0 + H1. H0 is the Hamiltonian of the non-
interacting particles,

H0 =
N∑

j=1

h(rj) =
N∑

j=1

[
− h̄2

2m∗∆j + Vext(rj)

]
, (A.6)

with Vext(rj) the potential produced by external sources (i. e. heterostructure
interfaces, impurities, etc.) which acts on the position rj and does not depend on
the number of electrons in the system. H1 counts for the pair interactions and it is
written for the Coulomb interaction as

H1 =
1

2

N∑

i,j=1

j 6=i

u(ri, rj) =
1

2

N∑

i,j=1

j 6=i

e2

4πε0εr|rj − ri| , (A.7)

where 1/2 prevents double counting of the pair interactions.
We are looking for orthonormalized one-particle wave functions,

〈αi|αj〉 = δij, (A.8)

so that the many-particle wave function is also normalized 〈Ψ|Ψ〉 = 1. The func-
tional energy becomes then E = 〈Ψ|H|Ψ〉.

Let’s calculate 〈Ψ|H0|Ψ〉:

〈Ψ|H0|Ψ〉 =
N∑

i=1

〈Ψ|h(ri)|Ψ〉

=
N∑

i=1

1

N !

∑

P,P ′∈SN

(−1)χP (−1)χP ′
(N)

〈αP ′(N)|...
(1)

〈αP ′(1)|h(ri)|αP (1)

(1)

〉 ...|αP (N)

(N)

〉

=
N∑

i=1

1

N !

∑

P,P ′∈SN

(−1)χP +χP ′
(N)

〈αP ′(N)|αP (N)

(N)

〉 ...
(i)

〈αP ′(i)|h(ri)|αP (i)

(i)

〉

...
(1)

〈αP ′(1)|αP (1)

(1)

〉

=
N∑

i=1

1

N !

∑

P,P ′∈SN

(−1)χP +χP ′
∏

j 6=i

δP ′(j)P (j)

(i)

〈αP ′(i)|h(ri)|αP (i)

(i)

〉 , (A.9)

where we have denoted explicitly by (i) as superscript the single particle Hilbert
space associated to the particle i. The δ’s which appear in the last relation are a
consequence of the orthogonality of the one-particle wave functions and establish
that the permutation P ′ and P have to coincide for every j 6= i. In turn they have
to coincide also for the last position, i.e. P ′(i) = P (i), so that P = P ′ and

〈Ψ|H0|Ψ〉 =
N∑

i=1

1

N !

∑

P∈SN

(i)

〈αP (i)|h(ri)|αP (i)

(i)

〉 . (A.10)
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When P runs through all N ! possible permutations, then P (i) takes all the values
from 1 to N , and for every fixed value i all other positions are free to permute (N−1)!
times. So we have

〈Ψ|H0|Ψ〉 =
N∑

i=1

(N − 1)!

N !

N∑

τ=1

(i)

〈ατ |h(ri)|ατ

(i)

〉=
N∑

τ=1

〈ατ |h(r)|ατ 〉. (A.11)

where we have used the property that the matrix element

(i)

〈ατ |h(ri)|ατ

(i)

〉=
∫

d3riΦ
∗
ατ

(ri)h(ri)Φατ (ri) =
∫

d3riΦατ (ri)h(ri)Φ
∗
ατ

(ri) (A.12)

does not depend on the particle index i (it is defined as an integral over the space
variable ri). In consequence, the total energy corresponding to the Hamiltonian H0

is a simple sum of the one-particle state energies.
We can rewrite Eq. (A.11) as

〈Ψ|H0|Ψ〉 =
N∑

τ=1

∫
d3rΦ∗

ατ
(r)h(r)Φατ (r) =

N∑

τ=1

∫
d3rΦατ (r)h(r)Φ∗

ατ
(r) (A.13)

where we have used that one-particle Hamiltonian h is Hermitian.
We will proceed analogously for 〈Ψ|H1|Ψ〉:

〈Ψ|H1|Ψ〉 =
N∑

i,j=1

j 6=i

〈Ψ|u(ri, rj)|Ψ〉

=
1

2

N∑

i,j=1

j 6=i

1

N !

∑

P,P ′∈SN

(−1)χP (−1)χP ′
(N)

〈αP ′(N)|...
(1)

〈αP ′(1)|u(ri, rj)|αP (1)

(1)

〉 ...|αP (N)

(N)

〉

=
1

2

N∑

i=1

1

N !

∑

P,P ′∈SN

(−1)χP +χP ′
∏

k 6=j,i

δP ′(k)P (k)

(j)

〈αP ′(j)|
(i)

〈αP ′(i)|u(ri, rj)|αP (i)

(i)

〉 |αP (j)

(j)

〉 .

(A.14)

In this case the permutations P and P ′ have to coincide for N − 2 elements, so
that we have two possibilities a) P ′(i) = P (i) and P ′(j) = P (j) or b) P ′(i) =
P (j) and P ′(j) = P (i). In the case a) the permutations P and P ′ are the same,
while in the case b) they differ exactly by an interchange of two positions, so that
(−1)χP (−1)χP ′ = −1. We obtain further

〈Ψ|H1|Ψ〉 =
1

2

N∑

i,j=1

j 6=i

1

N !

∑

P∈SN

[
(j)

〈αP (j)|
(i)

〈αP (i)|u(ri, rj)|αP (i)

(i)

〉 |αP (j)

(j)

〉

−
(j)

〈αP (i)|
(i)

〈αP (j)|u(ri, rj)|αP (i)

(i)

〉 |αP (j)

(j)

〉
]
. (A.15)
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When P runs through all the permutations, P (i) takes all the values from 1 to N
and P (j) takes all other (N − 1) values; all other values for P (k), with k 6= i, j can
be permuted in (N − 2)! combinations, so that

〈Ψ|H1|Ψ〉 =
1

2

N∑

i,j=1

j 6=i

(N − 2)!

N !

∑

τ 6=τ ′

[
(j)

〈ατ |
(i)

〈ατ ′|u(ri, rj)|ατ ′
(i)

〉 |ατ

(j)

〉

−
(j)

〈ατ ′ |
(i)

〈ατ |u(ri, rj)|ατ ′
(i)

〉 |ατ

(j)

〉
]

(A.16)

The matrix elements are independent on i and j

(j)

〈ατ ′|
(i)

〈ατ |u(ri, rj)|ατ

(i)

〉 |ατ ′
(j)

〉 =
∫

d3rj

∫
d3riΦ

∗
ατ ′

(rj)Φ
∗
ατ

(ri)
e2

4πε0εr|ri − rj|
·Φατ (ri)Φατ ′ (rj) (A.17)

(j)

〈ατ |
(i)

〈ατ ′|u(ri, rj)|ατ

(i)

〉 |ατ ′
(j)

〉 =
∫

d3rj

∫
d3riΦ

∗
ατ

(rj)Φ
∗
ατ ′

(ri)
e2

4πε0εr|ri − rj|
·Φατ (ri)Φατ ′ (rj) (A.18)

so that the sum over j 6= i gives the factor N(N − 1) and it results

〈Ψ|H1|Ψ〉 =
1

2

N∑

τ,τ ′=1

τ 6=τ ′

[
(j)

〈ατ |
(i)

〈ατ ′|u(ri, rj)|ατ ′
(i)

〉 |ατ

(j)

〉

−
(j)

〈ατ ′|
(i)

〈ατ |u(ri, rj)|ατ ′
(i)

〉 |ατ

(j)

〉
]

(A.19)

which can be written

〈Ψ|H1|Ψ〉 =
1

2

N∑

τ,τ ′=1

∫
d3r

∫
d3r′

[
Φ∗

ατ
(r)Φ∗

ατ ′
(r′)

e2

4πε0εr|r− r′|Φατ ′ (r
′)Φατ (r)

− Φ∗
ατ ′

(r)Φ∗
ατ

(r′)
e2

4πε0εr|r− r′|Φατ ′ (r
′)Φατ (r)

]
. (A.20)

The restriction τ 6= τ ′ can be lifted-off because for τ = τ ′ the contribution is zero.
We can construct now the energy functional as sum of the contributions given

by (A.13) and (A.20). The problem is: we have to find a set of functions {Φατ},
with τ = 1, ..., N , so that the total energy is minimum. The answer is provided by
the variational calculations: we vary the test functions {Φα} which depend on the
parameter α. Because these wave functions have to be normalized, then we have
the supplementary conditions

〈αβ|αβ〉 = 1, β = 1, ..., N (A.21)
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which will be considered by using the Lagrange multipliers εβ. The new functional
to be minimized is

F = 〈Ψα1,...,αN
|H0 + H1|Ψα1,...,αN

〉 −
N∑

β=1

εβ (〈αβ|αβ〉 − 1) = F(α1, ..., αN) (A.22)

The wave function Φα is a complex quantity, so that either its real and imaginary
parts or Φ and its complex conjugate Φ∗ can be considered as independent variables.

The variation of the functional F is

δF =
N∑

i=1

N∑

j=1

[
δF

δΦαj

δΦαj

δαi

δαi +
δF

δΦ∗
αj

δΦ∗
αj

δαi

δαi

]
(A.23)

Because the one-particle wave function depends only on one parameter,

δΦαj

δαi

=
δΦαi

δαi

δij,
δΦ∗

αj

δαi

=
δΦ∗

αi

δαi

δij (A.24)

and

δF =
N∑

i=1

[
δF
δΦαi

δΦαi

δαi

δαi +
δF
δΦ∗

αi

δΦ∗
αi

δαi

δαi

]
. (A.25)

The functional F is minimal if and only if

δF
δΦαi

= 0,
δF
δΦ∗

αi

= 0. (A.26)

We want to remind the definition of the functional derivation

δG[ϕi(x
′)]

δϕj(x)
= lim

ε→0

G[ϕi(x
′) + εδijδ(x− x′)]−G[ϕi(x

′)]
ε

, (A.27)

with the special case
δϕi(x

′)
δϕj(x)

= δijδ(x− x′). (A.28)

Inserting (A.13) and (A.20) in (A.22) and using the above definition we obtain

δF
δΦαi

(r′′)
=

N∑

τ=1

∫
d3rδiτδ(r− r′′)h(r)Φ∗

ατ
(r)

+
1

2

N∑

τ,τ ′=1

∫
d3r

∫
d3r′

[
Φ∗

ατ
(r)Φ∗

ατ ′
(r′)− Φ∗

ατ ′
(r)Φ∗

ατ
(r′)

] e2

4πε0εr|r− r′|
[
δiτ ′δ(r

′ − r′′)Φατ (r) + Φατ ′ (r
′)δiτδ(r− r′′)

]

−
N∑

β=1

εβ

∫
d3rΦ∗

αβ
(r)δiβδ(r− r′′)
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= h(r′′)Φ∗
αi

(r′′)

+
1

2

N∑

τ=1

∫
d3r

e2

4πε0εr|r− r′′|Φ
∗
ατ

(r)Φ∗
αi

(r′′)Φατ (r)

+
1

2

N∑

τ ′=1

∫
d3r′

e2

4πε0εr|r′ − r′′|Φ
∗
αi

(r′′)Φ∗
ατ ′

(r′)Φατ ′ (r
′)

−1

2

N∑

τ=1

∫
d3r

e2

4πε0εr|r− r′′|Φ
∗
αi

(r)Φ∗
ατ

(r′′)Φατ (r)

−1

2

N∑

τ ′=1

∫
d3r′

e2

4πε0εr|r′ − r′′|Φ
∗
ατ ′

(r′′)Φ∗
αi

(r′)Φατ ′ (r
′)

−εiΦ
∗
αi

(r′′) (A.29)

which using Eq.(A.26) and interchanging r ↔ r′′ provides the Hartree-Fock equa-
tions:

h(r)Φ∗
αi

(r) +
N∑

τ=1

∫
d3r′′

e2|Φατ (r
′′)|2

4πε0εr|r− r′′|Φ
∗
αi

(r)−
N∑

τ=1

∫
d3r′′

e2Φ∗
αi

(r′′)Φατ (r
′′)

4πε0εr|r− r′′| Φ∗
ατ

(r)

= εiΦ
∗
αi

(r), i = 1, ..., N. (A.30)

Analogously we can obtain the equations for Φαi
(r):

h(r)Φαi
(r) +

N∑

τ=1

∫
d3r′′

e2|Φατ (r
′′)|2

4πε0εr|r− r′′|Φαi
(r)−

N∑

τ=1

∫
d3r′′

e2Φαi
(r′′)Φ∗

ατ
(r′′)

4πε0εr|r− r′′| Φατ (r)

= εiΦαi
(r), i = 1, ..., N. (A.31)

The Eq.(A.30) is the complex conjugate of the Eq. (A.31). If we would let the
restriction τ 6= τ ′ in the Eq. (A.20), then we had obtained τ 6= i in both sums.
The first term and the second term represent the kinetic energy and the potential
energy of the i-th electron. The τ = i contribution is very small considering that the
total number of electrons in discussed system is about 1023. The third term is the
exchange term, which is a ’non-local’ potential, that cannot be written as a simple
function that multiplies the wave function Φαi

(r). This term is also called Fock term
and makes the Hartree-Fock equations a nonlinear integro-differential equation. It is
a direct consequence of the antisymmetrization of the many-particle wave functions
Ψ.

Here we should note that α represents in fact a set of quantum numbers that
characterizes an one-particle state. In the second term appears

∑
α which means

also sum over spin. The exchange term has no such a sum, so it causes repulsion
between electrons of the same spin, which is hardly surprising as this is the new
feature that we have built into the many-particle wave function (A.1) by forcing it
to obey the Pauli principle.

The energies εβ were introduced as Lagrange multiplier. If one interprets the
Hartree-Fock equations as one-particle Schrödinger equation for one electron in an
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effective potential, then they receive the meaning of the eigenenergies. It is a well
known feature of the self-consistent mean-field theory that the total energy is not
equal to the sum of occupied single-particle energies εi [91]. The total energy is
EHF = 〈Ψ|H0 +H1|Ψ〉 and if one multiplies the Eq. (A.31) by Φ∗

αi
(r) and integrates

over d3r and sums over i then obtains on the right side
∑

εi. On the left side, in
comparison with the total energy, appears the Hartree and Fock contributions two
times bigger. This happened because we counted also the interaction of the electron
i with itself, so that

∑

i

εi = E{|Ψ〉}+ ESE = E{|Ψ〉}+ 〈Ψ|H1|Ψ〉 = 〈Ψ|H0|Ψ〉+ 2〈Ψ|H1|Ψ〉 (A.32)

If one neglects the exchange term in Eq. (A.31), then what remain are the
Hartree equations which have a direct physical meaning as it is discussed in the Sec.
2.4.
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Appendix B

List of symbols

Symbol Meaning
e elementary charge (e=1.60218× 10−19 C)
ρ electronic density distribution (1/cm3)
n quantum number for the quantization on the transport direction
m0 free-electron mass (Kg)
kF Fermi wave vector (1/m)
φn,kx,ky total wave function
ψn(z) wave function in growth direction z
ψL

n (z) wave function coming from left reservoir
ψR

n (z) wave function coming from right reservoir
kt transverse components of the wavevector relative to the barrier (1/m)
kz perpendicular component of the wavevector relative to the barrier (1/m)
µL chemical potential in left reservoir (eV)
µR chemical potential in right reservoir (eV)
VL constant potential in left reservoir (eV)
VR constant potential in right reservoir (eV)
V1 left boundary value for Poisson equation (eV)
V2 right boundary value for Poisson equation (eV)
eΦBn the barrier height at metal-semiconductor contact
j, J current density (A/cm2)
σ1, σ2 concentration of δ sheet charge distributions (1/m2)
G conductance
σ conductivity
Lφ dephasing length (nm)
z growth direction

(perpendicular to the interfaces of the sample)
x, y directions perpendicular to the growth direction

(parallel with the interfaces)
E total energy of an electron (eV)
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ε energy on transport direction, perpendicular to interfaces (eV)
Et energy on transverse directions, parallel with interfaces (eV)
µ0 permeability in vacuum
ε0 permittivity in vacuum
VSD applied bias between source and drain (V)
Vsd effective drop bias on active region (V)
VG applied bias between substrate and gate (V)
Vg applied bias between substrate and gate, with respect to flat band configuration (V)
Vc electronic potential energy due to the Coulomb interaction (eV)
ϕ electrostatic potential (V)
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