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Abstract

We consider semiconductor devices that are composed of two parts, first a meso-
scopic quantum structure constituting the active region, and, second, a classical
environment with larger typical length scales. While in general the classical envi-
ronment should be represented by a drift-diffusion model we consider here only sim-
ple contacts which we take as ideal metals with infinite conductivity. The transport
through the quantum structure is described like in the Landauer-Biittiker formalism
through electronic scattering wave-functions which define the electron density in the
quantum system. Further sources of the self-consistent Coulomb field are layers of
classical charges in the contacts at each of the interfaces to the quantum system.
We present further a capacitance model that takes into account the openness of
the quantum structure and the existence of finite contacts embedding the system.
The analysed structures are considered at very low temperatures. As particular
structures we study simple tunnelling barriers and a field induced two-dimensional
electron gas in a special GaAs/Al,Ga;_,As heterostructure.

For the single-barrier tunnelling structures, the capacitance presents oscillations
with applied bias, with maxima every time a (Fabry-Perot like) resonance crosses
the chemical potential in the source reservoir. Furthermore, at the same voltages,
the conductance exhibits shoulders.

For the field induced two dimensional electron gas, based on our self-consistent
calculations, we are able to perform a detailed analysis of the interaction between
the quantum system and the contact reservoir. We find that the quasi-bound state
that exists in the nearly closed system develops at the transition to the open system
into a separate type of resonance with distinct characteristics. Excellent quantita-
tive agreement shows that this transition is seen in the measured step in the C-V
characteristic on MIS-type semiconductor heterostructure.

The R -matrix method can be used to reduce computing times for the calculation
of transmission probabilities in mesoscopic semiconductor systems. We generalise
results for strictly one-dimensional transport to systems which show confinement
in more dimensions like a point contact. The formalism is applied to a tunnelling
barrier with a Kronig-Penney-type potential modulation in the lateral direction. In
the limit of very high barriers we find resonances which are created by the mismatch
of the wave functions inside and outside the barrier. It is shown that this type of
resonance has a qualitatively different behaviour than resonant tunnelling peaks.
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Chapter 1

Introduction

In the ohmic regime the conductance G of a rectangular three-dimensional conductor
is directly proportional to its cross-sectional surface S and inversely proportional to
its length L

G=0S/L, (1.1)

where the conductivity o, an intensive quantity, is the same anywhere in the material
and it is a material characteristic. The conductance G is calculated then taking into
account the dimensions of the semiconductor piece [1].

With the permanent requirement in microelectronics for a constant scaling down
in size of integrated circuits appears the normal question: How small can one make
the dimensions before this ohmic behavior breaks down? In this way appears a
new category of systems: the mesoscopic systems are the systems that are much
larger than microscopic objects like atoms, but not large enough to be ’ohmic’ [2].
At low temperatures, the conductance of mesoscopic samples can not be found by
combining the conductivity of its smaller parts, which means that the scaling theory
does not work anymore.

There are three characteristic length scales [3]: i) the Fermi wavelength, \p =
21 /kp, which is related to the Fermi energy of the electrons ep = h*k%/(2m*)
(Ar ~ 10nm in semiconductors, \r ~ lnm in metals); ii) the mean free path,
[, which is the distance that an electron travels before its initial momentum is
destroyed (I ~ pm in high-quality semiconductors); and iii) the phase-relazation
length (also called dephasing length or coherence length) L, which is the distance
that an electron travels before its initial phase is destroyed (L ~ pm) and is much
larger then the mean free path. These length scales vary widely from one material to
another and are strongly affected by temperature, magnetic fields, etc. A conductor
usually shows ohmic behavior if its dimensions are much larger than any of these
characteristic length scales.

In the last decades, at the beginning of 1980s, it has become possible through the
modern growing techniques [4] MBE (molecular beam epitaxy) and MOCVD (metal-
organic chemical vapor deposition), to grow structures and devices for which the
characteristic dimensions are actually smaller than the appropriate mean free paths
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of interest. This provides samples with very intriguing properties: in GaAs/Al,Ga;_,As
semiconductor heterostructures it is possible at low temperatures to reach high
concentrations of transport carriers, N, = 10''em™2, with very high mobilities of
10%cm?/Vs [5, 6] which allows for construction of very fast devices [7, 8, 9]. But in
such devices, the classical Boltzmann equation it is not anymore suitable for describ-
ing transport properties. To describe transport properties through structures with
dimensions that vary on the order of the de Broglie wavelength of carriers, the non-
locality of the particle invalidates the simplifying approximation of instantaneous (in
both space and time) phase-randomizing collisions, which allows for decoupling of
higher-order particle distributions functions in the Boltzmann equations [2], Chap.
2.7. For structures with characteristic length L smaller than the mean free path
[, i.e. L < [, one may assume that the particles move through the active region
without scattering. This is termed ballistic transport [2]. If the total length of the
system is smaller then the coherence length, i.e. L < Ly, then the phase coherence
can be maintained over the transport distance so that the electron can be described
by a wave function extended over the whole system.

In conclusion, the mesoscopic devices or nanostructures are the high quality
semiconductor devices for which the characteristic length of the active region can
be comparable to or smaller than the Fermi wavelength Ap. The charge carriers can
be described fully in quantum mechanical formalism and very interesting quantum
effects can be exploited [10].

Over the last two decades transport has been investigated in a multitude of
different mesoscopic semiconductor systems [3, 11]. Many phenomena such as the
universal conductance fluctuations [12], the Aharonov-Bohm oscillations [13], the
quantum Hall effect [14] and its quenching in small systems [15], the quantized
conductance in ballistic point contacts [16], Coulomb blockade oscillations[17], and
chaotic dynamics in quantum dots [18] have been discussed in the well known theory
pioneered by Landauer and Bittiker [19, 20, 21, 22, 23] and Tsu and Esaki [24].
This approach describes transport through transmission probabilities of electronic
scattering wave functions. Therefore, the understanding and the practical evaluation
of transmission- and reflection coefficients play a crucial role in many problems of
quantum transport.

Especially when the system involves more than one essential dimension the prac-
tical calculation of the transmission coefficients proves difficult. We distinguish be-
tween two different types of approaches to solve this problem. In the first type the
transmission is calculated directly by numerically solving the Schrédinger equation
for each energy with scattering boundary conditions. Examples for this type are the
recursive Green’s function technique [25, 26] and a similar recursive procedure to
obtain the wave functions directly [27]. This approach has the disadvantage that it
provides no analytical insight. The second type approaches make use of the general
S-matrix theory [28] to reformulate the problem. In this way, it is possible to find
analytical properties as well as to gain numerical advantages. The reference to the
general S-matrix theory is particularly valuable in the discussion of isolated or in-



teracting transport resonances which can be represented by poles of the S-matrix in
the complex energy plane. Examples for the second type approaches are the spectral
projection method as developed in Refs. [29], the effective Hamiltonian description
[30] and the R-matrix approach which is used in this thesis.

The R-matrix method is a two-step procedure (see Sect. 2.1): At first, the R-
matrix is constructed in a time-consuming step solving the Schrodinger equation
with particular boundary conditions. We call the resulting eigenfunctions Wigner-
Eisenbud functions and the eigenenergies Wigner-Eisenbud energies. Then, the S-
matrix and thus the scattering states which contain information about transmission
between incident and evanescent states are constructed in a relatively fast second
step. This two-step procedure is one of the numerical advantages of the R-matrix
method. The analytical advantage of the R-matrix theory is that it provides a
natural description for resonant transport and transport in multipole devices.

The R-matrix method has originally been developed in the context of scattering
cross sections in nuclear- and atomic physics [31]. More recently the R-matrix
method has been applied to calculate the transmission of electromagnetic modes
in microcavities [32]. The application of the R-matrix technique to mesoscopic
semiconductor systems was demonstrated in an initiating paper by Smrcka [33] for
one-dimensional structures. In a strongly simplified version, namely in the single
level approximation, the R-matrix has also been used in multidimensional systems
to analyze the statistics of isolated tunneling peaks in a Coulomb blockade system
[18, 34, 35].

In many cases a comparison with experimental structures requires the consider-
ation of Coulomb interaction. Therefore we integrated the Coulomb interaction in
the R-matrix scheme on a Hartree level (Sect. 2.4). All the models are performed
at very low temperatures, i.e. T' < 4.2K.

The structure of this thesis is as following:

In Chap. 2 we present our model used to treat the transport problems through
mesoscopic structures. The R-matrix method for one-dimensional tunneling systems
is reviewed in Sec. 2.1. After that, we present the calculation of the electronic den-
sity distribution in quantum mechanical formalism and the self-consistent scheme for
open systems in mean-field approximation. We present the two principal concepts
of characterizing transport in mesoscopic structures: the tunneling current and the
capacitance. The tunneling current is calculated in Landauer-Biittiker formalism.
For the capacitance we present a new model which takes into account the openness
of the system and the existence of finite contacts embedding the system. The ca-
pacitance model is based on the ancestry of the carriers and not on their spatial
distribution.

We analyze in Chap. 3 the capacitance of a field induced two dimensional elec-
tron gas (2DEG) sandwiched between a back contact and a blocking barrier. The
peculiarities of the structure are that the quantum system is in contact only with
one reservoir and the blocking barrier suppresses the charge transfer from one side
to the other side of the structure. Based on our models, we perform a detailed anal-
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ysis of the interaction of a quantum system, in our case the field-induced 2DEG,
with the contacts through particle exchange. Our capacitance model provides a very
accurate description of the capacitance measurements performed on the MIS-type
semiconductor heterostructures.

In Chap. 4, we analyze a single-tunneling barrier, which is in contact with two
reservoirs and also a tunneling current flows. There is no spacer between the highly-
doped layers and the tunneling barrier. The same self-consistent scheme for open
systems is used. It is shown that the capacitance exhibits oscillations with applied
bias, with maxima at the same voltages where the conductance presents shoulders.
Furthermore, these voltages correspond to the configurations where Fabry-Perot
resonances cross the chemical potential on the source reservoir.

In Chap. 5 we extend the R-matrix formalism to two-dimensional systems. The
analyzed structure is a tunneling barrier with a periodical lateral modulation. We
consider no applied bias between source and drain contacts and we do not take
into account the Coulomb interaction. For strong modulation we find a transition
from the known quantized conductivity in e*/h of a single point contact for small
average barrier height, to a series of resonant peaks of height e?/h for high barriers.
At weak modulation we demonstrate that the miniband structure of the lateral
dispersion can be resolved in dc transport in the forward direction in the limit of
large average barrier height.

In the last chapter are presented the conclusions of this thesis.



Chapter 2

Formalism and models

The subject of this thesis are quantum semiconductor nanostructures. The quantum
confinement for the nanostructures we consider is achieved through the growth of
heterogeneous layers having different bandgaps which can lead to a quantization
perpendicular to the substrate surface.

The general geometry is sketched in the Fig. 2.1.

Contact ~ Active region ~ Contact
Quantum system

N

VSD

Figure 2.1: General geometry of the samples.

We will restrict our discussion of transport in nanostructures only to the con-
duction band states. The direction of transport is parallel to the growth direction.
The electronic states will be described within the envelope function approximation
[36]. The applicability of the envelope function approximation in mesoscopic sys-
tems has been discussed in a review by Burt [37]. The main achievement of this
approximation is that the wave function in mesoscopic structures can be written as

O(r) = &(r)ujo(r), (2.1)

7
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where j is the band index and wo(r) is the periodic part of Bloch functions at k = 0,
which contains the information about the material. ¢;(r), the so called envelope
function, contains information about the geometrical structure of the sample. The
envelope function equation in the effective mass approximation is a Schrodinger type
equation

C20:m*(2)0z 2m7

< "o 1 0 h vi_ﬂ/(z)) o(z,y,2) = Eo(x,y, 2), (2.2)

where m*(z) and m* are the effective mass parallel and perpendicular to the di-
rection of transport, respectively. V, is calculated with respect to the direction
perpendicular to the direction of transport. V(z) is the effective potential in the
direction of growth and is mainly given by the conduction-band offsets of the het-
erostructure. It can also include contributions from the ionized dopants, free carriers,
and the applied potential itself, in a self-consistent calculation.

Since for the heterojunction system without lateral gates the potential variation
is only in the direction of growth (in our case z-direction), the solution is separable

as
1

L,L

P asky = Uy (2) exp(ik, ) exp(ikyy), (2.3)

<

corresponding to free electron motion in the plane (x,y) parallel to the interfaces,
with L., L, being the lateral lengths of the system. The one-dimensional eigenfunc-
tions 1, (z) satisfy the equation

—**772%1(2) + V(2)n(2) = enthn(2), (2.4)

where n labels the eigenstates in the growth direction.

Assuming, for simplicity, parabolic bands, the total energy relative to the band

minima is thus
2(7.2 2
Enky ke, = W + €. (2.5)

In Fig. 2.1, Vsp denotes the total external bias applied between contacts, while
Vsa will be used further for the bias drop only on the quantum structure. Depending
on how the quantum structure is contacted there can be a difference between these
two quantities.

We will assume further, for simplicity, the same effective mass over the whole
structure. This assumption is correct as long as the analyzed effects are not strongly
influenced by the effective mass variation. One can also choose the same mass over
the whole structure, when the transport time is short and the electron does not feel
the differences in the lattice structure.
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2.1 The R-matrix formalism for 1D scattering prob-
lems

We will solve the scattering problem (2.4) in the R-matrix formalism. This method
is described in Ref. [93] based on the Lippmann-Schwinger equation for the case
with no applied bias between the contacts in the transport direction. In this section
we will describe this formalism for one-dimensional tunneling systems with a finite
potential difference V;; between both sides of the barrier. The scattering potential
V(z), Fig. 2.2, is given generally by V' = V| in the left (source-) contact, z < —d,
and V = Vg for the right (drain-) contact, z > d. Within the scattering area,
—d < z < d, the potential is allowed to vary arbitrarily.

barrier
H L
\A eV,
Hr
\Y Ve
d z

Figure 2.2: One-dimensional scattering potential. The chemical potentials of the
contacts py and pupg are separated by the applied bias energy eV,.

2.1.1 General form of scattering states for 1D problems

An effectively 1D scattering process can be described by the time-independent
Schrodinger equation

K2 d?
_ _ — 2.
S +V(2) — €| ¥(z,¢) =0, (2.6)

where V'(z) is the scattering potential. Here € is the kinetic energy in the direction
of transport, given by Eq. (2.5). We split the potential V(z) = Vy(2) + AV (z) in
an unperturbed potential V; and a potential perturbation AV (z). We choose

VE)(Z) = VL@<—Z> + VR@(Z), (27)
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so that AV(z) = V(z) — Vi(z) vanishes for |z| > d. Equation (2.6) can be rewritten

as 2o

[ i Vo(z) + €‘| U(z,€) = AV (2)1(z, €). (2.8)
We now interpret this equation as an inhomogeneous differential equation, where
the left hand side is the Schrodinger equation of the unperturbed particle, and
the potential on the right hand side is treated as an inhomogeneous term. The
inhomogeneous Schrodinger equation can be solved using the unperturbed Green
function Gy(z, 2’; €) which is the solution of the equation

[hQ d?

om* dz?

—Vo(z)—i—e] Go(z,2'5€) = 0(z — 7). (2.9)

Using the matching conditions, the Green’s function Gy(z, z’; €) can be found ana-
lytically [38], and reads for 2z’ < 0

Go(z,2'5¢) = 7;;2*“; [e_“%(z_z,) + lm e_ikL(”z/)] , z< 2
_ 7;5”2 lm a—ikL(z+2) +eikL(z—z’)] ’ S e r )
_ ?M{ etk Fiknz 2> 0 (2.10)
whereas for 2’ > 0,
Go(z,2';€) = gzl@—lz—zlm e~ tkratikpa! 2 <0
_ T;gl]; l:;;:}z efikR(erz’) _i_eikR(zz’)] , 0<z< 2
— T;LL;%;R [eikR(z_z/) + m eikR(ZJ“Z/)} , z>2 . (2.11)
The Schrodinger equation of the unperturbed particle
[—;Z* & Vi) - ] (0 = 0 (2.12)

has as solutions the scattering wave functions for a single-step potential, wOL / R(z, €).
Application of standard matching techniques yields [39] Chap. 5.4, for e >V, >V

exp (ikpz) + Zi;lzg exp (—ikrz), z<0

Utz = (2.13)
kfiﬁm exp (ikrz), z>0
lﬂ%fffm exp (—ikpz), 2 <0

Ui(ze) = 214)
exp (—ikgz) — Zi;,’zg exp (ikgz), z>0
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There are two orthogonal eigenstates for each energy, & and &, which have the
physical meaning that a particle of energy € can be moving to the right (1) or to
the left (&) with the momentum

2m*
kL/R:\/ h2 (E—VL/R). (215)

By means of Gy(z, 2’; €) the Schrodinger equation (2.8) can be transformed to an
equivalent integral equation

¥(z,€) = o(z,€) + /:lddz’ Go(z,2'5€) AV (2))(2 ) €), (2.16)

where (2, €) is the solution of the unperturbed Schrédinger equation (2.12). We
have thus obtained the Lippmann-Schwinger equation. It is not really a solution
of the Schrédinger equation, as the unknown wave function (z, €) still enters the
right hand side of the equation but it provides the required asymptotic form of the
scattering states. Substituting Eqgs. (2.10) and (2.11) in Eq. (2.16) we find for
z < —d

Y (z,€) = a”(e) exp (ikyz) + b*(e) exp (—ikpz), (2.17)

with al(e) = 1 and

kL_kR m* 1 0 . ’ kL_k'R . ’
bL — 7/ dz' ikrz ML — MR ikrz AV (5 L /’
) kL + kg T iky J-d"" [e * kot kp ()97 (2 €)
+ mi*L /ddzl eikRZlAV(Z,)wL(Z/ E) (2 18)
h? ikp, +ikg Jo &) .
For z > d we obtain
(2, €) = () exp (ikgz) + d*(€) exp (—ikgr2), (2.19)
with
d“(e) =0
and
2k m* 1 ok —kp o
L L /| s—tkgrz L R ikpz N Lo
= - d R _ R A
cle) kr + kg * h? iky /o : [e kr + kRe V()2 e)
h? kg, + ikg Jo 1€)- .

Corresponding results are obtained for 1®: for z > d

(2, €) = cf(e) exp(ikrz) + d"(e) exp(—ikg2), (2.21)
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with d®(e) = 1 and

kr — k 1 d o kp—k
cfile) = i L+ﬁ,—/ dz' [e_”‘mz oL R ik AV (R €)

kr + k;R K2 ikp kr + kg
7;; m / 4z’ o= R AV ()< o) (2.22)
and for z < —d
V(2 €) = a®(e) exp(ikpz) + b () exp(—ikp2) (2.23)
with a'(¢) = 0 and
bi(e) = kff_RkR + 7;:2@/; / s [ek + ZL+Z§ “Re AV ()R (2 )
ng m / 4=’ 6 AV (YR(2 6. (2.24)

¥ is interpreted as scattering state coming from the left reservoir with an
incident- and a reflected wave described in Eq. (2.17) and a transmitted wave de-
scribed in Eq. (2.19) and ¢ has the interpretation of scattering state coming from
the right reservoir with an incident- and a reflected wave described in Eq. (2.21)
and a transmitted wave described in Eq. (2.23).
We then define
th(e) = cl(e) (2.25)
and
t(e) = b%(e) (2.26)
as transmission amplitudes from left to right and right to left, respectively. The
reflection amplitudes are defined analogously:

rf(e) = bl (e) (2.27)

and
rf(e) = cf(e). (2.28)

These coefficients are functions of the particle energy in direction of transport, €.
The probability flux density, or ”current”, is defined as [39], Sec. 5.3.,

J: = (10 —t = ¢> (2.29)

2m*e

Using the asymptotic form of the left incident scattering state, Eq. (2.17), we can
calculate the incident probability current density

hk hk
L o L, L 2 L
.]inc(€> - m* |(l (€)| - m* (230)
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and the reflected probability current density

. hk
Jrepi(€) = mf\bL(ﬁ)IQ- (2.31)

Thus, we can define the reflection coefficient (or reflection probability) as ratio of
reflected current to incident current

RH = e oy =yt 2.32)
Jine(€)
The transmitted probability current density is calculated using Eq. (2.19),
. hkg
Jurans(€) = —=le" () (2.33)

so that the transmission coefficient (or transmission probability) is the ratio of trans-
mitted current to incident current

I k k
TL€:MI£CL€2:7RZSL€2' 2.34
(0 = LoeelS) B B (230

Analogously, we can define the transmission and reflection coefficients for the scat-
tering states coming from the right, T%(e) = (k./kg)[t"(¢)|* and R = |rf(e)|?,
respectively. Based on the probability current density conservation, we have for any
energy € >V, > Vg

TE(e)+ RE(e) =1,  TF(e)+ Rf(e) = 1. (2.35)

Due to time-reversal symmetry, that reflects the microscopic reversibility of quantum
mechanics itself, we have the following symmetry properties

T (e) = TH(e), R (€) = R%(e), (2.36)

showing that the transmission and reflection probabilities are independent of the
direction of the incident wave upon the barrier.

2.1.2 S-matrix formulation of 1D scattering problems

To establish the S-matrix we introduce a decomposition
= P (2.37)

of a general state 1 = ap” + S with @ and 3 complex numbers, into an incoming
part ™ and an outgoing part °“. This is equivalent to setting other two linear
solutions of the Eq. (2.6) ¥™ and °* instead of ¢¥ and . Using the solutions
of the unperturbed system, (2.13) and (2.14), we set for z < —d:

V" (z,€) = aexp (ikpz) (2.38)
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and for z > d '
V'"(z,€) = fexp (—ikgz). (2.39)
The corresponding outgoing parts
womf(z,’ 6) - ¢(Za 6) - ?/fm(f% 6) (240)
are then
V(2 €) = [oer(e) + ﬁtR(e)] exp (—ikrz) (2.41)
for z < —d and
Vo (2, €) = [oth(e) + BTR(G)] exp (ikgz) (2.42)
for z > d.
The S-matrix is defined as
Vo (z,€) = S(z, —L)V"™(—=L,€) + S(z, L)Y (L, €), (2.43)

mapping the ingoing wavefunction at two points +£ with arbitrary £ > d to the
outgoing wavefunction outside of [—L, L]. To establish a relation between the S-
matrix and the transmission- and reflection coefficients we define the 2 x 2 - matrix

& | S(=L,-L) S(—L,+L)
5= [ S(+L,—L) S(+L,+L) | (2.44)
Inserting the forms for ¢/™/°"* into Eq. (2.43) we obtain
rboth || em?R L §(—L,-L) e~ kLtkR)L (L 4 L) (2.45)
th BT | em et RRIE G(1 L L) eT2RRE S(4-L,4-L) ’

In this way the transmission and reflection coefficients can be constructed from the
S-matrix at two points +£. In our formulation, Eq. (2.43), the S-matrix connects
the wave function and not only the coefficients of a linear combination of (plane)
waves. But writing the S-matrix elements for a fixed £, Eq. (2.44), we have the
same expression as in Weisbuch and Vinter [40], Chap. 2, Eq. (33d). The reflection
and transmission coefficients are related to the S-matrix by a similar relation as for
the case of no applied bias [93] which is obtained if we substitute k;, and kg by k,.

2.1.3 R-matrix formulation of 1D scattering problems

Next we want to give a practical method for calculating the scattering states and
in turn to calculate the S-matrix, based on the general idea that one can express a
wave function in terms of a suitable orthonormal and complete system of functions.
Such a system of functions is provided by the Wigner-Eisenbud functions y;(z),
used first in nuclear physics [41], which are the solutions of the Schrodinger-type
equation
o d?

oz T V(2)| xi(2) = ex(z), (2.46)
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with the Neumann boundary conditions

_dxa

75_ dz

dXn
dz

= 0. (2.47)
L

The Wigner-Eisenbud energies ¢, and functions x;(z) are real [41]. These functions
are defined only on the interval [-£, £] . They are an orthonormal and complete
system of functions. Let us demonstrate the orthonormality of this system. We can
write Eq. (2.46) also for {" index

[ K2 d?

L. v<z>] xo(2) = e (2) (249

We multiply (2.46) with x;(z) and (2.48) with x;(z) and after that we subtract them
and integrate the result over the interval [—L, L]:

[ d? d2 c

o /z: dz [Xl(z)dngl’(Z) - Xl'(Z)dszl(Z)] = (e —er) /c dz xa(z)xw (2)
(2.49)

Integrating the left side by parts and using the boundary conditions (2.47) we have

for I £ 1

c
(@ —e) [ dzxilz)xe(z) =0
and that means:

c
/ xi(2)xe(z)dz=0  forl #1' (2.50)
c
The normalization condition for this system of functions is written as
1 /L
7 | xa)de =1 (2.51)

By analogy to the Sturm-Liouville systems, it is assumed the completeness of
this system of functions for the interval [—L, L],

> () = 6z~ 2) (252

We would like to expand the scattering states in the basis of the Wigner-Eisenbud
functions. We multiply (2.6) by x;(z), conjugate complex (2.46) and multiply it by
¥(z,€), subtract both equations and integrate the result over the interval [—L, L].
At the end we obtain:

Lt O 0~ 060 )| = - ) [ vt ol

Com dz?
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The left side can be integrated by parts and using the Wigner-Eisenbud boundary
conditions (2.47) it is obtained that

s [0, = w020 = (- a) [ vteuis @5

At this point we introduce the normal derivative of the wavefunction (which contains
the sign):

bs(£L,) = £~ W iar o) (2.54)

m* dz
and obtain:
2. L. e €
W xai(=L)s(—L,€) + xu(L)ys (L, ):/—Lﬁw(27€>Xl(Z)dZ (2.55)

2 €— ¢

Since {x;(2)} is an orthonormal basis, then we can expand the wave function v (z, €)
in terms of the y;(z) but only for z € [-L, L]:

_ lf:axe)xl(z), (2.56)

where
a(e) 25/ (z,e)xi(2)dz (2.57)

The above expansion is true in the sense of "mean convergence” as defined in
functional analysis. That means

Z ai(e)xi(2)]*? — 0 (2.58)
=1
but this is not true locally, as for a particular point z; one has

Z07 ?LZGZ Xl Zo (2~59)

so that we can not write Lo(£L,€) = 372, ay(€) Ly (£L) =0
Defining Green’s function for the Wigner-Eisenbud problem as

QWMZQimmw) (2.60)

€— €
and inserting (2.55) and (2.57) into (2.56) we can write the wavefunctions

P(z,€) = —h2 (G(z, L;e)bs(L,€) + G(z,—L; e)bg(—L, €)] (2.61)
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We define the R-matrix elements by:

h2 h2 00 XZ(Z)XZ(Z/)
R(z,7:€) = ——G(z,7€) = —— AREIAN~ T
( ) 2 ( ) AL e—¢q

(2.62)

and obtain the general expression of the wavefunction in terms of its normal deriva-
tives

W(z,€) = R(z,—L;e)vs(—L,€) + R(z, L; e)hg(L, €) z€[-L, L] (2.63)

Thus, the R-matrix elements relate the total wavefunction to its normal derivatives
at ££. As it is shown in Eq. (2.62), the R-matrix elements can be constructed
using the Wigner Eisenbud functions. For the one-dimensional case, we find

2 o
R(EL,+L) = fﬁ X”(if)f";iﬁ), (2.64)
n=1 n

where €, are the eigenenergies associated with the Wigner-Eisenbud problem.

If we want to calculate the normal derivative of the wave function at the points
+L, because of the mean convergence series in (2.64) we have to use the expressions
which are outside of the scattering region (i.e. (2.17) and (2.19) for ¢, and (2.21)
and (2.23) for ). The wave function and its first derivative are anyway continuous.

2.1.4 Relation between R- and S-matrix

We will construct further the relation between the R-matrix and S-matrix, where
we define R analogous to S,

R=\ R(+L,-L) R(+L.+L) (2.65)
Using the relations (2.38) and (2.41), we can write for z < —d:
dwz =ik, (2.66)
d out )

7’52 = —ikp ™, (2.67)

and using (2.39) and (2.42) for z > d:
;i/ = —ZkR¢ s (268)

d out
LA ikt (2.69)

dz



18 CHAPTER 2. FORMALISM AND MODELS

The wave functions are decomposed into an incoming- and an outgoing part,
W(=L) " (=L) Y (=L)
= ‘ + (2.70)
W(+L) P (+L) P (+L)
and we can write

(mc) ) i (W‘%ﬁ) ) P (W”(Q )
= —K - —K (2.71)
Vg(+L) m Yot (4L) m Yin(+L)

where K is a 2 x 2-matrix with the elements

v | kp O
k=[5 0] am
If we note
A Y(=L) A Ys(=L)
U = y “IIS = ;
Y(+L) Ys(+L)
) P(—L) N P (—L)
pout — , U = ‘ , (2.73)
V(L) U (+L)
then we can work in a matrix form
U = RUg,
Vg = LR — L RPm (2.74)

which implies

R(KU — KUy = §out 4 gin, (2.75)

So, we have

(-5 RK — )0 = (L RK + 1)¥in,

m* A 2.76
\I,out — S\Ifm, < )
or , ,
1 ~ o~ N 1 A A
—RK —1)S = (—RK +1). 2.
(m*R )S <m*R +1) (2.77)
Finally, for each e the relation between the R- and the S-matrix [33] is
S(e)=—(1——R(e)K)™'(1 R(e)K). 2.78
() = ~(1 = - ROK) (1 + - R(OK) (278)

This relation is similar with the relation for the case without applied bias [93], only
that the K matrix has another form. The information stored by the S-matrix or by
the R-matrix is the same, one has to choose the suitable procedure to extract it.
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2.1.5 R-matrix representation of the scattering states

The distance between £ and d has no relevant importance for the scattering prob-

lem. Considering the boundary points for the Wigner-Eisenbud problem equal to

the boundaries of the scattering region, i.e. £ = d, the Wigner-Eisenbud energies

become the eigenenergies of the closed counterpart of our scattering system [42].
So, we have the scattering states in the R-matrix formalism

) eiknz + 7,.Le—iknz’ _Lz/2 S = S —d
UHE) = = { B —dub(-d) + R UG, ~d<s<d (279
z | theihnz, d<z<1L,/2

for the wave function coming from the left reservoir, and

1 tRe=tknz —L,/2<z<-d
z e—zknz + rRezknz’ d S > S Lz/2

for the wave function coming from the right reservoir. L, is the total length of the
structure in the z-direction, which is much larger than the size of the scattering
region (L, > d). The energy spectrum corresponding to the electron motion in the
direction of transport is quasicontinuous

h2k2
=2 —¢, (2.81)

6 pr—
2m*

with &, = i—’:n = k,, n € N. The total energy of the particle is

2

%(/fi +ky) + en, (2.82)

Enkoky, =
where £, and k, are the wave vectors associated with the electron free motion in the
direction parallel to the interfaces.

The practical procedure for finding the wave functions is:

e solve the Wigner-Eisenbud problem Eq. (2.46), for the scattering potential
with the Neumann type boundary conditions (2.47). This is done numerically
by standard techniques for solving eigenvalue problems with discrete spectrum.
The Wigner-Eisenbud functions are defined on the interval [—£, £] and they
constitute an orthonormal and complete system of functions Egs. (2.50), (2.51)
and (2.52).

e for each energy € construct the R-matrix elements Eq. (2.64) using the Wigner-
Eisenbud energies and functions;
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e for each energy e construct the S-matrix elements using the simple matriceal
relation (2.78) between R- and S-matrix, where the A matrix has the general
form (2.72);

e find for any energy ¢ the transmission and reflection coefficients, Eq. (2.45);

The decisive advantage of using R-matrix is that it can be calculated from a
given set of Wigner-Eisenbud functions for all energies. Otherwise the trans-
mission coefficients should be calculated solving a Schrédinger equation (2.6)
with scattering boundary conditions for a continuum of energies. This is usu-
ally done in the transfer matrix formalism [43, 44, 45, 92|, in which one makes
a piecewise constant approximation for the scattering potential. For every en-
ergy one has to find the wave vectors in each region with constant potential,
after that to compute the transfer matrix elements and to multiply the 2 x 2
matrixes. This can be a time consuming computation problem which we want
to avoid.

The R-matrix formalism gives a more accurate description for a general shape
of the scattering potential V' (z) and with the help of the Wigner-Eisenbud
functions and energies one can obtain the analytical description of the scatter-
ing problem in terms of the poles of the S-matrix [46]. Furthermore one can
calculate the shape and the width of the tunneling peaks.

e calculate the normal derivative of the wave functions at the boundary points
+d, using the expressions of the wave functions outside the scattering interval;

e use Eq. (2.62) for the R-matrix elements for any z € [—d, d];

e use Egs. (2.79) and (2.80) for the wave functions.

2.2 Electronic charge density

In this section we would like to present the application of the R-matrix formalism
to the calculation of the electronic charge density distribution in a semiconductor
heterostructure. As it was shown in the previous section, the scattering potential
V(z) varies only in the direction of transport, and it is constant outside the interval
z € |—d,d]. Consequently, the wavefunctions are separable and are given by Eq.
(2.3). z dependent part of the wave functions, the so called scattering functions,
are solutions of the 1D Schrddinger equation (2.6) and are given in the R-matrix
formalism by Egs. (2.79) and (2.80).

To calculate the electronic charge density in the Landauer-Biittiker formalism,
the electrons can be thought of as two Fermi-gases. First, the electrons coming
from the source contact: They occupy the single-particle scattering states qﬁﬁklky
according to the Fermi-Dirac distribution function frp(En,k, — #z), where pp is
the chemical potential of the source contact. Second, the electrons coming from
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the drain contact with single-particle states gbﬁ ko, a0d with the chemical potential
(g of the drain contact. Summing up for all single-particle states the occupation
factor times the localization probability we obtain the electronic density distribution
(which multiplied by —e will give the electronic charge distribution)

p(z) = 2 > fro(Bukeky, — to)lO8pon, 2 +2 D frp(Bnkek, — 18) 0y, 1,1
n,kz,ky n,kz,ky

(2.83)

where 2 comes from the spin degeneracy. The electrons are free in the lateral direc-
tions and thus the electronic density distribution is

L(2)P2 R()|2
plz) = 2 ) WL L)’ Frp(Bngoo, — L) +2 Y WL L)‘ JrD(En gk, — HR)-

n,kz,ky n,kz,ky

(2.84)

The Fermi-Dirac function

frp(E —p) = # (2.85)
kBT +1

gives the equilibrium distribution function in the reservoirs.

In the low temperatures limit, 4 — Er and the values EBY F — Vg are fixed by
the doping value in reservoirs through the Sommerfeld model for free electron gas,
with spin, considering all the donors ionized [47]

Np = k3. /372 (2.86)

As Zimmermann suggested in Ref. [48] for donor concentrations larger than
5 x 10%em =3 an impurity band forms within the conduction band so that even at
low temperature all donors are ionized.

For equal doping we have E% — V;, = EE — Vi and the general relation EE =
EL — eV,4 for applied bias V.4 becomes, of course, Vg = Vi, — eViq.

For large L,, L, we can transform the summation (2.84) into an integration, and
for low temperature, where all the states until Er are occupied, one can write

(n) (n)
(n) (n)
- 27 Z/ dk kL ()2 + 2f Z/ dk k[E ()2 (2.87)

with k} = /k% — k2, where the corresponding kr should be considered for every
integral. Furthermore, because ¥X/f(z) does not depend on k, and ky, we can
perform the integration over k = /kZ + k2, with an upper limit for T = 0K of
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kL/R \/ (EL/R — Vi/r). Hence, for large L. we obtain in the zero-temperature
limit

kF Lk, 2)|? kg)* — k2, g 2
p(2) / . e+ [ ar, BB yrg, o).
(2.88)
The choice of normalization factor 1//L, in Egs. (2.79) and (2.80), leads to
a density of charge far away from the scattering area independent of the sample
length. If L, is infinite then the normalization constant in front of Eq. (2.79) and
(2.80) should be 1/4/27 instead of 1/v/L..

Eq. (2.88) can be also written for equal doping reservoirs as

1 L, [kr k% — k2
p(2) =25 5= [ (ke 2) P (2:89)
where the positive wave vectors k, correspond to the scattering wave functions com-
ing from the left, and those for negative values correspond to the scattering wave
functions coming from the right.

To particularize Eq. (2.88) for the case of free electrons (with spin), one has to
consider that L,[1(k,,z)[* = 1 and thus it is obtained the Sommerfeld expression
for electron concentration in metals.

We would like to point out that the Eq. (2.88) takes into account the continuous
energy spectrum of the incident electrons, which is a key feature of our method.

Numerical procedures

One important goal in an accurate calculation of the charge distribution (2.88)
is the correct integration procedure. We have used the extended trapezoidal rule,
as numerical integration method. We also made use of a basic idea for numerical
implementation of this method: one can double the number of intervals without
losing the benefit of previous work. [49]. The integral is calculated with an user
defined accuracy, which was established at 107° or a maximum number of steps, set
at 10000.

Using the analytical description of the poles of the S-matrix [46], we can take
into account the quasi-bound states performing the numerical integration over the
associated peak. This will be analyzed in detail for the capacitance of field induced
2DEG, Chap. 3. An accurate calculation of the electronic density distribution is of
major importance for a self-consistent convergent scheme.

2.3 Poisson equation

In this section we will formulate and solve Poisson equation for effectively one di-
mensional systems, with respect to the transport properties. For the beginning a
number of simplifications are discussed. Most of them are similar to the Poisson
equation for Si/SiO, system, conditions discussed in detail by Nicollian and Brews
in Ref. [50].
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Poisson equation is
Po(z) _ a(2)

dz? €0€r

(2.90)

where ¢(z) is the charge density (C/cm?), ¢(2) is the electrostatic potential, and
€, is the dielectric permittivity in units of the dielectric permittivity of vacuum, €.
The total charge density is

4(2) = e |p(z) = p(2) = N (2) + Np(2)] , (2.91)
where
e p(z) is the hole concentration [cm ™3]
e p(2) is the electron concentration [cm =]
e N, (2) is the ionized acceptor concentration [cm ™3]

e N} (2) is the ionized donor concentration [cm =3

2.3.1 Assumptions

We solve the Poisson equation with certain simplifying conditions. These conditions
are:

1. Poisson equation will be solved in one dimension in the direction perpendicu-
lar to the heterostructure interfaces, which is also the direction of transport.
It is reasonable to treat only one dimension because the field under the gate
is uniform and perpendicular to the interface surface. The fringing field at
the gate edge is negligible, affecting an area that extends for only a(n) (oxide)
barrier thickness from the gate periphery. In practice, the gate diameter is or-
ders of magnitude larger than this area. Therefore, edge effects would become
important if the extent of the gate were compared with the barrier thickness.

2. We assume that the impurity concentration in the GaAs is uniform (Np in
the doping region and N4 outside). We know that this assumption does not
apply always (for example the thermal treatments causes redistribution of
the impurity concentration at the surface). However, the case of a uniform
impurity distribution is a good introduction.

3. The holes concentration will be neglected in comparison to the electrons con-
centration, because we consider highly n-doped reservoirs.

4. The electrons concentration will be calculated from the Schrodinger equation
(see Sec. 2.2) and not from thermal equilibrium distribution.
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5. Poisson equation will be solved using an approximate charge density. The
charge of the dopant ions is accounted for approximately by smearing out
the ion charge into a uniform background density. This smearing ignores the
discrete nature of these ions as well as statistical variations in their spatial
distributions. The charge of electrons and holes is treated in a self consistent
field approximation. That is, each electron or hole is treated as though it
moved in an averaged field. This average field is computed as the field due to
the average mobile charge density plus the field due to the smeared out the
dopant ion charge. Thus each electron or hole can be treated as an ndepen-
dent particle in an (approximate) average field. In this approach the average
carrier distribution is a function only of the average potential, if one ignores
all dependences on more detailed properties of the real potential. Conversely,
the average field also is assumed to depend only on the average carrier and
dopant ion densities, ignoring dependence on more detailed properties of the
charge densities. For very large electron or hole concentrations and also at low
temperatures, the treatment of electrons and holes as independent particles
may fail.

6. Surface quantization is not neglected. Surface quantization occurs as follows:
Suppose that a high electric field (> 10° V/cm) is applied to the structure,
attracting a high concentration of free carriers to the blocking barrier surface.
Because these carriers cannot flow through the barrier, they are trapped in
a narrow potential well at the surface of the barrier. Because the potential
well is very narrow, carrier motion is restricted in a direction perpendicular
to the interfacial plane. In this direction only standing wave patterns are
possible, thus resulting in electric subbands. The energy separation between
energy levels in these subbands become important for low temperatures and
high fields. Although free carriers are quantized for motion perpendicular to
the plane of the interface, they are free to move and are not quantized in
directions parallel to the interfacial plane. Fang and Howard [51] were the
first to demonstrate surface quantization experimentally.

2.3.2 Green’s function for Poisson equation

In this section we would like to present the solution of Poisson equation using Green’s
function for the problem of a volume charge distribution around N objects (metals)
K which are at the constant potential U;, j = 1, N.

Therefore we have to solve the equation

Ap(r) = ——q(r) (2.92)

€o€r

where ¢(r) is the density of volume charge ([C'/m™3]) distributed in the system and
includes the sign of the charge too, with the following boundary conditions
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o limjy| oo p(r) =0
e p(r)=Uj, r € F(Kj), j=1,---,N.

The solution of the problem is written using Green’s function (see Chap. 3 in
Ref. [52])

N
_ / / o . " ’ N F! 2.
o(r) /‘/G(r,r)q(r)dr eoer;U] /F(Kj)v G(r,r")df (2.93)
where

a) AG(r,r') = —5(:0727), r,r' eV

b) G(r,r’) =0, re F(V),r eV
¢) limp|—oo G(r,r') =0, reV.

1D problem

We can apply the above theory to the one dimensional problem. Charge distribution
is ¢(z) (in [C/m™3]), I < 2 < Iy and for z < [; and I, < z we have metallic contacts
(the potential is constant). So, the boundary conditions become:

o) =01,  o(la) =0, (2.94)

The geometry of the problem is sketched in the Fig. 2.3.

Figure 2.3: The geometry for the 1D charge distribution with two metallic contacts.

The free space 1D Green’s function for Poisson equation is

1

Go(z,7') = — |z — 2| (2.95)

to which we can add a homogeneous solution

G(z,7')=Azz'+ B2+ Cz' + D
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which makes the resulting Green’s function, G = Gy + G, obey the boundary con-
ditions (item b) above).

G(Z = ll,Z/) = G(Z = lQ,Z/) = 0, Z/ € (ll,lg). (296)

If one inserts the expressions for Go(z, ') and G(z,2) into relations (2.96) and
equals the coefficients of 22/, z, 2/ and the free term from both relations with zero,
one obtains a system which provides the coefficients

1 Ia+1 1 Iy- 1 1
B=_—- 2% p_ 2 h A=~ -~ ¢=B.

2€0€r lQ — ll ’ €0€r lQ — ll ’ €0€r 12 — l17

Green’s function becomes

1 |1 1 11 l Iy -1
Gz, 7) = —— |=|z — 2| + s o2 oy 2 g
lh — 14 21— 14 b — 14

€0€r | 2

for Iy < z <ly, l; <2’ <l,. Inserting this expression in Eq. (2.93) one obtains the
electrostatic potential

1 2 (1 ’ 1 ’ 1l2+l1 ’ lg'll ’ ’
= — Zlz — A d
o(z) €0€7~/l1 (2]2 z|+l2_l1z z 2l2—l1(2+z)+l2—l1 q(z)dz
—1
+U1 —+ (UQ — Ul);ill’ for ll S z S l2, (298)
27— U1

and the associated potential energy, experienced by an electron,

V(o) = —ep(2)
2 (1 1 1l +1 ly -1
- /z <|z—z'|—|— z-z’—fz_l_l(z—i—z’)—i— 2 1>q(z')dz'

€0€r 2 lQ — ll 2 l2 — ll lg — ll
—1
V4 (Ve — VI)ZZ F forh<z<b (2.99)
92— 1
where Vi = —eU; and Vo = —elU; are the boundary values at the left- and right

contact, respectively; e being the elementary charge, e = 1.60219 x 10~C.

Ve(z) given by Eq. (2.99) is the solution of the 1D Poisson equation for the charge
distribution ¢(z), inside the interval [l1,ls]. Outside this interval the potential is
constant according to the boundary conditions, V,.(z < ;) = Vi and V.(z > [5) = V5.
V.(z) contains also information about the induced sheet charges ¢y and o3, on the
surface of the metallic contacts.

2.4 Mean-field approximation

If one wants to account for the effects of the (accumulated) charges in the system
on the transport charges and, in turn, on the transport properties, then one has to
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include in the scattering potential the interaction between the charges in the system
(which can be free charges, as electrons, or fix charges, as ionized impurities). This
requires a brief digression on the quantum mechanics of systems with many electrons
and a review of the effects of the Coulomb repulsion between electrons.

In general, the wave function W of a system of N particles must be written as

U = U(ry,re,..ryN). (2.100)

It is a function of the position coordinates, r;, for each particle j and cannot be
separated generally into individual wave functions.

The many-particle wave function obeys a complex Schrodinger equation. The
Hamiltonian of the electron system,

h? 1 e?
H=3 |~ Vet (x))| +5 (2.101)
J

* L )
2m 2 7 Amepe,|ry — 1y
J#k

h(r;)

has a kinetic energy term for each particle and two potential energy terms. Each
electron experiences the same external potential V,,;, which would arise from the
band-offsets of the heterostructure materials V},, from the interaction with fix ionized
donors VN'E and acceptors VN;, and from the applied electric fields V,,,

Vi () = V(1) + Vi (1) + V- (1) + Vi (1), (2.102)

The second potential energy term in (2.101) corresponds to a Coulomb repulsion
between each pair of electrons.

This problem it is usually solved in the mean-field approrimation, expressing the
many-particle wave function in terms of one-particle states and using the variational
method to determine them.

2.4.1 Hartree approximation

Hartree approximation consists in the assumption that a many-particle wave function
can be expressed as a simple product of one-particle states:

U(ry,ry,....,ry) = $1(r1)Po(ra)...on(ry) (2.103)

without taking into account Pauli principle for electrons. ®;(r;) is the one-particle
state of the electron ¢, which will be determined. A better approximation for the
many-particle wave function (2.100) would be a Slater-determinant which would
count for Pauli principle.

Using the variational method for the energy functional calculated with the Slater-
form of the many-particle wave functions, as it is shown in Appendix A one obtains
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the Hartree-Fock equations (A.31). If one neglects the exchange term (Fock term),
then we obtain the Hartree equations:

O, +Z/d3’

We have denoted here F; instead of ¢;, because E; will have the meaning of an
eigenenergy of the 3D eigenvalue problem, while ¢; will be an eigenenergy of the 1D
eigenvalue problem.

The same equations are obtained using the approximation (2.103) of the many-
particle wave function and the variational method presented in Appendix A. The
Hartree equations give the best approximation to the full N-electron wave func-
tion that can be represented as a simple product of one-electron states (but this is
incompatible with the Pauli principle) [47], p.332.

The equations (2.104) have a direct physical interpretation: The quantity

€1®a. (1)) ., (r) = E;d,,(r) =1,...,N. (2.104)
o = i P \T 5 1 = PR . .
dmege,r — 1| '

)= —e ; |y (r))]? (2.105)

has the meaning of the charge density produced by the occupied one-particle states
|,y and produces at r an electrostatic potential

()
_ [ — P 2.106

o) / " Amege,|r — 1| ( )

Note that p = —ep contains the electron charge, while p does not. An electron
situated at position r experiences the potential energy Vp(r) = —ep(r), called

Hartree potential and Eq. (2.104) becomes
[R(r) + Vg (r)] @y, (r;) = E;®,, (r;). (2.107)

Under this form, one can see directly the meaning of mean-field approximation: the
electron moves in the electrostatic potential produced by all other electrons.

For our system, which has an effectively one-dimensional scattering potential so
that the wave function can be separated as in (2.3), the charge density depends only
on z-coordinate (see Eq. (2.88)). In this case, the integral over d°r can be performed
for transverse directions

/d3 ) /d PE) (2.108)

4mepe,|r — 1| 2€0€,

which gives in fact the electrostatic potential of charges (z’) in free one-dimensional
space according to the free-space Green’s function (2.95).
Eq. (2.104) is reduced to the one-dimensional Schrodinger-type equation

h(2)tba, (2 +/d’ )‘Z_leai(z):qwai(z), i=1,..,N,  (2.109)

2€p€,



2.4. MEAN-FIELD APPROXIMATION 29

with h(z) = — 2?; - % +Vezt(2). The electronic density distribution p(z) is calculated
fully quantum mechanically, as described in Sec. 2.2, Eq. (2.88).

The total electrostatic potential and the potential produced by the applied elec-
tric fields can be calculated as an effective Coulomb potential V.(z) = VN;(Z) +
VNB(Z) + Vi (2) + Vo (2) through the Poisson equation, as presented in the Sec. 2.3.

So, the scattering potential in the Schrodinger equation is a superposition of the

band-offsets of the heterostructure materials and the effective Coulomb potential,

V(z) = Vi(2) + Vi(2). (2.110)

The supplementary potential V., makes the Schrodinger equation a nonlinear
eigenvalue problem, because the potential depends on the wave functions. This
problem is solved iteratively, by self-consistent calculations. Numerical methods are
needed for an accurate solution.

In our mesoscopic system we are interested in a steady state. The system has to
obey two equations in the same time:

e the Schrodinger equation, that describes the quantum features of the system:;

e the Poisson equation, that gives the electrostatic potential in the system and
involves an averaging procedure.

The above mentioned equations act complementary: having the potential, the Schrodinger
equation establishes how many charges are in the system, while having the charge
distribution the Poisson equation establishes how the electrostatic potential pro-
duced by these charges looks like. These two equations, acting as two ”forces”, can

be brought in equilibrium only by self-consistent calculations.

The self-consistent calculations were involved in many systems: in the Si/SiOy
systems, for calculating the properties of the silicon space-charge layer [51, 53], in
GaAs-Ga;_,Al,As heterojunctions [54], for counting the non-vanishing penetration
of the wave functions in the barrier zone, or for counting the influence of the mag-
netic fields parallel to the interfaces [55], in modulation-doped Al,Ga;_,As-GaAs-
Al,Ga;_,As heterostructure [5] for explaining the formation of the 2DEG in this
kind of structures, and for a fully theoretical modeling of modulation-doped double
quantum wells [56]. The self-consistent calculations are also necessary for under-
standing modern quantum structures as single quantum well transistors (SQWT)
[57] or quantum dots [58].

2.4.2 Self-consistent procedure

Contrary to the general self-consistent scheme, known as ”self-consistent field ap-
proximation” [53] (Fig. 2.4a), in which an initial guess for the potential has to be
made, we propose another scheme, for which an initial form for p(r) is guessed.
which we call ”self-consistent charge approximation” (Fig. 2.4b). We need this pro-
cedure, because for our interest, the differences between two successive iterations in
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charge should be user defined, which does not happen a priori in the self-consistent
field approximation.

Vi Schrodinger equation in Poisson equation -
A [ ~pP A Green’s function Y%

R—matrix

Figure 2.4: The self-consistent iterations scheme for a) self-consistent field approx-
imation and b) self-consistent charge approximation. The Schrodinger equation,
solved within the R-matrix formalism, gives for a specified potential and boundary
conditions the wave functions and further one can calculate the charge distribution.
The Poisson equation gives the electrostatic potential of a specified (total) charge
distribution and it is solved by the suitable Green’s function.

To start the procedure, one needs to suppose an initial negative charge distribu-
tion, and we take such one which fulfill the neutrality in the system.

The mixing factor f, which mixes the ”in” and ”out” quantities from one iteration
to give the quantity ”in” for the next iteration

Py = pi" + f(p7™ — pi™) (2.111)

should be chosen particularly for every structure and for every guessed initial charge.
The experience will help a lot for a good choice. This factor can differ from one
iteration to another and this may allow for self controlled convergence procedure.
If the iterations go away from the fix point (convergence point), then this factor
should be decreased. If the iterations follow the right way to the convergence, then
one can accelerate the procedure by increasing this factor. A practical method is to
keep a small factor for the first self-consistent procedures (e.g. first bias) and when
one becomes familiar with the convergence, one can fix this factor f in specified
iterations domain. A concrete discussion about the effect of this factor will be
presented in the Sec. 3.2.

The self-consistent iterations are performed until further iterations do not mate-
rially alter the result (potential or charge distribution), called fix point or convergent
point. The convergent point is achieved when the convergence parameter

VE () - pﬂﬂt(zm?

i (S )

(2.112)

€; —
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is smaller then the user defined convergence limit €. It is more convenient to work
with absolute differences because at relative differences appear small numbers which
can lead to some unphysical results. At the same time it is more convenient to work
with the differences for the same iteration (in” and ’out’) like with the differences
for the successive iterations ("in’ for iteration i and ’in’ for iteration i+1) because in
the latter one appears the mix factor f.

Steps in self-consistent procedure

The procedure for calculating the self-consistent potential distribution and charge
density follows the steps:

1. consider an initial charge distribution p;,(z);

2. calculate the Coulomb potential from the Poisson equation with the help of
the Green’s function;

3. V(2) = Vi(2)+V.(2), where V},(2) is the potential coming from the heterostruc-
ture band offsets, and V.(z) is the Coulomb interaction potential calculated
self-consistently;

4. calculate the free charge density with the help of the Schrédinger equation
out
P (2);

5. consider a mixture pi,(2)+ f - (Pout(2) — pin(2)) for the next charge distribution;
6. verify if the convergence point is achieved; if not then go back to the point 2.

To solve self-consistently the Poisson equation and the Schrodinger equation is
equivalent with finding the stationary solution of the transport problem.

First guess for the electronic charge

The initial electronic density distribution pg is chosen as depicted in Fig. 2.5: pg
differs linearly from the ionized donor N} (2) and acceptor N (z) distribution only
around the abrupt variations of the doping profiles. The linear variation is taken of
the order of the screening length A\p = 27 /kp, where kr is the Fermi wave number
in the reservoir. The impurities are considered completely ionized

0, z < 2z,

Ny(z) m® Na(z) = Ny, 7 <z < 2, (2.113)
0, Z > 2o
Np, z <z,

Nh(z)=~ Np(z) = {0, 21<z< 2, (2.114)

ND, Z > 29
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Figure 2.5: Distribution of the donors Np(z) (solid line), acceptors N4 (long dashed
line) and initial electronic density distribution pg(z) (dotted line).

From the neutrality condition for the system of electrons and ionized impurities
we determine the parameter « (see Fig. 2.5):
%)\F B 2%()\}7 — Oé)
2 2

2

Biased structure

For a biased structure, we have to specify the boundary conditions for the Poisson
equation. The external applied bias V4 imposes in fact the boundary values for the

scattering potential:
eV =FEL—EE=V, -V (2.116)

where the last identity holds for the same doping in the reservoirs. This condition
becomes now

eVia = Vi(=d) = Vi(d) + Vi(—d) — Vi(d) (2.117)

which in fact imposes the boundary condition for the Poisson equation V.(—d) and
Ve(d) (i.e. V5 and V3 in Sec. 2.3.2)

For a closed system, if there is a potential difference between left and right, then
a charge transfer occurs until the inner electric field compensates for the external
electric field. So the system constructs such a dipole momentum against the external
electric field.

For an open system, the charge flows from one side to another, but in front of
the barrier the charge is accumulating and behind of the barrier there is a depletion
region. The dipole momentum is now in the same direction as the external electric
field.

The self consistent procedure for a new applied bias starts from the previous bias
self-consistent solution.
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2.5 Current through mesoscopic structures

In Sec. 2.1 we showed how to calculate for one-dimensional potentials the transmis-
sion and reflection coefficients. Following Ferry [2], Chap.3.3., we want to present
here the calculation of the current flow through a three-dimensional device using
the transmission coefficient.

2.5.1 Coherent tunneling

When we looked at the tunneling process in the previous sections, we considered
a single one-dimensional traveling wave that propagates through the barrier region
and out the other side. As such, we viewed tunneling as an elastic process involving
no loss of energy of the particle. In a real structure, the ideal problem consists of a
plane wave incident on a barrier potential that is semiinfinite in extent in the two
transverse directions and varies only in the third direction. For almost all practical
planar barrier devices, this variation in potential is in the growth direction due to
the bandgap discontinuities of the heterojunction interfaces, the space charge due to
doping and the applied bias. The plane wave has some components of its wavevector
(and hence momentum) in the transverse directions parallel to the barrier. Along
with our assumption that tunneling is an energy conserving process, we will further
assume that the transverse momentum is conserved, that it remains the same be-
fore and after the tunneling. This latter assumption is violated in real structures
if random inhomogeneities exist in the lateral direction, such as interface roughness
and ionized impurities. The main effect is to broaden the effective transmission reso-
nance, reducing the peak-to-valley ration (PVR) of I-V curve in measured structures
compared to the ideal model.

To connect the quantum mechanical fluxes to charge current, we need to in-
troduce the statistical mechanical distribution function to tell us the occupancy
of current-carrying states incident and transmitted on the barriers. Exactly what
distribution function to use is perhaps one of the central issues of describing nonsta-
tionary transport in a phase-coherent system such as the nanostructures discussed
in this thesis. The model we will use, called also Landauer-Bittiker formalism
[19, 24, 21], assumes that we have contacts or reservoirs on the left and right side of
a barrier structure that are essentially in equilibrium and are described by the single-
particle distribution function such as the Fermi-Dirac distribution characterized by
a chemical potential.

The problem is shown in Fig. 2.6 for a generic tunneling barrier. The applied
bias separates the chemical potentials on the left and right by an amount eV,,;. The
Hamiltonian on either side of the barrier is assumed separable into perpendicular
(z-direction) and transverse components. If we choose the zero-reference of the
potential energy in the system to be the conduction band minimum on the left,
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Figure 2.6: Band diagram for a tunnel barrier under bias, illustrating charge flow.

E. 1 =0, the energy of a particle before and after tunneling may be written as

hzksz thgL

E = E =
€t e 2m* 2m*

(2.118)

on the left side, and
h2 k2 h2k?
E= 27;;? + 277;’% + Bog (2.119)

on the right side, where E. p is the conduction band minimum on the right side
and k., and k; are the perpendicular and transverse components of the wavevector
relative to the barrier. A single, parabolic, isotropic conduction band minimum
has been assumed for simplicity. Since the transverse momentum is assumed to be
conserved during the tunneling process, then k; ;, = k; g, and the transverse energy
E,; = E; g is the same on both sides for the tunneling electron. Therefore, the
z-component of the energy is

TR
2m* 2m*

€

+ Ee.r (2.120)

on the left and right sides of the barrier.

As a further approximation, in order to introduce irreversibility into the formal-
ism, we assume that the contacts are perfectly absorbing. This means that when a
particle injected from one side reaches the contact region of the other side, its phase
coherence and excess energy are lost through inelastic collisions with the Fermi sea
of electrons in the contact. Thus we assume that an electron injected from one
contact at a certain energy E has a certain probability of being transmitted through
the barrier determined by T'(F), exits the barrier with the same energy and trans-
verse momentum, and finally is absorbed in the opposite contact, where it loses the
energy and memory of its previous state. Current flow in this picture is essentially
the net difference between the number of particles per unit time transmitted to the
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right and collected versus those transmitted to the left. This view of tunneling is
referred to as coherent since the particles maintain their phase coherence across the
whole structure before losing energy in contacts.

To proceed with this picture, consider the current density perpendicular to the
barrier in the z-direction for a given energy F with corresponding z-component
€. The incident current density on the barrier from the left due to particles in an
infinitesimal volume of momentum space dkj, around k; may be written as

i = —eDle) fulo-e)di, D)= o, (2421

where fy is the distribution function on the left side of the barrier, D(k) is the
density of states in k-space (taking in account the spin degeneracy), and the velocity
perpendicular to the barrier from the left is

10E(ky) _ hk.
va(ley) = LOEKL) _ ks

= — = 2.122
h 61{:27,; m* ( )

using the parabolic relation (2.120). Here we neglect the possibility that the energy
states on the left and right side of the barriers may be quantized due to, for ex-
ample, band bending, and we, therefore, treat the states as three-dimensional. The
transmitted current density from the left to right is simply Eq. (2.121) weighted by
the transmission coefficient

. —2eh
L= (2m)3m*

T(k. 1) fr(ks, ke r)k. pdk. dki, (2.123)

where T'(k,) is the transmission coefficient (see Eq. (2.34)) which for the ideal
case is only a function of the perpendicular momentum and energy. Similarly, the
transmitted current from right to left may be written for the same energy E and €

JR = (273:;371%;71(]{,271%)]('3(1{“ ksz)k'Z,deszdkt. (2124)
At a given perpendicular energy e, the transmission coefficient is symmetric (see Eq.
(2.36)) so that T'(k, ) = T'(k, r) = T(€), where k, 1, and k, g are connected through
the relation (2.120). Further, k, pdk. = k. pdk.r = *de/h? if we differentiate
both sides of (2.120). Therefore, the net current density in the direction of the
voltage drop is the difference between the left and right currents densities integrated
over all k, or

2e

J pu—
T (27)%h

/OOO de /OOO dkky /02” dOT(e)[fr(e ki) — fre, ki)l (2.125)

where the integration over € is from zero to infinity because tunneling from right to
left below € = 0 is forbidden.
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At this point, no further reduction to Eq. (2.125) can be made unless we make
assumptions concerning the nature of the distribution functions on the left and
right sides. The lowest-order approximation is to assume that these distributions
are given by the equilibrium Fermi-Dirac functions determined by the bulk chemical
potentials on the respective sides of the barrier,

1

1+ exp <4E+E£;:/;L/R) ’

fr/r(e, Ey) = (2.126)

where T' is the lattice temperature and py,p is the chemical potential on the left
and right side, respectively. The difference between the two is just the applied bias,
i, = pgr + eViq. Since the chemical potential is isotropic, the angular integration
gives 2m. Likewise, the integration over perpendicular wavevector may be converted
to an integral over energy. Assuming parabolic bands, Eq. (2.125) becomes

drem*

It = G /0 deT(¢) /O dE:[f1(e, Ey) — fale, Eb)]. (2.127)

For the Fermi function (2.126), the integration over energy is easily evaluated: using
the substitution y = (£, + € — i)/(kgT) one obtains

oo 1 W—€
dE = kgT In (1+ex ( )) 2.128
/0 t1+eXp (Hliit;“) b P kgT ( )

so that Eq. (2.127) becomes

em*k;BT 1 + e(“LiG)/k‘BT

Vo) == o

(2.129)

/OOO deT'(€) In

sometimes referred to as T'su-Fsaki formula, where the particular form was popu-
larized in connection to resonant tunneling diodes[24].

We would like to emphasize at this point the beauty of this formula: all the
features of the scattering region are behind of the tunneling probability coefficient.
The idea to connect the macroscopic features of the system with the tunneling prob-
ability, a quantum mechanical quantity, was first pointed out by Landauer [19], who
connected the electrical resistivity to the tunneling and reflection probability. The
Eq. (2.129) is a two terminal formula, which was extended by Biittiker to obtain a
multiterminal tunneling formula [21] and so emerges the Landauer-Biittiker formal-
ism. This has been very successful in describing electronic transport in mesoscopic
systems. This formalism can be obtained as a limit from other transport theo-
ries: Datta [59] has shown the evolution from the Keldysh to the Landauer-Biittiker
formalism.

The logarithmic term in Eq.(2.129)

1 + e(kr—eVea—e)/kpT’

1+ eluL—e)/kpT

&6 = I =t (2.130)
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is sometimes called the supply function, since it more or less determine the relative
weight of available carriers at a given perpendicular energy.
If one uses the limit

lim kT In <1 + e“@) = up—e (2.131)

calculated with the substitution y = 1/kgT, then Eq. (2.129) becomes for very low
temperatures simply

em”*

JT(%):W

[/OML deT'(e)(pp —€) — /OHL_EVM deT(e)(pup — eVeg —€)|, (2.132)

which has a direct physical representation: all the electrons from the left reservoir,
with energies between [0, 11| contribute positively to the current, while the electrons
from right reservoir, between [0, ug] = [0, pur — €Viq| contribute negatively to the
current. For both reservoirs the contribution has the same form: the transmission
probability multiplied with the energy interval between the corresponding chemical
potential and the considered energy. In Eq. (2.132), as expected, does not appear
the dependence on the temperature anymore.

The same result can be obtained if one note that the derivative of the supply
function with respect to the energy, d{(e)/de is a difference of two Fermi-Dirac
distribution functions

G
€lo = iz(e>:_k;;T

[f(e, Er) = fr(e+ eV, Ey)) (2.133)

which is practically a constant for € € [, — eVig, ] and in turn £(e€) is practically
a linear decreasing function on the same interval of energy.

If we now consider current through a resonant structure such as a resonant
tunneling diode (RTD), the current density is dominated by the resonant portion of
the transmission coefficient. For example, if the transmission coefficient is assumed
to be very sharp around e = ¢, using the Lorentzian form [2] Chap.3.2,

r2/4

T(6) = Teofo e —ep (2.134)

where I',, is the energetic width of the peak n, we can approximate it as a delta
function so that at low temperature, Eq. (2.132) may be integrated to give

em* T ..l

J p—
r A7h3

(,UL — En) 0<e, < Hnr, (2135)

where the asymptotic approximation for the delta function has been employed:

1 T,/2

Se—en) =~ 1 .
(e—en) = 2 lim o e oy

(2.136)
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The voltage dependence enters essentially through e,, the resonant energy. We
should mention here that T,., and I',, are also functions on applied bias V4. For a
symmetric double barrier, with a linear voltage drop equally divided between the
two barriers (usually the case for non self-consistent calculations), the well is lowered
in potential energy by an amount eV;/2 with respect to the emitter (the left side),
and is higher in energy than the collector by the same amount. ¢, may therefore be
replaced in (2.135) by €2 — eV,q/2, where € is the quasi-bound state energy relative
to the well bottom. This gives a sudden turn-on of current when ¢, = up, i.e.
eVeq = 2(62 — pr), and cuts off when eV = 262 giving rise to negative differential
resistance (NDR). The peak occurs when €, = 0, giving a peak current density

6Tn*,-Z—'resrn,uL

Jp —
P Amh®

(2.137)

So that, a very simplified model for a J-V curve for a RTD provides at low
temperatures a form represented in the Fig. 2.7.

0 2(e%p) 29 eV,

Figure 2.7: A very simplified model for a J-V curve for a RTD at low temperatures.

As can be seen, the peak current depends physically on the chemical potential
in the emitter, and hence the doping there, as well as on the product of the peak
transmission probability and resonance width. Since both the resonance width and
the resonant transmission amplitude increase as the barrier thickness decreases, thin
barriers are essential for high peak current densities.

In order to calculate the current-voltage characteristics using Eq. (2.129), the
transmission coefficient versus energy is tabulated for each bias point (since the
barrier shape continuously changes as a function of bias), and the integration is
performed numerically for the current.

The optimal conditions for the resonant tunneling through semiconductor quan-
tum structures have been studied [44, 43, 45, 92].

The formula (2.129) will be used in Chap. 4, to calculate the current flow for a
single barrier system, exhibiting Fabry-Perot resonances.
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2.6 Capacitance of mesoscopic structures

Capacitance spectroscopy has proven to be a powerful tool to study quantum semi-
conductor structures because it gives information about the charge density and its
location in the studied system. Examples for structures examined so far are het-
erojunctions [60], simple tunneling barriers as well as multiple barrier structures
[61, 62, 63, 64], superlattices [65, 66], two-dimensional electron systems [67, 68, 69,
70, 71, 72], quantum wires [73], and quantum dots [74, 75]. The investigation of
these systems require the presence of contacts made from a metallization or from a
heavily doped semiconductor material. These contacts are either source- and drain
contacts to apply an external potential or sometimes contacts used to define the
quantum structure itself (see e.g. the use of top gates in Refs. [73, 74, 75]). Because
image charges in the contacts have a major contribution to the charge balance in
small systems the explicit structure of the contacts is important for capacitance
measurements. A second important common feature is the existence of tunneling
currents which cannot be avoided in small structures. Theoretically, this means that
the quantum system is an open system exchanging particles with the environment,
particularly with the source- and the drain contact.

In this section we propose a new capacitance model for a quantum structure
that takes into account both of these fundamental aspects, the openness and the
existence of finite contacts embedding the system.

2.6.1 Charge balance

For a closed system there is no modification of the amount of charge inside the
system at variations of the applied bias. In contrast, for open system there is
particle exchange between the system and the contacts which play the role of the
reservoirs.

For defining the differential capacitance, we need first to define the charges which
belong to the "plates” of the capacitor. For this it is necessary to make a charge
balance in the system:

e fix charges from the ionized impurities N, and N ; these will be connected
to the plates by geometrical consideration,

e transport (free) charges p; these will be connected to the plates by ancestry
consideration, i.e. from where the particles are coming;

e the surface charges at the interfaces between the contacts and the system, o,
and o9; these will be connected to the plate to which the contact belongs.

So that, in our formalism we allow for net charges everywhere outside the contacts
(‘system charges’ in Fig. 2.8, z; < z < z). Inside the contacts there are net charges
in the surface region (‘interface charges’ in Fig. 2.8, —d < z < z;and 2o < 2 < d). In
the bulk of the contacts, for |z| > d, there is no net charge and the effective potential
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is flat. In the scattering region defined by —d < z < d we distinguish between free
charges that can be exchanged with the bulk of the contacts and bound charges.

Source Drain

system charges

free charges

~interface charge
S~
interface charge

Figure 2.8: General structure of the considered systems.

At the definition of the "plate” charges we want to keep the classical meaning
of the capacitance: at a variation of the potential difference between the plates, the
variation of the charges on the plates have to be equal and of opposite sign.

2.6.2 Plate charges >; and >

We use the Gauss law for calculating the sheet charges at the interfaces between the
system and the contacts (see Fig. 2.9) and obtain

r [(OVe r [OVe
m:®€< ) 7 @:_®6< ) (2.138)
€ 0z z=—d+9 € 9z z=d—0
where oy is placed at z = —d and 05 at z = d and 6 — 0. We have used that outside

the interval [—d, d|, the potential is constant according to the local charge neutrality.
The Gauss box is chosen so that 6 — 0. Inside the scattering system the Coulomb
potential is given by Eq. (2.99). For the chosen configuration, l; = —d and Iy = d,
the term (1/2)(l2 4+ {1)/(ls — I1)(z + Z’), which takes into account the asymmetry in
the boundary position, will be zero. The boundary values V; and V5, which depend
on the external applied bias Vgp, will be calculated from the boundary conditions
for the total potential energy V (z):

Viz=—d) = V (2.139)
Vie=d) = Vg (2.140)
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Figure 2.9: The electrostatic potential and the use of Gauss law for calculating the
sheet charges at the interfaces between the system and the contacts.

so that Vi, — Vi = eVy4, where Vy, is the total bias which drops in the active region
considered in our problem, and it can differ from Vsp by a constant, as it will be
presented in the particular analyzed cases. So that the Coulomb potential energy
felt by one electron in the field of all others

e i1 , 1 , d N
Velz) = E()Er/—d <2|Z Z|+2dz : 2) a(z)dz

Vit (Va-Vi)—om, for —d<z<d (2.141)

where ¢(z) = e [Ng(z) — N, (2) — p(z)] The derivative of the electrostatic poten-
tial V. is well defined at the points +d. One can see this, if the modulus function is
expressed in terms of step functions |z — 2| = (z — 2)O(z — 2/) + (2 — 2)O(2' — 2).
Inserting the expression (2.141) of the Coulomb potential in Eqgs. (2.138) we obtain

1 €o€r Vo — Vi
= —= IT— 2.142
o QQ + e 2d ( )
1 €oer Vo — V1
= ——Q-1I 2.143
72 R A (2.143)
with the notations
d
Q = / q(z)dz, (2.144)
—d
1 d
= ﬁ/_dzq(z)dz. (2.145)
One can immediately observe that o; + 09 = —(Q).

We can construct now the charges on the plates:
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e on the left plate

¥ =0y + 0] 4 gbovnd, (2.146)
e on the right plate
Yy = 09 + 03" 4 obeund, (2.147)
where
0
ghownd — ¢ /_ (NB(2) = N5 (2))dz (2.148)
d
ofre = —e /_dp1(2’)d2 (2.149)
d
ghownd  — /0 (N£(2) — N7 (2))dz (2.150)
d
ol = —e [dpg(z)dz (2.151)

with p;(2) and py(z) the charge density produced by the electrons incident from the
left and right contact, respectively (see Eq. (2.88)):

L. e (k=R
p) = 255 [k T e (2152
L pe (k)
palz) = ZW/O b, S [ e, 2) (2.153)

With the above definitions, the neutrality condition
Yi+2X,=0, (2.154)

is implicitly fullfiled.
We can define now the capacitance per area:

d>y d>s
C = = 2.155
‘std ‘std ( )
and with the above expressions we have
dzl 1L d free free d €o€r d(‘/? — ‘/1>
= - — IT — 2.156
WV 2av, Tt T N Gl v, (2:156)
dEQ ]_ d free free d €EQEr d(‘/Q — ‘/1)
_ = _ — II 2.1
W~ 2av, ) T v, (2.157)

which shows that the variation of the ¥; and Y5 are equal and with opposite sign
for the same variation of the applied bias. The capacitance per area describes the
absolute value of the net charge coming into the system from either of the contacts
L (left) or R (right) when the voltage is changed. The charge coming from the left



2.7. CHARACTERISTICS OF GAAS/ALxGA,_xAS/GAAS STRUCTURES 43

contact is stored in o1 and 0", while the charge coming from the right contact is
stored in o5 and 0", In contrast to a plate capacitor the charges belonging to 7"
and a{m have a spatial overlap. However both charge types are distinguishable in
our model and there is no exchange between these charges.

Because the capacitance is the derivative of ¥; /5 at the applied bias V4, and we
consider that the bound charges N (z) and N} (z) do not depend on the applied
bias, then in the definitions of 0?712““1, (2.148) and (2.150), it is not important how
the bound charges are associated to the capacitor plates. The integral limits can be
chosen arbitrarily, but should cover the whole system in order to obey the neutrality
condition (2.154).

2.7 Characteristics of GaAs/Al,Ga; ,As/GaAs
structures

One of the most used material for the nanodevices is the ternary alloy system
Al,Ga;_,As, because GaAs and AlAs form a solid solution over the entire com-
position range (0 < x < 1) with very little variation (< 0.15 per cent) of the lattice
constant. These facts mean that semiconductor multilayers of very high quality
with different = values can be relative easy prepared. The most exploited aspect
of the Al,Ga;_,As alloys is their band structure. At z = 0 (i.e. GaAs) we have
a direct-bandgap semiconductor with a room temperature bandgap of 1.42eV. At
x =1, AlAs is an indirect-gap semiconductor with the minimum energy separation
at the X point. At somewhere about x = 0.45 there is a crossover from direct to
indirect-gap structure [76] Chap.1.6. The transport properties of Al,Ga;_,As near
the indirect-direct crossover are not well known, but majority exploited heterostruc-
ture devices are using alloys with < 0.4 to ensure a direct-bandgap semiconductor
and to avoid a transition form I' minimum to X minimum.
Guéret et al. in [77] have accounted for the band-edge effective mass in Al,Ga;_,As

dependence on the Al mole fraction z according to

m* = 0.067(1 + 1.244x)my (2.158)

where the mg stands for the free-electron mass.
A recent detailed analysis of the material parameters for different alloys used in
nanodevices is provided by Vurgaftman et al. [78].
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Chapter 3

Capacitance of a field-induced
2DEG

We will consider in this chapter semiconductor devices composed of a small quan-
tum structure as the active device region and two classical environments consti-
tuting the source- and the drain contact. The contacts are taken as free electron
gases with infinite conductivity, whose concentrations define the chemical potentials
in the contacts. The transport through the quantum structure is described in the
Landauer-Biittiker formalism using electronic scattering wave functions which define
the electron density in the quantum system. In our Hartree approximation these
charges and the induced charges in the contacts are the sources of the self-consistent
Coulomb field. As a particular quantum structure we study a GaAs heterostruc-
ture device consisting of a two-dimensional electron gas sandwiched between a gate
contact and an AlGaAs blocking barrier [71]. We demonstrate the quantitative
agreement of our theory with the experimental results.

3.1 The structure

As a particular quantum structure we study a special high-mobility AlGaAs/GaAs
heterostructure device consisting of a two-dimensional electron gas sandwiched be-
tween a back contact and an AlGaAs blocking barrier [71], optimized for investi-
gations of electron systems at low densities [73, 79]. This structure differs from
the semiconductor devices used for magneto-capacitance spectroscopy through the
second metallic electrode buried in the crystal below the 2DEG [80, 81]. The very
good quality of the sample made possible to study the quantum effects.

The AlGaAs/GaAs single-heterojunction structure [71] represented in Fig. 3.1,
consists of a sequence of layers grown on a GaAs substrate, given by, first, 20nm n-
GaAs as a back contact, ng; = 4 x 10'8em 3 silicon doping, second, 100 nm intrinsic
GaAs as a spacer, with N4 = 10cm ™3 residual (nonintentional) p-doping, third, a
short period AlAs/GaAs superlattice: 7x9ML (monolayers) AlAs alternating 6x9ML
GaAs with the total width of 32nm, as a blocking barrier, a thin 9nm GaAs cap

45
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layer and finally a metallization as a top gate. These parameters of the sample (see
Fig. 3.2) define the nominal structure.
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Figure 3.1: The AlGaAs/GaAs heterostructure device [71] and the schematic band
diagram in growth direction.

Here the quantum system basically consists of a field induced two-dimensional
electron gas (2DEG) formed at the interface between the GaAs spacer and the
blocking barrier for gate voltages Vi; above a certain threshold value.The 2DEG is
separated from the back contact by a wide and shallow tunneling barrier.

The back contact plays the role of a source contact, while the top metallic gate
plays the role of a drain contact. We choose the zero-reference of the potential
energy in the system to be the conduction band minimum on the left, E.; = 0.

Conventionally the sign of the V; bias applied between the top gate and the
GaAs substrate is given by the polarity on the gate with respect to the GaAs sub-
strate. Positive bias on the gate attracts electrons to the barrier surface. Making Vi
negative with respect to the GaAs substrate repels electrons from the gate surface
and attracts holes to the gate surface.

As well known, the scattering potential in the growth direction breaks the trans-
lational symmetry in this direction, so that the local charge neutrality is destroyed
(but not the total charge neutrality) and the charge distribution has spatial varia-
tions. This process is intensified by the external electric field.

The region between (—d, d) is fully quantum mechanically described. We treat
the metallic gate and the back contact as ideal metals with infinite conductivity
which ensures constant potential outside the scattering region (—d,d) [94]. The
electron motion can be described by the Schrodinger equation (2.2). Because of the
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Figure 3.2: Schematic band diagram of the heterostructure device measured in Ref.
[71]. The structure parameters are: 1.) Top gate metalization, 2.) 9 nm GaAs
cap-layer, 3.) 7x9ML (monolayers) AlAs alternating 6x9ML GaAs (short period
superlattice of width 32nm), 4.) 100 nm GaAs spacer, with N4 = 10%cm™3 residual
p-doping, 5.) 20nm GaAs back contact with Np = 4 x 10'8¢m 2 silicon doping, 6.) 1
pm GaAs buffer, and 7.) GaAs substrate (semi-insulating). We take ¢, = 12.5, m* =
0.0655mg. The 2DEG is formed at the interface between the GaAs spacer and the
blocking barrier by applying a dc bias between the gate electrode and back contact.
iz, is the chemical potential in the back contact, Ef;g is the Fermi level of the 2DEG.
€o is the quasi bound level formed in the quantum well in front of the blocking
barrier. e® g, represents the barrier height of (gate) metal-semiconductor contact.



48 CHAPTER 3. CAPACITANCE OF A FIELD-INDUCED 2DEG

translational invariance of our system in the lateral directions the structure allows
for a separable potential,

Vers(r) =Vi(ry) +V(z) (3.1)

where V(2) represents the scattering potential in the growth direction and V (r,)
is the potential in the plane parallel to the heterostructure interfaces, and per-
pendicular to the growth direction. We do not have supplementary gate induced
constrictions, so that V) (r ) is constant and can be taken as zero, V| (r;) = 0.
In turn, electrons are free in the parallel directions and can be described by plane
waves. Within the standard envelope function approximation, the motion of the
electrons in the growth direction is described by the 1D Schrodinger type equation
(2.6).

The electronic charge is calculated quantum mechanically as in Sec. 2.2. The
Coulomb potential is considered in the Hartree approximation, so that the 1D
eigenvalue problem (2.6) becomes a nonlinear one, which is solved iteratively, self-
consistently, as described in Sec. 2.4.

3.2 Flat band configuration

In order to calculate the self-consistent potential and charge distribution we want to
obtain first the flat band configuration. There are more properties which define the
flat band configuration: in a MOS (metal-oxide-semiconductor) system, the bands
are flat throughout the semiconductor; the hole and electron densities are uniform
throughout the semiconductor and have the same values at the surface as in the
bulk of the semiconductor. If the bands are flat, this provides another condition,
namely the derivative of the potential is zero. This condition will be used also in
our model, so that the flat band configuration is achieved if
dV(z)

= 2
=0 (32)

20

where 2 is chosen in our system as the middle of the blocking barrier. This condition
will be automatically fulfilled if we consider an auziliary symmetrical structure with
similar parameters as the nominal structure: the same width and height of the
blocking barrier, but two identical GaAs spacers on every side of the barrier with
the same size as in the nominal structure, sandwiched by two identical n-GaAs layers
with the same doping as in the nominal structure.

We take the effective mass of the electron in GaAs as the effective mass over the
whole structure m* = 0.0655m, and we consider ¢,, the relative permittivity, equal
over all the structure and, equal with the value in GaAs, €, = 12.5. The temperature
is considered T' = OK.

The initial negative charge density py is chosen as a linear profile on the order
of A\r around the interfaces between high doped region and undoped region, as it
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Figure 3.3: The self-consistent potential (lower part) and electronic density distri-
bution (upper part) for the auxiliary symmetrical structure, which construction is
based on the nominal structure (see text). The residual N4 doping is not taken into
account.

was shown in Sec. 2.4. The self-consistent electronic density distribution does not
depend on this initial guess and this was verified numerically, but a good guess
shortens the convergence time.

We first present in Fig. 3.3 the results for the structure without considering
the residual N, doping of the GaAs layers. In the upper part are presented the
initial electronic charge guess pg, the doping profile, Np, Np = 4 x 108em™2 in
the contact regions, and the self-consistent electronic density distribution p. The
chemical potential is established by the contact doping using Sommerfeld model for
free and independent electron gas [47], Chap.2, Er = h*(372Np)?*?/(2m*). For the
considered system Er = 0.1402831eV and the Fermi wave length, \p = 27 /kp, is

Ar = 12.8nm.

In the lower part of Fig. 3.3 is presented the heterostructure potential V}, due to
band off-sets and the self-consistent potential energy (solid line) V' =V, + V., where
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V. denotes the Coulomb potential. The chemical potentials, puy, and pg, in the left
and right reservoirs, respectively are equal because the structure is symmetric.

As one can see, the self-consistent potential raises on the undoped region with
a quantity, denoted eU (see Fig. 3.2), and remains practically constant over the
undoped semiconductor regions. This quantity, similarly to a p-n junction, can be
called built in potential, and is determined mainly because the doping concentration
changes abruptly at zyg in GaAs semiconductor layer. This quantity will not be
modified by the applied bias. There are some differences between el and the built-
in potential in a p-n junction: the dependence of eU on other factors, like doping of
the n- and p-regions, length of n- and p-regions, will be analyzed.

To obtain the nominal structure, we cut the symmetrical structure (the self-
consistent potential V' and electronic distribution p) at the coordinate z = —136nm
(120 nm in front of the blocking barrier) and at z = 25nm (vertical dot-dashed
line; 9 nm behind the blocking barrier) and this will constitute the starting point
for the self-consistent calculations of the nominal structure. We have to work with
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Figure 3.4: The self-consistent electronic density distribution (upper part) and po-
tential Vg (lower part) for the nominal structure, at the flat band bias Vé . The
residual N doping is neglected,
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a symmetrical interval in z, so our structure is between [-80.5, 80.5]nm, because
the total length of the active region is 161nm (20 nm high doped GaAs region, 100
nm spacer, 32 nm barrier, 9 nm cap layer). Now we can give also a quantitative
evaluation of the built-in potential, namely the difference between potential values
at the boundaries after the cutting process:

€U = Vflat(d) — Vflat(_d)- (33)

In our calculations, eU = 0.13993eV. In the self-consistent calculations for the nomi-
nal structure (i.e. after cutting of the auxiliary structure) the value eU is kept fixed,
this is the reason why a in Eq. (3.3)there is a ’flat’ index. We also consider that
there are no incident waves from the right side (see Fig. 3.2). This is based on the
particular configuration of the analyzed structure: We can neglect the contribution
of the right-incident scattering states because the occupied states in the gate contact
lie about one electron volt below the conduction band edge in the back contact, due
to the large barrier height of (gate) metal-semiconductor contact. [71]

The self-consistent potential and electronic density distribution for flat band
configuration are presented in Fig. 3.4. One can read now the constant potential
values outside the scattering region: i.e. Vi, = Vyu(—d) and Vg = Vg (d).
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Figure 3.5: The convergence parameter during the iterations in the self-consistent
calculations for auxiliary (dashed line) and nominal structure (solid line). With
dot-dashed line is represented an evolution for out of convergence.

In Fig. 3.5 we plot the convergence parameter Eq. (2.112) during the itera-
tions for the auxiliary symmetrical structure and for the nominal structure. This
parameter gives information about the evolution of the self-consistent calculations.
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The convergence limit is set to € = 5-1077. Because the starting point for the
nominal structure calculations is part of the self-consistent results for the symmet-
rical structure, the convergence is achieved faster. The evolution of the convergence
parameter depends on the mixing factor f (see Eq. (2.111)). For the auxiliary sym-
metrical structure, we considered f=0.015 for the first 200 iterations, f=0.025 for
the next 100 iterations, and we tried to accelerate the convergence process after the
300-th iteration by increasing f at {=0.04. But the calculations ran out of conver-
gence, which is shown by the dot-dashed line in Fig. 3.5. So, we turned back at
the iteration 330, and we set f=0.03 until convergence was achieved. The changes
in f factor determine slope changes in the plot of convergence parameter. At the be-
ginning of the self-consistent procedure, the evolution of the convergence parameter
is abrupt (especially for the auxiliary symmetrical structure) because of the chosen
start point.

For the nominal structure, f factor was f=0.01 for the first 10 iterations, {=0.015
for the next 100 iterations, increases after that at f=0.02 for the next 100 iterations
and for the last iterations f=0.025.

The flat band structure is obtained for an external applied bias between the back
contact and the top metallic gate (see Fig. 3.2),

eVg = epy = epp, + (o — el), (3.4)

and will be taken as reference point for our numerical calculations. e¢p, denotes
the barrier height of (gate) metal-semiconductor contact.

3.2.1 N, doping effect

We can now make a discussion about the effect of the residual, unwanted, acceptor
doping N4 in the GaAs layer. We consider the following doping profiles

(3.5)

Np — Ny =4 x10%em™ in contacts
N4 — Np =10%em =3 in "undoped” regions

which are introduced in the Poisson equation (2.90) and the effect on the poten-
tial and electronic density distribution for the auxiliary symmetrical structure is
presented in Fig. 3.6.

One can see from Fig. 3.6 that the N, doping rises the potential, so that around
the blocking barrier V' > py, and in turn the electronic charge distribution decreases
drastically around the blocking barrier. The total negative charge density distribu-
tion p+ NN is practically constant and equal with the acceptor doping in the middle
of the structure. The built-in potential is changed with respect to the previous cal-
culations, and has the value eU = 0.14335eV. This value is kept constant, as the
difference between V;, and Vg, eU = Vi — V},, during the self-consistent calculations
for the nominal structure.

The self-consistent potential and electronic density distribution for the nominal
structure, considering the residual N4 doping are presented in Fig. 3.7(a) and 3.7(b).
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Figure 3.6: The effect of the acceptor doping N4 on the self-consistent potential
and electronic density distribution for the auxiliary symmetrical structure. Middle
part: the self-consistent potential with a detail (upper part) around the chemical
potential and the blocking barrier. Lower part: the self-consistent electronic density
distribution p for taking (dashed line) and without taking (dotted line) in account the
N4 doping. With solid line is presented the total negative charge density distribution

Ptot = NZ‘Fﬂ
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Figure 3.7: Self-consistent results for the nominal structure with acceptor doping
Ny, at flat band bias V.
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3.3 Applied bias

In this section we characterize the quasi-bound states which appear at positive
applied bias, and which are directly related to the field induced two dimensional
electron gas (2DEG).

We can see from Fig. 3.8 that the flat band structure is obtained for an applied
positive bias VCJ; where eVGf =epy = epp, + (urp —elU). The flat band configuration
and the corresponding applied bias will be taken as reference point for our numerical
calculations.
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Figure 3.8: The band diagram scheme for the whole structure: a) for the applied
bias V at which the flat band configuration is obtained and b) for Vg > V4.
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If we increase the forward bias Vg then we can write
eV = epr + €V (3.6)

and the quantity V, will represent further the "applied” bias on the active structure
between [—d, d.

In Fig. 3.9 it is shown that the quantity eV is exactly the modification of the
potential energy at the boundary point z = d from the flat band configuration to
the applied bias configuration:

eV, = Vyld) = V(d). (3.7)

where V4 (2) is the potential in the flat band configuration and V' (z) is the potential
for the structure under the bias V.

E=0 f——\] k "

Figure 3.9: The band diagram scheme in the scattering region, for flat band con-
figuration (dashed line) and for an applied bias (continuous line), which shows that
eV, is the difference between the potential values at the right boundary point z = d.

3.3.1 Wigner Eisenbud functions

In this section we analyze the effect of the external electrical field on the closed
counter part of our scattering problem, i.e. the effect on the Wigner-Eisenbud
functions. The self-consistent calculations are performed as in Sec. 2.4. The number
of zeros for the Wigner Eisenbud functions, their order, do not change in the self-
consistent procedure. But their form, i.e. the position of their maxima and minima,
changes during iterations, because it is directly related to the form of potential,
calculated iteratively. A typical configuration of the Wigner Eisenbud functions at
the end of the self-consistent procedure is presented in Fig. 3.10 a)



3.3. APPLIED BIAS o7

El El
S, ‘ S,
=< 8
" =<
\
!
_____ 5 ‘.
— 6 ‘,
—_—7 l‘
—-—- 8 \
\
|
|
-80 -60 -40 -20 0 20 40 60 80 -80 -60 -40 -20 0O 20 40 60 80
z [nm] z [nm]

Figure 3.10: Left: The Wigner Eisenbud functions around the localized one for

applied bias V, = 20mV. Right: the localized Wigner Eisenbud function for different
applied biases.

Because the Wigner-Eisenbud problem is a closed one, one can discuss about a
localized Wigner Eisenbud function, which in our case is the 6" one in the left part of
Fig. 3.10. In the right part of Fig. 3.10 we can observe how its localization character
changes with increasing applied bias: the maximum of the function increases while
the width of the function and the coupling with the external region decrease.

The energy corresponding to the localized Wigner-Eisenbud function, can be
taken as a first approximation for the energy of the quasi-bound state which appears
by increasing the applied bias. This approach is reasonable for small V biases, but

for bigger ones one needs a more accurate method to find the energy and the width
of the quasi-bound state (see Sec. 3.6.1).

3.3.2 Wave functions and quasi bound states

As one can see from Fig. 3.7(a), our potential energy configuration is so that
Vi < Vg, which means that the Schrodinger equation (2.6) has a continuous non-
degenerate eigenvalue spectrum between V7 and Vi, and also for this energy interval
can appear quasi-localized states. They are not localized states, because the ener-
gies € > Vp correspond to the classically allowed spectrum so that we call them
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quasi-bound states. Their energies generally manifest as maxima in the tunneling
spectrum. Because of the blocking barrier between the back contact and the top
metallic gate, the tunneling probability is practically zero, so we should find another
quantity on whose structure the presence of the quasi-bound states can be identified.
Such a quantity is the probability distribution density P.(z) = [% (¢, 2)|?, to find
an electron in the state ¥X(e, z) in a volume element at the given z-coordinate as is
also suggested recently by Magnus [82].

We plotted in the left part of Fig. 3.11 P.(2) at a fixed point 2, < z, = 39.5nm
for an interval of energies around the energy of the localized Wigner Eisenbud func-
tion. The function P.(z,) has a peak with the maximum at ¢;. We can define an
interval centered on €y, where the peak extends, and all scattering states with energy
in this interval are referred to as quasi-bound states. This interval becomes smaller
and smaller by increasing the gate voltage V, and the integration over this interval
for calculating the contribution to charge density Eq. (2.88) should be done finer.
Finding correctly this interval is essential for an accurate determination of the ac-
cumulated charges in the quantum well. If this quantity is over- or under-evaluated
then the self-consistent procedure does not work properly.
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Figure 3.11: Left: The wave function | (¢, 2,)|? at a fixed point z,, for an interval of
energies around the energy of the localized Wigner Eisenbud function. With dotted
line is plotted the potential of the quantum well in front of the blocking barrier, for
V, = 0.06V. Right: The localized wave function [¢)* (e, 2,)|? (upper part) and the
corresponding self-consistent potential (lower part) for V;, = 10, 30, 50mV.
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The absolute value of the wave function for the energy ¢ is plotted in Fig. 3.12.
This wave function does not tend to zero at the left edge of the scattering region. Its
oscillations for z ~ —d shows that the associated state is not totally decoupled from
the left reservoir and consequently not bound. But it is usual to call it quasi-bound
state because the probability distribution density P.(z) has a very sharp maximum
for this energy as it is shown in the left part of Fig. 3.11 for the fixed point 2 = z,. In
the same time, this wave function has zero values on the right edge of the scattering
region, which shows explicitly that it is totally decoupled from the right reservoir
(i.e. metallic gate).
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Figure 3.12: The wave function of the quasi-bound state (solid line) and the self-
consistent potential (dotted line) for V;, = 0.03V. The energy and the width of the
quasi-bound state are ey = 0.139137eV and I' = 0.105 x 10~3eV, respectively.

The self-consistent potential and electronic density distribution for some applied
biases are presented in Fig. 3.13 a). These figures shows that the two distributions
do not practically change in the back contact region, around zy; = —60.5nm. We
present in Fig. 3.13 b) the potential and the charge density only for the accumulation
layer. Increasing the applied bias, the band bending at the interface between the
GaAs spacer and the blocking barrier increases, forming a quantum well which can
support quasi bound states. The system is open for electron exchange with the
back contact and these states are populated leading to charge accumulation at the
interface between the spacer GaAs layer and the blocking barrier. With applied bias
increases also the accumulated charge in the quantum well, Fig. 3.13 b), upper part.
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Figure 3.13: a) The self-consistent potential (lower part) and electronic density
distribution (upper part) for the nominal structure at biases V, = 0, 10, 50, 90 mV'.
b) Electronic density distribution (upper part) and potential (lower part) in detail
for the accumulation layer.
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3.4 Comparison to the MOS

If we compare our structure with the MOS (metal-oxide-semiconductor) structure,
which was very intensively studied in the Si-SiO, systems [53], we can observe some
useful similarities but also some differences.

In Fig. 3.14 we sketch the band diagrams for both structures: the MOS structure
(in the upper part) and the GaAs/Al,Ga;_,As heterostructure (in the lower part).

A typical MOS structure with n-type inversion region consists of a p-type semi-
conductor (e.g. silicon), an oxide barrier and metal contact [50]. For the semicon-
ductor region the bulk equations (for charge density, energy levels, ...) are valid
and we can call this "bulk region”. The chemical potential is equal everywhere in
the semiconductor. The band-bending approximation is valid. This means that the
density of states in the conduction and valence bands is not changed by an elec-
tric field. In the band-bending approximation the effect of an electric field is only
to shift all the energy levels in the conduction and valence bands by a constant
amount determined by the potential at every given point in the semiconductor. The
inversion layer appears at the gate voltage for that the intrinsic Fermi level bends
down to the chemical potential. The active region consists of the depletion region,
of micrometers order, and inversion region, of nanometer order. For high applied
voltages and high electron concentration in the inversion layer the surface quanti-
zation appears, the band-bending approximation is not anymore valid (the density
of states is changed by the electric field) and the quantum mechanical calculations
are necessary [53].

The present structure consists of i.) a heavily doped region of GaAs, for which
the bulk model is taken valid, and the chemical potential is already in the conduction
band, ii.) continued with intrinsic region of the same material GaAs, iii.) a blocking
barrier and iv.) metallic gate. The field induced 2DEG, which constitutes the active
region, appears at the interface between the GaAs spacer and the blocking barrier for
an applied bias for which the conduction band bends under chemical potential. The
active region is of nanometer order and the 2DEG can be in contact with n-doped
region. The barrier, consisting of different layers of GaAs and Al,Ga;_,As may be
penetrable which is a major difference to the classical MOS structures, although
there exist also leakage current for thin oxide barriers. In the present modeling we
do not consider penetrable barriers, so there is no current flow.

Another difference between these two structures is that the distance between
the active region and the ”bulk region” in MOS structure is fixed through the
depletion length, while for the present structure can be engineered in the growing
process. Thus, the free electrons in the active region are for MOS structure far
away from the free carriers in the p-type silicon, while for the present structure the
electrons in the active region can be in contact with the free electrons in the n heavily
doped GaAs region. While for the classical MOS structure, for low gate voltages
a drift diffusion model can be applied, for the present structure purely quantum
mechanically calculations for any applied bias should be performed to find the free
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Figure 3.14: Comparison with MOS structure. a) Energy diagram of the MOS
system for p-type silicon in depletion-inversion. b) Conduction band diagram for
the analyzed GaAs/Al,Ga;_,As heterostructure, which yields a field induced 2DEG.
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carriers concentration.

Both structures can be analyzed within capacitance spectroscopy. For both
structures one plate of the capacitor is the metallic gate and the second plate is
the "bulk material”: semi-infinite p-Si or n-doped GaAs (back gate), respectively.
When the field induced inversion layer or 2DEG, respectively, appears then it plays
the role of the second plate.

3.5 Capacitance

By modulating V; with a small ac voltage, the ac current through the sample can
be measured. The real part of the current depends on the tunnel resistance while
the imaginary component is determined by the capacitance of the structure. The
experimental data [71] were obtained by studying the imaginary component of the
ac current through the sample as a function of the gate voltage (C-V curve), at low
frequency ~ 100Hz and temperatures ~ 25mK. The amplitude of the ac voltage
does not exceed 1mV and corresponds to the linear regime. The gate surface is
S =20 x 40um?.

As we emphasized in Sec. 3.2 the particular configuration of the analyzed struc-
ture (Fig. 3.2) does not allow incident electrons from the right contact (top metallic
gate). That means that only the scattering states incident from the left (back) con-
tact have a contribution to the electronic density distribution. According to Egs.
(2.152) and (2.153), p(2) = p1(z) and pa(z) = 0.

Following the capacitance model presented in detail in Sec. 2.6, we identify the
free charges in the system with

ofree = —e/zp(z)dz, (3.8)
o = 0, (3.9)
and the bound charges with
glownd ¢ /_dd(ND(z)—NA(z))dz, (3.10)
ohmd = (. (3.11)

We consider all impurities completely ionized, N (z) = Na(z) and Nj(z) = Np(z).
In contrast to Egs. (2.148) and (2.150), for our structure which does not allow
incident states from the right it is more convenient to associate all fixed charges with
obound - Ag was pointed out in Sec. 2.6 these charges do not vary with the applied
bias and consequently have no contribution to the capacitance.
According to the definitions (2.146) and (2.147) we can now express the charges
corresponding to the plates of the capacitor:

Zl :01+Q7 22 = 09, (312)
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where the sheet charges at the interfaces between the quantum system and the
contacts, o1 and oy, respectively, are given by Eqs. (2.142) and (2.143) and Q is
the total electrical charge inside the quantum system, (2.144). We have the general
form (2.154) of the neutrality condition which becomes

01+Q:—0'2 (313)
in our particular case. The differential capacitance per area is
dX, d>ls
C=|—|=|-"|- 3.14
|- | (3.14)

Note that V,q which appears in Sec. 2.6 means for our structure V. The capacitance
given by Eq. (3.14) is presented in Fig. 3.15, together with the quantities 1/, 012
and of" % + gt 5, is constant because the self-consistent potential in the contact

region, —d < z < zng4, does not practically change with applied bias.
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Figure 3.15: Lower part: The areal charge densities defined in our capacitance
model, ¥y, 0172 and of " + . Upper part: The capacitance given by Eq.
(3.14), multiplied with the surface S. The residual N4 doping is taken into account.

In Fig. 3.16 we present for comparison the experimental data and the capacitance
calculated in our model. Qualitatively, the C-V-traces take the form of a broadened
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step located between a low-voltage, V' < V_, and a high-voltage, V' > V., plateau.
Both plateaus have a weak positive slope. We define the center of the step through
the condition d*C/ de = 0 and V_ and V, correspond to the gate voltages where
|dC'/dV,| takes half of its maximum value. Because the work function of the metal
contact is not precisely known we shift the theoretical voltage scale V, with respect to
the experimental one Vi, so that the centers of the steps coincide. The applied bias
for the flat band configuration, which determine the shift between Vi and V, (Eq.
(3.6)) is ®; = 0.701V when the N4 doping is taken into account, and ®; = 0.71V
when Ny = 0 (see Fig. 3.2). One can see in Fig. 3.16 that considering the residual
N4 doping, the numerical C-V curve closes with the experimental one.
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Figure 3.16: The experimental data and the calculated values for the capacitance of
the nominal structure. Cp,gp, is the high frequencies capacitance limit.

We can estimate the limit values of the capacitance using the classical formula

€0€r - S

C:l’

(3.15)

where S is the area of the plates, [ the distance between the plates and ¢, the relative
permittivity of the material between the plates, Fig. 3.17. For our system, ¢, = 12.5
and S = 800um?.
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L

Figure 3.17: The geometrical scheme for the limit values of the capacitance.

At high frequencies the charge is not accumulating at the interface between
the GaAs spacer and the blocking barrier and the capacitance will be determined
regarding the two contacts as the capacitor plates. The distance between the plates
can be taken from the geometrical considerations as l; = d — zy4g = 141nm, which
gives

Ciny = 0.628 pF.

But, the free charges (electrons) from the back contact enter the system, so that a
better evaluation of the distance between plates is given by the experimental value
[71], {1 = I, = 120nm, which leads to

Chigh = 0.7375 pF.

In the opposite limit, for low frequencies, the two dimensional electron gas
(2DEG) is formed in front of the blocking barrier and plays the role of the left
plate of the capacitor. Also in this case, the right plate is the metal gate, so that
the distance between the plates can be considered Iy = d — 2z, = 41nm which gives

Coup = 2.16 pF.

But the 2DEG is not a d-charge distribution located at z = z;,, as would be considered
within a classical image of the spatial location of the charges in front of the blocking
barrier. So, we should consider the spatial spreading of the 2DEG and should take
the distance between the plates as the experimental value ly = [, — [, = 50nm. In

this case
C =1.77 pF,

which is in good agreement with the value of the high voltage capacitance plateau.
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In Fig. 3.16 we indicate by a horizontal line the capacitance limit value Ch;gp,
which is approached in the small voltage regime. For these voltages there are net
charges only in the source contact region of the scattering area (—d < z < zy4) and
these charges are only weakly dependent on the applied bias.

In Fig. 3.18 we plot the numerical values of the capacitance for different struc-
tures at which the distance between the blocking barrier and the doped region,
s = 2y — zng, Was modified from 100nm as for the nominal structure to 80nm and
70nm. One can immediately observe, that the value of the low-voltage plateau in-
creases, because the distances between the plates in the Cj,gp limit decreases. At
s = 70nm the high voltage plateau value is evidently smaller as in other cases. We
think that there is a superposition between the Thomas-Fermi screening length in
the back contact and the penetration length of the wave function of the 2DEG into
the shallow barrier which separates the 2DEG from the back contact. This needs to
be verified in future experiments.

0.7

0 0.05 0.1 0.15
Vv, V]

Figure 3.18: The numerical capacitance values (without considering the N, doping)
for different distances s between the blocking barrier and the doped region, s =
Zp — ZNd-
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3.5.1 Impenetrable barrier

Our analyzed structure contains a blocking barrier (see Fig. 3.2) which was consid-
ered of 1eV height and it is practically an impenetrable barrier. The self-consistent
calculations for the electronic density distribution, Figs. 3.7(b) and 3.13 b), show
that the penetration of the electrons in the blocking barrier is practically negligi-
ble. In this case one can calculate the capacitance with Gauss’ law as it is done by

Schmerek [79]:

C 0
5= eoera—vg <]€ VV(z)- nds> : (3.16)

where the surface I' encloses the free charge of the 2DEG and has the boundaries

inside the blocking barrier and inside the back contact (see Fig. 3.19); n is the
external normal at this surface.

Gauss box

Figure 3.19: The Gauss box which includes the free and bound charges and extends
over the back contact and into the blocking barrier. The potential is plotted with
solid line, the ionized donors distribution Nj, with dashed line and the ionized
acceptors distribution N, with dot-dashed line. The gray area corresponds to the
the electronic charge density p and the dashed area represents the § sheet charge,
o1, at z = —d.

The Gauss’ law gives
/ divEd*r = 7{ Ends, (3.17)
v r

where V is the volume enclosed by the surface I'. Because the potential varies only
in the growth direction z, the electric field E has only the z-component different
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from zero. In the back contact (2 < —d) the potential is constant (V(z) = V1) so
that the electric field is zero. The right side of the Gauss box is taken exactly at
the beginning of the blocking barrier and the electric field here is

1 dV(z)
E& - ) 1
= | (319)
so that p
1
Ends = 5+ ) (3.19)
r e dz o
From the Maxwell equation we have
divE =~ [N} (2) — Ny (=) — p(2) (3.20)
€o€r

and performing the integral over the volume V in Eq. (3.17), one obtains the total
charge inside the Gauss box

SQin = / divEdr = S/Zb dz(010(2 +d) — N3 (2) + Nj(2) — p(2))
% —d—n
= S(oy + otound 4 gfreey, (3.21)

where 17 > 0. This charge represents in fact the charge on one plate of the capacitor,
Y1 (Eq. (2.146)), and its variation with applied bias gives the capacitance

thn
CiSdVg'

(3.22)

This expression is equivalent with the definition (3.14).

So, we have demonstrated that for a system which contains an impenetrable
barrier the charge on a plate of the capacitor is straightforward obtained with the
Gauss law knowing the potential slope in front of the impenetrable barrier. The
capacitance is given as usual by the variation of the plate charge with respect to
the applied bias. We would like to emphasize, that this method is not anymore
helpful for a penetrable barrier, because the Gauss law takes into account the spatial
distribution of the charges but not their ancestry (i.e. from which reservoir they are
coming)!

3.6 Intermediate resonance

In this section we will analyze the critical voltage regime, i.e. the step in the C-
V curve between the low- and high- voltage plateaus, Fig. 3.20 and we will show
that it can be described by a single resonance which we call intermediate resonance.
We emphasize the excellent quantitative agreement between theory and experiment.
From Fig. 3.20 it can be seen that the step in the C-V characteristic is located in
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a regime of gate voltages where the maximum V., of the potential barrier which
separates the back contact from the potential pocket at the interface between the
GaAs spacer and the blocking barrier (see Fig. 3.13) is below the chemical potential,
iz Consequently there is an open channel of classically allowed motion, V., <
€ < pp. This finding resulted in a number of calculations with varying distance of
the back gate to the barrier and varying background doping concentration in the
GaAs-spacer layer.
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Figure 3.20: Upper part: The C-V curve, experimental data [71] (filled circles) and
theory (solid line) in the step region. Lower part: As the result of the complete
numerical calculation the resonance energy €. (solid line), and the energies ey
at which the absolute value of the wave function takes half the maximum value at
constant z = 2.y (dotted lines). The corresponding values €&, (filled triangle) and

el (triangle) in the Fano approximation. Shaded area: energies with V.. < € < pur.

To analyze the physical process that underlies the step in the C-V curve we plot
in Fig. 3.21 the energy- and space-dependence of the probability distribution density,
P.(2) = |9 (e, 2)|?, to find an electron in the state ¥ (e, z) in a volume element at
the given z-coordinate. We would like to point out that the analyzed system has
zero transmission because of the blocking barrier, therefore the appropriate quantity
to study is the probability distribution density.
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Figure 3.21: The energy- and space-dependence of the electron probability distri-
bution density P.(2)/Puax for three values of applied bias: a.)V, = —0.005V, b.)
V,=0.01V, and c.) V;, = 0.06V. Pyax = P, (2max) is the maximum value of P.(z)
in the considered energy and space domain, and depends on V. We can not keep
the same units for all three plots because the total charge in the system varies with
V.
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In the low-voltage plateau, Fig. 3.21(a), the wave functions are confined in the
back contact (apart from an exponential decay outside). There is no particular en-
ergy structure of the scattering functions. In contrast, in the center of the step,
around V., Fig. 3.21(b), there is a pronounced maximum of P at € = €ya, and
2 = Zmax Which defines the intermediate resonance (IR). The resonance energy lies
in the classically allowed range and the intermediate resonance thus has a Fabry-
Perot character. The spatial center of the intermediate resonance, z.y, is close to
the place of maximum potential, V., i. e. the intermediate resonance is located in
space between the back contact and the potential pocket in which the isolated 2DEG
is formed at higher voltages. Finally, in the high-voltage-plateau, Fig. 3.21(c), the
resonance corresponds to a quasi-bound state (QBS). Because of the weak pene-
tration of the wave functions into the back con