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Chapter 1

Introduction

Instabilities of thin liquid films between a solid substrate and a gas atmo-

sphere have attracted much scientific interest. The main focus lies thereby on

front instabilities of moving contact lines [4, 12, 19] or on instabilities of the

free liquid-gas interface of a flat film [97, 124, 130]. A recent review can be

found in Ref. [80]. To analyze such instabilities a long-wave or lubrication ap-

proximation [80, 101, 116] is often used as a very powerful tool especially for

low Reynolds number film flows. At present the basic behavior of one-layer

films in the physically different thickness ranges is well understood. Several

instability mechanisms exist that by means of different driving forces may

destabilize an initially flat film. They are described, analyzed and modeled

in a large number of experimental [48, 97, 98, 107, 114, 130, 131] and theoret-

ical [3, 9, 27, 70, 80, 81, 103, 104, 110, 111, 112, 120, 123, 126, 127, 133, 135]

works. For film thicknesses d less than about 100 nm, effective molecular

interactions between the film surface and the substrate dominate all the

other forces, like thermo- and soluto-capillarity or gravity, and thus deter-

mine the film stability. For heated films of thicknesses above 100 nm, even-

tually thermocapillary forces become the most important influence leading

to an instability caused by large-scale Marangoni convection [9, 130]. It

is dominant up to an upper limit of the film thickness determined by the

competition between large-scale and small-scale convection modes [42]. For

even thicker films with thicknesses above 100µm also the gravity force be-
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comes important. Depending on its direction it may stabilize the large-scale

Marangoni instability or destabilize the film further (Rayleigh-Taylor insta-

bility) [81, 135]. The lubrication approximation is valid up to a limiting film

thickness obtained by the requirement that the wave length of the dominant

instability mode λm is much larger than the film thickness d, i.e. λm À d.

For the Rayleigh-Taylor instability λm depends on the interfacial tension,

the density of the liquid and the gravitational acceleration but not on the

film thickness [80]. It is of the order of 103 to 104 µm implying an upper limit

for the film thickness of 102 to 103 µm. As a preface to the present work

we give here a brief description of each of the above mentioned instability

mechanisms.

Intermolecular forces. The stability and evolution of liquid films of thick-

nesses below 100 nm is determined by effective molecular interactions be-

tween substrate and film arising, for instance, from Van der Waals, elec-

trostatic or entropic interactions [45, 47]. Such films are linearly unstable

if the energy of the intermolecular interaction is a convex function of the

film thickness. For film thicknesses above 10 nm the long-range Van der

Waals forces dominate. They can be of different nature depending on the

molecular properties of the involved media. One distinguishes interactions

between two randomly orienting dipoles (orientation interaction), between

a randomly orienting dipole and an induced dipole (induction interaction),

and between a fluctuating dipole and an induced dipole (dispersion interac-

tion). Between two parallel interfaces at a distance d, all these forces decay

as A/d3 where A is the Hamaker constant [47]. An unstable situation corre-

sponds to a positive Hamaker constant. Note, however that different schools

use different sign conventions. The dominant wave length of the instability

λm increases monotonically with d as λ ∼ d2 (see Ref. [80]). The stability

of a film may change dramatically for a substrate coated with a layer of

different dielectric properties as, for instance, a silicon substrate (Si) coated

with an silicon oxide layer (SiO) [108]. There, for an oxide layer of about

2 nm only ultrathin polystyrene (PS) films below 4 nm thickness are linearly

unstable. Increasing the film thickness in the linearly unstable range, the

wave length λ increases rapidly and diverges at the critical thickness dc. For
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d > dc the film is linearly stable, but may rupture due to finite disturbances.

Marangoni effect. Due to the variation of the surface tension with tem-

perature tangential forces appear if the fluid is heated (cooled) from below.

Typically, these forces act stabilizing if the fluid is cooled from below. When

heating from below, the stationary conducting state of the fluid becomes un-

stable if a critical vertical temperature gradient is exceeded. This instability

is referred as Marangoni instability. There are two types of Marangoni insta-

bility, the long wave and the short wave. While the long wave instability is

accompanied by large amplitude deformations of the liquid-gas interface, the

short wave instability leads to the appearance of the convection cells under

almost flat film surface [5, 6, 8, 43, 87, 115, 119]. A slightly depressed piece of

the surface comes closer to the hot bottom plate, heats up and consequently

gets a lower surface tension than its surrounding. The resulting surface ten-

sion gradient causes a flow away from the depressed piece pulling out even

more liquid from this region thereby deepening the depression further. This

positive feedback corresponds to an unstable situation.

The evolution in time and space of the instability is often described by a

simplified equation for the profile of the free surface. It can be derived from

the Stokes equation using the lubrication approximation [80]. For the thin

film on a heated horizontal substrate this was done for a linear dependence of

surface tension on temperature in Ref. [15]. The effects of a quadratic depen-

dence of surface tension on temperature were studied in Ref. [82] for liquid

films on a horizontal substrates and in Ref. [81] on an inclined substrate. In

the latter case the evolution equation looses its variational structure allow-

ing for a richer bifurcation structure, as studied recently in some detail in

Ref. [122]. All the mentioned work focused on the structure formation in two

spatial dimensions, i.e. the object of study is a film thickness profile that

depends on one spatial coordinate. Pattern formation in three dimensions,

i.e. the evolution of a film thickness profile that depends on two spatial coor-

dinates was studied for a film on the underside of a cooled horizontal plate

where now gravitation acts destabilizing and the surface tension gradient

acts stabilizing [29]. Corresponding results for a film on top of a heated

plate were given in Ref. [78].
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Extensive experiments on the long wave surface-tension-driven convection

were performed for heated horizontal films below a gas layer of finite thick-

ness [131]. The formation of depressions (dry spots) and elevations were

observed depending on the used gas. The evolution equation for the film

thickness for the used two-layer geometry was also derived. It has a sim-

ilar form as the equation for the one-layer system but leads to a different

definition of the Biot number.

In a different approach the evolution of a film profile was followed numeri-

cally towards rupture using the full Stokes equation in combination with a

linear temperature field [11]. Cascades of consecutive “structuring events”

pointing towards the formation of a set of drops as the final state of the

system were found. Due to a slowing down of the numerical scheme once

the minimum film thickness becomes very small the final state of the system

could not be reached. However, the qualitative agreement between these

results and those obtained from long wave approximation [78] indicates that

the main features of the physical system are well captured by this approxi-

mation, as already noted for falling liquid films [80, 95].

In the last few years some theoretical and numerical work was dedicated to

pattern formation and instabilities of liquid films in three spatial dimensions

[7, 31, 78, 79, 112, 113]. Especially [78] deals with films unstable due to

the Marangoni effect. There, the temporal evolution was restricted due to

rupture which occurred when the thickness of the film achieved unphysical

negative values. Therefore no results in the long time limit are known up to

now. To examine a fluid film in the long time in three dimensions under a

vertical temperature gradient one needs to include a stabilizing effect which

is obtained by introducing a disjoining pressure which becomes effective for

very small film thickness. This was done in Ref. [9]. Instead of rupture

and completely dry domains the solid support is always covered by a thin

precursor film of thickness of some 10 nm. The spatio-temporal evolution of

the film surface was analyzed when a horizontal force is applied externally

[9]. This situation is found when the fluid layer is inclined with respect to

the vertical. The formation of periodic structures perpendicular to the slope

as well as the instability of fronts moving downwards the inclined plane were
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discussed.

External disturbance. The creation of well defined micro- or nanostructured

thin films of soft matter attracted much interest over the last years. Un-

stable films on solid substrates are used in several ways to produce such

patterns with defined length scale and structure. (i) One may directly em-

ploy the surface instability by choosing the initial film thickness such that

the predominant mode gives exactly the wanted length scale. However, the

pattern has only a short-range order and the structure cannot be chosen

independently but is also determined by the film thickness (holes, drops or

labyrinths [7, 9]). The evolution has to be stopped before coarsening sets

in, for instance by evaporation [124] or freezing [10].

One can also use a structured substrate forcing the thin film to image it

[96, 102]. Contrary to (i) one needs to know the instability length scale only

approximately because ideal imaging is possible in a range around it [14, 51].

Desired patterns can also be obtained by manipulating the flow on the micro-

scopic scale. This can be done by means of electrohydrodynamic pumping,

electro-osmotic flow, electrowetting, thermocapillary pumping and simulta-

neous action of shear stress at liquid-gas interface and a variable surface

energy pattern at the liquid-solid interface [52].

Two-layer films. By replacing the (solid) coating layer by a liquid layer

one transforms the system into a two-layer liquid film. Some of the results

obtained for a solid coating can be directly transferred to the new situation.

The stability of the (now) upper layer still depends on the (now liquid)

coating layer. However, additionally the liquid coating layer itself may be

unstable making a re-evaluation of the stability necessary. This gedanken-

experiment leads quite naturally to the extension of the well studied one-

layer systems to two-layer systems. In general, there exist two possible

two-layer geometries. On the one hand the two liquid layers can be situated

between two solid plates leaving only the interface between the two liquids

free to move. In consequence such a system can be described by a single

evolution equation [61, 62, 69]. On the other hand the two layers can be

situated between a solid substrate and a gas atmosphere. Then both, the
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liquid-liquid and the liquid-gas interface are free to move and their evolution

has to be described by coupled evolution equations. Models were derived, for

instance, assuming a lower liquid layer that is much thicker than the upper

layer [13], and for two-layer systems with surfactants (and non-Newtonian

behavior) [21, 67, 137] or including evaporation [23, 24, 86]. A two-layer

system under the solely influence of molecular interactions is studied in

Ref. [1, 2]. In Ref. [91] a similar system is studied, however, the evolution

equations are given in terms of variations of an energy functional.

The experimental interest in two-layer liquid films is up to now mainly fo-

cused on the dewetting of a liquid layer from a very thick layer, i.e. a liquid

bulk substrate [37, 57, 72, 84, 134]. In contrast Ref. [99] studies the dewet-

ting of a polystyrene (PS) layer of 15 to 68 nm thickness from a 46 nm thick

polyamide (PA) layer. The substrate is a silicon (Si) wafer covered with a

layer of native oxide. At high temperature (195oC) and small thicknesses

(15...35 nm) the PS layer is unstable and dewets exhibiting typical spinodal

patterns. At low temperature (115oC) the PA layer is solid resulting in a

stable PS layer, independent of its thickness.

Ref. [66] studies relatively thick layers (100 nm to 1µm thickness) of

poly(dimethylsiloxane) (PDMS) layers on a liquid substrate of fluorinated

PDMS. They show that the PDMS films are metastable and may dewet

by nucleation of holes. The velocity of the growth of holes depends on the

viscosity and thickness of the substrate. In another system (PS layer on

poly(methylmethacrylate) (PMMA) layer, both with thicknesses of about

100 nm) the dewetting velocity was found to exhibit a minimum as a func-

tion of the viscosity of the lower layer [57]. Furthermore, for a polycarbonate

(PC) layer on a poly(styrene-co-acrylonitrile) (SAN) layer Ref. [84] reports

a non-trivial dependence of the dewetting velocity on both layer thicknesses.

Starting from the Stokes equation in each layer and using appropriate bound-

ary conditions, the coupled evolution equations for two-layer liquid films

were derived in Ref. [91]. If only the long-range Van der Waals interactions

are included one can study different pathways of dewetting towards rupture

but can not describe the long-time evolution of such films as, for instance,
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necessary for the description of the above mentioned experiments. To pre-

vent the film rupture the simultaneous action of the short-range stabilizing

and the long-range destabilizing interactions is important. The derivation

of the system of evolution equations for a general interaction energy and a

non-isothermal situation was done in Ref. [92]. Thereby the main focus lies

on ultrathin layers with respective thicknesses below 100 nm for which the

effective molecular interactions between the four media are the dominant

influence.

The present work is structured as follows. The introductory part starts with

the historical overview of the basic hydrodynamic equations and continues

with the derivation of the one-layer thin film equation in the lubrication

approximation (Chapter 2). The detailed analysis of the long-range as well

as short-range intermolecular interactions is given in Chapter 3. The main

part of the work is divided into two large sections. Chapter 4 is devoted to

one-layer films and Chapter 5 presents the analysis of the time evolution of

two-layer films.

In Chapter 4 we first discuss the 3D large-scale Marangoni convection in

one-layer films with stabilizing long-range interaction. Linear stability anal-

ysis, nonlinear stationary solutions, as well as 3D time dependent numerical

solutions in plane and inclined layers are presented. In the second part of

Chapter 4 the influence of an external disturbance on the time evolution

of one-layer films is investigated. In the case of a non-contact method, an

external disturbance can be used to move a single drop, front or hole in a

certain direction [93]. The principle is illustrated by incorporating a sonic

disturbance in a thin film equation to study the evolution of ultrathin films

unstable due to their wetting properties. The second method is based on

inhomogeneous templating of the substrate. Here we study the influence of

periodic modulation on coarsening in the long time limit. Finally, the fully

nonlinear evolution of a 3D system is presented by numerical integration.

Chapter 5 begins with the derivation of the long wave evolution equations

for a two-layer film in the general non-isothermal case allowing also for

slip at the substrate [92]. Focusing on the isothermal case without slip
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these equations are analyzed and integrated numerically in the subsequent

sections. Concluding remarks on both one-layer and two-layer films are

presented in Chapter 6.

Finally, the expressions for the surface tension gradients in terms of gradients

of the layer thicknesses are discussed in the Appendix.



Chapter 2

Stokes equation and

lubrication approximation

The laws of liquid motion have attracted the interest of scientists for many

centuries. Already Newton [75] and later Plateau [89] investigated the

static properties of soap films. Probably the most prominent and earliest

result on the dynamics of liquids is the equation by Euler [36]

ρ [∂tv + (v∇)v] = −∇p, (2.1)

where v, ρ and p denote the velocity field, density and pressure of the liq-

uid, respectively. Although Newton and Bernoulli considered isolated

problems involving fluids, it was Euler who laid down the foundations of

hydrodynamics through a systematic investigation of its basic equations.

Hence it is only appropriate that the inviscid equation of motion is named

after Euler often regarded as the originator of modern hydrodynamics. Later

Navier (1822) and Stokes (1842) modified Euler’s equation to describe the

motion of viscous fluids

ρ [∂tv + (v∇)v] = −∇p+ ν∆v, (2.2)

where ν denotes the dynamic viscosity of the liquid. Since that time the

Navier-Stokes equation is the basic governing equation which is used to

solve both theoretical and purely engineering problems of fluid dynamics,

aeronautics.



14 Stokes equation and lubrication approximation

Unfortunately, the solutions of the full Navier-Stokes equation are numeri-

cally expensive. The convection term (v∇)v and the dissipation term ν∆v

make the equations highly nonlinear of the second order in space. Analytical

solutions are possible only for few special cases of simple geometry [58].

This enhanced in the beginning of the last century the development of dif-

ferent simplifications of the Navier-Stokes equation. Such simplifications

(approximations) are valid for certain flow regimes. Thus, fluid friction,

i.e. the interaction between the molecules of the liquid, can be neglected if

the dynamic effects prevail. In this case (also called inviscid or ideal flows)

the Navier-Stokes equations Eq. (2.2) reduce to the Euler ones Eq. (2.1).

Strictly speaking, inviscid flows are those for which the Reynolds number

Re = ρUL/ν is large. Here U is a measure of the flow speed and L is a

measure of the length scales associated with the velocity gradients in the

flow or with the geometry of the flow. To ensure the consistency and solv-

ability of the inviscid flow equations, one also has to ignore the no-slip and

heat flux boundary conditions. The ideal flows solution obtained with such

boundary conditions failed to predict phenomena such as drag or the onset

of vorticity.

It was Prandtl [94] who justified the use of the ideal flow approximation

and combined it with the viscous flows equation. He noted that, far away

from a solid wall, viscous interactions are not significant in determining the

flow field. However, in a thin region near a solid boundary, the viscous inter-

actions has a significant effect on fluid motion. Prandtl’s idea of a boundary

layer, a thin region near a surface where all of the viscous effects reside,

made tractable the flow calculations that take viscosity into account. This

led to yet another approximation of the Navier-Stokes equation Eq. (2.2),

known as the boundary layer equations [94].

The opposite case to the ideal flows is the Stokes approximation. It is valid

only for small Reynolds numbers, when the viscous friction plays a significant

role

∇(p+ φ) = ν∆v. (2.3)

Here φ stands for the volume density of the potential of the external bulk
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Figure 2.1: Sketch of the problem in two dimensions. The local film thickness is

h. In the non-evaporating case the volume of the liquid does not change with time,

i.e.
∫
hdx = const.

forces. In the present thesis the Stokes equation Eq. (2.3) together with the

continuity equation for incompressible liquids (div v = 0) are the starting

point for all calculations. In the following we consider the time evolution

of a thin liquid film on a solid support with free liquid-gas interface, as

shown in Fig. 2.1. The flows within thin liquid films are slow due to the

no-slip condition at the substrate. The horizontal component of the velocity

field can not increase significantly within the length scale given by the film

thickness. This is true only if not taking into account slopes with large

inclinations or considering strong external shear stresses.

To proceed we also need boundary conditions at the free liquid-gas interface

of the film. These are the kinematic condition and the boundary condition

for the liquid stress tensor

w = ∂th+ u∂xh, T · n = −kσn +
∂σ

∂s
t + f , (2.4)

respectively. Here w and u are the vertical and horizontal components of the

velocity field, respectively, and h is the local film thickness. T is the stress

tensor of the liquid, n is the unit outward vector normal to the interface, t is

the unit vector tangential to the interface, σ is the surface tension, f is the

prescribed forcing at the interface, whose normal and tangential components

are p0 and τ , respectively, k is the local curvature of the interface, and s is
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the arc length along the interface, such that

n =
(−∂xh, 1)

(1 + (∂xh)2)1/2
, t =

(1, ∂xh)
(1 + (∂xh)2)1/2

, k =
∂2

xh

(1 + (∂xh)2)3/2
. (2.5)

At the substrate we use the Navier slip condition

w = 0, u− β∂zu = 0, (2.6)

where the slip length β is assumed to be small.

The issue of free interfaces is a big problem in fluid dynamics. Even consider-

ing the low Reynolds number flows, when the linear Stokes equation Eq. (2.3)

is applicable, one has to incorporate the boundary conditions Eq. (2.4) to

obtain a closed system of equations for v and h. This free interface problem

can be handled only numerically. Analytical results are possible only for

small deviations of the film thickness from a mean value [42, 74, 73].

Fortunately, for a special class of problems one can use a lubrication (or long-

wave) approximation (Reynolds 1883 [100]) to further simplify the Stokes

equations Eq. (2.3) and the boundary conditions Eq. (2.4). The lubrication

approximation accounts only for those disturbances of the film thickness

whose lateral wave length λ is much larger than the mean film thickness

d. Thus, the appropriate dimensionless parameter ε = d/λ ¿ 1 is used to

introduce the scaling of the lubrication approximation [80]. The vertical and

the horizontal coordinates and velocities are scaled as

Z =
z

d
, X =

εx

d
and W =

w

εU0
, U =

u

U0
, (2.7)

respectively. Here U0 is the characteristic velocity of the problem. The

dimensionless time, stresses, normal component of the liquid stress tensor

and the density of the potential of the bulk forces are

T =
εU0

d
t, S =

d

νU0
τ, P0 =

εd

νU0
p0, Φ =

εd

νU0
φ. (2.8)

Using these scales we nondimensionalize the Stokes equations Eq. (2.3) and

obtain to leading order in the lubrication parameter ε

∂2
ZU = ∂XP + ∂XΦ, ∂Z(P + Φ) = 0. (2.9)



17

As it can be extracted from Eq. (2.4), the surface tension terms are measured

by C−1ε3, where C = U0ν/σ denotes the capillary number. It will turn out

to be essential to retain surface tension effects at leading order, so that one

takes C−1ε3 = C̄−1 to be of order one. Hence, the boundary conditions

Eq. (2.6) and Eq. (2.4) read

U − β0(∂ZU) = 0, (Z = 0), (2.10)

and

∂ZU = S + ∂XΣ,

−P0 − P = C̄−1∂2
XH, (Z = H), (2.11)

respectively. Here β0 = β/d is the dimensionless slip coefficient, Σ = εσ/νU0

is the dimensionless surface tension, H is the scaled film thickness and P0 is

the dimensionless pressure in the gas layer.

The first equation in Eq. (2.9) can now be integrated to yield the velocity

profile U(Z)

U(Z) = ∂X(P + Φ)
Z2

2
+KZ +B, (2.12)

where the integration parameters K and B depend only on X. Using the

boundary conditions Eq. (2.10) and Eq. (2.11) they are specified toB = β0K,

K = S + ∂XΣ−H∂X(P + Φ).

Integrating the equation Eq. (2.12) again over Z we obtain the stream func-

tion Ψ(Z,X) which is defined by ∂XΨ = −W, ∂ZΨ = U . With the help of

the stream function the kinematic condition in Eq. (2.4) can be written as

∂TH + ∂X [Ψ(H)] = 0, (2.13)

which is the evolution equation of the local film thickness H(X,T ).

Finally, using the second equation in Eq. (2.11) to determine the pressure P
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and scaling back to the dimensional variables, the equation Eq. (2.13) reads

ν∂th− ∂x

[(
h3

3
+ βh2

)
∂x

(
φ(h)− σ∂2

xh− p0

)]

+∂x

[
(τ + ∂xσ)

(
h2

2
+ βh

)]
= 0. (2.14)

This is the most general film thickness evolution equation which accounts for

the bulk forces (φ), for the thermo(soluto)capillarity (∂xσ) and for external

stresses (τ). As we already mentioned in Section 1, if the film thickness is

in the range of 100 nm, the intermolecular forces become important. The

action of these forces on the evolution of a liquid film can be modeled by

specifically choosing the potential φ in Eq. (2.14). In this case the function

φ is referred to as the “disjoining pressure”. Further on we will denote the

disjoining pressure by Π. It enters the thin film equation Eq. (2.14) with

the sign, opposite to that of the Laplace term σ∂2
xh. Depending on the

interaction type, the disjoining pressure can stabilize or destabilize the flat

film.

To find out what condition the disjoining pressure Π should satisfy to desta-

bilize (stabilize) a flat film, we linearize the evolution equation Eq. (2.14)

around h = h0 with h0 representing the mean film thickness. For simplicity

we put τ = ∂xσ = 0 and introduce a small disturbance of the film thickness

δh ∼ exp (γt+ ikx), where γ is the growth rate of the disturbance and k is

its wave number. In the first order in δh we have

γ =
1
ν

(
h3

0

3
+ βh2

0

) (−σk4 − ∂hΠ(h0)k2
)
. (2.15)

Dispersion relation Eq. (2.15) represents the so-called type-IIs instability

[22] when ∂hΠ(h0) < 0. Thus Π(h) acts destabilizing if ∂hΠ(h0) < 0 and

stabilizing if ∂hΠ(h0) > 0.

Heat equation. To study the non-isothermal liquid films one needs to couple

the temperature field ζ to the evolution of the local film thickness h. The

temperature equation read

ρc (∂tζ + (v∇)ζ) = κth∆ζ, (2.16)
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where c is the specific heat of the fluid and κth is its thermal conductivity.

At the free liquid-gas interface the continuity of the heat flux has to be

imposed

κth∇ζ · n = κg∇ζg · n. (2.17)

Here κg and ζg denote the thermal conductivity and the temperature in the

gas layer. In the zeroth order of the lubrication parameter the heat equation

and the heat flux equation become

∆ζ = 0

κth∂zζ = κg∂zζg. (2.18)

The last equations are used to derive the surface temperature ζ(h) in the

case of one- and two-layer liquid films. This is done in the Appendix.

In the next section we specify the potential Π for long-range apolar and

short-range polar interaction.





Chapter 3

Intermolecular interaction

3.1 Long-range interaction

Intermolecular interaction plays a decisive role in the stability and time

evolution of liquid films with film thicknesses of 100 nm or less. As a matter

of fact, the energy of interaction between the molecules of the ambient gas

layer and those of the substrate across the liquid layer Eint changes the

total spreading coefficient S which is the energy difference between the solid

substrate with the contacting gas and liquid phases S = Esg − Esl − Elg.

If Eint may not be neglected, it should be added to S. In the thin film

community (see for instance [54, 110, 111]) the constant part Esg−Esl−Elg

of the spreading coefficient S is omitted and the latter is given only by Eint.

In this Chapter we describe in detail the interaction term Eint which is often

divided into polar and non-polar parts. The non-polar part is associated

with the long-range interaction whereas the polar part with the short-range

one.

Consider two parallel interfaces which separate different media as shown in

Fig. (3.1). The interaction between single molecules of the media (1) and (4)

leads to an effective force which acts on the interfaces (1 − 2) and (3 − 4).

The value of this force per unit area, as well as its dependence on the dis-

tance between the interfaces D depends in a crucial way on the type of
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Figure 3.1: Two parallel interfaces (1−2) and (3−4) a distance D apart, separating

media with different dielectric properties. Two atoms with polarizabilities α1 and

α4 a distance d apart are shown schematically.

the molecules the media are made of. Moreover, even for the media with

determined molecular properties, the effective surface force can change its

functional dependence on D, when going to extremely small distances be-

tween the interfaces. This is similar to the Lenard-Jones potential, where the

long-range term 1/d6 prevails for large distances d between the molecules,

whereas the short-range term 1/d12 becomes important for distances com-

parable to the molecular size.

To derive the functional dependence of the surface force on D we start

with the interaction energy between single molecules, which depends on the

charge as well as on the dipole moment of the molecules. Speaking only

about simple homogeneous liquids, two important facts can be recalled to

simplify further the problem. First, the molecules of homogeneous liquids are

not charged and can be either polar or neutral. And second, the molecules

are not bounded in the liquids by any bonding force (hydrogen bonding, lat-

tice bonding) and thus can freely rotate around their symmetry axis. This

allows to exclude the charge-charge and the charge-induced dipole inter-
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actions from the discussion and concentrate on interactions which include

permanent freely rotating dipoles and neutral molecules. Thus only three

possibilities remain:

- rotating dipole-dipole interaction (Keesom [53])

- rotating dipole- induced dipole interaction (Debye [28])

- fluctuating dipole- induced dipole interaction (London [63])

Interestingly, the interaction energy between two molecules decays as 1/d6

with distance d between the molecules for all three interaction types. The

corresponding forces are usually referred to as long-range in contrast to

short-range forces which decay exponentially with d (see Section 3.2).

The mechanism of the fluctuating interaction was first proposed by London

in 1920. According to London, the charge density of the electrons in the

non-polar molecules admits fast temporal fluctuations, resulting in a time

dependent dipole moment. The fluctuating dipoles polarize the neighboring

non-polar molecules, leading to dipole-dipole interaction. If the distance

between the molecules becomes larger, the retardation effects lead to 1/d7

dependence of the interaction energy.

More precisely, the non-retarded dispersion energy of two molecules at dis-

tance d embedded in a medium with dielectric constant ε (see Fig. 3.1) is

given by the McLachlan’s formula [68]

U = − 3~
πd6

∫ ∞

0

α1(iξ)α4(iξ)
ε2(iξ)

dξ, (3.1)

where α1(iξ) and α4(iξ) are the polarizabilities of the atoms as functions of

the imaginary frequency. The retarded interaction energy reads

U = − 23~c
4πd7

α1(0)α4(0)
ε5/2(0)

. (3.2)

Note that the existence of the dispersive force between two interfaces which

separate different media resembles the well known Casimir effect (Casimir,

1948 [18]), when two parallel conducting plates in vacuum experience an

attractive force. The attractive force is explained by vacuum fluctuations
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of the electromagnetic field which are confined in the gap between the con-

ducting plates. Only the frequencies (gap resonances) are allowed for which

the integer multiples of half a wavelength can fit exactly the gap length D.

Thus, the total energy of the system per unit area depends on D. It turns

out that the energy decreases with decreasing gap distance D, leading to an

attractive force between the conducting plates.

The fluctuating interaction is the most universal one, because it exists be-

tween polar as well as between non-polar molecules. Beside this, the fluctu-

ating part of the total force is the only significant term in polar condensed

media [83]. This is the main reason for taking into account only dispersive

force to explain the stability of thin liquid films.

Now we sketch the derivation of the dispersive interaction energy between

two parallel interfaces, separated by an arbitrary number of media (see

Fig. 3.1). There exist two alternative approaches which both lead to the

same result. Historically the first approach was proposed by Lifshitz in 1955

[60]. His main idea was to incorporate the fast temporal fluctuations of the

electromagnetic field in the Maxwell equations. The boundary conditions at

the interfaces reduce the number of allowed frequencies. The dispersive force

per unit area is then obtained by integration of the Fourier transform of the

normal component of Maxwell’s stress tensor over all allowed frequencies.

For non-retarded potential, the resulting surface force (disjoining pressure)

is given by

Π =
A

6πD3
, (3.3)

where A is the Hamaker constant which depends, in general, in a complex

way on the dielectric properties of the media.

Using the equation Eq. (2.15) of Chapter 2 and equation Eq. (3.3) we con-

clude that the positive sign of A corresponds to the attraction (destabilizing

effect), whereas the negative sign of A corresponds to the repulsion (stabi-

lizing effect). We note here that there is no common convention about the

sign of the Hamaker constant. To describe attraction between the interfaces

some schools use positive sign of A, whereas other schools use negative sign

of A and a different definition of the disjoining pressure: (Π → −Π).
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Later, Dzyaloshinskii, Lifshitz and Pitaevskii showed that Lifshitz’s formula

can also be derived in the frame of quantum electrodynamics [35].

The second approach for calculating the dispersive force was proposed by

Israelachvili in 1972 [46]. This approach is often referred to as method of

images. In the rest of this section we will focus on the method of images

due to its transparency as compared to Lifshitz approach.

The functional dependence of the surface force on the distance D between

the interfaces is obtained by simply integrating the force between single

molecules, whose potential is given by Eq. (3.1) (or by Eq. (3.2) for retarded

forces), over the half spaces (1) and (4). Such space integration is validated

due to Hamaker (1937), who showed the additivity of the dispersive forces

and developed the theory of London-Van der Waals interaction between

macroscopic bodies.

First, we consider a one-layer case, when the media (2) and (3) are equal

and there are no other media in between. The integration of Eq. (3.1) yields

the non-retarded force per unit area

f =
~N1N4

2D3

∫ ∞

0

α1(iξ)α4(iξ)
ε2(iξ)

dξ, (3.4)

where N1 and N4 are the number of atoms per unit volume in medium (1)

and (4), respectively.

The main goal of the method of images is to calculate the volume excess

polarizabilities Niαi(iξ) of each medium. Fig. 3.2 shows schematically the

process of the reflexion of the initial electric field E from the interfaces (1−2)

and (2−4). From the elementary course of electrodynamics it is known that

after the reflexion from the interface (i−k) into the medium k, the reflected

field E′ is proportional to the incoming field E with the reflexion coefficient

∆ik = (εi−εk)/(εi +εk). The image field is due to the surface charge density

σs, or excess volume polarization Pi = NiαiE in medium i. The latter is

given by

Pi =
εk
2π

(
εi − εk
εi + εk

)
E. (3.5)
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Figure 3.2: One-layer system: reflexions of the electric field in the gap between the

interfaces (1− 2) and (2− 4).

Comparing the last two equations one finds the volume excess polarizability

of the first image of the interface (1− 2) after the reflexion off (2− 4)

(N4α4)1 =
ε2
2π

(
ε4 − ε2
ε4 + ε2

)
. (3.6)

The second image of the interface (1− 2) a distance 4D apart from (1− 2)

acts as if there were a real surface at half that distance 2D (see Fig. 3.2)

for which the volume excess polarizability is (N4α4)2 = [ε2/(2π)]∆2
42∆12.

Further reflexion give rise to an infinite series for the total dispersive force

f =
~

8π2D3

∫ ∞

0

∞∑

n=1

1
n3

(
ε1 − ε2
ε1 + ε2

)n (
ε4 − ε2
ε4 + ε2

)n

dξ. (3.7)

Comparing Eq. (3.7) with f = A/(6πD3), one finds for the Hamaker con-

stant

A =
3~
4π

∫ ∞

0

∞∑

n=1

1
n3

(
ε1 − ε2
ε1 + ε2

)n (
ε4 − ε2
ε4 + ε2

)n

dξ. (3.8)

The last equation is not applicable for practical purposes because of its

complexity. Indeed, to perform the integration in Eq. (3.8), one needs to
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know for each medium the total spectrum εi(iξ). Experimental data on

εi(iξ) are available only for a narrow interval of frequencies and typically

show a peak at a resonant frequency. This allows to treat all the media

as composed of oscillators with only one resonant (absorption) frequency.

Thus, following [46], we write the expression for the dielectric constant εi
with one absorption frequency ωi

εi(iξ) = 1 +
ω2

i (εi(0)− 1)
ω2

i + ξ2
. (3.9)

It is also known that many dielectrics absorb strongly at about the same

frequency in the ultra violet region around 100 nm. Hence, the absorption

frequencies of all the media can be put to be equal νe = 3× 1015 Hz.

To further simplify Eq. (3.8), we neglect the multiple reflexions of the electric

field in the gap between the interfaces (1− 2) and (2− 4). This is justified

because the reflexion coefficients ∆ik = (εi − εk)/(εi + εk) are always less

than one.

With all these simplifications we perform the integration in Eq. (3.8) and

obtain the one-layer Hamaker constant

A124 =
3hνe

8
√

2
(n2

1 − n2
2)(n

2
4 − n2

2)
(n2

1 + n2
2)1/2(n2

4 + n2
2)1/2[(n2

1 + n2
2)1/2 + (n2

2 + n2
4)1/2]

.

(3.10)

From now on we will denote by Aijk the Hamaker constant which describes

the interaction between the half spaces i and k through the medium j. In

the last equation we replaced the dielectric constants εi of the medium i by

the corresponding refractive index ni = ε2i .

In an analogous way, neglecting the multiple reflexions, one can derive the

four-indices Hamaker constantA1234 which describes the interaction between

the interfaces (1− 2) and (3− 4) (see Fig. 3.1). The integration yields

A1234 =
3hνe

8
√

2
(n2

1 − n2
2)(n

2
4 − n2

3)
(n2

1 + n2
2)1/2(n2

4 + n2
3)1/2[(n2

1 + n2
2)1/2 + (n2

3 + n2
4)1/2]

.

(3.11)

Note that Eq. (3.11) coincides with the result obtained in [76] in the frame

of the Lifshitz theory.
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The three-indices Hamaker constant Aijk can be obtained from the four-

indices constant Aijlk by putting j = l. This corresponds to the fact that

the media j and l have the same optical properties.

As we see, in the second order of the reflexion coefficients ∆ik, the Hamaker

constant A1234 depends only on reflexions at the interfaces (1−2) and (3−4)

and does not depend on dielectric properties of the media which are located

between the media 2 and 3 (see Fig. 3.1). There also exists an alternative

approach that accounts for the dielectric properties of all the media lying

in-between the interfaces (1−2) and (3−4) [41]. This approach is described

in [38]. According to [38], the four-index Hamaker constant is given by a

linear combination of the products ∆ij∆kl. Each such a product corresponds

to the reflexion between some pair of interfaces which are located between

(1− 2) and (3− 4).

3.2 Short-range interaction

The short-range forces which can be of an electrostatic or structural nature

[27, 118] decay exponentially with h. The electrostatic part Πe results from

the formation of diffuse electric double-layers in the vicinity of interfaces

involving polar liquids [30, 77, 132]. The potential of such double-layers

is given by the Poisson-Boltzmann equation. In the frame of the Gouy-

Chapman-Theory one derives the characteristic decay length 1/κ (Debye

length) of the double-layer potential [20] with

κ =

√
8πe2n0

εkT
. (3.12)

In the previous equation k is the Boltzmann constant, T the absolute tem-

perature, e the unit charge, ε the dielectric constant of the liquid and n0 the

volume ion concentration.

For large film thicknesses there exist two independent double-layers at the

two interfaces. For small film thicknesses these two double-layers overlap

resulting in an effective force between the interfaces. This force can in

general be attractive or repulsive. In the symmetrical case of two identical
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interfaces and small interfacial potentials ψs, or for h À 1/κ the disjoining

pressure reads

Πe = −kTn0

[
4 tanh (

eψs

4kT
)
]2

exp (−κh) (3.13)

∂hΠe is always positive and according to Eq. (2.15) the disjoining pressure Πe

acts stabilizing. For different interfacial potentials ψ1 and ψ2 the resulting

force can be either attractive or repulsive [118, 45].

The structural part of the total force Πs consists of all the influences of the

molecular structure which can not be explained by the concept of the diffuse

double-layers. These are the sterical and entropic interactions and hydration

forces [85, 118].

The evidence of these forces was provided for apolar liquids with film thick-

nesses up to 10-15 molecular layers. In water films, however, the structural

effects can be seen in films with thicknesses up to 80 nm.

In the present work we will not distinguish between the electrostatic and the

structural part of the disjoining pressure. Referring to the short-range forces

we will assume that they decay exponentially with the film thickness. The

corresponding interaction energy between the interfaces (1−2) and (3−4) is

proportional to exp [(l0 −D)/l], where l0 = 0.158 nm is the Born repulsion

length, and l = 1/κ ∼ 1..10 nm is the interaction length of the short-range

interactions.





Chapter 4

One-layer liquid films

4.1 Evolution equation

As shown in previous Chapters, the spatiotemporal behavior of a one-layer

film of incompressible liquid with a free surface on a solid smooth substrate

without slippage is described by an evolution equation for the film thickness

h(x, y, t)

ν∂th = −∇
[
h3

3
∇(σ∆h− ∂hf(h)− P0)− h2

2
∂xσ

]
. (4.1)

Here, ∂hf(h) denotes the disjoining pressure with the potential f(h). ν and

σ are the dynamic viscosity and surface tension of the liquid, respectively.

The Laplace pressure is given by σ∆h, P0 is the gas pressure at the surface

(normally assumed to be constant).

For small surface deformation and near the critical point, the free energy

f(h) may be expanded with respect to h in the sense of Landau. Then,

Eq. (4.1) has the same form as the Cahn-Hilliard equation describing the

decomposition of a binary mixture [17, 16]. It corresponds to the simplest

possible equation for the dynamics of a conserved order parameter field [59].

The choice of the free energy f(h) and of the Marangoni term ∂xσ determine

the particular physical system under consideration. It can be dewetting due

to effective molecular interactions between film and substrate. Then ∂hf

accounts for the wetting properties of the system [7, 79, 103, 112, 120, 127].
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Or it may describe a long wave Marangoni instability. Then ∂xσ has to be

expressed in terms of the local film thickness and its gradient [81, 122, 131].

For inclusion of other effects see the review Ref. [80].

In this chapter we describe the liquid films driven by large-scale Marangoni

convection (Section 4.2) and ultra thin films under the influence of an exter-

nal disturbance (Section 4.3).

4.2 Large-scale Marangoni convection

In the past years many theoretical and numerical work was dedicated to

pattern formation and instabilities of liquid films. The commonly used de-

scription is based on the hydrodynamic equations with appropriate boundary

conditions. We assume a liquid film with thickness d, viscosity ν, density

ρ, thermal diffusivity κ, and heat conductivity α. On its free upper surface

it is in contact with the ambient air having the heat conductivity αa and

thickness da. In zero order of the lubrication approximation, the surface

temperature is coupled to the local film thickness h(x, y, t) (see Eq. (2.18)

and the Appendix). Tangential surface stresses comes into play if the surface

tension Γ is assumed to be proportional to the surface temperature Ts:

Γ = γ0 − γ(Ts − T0)

where T0 acts as a reference temperature. The non-dimensionalized evolu-

tion equation describing the height of the film then reads

∂th = ∇ ·
{
h3∇(Boh+ ∂hf(h)−∆h)− 3

2
h2CM(B + 1)

(1 +Bh)2
∇h

}
(4.2)

where

M =
γ∆Td
ρνκ

, B =
dαa

daα
, C =

ρνκ

γ0d
, Bo =

gρd2

γ0

denote the Marangoni number, the Biot number, the Chrispation number,

and the static Bond number respectively. We adopted the scaling of [79],

where h and x, y is in units of d and time scales with 3ρνd/γ0. The tempera-

ture ∆T is defined as the difference between the temperature at the bottom
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Figure 4.1: Sketch of the linear growth rate λ = εk2 − k4 in the case of a type-

IIs instability. The solid line is above threshold, and dotted-dashed below. Above

threshold patterns with the typical length scale ` = 2π/km = 2π/
√
ε/2 grow in the

linear stage on the time scale τ = 4/ε2.

and that of the free film surface in the non-convective case. In Eq. (4.2) the

disjoining pressure is taken into account by the general potential f(h). A

linear stability analysis of the flat film is performed by giving a small am-

plitude perturbation η exp(λt+ ikx) to the flat film surface and linearizing

the evolution equation Eq. (4.2) with respect to the amplitude of the pertur-

bation η. This gives the relation between the growth rate λ and the wave

number k (see Fig. 4.1). Linear stability analysis for films without disjoining

pressure (f = 0) shows that it gets unstable if M exceeds a certain critical

value

Mc =
2
3
Bo

C
(1 +B) =

2
3
G(1 +B) (4.3)

where G = Bo/C is the Galileo number. If M exceeds Mc, a so-called type-

IIs [22] instability occurs (Fig. 4.1) and on the linear (short time) regime

one expects patterns with the typical length scale

` = 2π/
√
εBo (4.4)

where ε is defined as the reduced distance from threshold

ε = (M −Mc)/Mc (4.5)
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water 600C silicone oil 50cS, 250C

ρ = 983Kg/m3, ν = 4.7 · 10−7m2/s, κ = 1.6 · 10−7m2/s ρ = 960Kg/m3, ν = 5 · 10−5m2/s, κ = 10−7m2/s

γ0 = 6.6 · 10−2N/m, γ = 1.74 · 10−4N/mK γ0 = 2.08 · 10−2N/m, γ = 6.8 · 10−5N/mK

d = 10−3m d = 10−6m d = 10−3m d = 10−6m

∆Tc 370C 4.3 · 10−5 0C 920C 1.07 · 10−4 0C

Mc 86970 1.01 · 10−4 1308 1.53 · 10−6

Bo 0.146 1.46 · 10−7 0.453 4.53 · 10−7

C 1.12 · 10−6 1.12 · 10−3 2.31 · 10−4 0.23

A 8.0 · 10−15 8.0 · 10−9 2.6 · 10−14 2.6 · 10−8

A/Bo 5.5 · 10−14 5.5 · 10−2 5.6 · 10−14 5.6 · 10−2

` · d 1.6 · 10−2m 1.64 · 10−2m 9.3 · 10−3m 9.3 · 10−3m

hb
c · d 5.5 · 10−8m 7.1 · 10−7m 5.5 · 10−8m 7.3 · 10−7m

Table 4.1: Used values of the adimensional parameters.

Previous work shows that above the onset of the instability holes are formed

and film rupture occurs after a finite evolution time [79]. Thereby rupture

is defined by the occurrence of zero film thickness values. Then equation

Eq. (4.2) is no longer applicable.

However, the possible stationary two-dimensional solutions of equation Eq. (4.2)

with f = 0 can be determined directly [81] independently of the fact that

they cannot reached from the initial condition of a flat film by integration

in time. The stationary solutions consist of a vast family of drop solutions

separated by dry regions of different lengths. All of these solutions are nom-

inally linearly stable since drops separated by dry regions do not interact

if no non-hydrodynamic interaction is included. In the formulation with-

out disjoining pressure the solutions with zero microscopic contact angle are

energetically favored. However,the inclusion of a disjoining pressure would

select a certain contact angle and remove the degeneracy as discussed in

[81].

Now we extend the evolution equation by a disjoining pressure that is of

repelling character. It therefore stabilizes a very thin film and avoids the

film rupture that restricted the simulations in time to investigations of the
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short-time behavior. With this extended model we are able to study pattern

formation in three dimensions in the long-time limit.

If Van der Waals forces are responsible for the stabilization, the disjoining

pressure ∂hf(h) has the form

∂hf(h) = − A

h3
(4.6)

where A is a dimensionless positive constant which is related to the three

index Hamaker constant Aslg (see Chapter 3) in the scaling used here by

A = − Aslg

6πγ0d2
(4.7)

With Eq. (4.6) the range of unstable flat films is also bounded from below,

i.e. flat films with the height h = 1 are unstable if

hb
c ≤ 1 ≤ ht

c (4.8)

The two values hb
c and ht

c are named spinodals. For thick films in the range

of mm, one finds the scaling hb
c ∝ d−1/3. The values of hb

c are very small in

the size of 10−7...10−8 m (see Tab. 4.1). Approximately flat parts of the film

profile which have a thickness in the stable region below hb
c can be considered

as a precursor film. This means that even in regions where dry spots occur

the solid support is still covered by this thin precursor film with the height

in the range of some 10 to 100 nm.

We note that the inclusion of the disjoining pressure changes the value for

Mc to

Mc =
2
3
Bo

C
+ 2

A

C
(4.9)

Here we approximated (1 + B)2 and (1 + B) by 1, which is good for small

Biot number, i.e. for thermally almost insulating upper boundary. We shall

use this approximation for the rest of the Chapter.

4.2.1 Fluid parameters

To compare with the experiments we show in Table 4.1 the values of the

adimensional parameters introduced above as well as those of some impor-

tant properties of the fluid film. To demonstrate also the dependence on
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the film thickness, we chose the four cases water and silicone oil, each with

layer thicknesses of 1mm and 1µm. For the Hamaker constant we took the

value Aslg = 10−20 J from [117]. The typical length scale `d is computed

from Eq. (4.4) for ε = 1. It is remarkable that for thin films the Marangoni

number as well as the applied temperature gradients seem to be very small.

This means in real experiments one would usually exceed the critical point

by a factor of some thousands. However, in a film of 1mm depth, the value of

Mc in silicone oil is already much larger than that for small scale convection

(about 80..100). Consequently to obtain a pure surface instability without

small convective cells (hexagons) the liquid depth should be below 1 mm.

We note that in the case of a fluid depth where both instabilities may occur,

pattern formation is expected to be much more involved and the small scale

structure cannot longer be eliminated using the lubrication approximation.

In this case the full system including Navier-Stokes as well as heat equation

has to be considered. A detailed linear analysis was done in Ref. [42].

4.2.2 Stationary Solutions: holes, drops and walls

In the case of stationary solutions equation Eq. (4.2) can be integrated twice

which yields

1
Bo

∆h = −dhV (h)− µ (4.10)

with

V (h) = −1
2
h2 − α

6
1
h2

+ (1 + ε)(1 + α)h(lnh− 1) (4.11)

beyond the small bifurcation parameter ε defined in Eq. (4.5) we have intro-

duced the reduced Hamaker constant α

α =
3A
Bo

which enters the equation as the only parameter that depends on the mate-

rial. The integration constant µ is fixed by the mean value of dV/dh which

follows from Eq. (4.10) by integration over the spatial domain S (periodic

lateral b.c.)

µ = − 1
S

∫

S
dxdy

dV (h)
dh
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Figure 4.2: Hole solution in the case of radial symmetry. The effective energy

V (h)+µh is shown on the left image. The hole solution corresponds to the classical

motion of a particle in the potential: trajectory starts at point r = 0 with the height

h(r = 0) = hmin, this is between the left maxima and the minima of the effective

energy. The height of the film increases monotonically to the value corresponding to

the right maxima of the effective energy. The period of such a solution is infinitely

large.

In the 2D-case the similar problem was studied extensively in the case of

dewetting [127].

There the disjoining pressure contributes to both, the destabilizing long-

range and the stabilizing short-range components [126, 127], whereas here

they are given by the Marangoni effect and the stabilizing disjoining pres-

sure, respectively. The 3D-case is, however, qualitatively different from the

two-dimensional one. First, it is not so simple any more to solve Eq. (4.10)

by reducing it to an ordinary differential equation. Second, even if we have

found some numerical solutions, we still can not say anything about all the

other solutions, since the function space in 3D is much more complicated

than in 2D. Such numerical solutions were found by Oron for the Rayleigh-

Taylor instability of a thin film on the heated substrate without disjoining

pressure [81].
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Figure 4.3: Drop solution. As in Fig. 4.2, the curve starts at r = 0 between

the right maxima and the minima of the effective energy. The height of the film

decreases monotonically to the left maxima.

In this section we wish to focus on radial symmetric solutions reducing

again the spatial dimension by one and state conditions where the types

known from the 2D computations may occur. To obtain an effective one-

dimensional equation we use polar coordinates in Eq. (4.10). For such radial-

symmetrical function h(r) we have the following equation (see also the dis-

cussion in [29]):

d2h

dr2
+

1
r

dh

dr
= −dhV (h)− µ (4.12)

In the 2D-case it was possible to rewrite Eq. (4.10) in the“energy-conservation”

form [126, 122]:

1
2

(
dh

dx

)2

+ V (h) + µ(h− h0) = E (4.13)

Using the formal equivalence of this equation to the equation of motion for

a particle in a potential V , when seeing x as time one could find all main

features of stationary solutions by studying the effective potential energy

V (h) + µh. Equation Eq. (4.12), however, contains an additional term that
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explicitely depends on r. This leads to the fact that the“energy” is no longer

conserved along the “trajectory”. Equation Eq. (4.12) may describe some

mechanical system with “time”-dependent friction 1
r

dh
dr . It is still possible to

analyze the behavior of such a “mechanical” system by studying its effective

energy. The function V (h) + µh with V given as Eq. (4.11) is shown on

the left images of Figs. (4.2 -4.3) for different values of µ. In all cases this

function has two maxima and one minima, but on Fig. 4.2 the left maxima

is higher then the right one, on Fig. 4.3 the left one is lower then the right

one. Further we are looking for the solutions of Eq. (4.12)

with the initial condition: (dh
dr )r=0 = 0. Each value of h(r) corresponds to a

point on the effective energy. The real film profile is given by the motion of

such a point along the curve V (h) + µh. If equation Eq. (4.12) describes a

mechanical system with “time”- dependent friction, we can say the following

about possible stationary states:

In the wide range of initial height of the film between the binodals (see

Fig. 4.4) hmin < h(0) < hmax there exist damped periodical or even un-

bounded solutions, that obviously have no physical meaning. However, if

rotational symmetry is broken the damped oscillations in r may be asso-

ciated with satellite holes observed for dewetting in [50]. But among such

solutions, there exist three solutions with infinitely large period. These are

similar to the drop- hole- and wall-solutions from [70, 126, 129].

1). Hole-solution: the initial height is somewhere between the left maximum

and the minimum of the effective energy (see Fig. 4.2), the “mechanical”

system starts to move to the right along the curve of effective energy, passes

the minimum with the highest “velocity” dh
dr , and continues to the right

maximum h = hmax. This process takes an infinitely long “time” r → ∞.

In order to proof that we linearize dhV (h) at h = hmax. Since −dhV (h =

hmax)−µ = 0 and since−dhhV (h = hmax) > 0, we have instead of Eq. (4.12):

d2h

dr2
+

1
r

dh

dr
− ω2(h− hmax) = 0 (4.14)

here is ω2 = −dhhV (h = hmax).

The solution of the last equation is the first Bessel function (m = 0): h(r) =

hmax −K0(ωr). Since K0 has the property: limr→∞K0(r) = 0, it is clear
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that only for r →∞ the hole-solution reaches hmax.

2) Drop-solution: the initial height is somewhere between the right maxi-

mum and the minimum (Fig. 4.3). This case is similar to the hole-solution.

The only difference is that h(r) decreases monotonically to hmin. The proof

that drop-solution has infinitely large period is similar to the case of hole-

solution.

3) Wall-solution: the values of two maxima of the effective energy are equal

(not shown). The initial height of the film is h = hmin. Let the motion

start at the left maximum. But now it takes infinitely long to leave the

initial point and the “damping” plays no role for this type of motion. For

r = ∞ the height h passes through the minimum of the effective energy, and

continues to the right maximum. The film profile in this case is similar to

the hole-profile, with the difference that the size of the hole is now infinitely

large. This corresponds to a zero curvature of the whole, i.e. a plane front.

4.2.3 Holes or Drops?

For the experiment as well as for the numerical solutions of the next para-

graph it is important to know whether drops or holes are formed in the

unstable range of the flat film ε > 0. Assuming that the flat film has the

height h0 = 1 this can depend only on the values of ε and α. Fig. 4.4 shows

plots of the pressure dhV (h) for several values of these parameters. If h0 = 1

lies on the left-hand-side of the Maxwell point h = hc, drops are energet-

ically preferred, in the other case holes are expected. The condition that

h0 = 1 coincides with the Maxwell point allows to compute α as a func-

tion of ε, as done in Fig. 4.5. From that figure it is clear that for small

values of the reduced Hamaker constant holes should be observed. But it

is interesting that for α > 1/3 only drops are the possible structures. Since

α ∝ d−4 this means that on very thin films always drops evolve, whereas

on thicker ones the pattern at onset consists of holes but turns to drops for

larger temperature gradients far from threshold. From this calculations one

would expect drops even in rather thick films, but farther from threshold

as a kind of secondary instability. However, the depth of the precursor film
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Figure 4.4: The disjoining pressure dhV (h) according to Eq. (4.11) for different

values of α and ε = 0.2. The critical film depth hc is obtained by a Maxwell-equal-

area construction for each potential. If hc < 1 (thick film) holes are energetically

preferred, otherwise drops will be formed in the nonlinear stage. Between the two

extrema (the spinodals) the film is absolutely unstable, between h− and h+ (the

binodals) it is bistable.

may decrease to unphysically small values if the the thickness of the flat

film is very large. In this region the validity of Eq. (4.2) seems not longer

justified and one cannot say from the present theory if rupture evolves or

not. But even for a thick film with d = 1mm we compute the height of the

precursor film to 10nm. We finally note that drops, or at least one big drop

on a rather thick film was found in the experiment by Van Hook et al for

an air layer, instead of holes for an helium gas layer above the silicone film.

The thermal properties of the gas layer influences the Biot number and also

the Marangoni number. It seems possible that the Helium experiment was

performed closer to threshold than the one with the air layer. According to
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Figure 4.5: Phase diagram in the parameter plane. The codimension-one line

results from the condition hc = h0 (cf. Fig. 4.4 and text). Solving the fully time

dependent Eq. (4.15) numerically, one obtains mazes (squares), holes (up-triangles)

and drops (down-triangles) in excellent agreement with the theory. The inset shows

that there is a finite ε ≈ 1.47 above which drops mathematically exist even at α = 0.

Fig. 4.5 this would explain the patterns observed.

4.2.4 Normal form of the fully time dependent equation

To obtain numerical results in three dimensions, we first transform Eq. (4.2)

into a more convenient form. Introducing the reduced control parameter

ε according to Eq. (4.5) and after rescaling of space and time variables, it

takes the form

∂tu = −ε∆u−∆2u+∇ · [f(u,∆)∇u] (4.15)

here,

u(x, y, t) = h(x, y, t)− 1
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is the normalized, shifted height with vanishing mean value and space and

time are scaled to (the primes are omitted in Eq. (4.15))

x = x′(Bo + 3A)−1/2, t = t′h3
0(Bo + 3A)−2

in Eq. (4.15), f(u,∆) stands for the operator function

f(u,∆) =
1

1 + α

[
(1 + u)3 − 1− αu

1 + u

]
− (1 + ε)

[
(1 + u)2 − 1

]−
[
(1 + u)3 − 1

]
∆ (4.16)

which vanishes with u. Note that this form contains only one material

parameter, namely α. Eq. (4.15) can be considered as a kind of normal

form for pattern formation, at least its linear part. The dispersion relation

shown in Fig. 4.1 is obvious, the linearly fastest growing mode has the wave

vector km =
√
ε/2 and grows with the typical rate τ = 4/ε2. The nonlinear

part (as well as the linear one) has the form of the divergence of a flux and

clearly conserves the mean value of u to zero. We note in passing that the

lowest order truncation O(ε3) of Eq. (4.15) reads

∂tu = −ε∆u−∆2u+∇(u∇u) (4.17)

and coincides with the lowest order truncation of the Knobloch equation

[55].

4.2.5 The numerical method

To solve Eq. (4.15) numerically, it is of advantage to use a semi-implicit time

integration scheme. The linear parts of Eq. (4.15) are therefore taken at the

new time step t + δt, the nonlinearities at t. This allows for a much larger

time step than a fully explicit method. Approximation of the time derivative

by the first order differential quotient leads to the relation

[
1
δt

+ ε∆ + ∆2

]
u(t+ δt) =

1
δt
u(t) +∇(f∇u(t)) (4.18)
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To solve for u(t + δt) one has to invert the linear differential operator in

square brackets on the left hand side of Eq. (4.18). Assuming periodic lateral

boundary conditions in real space, this can be done best in Fourier space:

ũk(t+ δt) =
[

1
δt
− εk2 + k4

]−1

Φ̃k(t) (4.19)

where ũk denotes the Fourier transform of u and Φ̃k that of

Φ(t) =
1
δt
u(t) +∇(f∇u(t)) (4.20)

To avoid singularities, the expression in the square bracket in Eq. (4.19) must

be positive for all k, yielding an upper bound of the time step

δtmax = 4/ε2

which is rather big since ε is usually in the order of 0.1. We note that

numerical stability is already lost for much smaller time steps then δtmax
due to the explicit terms on the right hand side of Eq. (4.18). In our runs

following in the next paragraph we usually fix the time step in the region

0.1 < δt < 1. The numerical scheme must fulfill the conservation of the

mean height, i.e.
∫
dxdy u(t) = 0

must hold for all times. In Fourier space this is equivalent to

ũ0(t) = 0

which is fulfilled for all time steps if Φ̃0 = 0. From Eq. (4.20) it follows that
∫
dxdy∇(f∇u(t)) = 0, (4.21)

which is obvious for periodic boundary conditions. Numerically, the validity

of Eq. (4.21) may depend on the way how the derivatives of u in real space are

computed. We use a centered space finite difference method which clearly

satisfies Eq. (4.21). This ensures us conservation of
∫
dxdy u(t) up to the

numerical precision which is of order 10−8.
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Figure 4.6: Time series found by numerical integration of Eq. (4.15) in the drop

regime ε = 0.1, α = 0.35 The numerical resolution is 256x256 mesh points. Dark

regions correspond to an elevated surface. Periodic boundary conditions are assumed

in the lateral directions.

Figure 4.7: Time series in the hole regime ε = 0.1, α = 0.05.
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To show the temporal evolution of the film we present runs for several pa-

rameter values in the ε − α plane. We take the large aspect ratio 500 in

units of Eq. (4.15), what corresponds to about 0.5m for the silicon oil of

Table 4.1. This, of course is a very large value, expressing the huge scale of

the structure, which is due to the small supercriticallity of ε = 0.1. Starting

with a relatively large value of α = 0.35 (rather thin film) drops are ex-

pected even at onset. This can be seen in the evolution of Fig. 4.6 where a

cascade of larger and larger drops is found. We note that the evolution time

is extremely large, also a consequence of the small supercriticallity (see also

the remarks in Section 4.2.1).

Next we use a smaller value α = 0.05, corresponding to a thicker film. Holes

are formed now from the beginning (Fig. 4.7). As can also be seen a rim

is formed along the border of each hole. The long time behavior can be

compared with that of drops. Eventually all drops have merged to a single

one. However, again this process may take a very long time, depending on

the several fluid parameters and the geometry of the layer.

4.2.6 The horizontal film

To examine the temporal behavior, we compute the mean value of the wave

vector according to

< k >= −
∫
d2k |uk||k|∫
d2k |uk|

From Fig. 4.8 a scaling law of the form

< k >= ct−β (4.22)

can be clearly extracted. It is remarkable that the exponent for both series

is almost the same. We found it to be β ≈ 0.21

Finally, we present a parameter pair directly on the critical line of Fig. 4.5.

As expected, the decision between drops and holes is not clear and a kind of

maze structure remains for long times (Fig. 4.9). But also these mazes show

the typical dynamics to longer and longer horizontal scales whit the same

exponent β ≈ 0.21 as shown in Fig. 4.10.
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Figure 4.8: The solid lines show the typical scaling of the mean modulus of the

wave vector in the temporal evolution for parameters as in Figs. 4.6,4.7. The scaling

exponent for both series is the same, β ≈ 0.21 as indicated by the dashed lines. For

this computation, we used twice the system size of Figs. 4.6,4.7, and a numerical

resolution of 512× 512 points.

Figure 4.9: Time series in the maze regime at the codimension-one line of Fig. 4.5,

ε = 0.1, α = 0.28.



48 One-layer liquid films

lo
g(

<
k>

)

α=0.28, ε=0.1

maze

log(t)

Figure 4.10: Dynamical scaling of the maze pattern Fig. 4.9. The scaling exponent

is again, β ≈ 0.21 (dashed line).

4.2.7 The inclined film

In this section, we study the influence of a constant external force in a certain

horizontal direction. This can be either due to an inclination of the layer by

an angle ϕ, or to an additional horizontal temperature gradient. Here, we

shall concentrate on the first case. A constant body force gives an additional

term of the form (small ϕ ≈ sinϕ)

Boϕn · ∇ (
h3

)

on the right hand side of Eq. (4.2). Here, n is the direction of inclination.

The inclination even by a very small angle ϕ changes pattern morphology

in the long time limit completely. This is shown in Fig. 4.11 where all pa-

rameters are equal to that of Fig. 4.6 but the plane was inclined by an angle

of order 0.10 (for a silicone film of thickness 1 mm). In the beginning both

evolutions seem to be similar but after t ≈ 100.000 in the inclined film

coarsening is retarded and finally a certain wave length is stabilized. The

stripes orientate more and more along the direction of inclination, forming
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Figure 4.11: Pattern formation in the inclined film. Parameters are those of

Fig. 4.6 but the fluid is very slightly inclined in vertical direction. After the linear

stage, the pattern gets anisotropic and finally a periodic structure of parallel fluid

pipes with a certain wave length is stabilized.

a structure of more or less equally spaced pipes where the fluid flows down

inside. The effect of inclination on the dynamical scaling law Eq. (4.22) can

be seen from Fig. 4.12.

Finally we study the influence of a constant force perpendicular to a channel

of depressed liquid. To this end we start the numerical integration with the

initial condition

u(x, y, t = 0) =

{
−0.77 for 0 ≤ y ≤ L/8

0.11 for L/8 < y < L
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Figure 4.12: Comparison of the dynamical scaling of inclined and plane case. After

t ≈ 100.000 the stabilization of the wave length in the inclined case can be clearly

seen.

where L is the total length of the layer. Both heights, the elevated as well

as the depressed lay outside the spinodal region, i.e. the flat film in this

parts is stable. To avoid the unphysical homogeneity in x-direction of the

initial condition we add small fluctuations of about 1 per cent. The layer in

this numerical experiment is inclined by about 10 (if the fluid is a silicone oil

film with depth 1mm). Then the channel moves with the average velocity

of ≈ 1mm/sec. After about t = 10.000 (corresponding to about 300 sec) a

phase instability of the back front of the channel (or the leading front of the

elevated part) can be clearly observed (Fig. 4.12). Later on, the opposite

front gets unstable with a smaller wave length, as studied for a liquid ridge

on an inclined isothermal plate in [122]. At this stage, both fronts are well

separated and can be considered as independent from each other. This

changes if the front instabilities evolve further. The channel gets more and

more constricted and finally breaks into several isolated holes. The final

situation after a rather long evolution resembles that of Fig. 4.11.

For horizontal films the extracted scaling law k ∼ t−β with β = 0.21± 0.01

indicates that the coarsening is slower than in spinodal decomposition, where
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Figure 4.13: Evolution of a channel on an inclined plane. Parameters are those

of Fig. 4.7 in the hole regime. Both edges of the channel get unstable on different

time scales. The trailing edge is disturbed faster with a larger wave length. Finally

the two edges meet on several points and the channel separates.

β = 1/3 as given by the Lifshitz-Slyozov-Wagner theory (see for example

[59]). The inclusion of hydrodynamic effects in the description of spinodal

decomposition gives even larger exponents for the long time limit (in 2D

case: β = 1/2 viscosity controlled, β = 2/3 inertia controlled [90]).

However, the exponent found in Section 4.2.6 is similar to β = 0.22 found in

numerical simulations for spinodal decomposition with a mobility that de-

pends strongly on concentration implying the prevalence of surface diffusion

over bulk diffusion [56]. A scaling argument for this case yields β = 1/4 [56].

To our knowledge for spinodal dewetting there exist no analytic or numeric

results for the scaling exponent in two dimensions (for one dimension see

[40]). We also mention that to our knowledge there exists no theory for the
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mechanism of nonlinear wavelength selection and stabilization of a periodic

structure in the inclined case, which can be clearly seen from our numerical

simulations.
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4.3 Influence of external disturbances

Here we investigate the influence of a time- and space-periodic pressure term

on thin film evolution [93]. Practically this can be realized in different ways.

(i) One can irradiate the free film surface with ultra sound that leads to

a time modulation of the pressure at the liquid-gas interface. (ii) A time-

periodic disjoining pressure appears in the co-moving frame for a liquid film,

sliding down an inclined substrate with a periodic heterogeneity [105]. (iii)

The use of time- and space-periodic electric fields and electrowetting [49]

can give rise to a time-periodic term in the total energy of the system.

The main idea behind (i), (ii) and (iii) is to create a non-uniform mean flow

in a certain direction. As was shown in Section 4.2, large scale mean flow

may suppress coarsening and stabilize certain periodic surface structures in

the long-time limit.

In the first part of this section focus on the most simple time- and space-

periodic pressure term, not coupled to the film thickness which appears

in case (i). Notice that a ’similar’ method has been proposed in [44] and

tested in [39] using light and surface tension gradients instead of sound

pressure gradients on the liquid-gas interface. The second part is devoted

to inhomogeneous wetting [25].

For ultrathin films on a solid substrate the function ∂hf(h) in Eq. (4.1) can

also be specified by the combination of a disjoining pressure derived from

diffuse interface theory [88, 129] and a hydrostatic pressure

∂hf(h) =
2κ
a
e−h/l (1− 1

a
e−h/l) + ρgh, (4.23)

where ρ is the density of the liquid, g is the gravitational acceleration, κ has

the dimension of a spreading coefficient per length, a is a small dimensionless

positive parameter describing the wetting properties in the regime of partial

wetting, l is the length scale of the diffuse interface [88, 129]. However, note

that the main results for this model will not qualitatively differ from results

for other disjoining pressures combining a short-range destabilizing and a

long-range stabilizing component as, for example, used in [112]. This has

been shown for homogeneous substrates in Refs. [127, 129, 126].
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4.3.1 Ultrasound
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Figure 4.14: Sketch of the geometry. The sonic wave is irradiated under an angle

α onto the film of mean thickness d. If α is smaller than the inclination βinc =

arctan(dh/dx) of the surface at some point shadow regions may exist.

To cover the driving mechanism (i), outlined above, we regard addition-

ally an external sonic disturbance hitting the surface under an angle α as

sketched in Fig. 4.14. The sonic wave breaks the isotropy of the system and

is characterized by its wave length, λs = 2π/ks, frequency, ω = ksc, wave

number, ks, and the velocity of sound in the ambient gas, c. The liquid may

be considered to be incompressible if the sonic wave length is much larger

than the characteristic size of the system, here the film thickness d. The

pressure oscillates in the ambient gas with the sound frequency. Assuming

complete reflection of the sound wave at the film surface the resulting time-

and position-dependent pressure field at the film surface can be accounted

for by adding to P0 in the equation Eq. (4.1) the term

Ps(x, t) = p cos(ωt− φ), (4.24)

where p stands for the pressure amplitude in the sonic wave. The phase φ

(defined with respect to an arbitrary wave front) at the film surface is given

by

φ(x, h(x)) = kxx − kz(h(x)− d), (4.25)
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where d denotes the mean film thickness and kx and kz are projections of

the wave vector onto the x- and z- direction, respectively. The pressure

distribution Eq. (4.24) is correct if (i) the sonic wave can reach the film

surface freely, i.e. if there are no shadow regions (see Fig. 4.14) and (ii) if

reflected waves do not fall onto the film surface elsewhere. Condition (i)

is fulfilled if the angle α is larger than the maximal surface inclination of

the film, βmax, whereas (ii) holds if α > 3βmax is satisfied. To be able to

use lubrication approximation βmax has to be small. This implies that both

problems are avoided if α is of order one. Then kx and kz are of the same

order and the second term in Eq. (4.25) can be neglected because d ¿ L,

with L the typical scale parallel to the substrate.

Using kx = ks sinα the pressure Eq. (4.24) finally writes

∆Ps(x, t) = p cos(ωt− ksx sin α) (4.26)

The system Eq. (4.1) and Eq. (4.26) will now be used to illustrate the evolu-

tion of ultrathin films below 100 nm thickness that are unstable due to their

wetting properties [80].

For p = 0 the linearized equation Eq. (4.1) predicts the onset of a type-

IIs [7] instability at ∂hhf(d) = 0. In the short-time regime one expects

isotropic patterns with the typical wave length λ0 = 2π
√

2σ/|∂hhf(d)| and

characteristic growth time τ = 12ηρσ/d3(∂hhf(d))2.

To non-dimensionalize we scale the (x, y) coordinates with λ0/2π, film thick-

ness with the mean film thickness d and time with characteristic growth time

τ . Incorporating Ps, and using the same symbols now for non-dimensional

variables the film evolution equation Eq. (4.1) becomes

∂th = −∇ [
h3∇ (∆h− g(h))

]
+ ∂x

[
h3δ sin(Ωt−Ksx)

]
, (4.27)

with

g(h) = 2
∂hf(dh)
d|∂hhf(d)| = 2

e−γh(1− 1
ae
−γh) + γGh

γ|G+ 2
ae
−2γ − e−γ | , (4.28)

and the dimensionless parameters: G = ρgal
2κ and γ = d

l . The sonic wave

is characterized by the dimensionless wave vector Ks = λ0
λs

sinα, amplitude

δ = Ks
p
σd(λ0

2π )2, and frequency Ω = 2πτ
T .
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The non-dimensionalization we use is suitable for the estimation of Ks and

Ω. The period of the sonic wave T is much smaller than the characteristic

growth time τ , so that Ω is a large number. The sonic wave length λs may

be either much bigger than λ0 or may have the same size, yielding Ks to be

either rather small or of order one.

Linear behavior

For δ 6= 0 a flat film is not anymore a solution of the equation Eq. (4.27).

But one can still use linear analysis to study the initial stage of evolution.

Introducing the small deviation u(x, y, t) = h(x, y, t) − h0 and linearizing

Eq. (4.27) in u gives

∂tu = −2∆u−∆2u+ δ∂x [(1 + 3u) sin(Ωt−Ksx)] , (4.29)

For δ 6= 0 equation Eq. (4.29) is inhomogeneous due to the term δ∂x sin(Ωt−
Ksx). Its general solution is a sum of the solution uH of the correspond-

ing homogeneous problem and a partial solution uI of the inhomogeneous

equation.

Using the ansatz u(x, y, t) = ũ(x, t) exp(iχy) we transform Eq. (4.29) to

∂tũ = −∂4
xũ− (2− 2χ2)∂2

xũ+ (2χ2 − χ4)ũ+ 3δ sin(Ωt−Ksx)∂xũ

−3δKs cos(Ωt−Ksx)ũ− δKs cos(Ωt−Ksx) (4.30)

First we wish to find the solution ũI of the inhomogeneous equation Eq. (4.30).

To do that we use 1
Ω as a small parameter and set ũI = U1

I +U2
I + ..., where

Uk
I ∼ Ω−k. In the first step we neglect all terms in the r.h.s. of Eq. (4.30) as

compared with δKscos(Ωt−Ksx). Integrating both sides over time we find

U1
I = − δKs

Ω sin(Ωt−Ksx). To find U2
I we set ũI = U1

I + U2
I and neglect U2

I

as compared with U1
I in the r.h.s. of Eq. (4.30). Integration in time yields:

U2
I = δKs

Ω2 [−K4
s + (2− 2χ2)K2

s + (2χ2 − χ4)] cos(Ωt−Ksx). The amplitude

of the solution ũI remains small if δKs
Ω is a small number.

The solution of the homogeneous equation Eq. (4.30) may also be represented

as a sum U1
h + U2

h + ..., where U1
h = εeβt+ikx is a small-amplitude solution

(ε ∼ 1/Ω) of Eq. (4.30) in the case δ = 0. The next order correction U2
h
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may be easily calculated by assuming that eβt varies slowly in time T : U2
h =

−3δ
Ω [cos(Ωt−Ksx)∂xU

1
h +Ks sin(Ωt−Ksx)U1

h ]. The amplitude of U2
h is of

order ε
Ω = 1

Ω2 .

Summarizing we may write the general solution of the equation Eq. (4.29)

up to terms Ω−2:

ũ = ε exp (βt+ ikx+ iχy)− δKs

Ω
sin(Ωt−Ksx) +O(Ω−2) (4.31)

In the linear stage of evolution one finds a plane traveling surface wave

with small amplitude, described by the second term in Eq. (4.31). Any

infinitesimal perturbation to this plane wave (first term in Eq. (4.31)) has a

growth rate β equal to that in the case without sonic disturbance.

As we have seen, the general solution Eq. (4.31) is a sum of two functions.

The first one varies slowly in time, the second one is periodic with period

T . The coupling between these two functions is of order 1
Ω2 .

Non-linear behavior

Considering high-frequency sound one may use the averaging method [106]

to derive an effective evolution equation, starting from Eq. (4.27). According

to this method we assume the general solution of the equation Eq. (4.27) to

be a sum of two functions h = h̄ + h′, where h̄ varies slowly in time and

h′ is some periodic function with small amplitude. Linearizing Eq. (4.27)

with respect to h′ and keeping the leading oscillating terms, we find after

integration in time:

h′ = − δ

Ω
[
(∂xh̄

3) cos(Ωt−Ksx) +Ksh̄
3 sin(Ωt−Ksx)

]
(4.32)

Integrating now both sides of Eq. (4.27) over one period T , and keeping only

the first non-vanishing term proportional to h′, we obtain (after replacing h̄

by h):

∂th = −∇[h3∇(∆h− g(h))]− 3
2
δ2Ks

Ω
∂xh

5, (4.33)

Here it is necessary to mention that the linearization and the averaging

procedures do not commute. Applying the averaging method to Eq. (4.29)
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one finds that the effective evolution equation coincides with that for δ = 0.

So the equation Eq. (4.33) is only correct in the non-linear stage.

Numerical results

Examining Eq. (4.33), we recognize a similarity to the equation which de-

Figure 4.15: Three time series found by numerical integration of Eq. (4.33) using

different initial conditions and sound amplitudes. The direction of the sound wave is

vertical. The grey scale indicates the thickness of the film, bright regions correspond

to elevated parts of the surface. (a) Instability of a front, α̃ = 0.002. In the long-

time limit, coarsening is terminates and parallel stripes are stabilized. (b) The same

as (a) but with a random initial condition. Now small drops are formed which merge

to bigger ones and then to rivulets. Finally, the same structure as in (a) is found.

(c) Drop evolution for a smaller value of the sound amplitude α̃ = 0.0004. Also

here, coarsening is suppressed in the long time limit and big drops result.

scribes thin liquid films on an inclined substrate [7, 128]. The only quantita-

tive difference between these two cases is the mobility factor for the driving

term, which is here Qs(h) = h5 and Qinc(h) = h3 for films on an inclined

substrate. Therefore we expect the same qualitative spatiotemporal behav-

ior: fronts and randomly distributed initial conditions may get unstable

and begin to travel, driven by the sound wave. Figs. 4.15(a),(b) show nu-
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merical solutions which indeed demonstrate this effect. We solved equation

Eq. (4.33) in a two-dimensional periodic domain using pseudo-spectral code.

Note, that in the initial stage of the movement of the liquid ridge in Fig. 4.15(a)

front and back become unstable independently of each other with clearly

different transversal wavelength. This corresponds very nicely to the same

effect found for liquid ridges on inclined plates [7, 125, 122]. Therefore, it is

to expect that also here with increasing driving force the transversal insta-

bility changes from an asymmetric varicose mode to an asymmetric zigzag

mode and further to decoupled front and back instability [122].

It is remarkable that in both situations - Fig. 4.15(a) and Fig. 4.15(b) - coars-

ening is interrupted at a certain time and a structure of parallel stripes is

stabilized, independent on the particular form of the initial conditions. Its

final period depends on the force of the driving, here the square of the am-

plitude of the sound wave. For rather small values of the driving force, there

seems to be a continuous transition to the non-driven case. Fig. 4.15(c)

shows the evolution of drops as in Fig. 4.15(b), but for α = 0.0004. Also

here, coarsening is suppressed in the long time limit and big but still isolated

drops result.

The drift velocity of the whole pattern strongly depends on the amplitude

of the surface deflections. The drops with large amplitude drift faster than

the drops on the inclined substrate due to the much stronger dependence of

the mobility factor Qs(h) on the film thickness.

For practical application the plane sonic wave, irradiated to the film surface,

may be of greater interest than the very slow drift on an inclined substrate.

Furthermore, one can move selected parts of a pattern by using sonic waves

with a spatially inhomogeneous intensity distribution (a beam of sound) For

example, one may move a single drop in a desired direction.

To simulate this we consider the strength of the sonic wave to be a slow

function of spatial coordinates δ = δ(x, y). Then the last term in Eq. (4.33)

modifies to
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3
2
Ks

Ω
∂x(δ2(x, y)h5). (4.34)

The result of a simulation is presented in Fig. 4.16. We chose the parame-

t = 4 t = 5 t = 6 t = 7 t = 7.5

t = 8 t = 9 t = 10 t = 11.5 t = 13

Figure 4.16: Evolution of the system under the influence of a sonic disturbance with

spatially inhomogeneous strength α̃ = α̃0 exp
[
−b

(
(x−L/2

L )2 + (y−L/2
L )2

)]
, where

α̃0 = 0.5 is the strength of the sonic wave in the center of the system and b = 25

stands for the size of the active region. The control parameters a = 0.1, γ =

3.5, G = 0.01 correspond to the drop solution.

ters (a, G, γ) corresponding to the drop regime [7] and wait until drops are

formed before we switch on the sound beam, which has a maximal amplitude

at the center of the system. Its strength falls exponentially in radial direc-

tion. A drop in the center is moved towards a region where the strength of

the sonic wave is weak (non-active region). After the collision of the moved

drop with a drop which is in the non-active region, a curved long drop is

formed. The center of the system is now free of drops.

4.3.2 Inhomogeneous wetting

Here we show the influence of periodic inhomogeneities on surface pattern

formation. The reason for these inhomogeneities can be different, depending

on the particular system under consideration. As inhomogeneously wettable

substrates [25] we only mention chemically patterned substrates or space

dependent heating in the case of Marangoni convection.
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Cahn-Hilliard equation

Since we wish to discuss the influence of inhomogeneous controlling from a

Figure 4.17: Numerical solutions of the modulated Cahn-Hilliard equation

Eq. (4.38) for different inhomogeneities in form of stripes (a,b) or squares (c). If

the modulation wave length is much shorter than the spinodal one, coarsening dom-

inates (a). For kI ≈ kc, patterns are aligned perpendicular. Pinning on a square

grid is shown in (c). The steady state consists of filled or empty boxes.

more general point of view, we simplify our model Eq. (4.27) by assuming

the system is close to its critical point [127, 120, 129]. We set the mobility

to Q(h) = 1, leading to

∂th = −∆(∆h− g(h)) (4.35)

and use for g the general Taylor expansion

g(h) = a0 + a1h+ a2h
2 + a3h

3 (4.36)

with the restriction for global stability a3 > 0. Since only derivatives of h

occur, we may shift h by a constant and rescale the coefficients in Eq. (4.36)

to obtain a2 = 0. Additional rescaling of height, time and space may lead to

a1 = −1 and a3 = 1 if the condition for instability of the flat film is fulfilled.
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The most simple way to include a multiplicative modulation is to allow for

spatial variation of the linear coefficient a1. Thus we find

g(h) = a′0 − (1 + εf(x, y))h+ h3 (4.37)

Inserting this into Eq. (4.35), we obtain the space dependent Cahn-Hilliard

equation

∂th = −∆h−∆2h+ ∆h3 − ε∆(fh). (4.38)

Without modulation, a type–IIs instability occurs with critical wave number

kc = 1/
√

2 and the cut-off wave number km =
√

2 [17].

Numerical results on inhomogeneous wetting

We present time series for different harmonic inhomogeneities f . First, we

use

f(x) = sin(kIx)

and examine its influence with respect to the wave number kI of the modu-

lation. From two dimensional computations [121] it is known that for wave

numbers much larger than the critical one (kI >> kc) coarsening takes

place just as for the homogeneous situation. Fig. 4.17(a) shows an evolu-

tion where kI = 2kc. Pinning is observed in the early stages, but finally

coarsening dominates as for a homogeneous substrate. However, pinning is

reminiscent during the whole evolution and patterns align parallel to the

prescribed stripes.

A quite different situation occurs for a smaller wave number of the modula-

tion. In the 2D case, pinning is expected to be dominant, which is also clearly

seen in 3D. For kI = kc the pattern organizes itself in stripes perpendicular

to the inhomogeneity (Fig. 4.17b). It is also remarkable that coarsening is

terminated after a certain time and a steady state with a finite wave vector

results, just as in the driven systems from the previous section.

We conclude this paragraph showing the evolution on a square-like inhomo-

geneity of the form

f(x, y) = sin(kIx) sin(kIy)
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with kI = kc (Fig. 4.17c). Although coarsening still exists, pinning is domi-

nant and the fluid forms filled or empty cells on the square grid prescribed

by f(x, y). Such a device could store information and may be used as a

“liquid memory”.

Although both mechanisms of controlling the surface patterns (non-contact

method using irradiation of the liquid surface with ultra sound and inho-

mogeneous wetting) are completely different, the resulting patterns show

certain common features. In both systems, the rotational symmetry in the

horizontal plane is broken by the external modulation. This lack of sym-

metry expresses itself in the form of the final stable surface pattern, which

turns out to be periodic in both cases. Interestingly, in both cases the sur-

face pattern can be organized in stripes perpendicular to the external force

or modulation. Coarsening, obtained always in the early stages of temporal

evolution, is interrupted at a certain time and periodic patterns stabilize.

The periodicity length depends thereby mainly on the strength of the exter-

nal modulation.





Chapter 5

Two-layer liquid films

5.1 Coupled evolution equations

substrate

liquid1 x

z

liquid2

h 21h

gas

Figure 5.1: Sketch of the two-layer system in two dimensions. The local thickness

of the lower layer is h1, the total local film thickness is h2.

In this chapter we consider a two-layer liquid film, which is obtained by

superposing two immiscible liquids, as sketched in Fig. 5.1. First, we de-

rive coupled evolution equations for the profiles of the liquid-liquid interface

h1(x, y) and the liquid-gas interface h2(x, y). Considering a two-dimensional

geometry the respective Stokes equations for the two layers are

∇(pi + φi) = µi∆~vi, (5.1)

where i = 1, 2 denotes the respective layer. For each layer ~vi = (ui, wi)
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is the velocity field, pi the pressure, φi the potential of the bulk forces

and µi the viscosity. The constant mean film thicknesses are denoted by

d1 = (
∫ L
0 h1dx)/L and d2 = (

∫ L
0 h2dx)/L where L is the lateral system size.

A lubrication approximation [80] is applied assuming the ratio of vertical

and horizontal length scales to be small. As smallness parameter we use the

ratio ε = d1/λ where λ is the characteristic lateral length scale of the film

instability. In zeroth order in ε the Stokes equations Eq. (5.1) simplify to

µ2∂
2
zu2 = ∂xp̄2 (5.2)

∂z p̄2 = 0 (5.3)

µ1∂
2
zu1 = ∂xp̄1 (5.4)

∂z p̄1 = 0, (5.5)

where the p̄i stand for pi +φi. At the substrate (z = 0) we use a Navier slip

and a no-penetration condition, i.e.

u1 = β∂zu1 and w1 = 0, (5.6)

respectively. The slip length is denoted by β. At the liquid-liquid interface

(z = h1) we use the continuity of the velocity field, the kinematic condition

and the continuity of the tangential component of the liquid stress tensor

u1 = u2, w1 = w2, (5.7)

w1 = ∂th1 + u1∂xh1, (5.8)

(5.9)

and

µ1∂zu1 − µ2∂zu2 = ∂xσ12, (5.10)

respectively. The normal stress condition is discussed below. At the liquid-

gas interface (z = h2) only the kinematic condition and the continuity of

the tangential component of the liquid stress tensor apply, i.e.

w2 = ∂th2 + u2∂xh2, (5.11)

µ2∂zu2 = ∂xσ2. (5.12)



5.1 Coupled evolution equations 67

The σ12 and σ2 stand for the interfacial tensions of the liquid-liquid and of

the liquid-gas interface, respectively. The boundary conditions for the nor-

mal component of the stress tensor are written incorporating the disjoining

pressures at the liquid-liquid Π1(h1, h2) and at the liquid-gas Π2(h1, h2) in-

terface, respectively. They represent effective molecular interactions between

the interfaces that result, for instance, from Van der Waals interactions [47].

They are discussed in detail below. For the liquid-gas interface (z = h2) we

obtain

p2(h2)− p0 = −σ2∂
2
xh2 + Π2(h1, h2)

and for the liquid-liquid interface (z = h1)

p1(h1)− p2(h1) = −σ12∂
2
xh1 + Π1(h1, h2), (5.13)

where p0 is the constant pressure in the gas atmosphere. Equations Eqs. (5.13)

can be written in terms of variations of an energy functional F [h1, h2]

p1(h1)− p2(h1) =
δF

δh1

p2(h2)− p0 =
δF

δh2
, (5.14)

with

F =
∫ (

σ1
(∂xh1)2

2
+ σ2

(∂xh2)2

2
+ f(h1, h2)

)
dx, (5.15)

and f(h1, h2) being the free energy of the flat films per unit area.

Equations Eq. (5.2) and Eq. (5.4) are integrated three times with respect to z

to obtain the stream functions Ψi, defined by (wi = −∂xΨi, ui = ∂zΨi). The

six x-dependent integration constants are determined using the boundary

conditions Eq. (5.6), Eq. (5.7), Eq. (5.10), and Eq. (5.12). Thus the velocity

fields in the two layers are given by

u1 =
1
µ1

(∂xp̄1)
z2

2
+

1
µ1

(z + β)K1

u2 =
1
µ2

(∂xp̄2)
z2

2
+

1
µ2
K2(z − h1)− ∂xp̄2

µ2

h2
1

2
+ u1(h1), (5.16)
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with K1 = K2 + ∂xσ12 + [(∂xp̄2)− (∂xp̄1)]h1 and K2 = ∂xσ2 − (∂xp̄2)h2.

The stream functions Ψi are related to the flow in the lower layer Γ1 =∫ h1

0 u1 dz and to the one in the upper layer Γ2 =
∫ h2

h1
u2 dz by Γ1 = Ψ1(h1), Γ1+

Γ2 = Ψ2(h2). Using the Ψi we rewrite equations Eq. (5.8) and Eq. (5.11) to

obtain the evolution equations for the two interface profiles

∂th1 + ∂x [Ψ1(h1)] = 0, (5.17)

∂th2 + ∂x [Ψ2(h2)] = 0. (5.18)

Written in terms of the energy functional they read

∂th1 = ∂x

[
Q11∂x

δF

δh1
+Q12∂x

δF

δh2
−D11∂xσ12 −D12∂xσ2

]

∂th2 = ∂x

[
Q21∂x

δF

δh1
+Q22∂x

δF

δh2
−D21∂xσ12 −D22∂xσ2

]
, (5.19)

with the mobility matrices of the pressure terms

Q =
1
µ1

(
h3
1
3 + βh2

1
h2
1
2 (h2 − h1

3 ) + βh1h2

h2
1
2 (h2 − h1

3 ) + βh1h2
(h2−h1)3

3 (µ1

µ2
− 1) + h3

2
3 + βh2

2

)
(5.20)

and of the tangential stress terms

D =
1
µ1

(
h2
1
2 + βh1

h2
1
2 + βh1

h1(h2 − h1
2 ) + βh2

µ1(h2−h1)2

2µ2
+ h1(h2 − h1

2 ) + βh2

)
,(5.21)

respectively. Note, that the mobility matrix Q is symmetric and all mobili-

ties Qik and Dik are positive. Dropping the terms representing the effective

molecular interactions, equations Eqs. (5.19) represent the fully nonlinear

equivalent for the weakly nonlinear equations derived in Ref. [73, 74]. As-

suming that the interfacial tensions are influenced by thermocapillarity only,

one can express the derivatives ∂xσ12 and ∂xσ2 in terms of gradients of local

thicknesses ∂xhi. This is done in the Appendix.

For isothermal ultrathin liquid films one has (∂xσ12 = ∂xσ2 = 0). The situ-

ation is then relaxational (or variational), i.e. equations Eqs. (5.19) possess

a Lyapunov functional, namely the energy functional F , which decreases
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monotonically in time as shown next. The total time derivative of the Lya-

punov functional is dF/dt =
∫ (

δF
δh1

∂th1 + δF
δh2

∂th2

)
dx. Expressing ∂thi by

Eqs. (5.19) and using partial integration with periodic boundary conditions,

one obtains

dF

dt
= −

∫ ∑

i,k

Qik

(
∂x
δF

δhi

)(
∂x
δF

δhk

)
dx. (5.22)

Because

det Q =
(h2 − h1)3h3

1

9µ1µ2
+

1
12µ2

1

h4
1(h2 − h1)2 +

β

(
h3

1

3µ2
1

(h2 − h1)2 + h2
1

(h2 − h1)3

3µ1µ2

)
> 0 (5.23)

and Qii > 0, the quadratic form in Eq. (5.22) is positive definite implying

dF/dt < 0. The existence of F allows to identify the stationary solutions of

Eqs. (5.19) with the extrema of F . This will be used below in Section 5.5.2.

5.2 The disjoining pressures

In many important cases, as for instance, for polymer films on apolar sub-

strates [107, 97], the interaction energy is mainly determined by its long-

range apolar dispersion part. However, if the model only takes into account

a destabilizing long-range interaction the time evolution definitively leads to

rupture of the upper or lower layer, as will be shown in Section 5.4, mak-

ing it impossible to study the long-time coarsening behavior. To be able

to study the long-time evolution one has to include stabilizing short-range

interactions, introduced in Section 3.2. into the model. Although these are

normally not included for films of thicknesses above 10 nm because they do

not change the stability of flat films, also for such films they become impor-

tant in the non-linear stage of evolution when the local thicknesses become

comparable to their interaction length.

As detailed in Section 3.2, the long-range part of the interaction energy for

each pair of interfaces (see Fig. 5.1) resulting from dispersive Van der Waals

interactions is given by Aijkl/12πh2, where Aijkl is a (four-indices) Hamaker
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constant which corresponds to the interaction between the interfaces (i− j)
and (k − l). Each index in Aijkl can be one out of g, 1, 2 and s, denoting

gas, liquid 1, liquid 2 and substrate, respectively.

The short-range forces which can be of an electrostatic or structural na-

ture [118, 27] decay exponentially with h (see Section 3.2). The correspond-

ing interaction energy between the interfaces (s − 1) and (1 − 2) is given

by S1 exp [(l0 − h1)/l1] and between the interfaces (1 − 2) and (2 − g) by

S2 exp [(l0 − (h2 − h1))/l2], where l0 = 0.158 nm is the Born repulsion length,

and l1, l2 ∼ 1..10 nm are the interaction lengths of the short-range interac-

tions [111]. Further on we consider the two correlation lengths l1 and l2 to

be equal and denote them by l. S1 > 0 and S2 > 0 are the short-range com-

ponents of the total spreading coefficients. They are related to the lower

layer on the substrate below a bulk of the upper liquid and to the upper

layer on the lower film as substrate below the ambient gas, respectively. We

do not take into account short-range interactions between interfaces (s− 1)

and (2− g).

Collecting the long-range and the short-range forces the disjoining pressures

Π1(h1, h2) and Π2(h1, h2) are specified as

Π1(h1, h2) =
A21s

6πh3
1

− A12g

6π(h2 − h1)3
− S1

l
exp

[
l0 − h1

l

]
+

S2

l
exp

[
l0 − (h2 − h1)

l

]

Π2(h1, h2) =
A12g

6π(h2 − h1)3
+
Ag21s

6πh3
2

− S2

l
exp

[
l0 − (h2 − h1)

l

]
(5.24)

Then the energy functional

F =
∫ [

σ12
1
2
(∂xh1)2 + σ2

1
2
(∂xh2)2 − A12g

6(h2 − h1)2
− A21s

6h2
1

− Ag21s

6h2
2

+ c1(h1 − d1) + c2(h2 − d2) + S1 exp (−h1) + S2 exp (h1 − h2)] dx,

(5.25)
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where ci are the Lagrange multipliers that ensure mass conservation for the

two liquids. d1 and d2 denote the mean film thickness of the lower film and

the total mean film thickness, respectively.

Further on we will separately consider the action of the long-range interac-

tion only as well as the simultaneous action of short-range and long-range

terms on the evolution of two-layer films.

5.3 General stability of flat films

We start the analysis of our model for two-layer films by discussing the linear

stability of flat films with h1(x) = d1 and h2(x) = d2. Equations Eqs. (5.19)

are linearized in ε¿ 1 for small amplitude disturbances εχi exp (γt) exp(kx)

for i = 1, 2 where k, γ and χ = (χ1, χ2) are the wave number, growth rate

and amplitudes of the disturbance, respectively. The dispersion relation γ(k)

is obtained by solving the resulting eigenvalue problem (J − γI)χ = 0.

For the isothermal case (∂xσ12 = ∂xσ2 = 0 in Eqs. (5.19)), the corresponding

non-symmetric Jacobi matrix J is given by J = −k2Q ·E, where Q is the

mobility matrix. E is the energy matrix

E =




∂2f
∂h2

1
+ σ12k

2 ∂2f
∂h1∂h2

∂2f
∂h1∂h2

∂2f
∂h2

2
+ σ2k

2


 , (5.26)

where f(h1, h2) is the local part of the energy density from Eq. (5.25). This

yields

γ =
Tr
2
±

√
Tr2

4
−Det, (5.27)

where Tr = −k2[2Q12E12 +Q11E11 +Q22E22] and Det = k4 detQ detE are

the trace and the determinant of J . Since detQ 6= 0 the eigenvalue problem

can be written as the generalized eigenvalue problem (k2E + γQ−1)χ = 0.

Because E and Q−1 are both symmetric and Q−1 is positive definite one

can deduce that all eigenvalues γ are real [65] as expected for a variational

problem. In the non-isothermal case, the Jacobi matrix is given by J =

−k2(Q · E −D · Γ), where Γ is a matrix of coefficients for the Marangoni
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Figure 5.2: The schematic stability diagram for fixed coupling E12. Shown are the

stability threshold (solid line) and the boundary between the one-mode and the two-

mode region (dotted line). Both are given by detE = 0 for increasing wave number

k. Dashed and dot-dashed arrows represent parametric lines given by (E11(k) and

E22(k)). The dashed (dot-dashed) line starts at k = 0 in the two-mode (one-mode)

region. At an intersection of a line det E(k = 0) and a parametric line one of the

growth rates changes its sign.

terms. It is defined in the Appendix. Neither the matrix D nor Γ are

symmetric. This leads to (in general) complex eigenvalues indicating the

possibility of oscillating motion in the non-isothermal case [73, 74].

Going back to the isothermal case, inspection of the generalized eigenvalue

problem shows that the stability threshold is completely determined by the

eigenvalues of E. Since the surface tension terms are always positive, the

onset of the instability is always found for k = 0, i.e. the system is linearly

stable, independently of the wavelength of the disturbance, for

detE > 0 and E11 > 0 at k = 0. (5.28)

An instability sets in if at least one of the conditions Eq. (5.28) is violated.

Then the flat two-layer film is unstable to disturbances with k larger zero
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and smaller than a cutoff wavenumber

k2
c = −η

2
±

√
η2

4
+

1
σ12σ2

(
∂2f

∂h1∂h2

)2

, (5.29)

with η =
(

1
σ12

∂2f
∂h2

1
+ 1

σ2

∂2f
∂h2

2

)
. The kc are determined by the condition detE(kc) =

0.

Fig. 5.2 shows a schematic stability diagram in the plane (E11, E22). The

stability threshold E11E22 = E2
12, E11 > 0 is a hyperbola, represented by

the solid line. The unstable region below and left of that line is divided by

a second hyperbola into a two-mode and a one-mode region. In the two-

mode region both growth rates given by Eq. (5.27) are positive for k smaller

then the respective cut-off kc. In the one-mode region only one γ is positive

for k < kc. Fixing all other system parameters, detE(k) is determined by

k. If at k = 0 the system is in the two-mode region, then by increasing k

one passes two times a line det E = 0, as indicated by the dashed arrow

in Fig. 5.2. At each crossing a growth rates (equation Eq. (5.27)) becomes

negative, i.e. a mode is stabilized. If at k = 0 the system is in the one-mode

region the line det E = 0 is crossed only once (dot-dashed line).
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5.4 Long-range interaction only

5.4.1 Scaling and flat film stability

As detailed above the stabilizing short-range interaction only becomes im-

portant if at least one layer thickness is locally comparable to the interaction

length l, i.e. if a layer becomes thinner than about 10 nm. Therefore, to study

the linear stability of thicker layers one can neglect the short-range terms in

Eq. (5.25).

In this section we non-dimensionalize Eq. (5.19) using scales derived from

the upper layer as an effective one-layer system. This is done to compare

to the well understood one-layer systems. We scale x with λup = 4π(d2 −
d1)2

√
πσ2/|A12g|, hi with d2−d1 and t with τup = 48π2µ2σ2(d2−d1)5/A2

12g.

The corresponding energy scale is |A12g|/16π3(d2 − d1)2. The ratios of the

mean thicknesses, surface tensions and viscosities are d = d2/d1, σ = σ2/σ12

and µ = µ2/µ1, respectively. To compare with the lower layer as effective

one-layer system one introduces in an analogous way the length scale λlow

and time scale τlow.

In this case, equation Eq. (5.28) is used to study the role of the Hamaker

constants Eq. (3.11) in the linear evolution of the system. First we note

that the Hamaker constants are coupled through the refractive indices of

the media ni. This allows only for selected combinations of signs of the Aijk

and Aijkl as given in Table 5.1.

For fixed Hamaker constants, i.e. fixed combination of materials, det E0 =

detE(k = 0) is a function of the ratio d of the layer thicknesses only. Using

Table 5.1 one can show that for positive ∂2f/∂h2
i the equation det E0(d) = 0

can only have the solution d = 1, i.e. d2 − d1 = 0. This means that only

for vanishing upper layer the system can be on the stability threshold. In

consequence the stability threshold can not be crossed by solely changing

the ratio of layer thicknesses.

The stability threshold shown as solid line in Fig. 5.3 is determined by E

for disturbances of infinite wavelength, i.e. k = 0. Changing d one finds a
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refractive indices A12g A21s Ag21s

ns > n1, n1 < n2, n2 > ng + + -

ns < n1, n1 < n2, n2 > ng + - +

ns < n1, n1 > n2, n2 > ng - + +

ns > n1, n1 > n2, n2 > ng - - -

Table 5.1: Possible combinations of signs of the different Hamaker constants for

given order of the refractive indices of the involved medias.

line (trajectory) in the stability diagram Fig. 5.3 as shown for a variety of

experimentally studied systems. Each trajectory lies entirely either in the

stable or in the unstable region. For instance, for the Si/PMMA/PS/air

system the second condition in Eq. (5.28) is violated for all d and the system

is always unstable. At d = 1, i.e. for vanishing upper layer, the system is on

the boundary between the one- and the two-mode regions (dashed line).

5.4.2 Flat film stability: one-layer vs. two-layer films

To compare the stability behavior of two-layer and one-layer films we intro-

duce two effective one-layer films as follows. In (1) we assume the lower layer

to be solid, i.e. we regard the upper layer as a one-layer film on a coated

substrate. In (2) we assume the upper layer to be rigid but deformable by

bending. The lower liquid layer corresponds then to a one-layer film on a

solid bulk substrate. In case (1) the one-layer liquid film is unstable if the

second derivative of the energy with respect to the film thickness h2 is neg-

ative, ∂2f/h2
2 < 0. The stability threshold at ∂2f/h2

2 = 0 can be crossed

by changing the layer thickness h2− h1 or the thickness of the coating layer

h1. This was demonstrated in Refs. [71] and [107] for a PS film on Si wafers

covered with a 1.6 nm thick SiO layer. In case (2) the one-layer liquid film

is unstable for ∂2f/h2
1 < 0. It can also be destabilized by changing the layer

thicknesses, as was shown in Ref. [26] for a rigid PS layer on top of a liquid

PDMS layer on a Si substrate.

Comparing the stability thresholds for the two effective one-layer systems



76 Two-layer liquid films

-500 0 500
 ∂

h
1
h

1
ρ

VW

-200

0

200

∂ h 2h 2
ρ V

W

(1)
(2)
(3)
(4)
(5)

stable
one-mode
unstable

two-mode
unstable

Figure 5.3: Stability diagram for fixed scaled coupling ∂h1h2ρV W = 8π2A12g/|A12g|.
Shown are the the stability threshold (solid line) and the boundary between

unstable one-mode and two-mode regions (dashed line). The thin lines rep-

resent the trajectories for commonly studied systems: (1) Si/PMMA/PS/air,

(2) SiO/PMMA/PS/air, (3) SiO/PS/PDMS/air, (4) Si/PS/PDMS/air, and (5)

Si/PDMS/PS/air.

to the stability diagram in Fig. 5.2 shows that the stability threshold of the

two-layer system lies in the region where both effective one-layer systems

are stable. This indicates that a two-layer system is always less stable than

corresponding effective one-layer systems.

5.4.3 Different instability modes

The stability threshold can be studied in rather general terms as was done

above because its main features do not depend on surface tensions or viscosi-

ties. However, this is not the case for the characteristics of the instability

like mode type, growth rates or dominant wave length. To discuss these

we focus in the following on selected two-layer films studied experimentally

[71, 57, 109]. We consider various combinations of layers of polystyrene (PS),

poly(methylmethacrylate) (PMMA) and poly(dimethylsiloxane) (PDMS) on
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System A12g × 10−20J A21s × 10−20J Ag21s × 10−20J

Si/PMMA/PS/air 1.49 3.8 −23.02

SiO/PMMA/PS/air 1.49 −0.024 0.15

SiO/PS/PDMS/air −1.83 0.42 1.25

Table 5.2: Hamaker constants for various combinations of polymers.

a silicon (Si) or on a silicon-oxide (SiO) substrate. The Hamaker constants

for different combinations are calculated using Eq. (3.11) and given in Ta-

ble 5.2.

The linear instability of a two-layer film has two different modes. It can

be of zigzag or varicose type. For the former the deflections of the two

interfaces are in phase whereas for the latter they are in anti-phase. For

special parameter values one can also find a mixed type, where the both

modes are present because they have equal fastest growth rates.

The model studied in Ref. [13] assumes a thick lower layer thereby neglecting

the interaction between the substrate and the liquid-liquid and the liquid-

gas interface. In this case only the varicose mode can be unstable. In the

general case, however, also the zigzag mode can become unstable. Both

modes are normally asymmetric, i.e. the deflection amplitudes of the two

interfaces differ. We characterize this asymmetry by φ = χ1χ2/(χ2
1 + χ2

2).

Negative (positive) φ corresponds to varicose (zigzag) modes. The value

|φ| = ±1/2 represents the symmetric case, whereas φ = 0 corresponds to

maximal asymmetry, i.e. one of the interfaces is flat. The asymmetry in-

creases with the ratio of the surface tensions σ. Note, that the dispersion

relation and the type of the dominant mode depend on σ and µ, whereas

the stability diagram Fig. 5.2 does not.

The two mode types are plotted in Fig. 5.4 for a Si/PMMA/PS/air and a

SiO/PMMA/PS/air systems for different ratios of mean film thicknesses d

and surface tensions σ. The dispersion relations γ(k) are shown together

with the corresponding φ. We show here that the type of the dominant

mode can be changed by varying d or σ. Small values of d correspond

to a varicose mode (Fig. 5.4(a)), whereas large values of d correspond to
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Figure 5.4: Shown are the growth rate γ and the corresponding angle φ for the

leading eigenmode. Panel (a) shows 5φ and γ for the one-mode varicose region at

d = 1.4. Panel (b) shows 50φ and γ for the one-mode zigzag region at d = 2.4. In

(a) and (b) the symmetrical case is considered: σ = µ = 1. Panels (c) and (d) give

γ and φ, respectively, for a SiO/PMMA/PS/air system at d = 2.16 for µ = 1 and

different σ as given in the inset of (d).

a zigzag mode (Fig. 5.4(b)). When increasing σ for fixed d, the dominant

mode type changes from the zigzag mode to the varicose one (Fig. 5.4(c) and

Fig. 5.4(d)).

Strictly speaking, the concept of the mode type characterized by φ is only

valid in the linear stage of the evolution. However, to discuss morphology

changes we generalize this concept to nonlinear thickness profiles hi(x). We

define a generalized mode or solution type by the integral

φint =
1
L

∫
(h1 − d1)(h2 − d2)

[(h1 − d1)2 + (h2 − d2)2]
dx, (5.30)

taken over the domain length L. In many cases the sign of the product

(h1 − d1)(h2 − d2) does not depend on x allowing to ’read’ the mode type

directly from the plots of the layer profiles. For small deflection amplitudes

Eq. (5.30) gives again the linear mode type defined above. In the following

we use the notion ’mode-type’ in the linear and in the nonlinear regime.
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5.4.4 Rupture acceleration

We simulate the coupled time evolution of h1 and h2, Eq. (5.19), in an one-

dimensional domain using a semi-implicit time integration scheme and pe-

riodic boundary conditions. Initial conditions consist of flat layers with

an imposed noise of amplitude 0.001. Alternative pathways of dewetting

that occur for different thickness ratios d are presented in Fig. 5.5 using a

Si/PMMA/PS/air system as an example. Fig. 5.5 (a) shows that for a rela-

tively small d = 1.4 the two interfaces start to evolve deflections that are in

anti-phase indicating the dominance of a varicose mode. When the liquid-

gas interface approaches the liquid-liquid interface the latter starts to move

downwards due to dynamical effects. This pathway leads to rupture of the

upper layer, i.e. at the liquid-gas interface. On the contrary, Fig. 5.5 (b)

shows that for a larger d = 2.4 the growing deflections of the two interfaces

are in phase indicating the dominance of a zigzag mode. As a consequence,

here the lower layer ruptures, i.e. rupture occurs at the substrate. Note,

that in both, Fig. 5.5 (a) and (b), at the moment of rupture the respective

non-ruptured layer is also in an advanced stage of its evolution leading to

subsequent rupture. This is remarkable because their time scales as effective

one-layer systems are 15 times (Fig. 5.5 (a)) and 35 times (Fig. 5.5 (b)) slower

than the time scales for the respective fast layer. The ratio of the time scales

τup/τlow is proportional to (d − 1)5, i.e. for a lower layer ten times thicker

than the upper one the rupture time of the lower layer is about five orders

of magnitude larger than the one of the upper layer. However, a simulation

for a Si/PMMA/PS/air system with d1 = 10 and d2 − d1 = 1 shows that at

rupture of the upper layer at t = 0.61τup = 3.99 × 10−5τlow the lower layer

already evolved a depression of one fourth of its thickness. If the lower layer

is the fast one, the effect also exists but is less pronounced.

In both cases, the acceleration of the rupture of the slower layer is caused

by the direct coupling of the layers via the liquid-liquid interface. The fast

evolution of the thinner layer deforms the interface and brings the thicker

layer beyond the slow linear stage of its evolution. If the upper layer is the

driving layer the process is in addition dynamically enforced because the
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Figure 5.5: Snapshots from time evolutions of a two-layer film for a

Si/PMMA/PS/air system at dimensionless times (in units of τup) as shown in the

insets. (a) At d = 1.4 a varicose mode evolves leading to rupture of the upper layer

at the liquid-liquid interface. The ratio of the time scales derived from upper and

lower effective one-layer system is τup/τlow = 0.066. (b) At d = 2.4 a zigzag mode

evolves and rupture of the lower layer occurs at the substrate (τup/τlow = 34.98).

The domain lengths are 5 times the corresponding fastest unstable wave length and

µ = σ = 1.

liquid-liquid interface is ’pushed away’ by the advancing liquid-gas interface.

5.4.5 Two-mode behavior

Further on, the simultaneous action of the van-der-Waals forces between the

three interfaces allows for dispersion relations with two maxima. An exper-

imental system showing this unusual form of γ(k) can be realized with a

substrate that is less polarizable than both layers. This is the case for the

SiO/PMMA/PS/air system. A dispersion relation showing maxima of equal

height is given for d = 2.16 and σ = 10 in Fig. 5.4(c). The maxima at small

and large k correspond to strongly asymmetric zigzag and varicose modes,

respectively. This implies that the larger (smaller) wavelength will predom-

inantly be seen at the liquid-gas (liquid-liquid) interface (Fig. 5.6 (a)). In-
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Figure 5.6: Single snapshots from time evolutions of a SiO/PMMA/PS/air system

for d = 2.16, µ = 1 and different σ. (a) The respective evolutions of the two

interfaces are dominated by modes of different wavelength (σ = 10, t = 3.83). In (b)

and (c) the evolution is dominated by the liquid-gas and the liquid-liquid interface,

respectively (σ = 5, t = 3.9 and σ = 100, t = 0.52).

creasing (decreasing) the ratio of the surface tensions strengthens the smaller

(larger) wavelength. This implies that solely changing σ by adding an other-

wise passive surfactant one can switch from an evolution entirely dominated

by the liquid-liquid interface to one dominated by the liquid-gas interface.

This illustrates Fig. 5.6 by single snapshots from the non-linear time evolu-

tions for different σ.
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5.4.6 Limiting cases

For general di the radical in Eq. (5.27) does not allow to give an analytic

expression for the wave number km and the characteristic growth time τm =

1/γm of the fastest growing mode. Nevertheless, one can derive asymptotic

expressions for km and τm in the two important limiting cases of (1) small

thickness of the upper layer d2 − d1 ¿ d2 and (2) small thickness of the

lower layer d1 ¿ d2. First consider case (1), which corresponds to a liquid

film (the upper layer) on a liquid substrate (the very thick lower layer). The

dimensional km and τm are then given by

km =
1

(d2 − d1)2

√
|A12g|
4πσeff

τm =
16(2π)2σeffµ1(d2 − d1)6

d1A2
12g

, (5.31)

with σeff = σ1σ2/(σ1 + σ2). Note that all variables are in their dimensional

form.

Interestingly, the growth time τm depends only on the viscosity of the lower

layer µ1 and does not depend on µ2. This can be explained by the fact

that the flow in the lower layer which is related to µ1, is much larger than

that in the upper one [13]. At constant thickness of the lower layer, τm
is proportional to (d2 − d1)6, i.e. a liquid film on a bulk liquid substrate

evolves faster than the same film on a solid substrate (growth time ∼ (d2 −
d1)5) and even faster than the same film on a solid substrate with slippage

(growth time ∼ (d2 − d1)5/ [1 + 3β/(d2 − d1)]).

In case (2), which corresponds to a liquid film (the lower layer) on a solid

substrate below the other liquid (the very thick upper layer), the dimensional

km and τm are given by

km =
1
d2

1

√
A21s

4πσ1

τm =
12(2π)2σ1µ1d

5
1

A2
21s

. (5.32)

Note that in case (2) km and τm coincide with klow and τlow, respectively,
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the characteristics of the dominant mode of the instability of a liquid film

below a bulk liquid calculated using one-layer theory. A discussion of this

geometry for a Rayleigh-Taylor instability can be found in Refs. [135] and

[136].

5.5 Long-range and short-range interactions

From now on, we will take into account the stabilizing short-range terms

in the Lyapunov functional. These terms provide the natural scaling for

the vertical coordinate, given by the correlation length of the polar liquids

l. To non-dimensionalize Eqs. (5.19) we scale the thicknesses with l, the

lateral coordinate x with λ = l(d2 − d1)
√

2πσ1/|A12g|, and time t with

τ = (2π)2σ1µ1l(d2 − d1)4/A2
12g. Then the scaled energy functional

F =
∫ [

1
2
(∂xh1)2 +

σ

2
(∂xh2)2 − Ā12g

6(h2 − h1)2
− Ā21s

6h2
1

− Āg21s

6h2
2

+ c1(h1 − d̄1) + c2(h2 − d̄2) + S̄1 exp (−h1) + S̄2 exp (h1 − h2)
]
dx,

(5.33)

involves the scaled Hamaker constants Āijkl = [(d2 − d1)/l]
2Aijkl/|A12g|,

spreading coefficients S̄i = 2π [(d2 − d1)]
2 Si exp (d0/l)/|A12g|, and mean

layer thicknesses d̄i = di/l. The ci are Lagrange multipliers that ensure

mass conservation for the two liquids. The corresponding energy scale is

|A12g|/2π(d2−d1)2 and the ratios of the mean layer thicknesses, surface ten-

sions and viscosities are d = d2/d1, σ = σ2/σ1 and µ = µ2/µ1, respectively.

Further on, we denote the scaled variables using the same symbols as before,

i.e. the scaled mean thicknesses are given by di and the local thicknesses by

hi. The non-dimensional mobility matrices are obtained from Eq. (5.20) and

Eq. (5.21) by dropping the factor 1/µ1 and replacing β by β/l.

5.5.1 Flat film stability

The stability analysis based only on long-range interactions becomes in-

correct for layer thicknesses in the range of the interaction length l of
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Figure 5.7: Different types of stability diagrams in the plane of the layer thicknesses

(d1, d2− d1), shown for different strength of the short-range interactions S1 and S2

as given in the legends. The shaded parts represent linearly stable regions. The

Hamaker constants are A12g = 1.49, A21s = 3.8, Ag21s = −23.02, corresponding to

the Si/PMMA/PS/air system. Panels (a), (b), (c) and (d) correspond to ranges I,

III, IV and II in Fig. 5.8, respectively.

short-range interactions. Practically, the latter become important (well)

below 10 nm layer thickness. In contrast to the result for the exclusive ac-

tion of long-range van der Waals forces, in the regime where both, short-

and long-range interactions, are important the stability threshold can be

crossed by changing the layer thicknesses di. Fig. 5.7 presents a selection

of qualitatively different stability diagrams in the plane spanned by the

layer thicknesses obtained when varying the strength of the short-range in-

teraction for a fixed long-range interaction. By changing the short-range

part of the spreading coefficient S1 and S2 one finds seven topologically

different types of such diagrams. These types correspond to regions in

the (S1, S2) plane as indicated in Fig. 5.8. In the absolute unstable re-

gion bounded on the right by (S1)min = (e/4)4A21s/|A12g| and above by

(S2)min = (e/4)4 the system can not be stabilized by changing d1 or d2.

Only if at least one of the two Si is larger than the corresponding criti-
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Figure 5.8: Phase diagram in the plane (S1, S2) for the Si/PMMA/PS/air system.

The absolute stable region (hatched rectangle in the lower left corner) is bounded

by (S1)min = (e/4)4A21s/|A12g| from the right and by (S2)min = (e/4)4 from above.

The unstable region is divided into seven qualitatively different subregions, described

in the main text.

cal value (a) stable region(s) can be found in the (d1, d2 − d1) plane (see

Fig. 5.7). For S1 > (S1)min a stable region exists that extends towards in-

finite (d2 − d1), as shown in Figs. 5.7(a), (b) and (d). Thereby, for large

(d2 − d1) the system is stable for (d1)min < d1 < (d1)max, where (d1)max

and (d1)min are the solutions of the equation A21s/|A12g| = S1x
4 exp (−x).

Similarly, for S2 > (S2)min a stable region exists that extends towards in-

finite d1, as in Figs. 5.7(a) to (d). For large d1 the system is stable for

(d2 − d1)min < d2 < (d2 − d1)max, where (d2 − d1)max and (d2 − d1)min are

the solutions of the equation 1 = S2x
4 exp (−x). In the gray shaded triangle

at the center of Fig. 5.8 an additional bounded stable region exists in the

(d1, d2 − d1) plane (see Figs. 5.7(b) and (c)).

Combining the different conditions gives the following seven types of stability

diagrams.
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Figure 5.9: Shown are the growth rate γ (solid lines) and the mode type φ (dashed

lines) of the leading eigenmode. (a) A varicose mode from the one-mode region at

d1 = 30, d2 = 47 and σ = µ = 1, (b) a zigzag mode from the one-mode region at

d1 = 15, d2 = 40 and σ = µ = 1.

I: The stable region is continuous and extends in respective stripes to-

wards infinite d1 and d2 − d1 (Fig. 5.7(a)).

II: There exist two separated stable regions, one extending towards infi-

nite d1 and the other one towards infinite d2 − d1 (Fig. 5.7(d)).

III: Similar to Type II but with an additional bounded stable region (Fig. 5.7(b)).

IV: A bounded stable region exists together with an unbounded region

extending towards infinite d1 (Fig. 5.7(c)).

V: Similar to type IV but with the unbounded region extending towards

infinite (d2 − d1) (not shown).

VI: Only one stable region exists extending towards infinite d1 (not shown).

VII: Similar to type VI but with the unbounded region extending towards

infinite (d2 − d1) (not shown).

Further on we will focus our attention on the stability diagram of type I.
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5.5.2 Non-uniform stationary solutions

To find periodic stationary solutions of the scaled equations Eqs. (5.19), the

time derivatives ∂thi are set to zero. Integration yields

Q11 ∂x

(
δF

δh1

)
+Q12 ∂x

(
δF

δh2

)
= C1

Q21 ∂x

(
δF

δh1

)
+Q22 ∂x

(
δF

δh2

)
= C2, (5.34)

where the Ci are constants and F is given by Eq. (5.33). Note that the

left hand sides of Eq. (5.34) represent the flow in the lower layer and the

total flow, respectively. For a stationary state both flows are zero, i.e. the

C1 = C2 = 0. Because the mobility matrix Q is non-singular, one concludes

from Eq. (5.34) that the stationary states of the equations Eqs. (5.19) are

the extrema of the Lyapunov functional F , i.e. they are solutions of

−∂xxh1 +
∂f

∂h1
= c1

−σ∂xxh2 +
∂f

∂h2
= c2, (5.35)

where f denotes the local part of Eq. (5.33) and the constants ci corre-

spond to the Lagrangian multipliers introduced in Section 5.5. To obtain

a finite amplitude solution for given mean thicknesses we use continua-

tion techniques [33, 34, 32]. We start with analytically known station-

ary periodic small-amplitude profiles, which correspond to the linear eigen-

functions for the critical wave number kc. By continuation we follow the

family of solutions changing the period L. We characterize the solutions

by the deflection amplitudes A1 and A2, the energy E, the norm L2 =

(1/L)
∫

[(h1 − d1)2 + (h2 − d2)2] dx and the integral mode type φint. To

determine the stability of the stationary solutions hi(x), we add small per-

turbations δhi(x) ∼ exp (βt) to both interfaces hi(x), linearize the full time-

dependent evolution equations Eqs. (5.19) around hi(x) and solve the ob-

tained eigenvalue problem L(hi, ∂xhi, ∂x)δh(x) = βδh(x) for the linear op-

erator L after discretizing it in space. The sign of the largest eigenvalue

β determines the stability of the stationary solution. Note that due to the
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Figure 5.10: Snapshots of the time evolution of a Si/PMMA/PS/air system for

d1 = 30, d2 = 47, S1 = S2 = 1, σ = 1 and µ = 1 at times as given in the legends.

The domain length is L = 4λm and time is in units of 1/γm.

translational invariance of the evolution equations Eqs. (5.19), there exists

always a symmetry mode δhi(x) = ∂xhi(x) with the eigenvalue β = 0.

5.5.3 Mode-type transitions

The type of the dominant instability mode calculated above by linear sta-

bility may not persist in the course of the nonlinear evolution. Possible

mode type changes may have a dramatic effect on the (observable) overall

morphology of the film. We investigate these changes by studying both, the

evolution in time of the film profiles and the stationary solutions obtained

by continuation.

The evolution in time is obtained by numerical simulations of the scaled cou-

pled evolution equations Eqs. (5.19) in a one-dimensional periodic domain.

Both, semi-implicit pseudo-spectral and explicit time integration schemes

are used. Initial conditions consist of flat layers with an imposed noise of
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Figure 5.11: Evolution in time of (a) the relative energy E−E0 and (b) the integral

mode-type φint Eq. (5.30) for parameters as in Fig. 5.10. Time is in units of 1/γm.

In (a) the dashed lines denote the energy levels which correspond to the stationary

solutions with periods L = λm (first and second line from above), L = 4/3λm (third

line from above) and L = 2λm (the lowest line), taken from Fig. 5.12(b).

amplitude 0.001.

Transition via branch switching.

First the time evolution of an initially flat film is studied for parameters as

in Fig. 5.9 (a) using a domain size equal to four times the fastest growing

wave length λm. A time sequence of snap shots is shown in Fig. 5.10. In the

early stage of the evolution a varicose mode develops (t = 8.1) as expected

from the linear analysis. Then in a sub-domain of size λm the deflection

amplitudes increase dramatically accompanied by a morphological change

towards a zigzag type profile (t = 9.7). This is further illustrated by the de-

pendence of the integral mode-type Eq. (5.30) on time given in Fig. 5.11(b).

Further on, the length of the zigzag part increases slightly, and coarsening

sets in resulting in the disappearance of one varicose-type drop (t = 16.4).

Next one of the remaining drops increases it amplitude and flips to a zigzag

type hole (t = 20.6). Finally the last remaining varicose-type drop disap-

pears (t ≈ 28), and the system approaches a stationary (but not stable)

state. The evolution of the relative energy of the profile in time is given in
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Figure 5.12: Characterization of the stationary periodic solutions for the system of

Fig. 5.11. Shown are (a) the amplitude of the lower layer A1, (b) the relative energy

E − E0, (c) the norm L2, and (d) the integral mode type φint in their dependence

on the period L. In (d) the inset shows a zoom of the region marked by the dashed

box.

Fig. 5.11(a). It is seen very clearly that the phases of very slow evolution

correspond to solutions that are close to stationary solutions. This results

from the fact that the (unstable) stationary solutions form saddle points in

function space that are approached along their stable manifolds and sub-

sequently repel the system along their unstable manifolds (for a discussion

see Ref. [121]) The evolution stops after a further coarsening step, when the

period becomes equal to the system size (not shown).

To explain the observed mode-type change, we study the stationary solutions

of the evolution equations Eqs. (5.19). We find a family of solutions starting

at the subcritical primary bifurcation, then turning three times at saddle-

node bifurcations (folds) and going towards infinite periods (see Fig. 5.12(a)).

A stability analysis using the solution period as the period of the disturbance

(thereby excluding coarsening modes) shows that two branches are stable

(solid lines) and two are unstable (dashed lines). Along the first unstable

branch, which starts at Lc and ends at the first fold at L ≈ 60 the energy E is

always larger than the one of the flat film E0 (Fig. 5.12(b)), and it increases

with decreasing period. This subcritical branch corresponds to nucleation



5.5 Long-range and short-range interactions 91

0 0.5 1

x/λ
max

20

40

60

h
0 0.5 1

x/λ
max

0

20

40

60(a) (b)

Figure 5.13: The two stationary solutions with period L = 108.28 (cp. Fig. 5.12)

corresponding to the wave length of the relevant dominant linear mode λmax. Shown

are (a) the varicose type and (b) the zigzag type solution from the first and second

stable branch, respectively.

solutions that have to be overcome to break the film in parts smaller than

Lc (see Ref. [126] for a discussion of this type of solutions for a one-layer

system). The first stable branch starts at the first fold at L ≈ 59 and ends

at the second fold at L ≈ 116. Its relative energy decreases monotonically

with increasing period. Mostly it is energetically preferable to the flat film.

The second unstable branch (between the second fold at L ≈ 116 and the

third fold at L ≈ 79) turns back towards smaller periods. The second stable

branch starts at the third fold and goes towards infinite periods. Its energy

decreases rapidly from values even above the flat film to values below the

ones of the first stable branch. The energy of the second unstable branch is

always larger than the energies of both stable branches. This indicates that

it corresponds to nucleation solutions, or critical solutions that have to be

overcome to switch between the two stable branches. Along the second un-

stable branch, the mode-type changes from varicose to zigzag (Fig. 5.12 (d))

explaining the non-trivial behavior observed in the time evolution shown in

Fig. 5.10. There are two stable solutions with a period equal to the dominant

linear wave length (λm ≈ 108) (see Fig. 5.13). The one of higher energy that

is approached first in the time evolution is of varicose type whereas the one of

lower energy that the system switches to is of zigzag type (cp. Fig. 5.12(b)).

A transition between the two solutions is accompanied by a strong increase

of the amplitude A1 (see Fig. 5.12(a)).
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Figure 5.14: Snapshots of the time evolution of a Si/PMMA/PS/air system for

d1 = 15, d2 = 40, S1 = S2 = 1, σ = 1 and µ = 1 at times as given in the legends.

The domain length is L = 4λm and time is in units of 1/γm.

Transition via coarsening.

A mode-type change is not always connected to a transition between dif-

ferent branches of stationary solutions. Also coarsening along one branch

may lead to such a change if the mode-type varies along the branch. To

demonstrate this, we simulate the time evolution using parameters as in

Fig. 5.9(b). A time sequence of profiles and the corresponding evolution

of the relative energy and the integral mode-type are shown in Figs. 5.14

and 5.15, respectively. Early in the evolution the layer profiles represent

a zigzag mode (t = 6.0) corresponding to the linear results (Fig. 5.9(b)).

Then, within the very short period of time from t = 6.0 to 10.8, nonlinear

effects result in a first change towards a varicose type profile, as shown in the

inset of Fig. 5.15(b). Then the system approaches the branch of stationary

solutions. As a result the evolution slows down and the pattern begins to

coarse. With ongoing coarsening (t > 10.8) the size of the droplets increases
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Figure 5.15: Evolution in time of (a) the relative energy E−E0 and (b) the integral

mode-type φint (Eq. 5.30) for parameters as in Fig. 5.14. The inset in (b) shows

the early-time behaviour of the mode-type. Time is in units of 1/γm. In (a) the

dashed lines denote the energy levels which correspond to the stationary solutions

with periods L = λm, L = 4/3λm and L = 2λm, taken from Fig. 5.16(b).

(t = 135, t = 461) and at very late times (t > 490) the mode type changes

back to zigzag type (Fig. 5.15(b)). Here, the amplitudes of the interfaces

do not change dramatically, as was the case for the transition via branch

switching. In this sense the transition is continuous.



94 Two-layer liquid films

40 80 120
0

3

6

A
2

40 80 120

-1
-0.5

0

E
 -

 E
0

40 80 120
L

0

60

120

L
2

40 80 120
L

-0.2

-0.1

0

0.1
φ in

t

(a) (b)

(c) (d)94.2
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Figure 5.17: The two stationary solutions with period L = 50.8 and L = 101.6 (cp.

Fig. 5.16) corresponding to once and twice the wave length of the dominant linear

mode λmax, respectively. To symbolize the coarsening process we show in (a) and

(b) two and one period(s), respectively. The x coordinate is in units of λmax.
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The characteristics of the corresponding stationary solutions are shown in

Fig. 5.16. The primary bifurcation is again subcritical (Fig. 5.16(a)) the

solution family continues towards smaller periods until turning at a saddle-

node bifurcation (fold) and heading towards infinite periods. The subcriti-

cal branch is unstable with energies higher than the energy of the flat film

(Fig. 5.16(b)). The second branch starting at the fold (L ≈ 26) consists

of solutions whose energy decreases monotonically with increasing period.

They are stable to disturbances of identical period but unstable to coars-

ening modes. Fig. 5.16 (d) shows that the solution with the period equal to

λm = 50.81 is of varicose type. The corresponding layer profile is shown in

Fig. 5.17(a) together with the profile after the first coarsening step. When

the period becomes larger than 94.2 , the solution changes to zigzag type

(Fig. 5.16(d)) as shown in Fig. 5.17(b). This explains the mode-type change

found in the time evolution (Fig. 5.14).

Here we have restricted our attention to a parameter set corresponding to

region I of Fig. 5.8, i.e. corresponding to the stability diagram shown in

Fig. 5.7 (a). The existence of a stable branch of stationary solutions which

continues towards infinite period implies that the rupture of the two layers

is completely avoided by the short-range repulsion. However, this may not

be the case for parameter ranges belonging to the other types of stability

diagrams. A detailed analysis of the stationary solutions for all types will

be done elsewhere.
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Figure 5.18: Large-period (long-time) stationary profiles for (a) a

Si/PMMA/PS/air system with d1 = 30, d2 = 39, λm = 132 and period

L = 26 × λm, (b) a SiO/PMMA/PS/air with d1 = 30, d2 = 50, λm = 246 and

period L = 20 × λm, (c) a Si/PMMA/PS/air system with d1 = 30, d2 = 70,

λm = 118 and L = 21 × λm and (d) a SiO/PS/PDMS/air with d1 = 30, d2 = 70,

λm = 557 and L = 10 × λm. The remaining parameters are σ = 1, µ = 1, and

S1 = S2 = 1.

5.5.4 Large-period stationary solutions

The stability of the numerical code, used to solve the evolution equations

Eq. (5.19), requires a very small time step t = 0.00001. As a result it takes

very long even to reach the final stationary solution in a system of size 4λm

using 256 grid points. It is not feasible at the moment to study many coars-

ening steps in this way. However, one can rely on continuation techniques

that use an adaptive spatial grid along the continuation path [32] to obtain

stationary solutions of arbitrarily large periods that correspond to solutions

that would be obtained in a time evolution at very late times. We show in

Fig. 5.18 possible large-period stationary solutions for different physical sys-

tems that are investigated experimentally. One finds qualitatively different

morphologies like a drop of the lower liquid ’looking through’ a nearly flat
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film of the upper layer for a Si/PMMA/PS/air system. Note however that

also the upper layer is continuous (due to the stabilizing short-range inter-

action), i.e. also the drop is covered by a very thin layer of the upper liquid.

This is more pronounced for a SiO/PS/PDMS/air system. In contrast, for a

SiO/PMMA/PS/air system one finds a drop of the upper liquid ’swimming’

on the lower liquid that however is attracted towards the base of the drop.

These equilibrium solutions are equivalents of drop configurations studied

in Ref. [64] for macroscopic (but smaller than the capillary length) drops.

However, here the mesoscopic contact angles are not given explicitely but

result from the underlying effective molecular interactions, i.e. the short-

and long-range forces used.

Speaking about further development of the two-layer films theory, the Marangoni

effect should be taken into account. This will give rise to even more complex

behavior accompanied by the appearance of the oscillatory modes. Besides,

the 3D simulations of the time evolution of both ultra thin and Marangoni

films should be performed. The 3D time evolution will show the coupling

of the mode type to the 3D surface morphology. Speculating on the mode

type change, one can suppose that it could be related to the drop-hole or

hole-drop transition.





Chapter 6

Conclusion

Here we summarize all the results obtained in the previous chapters. To be

consequent, we start with one-layer films.

One-layer films: large-scale Marangoni convection. In Section 4.2 we have

studied a thin liquid with a free surface heated from below. We have consid-

ered the case where the fluid is unstable due to the Marangoni effect against

large scale surface deformation but small scale convection cannot occur. To

describe pattern formation under this circumstances, we have used the lu-

brication approximation and concentrated on the properties and solutions

of the thin film equation, derived from the basic set of hydrodynamic equa-

tions. In addition to previous work our description includes a repelling van

der Waals term as disjoining pressure which accounts for stabilization of

extremely thin fluid layers of 10 to 100 nm height. Rupture of the film

corresponding to a finite time singularity of the thin film equation without

disjoining pressure [81, 82, 79] is now avoided and the spatio-temporal evo-

lution of surface patterns can be studied in the long time domain. Instead of

forming completely dry regions, the substrate remains now always covered

with such a thin fluid layer or the precursor film.

The linearized problem and the energy method allows for computation of

the stability regions of (circular) drops, holes, or fronts with respect to the

vertically applied temperature gradient and the mean film thickness. We
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have shown that on very thin films drops always evolve at onset. For thicker

films, we predict the formation of holes at onset which then, upon increasing

the Marangoni number, give way to drops. We note that drops, or at least

one big drop on a rather thick film was found in the experiments by Van

Hook et al. [131] for an air layer, instead of holes for an helium gas layer

above a silicone oil film. The thermal properties of the gas layer influences

the Biot number and also the Marangoni number. It seems possible that

the Helium experiment was performed closer to threshold than the one with

the air layer. According to our stability analysis this explains the patterns

observed.

We have also studied the film behavior in three spatial dimensions, solving

the two-dimensional film equation numerically. We have found holes, drops

and mazes for several parameter settings. An exponential scaling law of

the wavelength has been extracted from the numerical runs. We found an

independent scaling factor with respect to the Hamaker constant close to

threshold. The scaling law k ∼ t−β with β = 0.21± 0.01 indicates that the

coarsening is slower than in spinodal decomposition, where β = 1/3 as given

by the Lifshitz-Slyozov-Wagner theory (see for example [59]). The inclusion

of hydrodynamic effects in the description of spinodal decomposition gives

even larger exponents for the long time limit (in 2D case: β = 1/2 viscosity

controlled, β = 2/3 inertia controlled [90]).

The exponent found here is similar to β = 0.22 found in numerical simula-

tions for spinodal decomposition with a mobility that depends strongly on

concentration implying the prevalence of surface diffusion over bulk diffusion

[56]. A scaling argument for this case yields β = 1/4 [56]. To our knowledge

for spinodal dewetting there exist no analytical or numerical results for the

scaling exponent in two dimensions (for one dimension see [40]).

Finally we have turned to the case of a slightly inclined layer under gravi-

tation. Here we have demonstrated the influence of inclination on the dy-

namical scaling as well as on the formation of front instabilities and fingers.

The found transversal instabilities of leading and trailing edges of elevated

regions or liquid ridges show behavior reminiscent of the front and back
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instabilities of liquid ridges on an inclined plane studied in [122, 125]. Es-

pecially, it should be noted that the instabilities at the trailing and leading

edge are seemingly independent corresponding to the decoupled regime in

[122]. The wavenumber at the back is also nearly twice as large as the one

at the front. The studied system could be especially suited to investigate

the fingering at the back experimentally, because following the analogy with

the results of [122] the destabilizing influence for the transversal instability

is given by the heating. The heating can be exactly controlled and changed

experimentally and so its influence on the characteristics of the instability

can be investigated directly. On the contrary the destabilizing influence

in [122] is the long-range part of the disjoining pressure that is difficult to

control.

Finally we mention that to our knowledge there exists no theory for the

mechanism of nonlinear wavelength selection and stabilization of a periodic

structure in the inclined case, which can be clearly seen from our numerical

simulations.

One-layer films: external disturbance, inhomogeneous wetting. The influ-

ence of external modulation on pattern formation in thin liquid films has

been discussed in Section 4.3. Two different mechanisms have been studied:

a non-contact method using irradiation of the liquid surface with ultrasound

allows for manipulation of drops, holes or fronts in a prescribed way. More-

over, spatially periodic surface structures with desired wave length may be

generated in the long-time limit. The second mechanism is based on inho-

mogeneous wetting properties of the solid substrate. Here, beneath the am-

plitude of the modulation the ratio between the two intrinsic length scales,

namely the spinodal wave length and the wave length of the modulation,

plays a crucial role. We showed by direct numerical integration of a model

that, depending on that ratio, pinning or coarsening is the dominant dy-

namical behavior. The alignment of the eventually stable surface structures

is also strongly influenced by this ratio.

Although both mechanisms are completely different, the resulting patterns

show certain common features which have to be explored in more detail
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in future work. In both systems, the rotational symmetry in the horizontal

plane is broken by the external modulation. This lack of symmetry expresses

itself in the form of the final stable surface pattern, which has turned out to

be periodic in both cases. Interestingly, in both cases the surface pattern can

be organized in stripes perpendicular to the external force or modulation.

Coarsening, obtained always in the early stages of temporal evolution, is

interrupted at a certain time and periodic patterns stabilize. The periodicity

length depends thereby mainly on the strength of the external modulation.

Two-layer films. We proceed now with the concluding remarks on two-layer

films. In Chapter 5, we have derived coupled non-linear evolution equations

for the profiles of the liquid-liquid and the liquid-gas interface of a thin

two-layer liquid film heated from below allowing for slip at the substrate.

We have shown that in the isothermal case the evolution equations can be

written in terms of variations of an appropriate Lyapunov functional F which

monotonically decreases in time. The stability conditions for flat layers have

been given in terms of F . We have shown that a two-layer film is less stable

than related effective one-layer films introduced in Section 5.4.2. Even if

both effective one-layer films are stable the two-layer film may be unstable

if the determinant of the energy matrix E is negative.

We have shown that if the Hamaker constants are given by the usual ex-

pression (equation Eq. (3.11)), i.e. they are coupled through the refractive

indices, and no other forces are present, the stability of the flat films with

thicknesses of (∼ 100 nm) can not be changed by solely changing the layer

thicknesses. Incorporating a stabilizing short-range interaction the stability

can be changed in this way. We have classified the resulting possible types

of stability diagrams in the space of the layer thicknesses and given a ’phase

diagram’ in terms of the short-range parts of the spreading coefficients for

the occurrence of the different types of stability diagrams.

In general, the linear stability analysis of the flat film has shown that both,

varicose or zigzag mode, may be unstable depending on the ratios of the

layer thicknesses, viscosities and surface tensions. If the driving forces are

represented by long-range interaction only, the two instability modes lead
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to rupture at the substrate or the liquid-liquid interface. This seems to

be in contrast to Ref. [13]. However, the difference arises because there it is

assumed that the lower layer is thick compared to the upper layer neglecting

thereby all interactions with the substrate. Then the zigzag mode is always

stable. Remarkably, the faster layer accelerates the evolution of the slower

layer even if the latter is rather thick implying that its rupture time may be

shortened by orders of magnitude.

The introduction of the stabilizing short-range interaction has allowed to

study the long-time evolution and stationary layer profiles. Possible sta-

tionary states have then been determined as extrema of the Lyapunov func-

tional F . The resulting bifurcation diagrams show a rich branch structure

that depends strongly on parameter values. We have focused on one type of

stability diagram where a stable branch going towards infinite period always

exists. This implies the existence of a non-ruptured stationary state in the

long-time limit also in the time evolution.

We have found that the mode type of a profile may change during the evo-

lution of an instability in three different ways. First, the profile type may

change in the course of the short-time evolution. This is related to differ-

ent mode types found for the dominant linear flat film mode and for the

stationary solution of equal period on the solution branch approached first

in the time evolution. It seems that this behavior is more probable for a

subcritical primary bifurcation. In the case studied here this change is from

zigzag to varicose type. In the nonlinear regime the profile can change its

type by (i) jumping from one to another stable branch and by (ii) coarsen-

ing along a single stable branch. Combinations of the different ways may

also be possible. We have found that for the parameters considered here

both nonlinear transitions go from varicose towards zigzag type. In case

(i) the transition occurs without change of the period, but with a dramatic

increase in amplitude of the profile. In the case (ii) the transition occurs

continuously without amplitude jump because mediated by coarsening a

small-period varicose mode turns into a large-period zigzag one.

In all examples considered here (except the SiO/PMMA/PS/air system with
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d1 = 30, d2 = 50) we have found a zigzag-type solution at large periods. For

the future it would be very interesting to further analyze the stationary

solutions for a broader range of experimentally interesting systems like the

ones studied in Refs. [71, 84]. This should clarify under which conditions

the long-time (or large-period) solutions are energetically preferable and

determine how ’late’ the transition may occur. A systematic analysis of

all types of stability diagrams would also discuss metastability and absolute

stability of the flat two-layer films. Furthermore, we are very optimistic that

the evolution equations presented here will serve to study the questions of

hole growth and possible front instabilities in the dewetting of a liquid layer

on a liquid substrate of finite thickness [37, 84].
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Appendix A

Thermocapillary terms in

nonisothermal liquid films

Here we specify the thermocapillary part of Eqs. (5.19) and Eq. (4.1) for the

case of non-isothermal films. For generality we consider the case of two-layer

films and then simplify the obtained results for one-layer films.

We rewrite the derivatives ∂xσ12 and ∂xσ2 in terms of the gradients of the

local thicknesses ∂xhi. In the long-wave approximation [80] the temperature

field is in both layers a linear function of the vertical coordinate z, i.e. Ti =

aiz + bi. To determine the coefficients we consider a three-layer geometry

(Fig.A.1), i.e. we take into account the heat conduction in a gas layer of

finite thickness dg = dt − d2, where dt is the distance between the substrate

and an upper plate. The temperature in the gas layer is Tg = agz+ bg. The

boundary conditions at both interfaces are continuity of the temperature

field and continuity of the heat flux κi∂zTi = κk∂zTk, where κi is the thermal

conductivity of the i-th layer. The temperatures at the substrate T0 and at

the upper plate Tt are constant. The coefficients ai and bi depend on the

local thicknesses hi and are given by
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h1

h2

liquid 1

2liquid

gas
Tt

T0

dt

Figure A.1: Sketch of the system with a gas layer of finite thickness.

ag =
α∆T

dt − h2 + κg

κ1
h1 + κg

κ2
(h2 − h1)

a2 =
agκg

κ2
, a1 =

agκg

κ1

b1 = T0, bg = Tt − agdt

b2 = agκgh1

(
1
κ1
− 1
κ2

)
+ T0,

where ∆T = T0 − T2 and

α =
d2 − dt − κgh1/κ1 − κg(d2 − d1)/κ2

−κgh1/κ1 − κg(d2 − d1)/κ2
.

Here T2 is the temperature of the liquid-gas interface, when both interfaces

are undeformed, i.e. for hi = di. The above formulas allow to determine the

derivatives

∂xσ12 = Γ11∂xh1 + Γ12∂xh2 (A.1)

∂xσ2 = Γ21∂xh1 + Γ22∂xh2,
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where the matrix Γ is determined as follows

Γ = a




κg

κ1

dσ1
dT b −κg

κ1

dσ1
dT h1(

κg

κ2
− 1)

dσ2
dT (bc− κg

κ2
h2b) dσ2

dT {
κg

κ2
(dt + h1b)− bh1(

κg

κ2
− 1)}


 .

(A.2)

Here a = (α∆T )/
[
dt − h2 + κg

κ1
h1 + κg

κ2
(h2 − h1)

]2
, b = κg(1/κ1−1/κ2) and

c = {dt − h2(1− κg

κ2
)}. For the linear normal Marangoni effect dσ12/dT and

dσ2/dT are negative and constant. The Eqs. (A.2) are used in Eqs. (5.19) to

obtain a closed system of equations for h1 and h2.

Using above results one can now obtain the dependence of ∂xσ2 on h and

on ∂xh for the case of one-layer films. For this purpose one makes the

following simplifications: (i) the liquid-liquid interface is not deformed, so

that h1 = d1, (ii) the thermal properties of both liquids are equal: κ1 = κ2.

Further on, the thickness of the gas layer dt − d2 is considered to be much

larger than d2. Accounting for all these simplifications, the local temperature

of the liquid-gas interface Th becomes

Th = −(1 +B)∆T
(d2 +Bh2)

h2 + T0,

where B = κgd2/(κ2dt) is the Biot number and dt can be seen as the thick-

ness of the gas layer dg: dg = dt − d2 ∼ dt.

Thus, the shear stress term ∂xσ2 reads

∂xσ2 =
dσ2

dT

(1 +B)∆Td2

(d2 +Bh2)2
∂xh2

After substituting σ2 with σ, h2 with h and d2 with d, the term ∂xσ is used

in the one-layer equation (4.1).
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