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Abstract

Brain-computer interfacing (BCI) is a relatively new field of study that involves

engineering, neuroscience, psychology, and physiology. A BCI is a system that al-

lows direct communication between the brain and the environment, using signals

from a brain sensing technique, e.g. electroencephalography (EEG), to identify a

user’s intentions and mental states in the moment they occur. This can be used for

human-machine interaction (HMI) to adapt software or control a device, automat-

ically. Passive BCIs are the most promising for the general population, as they can

detect and interpret a user’s mental state without requiring their attention. Specif-

ically, passive BCIs can enable machines to support solving the task at hand better,

by integrating the user’s task-relevant perception and interpretation into its own

actions. This can be used for neuroadaptive technology (NAT), which allows a ma-

chine to learn over time how the user perceives and interprets the world. However,

there are still obstacles to be overcome before BCI technology can be applied in

real-world situations for NAT.

In the first part of this thesis I address the issue of subject dependence in train-

ing data collection for classifier calibration, which can be time-consuming and im-

practical. I investigated the training of a subject-independent predictive model that

is trained on a group of other users’ data and applied to online-testing data of a

new person. This was done in the context of training a classifier for error detec-

tion and correction. Results showed that a classifier model can be trained without

user-specific calibration and with high accuracy. The number of electrodes used

in training the model was also reduced. Further it was validated that the trained

classifier models were based on cortical sources and not other modalities.

In a second study I address the issue of task-dependence. Usually, a specific cal-

ibration paradigm is generated for every specific task where a BCI is trained for on-

line application. Some tasks potentially are based on similar cognitive processes of

mental states though, making it unnecessarily effortful to design a specific calibra-

tion paradigm for each task in which the mental state can occur. Therefore I tested

the application of a potentially task-independent calibration paradigm for mental

workload assessment in a new task. This new task was a speed reading context,

where subjects read texts of varying difficulty and speed. The study found that the

mental workload prediction model was accurate in classifying mental workload in

different reading tasks, indicating that it can be used as a task-independent classi-

fier.

In a third study I examine if it is possible to measure neural correlates of human

moral assessment using a passive BCI on a single-trial basis. A calibration paradigm

was developed using pictures ranked as morally unacceptable and morally neutral.

However, the results showed low classification accuracies and it was not possible to
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reliably distinguish between a user’s subjective moral evaluations on a single-trial

basis using current classification approaches.

The results presented in this thesis provide solutions towards real-world ap-

plicability of NAT enabled by passive BCIs, as examples of a subject-independent

and a task-independent classifier are demonstrated and discussed. Further, ap-

proaches for increased versatility of passive BCI technology are presented, that could

make passive BCIs more feasible for use in real-world human-machine interaction

settings in the future.

Keywords: Passive Brain-Computer Interfaces, Mental State Assessment, Neuroad-

aptive Technology, Human-Machine Interaction, Electroencephalography, User Mod-

elling, Subject Independence, Task Independence, Error Detection, Mental Workload,

Autonomous Moral Agents, Value Alignment.
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Zusammenfassung

Die Schnittstelle zwischen Gehirn und Computer (BCI) ist ein relativ neues

Forschungsgebiet, welches u.a. Technik, Neurowissenschaften, Psychologie und

Physiologie umfasst. Ein BCI ist ein System, das eine direkte Kommunikation zwis-

chen dem Gehirn und der Umwelt ermöglicht, indem es Signale, die durch eine

Messmethode für Gehirndaten, z.B. der Elektroenzephalographie (EEG), erfasst wer-

den, interpretiert, um die Absichten und mentalen Zustände des Benutzers zu dem

Zeitpunkt an dem sie auftreten, zu erkennen. Dies kann für die Mensch-Maschine-

Interaktion (HMI) genutzt werden, um automatisch Software anzupassen oder ein

Gerät zu steuern. Passive BCIs sind für die Allgemeinbevölkerung am vielversprechend-

sten, da sie den mentalen Zustand eines Benutzers erkennen und interpretieren

können, ohne dessen Aufmerksamkeit zu erfordern. Insbesondere können passive

BCIs Maschinen in die Lage versetzen, die Bewältigung einer Aufgabe besser zu un-

terstützen, indem sie die aufgabenrelevante Wahrnehmung und Interpretation des

Benutzers in ihre eigenen Aktionen integrieren. Dies kann für die neuroadaptive

Technologie (NAT) genutzt werden, die es einer Maschine ermöglicht mit der Zeit

zu lernen, wie der Nutzer die Welt wahrnimmt und interpretiert. Allerdings gibt es

Hindernisse, die überwunden werden müssen, bevor die BCI-Technologie in realen

Situationen für NAT eingesetzt werden kann.

Im ersten Teil dieser Arbeit befasse ich mich zunächst mit dem Problem der

Subjektabhängigkeit bei der Sammlung von Trainingsdaten für die Kalibrierung

von Klassifikatoren, die zeitaufwändig und unpraktisch sein kann. Dafür unter-

suchte ich das Training eines subjektunabhängigen prädiktiven Modells, das mit

den Daten von einer Gruppe anderer Nutzer trainiert und auf die Online-Testdaten

einer neuen Person angewendet wird. Diese Analyse wurde im Kontext des Train-

ings eines Klassifikators zur Fehlererkennung und Korrektur durchgeführt. Die Ergeb-

nisse zeigten, dass ein Klassifikatormodell ohne benutzerspezifische Kalibrierung

und mit hoher Genauigkeit trainiert werden kann. Die Anzahl der Elektroden, die

für das Training des Modells genutzt wurden, wurde ebenfalls reduziert. Außerdem

wurde validiert, dass die trainierten Klassifikatormodelle auf kortikalen Quellen

und nicht auf anderen Modalitäten basierten.

In einer zweiten Studie habe ich die Frage der Aufgabenabhängigkeit unter-

sucht. Normalerweise wird für jede spezifische Aufgabe, für die ein BCI für die

Online-Anwendung trainiert wird, ein eigenes Kalibrierungsparadigma erstellt. Einige

Aufgaben basieren jedoch potenziell auf ähnlichen kognitiven Prozessen mentaler

Zustände, so dass es unnötig aufwändig ist, für jede Aufgabe, bei der dieser men-

tale Zustand auftreten kann, ein eigenes Kalibrierungsparadigma zu entwickeln.

Daher habe ich die Anwendung eines potentiell aufgabenunabhängigen Paradig-

mas zur Kalibrierung eines Klassifikatormodells zur Messung der mentalen Arbeits-
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belastung in einer neuen Aufgabe getestet. Bei dieser neuen Aufgabe handelte es

sich um ein Schnellleseverfahren, bei dem die Probanden Texte unterschiedlicher

Schwierigkeit und Geschwindigkeit lesen. Die Studie ergab, dass das Modell zur

Vorhersage der mentalen Arbeitsbelastung bei verschiedenen Leseaufgaben genau

klassifizieren konnte, was darauf hindeutet, dass es als aufgabenunabhängiger Klas-

sifikator verwendet werden kann.

In einer dritten Studie habe ich untersucht, ob es möglich ist, neuronale Kor-

relate der menschlichen moralischen Bewertung mit Hilfe eines passiven BCI auf

Einzeldurchgangsbasis zu messen. Ein Kalibrierungsparadigma wurde mit Bildern

entwickelt, die als moralisch inakzeptabel und moralisch neutral eingestuft wur-

den. Die Ergebnisse zeigten jedoch eine geringe Klassifizierungsgenauigkeit und

es war nicht möglich zwischen den subjektiven moralischen Einschätzungen eines

Nutzers auf Einzeldurchgangsbasis mithilfe von derzeitigen Klassifizierungsansätzen

zuverlässig zu unterscheiden.

Die in dieser Arbeit vorgestellten Ergebnisse bieten Lösungen für die praktische

Anwendbarkeit von NAT, die durch passive BCIs ermöglicht wird, da Beispiele für

einen subjektunabhängigen und einen aufgabenunabhängigen Klassifikator gezeigt

und diskutiert werden. Darüber hinaus werden Ansätze für eine erhöhte Einsatzflex-

ibilität der passiven BCI-Technologie vorgestellt, die deren zukünftige Anwendbarkeit

in der realen Welt für die Mensch-Maschine-Interaktion verbessern könnten.
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In the future, our thoughts will be free

To roam and explore, as far as the sea

Passive brain-computer interfaces will allow

Us to connect and communicate, without a sound

No need for words or hand gestures

Our thoughts will be the only measures

We’ll control devices with just a thought

Our minds will be what machines are taught

But as we merge with technology

We must be careful, it can be

A double-edged sword, this power we wield

We must be mindful, for it can be used for ill or for good

ChatGPT Dec 15 Version, OpenAI (2022)

https://chat.openai.com/chat (accessed 16-12-22)

Prompt: "Write three verses of a ballad about passive brain-computer interfaces."

Thoughts flow like a stream,

Non-invasive BCIs pick up the flow,

Connecting us all.

ChatGPT Dec 15 Version, OpenAI (2022)

https://chat.openai.com/chat (accessed 16-12-22)

Prompt: "Write a haiku about passive brain computer interfaces."
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CHAPTER 1

Introduction

1.1 Motivation

When I speak to people from outside the scientific community of the field about

brain-computer interfacing (BCI), one of the first questions I am usually asked is

something like: "So, can you guys already read my thoughts directly from my brain?"

The answer to this question of course depends to some extend on what the working

definitions of "thoughts" and "directly" are in the particular case, but usually I can

give the answer that this is not possible to date and it is also questionable whether

it may ever be. However, the fact that this particular question is asked so frequently,

gives expression to people’s initial thoughts when they are confronted with the con-

cept of BCI technology as well as an insight into how the potential scope, potential

and impact of such a technology is perceived or imagined by the general popula-

tion.

Moreover an increased public interest in the potentials and risks posed by BCI

technology is reflected in its presence in popular television series and movies. For

example, in the film Elysium from 2013, the character Max uses a BCI to access and

control a highly advanced exoskeleton, allowing him to perform superhuman feats

of strength and endurance. The BCI allows him to seamlessly control the exoskele-

ton and carry out tasks that would be impossible without it. In the film Surrogates

from 2009, people use BCI technology to control and merge with robotic bodies -

called surrogates - that allow people to experience their lives without the risks and

limitations of the physical world. The surrogates enable people to live out their

dreams and desires in a virtual environment, and they also provide a means for

people to interact with others in a safe and controlled manner. Another example is

portrayed in the episode The entire history of you of the popular series black mirror,

which in general covers futuristic scenarios related to advancements in different

technologies. Here a sensor device is implanted into the back of people’s heads.

Through this device a person’s memories are recorded and their experiences can

1
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be replayed on a “redo mode”. In this episode the purpose of the BCI is said to re-

duce crime, terrorism and simplify human relationships through transparency. In

a different episode, called Playtest, the protagonist agrees to participate in the test

phase of a video game, which blurs the line between reality and fiction. To play the

game a chip is implanted into the player’s neck and linked to his neural system to

adapt the game play to his most horrific phobias. This example further highlights

a growing interest of merging virtual reality (VR) with BCI technology. The poten-

tial social and ethical impact of BCI technology is covered further in the very recent

series Made for love from HBO released in 2021. Here the female protagonist wants

to escape her unhappy marriage, but realizes that her tech billionaire husband has

implanted a new tracking device into her brain - allowing him to access her current

thoughts as well as her memories.

Futuristic scenarios like these give further insight and conclusions about the

(perceived) possible potentials and risks emerging through advances in BCI tech-

nology. Today however, we are still a far way from direct encoding of a person’s

thoughts and emotions or neurological hacking by collecting and analysing their

patterns in assessed brain activity. Rather, today’s scientific investigations into BCI

application are largely focused on medical assistance for impaired populations, as

well as improvement of human-machine interaction through adaptation to a user

that is based on more general mental state monitoring through neurophysiologi-

cal measurement and its interpretations through a BCI. Additionally, most experi-

ments investigating BCI applications are taking place under well-controlled condi-

tions in a laboratory, which makes it questionable whether achieved results in e.g.

classification accuracy can be replicated in complex and uncontrolled real-world

scenarios. Above that, there also exist a number of other challenges which need to

be addressed for feasible application of BCIs in future real-world applications and

scenarios - regardless of whether the technology may be frightening and utilised

for control and manipulation, or to increase safety, fun and performance in the

interaction between humans and machines. Three of these challenges - subject-

dependence, task-dependence and increasing versatility through novel useful neural

correlates for passive BCI applications - I examined in three distinct studies in this

thesis, investigating potential methods and paths to overcoming them.

1.2 Scope and structure of this thesis

The approach of Neuroadaptive Technology (NAT, see section 2.6.3) utilizes passive

BCI (see section 2.6 and 2.6.3) for detection of specific aspects of the current cogni-

tive user state (see section 2.6.2) and relates them to the given context. That way, the

human brain, naturally interpreting the given context, can potentially deliver data
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containing information about the context useful for statistical inference through

machine learning. This can enable a machine to learn over time how the human

user perceives, analyses, and interprets the world around them, and the machine’s

own actions can be adapted accordingly. This neuroadaptive approach holds great

potential for the future development of intelligent machines and their application

in human-machine interaction (HMI) contexts. Yet, today substantial hindrances

and challenges for the application of passive BCI technology in real-world contexts

remain and must be accounted for in order to enable future neuroadaptive appli-

cations.

In this work I firstly detail the state of the art of (passive) BCI and the current

challenges standing in the way of real world applicability for BCI technology (Chap-

ter 2). Following this overview, I present three distinct studies in the course of this

thesis which address three current challenges for real-world application of passive

BCIs.

I firstly address the problem of subject-dependence (Chapter 3). Today, when

the predictive model of a BCI is trained, training data must be collected beforehand

from the specific person, who later wants to use the trained model in an (online) ap-

plication with new incoming data. This step of subject-specific training data collec-

tion is often time consuming and impractical for most HMI contexts. I therefore in-

vestigated the training of a subject-independent predictive model, which is trained

on a group of other people’s data, which then is applied to online-testing data of

a completely new person. This investigation of a subject-independent classifier is

performed in the context of training a classifier for (automation) error detection

and correction in a real-world context.

In a second study, which was already published in Andreessen et al. (2021), I in-

vestigate the problem of task-dependence (Chapter 4). In order to gather training

data for calibrating the predictive model of a passive BCI, usually in what is known

as a calibration paradigm, the user completes a number of trials with activities that

should elicit the cognitive signal of interest in them, as well as other trials where the

signal is not generated. Further, for some mental states, e.g. mental workload or

relaxation, different levels of the respective mental state, e.g. high, medium or low,

can be induced through the trials of the calibration paradigm. On the basis of this

calibration data, the classifier model is then trained to distinguish between data in

which the neural activity of the cognitive signal of interest is present and in which

it is absent, or to differentiate between different levels of the mental state in a more

continuous way. Such a calibration paradigm is usually generated for every specific
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context, task and application where a passive BCI is trained for online application

- hence developing calibration paradigms is a time consuming and not very gen-

eralized process. However, some tasks that users are performing potentially are

based on similar cognitive processes, making it unnecessarily effortful to design a

specific calibration paradigm for each of them. Based on promising findings from

Krol et al. (2016), I tested a potentially task-independent mental workload calibra-

tion paradigm. While this proposed paradigm is based on calibration data from the

subject performing an arithmetic task, I applied the resulting classifier model in a

new speed reading context. To this end, subject-specific predictive models were

trained after subjects completed this task-independent mental workload calibra-

tion paradigm. The resulting predictive model for general mental workload was

then applied to monitor the subject’s mental workload while they performed the

specific task of reading text material of different difficulty and reading-speed.

In a third study I examine the challenge of increasing versatility of passive brain-

computer interfaces through utilization of new neurophysiological correlates of men-

tal states (Chapter 5). In this study I investigate whether a predictive model of a

passive BCI can be trained to distinguish between subjectively morally unaccept-

able and morally neutral stimuli, on the basis of the measured neurophysiologi-

cal activity evoked by according stimuli. A passive BCI capable of classifying and

monitoring human moral assessments could e.g. be employed in moral user mod-

elling for future human-machine (moral) value alignment. Moreover, it would add

human moral assessment to the possible user states which can be measured and

monitored by a passive BCI. This would broaden the scope of contexts and appli-

cations in which passive BCIs could be employed.

Finally, I will discuss the findings from these three studies and their limitations

in the context of stepping toward real-world application of passive BCIs and NAT.

Additionally, an outlook on future topics to consider and challenges to overcome

will be given in order to enable future applications of passive BCIs for improved

interaction between human and machine (Chapter 6).







CHAPTER 2

State of the art: Brain-Computer

Interfaces (BCI)

2.1 Preliminary note

In this chapter I will propose an overview of the state of the art and important con-

cepts of (passive) BCIs and I will detail the methodological approaches which are

used throughout the presented work of this thesis.

Firstly, I will introduce the general concept of BCIs and the components which

belong to it. Subsequently I present methods for measuring neurophysiological sig-

nals with a main focus on electroencephalography which is widely utilized in BCI

research. Afterwards I give an overview of the distinct signal processing and ma-

chine learning steps in BCIs and present how the concept of passive BCIs enhances

human-machine interaction and enables neuroadaptive technology. Further I will

describe current challenges for passive brain-computer interfacing in real-world

human-machine interaction contexts.

The chapter concludes with an overview of three of those challenges which are

addressed in the three distinct studies conducted within the framework of this the-

sis, namely (1) subject-dependence, (2) task-dependence and (3) increasing versatil-

ity of passive BCIs by finding new neurophysiological signals which can be utilized

and assessed by a passive BCI.

2.2 Definition and components of BCIs

A brain-computer interface (BCI) can be described as a communication system - a

system which establishes a direct communication and/or control channel between

the brain and the environment (Wolpaw and Wolpaw, 2012). This communication

system is solely based on brain activity without any muscular intervention between

a person and an electric or mechanical system (e.g. a software application, a robot,

5
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exoskeletons, voice prostheses or a wheelchair). Jacques Vidal was one of the first to

use information from brain activity to detect a user’s mental state. His work deter-

mined that brain signals are related to a person’s movements and intentions (Vidal,

1973).

Historically, the idea of BCI systems originated in developing a means of com-

munication for clinical contexts (Wolpaw et al., 2002). Probably the most signifi-

cant application of BCIs in clinical contexts has been developed for groups of pa-

tients with amyotrophic lateral sclerosis (ALS) who have no or limited ability to con-

trol their muscles. This illness can be so pronounced that affected individuals are

incapable of any voluntary muscle activity and all forms of communication are im-

possible – as in so-called locked-in patients. Here BCIs were intended to establish a

novel communication channel that would enable patients to interact with the en-

vironment or control assistive technologies through signals generated via the brain

(Kübler et al., 2005). In addition, BCIs can be used to control neuroprostheses and

thus replace bodily functions (Müller-Putz et al., 2005) or in neurorehabilitation,

e.g., in stroke patients, to restore cognitive functions (Shih et al., 2012; Buch et al.,

2008).

Probably the most prominent example of such communication through a BCI

is the P300-speller (Farwell and Donchin, 1988), which enables patients to spell out

letters and words through interpretation of their brain activity. In this BCI, a matrix

of all letters of the alphabet is presented to the patient where rows and columns are

sequentially illuminated. Patients are asked to view the matrix and observe whether

the desired target letter illuminates. From the continuously measured brain activity

data, the letter is subsequently identified by eliciting a P300 potential (Farwell and

Donchin, 1988; Sellers and Donchin, 2006; Krusienski et al., 2008) - an event-related

potential (see section 2.4.1). However, If patients are exposed to visual stimuli for

an extended amount of time, they may become fatigued and have aching eyes (K.-

T. Kim et al., 2016), and some patients lose voluntary control of the eyes in the late

stage of the disease (Hinterberger et al., 2004; Sharma et al., 2011), which makes the

speller an insufficient (long term) aid to some patients (Pasqualotto et al., 2015).

Although the original purpose of using BCIs was to help disabled or impaired

patients, to date BCI application outside of the clinical context for the general popu-

lation is often the focus of development, as commercial interest in such a technique

has developed. In addition to clinical applications, today e.g. the gaming (Nijholt

et al., 2009; Bonnet et al., 2013), education (Spüler et al., 2017), cognitive enhance-

ment (Kaimara et al., 2020), safety management (J. Chen and Song, 2016; Nakanishi

et al., 2013), (mental) health (Lim et al., 2012; Zotev et al., 2014), automotive (Lin et

al., 2010; Khaliliardali et al., 2012), aviation (Aricò et al., 2016), marketing (Vecchi-

ato et al., 2011) and defense industries (Kotchetkov et al., 2010) are engaging in BCI
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research. It should be noted that the greatest potential for healthy users to date

is associated with the subcategory of passive BCIs (see section 2.6.1), which enable

user state monitoring for detection of e.g. attention, workload, fatigue, stress as well

as error perception, without requiring attention or other mental resources from the

user. However, BCI technology in general is still in the developmental stage, facing

challenges (see section 2.7), such as low level of accuracy, efficiency, usability, as

well as speed of BCIs (Van Erp et al., 2012). Moreover, BCIs need to be not only

tested in the laboratory, but rather in real-world environments (Minguillon et al.,

2017; Vařeka and Ladouce, 2021).

In general, the implementation of a BCI is divided into two parts: one part that

concerns the measurement of the brain activity of a person – the signal acquisition

(see section 2.3) - and another part which requires an analysis and handling of the

obtained neurophysiological signals – the signal processing (see section 2.5). The

signal processing usually consists of a pre-processing, feature extraction, classifi-

cation and model application phase. Figure 2.7 illustrates these different parts of

a BCI. In the following sections, both, signal acquisition and signal processing in a

BCI, will be presented.

Fig. 2.1 Typical components of a BCI: Neurophysiological activity is recorded
from the user’s brain during signal acquisition. During signal processing the
acquired data is pre-processed, features are extracted and classification is per-
formed. The classifier model’s output is finally used to generate commands to
the system to provide feedback to the user or for control or adaptivity of the
system.
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2.3 Signal acquisition

Neurophysiological data can be obtained from brain signals in an invasive or a non-

invasive way.

As for the invasive (or direct) method, the neuronal signal on the axon of an individ-

ual neuron or the electric activity of a group of neurons is measured directly from

the cortex. This technique involves surgical intervention to place the measuring

sensors under the scalp, as e.g. for electrocorticography (ECoG) an electrode array

is positioned either epidurally or subdurally (Thongpang et al., 2011). Invasive tech-

niques deliver a very precise signal characterized by a very good spatial and tem-

poral resolution (Ramadan and Vasilakos, 2017), as they are picking up changes in

electric activity directly from the signal’s origin of source within the brain. Currently

the high spatial resolution of this technology, however, is often of very localized na-

ture, as implanted electrodes or arrays only pick up information from the areas over

which they have been placed without recording much information from other areas

of the brain. Invasive techniques are mainly applied in the clinical context, as their

advantages are counterbalanced by far-reaching ethical challenges and safety-legal

aspects (Rao et al., 2012). In addition, neurosurgical interventions are generally as-

sociated with health risks as well as high costs (Shih et al., 2012).

Non-invasive neurophysiological measurements are taken from outside the skull

and do not require surgery for putting the sensors into place. As those sensors (e.g.

electrodes) which are recording changes in neurophysiological activity are further

away from the neural source eliciting the signal, it is not possible to collect the activ-

ity of a single neuron, but only of synchronously active groups of neurons. This also

means that the signal to noise ratio (SNR) is lower than in invasive measurement

methods. Moreover, in long-term measurement, non-invasive measurement tech-

niques may have stability problems in sensor placement on the scalp. For (passive)

BCI applications for the general, healthy population, non-invasive measurement

techniques are of main interest, as they do not require surgical intervention and

therefore present little risk to the user or patient. For an overview of non-invasive

measurement techniques please see Castermans et al. (2013).

In the most common non-invasive measurement technique, namely the elec-

troencephalogram (EEG – see section 2.4) electrodes are placed on the scalp for

measuring brain activity in form of changes in emitted electric signals. However, it

is also possible to monitor the hemodynamic activity of the brain by means of func-

tional magnetic resonance imaging (fMRI) or near-infrared spectroscopy (NIRS)

and magnetic encephalography (MEG) that are based on the analysis of magnetic

fields (Gürkök and Nijholt, 2012). With regard to everyday real-world use for mea-



2 | State of the Art: Brain-Computer Interfaces (BCI) 9

surement of brain activity, neither MEG nor fMRI are suitable methods due to their

size and weight of the hardware (Arico et al., 2016).

Due to its high temporal resolution, affordable cost, and portable nature, the

predominant method for measuring brain activity in BCI research is the EEG (Rak

et al., 2012) which is described in the next section. For an overview of temporal

and spatial resolution of different neurophysiological measurement techniques see

figure 2.7.

Fig. 2.2 Overview and comparison of different invasive and non-invasive neu-
rophysiological measurement techniques by spatial and temporal resolution.
Figure source: Hitziger (2015)

2.4 Electroencephalography (EEG)

Electroencephalography, first described by Berger almost 100 years ago, offers the

possibility of recording the electrical activity of the brain by noninvasive measure-

ment of electric potential fluctuations at the scalp in real-time (Berger, 1929). The

signals are generated by potential fluctuations in the cerebral cortex where the nerve

cells of the brain produce so-called action potentials through their electrical state

changes for information processing. Here, only the simultaneous activity of many

neurons of a certain area is measurable through the EEG method, because the po-

tential changes that individual cells emit are too small, and only the summation of

these potential changes can be measured from the outside the skull on the scalp

(Zschocke and Hansen, 2011). Typically, oscillations with frequencies between 0.1

and 100 Hz and amplitudes of about 1 to 100 µV can be measured in the EEG. Today,

EEG is the standard method of examination in neurology and in clinical investiga-

tions.

In the BCI field, especially for applications intended for the healthy population,

the use of noninvasive methods dominates, with EEG being the most commonly
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used measurement method. The EEG method has a higher temporal resolution

than many other measurement methods (e.g. fMRI) in the range of milliseconds

(Teplan et al., 2002), is more portable than devices for most other measurement

techniques and is comparably low in cost (Thomas and Vinod, 2017). Another ad-

vantage of the EEG method are extensive findings and insights from basic neuro-

physiological science from almost 100 years. Over the years several studies have

demonstrated that an individual’s mental state is correlated with certain character-

istics of their EEG signals, both in terms of the timing and frequency of the signals

(see next two sections 2.4.1 and 2.4.2). However, spatial resolution of the EEG sig-

nal is relatively low, with a high susceptibility to artefacts (Lakshmi et al., 2014).

Artefacts are potential fluctuations that are not triggered by the user’s brain. Both

technically induced interference signals (e.g., line noise) and person-related factors

(e.g., eye blinks or muscle movements) are sources for artefacts in the obtained sig-

nal recorded by EEG (Tandle et al., 2015).

Fig. 2.3 The international 10/20 system for EEG electrode placement. Elec-
trodes are named according to their sites on the scalp with F for frontal, P for
parietal, A for anterior, T for temporal, C for central and O for occipital sites.
Electrodes towards the left side of the head are labeled with odd numbers, elec-
trodes to the right side with even numbers and electrodes on the midline are
labeled with a Z at the end. Figure source: Shriram et al. (2013)

Regarding the setup of an EEG system, the sensors - the electrodes of the EEG

- are usually mounted on a fitted EEG cap on the person’s head and electrolyte

gel is injected into the electrodes to improve skin conductivity on the scalp. Elec-

trode placement is determined by a standardized system, the so called 10/20 sys-

tem (Jasper, 1958) (see figure 2.3). This system determines the specific locations
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for the placement of electrodes on the scalp by drawing lines between the nasion

(the top of the nose) and the inion (the base of the occipital bone at the back of

the head) and between the two preauricular points (the bones located in front of

the tragus, a small cartilage fold in the external ear). A grid is then generated on

the scalp based on these lines, with electrodes placed at the points of intersection

within grid. The distance between each electrode is either 10 percent or 20 percent

of the overall length of the line (Palumbo et al., 2010). The original 10/20 system

contains 21 electrodes and other extended versions of the system include up to 345

positions for electrode placement (Oostenveld and Praamstra, 2001).

The electrodes of an EEG system are generally connected to an amplifier which

enhances the recorded signal, and is again connected to a machine or computer for

data recording and processing. Variations in the capabilities and features of avail-

able system for recording EEG signals are typically related to the effectiveness of

the amplifier, the precision of the digitization process, the quantity of electrodes

included, and the amount of data points that the system can measure and record

per second (sampling rate in Hz).

In contrast to wet electrode EEG systems which require application of conduc-

tive gel, in recent years so-called dry electrode EEG headsets have been developed.

The advantage of dry electrode systems is a significantly lower preparation time as

gel application is omitted. Instead of gel application, often pressure is used to es-

tablish the connection between the electrode and the scalp (Zander et al., 2017).

However, in many dry EEG systems the signal quality is much lower compared to

recording with wet electrodes (Tautan et al., 2014) and prolonged pressure to the

scalp can lead to discomfort in users, such as headaches (Mathewson et al., 2017;

Zander et al., 2017).

In the analysis of the EEG signal, spontaneous spectral changes in neural activity

and event-related potentials (ERPs) are distinguished. Both are described in the

next two sections.

2.4.1 Event-related Potentials (ERP)

Event-related potentials (ERP) are small potential fluctuations in the EEG which oc-

cur at defined intervals in response to an external stimulus or event (sensory, cog-

nitive, or motor) and result from its processing in the brain (Luck, 2012). The po-

tentials derived at the brain surface represent electrical voltage differences and are

displayed in their temporal course as curves in the microvolt range. The two pri-

mary factors that are considered when analyzing ERPs are the amplitude, which is

measured in microvolts (µV), and the latency, or the amount of time between the
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start of the stimulus and the maximum amplitude measured in milliseconds (ms).

Both factors enable assessments of the strength and progression of the underlying

processes and functions that occur within the brain.

Fig. 2.4 Resulting ERP wave form with ERP components after data epochs fol-
lowing each presented stimulus are extracted and averaged together to create
the averaged ERP, including the P300 component among other components.
Illustration according to Luck et al. (2000)

ERPs occur through particular activation of cerebral sources and do not have

a unitary amplitude; therefore, EEG recordings of ERPs can be superimposed by

spontaneous EEG activity that is unrelated to the neurophysiologocal reaction to

the event of interest (e.g. activity from other processes in the brain). Hence, in or-

der to calculate and visualize the stimulus-dependent amplitude changes relating

to the cognitive process of interest, the recorded EEG curves containing the ERP

are subjected to an averaging technique (averaging). These averaging procedures

are based on the assumption that the spontaneous EEG is subject to fluctuations

into both the positive and negative amplitude ranges with respect to an event while

ERPs are fairly constant with each repetition of the same stimulus. To obtain an av-

erage curve of all runs, the potential fluctuations following an event are measured,

added, and the sum divided by the number of all events of the same type - the tri-

als (Luck, 2014; Picton et al., 2000). In this way, the random background noise of

the EEG can be filtered out. With an increasing number of trials, the ERP becomes

more discernible, since a larger number of trials increases the probability that the

values from the spontaneous activity balance each other out. The different ampli-

tude excursions of the ERP, i.e. their maxima and minima, are referred to as the

ERP’s components. These components are named according to the polarity of the

amplitude: "P" for positive and "N" for negative. In addition, the latency with which

the component occurs is also specified - e.g. N200 (see figure 2.4).
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A prominent example of an ERP used in BCI research is the so-called P300 com-

ponent (Donchin and Cohen, 1969; Pritchard, 1981). This component has a posi-

tive polarity and occurs with a maximum over fronto-central sites with a delay of

about 300 ms after stimulus presentation (see figure 2.4), for example, when a series

of the same, task-irrelevant auditory tones is followed by a different, task-relevant

tone (this is the so-called oddball paradigm (Segalowitz and Barnes, 1993) which

is also utilized in the P300-speller mentioned in section 2.2). The P300 component

as an ERP is mostly used in reactive BCIs (for categorisation of different BCIs see

section 2.6.1). An ERP often used in a passive BCI (see section 2.6.1), the BCI cate-

gory which this thesis is focusing on, is the error potential (see section 2.6.2), which

occurs when a person perceives an error (Chavarriaga and Millán, 2010). Such an

error can be either committed by the user themself or by another entity, such as an-

other person, machine or by an application the user is interacting with. In recent

years many BCI studies were performed where a classifier was trained to detect this

error potential in the EEG data, and the classifiers output was then e.g. used to en-

hance performance of the user or the machine or to adapt the human-machine

interaction (Parra et al., 2003; Zander et al., 2010).

2.4.2 Spectral changes in neural activity

In the analysis of spectral changes in neutral activity, the oscillations (see figure

2.5) in the measured EEG signal are divided according to frequency into five types

of waves - the frequency bands - which are typically associated with specific men-

tal states and brain functions (Constant and Sabourdin, 2012) as shown in table 2.1.

Fig. 2.5 Exemplary oscillations of the frequency bands in the EEG. Figure
source: Constant and Sabourdin (2012)
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Gamma waves have the highest frequency (>30 Hz) and are measurable during

learning and attention processes of the brain. Beta waves are characterized by rapid

oscillations of 13–30 Hz and are associated with states of wakefulness and alertness

in a person who is actively thinking. In the relaxed or meditating awake state with

closed eyes, the EEG synchronizes at a frequency of 8-13 Hz, the so called alpha

waves, which are particularly pronounced above the occipital pole. With the onset

of the sleep state, waves with greater amplitude and lower frequency occur: theta

waves (4-8 Hz) during drowsiness and light sleep phases and delta waves (0.5-4 Hz)

in dreamless deep sleep phases or comatose states.

Table 2.1 Overview of the five frequency bands in the EEG and examples of
corresponding mental states in which they occur according to Constant and
Sabourdin (2012)

Frequency

band

Frequency

range (Hz)
Corresponding mental state

Delta 0.5-4
dreamless deep sleep phases, unconscious

or comatose state

Theta 4-8 drowsiness and light sleep phases

Aplha 8-13
awake state with closed eyes, relaxed,

or meditating awake

Beta 13-30
normal waking consciousness, alertness,

aware of self and surroundings

Gamma >30

most active conscious waking state with higher

mental activity as e.g. learning and attention

processes

In BCI research an often applied approach using spectral changes in EEG activ-

ity is the event-related desynchronization (ERD, Pfurtscheller and Da Silva (1999))

of the mu-rhythm in motor imagery paradigms (Pfurtscheller et al., 2006). The mu-

rhythm lies within the alpha frequency band at 8 to 12 Hz and is highest over the

sensorimotor cortex, a brain area which is associated with a person’s coordinating

motor action and perception. In an idle state brain activity in this area is synchro-

nized and therefore a high power in the mu-rhythm can be measured. When motor

actions are imagined by the person (e.g. repeatedly forming a fist with the right or

left hand) the mu-rhythm over contralateral corresponding sites of the sensorimo-

tor cortex decreases due to increased cortical activation. This means that imagin-

ing movements of the right hand would result in an ERD over the left sensorimotor

cortex which corresponds to movement of hands. ERD-based BCI paradigms where

movements of distinct body parts are imagined, are usually applied for navigational
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control over a device or a software application as e.g. navigation of a wheelchair

(Tsui et al., 2011) or controlling movement of a cursor (McFarland et al., 1997).

While ERD-based BCIs belong to the category of active BCIs (see section 2.6) as

the user generates the mental state the BCI operates on themself - by actively imag-

ining limb movements - a much investigated approach of a passive BCI where spec-

tral changes in neural activity are employed are BCIs that detect different levels of

mental workload. It is generally observed that as mental workload increases, there

is a corresponding increase in activity in the theta frequency band over frontal elec-

trodes, while activity in the alpha frequency band simultaneously decreases over

parietal sites (Gevins et al., 1997; Krause et al., 2010). BCIs measuring mental work-

load are further discussed in section 2.6.2 and the second study of this thesis in

chapter 4.

2.4.3 Independent Component Analysis (ICA)

When EEG is used for recording electric activity from the scalp, the signal every sen-

sor - each electrode - is recording from their specific location is the sum of a mix-

ture of sources which emit electric activity. These sources can be cortical or non-

cortical, hence not only brain activity is contributing to the measured EEG signal,

but also electric activity from other sources within the body, such as eye movements

and blinks, heart rate or other muscular activity. Further electric signals from the

external environment can also contribute to the measured signal, such as electric

devices or line noise. As mentioned before in section 2.4 these two categories of

non-cortical activity are called artefacts in the EEG, as they do not represent the

cortical activity of interest. Overall, the signal measured at a specific time point at a

sensor is the sum of electric activity from all those sources combined - activity from

cortical sources as well activity from artefactual sources (Jung et al., 2001).

Independent component analysis (ICA) is an efficient method for signal sepa-

ration, which can be applied to investigate the EEG signal’s underlying original

sources (of activity), their activity time series, and in which way these sources sepa-

rately contribute to the recorded activity on the scalp (Makeig et al., 1995; Jung et al.,

2001). An ICA model (see figure 2.6) is able to reconstruct the sources of a mixture

of signals, as ICA calculates statistically independent linear combined components,

under the assumption that the data are maximally statistically independent if the

data are non-gaussian distributed.

The EEG data measured in µV can be described as a matrix X , with a row for

each channel (electrode) and a column for each sampling point – this is the channel

space. The ICA is then used to estimate a filter matrix W which enables us to unmix
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the measured data from the channel space (X ) into a resulting matrix of indepen-

dent components (ICs) C – the source space.

C =W X

Fig. 2.6 Overview of the ICA model. The n sources (S) of the signal are linearly
mixed by an unknown process (M). The signal resulting from the mixed sources
is recorded by a number of n detectors (X) - the electrodes of the EEG system
(channel space). ICA is then used to estimate a filter matrix W which enables us
to unmix the measured data from the channel space (X) into a resulting matrix
of independent components (ICs) C – the source space. Illustration according
to Brown et al. (2001)

By multiplying the filter matrix W with the observed data, the matrix of indepen-

dent components (C ) is obtained. The columns of C contain the activity profiles of

the sources, which are maximally independent of each other.

X =W −1C

The rows of W −1 analogously contain the weighting of the individual channels

functioning as a filter (Brown et al., 2001; Jung et al., 2001), which allows e.g. to

calculate the activity of a specific IC at a specific channel as well. These filters can

be transformed into dipolar patterns representing the projection of single sources

onto the scalp (Delorme et al., 2012). By using these projections, it is possible to de-

termine the location of sources within the three-dimensional space that is covered

by the channels (Delorme et al., 2012). Moreover, the filters in combination with

back projection also allow for removing activity from artefactual ICs from the over-

all measured sum of activity in the channel space. If an unwanted or artefactual
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IC (e.g. heart activity or eye movements) is identified, the activation of this IC can

be extracted and subtracted from the overall signal by setting the corresponding

rows and columns of the matrices to zero. When back-projected into the channel

space the activity of the artefactual IC is then removed from the overall measured

activation in X . This way, ICA is increasingly being used as a suitable method for

artefact reduction in EEG for further analysis, as well as a method for identifying

and studying temporal and spatial features of cortical sources (single and clusters

of ICs) underlying neurophysiological phenomena in the neuroscientific field and

brain-computer interfacing.

2.5 Signal processing and machine learning steps in a BCI

As outlined in section 2.2 the functioning of BCIs consists mainly of the two steps of

signal acquisition and signal processing. After introducing concepts and methods

for signal acquisition in section 2.3 where neurophysiological activity is recorded

from sensors and then amplified, I will now detail the different steps of signal pro-

cessing in the following sections. These essential steps include the following four

phases in a BCI:

• pre-processing: this step aims at reducing noise resulting from artefacts and

improving the quality of the signal

• feature extraction: at this step, the signal’s relevant characteristics are identi-

fied and extracted. These characteristics of the signal - the features - are perti-

nent to the task of classifying the brain state, and they contain the signal vari-

ations that are related to the user’s underlying neurophysiological processes.

These features will be used later to control or adapt the system through the

BCI by interpreting them in the context of the user’s brain state

• classification: the feature vector extracted during feature extraction is given

as an input to the classifier approach. The classifier then learns in a predic-

tive model how to associate the vector to different classes of data through ma-

chine learning approaches

• model application: finally mental states are classified and identified through

the predictive model of the classifier. The classifier is applied to new incom-

ing data and its output is then either translated into a command (to e.g. con-

trol a machine, or generate a feedback signal) or processed otherwise (e.g. for

adaptive adjustment of a system)
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Finally, I will summarize how BCI approaches can be validated after a predictive

model has been trained for a BCI application.

2.5.1 Pre-Processing

The purpose of signal pre-processing is to improve the signal-to-noise ratio (SNR)

and to highlight relevant information contained in the recorded signal.

After acquisition the raw recorded data contains noise and artefacts which are

not of cerebral origin. Hence the recorded data is a mixture of the brain signal which

contains the information relevant for the classification (information relevant for

the mental state or task) and the noise which represents all other superimposed

signal components, including physiological signals, such as heart rate, muscular

activity (e.g. from the jaw) and eye movements or blinks. In general the amplitudes

of these sources of noise are much higher than those of activity stemming from the

brain. Moreover, technical artefacts can contribute to the recorded EEG, such as

line noise (at 50 or 60 Hz depending on the location) or noise induced by electrode

movements occurring during the data recording.

During pre-processing the afore mentioned artefacts are removed from the EEG

data as well as possible. For increasing the SNR, filters can be applied to the data.

These filters can be spatial, reducing the number of electrodes from the original

number to a subset of electrodes that are expected to contain relevant information

about the signal of interest. As an example, in the context of a BCI that uses ERD

for detecting motor imagery, the electrodes that are most relevant are typically C3

and C4, that are positioned over the left and right motor cortex. These electrodes

are used to identify changes in brain activity related to the user’s imagined move-

ments. Also common average reference (CAR) can be applied as a spatial filter to

reduce overall background noise. The CAR method includes taking the average of

the recorded signal of all channels and then subtracting it from each channel’s sig-

nal. This process results in the inclusion of only signal and noise that is common to

all channels in the CAR, while signal that is isolated to a single site is not included

(Osselton, 1965; Ludwig et al., 2009). Hence, uncorrelated random noise is mini-

mized through the averaging process by the subtraction, leaving channels with only

channel specific signals (Teplan et al., 2002).

Frequency filters can also be set - mostly low-pass (all frequencies below a se-

lected threshold are preserved), high-pass (all frequencies above a selected thresh-

old are preserved) or band-pass (frequencies between two thresholds are preserved)

filters, as well as notch-filters (all frequencies but those between two thresholds are

preserved (is often used to remove power line noise at 50 or 60 Hz)) are set to limit

data processing to the frequency ranges where the neurophysiological signals are
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presumptively present. In general, most of the signals that are of interest in EEG

data fall within the frequency range of 0 Hz to 40 Hz. The above filters can also

remove slow drifts from the EEG signal, as well as power line noise.

Apart from more simple spatial or frequency filters, also ICA, as described in

2.4.3, can be used to clean data from artefacts by removing data generated by arte-

factual components from the EEG data. In case other physiological data was mea-

sured during the recording, such as eye activity through an electrooculogram (EOG),

this data can also be used to separate data derived from neuronal sources from data

caused by artefacts. During pre-processing other methods can be applied to the

data as well such as down-sampling for reduction of data dimensionality, or a base-

line correction can be performed, to correct for potential non-stationarity in the

EEG signals - the change of characteristics of a time series over time (such as vari-

ance, mean, and spectral properties) which are apparent between the initial mea-

surement of the EEG signals for the purpose of calibrating the BCI and the actual

use of the BCI in an experiment or application, due to changes in the user’s atten-

tion, fatigue, task, substance intake or stress etc. (Blanco et al., 1995; Shenoy et al.,

2006). Further, data from faulty or noisy EEG channels can be removed from the

EEG data through channel rejection. Similarly, epochs contaminated by artefacts

can be excluded through epoch rejection from the EEG data.

2.5.2 Feature extraction

The goal of feature extraction is to extract distinct information about the relevant

event or mental state which is to be detected from the EEG data through the BCI

system. To this end the aim of this phase is to build filters for the data which de-

scribe specific aspects of this activity, the so-called features, which can be used for

classification.

After the EEG data has been partially cleaned from artefacts and noise of

non-cerebral signal sources during the pre-processing phase, in feature extraction

characteristics of the cerebral signal of interest are extracted and separated from

other cerebral activity. The recorded brain signals, which are represented as a ma-

trix with spatial (electrodes) and temporal (time stream of recorded data points in

ms) dimensions, are mapped onto vectors containing the representative features

which best represent those aspects of brain activity relevant to the corresponding

neurophysiological event or user state. This new data space can be very different

from and more abstract than the original spatial-temporal structure of the raw EEG

and is referred to as the feature space. Class related relevant features that are to be

represented in the feature vectors are usually identified from neuroscientific liter-

ature. In alignment to the research question and the type of data at hand, features
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can be selected from the temporal or spectral domain, or a combination of both.

Data from outside the feature space are excluded from further analysis. It should

be noted that high dimensionality of EEG data can be reduced drastically by feature

selection, which can have a positive effect on later classification and BCI perfor-

mance robustness.

There are several methods for feature extraction such as e.g. common spatial

patterns (CSP) or auto-regressive (AR) - for an overview see e.g. Pawar and Dhage

(2020). In the studies within this thesis, the following two approaches for feature

extraction were used:

• In studies 1 and 3 ERP-based BCI systems are trained, which are based on

features from the temporal domain. For feature extraction we used a time-

point based approach based on averaging over voltages of time-points within

a specific time frame of the data following stimulus presentation. To this end

epochs starting around 100ms before stimulus onset and with a specific length

are extracted from the data. Within these epochs time-windows (e.g. of 50ms

length each) are defined in which characteristic properties of the signal of

interest are expected (e.g. for a P300 ERP component). Then all data points

within a time-window are averaged for each electrode. The feature vector for

each specific electrode then is defined by the time-windows and their average

voltage. In the BCILAB toolbox used for data analysis in this thesis this time-

point based feature extraction procedure is implemented in the windowed-

means approach (Blankertz et al., 2011) for data processing, feature extraction

and classification.

• In study 2 the BCI system which is trained, is based on spectral features of

frequency band power. Here the filter bank Common spatial patterns (fbCSP,

Ang et al. (2008)) approach was used for feature extraction. fbCSP is an ad-

vancement of the CSP approach for feature extraction, where spectral, as well

as spatial discriminative EEG characteristics are selected and optimized. Firstly,

EEG signals are filtered into a number of frequency bands by applying a filter

bank. Then, for each selected frequency band, CSP features are extracted by

applying spatial filters in order to maximize the variance of one class while

minimizing the variance of the other class. Afterwards discriminative pairs

of frequency bands and corresponding CSP features are chosen by the algo-

rithm of the approach.
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2.5.3 Classification

After pre-processing and feature extraction, the goal of classification for a BCI is to

train a classifier model through machine learning techniques (Bishop and Nasrabadi,

2006) to distinguish between EEG data which is elicited by the event and/or mental

state of interest and other EEG data. To this end a machine learning algorithm is

applied to learn how to separate data from two (or more) classes by building pat-

terns containing class specific features. Ideally, the classifier model after training is

able to distinguish between these classes with a low error rate on a single-trial basis

in real-time. The latter point is essential for BCI technology operating on EEG data,

as the afore mentioned averaging over trials (as e.g. for neuroscientific ERP anal-

ysis) is not possible with a BCI. Rather, the challenge is that the event- or mental

state-relevant information must be obtained directly from the recordings of a sin-

gle trial. The information is to be extracted as patterns from the EEG data, based

on pre-denoted predictive models of the BCI classifier. The trained classifier later

should be able to perform pattern matching and decide for an unlabeled and new

data point, which class it belongs to according to its features.

During its calibration the classifier algorithm usually is provided with labeled

data containing information on what part of the data belongs to which class. In or-

der to obtain these single-trial examples of the signals to be detected in the mixed

scalp EEG for the calibration of the classifier’s predictive model, labeled examples

of brain data elicited by the target stimulus or mental state within the user are col-

lected beforehand. In most cases, this calibration data is acquired while the user

completes a calibration paradigm. This calibration paradigm usually consists of

a number of different trials which represent the data classes for later calibration.

Part of these trials – in which the ground-truth is assumed - are designed to evoke

the brain activity of interest (e.g. elicit an ERP (as e.g. the P300 or an error poten-

tial) or induce the mental state of interest (high mental workload, high alertness).

The other class(es) of trials a user completes during the calibration paradigm ei-

ther aim to induce a contrasting mental state - e.g. if there are two types of cali-

bration trials, of which one evokes high levels of mental workload while the other

evokes low levels of workload or relaxation while the aim is to train a BCI classifica-

tion model which can distinguish between low and high stages of mental workload.

Other classes of trials can also simply serve as a baseline where no specific mental

state is induced or distractor stimuli are presented to the user. A typical setup of

the EEG hardware, subject and calibration paradigm in a laboratory experiment is

shown in figure 2.7. Preconditions for good classification results are a sufficient

number of samples and reliable data. The number and/or length of trials a user

has to complete for each class depends on the number of independent features ex-
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tracted, the number of classes the classifier later will be trained to distinguish, as

well as the machine learning method applied for classifier training, as some meth-

ods require more samples for robust classification than others. It should also be

noted that the tasks presented to the user in the calibration paradigm should be as

similar and comparable to the task or mental state the BCI later should be able to

detect - this should always be considered when designing a calibration paradigm

for collecting training data for a BCI, especially when it should be applied in real-

world settings later on.

To calibrate a BCI, patterns must be extracted and learned from training data

that allow the properties of the data to be categorized in order to make predictions

based on them. The goal is to recognize patterns in the data and to derive regu-

larities from them, which can then be applied generally to the categorization and

processing of new data. Hence, after sufficient training data of the different classes

has been collected, pre-processed and features were extracted, in the next step the

actual classification of the data follows to obtain a predictive classifier model. The

algorithms used for the classification are selected on the basis of the data struc-

ture and the problem. The goal is to perform an assignment of single trial data to

classes based on the feature vectors, which can be transferred into binary or more

commands. Pattern recognition or classifications are performed on the previously

described features.

Among other machine learning algorithms for classification (as e.g. neural net-

works or support vector machines) linear discriminant analysis (LDA, (Fisher, 1936))

is commonly used for classification in BCI as it is robust and of low computational

cost and therefore applicable for online application. Hence, LDA was employed

as a classifier in the experiments detailed in this thesis, and it will be discussed in

more detail in the paragraph that follows. For an overview of other classification

algorithms for BCI technology and their characteristics see Lotte (2008), Lotte et al.

(2018) or Müller et al. (2003).
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Fig. 2.7 Typical setup of a BCI experiment in the laboratory: The subject is
seated during the experiment. On a screen the calibration paradigm is pre-
sented to the subject, where exemplary data for the classes of brain activity
of interest is evoked and collected. EEG electrodes are mounted to the head
of the subject with electrode placement according to the extended interna-
tional 10/20 system on a fitted cap. The electrodes are connected to one ore
more amplifier(s) to enhance the EEG signal. The EEG signal is then recorded
and processed on a connected computer. Picture source: TU Berlin/PR/Oana
Popa-Costea

Linear Discriminant Analysis (LDA)

With the use of the classification method LDA, it is possible to identify a linear

combination of attributes that distinguish or characterize two or more classes of

objects or events (Bishop and Nasrabadi, 2006). A linear classifier can be created

and applied using the resultant combination.

The optimization procedure of LDA is based on covariance estimates of feature

distributions where the LDA uses a linear hyperplane to assign data to a class (Duda

et al., 2012). This linear hyperplane attempts to maximize the distance between

the means of the classes and minimize the variance within the classes (Duda et al.,

1973). The results are reflected in a linear transformation vector, which operates as

a filter that isolates the relevant activity and reduces unrelated activity. The class of

a new sample or trial is then accordingly determined by the side of the hyperplane it

is placed on. As mentioned above, LDA as a linear classifier is low in computational

cost and therefore applicable for online application. Moreover, linear classifiers

are more robust and are less prone to overfitting (where the classifier model be-

comes overly focused on unique or erroneous differences between the calibration
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data classes) than non-linear ones (Vapnik, 1999a). It should be noted though that

LDA performance can be impacted when the number of training samples is limited

while the size of the feature vector is high (Blankertz et al., 2011) - this problem can

however be counter measured by applying shrinkage for compensating the result-

ing bias of the estimated covariance matrices (Blankertz et al., 2011). This approach

is then called (shrinkage) regularized LDA.

After its calibration a classifier can be tested offline to obtain an estimated ac-

curacy for online BCI performance when new, unlabeled data points are to be as-

signed to a class. A common method to estimate this accuracy of a trained classifier

model is cross-validation, which is described in the next paragraph.

Cross-validation

Cross validation is a common statistical method often used in BCI research to

estimate the goodness of online performance of a trained classifier, meaning how

well it classifies data on which it has not been trained. Therefore the calibration

data is divided into several small data sets. In this process, a partial dataset is used

for testing and the remaining partial datasets are used for training. For example, a

5 × 5 cross-validation divides the data into five partial data sets. One partial data

set is used as the test set, and the other four are used as the training set. In order to

utilize each individual subset as a test set once, this is done five times. The process

is repeated five times, so that for the objective evaluation of the classifier 25 test

sets and 25 training sets are available. In the end classification accuracies obtained

from testing on all testing datasets are averaged to define an overall performance

measure which estimates the classification accuracy of the classifier for online ap-

plication. A threshold for acceptable accuracy of a specific classifier can be defined

by a method from Müller-Putz et al. (2008) in which it is determined whether a clas-

sifier model operates better than random.

In the context of a BCI the classifier is trained on calibration data and then ap-

plied to the data produced during an application. Overall, classification by the clas-

sifier’s predictive model, the filters, can be used offline to learn about the user’s re-

lation to a context, task or environment or online to drive control or adaptivity of

an application in real-time, as is described in the next section.

2.5.4 Model application and validation of BCI approaches

After a classifier model has been trained and its goodness was estimated offline, in

its application phase the classifier model is applied to new data samples in order

to assign these to one of the classes. The new data samples are usually generated
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while the user is interacting with a system in real-time, and the aim is to interpret

and detect changes in the user’s state or the user’s perception of events from clas-

sification run on the ongoing online EEG data stream. The classification output is

then finally interpreted and can be translated into commands, feedback to the user

or for adaptation of the device or application, mainly in real-time.

The generated filters of a classifier model trained with LDA do not automati-

cally differentiate between brain and non-brain activity. As a result, the filters are

the best for class classification, but they cannot be read spatially from a neurosci-

entific viewpoint. Systematic eye blinks, for example, may be included in the filters

if ocular activity contributes to class separation. As a result, if we want to identify

true and robust brain correlates of specific user states using BCI, we must take care

to ensure and verify that the BCI operates on the basis of relevant brain activity - of

the cortex or other brain regions. The classifier’s spatial filters can be transformed

into spatial patterns, which can provide insights into the scalp projections of cor-

tical activity that is relevant for the classification process (Haufe et al., 2014). For

each feature, such a pattern that is interpretable from a neuroscientific perspective

can be created, identifying the activity at specific electrodes that contributed to dis-

tinguishing between classes within a specific frequency range. This process allows

for the identification and validation of the information utilized by the classifier in

the discrimination of classes, as analyzing the spatial patterns of brain activity can

aid in determining the underlying sources that contribute to the functioning of a

BCI. For instance, the impact of eye movements can be easily identified based on

their unique spatial patterns.

While spatial patterns can be interpreted in sensor space to validate if a BCI op-

erates on cortical activity, the activity displayed in the spatial patterns is that of a

mixture of the activity of underlying sources – the individual independent compo-

nents whose activity is contributing to the classifier’s decisions. For further valida-

tion of a BCI, it can however also be of interest to investigate the contribution of

these individual sources. As described in an approach for a classifier source local-

isation tool by Krol, Mousavi, et al. (2018) and Zander et al. (2016), a combination

of ICA sources – the independent components resulting from ICA - and a spatio-

temporal LDA-based classifier model can be employed to identify sources whose

activation is used to discriminate between classes by the classifier model. Through

this approach a classifier model that was trained in sensor space can later be inter-

preted and analyzed in source space. To that end, the weights of the LDA’s spatial

filters can be transformed into weights in source space, which represent the ICs’

relative contribution to the process of classification (Zander et al., 2016). Through

these new weights in source space, it is possible to visualize the relevance of cortical

areas to the classifier model by generating weighted dipole density plots as also de-
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scribed by Krol, Mousavi, et al. (2018). Through this approach the classifier model

of a BCI can be validated further and the underlying neurophysiological processes

can be compared to already existing findings from neuroscientific research.

2.6 Passive BCIs

In this section I will firstly introduce the concept of passive brain-computer inter-

faces (passive BCIs) and how they form a separate category of BCIs that differs from

active or reactive BCIs. I will further give an overview of the fields of application for

passive BCI technology and present EEG features and correlates of user states that

are commonly assessed and applied in passive BCIs for user monitoring in HMI

contexts. Finally, I will introduce the concept of Neuroadptive Technology (NAT)

which as a technology is enabled by passive BCIs.

2.6.1 Categorisation into active, reactive and passive BCIs

BCIs in general can be categorized according to different characteristics (for exam-

ple, synchronization or degree of invasiveness). One categorization is concerned

with what a user needs do in order to utilize the BCI. To that end, BCIs are divided

into three categories based on the type of the signals used to generate input com-

mands from the user’s point of (Zander and Kothe, 2011; Zander and Jatzev, 2011):

• Active BCIs: the BCI’s output is derived directly from a conscious (control)

thought of the user, independent of external inputs. With these BCIs control

is intentional from the user perspective, as the analyzed signal is consciously

modulated by the user.

An example for an active BCI is the motor imagery paradigm, where the user

intentionally imagines limb movements to generate control commands to

e.g. control a wheelchair or a cursor. The imagination of a movement is ac-

companied by activation in the region of the motor cortex that is also acti-

vated when movements are actually performed, and can be interpreted by

the BCI accordingly.

• Reactive BCIs: here the BCI’s output is derived from the user’s internal reac-

tion in brain activity to an external stimulus or to an event. This type of BCI

requires the user’s directed attention to the stimulus or event presented to

them, as its output is generated by actively modulated perceptual processes

within the user. Hence, as with active BCIs, a reactive BCI requires the user’s

conscious decision to send a command.
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An example for a reactive BCI is the P300 speller discussed earlier, in which

rows and columns of letters are flashed in quick succession with the user’s

focus set on the letter they want to spell out.

• Passive BCIs: the BCI derives its output from the user’s naturally occurring,

spontaneous changes in brain activity within a specific context, without the

user having to deliberately communicate anything. As a result, the user re-

mains passive in terms of consciously providing input to the BCI system be-

cause their brain activity is not intentionally generated or intended to oper-

ate as an input signal or command to the BCI system. A passive BCI, however,

uses these measurements of spontaneous brain activity to automatically in-

fer knowledge about the user’s mental state; this type of input is known as

implicit input (Zander et al., 2014). The interpreted information about the

user’s mental state can then be applied to adapt the interaction between the

user and a device or an application. As the user neither has to actively or re-

actively control one specific application or machine through the BCI, many

passive BCIs can run in parallel to assess different aspects of a user’s state.

One example for a passive BCI could be the ongoing assessment of a student’s

mental workload levels, that are derived from spectral changes in measure-

ments of their brain activity, while the student is learning tasks for a math

test. In order to make the learning process more effective, the exercises could

be simplified automatically if the mental workload is too high (overload) ac-

cording to the passive BCI’s output, and the difficulty of the exercises could

be increased if the mental workload is too low.

In this thesis the focus lies on passive BCIs in particular, as passive BCIs cur-

rently hold the greatest potential for enhancing and improving human-machine

interaction (HMI) applications for the healthy population on a broad scale. The

primary aim of passive BCIs is to detect changes in a user’s state and use this infor-

mation as an input for adaptive systems (Aricò et al., 2016) – as will be discussed in

the next section.

2.6.2 Passive BCIs for improved Human-Machine Interaction (HMI)

The main goals of BCI research over the past two decades have been to define sup-

port systems for people with severe physical impairments, e.g. stroke or locked-in

patients, that allow control over a technical system or can be used as a commu-

nication channel (Birbaumer et al., 1999; Kübler et al., 2005). The expansion of

categorization of BCI technologies to include the concept of passive BCI (Zander

and Kothe, 2011) has opened up a new field of application for BCIs in the field of
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HMI. A new channel of interaction with technology has been established, in which

brain signals may be recorded and analyzed within a specific context while the user

interacts with a system, and their brain activity is interpreted so that the system’s

behavior can be adapted to the user. As detailed in section 2.6 passive BCIs do not

aim to directly control the system through intentional commands from the user,

but rather to extract information about "covert aspects of [the] ongoing user state"

(p.2, Zander and Jatzev (2011)) that may be provided to the machine to improve the

underlying HMI. Such an implicit input channel could be usefully added to ongo-

ing HMI in the future without increasing the user’s cognitive effort, since the use of

a passive BCI inherently does not require the user’s attention.

The above described form of human-technology communication aims to de-

velop context-sensitive technical systems that proactively support the user. George

and Lécuyer (2010) describe such implicit interaction as "an interaction process

that is not based on direct, explicit, or voluntary action of the user, but more on the

state of the user in a particular context. Both the user’s state and the given con-

text can thus be associated with the expression implicit information" (p.2). Im-

plicit interaction can be achieved by allowing system behavior to be adapted to the

user’s needs and expectations in real-time, informing and improving the ongoing

human-machine interaction while taking the user’s context into account (Zander

and Jatzev, 2011). Thus, a passive BCI can be regarded as a means to interact implic-

itly with a machine based on neurophysiological activity. Additional assessment of

eye tracking e.g. can provide further contextual information about visual input and

events perceived by the user which can be combined with information about the

user state which is derived from passive BCI output (Protzak et al., 2013). Hence,

passive BCI technology has the potential to address diverse application markets.

In the following I will present EEG features reflecting neural correlates of cog-

nitive user states that are commonly assessed and applied in passive BCIs to pro-

vide implicit information about the user. I will further refer to exemplary studies in

which these EEG features were investigated and a classifier model implemented for

potential non-medical, as well as real-world passive BCI applications and case sce-

narios. For an extensive overview of these potential areas for application of passive

BCI technology please refer to e.g. Blankertz et al. (2010) or Alimardani and Hiraki

(2020).

• Error detection: An error-related potential (ErrP) is an ERP measured in the

EEG that is related to the perception of errors (Falkenstein et al., 2000). This

ERP generally shows as an early negative and a later positive potential - the

error-related negativity (ERN) (Gehring et al., 1993) which is peaking at round
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50-200 ms after stimulus perception over fronto-central sites and the error-

related positivity (Pe) (Falkenstein et al., 1991) which shows a centro-parietal

maximum around 200 to 500 ms after an error was perceived (Kumar et al.,

2019). Neuroscientific studies found that both components, the ERN and the

Pe, are most likely generated in the anterior cingulate cortex (ACC) (Dehaene

et al., 1994; Miltner et al., 1997; Taylor et al., 2007). The ACC is an area of

the brain which has been found to be generally sensitive to conflict appear-

ing among the representations generated while a task is performed (see e.g.

Carter et al. (1998)).

It should be noted that the perception of an error can arise from a variety of

scenarios, all of which elicit an ErrP with small neurophysiologocal variations

as a response (Ferrez and Millán, 2005; S. K. Kim et al., 2017). In the context

of HMI, perceived errors can e.g. be grouped as follows (see S. K. Kim et al.

(2017) or Spüler and Niethammer (2015)):

Automation error: the output of a system or an application can defer

from the user’s expectation (automation error). Here the user observes

an error committed by a third party - namely the system or application

they are interacting with - hence this is also called the observation ErrP.

Moreover, the user may encounter a situation where the machine is not

responding to a command in the way intended by the user - this is called

the execution or interaction ErrP.

User error: a user can commit (unintentional) errors while interacting

with a system (user error). Here the user can realize themself that they

committed an error - this would be the response ErrP - or the user is in-

formed by some kind of feedback that they committed an error - this

would be the feedback ErrP.

Both - automation and user errors - can lead to user frustration and negatively

impact the interaction between a system and a user (Zander et al., 2010). For

a further overview of differences in the variety of errors and how factors as

the type of error modulate the production of the ERN and Pe components of

the ErrP please refer to Spüler and Niethammer (2015), Scheffers and Coles

(2000), Wirth et al. (2019) or Falkenstein et al. (2000).

The ErrP has been studied in multiple EEG and BCI studies for a variety of

scenarios and allows to identify, predict or even prevent errors in real-time

within HMI contexts (Zander et al., 2010; Chavarriaga et al., 2014). Such an

error-detection passive BCI allows for the development of adaptive systems
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which increase performance and avoid frustration in the user. For instance,

a hybrid BCI approach (Pfurtscheller et al., 2010) can be created by integrat-

ing the ErrP signal with traditional BCIs, where a reactive BCI, in form of a

P300 speller, is combined with a passive BCI for error-detection. The ErrPs

detected by the passive BCI can be employed for corrective action to improve

the speed and general efficacy of communication in the BCI speller (Schmidt

et al., 2012; Spüler et al., 2012).

In an early BCI study on ErrPs Parra et al. (2003) had subjects perform a vi-

sual discrimination task. When subjects committed an error, they were given

a feedback by the system. An error detection classifier was trained for each

subject resulting in high single-trial accuracies with an average of 89 percent.

Online application of the trained passive BCI error-detection models to cor-

rect for errors committed in the manually given responses by the subjects

yielded a significant reduction in errors for most participants of around 21

percent.

Other studies also monitored ErrPs which were then used as a corrective dur-

ing HMI interaction. Kreilinger et al. (2012) e.g. attempted to monitor the

accuracy of the movements of a robot controlled arm by assessing error po-

tentials.

Yousefi et al. (2018) had subjects perform different kinds of tasks (mental arith-

metic, counting, word generation, figure rotation and idle state). Errors in the

interaction with the system were introduced by erroneous feedback given af-

ter completion of some trials. The resulting ERP from erroneous trials showed

an ErrP with a negativity at ∼180 ms, and subsequently two positive deflec-

tions at ∼400 and ∼630 ms after the feedback onset. Classification between

correct and erroneous feedback trials showed an average of 83 percent accu-

racy.

ErrPs can also be used to adapt to a user’s intentions, as an adaptive sys-

tem provided with feedback through an error-detection passive BCI can learn

from its mistakes over time, which may result in a reduction of misclassifying

the user’s intentions. In a corresponding human-robot co-adaptation sce-

nario Ehrlich and Cheng (2018) used ErrPs as a feedback signal that can be

indicative for human preferences. Here, a co-adaptive agreement between

the human and the machine was necessary for an interaction to be deemed

successful and the robot altered its actions based on ErrPs detected from the

human user’s ongoing online EEG. Average error-detection of the trained pas-

sive BCI classifier model yielded 82 percent and the study resulted in success-

ful human-robot co-adaptation that created a more efficient interaction be-
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tween human and robot.

Additionally, De Visser et al. (2018) investigated whether ErrPs measured by

the EEG could be used to establish an indicator of trust in automation that

does not require self-report by the user. They recorded EEG from 21 partici-

pants who watched different algorithms carry out a flanker task. Each algo-

rithm had different characteristics of credibility and reliability. The results

showed that ErrPs were elicited as participants monitored the observed algo-

rithms and that the Pe can be applied to differentiate between levels of re-

liability in the algorithms and that it significantly correlates with subjective

measures of trust.

The focus within this work, and in the later presented first study in this dis-

sertation (see chapter 3) lies on automation error detection, specifically the

detection of executions errors in a realistic HMI scenario, as I investigated

session- and subject-independence for classification in a passive BCI for error-

detection.

• Mental workload assessment: As already described in 2.4.2, many studies

have investigated the correlation between levels of mental workload and mea-

sures of theta band power over frontal electrodes and alpha band power over

parietal electrodes in the EEG (Gevins et al., 1997; Krause et al., 2010). While

frontal theta power was typically shown to be positively correlated with men-

tal workload, the correlation between parietal alpha power and mental work-

load is negative (Holm et al., 2009). Recent studies have achieved good clas-

sification accuracies for passive BCIs that are trained to assess low and high

mental workload states of a user and predict such levels of mental workload

in different task domains such as e.g. visual-spatial task (e.g. mental rota-

tion; Berka et al. (2007), span tasks (Chaouachi et al., 2011), arithmetic tasks

(Walter et al., 2017), n-back tasks (Grimes et al., 2008; Herff et al., 2014) and

Sternberg tasks (Baldwin and Penaranda, 2012; Roy et al., 2016).

For HMI contexts a continuous assessment of mental workload through a

passive BCI can play an important role for a variety of contexts as e.g. safety-

critical environments or learning environments. Here the system a user or

operator is interacting with, could be adapted according to the passive BCI’s

assessment of the (current) workload level by e.g. decreasing task difficulty

or complexity when high levels of mental workload are detected.

In research regarding mental workload assessment in HMI contexts, specif-

ically in aviation, e.g. Arico et al. (2016) tested a passive BCI that assessed

ongoing mental workload in order to adapt the interaction between a pilot
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and the automated cockpit for increased flight safety and reduction of errors

caused by human operators.

In a fNIRS study, Gateau et al. (2018) used a passive BCI to monitor mental

workload under real flight conditions in aircraft pilots to discriminate two lev-

els of mental workload during aircraft piloting tasks. They yielded relatively

high accuracies of more than 76 percent in mental workload classification,

demonstrating the feasibility of monitoring mental workload through a pas-

sive BCI in a realistic and complex situation. In a similar setup Dehais et al.

(2019) monitored two levels of mental workload under real operational flight

conditions using a 6-electrode dry EEG headset. Results showed higher alpha

band power over parietal areas and higher theta band power over the occitipal

area in the low mental load condition compared to the high load condition.

Classification accuracies for these frequency features yielded an average of 70

percent.

Schultze-Kraft et al. (2016) assessed mental workload in human operators in

a real-life workplace environment, yielding average classification accuracies

of around 94 percent.

Kohlmorgen et al. (2007) presented mental workload assessment through a

passive BCI in a real-world driving scenario, where the user was engaging

and completing tasks with a car’s electronic warning and information system

while operating under real traffic conditions. If levels of high mental workload

were detected in the user through the passive BCI, the current task was inter-

rupted to mitigate the induced mental workload in the user. Results showed

that the users’ overall task performance increased through the adaptive sys-

tem.

In an adaptive learning scenario, Yuksel et al. (2016) employed a passive BCI

which was assessing mental workload through fNIRS measurement to ad-

just a musical training task’s level of difficulty. Here, the system automati-

cally increased the taks difficulty when workload levels of the monitored pi-

anist user fell under a pre-defined threshold, indicating that the practiced

material had been learned and enough cognitive resources were available

in the pianist learner to be introduced to a new part of the practiced piano

piece. Results showed that learners who were supported by the passive BCI

played with significantly increased accuracy and speed, and subjectively felt

that they learned better through the support of the adaptive passive BCI sys-

tem.

In this thesis, mental-workload assessment through a passive BCI is performed

in the second study (see chapter 4), where the task-independence of a mental
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workload classifier is investigated in the context of a text reading task.

• Attention and task engagement: Changes in attention within a user or hu-

man operator can impact the safety and efficiency within HMI operations.

The measurement of drops in attention through a passive BCI has been inves-

tigated in different studies e.g. in the context of aviation or industrial workspaces

where fluctuating concentration levels in human operators who are conduct-

ing passive, monotonous control tasks can create dangerous situations. In

such situations passive BCI based monitoring of attention could be used to

decrease task related strain on users e.g. by decreasing task speed, mitigating

distractions or demanding that the user takes some time off the task to rest.

Such a system which can adapt the interaction with the user in accordance to

their attention levels would mitigate safety risks and allow for sustained user

performance at optimal levels.

The afore described P300 ERP component (see 2.4.1) has been studied in a

variety of BCI studies as a measure of attentional resources within a user.

These studies showed that the amount of attentional resources available for

processing an event corresponds proportionally to the amplitude of the P300

(Polich, 2007; Lew and Polich, 1993). Another marker for decreased attention

are high activity in the theta band and low activity in the beta frequency band

(Parasuraman and Rizzo, 2007).

Acı et al. (2019) used an EEG based passive BCI to monitor the three different

mental states (focused, unfocused and drowsy) in five subjects. They found

that frequency changes in the frequency ranges 1–5 Hz and 10–15 Hz at frontal

and parietal areas were corresponding with changes in the subjects’ state of

attention and yielded average classification accuracies of 92 percent.

• Relaxation: A state of relaxation or meditation is usually reflected in increased

activity in the alpha frequency band (Barry et al., 2007; Nowlis and Kamiya,

1970). Moreover, while in a meditative state of mind (which is characterized

by internalized attention and mindfulness), practitioners of meditation show

an increase of alpha and theta band power (Hebert et al., 2005).

Applications of passive BCIs which measure relaxation in a user have been

implemented e.g. in some video games, in which specific features of the game

are modulated by the measured level of relaxation in the user. For instance,

Mühl et al. (2010) developed the multimodal Bacteria Hunt alpha neurofeed-

back game. In this game the player controls the movement of an amoeba with

the keyboard. The aim is to move the amoeba towards a target - a fleeing bac-

terium - in order to eat it. EEG is used to monitor alpha power over parietal
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regions in the player, as an indicator of relaxation. The measured alpha band

power is then used to alter how far the bacteria targets can flee. Therefore,

when a player is more relaxed, it becomes easier for him to reach the targets.

• Automation surprise: In situations where a conflict between the human op-

erator of a machine (e.g. a pilot) and the automation system (e.g. the con-

trols in an airplane cockpit) occurs, the operator can detect but not under-

stand this conflict when they are surprised by the behavior of the automa-

tion. Such a system-output related situation, which causes confusion and

distraction in the operator’s mental state (e.g. through an unexpected spe-

cific alarm) is termed automation surprise (Sarter et al., 1997; De Boer and

Dekker, 2017). Automation surprise can impact safety through the elicited

confusion and attentional shift in the operator. Therefore states of automa-

tion surprise and their causes should be detected in order to avoid critical sit-

uations and improve human-machine interaction (Roy et al., 2020; Dehais et

al., 2015). Automation surprise can be detected in the EEG as an ErrP, even

though it is not an error in the automation per se, but rather results from

a human-machine coordination breakdown, resulting from a deviation be-

tween expectation of the operator and actual system behavior (De Boer and

Dekker, 2017). As described above, an ErrP generally consists of a negative

ERP component at fronto-central electrodes, followed by a positive deflec-

tion at centro-parietal areas.

Pawlitzki et al. (2021) e.g. investigated the calibration of a passive BCI for

the detection of automation surprise, as well as errors in an aviation context.

Through a calibration paradigm, in thirteen pilots cognitive states which cor-

responded to surprise and/or error were evoked. Three according classifier

models were then trained per subject, one for classification of automation

surprise, one for error detection and one for surprise detection. The three

classifier models were afterwards applied to EEG data recorded during a sim-

ulated flight task which included events that corresponded to surprise, error

and automation surprise (as assesses explicitly by the individual pilot). The

average classification accuracy for automation surprise in this study was 85

percent. Regarding the classifier models’ specificity, the BCI models for au-

tomation surprise and surprise detection resulted in similar output, while the

error detection BCI model produced output significantly different from the

other two classifiers. Pawlitzki et al. (2021) conclude, that both surprise as

well as error contribute to the mental state of automation surprise.

• Detection of emotions: The detection of different states of emotion is an-

other feature in the EEG which has been researched in recent years. This re-
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search is closely connected to the field of affective computing (Picard, 2000),

which aims at allowing machines to recognize human emotion, react to them

and ultimately express emotions themselves. Affective computing however

includes other physiological measures aside from brain activity as well, such

as heart response, facial recognition or speech. However, passive BCIs for

emotion detection can be applied as an input channel for the detection of

emotion, in affective computing and other domains.

In a review of studies aiming at identifying different emotional states in hu-

mans, Al-Nafjan et al. (2017) found that in most of such investigations "elici-

tation techniques include standardized emotional stimuli (e.g. pictures, films

and audio), imagination techniques (e.g. guided imagery and autobiographic

recall), present social interactions (e.g.games) and directed facial action tasks"

(p.7) to gather classifier training data in a calibration paradigm. Regarding the

neural correlates measured by EEG for emotion detection, in the same review

Al-Nafjan et al. (2017) found that out of the 285 publications included in the

review analysis, "130 articles used event-related potentials, whereas 48 arti-

cles used frontal EEG asymmetry in their analysis, six articles used ERD/ERS

and four articles used steady-state visually evoked potentials" (p.10) (SSVEP,

see Zhu et al. (2010)).

In order to distinguish six different emotions, namely happiness, surprise,

anger, fear, disgust and sadness, Nasehi et al. (2012) developed an algorithm

which extracts spectral, spatial, and temporal characteristics from EEG record-

ings related to emotions. The trained classifier correctly classified emotions

at an average accuracy of 65 percent. It should be noted that here the chance

level is different from binary classification (50 percent), as six different emo-

tions were classified in a senary classification, hence the chance level would

be at 16.7 percent.

Chanel et al. (2011) investigated emotion assessment from physiological sig-

nals to adapt the difficulty of a game - namely Tetris. The three emotional

states which were assessed in this study were boredom, engagement and anx-

iety. Classification results from only the EEG signal yielded an average of 56

percent accuracy and could be raised by including data from other peripheral

physiological features to 63 percent.

Anh et al. (2012) used a classifier to distinguish between five emotions elicited

by presenting pictures from the International Affective Picture System (IAPS,

Lang et al. (1997)) to participants. The induced emotions, based on valence

and arousal scaling, were happy, angry, sad, relaxed and neutral Classification

of these emotions in real-time and achieved accuracies of an average of 70
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percent.

Daly et al. (2016) created an affective brain-computer music interface that

might change its user’s emotional states during interaction. The final online

application of the classifier could detect current emotional states within a

user with classification accuracies of up to 65 percent.

Though there is a variety of studies which investigated automatic recognition

of emotions through EEG and passive BCI systems, classification accuracies

are usually low, making it questionable how viable emotion detection via pas-

sive BCI in real-world contexts can actually be.

As these different EEG features and their presented investigations for user state

detection and monitoring show, there is immense potential for employment of pas-

sive BCI technology in a variety of fields.

The given examples already show that passive BCIs can potentially

• aid in improving safety and performance in operational workplaces, aviation

and driving

• increase efficiency and personalization in learning setups

• increase user and/or system performance

• avoid errors and hazardous situations

• enable adaptation to a user’s preferences

• avoid user frustration

• indicate trust in automation

• aid in improvement of another BCI’s performance

• allow feature or difficulty modulation in gaming contexts and

• facilitate self reflection, increase mental health and training outcome in a

user.

Apart from these factors for real-world application, analysis of the classifier mod-

els trained for passive BCI applications can also validate and enhance scientific in-

sights from cognitive neuropsychology and related fields (Blankertz et al., 2016).

Additionally, the application of BCIs for personal authentication is investigated

(Chuang et al., 2013; Li et al., 2015) and neural markers are tested as indicators for

psychological diagnoses for e.g. autism (Alsaggaf and Baaisharah, 2014) or ADHD
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(Alchalabi et al., 2018) as well treatment for such conditions (Lim et al., 2012; Fan et

al., 2015). Also artistic expression through a BCI, as in the perception and creation

of art (Nijholt, 2019; Prpa and Pasquier, 2019; Krol, Andreessen, et al., 2018) and mu-

sic (Miranda and Castet, 2014; Daly et al., 2016) through the generated output and

interpretation of user states through a passive BCI is investigated and exhibited.

While passive BCIs can be regarded as a tool for user state assessment, the tech-

nological concept of HMI systems which are adapted through information about

the user derived from neurophysiological measures in a closed-loop, while addi-

tionally capable of incorporating other context information, has been defined and

researched under the term Neuroadaptive Technology (NAT). In the next section I

will introduce this concept of NAT and how the tool of passive BCI is enabling this

novel and promising technology.

2.6.3 Neuroadaptive Technology (NAT) enabled through passive BCIs

As introduced above, passive BCIs enable the detection of specific aspects of the

transient cognitive user state and relate them to the given context. In this, the pas-

sive BCI is interpreting a user’s mental state in an unobtrusive manner - the user

does not need to allocate any mental resources to operating or monitoring the BCI

system, but can fully focus on the task at hand or the experience they are currently

in. By this means, the human brain, naturally interpreting the given context, can

potentially deliver data containing information about the context useful for sta-

tistical inference (Vapnik, 2013) through machine learning. There trough, the ma-

chine could learn how the human user perceives, analyses, and interprets the world

around it, and adapt its own actions accordingly. This approach leads to "a cyber-

netic convergence of human and machine intelligence" (p.5, Zander et al. (2016))

that is referred to as Neuroadaptive Technology (NAT). What these adaptations to-

wards the user will look like, depends on the particular context of the application,

as well as the task the user aims to perform. In particular, NAT works by identifying

low-level data on brain activation (e.g. event-related potentials), which is then co-

registered against the technology’s repertoire of possible responses or states. The

user’s neurophysiological activity in response to known contextual changes is im-

plicitly and continuously monitored, and this activity is cross-referenced in real-

time with the changes that caused them. This enables the generative creation of

a statistical model that represents the intentions and preferences of the user - the

user model. The behavior of a system in a given circumstance may then be adjusted

using this user model to take the user’s current condition or particular goals into ac-

count. Moreover, the user model can be refined and updated over time.
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2.7 Challenges for passive BCI applications in real-world con-

texts

Regardless of the potential benefits that passive BCI and NAT could bring to users

in different industries and application fields, it is also necessary to consider current

hurdles that need to be overcome before introducing and deploying these technolo-

gies. Even though over the past decade there was significant progress in research

and development of potential real-world applications for passive BCIs for offline

evaluation measures or as a modality for online adaptation in HMI contexts (see

section 2.6.2), to date passive BCI systems are not mature enough to be brought to

market or to be applied in real-world applications yet. There still exists a consider-

able number of challenges which will need to be solved before passive BCI can be

established in everyday life or context specific scenarios to improve HMI, enhance

human or machine performance or increase safety in critical environments.

In the following I will present some of these challenges for passive BCI applica-

tions. For an in-depth overview of challenges for future (passive) BCI application

for real-world application, please refer to Rashid et al. (2020), Saha et al. (2019) or

Ramadan and Vasilakos (2017).

In particular, I will introduce three specific challenges for passive BCI at the end

of this section - subject-dependence, task-dependence and finding novel useful

neural correlates for increased versatility of passive BCI applications - which are

subject to the three studies I conducted during the course of this thesis in order

to contribute to overcoming and finding solutions for these three obstacles in BCI

research.

2.7.1 Sensor technology

In order to become applicable and acceptable to users in real-world scenarios and

everyday life, the sensors (e.g. the EEG headset) used to collect neurophysiologo-

cal data must become more wearable, as well as comfortable, affordable, should

be wireless and probably more fashionable than the EEG systems available today,

while not compromising signal quality of the acquired EEG data. More advance-

ments should be made in the direction of developing gel-free (dry) electrode sys-

tems that do not require the application of conductive gel between each electrode

and the scalp. This application of gel is too time consuming and leaves visible traces

of the conductive gel in the user’s hair and must be washed out - both these aspects

of gel based EEG systems are preventing their everyday applicability and inhibit

user acceptance. Furthermore, wired headsets limit movements, whereas wireless

data-transmitting headsets would allow people to move without restriction.
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In recent years several versions of newly developed commercial dry, as well as

wireless EEG headsets were already developed and tested, e.g. regarding signal

quality, wearing comfort, user acceptance and usability, as well as their robustness

against sensor displacement and loss of scalp contact resulting from the user’s body

movements during task performance in real-world settings (Zander et al., 2011,

2017; Nijboer et al., 2015; Radüntz et al., 2019). The signal quality of dry EEG sys-

tems however remains inferior to gel-based systems and seems to be more prone

to noise from e.g. movement artefacts or electrical interference (Saab et al., 2011),

while in general a higher SNR in wet or dry sensor technology would be desirable.

Moreover, dry EEG headsets often work with pressure towards the scalp to ensure

maximal conductivity with the skin and a certain degree of stability in electrode

placement, often resulting in discomfort for the user as e.g. headaches and other

kinds of pain are induced after wearing the headset for some time. Additionally,

even commercially available non-invasive EEG headsets often require some level

of training to place the headset and the sensors correctly, and often require regular

checking for contact quality to ensure signal quality and classification results.

2.7.2 Computation and classifier performance

For many real-world scenarios the classification accuracies for mental state detec-

tion reported in BCI literature is not sufficient yet (Évain et al., 2016). Hence, BCI

technology in general is still much less reliable than other input devices. Advances

in machine learning for improved classification and data handling are required to

improve the performance of future BCI classification models, as user acceptance

of the BCI technology may depend largely on users’ perceptions of its utility and

effectiveness (as well as comfort) (Évain et al., 2016).

Moreover, the resolution for measurement of a specific mental state should be

increased to, e.g. enable measurement of workload at different levels. This would

entail a more frequent shift from the prominent binary classification approaches in

passive BCI towards multi-class classification (Venkatesan and Er, 2016).

The employment of high density EEG systems, to increase the spatial resolu-

tion of the measurement method, results in high computational cost (X. Chen et al.,

2015). Here, to improve classifier accuracy and performance, it has been proposed

to employ a combination of different neurophysiological measurement techniques,

e.g. EEG and fNIRS, to exploit the advantages of high temporal and spatial resolu-

tion of the two different techniques in combination (Dehais et al., 2018). However,

such a combination of techniques would also increase setup time, as two different

systems must be set up. Additionally, wearing comfort for the user could be reduced

through additional weight of the second system’s sensor hardware.
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Further, given how little data is often accessible prior to a classifier’s application

by a single user, methods must be created that can be calibrated or trained with the

least amount of data (Fairclough and Lotte, 2020).

In order to identify and handle non-stationarities of neurophysiologocal data

(see section 2.5.1) that decrease classifier performance over time, approaches like

adaptive machine learning algorithms could prove useful to update parameters in

the classifier model (Shenoy et al., 2006). Especially for online applications of pas-

sive BCIs and NAT algorithms must be created that are effective enough in terms of

computing.

2.7.3 Artefacts and confounds

Most research on passive BCIs is currently conducted in well-controlled experi-

mental settings, mostly in a laboratory with shielded rooms, where the user is shielded

from environmental noise. Moreover, physical movement, such as walking or speak-

ing, is often restricted during experiments in order to minimize the impact of move-

ment related artefacts on the data recording. When passive BCI applications are

taken out of the laboratory into real-world settings SNR can become lower as the

amount of artefacts potentially included in the recorded data immensely increases,

due to bodily movements of the user and other interfering electrical signals from

the environment (Minguillon et al., 2017). Moreover, in real-life settings it is much

more difficult to control for other signals generated through confounding mental

states that occur simultaneously to the mental state that is to be assessed by the pas-

sive BCI. Parietal alpha activity e.g., which is an important feature in mental work-

load assessment, could become challenging to assess when a user is fulfilling tasks

in a natural environment. The expected effect of a high workload environment on

the measurement of alpha activity could be reversed or become undetectable due

to changes in demand in the complex real-world scenario - e.g. when the focus

of demand is regularly shifted between attention to a visual scene and memory

retrieval, which also induces modulation in alpha activity (Blankertz et al., 2016).

Thus, since many passive BCIs attempt to decode a particular mental state, it is nec-

essary to find biomarkers that are unique to that mental state and do not vary in the

presence and changes in other concurrent mental states in order to provide reliable

decoding of the targeted mental state (Fairclough, 2009). It is however essential for

a realistic investigation of the actual possibilities and challenges of passive BCIs in

the real world, to study their application in scenarios with conditions as close to

real life as possible. This facilitates in the identification of confounding factors that

may impact neurophysiological variables in real-world contexts and may result in

a decline in classifier performance outside of the laboratory. It will also aid in iden-
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tifying characteristics of biomarkers that are general enough to be employed across

different contexts, such as in the lab as well as in realistic settings with moving users

in real-world environments.

Currently, procedures for online removal of artefacts, such as ICA, require a high

amount of computational power, as well as time for data processing due to compu-

tational complexity and the high number of required channels - which induces time

delays between the data recording and the resulting output generated by the pas-

sive BCI’s classifier. For real-world scenarios where passive BCIs are to be employed

in safety- and time-critical situations, such a delay is not feasible and unacceptable.

Hence, future methods for artefact reduction in online applications of passive BCIs

must be developed so they are able to function without or very little amounts of

time required, as e.g. proposed in Mayeli et al. (2016) and Val-Calvo et al. (2019).

2.7.4 Legal, security and ethical considerations

Regarding ethical considerations, as well as data privacy and security issues, there

exist concerns about potential "mind reading" abilities for future applications of

BCI technology. Especially in form of passive BCIs which do not require the user’s

intention to communicate through the BCI but continuously monitor and inter-

pret ongoing brain activity. As such information extracted from brain data may

include information about "users’ experiences, emotions, motivations, and other

previously private mental and psychological processes" (p.1, (Schiliro et al., 2020)).

Though BCI technology is not capable of direct mind reading yet, in some passive

BCI studies it was found that the user was not aware that they had given the system

any information (Zander et al., 2016) - this aspect may hold potential for manip-

ulation and exploitation. Already in 1991, Farwell and Donchin demonstrated in

the Guilty Knowledge test that a P300-based BCI can be used to identify whether a

person recognizes items or images from e.g. a crime scene. In their experiment a

person is asked to look at a series of images (such as from a crime scene). In case the

person recognizes any of the images, a P300 response is evoked and can be read out

from the recorded EEG data which in this case is an indication of guilty knowledge.

While information like this would be desirable for investigative or law enforcement

purposes, access to such brain data poses potentially serious risks to individual pri-

vacy rights.

Recently, advances in neuroscience, hardware, and software have led to the emer-

gence of BCI systems in many other fields of application outside the medical do-

main. In the commercial sector, international companies such as Google or Face-

book, which base their businesses on data collection, interpretation and trade, are

taking steps towards assessing personal brain data from their users as well with
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the prospect of even more precise and personalised target marketing. With in-

ternational operations through these companies, questions arise regarding cross-

border personal data transfers, compliance to ethical innovation and securing pri-

vacy rights regarding brain data. Questions as whether brain data can be sold,

whether one needs to comply with certain rules and laws (such as the European

GDPR) or what happens if a BCI system is hacked should ideally be addresses be-

fore functional applications of BCI technology are in place. Already to date, compa-

nies such as Neurable (https://neurable.com/), Mendi (https://www.mendi
.io/), InteraXon (https://choosemuse.com/), NeuroSky (https://www.brain
-express.com/), BrainCapture (https://braincapture.dk/) or Dreem

(https://dreem.com/) operate their service by frequent collection of real-time

data of brain activity from their users on their smartphones. For an overview of pri-

vacy and security risks posed by BCI technology please refer to Bonaci et al. (2014),

Ienca et al. (2018) or McCullagh et al. (2014).

Data privacy and security issues that may arise from BCI technology and the

collection of personal brain data in the future, should already be assessed today.

To that end, scientists, companies and governments (at best on an international

level) should confer the risks and consequences posed by BCIs and NAT to provide

guidelines and laws regarding the handling and sharing of personal neurophysio-

logical data. General frameworks for neurotechnologies and BCI as proposed by

Chavarriaga (2020) or in a recent roadmap by IEEE (IEEE Standards Association,

2020), initiatives dedicated to assessing current requirements and difficulties for

neurotechnology standardization, must be debated and updated to define stan-

dards for responsible innovation.

2.7.5 Subject-dependence

As mentioned before, to date, before a (passive) BCI can be applied within a specific

(HMI) context to support a user or patient, due to subject-, session- and application-

related differences (Shenoy et al., 2006) in the neurophysiological signal obtained

by the EEG, a calibration session is required to collect user-specific training data

for classifier calibration. In this calibration session, the user usually performs a

number of known tasks inducing different stages of the mental states associated

to these tasks. These collected and labeled examples of EEG activity, based on the

user’s specific, current brain activity, are then used to train the classifier predic-

tive model to discriminate between the different tasks in accordance to the user’s

characteristic activation pattern (K.-R. Müller et al., 2004). However, this subject-

specific classifier model needs to be retrained over time, normally before every new

session where the subject-specific classifier model should be applied (online) by

https://neurable.com/
https://www.mendi.io/
https://www.mendi.io/
https://choosemuse.com/
https://www.brain-express.com/
https://www.brain-express.com/
https://braincapture.dk/
https://dreem.com/
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the specific user. This recalibration becomes necessary due to the variability of the

recorded EEG signal, which is e.g. caused by differences in sensor positioning be-

tween data recording- and model application sessions, as well as changes within

the individual user between sessions and over time induced e.g. by mood, sub-

stance intake (caffeine, medication, drug use etc.), lack of sleep or stress (Yagi et al.,

1999). Another related issue is the usage of different electrode setups and numbers

that can be applied for the same passive BCI application - here a generalization

across specific electrode montages without losses in classification accuracy would

be desirable.

The need for a repeated calibration of the subject-specific classifier model be-

fore every use of the (passive) BCI system to achieve an optimal classification model

for each user and each day poses a strong barrier for establishing practical and ev-

eryday usage of BCI technology. Calibration sessions usually require a few minutes

of time or even longer. This, in many cases, is unacceptable in practice when a

user wants or needs to be supported by the BCI on a daily basis, such as at work (it

however always remains a question of cost and benefit, and for some applications

repeated recalibration may still be acceptable). A BCI which could be used imme-

diately and does not require recalibration for retraining the classification model, as

well as data recording and system training for each new user, would be desirable

for establishing everyday usage of BCI systems for the healthy population, as well

as impaired patients.

In order to establish BCI usage on a larger scale and enable everyday NAT appli-

cations, the development of user-specific classifier-models which do not require re-

training between sessions is crucial – such a classifier would be session-independent.

Through machine-learning approaches, some session-independent active and re-

active BCIs were developed e.g. for a P300-based BCI (Lu et al., 2009) or a motor

imagery BCI (M. Krauledat et al., 2008), where data from multiple sessions of a

specific subject was used for classifier training and the application of this session-

independent classifier model to new online data did not result in significant losses

in classification accuracy. But even if this problem of session-dependence can be re-

solved, every new potential user would still need to undergo at least one initial cal-

ibration session, before they could start using the BCI application for the first time.

Here, it would be desirable to reduce the calibration time to zero for new users, by

establishing a classifier model, which does not require the collection of calibration

data from each new individual user - a subject-independent classifier model. Re-

cently, unsupervised learning methods were proposed to construct such a subject-

independent classifier model (Kindermans et al., 2014). In this approach, an under-

lying inherent structure is learned by the classifier by providing it with unlabeled

data as input for classification – hence, no (labeled) calibration data recording is
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needed. However, so far supervised techniques for classifier calibration are pre-

ferred since they still yield better classification accuracy than unsupervised learn-

ing approaches (Blankertz et al., 2016). Transfer learning (Jayaram et al., 2016) is

a further strategy that was suggested for completely eliminating the requirement

for new training data gathering for each new user. Here, shared structures between

training data of multiple subjects and/or sessions are exploited to increase classi-

fier performance in a new user. In such an approach towards subject-independent

classification, the classifier model could be trained on calibration data previously

collected from a larger number of other subjects and is then applied to the online

data of the new user, whose data was not part of the calibration dataset the classifier

model was trained on. For a motor imagery BCI e.g., Fazli et al. (2009) followed such

an approach and trained a subject-independent classifier model for motor imagery

on previously recorded data from 45 subjects. They found that through the use of

the obtained subject-independent classifier model new users were able to use the

BCI classifier in real-time with no further system calibration at low loss of perfor-

mance levels. The rational behind such an approach is that a classifier model based

on training data from multiple subjects could provide better generalization proper-

ties in terms of the underlying neurophysiological processes related to the mental

state of interest - compared to classifier filters based on just a single subject - and

could therefore be used in new subjects without the need to recalibrate the system.

This subject-independent classifier model would eliminate the calibration stage

and thus enable plug-and-play application of BCI technology in many (HMI) con-

texts. Furthermore, a subject-independent classifier model, trained on data from a

larger number of individuals, could provide insights into general human similari-

ties in neurophysiological activity underlying mental states and processes as well -

hence provide additional and novel knowledge of human neurophysiology.

In the first study of this dissertation (see chapter 3) I will explore the training of a

session- and/or subject-independent passive BCI that can detect error-perception

in a user. Specifically, I will follow the latter approach proposed above and aim

to calibrate a subject-independent classifier model based on labeled data from a

number of other subjects and then apply the obtained classifier model to data from

a new subject to compare classification accuracy to that of a subject-specific clas-

sifier model for error-detection. At a different stage of the same study I will use

subject-specific data from one recording session to train a subject-specific model

and then apply this model to data from the same subject, but in a new session. Here

I will examine if the trained classifier model can be applied session-independently

in the new session and compare its classification performance to that of a subject-

specific classifier model trained with data recorded in the same new session. An

overview of the different parts (part 1 to 7) of this study, examining session- and
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subject-independence in an error-detection passive BCI, is given in section 3.2.

2.7.6 Task-dependence

Patterns in assessed brain activity vary not only between individual users and record-

ing sessions, but also between applications, tasks and contexts. Therefore, usually

for every specific task or application where a BCI system should be employed, a

specific training paradigm is especially designed to collect data which contains la-

beled, known examples of brain activity from the specific mental states the classi-

fier model should learn to distinguish between. For example, when a passive BCI

should be applied to assess mental workload while a user is solving an n-back task,

the instructions used to induce different levels of mental workload during the cali-

bration will be based on a n-back task as well, to provide task similarities between

calibration data and application data. When on the other hand e.g. the task in the

calibration paradigm is n-back-based and the classifier trained on this data should

then be used to distinguish levels of mental workload in a visual-spatial task, the

classifier model may be unable to discriminate workload levels in the visual-spatial

task, as the properties of the calibration task and the application task differ too

much from another (Arico et al., 2017), even though both tasks induce different

levels of the same mental state - which is mental workload.

Hence, it would be desirable to initially design calibration paradigms which in-

duce different stages of the more general neural correlates of the mental state which

is to be assessed by the BCI system – not those specific to an application, task or

context. That way, the resulting classifier model could be applied to a variety of

tasks where the mental state of interest can vary in the user and should be assessed

by the passive BCI system. Such a classifier model would be task-independent. A

mental state can be elicited within different situations and tasks which have a spe-

cific context and content, but the evoked neural activity would be the same for the

underlying, general mental state of interest. A task-independent classifier trained

on data from a calibration paradigm, which produces examples of brain activity

highly related to the more general features of the mental state of interest and not

to application- or task-dependent features, would enable classifier calibration for

a variety of contexts and applications without redesigning a calibration paradigm.

This would save time, as the same calibration paradigm could be used to train a

classifier model, which can be applied to different tasks and applications. The more

general a task-independent classifier model can represent the features of a specific

mental state, the more diverse BCI applications and tasks it can be applied to, as

a user could complete the calibration paradigm once and use the obtained clas-

sifier model for support in different applications and tasks. It should be noted,
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that - as with other challenges for passive BCI applications - real-world applica-

tions which cannot rely on well controlled environmental properties like laboratory

studies do induce additional factors (other mental states, noise etc.) for classifier

application across contexts and tasks as situations are generally more complex in

real-world scenarios, which may decrease classifier accuracy. A general overview

of mental workload related studies investigating cross-task classification to achieve

task-independence of the classifier model is given in Gerjets et al. (2014), who con-

clude, that so far no successful cross-task classification of mental workload could

be demonstrated for a classifier.

A well-performing task-independent classifier for mental workload assessment

was recently developed and tested by Krol et al. (2016). This classifier model is

calibrated using data collected from a subject solving arithmetic exercises that in-

duce brain activity associated with general mental workload. Although the classi-

fier model is taught to distinguish between specific examples of mental workload

derived from the arithmetic task, the classifier is meant to assess mental workload

in general across multiple tasks. To test this, the classifier has previously been em-

ployed for mental workload classification in tasks from other domains, where it was

shown that the classifier can correctly distinguish between phases of low and high

mental workload, not just in arithmetic tasks but also in anagram solving, back-

ward span tasks, mental rotation, and complex verbal description understanding

(Krol et al., 2016; Zhang et al., 2018). The classifier model is therefore assumed to

be a task-independent prediction model of mental workload.

In the second study of this work, I investigate whether the prediction model in-

troduced by Krol et al. (2016) may also be successfully applied in a text reading task.

To that end, I tested whether the predictive model could be employed for passive

BCI-based assessment of mental workload induced by the difficulty and presen-

tation speed of a text during reading. The assessment of mental workload in real

time while reading is an essential requirement for the development of neuroad-

aptive support systems aimed at enhancing the efficiency of reading with digital

devices. Further, in case the applied task-independent predictive model can in-

deed be utilized to identify levels of mental workload imposed by text difficulty and

presentation speed during reading, this would extend the scope of tasks the task-

independent predictive model developed by Krol et al. (2016) can be applied to and

would give further indication of its generalizability to mental workload assessment

across tasks.
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2.7.7 Novel useful neural correlates for increased versatility in passive BCI appli-

cations

There are a number of neural correlates already researched and exploited for pas-

sive BCI applications - such as mental workload, error detection, attention, sur-

prise, relaxation assessment, or emotion detection (as detailed in section 2.6.2).

However, the scope of potential areas of applications for passive BCI technology

could be broadened if even more mental states could be assessed in a user on a

single-trial basis through passive BCI technology. There exists a vast corpus of neu-

roscientific findings from studies which investigated neural correlates of different

mental states and processes in human cognition. Since the results reported in most

of these studies rely on averaging over trials, it remains unclear if significant effects

between classes of the investigated cognitive states imply that the neural correlates

of the investigated mental states are detectable on a single-trial basis as well. This

potential for detection on single-trial basis however is a requirement for a neural

correlate of a mental state to be effectively usable in a passive BCI system, where

the classifier model bases its decision on the neurophysiological data of only one

single trial.

In a study from Appriou et al. (2020), e.g. the single-trial detectability of the

mental state of curiosity was investigated. The authors’ aim was to learn whether

neural correlates of curiosity could be detected and distinguished from other men-

tal states by a passive BCI classifier model on single-trial basis, which would enable

identification of the current curiosity level within a person. If states of curiosity

were detectable by the passive BCI at a reasonable classification accuracy, the re-

sults would be a first step towards adding curiosity to the mental states detectable

by a passive BCI and thus enhance the spectrum of applications and contexts in

which passive BCIs can be applied. For example learning environments could ben-

efit from curiosity monitoring in students, as educational research has shown that

curiosity is a driving factor for the outcome in learning efficiency (Oudeyer et al.,

2016).

In their study, Appriou et al. (2020) firstly collect EEG signals during states of cu-

riosity, with the aim to teach a classifier model to discriminate between a user’s cu-

rious and non-curious states. In a calibration paradigm trivia question and answer

chains were used to induce the two relevant states of curiosity and non-curiosity,

while EEG data was recorded from 61 electrodes. Best classification accuracies were

obtained when a Filter Bank Tangent Space Classifier (FBTSC, Appriou et al. (2020))

was employed using a 4 seconds long time-window of data, with an average classi-

fication accuracy of 63 percent. Moreover, classifier model analysis indicated that

frequency bands from delta to low beta were most discriminative in the classifica-
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tion of states of curiosity. The authors conclude that the presented results show that

indeed significant classification of different levels of human curiosity are detectable

through a passive BCI classifier model. However, it should be further investigated

how the underlying neural correlates of curiosity relate to those of mental workload

and engagement, if other stimuli can be used in the calibration paradigm to induce

levels of curiosity or even if subject-independent classification is possible.

The above described investigation serves as an example of a feasibility study

where the single-trial detectability of a neural correlate of a mental state - which

to-date is not assessed by passive BCIs - is explored. As detailed above, finding

novel neural correlates of mental states that can be detected on a single-trial ba-

sis through a BCI, can enhance the versatility and capabilities of NAT, as they open

new application contexts and scenarios. In the third study presented in this disser-

tation (see chapter 5), I investigate such a mental state, whose underlying features

of neural correlates have already been researched in the field of neuropsychology

but were not assessed on a single-trial basis. The study aims at exploring whether

neural correlates of human moral assessment - a person’s individual judgment of the

moral quality of an event or scene that is presented to them - can be measured on a

single-trial basis through a passive BCI using EEG data acquisition. If a user’s moral

assessment could be identified by a passive BCI, this information about a user could

be e.g. gathered over time in a user model representing a specific person’s moral

preferences. Such a user model could provide useful in the interaction between

humans and machines in general, or specifically enable a closed-loop adaptation

of moral representation in autonomous moral agents toward human moral prefer-

ences (see chapter 5). Here the user model containing the moral preferences of a

specific user could be adapted and refined over time during human-machine in-

teraction to ideally lead to an alignment in terms of morality between machine and

human(s).







CHAPTER 3

Study 1: Subject- and session

independent single-trial classification

of automation error perception

3.1 Motivation and summary of the study

As one of the grave challenges preventing everyday, real-world applicability of pas-

sive BCIs and NAT today is posed by subject- and session-dependence of the trained

and applied classifier models (as described in section 2.7.5), this first experiment

of my thesis focuses on overcoming this obstacle by investigating the potential for

subject- and session-independence of passive BCI classifier models. In particu-

lar, this investigation was conducted around an error-detection passive BCI. As de-

scribed in section 2.6.2 passive BCIs detecting ErrPs as neurophysiological mark-

ers from ongoing EEG data measurement, have been the subject of many preced-

ing passive BCI experiments that provided high classification accuracy and even

demonstrated the online applicability of the calibrated passive BCI models for error-

detection and system adaptation through the classifier’s output. Automatic detec-

tion and correction of errors through the continuous input generated by a passive

BCI model holds a strong potential to improve HMI, as a reduction of errors can re-

duce a user’s workload, improve system performance and increase safety due to a

reduction of error-proneness of automated systems. Due to the unobtrusive nature

of user-state monitoring through a passive BCI, that does not require additional at-

tention or effort from the user, the additional information channel provided by the

error-detection passive BCI does not interfere with the user’s primary task or the

interaction with the machine.

49
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3.1.1 Experimental paradigm mimicking error-prone HMI and expected ErrP

In the following study, an experimental paradigm was employed, which mimics typ-

ical elements of HMI (see section 3.2.1.1). Users are first learning the goal, rules

and operations of a game and form individual strategies on how the goal can be

reached best and fastest through the interaction with the system. After some time,

unexpected errors are induced into the gameplay which prevent the user from ex-

ecuting their formed strategies to reach their goal and require corrective action by

the user.

As discussed in section 2.6.2, the elicited ErrP depends on the type of error that is

presented and interpreted by the user. In our experimental paradigm the user most

likely experiences the induced errors in a way that the machine is not responding

to a command in the way intended by the user. This type of error corresponds to

interaction or execution errors, hence for the conducted experiment, we anticipate

an ErrP that is somewhat similar to those caused by interaction or execution errors.

For the interaction error, which is described as “error[s] of the interface link-

ing human and an external system” (p.1, S. K. Kim and Kirchner (2013)), we would

expect an ErrP that shows an ERN around 270 ms after an erroneous event, a subse-

quent prominent positive peak at around 380 ms, as well as a small second negative

peak at around 600 ms as demonstrated by S. K. Kim and Kirchner (2013).

For the execution error, which is observed in others or a system as “inaccurate

execution[s] of the selected action” (p.278) which are “mostly surprising events“

(p.282) (de Bruijn et al., 2007), we would expect an ErrP that also shows a strong

P300 component with a posterior distribution (elicited by the occurrence of an un-

expected event), but no ERN (de Bruijn et al., 2007).

Thus, the elicited ErrP that is to be expected should consist of a positivity re-

sembling the P300 component, and could also include an earlier negativity and/or

a late negativity.

3.1.2 Investigating subject- and session independence in an error-detection pas-

sive BCI

The aim of this study was to investigate the potential and applicability of an error-

detection passive BCI whose classifier model is session- and/or subject indepen-

dent. The benefits for real-world applicability of passive BCIs that would be pro-

vided by the development of session- and/or subject independent classifier mod-

els - which do require minimal or no calibration time and data - would be immense

and were already detailed in section 2.7.5.

The study was structured and conducted in seven parts, each of which aims at

investigating distinct research questions. Here I will firstly present an overview of
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the different parts of the study which are later detailed in sections 3.2.1 to 3.2.7:

• Part 1: Neurophysiology of a subject-specific error-detection classifier (see

section 3.2.1)

We first calibrated a classifier model for single-trial error-detection on the

calibration data gathered from the experimental design that included cor-

rect and erroneous trials. These classifier models were subject-specific and we

investigated each subject-specific classifier’s predictive performance on new

data (offline) from the same subject. Further, we aimed to study the neuro-

physiology of correct and erroneous trials of the classifier calibration data in

an ERP analysis with respect to the literature on error perception. Finally, we

visualized the underlying neurophysiology that the subject-specific classifier

models were basing their decisions on.

Finding that these subject dependent classifier models were mainly operating

on data stemming from eye activity, as opposed to cortical sources that a BCI

should be based on, we cleaned the EEG data from activity that was generated

by eye components, defining new calibration data sets which excluded eye

activity.

We also investigated whether a subject-specific classifier model with suffi-

cient accuracy could be calibrated on data from EOG channels only (which

would require less preparation time than EEG headset application). We found

that these classifier accuracies were low, though not random.

• Part 2: Calibrating subject-specific error-classifiers on data cleaned from

eye activity (see section 3.2.2)

We again calibrated subject-specific classifier models, but now used the subject-

specific data sets that were cleaned from eye activity. We again performed

ERP analysis, classifier calibration and classifier model visualization to find

out whether the newly generated classifier models now discriminated between

erroneous and correct trials on the basis of cortical activity, instead of eye ac-

tivity. We also investigated whether omitting eye components from the data

had an effect on classification accuracies.

We found that the classifier models were indeed basing their decisions on ac-

tivity from cortical sources and these classifier models still showed high clas-

sification accuracy.

• Part 3: Session-independence - Applying subject-specific classifier models

from a first recording session to new subject-specific testdata from a sec-

ond recording session (see section 3.2.3)
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To investigate session-independence, we tested whether the subject-specific

classifier models that were generated in part 2 could be applied to new data

of the same person from a new recording session from a different day. We

compared the performance of the classifier model on the new data to its per-

formance on testdata from the first recording session. The results showed no

significant difference between the application of subject-specific classifiers to

testdata from the same or a different recording session – hence the subject-

specific error-detection classifiers are indeed session-independent, as they

can be transferred from one recording session to another with similarly high

classification accuracies.

• Part 4: Session independence - Training a group classifier on calibration

data from the first recording session and applying it to new subject-specific

testdata from a second recording session (see section 3.2.4)

For further investigation regarding session-independence, we examined whether

a session independent classifier can be trained on data from multiple sub-

jects as well. Hence, we trained the error-detection classifier not only on data

of one specific subject, but trained a group classifier model on all calibra-

tion data of the first recording session and then applied these group classi-

fier to the subject-specific testdata of the second recording session. We com-

pared the group classifier’s performance to that of the subject-specific but

session-independent classifier models and further investigated whether the

group classifier is working on the same cortical sources for classification as

the subject-specific classifier models from part 2.

We found no difference between classifier performance of the subject-specific

and the group classifier, and the classifier’s visualization also showed strong

similarities. The results suggested, that we can train one single classifier model

on calibration data from a group of subjects and yield similar prediction er-

ror rates as with the specifically trained models. Across subjects, this session-

independent group classifier seems to work on the same discriminative neu-

rophysiological features as the specifically trained classifier models – indicat-

ing that neural responses to error perception are highly similar across sub-

jects.

• Part 5: Subject-independence - Applying subject-specific and group classi-

fier models to subject-specific testdata from a different subject (see section

3.2.5)

The group classifier calibrated in part 4 was partially informed about data

from the specific subject whose new testdata we applied it to (as the group

classifier is trained on calibration data from all subjects - including the test
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subject) and therefore still subject-specific.

Thus, we now aimed to investigate subject-independence of the error-detection

classifier. To that end we applied subject-specific classifier models to test-

data from other individual subjects. Additionally, we trained group classi-

fiers, excluding a specific subject’s calibration data from the group classifier

calibration, and then applied this leave-one-subject-out group classifier to

the subject-specific testdata of the subject, who was left out of the calibration

dataset.

Results showed that both, the subject-specific and group classifier models

perform worse on new data from a different subject, than the subject-specific

classifier model, calibrated on data from the same subject. Classification and

application accuracies were significantly better in the group classifier than in

the subject-specific classifier trained on data from only one different subject.

Even though the application accuracy of the group classifier was on average

around 6 percent worse than accuracies of the subject-specific classifiers, this

loss in classification performance should be deemed acceptable, considering

that the application of a group classifier can be employed without collecting

any calibration data from the specific user, enabling a zero-calibration plug-

and-play BCI classifier, which would be necessary for feasible real-world ap-

plications of (error-detection) passive BCIs (as discussed in 2.7.5).

• Part 6: Reducing the number of EEG channels used and omitting channels

recording eye activity (see section 3.2.6)

Reducing the number of needed electrodes is crucial for real-world appli-

cation of passive BCIs, as users want to spend minimal time setting up and

preparing hardware before they can start using the BCI application for sup-

port and adaptation in HMI. Thus, we tested whether the number of elec-

trodes of the applied setup can be reduced, without decreasing classifier per-

formance of the error-detection group classifier.

Using the calibration data from the first two recording sessions for classifier

training, we first reduced the initial 50 electrode setup down to 32 and then

to 24 electrodes. Classifier calibration performance of subject-specific classi-

fiers showed that there was a statistically significant but practically dismissi-

ble (on average 1 percent) decrease in calibration accuracy from the 50 elec-

trode setup to both, the 32 and the 24 electrode setup. There was no differ-

ence found between the 32 and the 24 channel setup. Calibration accuracy of

the group classifier model increased slightly from 50 electrodes to both, the

32 and 24 electrode setups. These results indicated that we could reduce the

number of electrodes for the group classifier calibration down to 24 channels.
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• Part 7: Session- and Subject independence - Application of the group clas-

sifier to data from new subjects from recording session 3 (see section 3.2.7)

In the last part of this study, we worked towards combining session- and subject-

independence of the error-detection group classifier by transferring it to new

data from a third recording session with new subjects. We calibrated the group

classifier on data from 24 EEG channels from the first two recording sessions

and explored its application performance in comparison to subject-specific

classifiers trained on subjects’ data from a new third recording session. To

examine the group classifier’s performance in a real-world scenario, subjects

in this new recording session experienced online adaptation and correction

through the error-detection BCI.

Results showed, that there was no difference in the estimated classification

accuracy of the subject-specific classifier models and the newly defined group

classifier. In the online error-correction scenario, application accuracy of the

group classifier was on average at 77 percent. These results showed, that

for automatic error-detection we can train a reliable session- and subject-

independent group classifier, on calibration data of multiple subjects, with

a reduced electrode number of 24 channels. Application accuracies of this

group classifier remain stable during online application, where the classifier

is used for real-time detection of error potentials and automatic error correc-

tion while the user performs their task.

After this overview of the structure of this study, in the following section (3.2)

the methods, results and discussion of the seven distinct parts of this study are pre-

sented in detail.
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3.2 Study parts 1 to 7: Methods, results and discussion

3.2.1 Part 1: Neurophysiology of a subject-specific error-detection classifier

In this first part of the study we calibrated a standard subject-specific classifier

model for single-trial error detection through feature extraction with a windowed-

means approach (Blankertz et al., 2011). We investigated the classifier’s predictive

performance on new data and visualised the underlying neurophysiology this clas-

sifier bases its decisions on.

3.2.1.1 Methods

Participants In this first experimental data recording session, data from 14 sub-

jects was recorded (8 male, 6 female, age: 21 to 30 years). For all recorded data in

this study, data recording has been approved by the ethical committee of the Tech-

nical University Berlin and informed consent was given by all subjects.

Apparatus EEG data was recorded from 50 electrode sites with a sampling rate of

1000 Hz. Vertical and horizontal electrooculogram (EOG) was additionally recorded

from 4 electrodes. We used Brain Products EasyCap electrodes, with electrode place-

ments according to the 10/20 system and the signals were amplified with a BrainAmp

DC system (Brain Products GmbH, Gilching, Germany). The reference was the na-

sion and the ground electrode at Fpz. All electrode impedances were kept below

20kΩ.

Experimental paradigm As an experimental task, a game was designed which

simulated a realistic HMI scenario, as there was a clear task, rules and a defined

set of actions for the subject to perform in interaction with a machine.

In this experimental paradigm, the Rotation-Left-Right game (RLR-game, Zan-

der et al. (2009), see figure 3.1), it is the objective of the user to rotate one of two

letters (either “R” or “L”), that is shown on top of a circle, until the letter has reached

an indicated target position. As controls for the rotation of the letter, a left key press

is used for rotating the “L” counterclockwise, while the “R” is to be rotated by a right

key press in clockwise direction. Every second, the color of the letter of the current

round is changing. The color indicates the degree of the rotation that is elicited if

the key gets pressed – if the color of the letter is red, it will be rotated by 90 degrees,

and if it is green the rotation will be by 30 degrees. In every one second long phase

only one key press is possible.



56 3 | Subject- and session independent classification of error perception

The goal of each round of the game is to position the letter at the indicated goal

position as fast as possible without rotating it further than the exact target position

(see figures 3.1 and 3.2). As the user is free to press the key in every one second

long phase or not, they can choose and develop different strategies to reach the

target position (e.g. waiting for red color of the letter to only make big rotations of

90 degrees and omitting the green color phases, or choosing to press the key every

second in the beginning of a round and in the end wait for the right color to rotate

the letter into its target position).

Fig. 3.1 Experimental paradigm - the RLR-game used in the three different data
recording sessions

Fig. 3.2 Experimental setup for playing the RLR-game

In our experimental setting there are different phases of the game: in the first

phase the user simply plays the game as detailed above. In a second phase, errors

are induced randomly at a total of 30 percent of key presses into the game: the ro-

tation in these trials is smaller than anticipated by the user, as red letters will only
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turn by 30 degrees (instead of by 90 degrees) and green letters will not turn at all (in-

stead of by 30 degrees) – see figures 3.3 and 3.4. In some parts of the three recording

sessions of this experiment in which the user plays the RLR-game, they play against

an opponent to increase motivation to perform well in the game. When competing

against an opponent, the current score of the game is displayed to the user after

each round where the point goes to the player who reached the target first.

The errors induced into the RLR-game correspond to execution or interaction

errors in the automation in an HMI context, as there is a mismatch between the

game’s response to the action of the button press and the anticipated result of the

button press formed in the user. The induced errors also elicit frustration in the

user as they prevent them from following a built up strategy for playing the RLR-

game.

Fig. 3.3 Errors in the RLR-game: errors occurring at red letter, when 90 degree
rotation is expected. Errors occurred at 30 percent of button presses.

Fig. 3.4 Errors in the RLR-game: errors occurring at green letter, when 30 degree
rotation is expected. Errors occurred at 30 percent of button presses.
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Procedure Subjects in the user training got a chance to play the game without

an opponent while learning the rules, sitting alone in a closed recording booth. In

a first recording block they played the RLR-game without any errors induced into

game-play. In a second recording block, subjects played the RLR-game again, this

time machine errors were introduced at a rate of 30 percent of trials.

In a third recording block subjects played the RLR-game against a trained op-

ponent, again without any machine errors induced. During this block, the subject’s

task remained unchanged to blocks one and two, but the introduced opponent was

sitting nearby, visible to the subject. In a following fourth recording block, the sub-

ject played against the opponent while machine errors were induced into the RLR-

game, again at a rate of 30 percent. In each of the four recording blocks, approxi-

mately 40 rounds of the RLR-game were played.

3.2.1.2 Data Analysis

We analysed the data from this recording session by firstly plotting and examining

event-related potentials (ERP) from trials with and without machine errors. We also

trained subject-specific classifier models on these two trial classes and analysed

which cortical areas contributed to these classifiers’ decisions.

All data recorded in this study included a known lag in timing of 100 ms due to

the recording setup. This lag was corrected for in all recorded datasets.

Event-related potentials We used the first two datasets for plotting grand average

ERPs. We filtered the data, applying a lowpass filter of 40 Hz and a highpass filter

of 0.5 Hz. Data was rereferenced to the common average and epochs of 1.2 sec-

onds length were extracted starting 200 ms before stimulus onset of erroneous and

correct rotations. A baseline correction was performed using the 200 ms before

stimulus onset. Grand average ERPs were generated from all trials of all subjects

for erroneous and correct rotations. These grand averages were plotted for elec-

trode sites Fz, Cz, and Pz. The respective ERP difference curves (error minus no

error) between the two trial classes were also plotted, including p-values resulting

from per sample permutation tests. A permutation test is a non-parametric test and

therefore does not make assumptions about distributions, providing a solution to

the multiple comparisons problem (Maris and Oostenveld, 2007). To compare two

conditions, condition labels are shuffled n-times and the means of obtained distri-

butions are compared to the mean of the distribution with original labels. If data

of both conditions came from the same distribution, which is the null hypothesis,

means of distributions with shuffled labels should not differ significantly from the

mean of the original distribution.
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Classifier calibration For each of the 14 subjects, we appended the first two record-

ing blocks of the respective subject into one new dataset for calibrating the classi-

fier on these data. Before appending the two datasets for each participant, we re-

moved EOG channels, reducing the number of channels from 54 to 50. We then

set a lowpass filter of 200 Hz, down-sampled the data to 100 Hz and rereferenced

to the common average. Offline classification was performed using the open tool-

box BCILAB (Kothe and Makeig, 2013) where features were extracted through the

built-in windowed-means approach (Blankertz et al., 2011). In this approach, first

a bandpass filter from 0.1 to 15 Hz was applied to the data. Epochs of 700 ms length

were extracted starting at stimulus onset and ending at 700 ms. For 7 consecutive

time windows of 50 ms length between 150 and 500 ms after stimulus onset, the

average amplitude was calculated. Classification was performed through LDA. A

(5x5)-fold cross-validation was performed to generate an estimate of the model’s

online reliability.

Classifier visualisation From every subject’s individual classifier model, a neu-

roscientifically interpretable pattern was generated for every time-window. These

patterns indicate which channel activity was relevant for the classifier’s decision to

separate the classes in the specific time-window. That way, information used by

the classifier to differentiate between classes was revealed and applied for valida-

tion of the classification approach. To that end, a normalization of the obtained

subject-specific patterns over all time-windows was performed. Then, these pat-

terns were averaged across all subjects in every time-window, yielding seven grand

average patterns.

For identifying and visualising sources relevant for classification, the LDA-based

classifiers were analyzed, by transferring the LDA filter weights from the sensor level

to ICs in the source space by using the source localisation tool (Krol, Mousavi, et al.,

2018) as described in 2.5.4. We generated weighted dipole density plots showing the

relevance of cortical areas to the windowed-means classifier in a 3-dimensional vi-

sualisation. The resulting relevant ICs serve as an indication to identify cortical

areas that are sensitive to error-perception.

3.2.1.3 Results

In this section, results of the ERP analysis, classifier calibration and application to

testdata are presented, as well as classifier visualisation from this first data record-

ing session.

Event-related potentials The grand average ERPs of correct and erroneous trials

on electrode sites Fz, Cz, and Pz are depicted in figure 3.6. The respective ERP dif-
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ference curves (error minus no error) between the two trial classes are shown in

figure 3.5. To further analyse the differences between the two trial classes, for every

sample in the ERP a permutation test with 5000 permutations was performed (we

chose this amount of permutations to obtain an accuracy better than 0.001 of the p

value, with a confidence interval of 99 percent (Ojala and Garriga, 2010)). P-values

of samples with significant permutation test outcomes are indicated as gray bars in

the background.

The results indicate that there are no significant differences between correct and

erroneous ERP curves at electrode Fz, though a small negativity around 230 ms can

be observed followed by a positivity that has its strongest peak at around 340 ms.

At electrode Cz no early negativity can be observed in the ERP difference plot,

but a strongly pronounced positivity for erroneous trials with a peak at around 310

ms is present. According to the p-values resulting from per sample permutation

tests this positivity is also highly significant between 250-420 ms.

At electrode site Pz again no early negativity can be observed in the difference

plot, but a positivity for erroneous trials with a peak at around 310 ms is present.

The p-values resulting from per sample permutation tests are significant between

300-370 ms for this positivity.

Fig. 3.5 Grand average difference curve of the ERP (error minus no error) of the
first recording session at electrode sites Fz, Cz and Pz. Gray bars behind the plot
indicate significant p-values from the permutation tests that were performed
for each sample.
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Fig. 3.6 Grand average ERPs (n=14) of the first recording session. Curves show
error and no error trials from electrode sites Fz, Cz and Pz with standard devi-
ations.
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Classifier calibration For all 14 participants the obtained classification error rates

are shown in table 3.1. The average classifier calibration error rate was 8.73 percent

(SD=2.61 percent).

Table 3.1 Classifier calibration error rates in percent with standard deviations
of subject-specific classifiers from recording session 1 (data includes eye activ-
ity)

subject calibration error SD

1 11.61 0.83

2 12.77 2.42

3 4.87 2.47

4 5.06 1.61

5 11.06 3.59

6 15.91 3.77

7 7.94 2.65

8 6.65 1.74

9 5.79 2.79

10 9.01 2.44

11 17.88 5.60

12 5.32 3.23

13 6.50 1.45

14 1.86 1.98

average 8.73 2.61

Fig. 3.7 Grand average patterns from each 50 ms long time window from 150
to 500 ms of the classifier models of all 14 subjects
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Classifier visualisation The normalized grand average patterns from each time

window from 150 to 500 ms of the classifier models of all 14 subjects are shown in

figure 3.7. The patterns show that the classifiers focus most weights on frontal ar-

eas, with most weights on the time window 300-350 ms. This weight distribution

indicates, that the classifier models base their decisions mostly on eye activity in-

stead of activity coming from cortical sources in the brain.

Further analysis with the source localisation tool showed that indeed sources

used for the classifiers’ decisions are mainly focused around the eye area. Source

localisation for all seven 50 ms time windows from 150 to 500 ms are depicted in

figures 3.8 to 3.14.

Fig. 3.8 Visualisation of the subject-specific classifier including data from eye
components in time window 150-200 ms: Weighted dipole density plots show-
ing the relevance of cortical areas to the windowed means classifier. Slices
are labelled with their corresponding MNI coordinates. Top left: sorted dipole
weight distribution.
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Fig. 3.9 Visualisation of the subject-specific classifier including data from eye
components in time window 200-250 ms.

Fig. 3.10 Visualisation of the subject-specific classifier including data from eye
components in time window 250-300 ms.
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Fig. 3.11 Visualisation of the subject-specific classifier including data from eye
components in time window 300-350 ms.

Fig. 3.12 Visualisation of the subject-specific classifier including data from eye
components in time window 350-400 ms.
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Fig. 3.13 Visualisation of the subject-specific classifier including data from eye
components in time window 400-450 ms.

Fig. 3.14 Visualisation of the subject-specific classifier including data from eye
components in time window 450-500 ms.
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Classifier application to testdata We applied the calibrated subject-specific clas-

sifier models to subject-specific testdata from the fourth recording block from this

first recording session. The resulting average prediction error was at 12.18 percent.

The obtained prediction errors for each subject are shown in table 3.2.

Table 3.2 Classifier prediction errors rates in percent from application of the
subject-specific classifiers to testdata from recording session 1 (data includes
eye activity)

subject prediction error

1 15.00

2 11.67

3 8.66

4 10.90

5 8.89

6 17.33

7 17.24

8 11.08

9 8.81

10 8.68

11 19.48

12 14.04

13 12.60

14 6.16

average 12.18
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Further analysis of subject-specific classification on EOG channels As we saw

in the above presented results that subject-specific classifier models are predom-

inantly putting relevance weights for classification on frontal electrodes at areas

around the eyes, we also calibrated subject-specific classifier models for each sub-

ject, taking only data from EOG channels into account. Here, we wanted to clarify

if recording on only the four EOG channels would result in similar classifier cali-

bration and application results, as the subject-specific classifier models that were

trained on EEG data from all 50 channels. If similar results could be achieved,

recording from 50 plus channels would become unnecessarily cumbersome for clas-

sifier application - and instead of working with a BCI one could work with an easier

and faster to handle eye-computer interface (ECI) with just the four EOG channels

for data acquisition.

For this analysis, we used the same classifier calibration- and testdata as before,

keeping only the four EOG channels in the data and omitting the other 50 EEG chan-

nels. Data was then pre-processed in the same way as described above, only it was

not rereferenced. We then calibrated subject-specific classifier models on the EOG

data (with the same approach as described above) and applied the obtained mod-

els to the respective subject’s testdata. Results showed, that the average calibration

error when training the classifier models on EOG channels was at 36.07 percent (SD

= 5.23 percent), see table 3.3. The classifier application error rates of these subject-

specific classifier models to EOG data was on average at 39.87 percent, see table

3.4.
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Table 3.3 Classifier calibration error rates in percent with standard deviations
of the subject-specific classifiers trained on EOG channels

subject calibration error SD

1 52.46 11.43

2 31.62 5.84

3 30.18 4.58

4 25.93 5.67

5 46.35 6.74

6 44.38 3.91

7 31.03 6.81

8 29.93 1.99

9 41.94 3.57

10 33.45 6.35

11 29.64 1.84

12 29.58 4.50

13 42.81 4.14

14 35.67 5.86

average 36.07 5.23

Table 3.4 Classifier prediction errors rates in percent from application of the
subject-specific classifiers trained on EOG channels to testdata

subject prediction error

1 50.33

2 29.65

3 48.74

4 34.62

5 38.73

6 42.39

7 51.41

8 27.85

9 29.83

10 42.51

11 30.34

12 42.81

13 55.34

14 33.65

average 39.87
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3.2.1.4 Discussion

ERP analysis of the EEG data recorded from subjects completing the RLR-Game

paradigm showed that classic components of ErrPs are partially present in our data.

On central and parietal sites, we find no ERN, but a positivity peaking around 310

ms is present for erroneous trials. This component is not present in trials with-

out induced errors. Hence, the setup of trials in the RLR-Game paradigm indeed

induces the intended perception of execution error, which is reflected in the ErrP

components of the grand average ERP curves.

Calibration results for subject-specific error-classifier models from EEG data

show a low error rate, which is consistent over subjects. However, further neuro-

physiological visualisation of information used by the classifier to discriminate be-

tween classes, revealed that the generated classifier models mainly base their deci-

sions on frontal electrodes and sources, that are mainly reflective of eye activity. As

recording from only four EOG channels would be a more convenient in real-world

applications, we tried to calibrate and test classifier models following the same

approach but by only taking data from EOG channels into account. The results

showed, that eye activity holds some useful information for the error-detection

classifier and classification is not fully random, but the calibration and classifier

application accuracies, which on average are only at 60 percent, are still too low for

meaningful and applicable usage for real-world classification. Aside from that, we

aim to train a brain-computer interface, which bases its classifier’s decisions not on

eye activity, but on brain activity with cortical origin. For the next step in this study

we therefore decided to compute an ICA solution of the data from this recording

session to remove activity in the EEG recordings which originates from eye compo-

nents. On these data, cleaned from eye activity, we then calibrated and tested new

subject-specific classifier models (again following the already described classifica-

tion approach).
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3.2.2 Part 2: Calibrating subject-specific error-classifiers on data cleaned from eye

activity

In this second part of the study we calibrated subject-specific error-classifier mod-

els again, but this time calibration data was cleaned from eye activity prior to classi-

fication by computing an ICA solution for each subject and removing activity of ICs

reflecting eye activity from the respective subject’s EEG data. We performed ERP

analysis, classifier calibration and classifier model visualisation again, as in study

part 1 (3.2.1.2), to find out whether the newly generated classifier models now dis-

criminated between erroneous and correct trials on the basis of cortical activity,

instead of eye activity.

3.2.2.1 Methods

Participants In this part of the study, the same data from the same subjects (see

section 3.2.1.1) as in study part 1 was used.

Data Analysis For each subject, we cleaned their data from eye activity by sub-

tracting those parts of their EEG data which were modulated by eye activity from

the rest of the EEG dataset. To identify which independent components of each

subject’s ICA solution of the data were reflective of eye activity, we used EEGLAB’s

IClabel (Pion-Tonachini et al., 2019) plugin which is an automatic EEG independent

component classifier. We regarded ICs that were classified as eyes with more than

50 percent probability as eye components. These eye components were subtracted

from the specific subject’s EEG data - resulting in a new dataset cleaned from eye ac-

tivity. The datasets were then subjected to ERP analysis, classifier calibration and

classifier visualisation again in the exact same way as in study part 1 (see section

3.2.1.2).

3.2.2.2 Results

In this section, we present the results of ERP analysis, classifier calibration and ap-

plication, as well as classifier visualisation from EEG data of the first recording ses-

sion which was cleaned from eye activity using ICA.

Event-related potentials The grand average ERPs on electrode sites Fz, Cz, and Pz

from the new datasets cleaned from eye activity are depicted in figure 3.16. The re-

spective ERP difference curves (error minus no error) between the two trial classes

are shown in figure 3.15. We again analysed the differences between the two trial

classes by performing a permutation test for every sample in the ERP with 5000
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permutations. P-values of samples with significant permutation test outcomes are

indicated as gray bars in the background.

Morphology and time course of the ERP at Fz are similar to the ERP from study

part 1, but the difference curve shows that the positivty, now peaking at 300 ms, is

more pronounced after activity of eye components was removed from the EEG data.

Permutation tests also yielded significance for this positivity between 250-400 ms.

At electrode Cz a very small, not significant early negativity with a peak at around

150 ms is present. As in study part 1, again a strongly pronounced positivity for er-

roneous trials with a peak at around 310 ms can be observed. Similar to part 1 of

this study, this positivity is again highly significant between 260-420 ms. In the dif-

ference curve also another broad significant positivity can be observed from 500 to

680 ms.

At electrode site Pz the difference curve strongly differs from the first part of the

study after activity of eye components was removed from EEG data: now a delayed

early negativity is present with a peak at around 270 ms. This negativity is signifi-

cant between 240 and 300 ms. This negativity is followed by a broad positivity that

is significant from 490 to 650 ms.

Fig. 3.15 Grand average difference curves of the ERP (error minus no error)
of data cleaned from eye activity through ICA of the first recording session at
electrode sites Fz, Cz and Pz. Gray bars behind the plot indicate significant p-
values from the permutation tests that were performed for each sample.
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Fig. 3.16 Grand average ERPs (n=14) of data cleaned from eye activity through
ICA. Curves show error and no error trials with standard deviations from elec-
trode sites Fz, Cz and Pz from the first recording session of the experiment.
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Classifier calibration For all 14 participants the obtained classification error rates

derived from the data cleaned from eye activity are shown in table 3.5. The average

classifier calibration error was 8.02 percent (SD=2.05 percent).

Table 3.5 Classifier calibration error rates in percent with standard deviations
of the subject-specific classifiers from recording session 1 (calibration data was
cleaned from eye activity)

subject calibration error SD

1 8.43 1.15

2 9.03 0.89

3 3.33 2.50

4 5.67 1.56

5 7.29 0.98

6 13.28 4.60

7 9.03 1.27

8 7.54 2.14

9 4.55 0.58

10 9.82 2.26

11 20.37 2.20

12 6.93 3.73

13 5.16 2.33

14 1.86 2.46

mean 8.02 2.05

Classifier visualisation The normalized grand average patterns from each 50 ms

time window from 150 to 500 ms of the classifier models of all 14 subjects are shown

in figure 3.17. The patterns show that the classifiers have the highest weights in the

time window 300-350 ms. Here the focus is dipolar on central and (right lateral)

occipital sites. A similar weight distribution over sites is seen in the time window

250-300 ms with lower overall weights. In the time window 150-200 ms the classi-

fiers also put strong weights on occipital sites.

Further analysis with the source localisation tool showed that indeed sources

used for the classifiers’ decisions now are mainly in a central unlateralized part of

the cortex, roughly in the area where the anterior cingulate cortex (ACC) is located.

The strongest weights are placed on the fourth time-window from 300 to 350 ms

again. Source localisation for all seven 50 ms time windows from 150 to 500 ms are

depicted in figures 3.18 to 3.24.
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Fig. 3.17 Grand average patterns from each 50 ms long time window from 150
to 500 ms of the classifier models of all 14 subjects trained on data cleaned from
eye activity

Fig. 3.18 Visualisation of the subject-specific trained on data cleaned from eye
component activation in time window 150-200 ms: Weighted dipole density
plots showing the relevance of cortical areas to the windowed means classifier.
Slices are labelled with their corresponding MNI coordinates. Top left: sorted
dipole weight distribution.
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Fig. 3.19 Visualisation of the subject-specific classifier trained on data cleaned
from eye component activation in time window 200-250 ms.

Fig. 3.20 Visualisation of the subject-specific classifier trained on data cleaned
from eye component activation in time window 250-300 ms.
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Fig. 3.21 Visualisation of the subject-specific classifier trained on data cleaned
from eye component activation in time window 300-350 ms.

Fig. 3.22 Visualisation of the subject-specific classifier trained on data cleaned
from eye component activation in time window 350-400 ms.
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Fig. 3.23 Visualisation of the subject-specific classifier trained on data cleaned
from eye component activation in time window 400-450 ms.

Fig. 3.24 Visualisation of the subject-specific classifier trained on data cleaned
from eye component activation in time window 450-500 ms.
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Classifier application to testdata We applied the subject-specific classifiers trained

on data cleaned from eye component activity to testdata from the fourth recording

block from this recording session. Here the average prediction error was at 19.41

percent (SD=9.39 percent). The obtained prediction errors for each subject are

shown in table 3.6.

Table 3.6 Classifier prediction errors rates in percent from application of
subject-specific classifiers to testdata from recording session 1 (calibration
data was cleaned from eye activity)

subject prediction error

1 12.33

2 13.56

3 18.41

4 10.90

5 43.81

6 21.78

7 22.57

8 11.08

9 29.49

10 23.95

11 25.47

12 13.68

13 15.27

14 9.48

average 19.41

3.2.2.3 Discussion

Overall the analyses in this second part of the study showed that we can train a

subject-specific detection classifier, which bases its decisions on cortical activity,

instead of mostly on eye activity.

Calibration error rates were low, although not as low as in study part 1. This loss

of classifier performance could have different reasons. It could be that eye activity

is highly different for erroneous and correct trials and that this information is not

available to the classifier anymore, when it is calibrated in data cleaned from eye

activity. Another reason might be, that the classifier trained on data without eye

activity has trouble making predictions on new (test-) data which is more noisy as

it was not cleaned from eye activity.

The application error rate of the new classifier models however is still low at an

average of 19 percent, which should be suitable for many HMI applications.
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Classifier visualisation showed, that the classifiers calibrated on the data cleaned

from eye activity now use cortical sources for classification decisions. These corti-

cal sources seem to be located in the region of the ACC, which has been reported

in several neurophysiological studies as a modulator of error perception processes

(see section 2.6.2). This validation shows that these new models are truly brain-

computer interfaces that work on cortical activity and not on another physiological

modality such as e.g. eye activity. To obtain these classifier models, an ICA solution

must be computed though which can be time consuming and therefore not suitable

for everyday BCI application in real-world contexts.

This part of the study showed that we can train a subject-specific error detection

classifier, which bases its decisions on cortical activity. For this classifier, however,

it is still required to collect subject-specific training data for classifier calibration

in every session when the classifier should be used online by the specific subject.

Therefore, in a third part of this study, we investigated, whether the here generated

subject-specific classifier models from the first recording session, can be applied to

new data of the same person in a new recording session from a different day.
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3.2.3 Part 3: Session independence - Applying subject-specific classifier models

from a first recording session to new subject-specific testdata from a second

recording session

In this third part of the study we applied subject-specific classifier models trained

in part 2 of this study to new data from the same subject recorded on a different

recording session on a different day. For each subject we compared the perfor-

mance of the classifier model on the new data to its performance on testdata from

the first recording session. The results of these analyses give conclusions to whether

the subject-specific error-detection classifier models we defined in part 2 of the

study are session-dependent or -independent.

3.2.3.1 Methods

Participants For this second recording session of the study, we recorded new data

from the same 14 subjects as in the first recording session.

Apparatus EEG data was again recorded from 50 electrode sites, now with a sam-

pling rate of 100 Hz. EOG was recorded additionally from 4 electrodes. We used

Brain Products EasyCap electrodes, with electrode placements according to the

10/20 system. The reference was the nasion and the ground electrode at Fpz. All

electrode impedances were kept below 20kΩ. Data was recorded in two blocks: The

subject’s tasks were the same as in recording blocks three and four of recording

session 1 (see 3.2.1.1). Hence, in the first recording block of this second record-

ing session, subjects played the RLR-game against a trained opponent without any

machine errors induced. In the second block, the subject again played against the

opponent while machine errors were induced into the RLR-game for around 30 per-

cent of trials. In each of the two recording blocks, approximately 40 rounds were

played.

Data Analysis Subject-specific classifier models trained in part two of this study -

trained on data cleaned from eye component activity - were applied to the second

data block recorded in this second recording session to obtain classifier prediction

error rates as an estimate of the classifiers’ online performance.

The testdata were again pre-processed by first removing EOG channels. We then

set a lowpass filter of 200 Hz and rereferenced to the common average.

3.2.3.2 Results

In this section, we present the results of application of the subject-specific classi-

fier models based on training data from the first recording session, to new subject-
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specific data from a new second recording session.

The average classifier application error rate when subject-specific classifiers from

the first recording session are applied to new data from the second recording ses-

sion was at 20.43 percent (SD = 11.01 percent). The specific subject’s classifier ap-

plication error rates in percent are shown in table 3.7.

Table 3.7 Classifier prediction error rates in percent from application of the
subject-specific classifiers from the first recording session to testdata from
recording session 2

subject prediction error

1 17.95

2 16.52

3 13.23

4 14.95

5 32.07

6 25.11

7 16.02

8 7.78

9 41.98

10 33.98

11 32.40

12 16.22

13 14.45

14 3.37

average 20.43

Subject-specific classifier prediction error rates from application to testdata from

recording sessions 1 and 2 were subjected to a paired t-test. The test showed, that

prediction error rates were not significantly different on testdata from the first record-

ing session (M=19.41, SD=9.39) than on testdata from the second recording session

(M=20.43, SD=11.01), t(13)=0.55, p = 0.591.

Discussion

In this part of the study, we investigated, if the subject-specific error-detection clas-

sifier models could be transferred from one recording session to another. We used

the subject-specific classifier models trained on data from recording session 1 and

applied them to testdata from recording session 1 and to data from a new recording

session 2. In the new recording session data was recorded from the same subjects

who performed the same task only on a different day. The results showed no signif-
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icant difference between the application of subject-specific classifiers to testdata

from the same or a different recording session. The average classifier application

error rate in testdata from both recording sessions was about 20 percent. We there-

fore conclude, that the subject-specific error-detection classifier can be transferred

from one recording session to another with similar low prediction error rates.

This session-independence can be very beneficial for real-world use of BCIs, as

it means that the user, here the specific subject, only needs to calibrate the error-

detection classifier in an initial recording session and can then in other sessions

omit the classifier calibration phase to start using the BCI for support right away.

This would save a lot of the time usually needed for repeated classifier calibration

in every session, which is usually a bottleneck when it comes to real-world applica-

bility of BCI systems.

In the next part of our investigation, we will examine whether a session indepen-

dent classifier can be trained on data from multiple subjects as well. We will train

the error-detection classifier not only on data of one specific subject from recording

session 1. Instead, we will train a group classifier on all calibration data of recording

session 1 and then apply it to the subject-specific testdata of recording session 2. We

will further investigate whether this group classifier is working on the same cortical

sources for classification as the subject-specific classifiers we examined before.
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3.2.4 Part 4: Session independence - Training a group classifier on calibration data

from the first recording session and applying it to new subject-specific test-

data from a second recording session

In this part of the study we examined, if a session independent classifier can be

trained on data from not only one, but multiple subjects. We tested if this group

classifier can be applied to testdata from a specific subject with prediction error

rates, that are comparable to a subject-specifically trained classifier model. To this

end, we trained the group classifier on all calibration data of recording session 1 and

then applied it to the subject-specific testdata of recording session 2. We further in-

vestigated if the group classifier works on similar cortical sources for classification

as the subject-specific classifiers we examined before.

3.2.4.1 Data Analysis

We used the calibration data of recording session 1 (block 1 and 2) from all 14 sub-

jects to train the group classifier. The pre-processing was the same as in part 2 of

this study and we used all 50 EEG channels of the data. The classification approach

remained the same as in the parts before with the same parameters.

We then applied this obtained error-detection group classifier model to the subject-

specific testdata (block 2) from the second recording session, yielding prediction er-

ror rates for every subject. These prediction error rates were subjected to a paired

t-test, comparing them to prediction errors obtained from applying the subject-

specific classifier models trained on data from recording session 1 to the same test-

data from recording session 2 (see study part 3 and table 3.7).

Neurophysiology of the group classifier was analysed as well - we regarded pat-

terns from each 50 ms time window from 150 to 500 ms of the group classifier

model. We also examined the weighted dipole density plots for the group classi-

fier showing the relevance of cortical areas to the windowed means classifier.

3.2.4.2 Results

Group classifier calibration The calibration error of the group classifier was at

18.06 percent (SD=3.46 percent).

Group classifier application The average prediction error for application of the

group classifier to subject-specific testdata from recording session 2 was at 22.23

percent (SD=6.66 percent). The subject-specific prediction error rates are shown

in table 3.8. Results of the paired t-test showed that prediction error rates of the

group classifier applied to testdata from recording session 2 (M=22.23, SD=6.66)
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were not significantly different from prediction error rates obtained from subject-

specific classifier models (M=20.43, SD=11.01), t(13)=1.22, p = 0.245.

Table 3.8 Classifier prediction error rates in percent from application of the
group classifier from the first recording session to subject-specific testdata
from recording session 2

subject prediction error

1 18.97

2 15.04

3 17.46

4 20.10

5 31.52

6 29.22

7 20.39

8 17.22

9 34.57

10 25.10

11 29.05

12 20.00

13 20.81

14 11.80

average 22.23

Fig. 3.25 Patterns from each 50 ms long time window from 150 to 500 ms of the
group classifier model trained on data cleaned from eye activity.
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Group classifier visualisation The patterns from each 50 ms time window from

150 to 500 ms of the group classifier model are shown in figure 3.25. Similar to the

grand average pattern of the subject-specific classifiers, the group classifier model

shows strong weights on central and (right lateral) occipital electrode sites in the

time window 300 to 350 ms, and additionally in the time window from 250 to 300

ms. A topographically similar pattern is seen in the first time window from 150 to

200 ms, with strong occipital weights but less pronounced weights on central sites.

Further analysis of the group classifier model with the source localisation tool

shows that the group classifier focuses on similar cortical areas close to the ACC,

with the highest weights in time window four from 300 to 350 ms again. Weighted

dipole density plots showing the relevance of cortical areas to the group classifier

are shown in figures 3.26 to 3.32.

Fig. 3.26 Visualisation of the group classifier trained on data cleaned from eye
component activation in time window 150-200 ms: Weighted dipole density
plots showing the relevance of cortical areas to the windowed means classifier.
Slices are labelled with their corresponding MNI coordinates. Top left: sorted
dipole weight distribution.
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Fig. 3.27 Visualisation of the group classifier trained on data cleaned from eye
component activation in time window 200-250 ms.

Fig. 3.28 Visualisation of the group classifier in time window 250-300 ms.
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Fig. 3.29 Visualisation of the group classifier in time window 300-350 ms.

Fig. 3.30 Visualisation of the group classifier in time window 350-400 ms.
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Fig. 3.31 Visualisation of the group classifier in time window 400-450 ms.

Fig. 3.32 Visualisation of the group classifier in time window 450-500 ms.



90 3 | Subject- and session independent classification of error perception

3.2.4.3 Discussion

In this part of the study, we trained a group classifier on all calibration data from

the first recording session. We applied this classifier to new subject-specific test-

data from a different recording session with the same subjects, then we compared

its performance to that of the subject-specific classifier models. Results showed

no significant difference between the prediction error rates of the group classifier

and subject-specific classifiers. We also compared classifier model visualisations

between the group and subject-specific classifiers and found strong similarities in

classifier patterns, as well an in the weighted dipole density plots showing the rele-

vance of cortical areas to the windowed means classifier. In both cases, the classifier

weights are strongest in the time window from 300 to 350 ms, which is where the

error positivity (Pe) occurs. The cortical sources underlying the classifier’s decision

in this time window are around the area of the ACC which is known to be involved

in error-processing.

These results suggest, that instead of training a classifier model, which is based

on data from only a single subject, we can alternatively train one classifier model

on data from a group of subjects and yield similar prediction error rates as with

subject-specifically trained models. Across subjects, this session-independent group

classifier seems to work on the same discriminative features as the subject-specifically

trained classifier models. This could indicate, that neural responses to error per-

ception are highly similar across subjects.

The here trained group classifier however is partially informed about data from

the specific subject whose new testdata we applied it to, as the group classifier is

trained on calibration data from all subjects - including the test subject.

Going one step further towards investigating not only the here demonstrated

session-independence of the error-detection classifier, but also subject-independence,

in the next part of the study, we will apply subject-specific classifier models to test-

data from other subjects. We will further train group classifiers, excluding a specific

subject’s calibration data from the group classifier calibration, and then apply this

leave-one-subject-out group classifier to the testdata of the subject, who was left

out in the calibration dataset.
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3.2.5 Part 5: Subject-independence - Applying subject-specific and group classi-

fier models to subject-specific testdata from a different subject

In this part of the study we investigate subject-independence as a feature of the

subject-specific and the group classifiers we have trained. We apply both classifier

types to data from other subjects, whose data was not used for training the classi-

fier’s model in the calibration phase.

3.2.5.1 Methods

We firstly applied the subject-specific classifiers trained on calibration data from

recording session 1 to testdata of all other subjects of recording session 1. This

yields 14 subject-specific classifiers x 13 test subjects = 182 prediction error rates.

Further, we calibrated 14 new group classifiers on the calibration data from record-

ing session 1. Using the leave-one-subject-out scheme, for each of the 14 subjects,

their subject-specific calibration data was left out of the calibration and the model

was trained on the calibration data of the remaining 13 subjects. The obtained

group classifiers were then applied to the testdata of the one specific subject, whose

calibration data was not part of the group classifier’s training data.

3.2.5.2 Results

Application of subject-specific classifiers to testdata from other subjects The

average application error rate of application of the subject-specific classifiers trained

on calibration data from recording session 1 to testdata of all other subjects of record-

ing session 1 was at 33.14 percent (SD=5.34 percent). All subject-specific 183 pre-

diction error rates for the specific subjects are shown in table 3.10. We subjected

the average application error rates per subject-specific classifier model to a paired

t-test, comparing them to the application performance of the subject-specific clas-

sifier performance on the same subject’s testdata from recording session 1 (see part

2 table 3.6). Results showed, that prediction error rates for subject-specific clas-

sifier application to other subjects’ testdata (M=33.14 percent, SD=5.34 percent)

was significantly worse than prediction error rates of the subject-specific classifier

performance on the same subject’s testdata (M=19.41 percent, SD=9.39 percent),

t(13)=-4.76, p < 0.001.

Leave-one-subject-out group classifier calibration and application The average

calibration error rate of the leave-one-subject-out group classifier models was at

17.97 percent (SD=3.74 percent). The calibration error rates for each subject are

shown in table 3.9.



Table 3.10 Classifier prediction error rates in percent from application of the subject-specific classifiers from the first recording session to all
other subjects’ testdata from recording session 1

classifier
subject

1 2 3 4 5 6 7 8 9 10 11 12 13 14

subject prediction error rates
1 / 52.67 25.00 27.67 32.67 32.33 37.67 34.00 34.00 30.00 37.33 30.67 27.00 34.00
2 30.28 / 18.30 24.92 29.34 29.97 38.49 28.08 26.81 25.24 28.71 27.13 30.60 27.44
3 33.21 41.88 / 21.30 42.60 23.10 30.69 32.49 36.82 33.21 44.77 20.22 27.08 33.94
4 48.72 39.74 25.64 / 24.36 39.74 30.77 26.28 23.08 25.00 42.95 23.08 25.64 17.95
5 48.25 53.02 50.16 23.81 / 26.03 32.38 48.57 37.46 40.95 56.19 24.44 26.35 36.19
6 43.79 42.86 38.41 40.75 42.62 / 44.50 38.41 40.52 37.94 48.24 39.81 37.70 34.19
7 29.78 34.80 29.78 25.71 33.23 26.96 / 27.59 35.74 30.41 32.92 26.02 31.03 28.21
8 33.54 48.42 28.80 18.35 28.16 31.01 31.96 / 28.48 30.06 31.01 28.80 29.43 29.11
9 51.19 43.73 33.22 21.02 51.19 21.69 31.53 48.14 / 48.47 49.49 26.10 25.08 33.56
10 37.72 39.22 25.15 25.15 33.83 28.74 33.23 31.44 24.25 / 29.94 22.46 26.05 20.36
11 44.57 44.57 36.33 30.34 31.46 44.57 40.07 35.21 37.45 27.34 / 24.34 29.59 30.34
12 45.61 50.88 36.49 23.16 38.95 28.42 30.88 37.54 43.16 38.25 46.67 / 22.46 34.04
13 37.40 45.42 23.66 24.81 46.95 32.82 23.28 37.02 39.69 33.21 43.89 23.28 / 28.63
14 40.28 30.33 25.59 18.48 29.38 41.71 20.85 25.12 33.18 27.96 17.06 19.91 30.33 /
average 40.34 43.66 30.50 25.04 35.75 31.32 32.79 34.61 33.90 32.93 39.17 25.87 28.33 29.84
grand
average

33.14
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Table 3.9 Classifier calibration error rates in percent with standard deviations
of the leave-one-subject-out group classifiers from recording session 1

subject calibration error SD

1 16.75 4.32

2 16.86 4.86

3 18.18 4.35

4 17.34 4.09

5 18.47 4.77

6 16.19 3.84

7 18.25 4.36

8 18.45 3.92

9 18.73 3.91

10 18.56 3.43

11 17.05 3.92

12 18.62 2.20

13 19.28 2.23

14 18.84 2.17

average 17.97 3.74

We finally applied the leave-one-subject-out group classifiers to test data from

recording session 1 of the subject left out in the respective classifier calibration and

yielded an average prediction error rate of 26.92 percent (SD=5.72 percent). The

specific subjects’ prediction error rates are shown in table 3.11. Prediction error

rates of these leave-one-subject-out group classifiers were subjected to a paired t-

test, comparing them to the prediction performance of the subject-specific classi-

fier on the same subject’s testdata from recording session 1 (see part 2 table 3.6). Re-

sults showed, that the prediction error rates for leave-one-subject-out group clas-

sifiers (M=26.92 percent, SD=5.72 percent) was significantly worse than prediction

error rates of the subject-specific classifier performance on the same subject’s test-

data (M=19.41 percent, SD=9.39 percent), t(13)=-3.60, p = 0.003.

We also subjected the average application error rates per subject-specific classi-

fier applied to other subjects’ testdata to an independent t-test, comparing it to the

prediction error rates for leave-one-subject-out group classifiers. Results showed,

that the prediction error rates for leave-one-subject-out group classifiers (M=26.92

percent, SD=5.72 percent) were significantly better than prediction error rates of

the subject-specific classifier performance on other subjects’ testdata (M=33.14

percent, SD=5.34 percent), t(13)=-2.98 , p = 0.006.
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Table 3.11 Classifier prediction error rates in percent of applying the leave-one-
subject-out group classifiers from recording session 1 to subject-specific test-
data of recording session 1

subject prediction error

1 25.33

2 22.08

3 23.10

4 31.41

5 37.14

6 35.13

7 22.57

8 23.42

9 29.15

10 23.05

11 29.96

12 31.93

13 25.95

14 16.59

average 26.92

3.2.5.3 Discussion

In this part of the study we investigated the classifier models regarding subject-

independence. We applied subject-specific and group classifier models to data

from other subjects, whose data was not used for training the classifier’s model

in the calibration phase. The analyses showed, that both, the subject-specific and

group classifier models perform worse on new data from a different subject, than

the subject-specific classifier model, calibrated on data from the same subject. Here

on average the subject-specific classifier models performed 13.73 percent worse.

Leave-one-subject-out group classifiers models performed on average 7.51 percent

worse. This decrease in the classifiers’ prediction performance however, should be

considered from the aspect, that in practice, both the leave-one-subject-out group

classifiers and the subject-specific classifiers that are applied to data from new sub-

jects, would not require any calibration time in any recording session from the end-

user of the BCI system, as the error-detection classifier model is trained beforehand

on data samples from other individuals. There is however also a significant differ-

ence between the predictive performance of the leave-one-subject-out group clas-

sifiers and the subject-specific classifiers. The prediction error rates on data from a

new subject are on average 6.22 percent better when leave-one-subject-out group
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classifiers are applied.

We conclude that we can train a subject-independent classifier for error-detection,

on the basis of collected calibration data from other specific subjects. Here we

showed, that training a group classifier on data from multiple subjects yields better

predictive classifier performance when data from a new subject is given to the clas-

sifier, than when the classifier model is calibrated on data from only one person.

The classifier application performance of the subject-independent group classifier

decreases though, in comparison to a subject-specific classifier model calibrated

on data from the same subject that the model later is applied to. This performance

decrease of around 7.5 percent however, might still be a valuable and preferable

choice in real-world BCI applications, as the proposed group classifier fully super-

sedes the calibration phase.

In this part of the study we saw that subject transferability of the error-detection

classifier is possible and a subject-independent group classifier can be trained yield-

ing acceptable classifier application performance. In the next two parts of the study

we investigated the combination of session- and subject-independence of the error-

detection group classifier by transferring it to new data from a third recording ses-

sion with new subjects.
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3.2.6 Part 6: Reducing the number of EEG channels used and omitting channels

recording eye activity

In this part of the study we tested, if the number of electrodes of our setup can be

reduced, without decreasing classifier performance of the error-detection group

classifier. Reducing the number of needed electrodes is crucial for real-world appli-

cation of the error-detection classifier, as end-users want to spend zero or minimal

time setting up and preparing the hardware for neurophysiological measurement

through e.g. EEG before they can start using a BCI application to support them in

their tasks.

Methods

We decreased the number of our initial 50 EEG electrodes setup in two steps.

First, we reduced the electrodes down to 32 by symmetrically removing elec-

trodes that were positioned between two other electrodes, most likely recording

mainly redundant EEG activity.

In a second step, we additionally removed frontal electrodes, which mostly record

eye activity. This resulted in a final setup of 24 electrodes. We removed these elec-

trodes, as the group classifier is trained on data which was cleaned from eye activity

and hence the classifier is not focusing on eye activity for classification of perceived

errors.

The three resulting electrode setups are depicted in figure 3.33.

Data Analysis

For each of the three electrode setups, with 50, 32 and 24 electrodes, we trained a

subject-specific classifier for all 14 subjects and one group classifier. The calibra-

tion data consisted of all datasets from the first two data recording sessions - data

block 1, 2, 3 and 4 for recording session 1 and data block 1 and 2 from recording ses-

sion 2. All data was cleaned from eye activity by subtracting eye component data

identified through ICA. The calibration approach stayed the same as in the other

parts of this study (see section 3.2.1.2). We plotted normalized grand average pat-

terns for the subject-specific classifier models and patterns for the group classifier

model for each electrode setup. Finally, we subjected subject-specific classifier cali-

bration error rates to a one-way repeated measures ANOVA with a significance level

of 0.05, to investigate the effect of the three electrode setups regarding classifier ac-

curacies.



3 | Subject- and session independent classification of error perception 97

Results

3.2.6.1 Electrode reduction in the recording setup

An overview of the original electrode setup with 50 channels is shown in figure 3.33.

The reduced electrode setups with 32 (after symmetrical reduction of the whole

setup) and 24 electrodes (after removing eight additional frontal electrodes) are also

depicted.
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Fig. 3.33 The three different
electrode setups: all 50 elec-
trodes from recording sessions
1 and 2, the symmetrically re-
duced electrode setup with 32
electrodes and the 24 electrode
setup with the final omission of
frontal electrodes.
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Subject-specific classifier calibration with different electrode setups Subject-

specific classifier calibration error rates are shown in table 3.12 for all three elec-

trode setups. The respective normalized grand average patterns are depicted in

figures 3.34 to 3.36. On average, calibration error rates for the subject-specific clas-

sifiers calibrated on 50 electrodes was at 7.27 percent with an average standard de-

viation of 1.39 percent. For the 32 electrode setup the average error rate was at 8.34

percent (average SD was 1.45 percent) and for the 24 electrode setup the average

error rate was at 8.37 percent (average SD was 1.24 percent).

Fig. 3.34 Grand average patterns from each 50 ms long time window from 150
to 500 ms of the classifier models of all 14 subjects trained on data cleaned from
eye activity. The calibration data was all data from recording session 1 and 2
and the classifier was trained on the 50 electrode setup.
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Fig. 3.35 Grand average patterns from each 50 ms long time window from 150
to 500 ms of the classifier models of all 14 subjects trained on data cleaned from
eye activity. The calibration data was all data from recording session 1 and 2
and the classifier was trained on the 32 electrode setup.

Fig. 3.36 Grand average patterns from each 50 ms long time window from 150
to 500 ms of the classifier models of all 14 subjects trained on data cleaned from
eye activity. The calibration data was all data from recording session 1 and 2
and the classifier was trained on the 24 electrode setup.
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The repeated measures ANOVA performed on the subject-specific classifier cal-

ibration error rates within the three different electrode setups showed, that the elec-

trode setups had a significant effect on the resulting calibration error rates, F(2,

26) = 21.51, p<.001. Post-hoc paired t-tests with bonferroni corrected alpha lev-

els (alpha = 0.017) were conducted between the data of the three electrode setups.

These showed that calibration error rates from the 32 electrode setup were signif-

icantly higher than for the 50 electrode setup (t(13)=5.532, p<0.001). Calibration

error rates from the 24 electrode setup were also significantly higher than for the 50

electrode setup (t(13)=4.621, p<0.001). There was no significant difference found

between calibration error rates of the electrode setup with 32 and the one with 24

electrodes, t(13)=0.202, p=0.843.

Table 3.12 Subject-specific classifier calibration error rates in percent and stan-
dard deviations of training with a 50, 32 and a 24 electrode setup on all data
from recording sessions 1 and 2

50 electrode setup 32 electrode setup 24 electrode setup

subject calib. error SD calib. error SD calib. error SD

1 7.75 1.55 9.16 1.21 8.56 0.96

2 7.96 1.53 9.39 2.33 10.11 1.61

3 5.18 1.36 6.94 0.84 7.29 1.11

4 5.41 1.09 5.75 0.93 5.83 0.70

5 5.18 0.80 5.58 1.57 5.50 1.42

6 12.60 1.86 14.77 1.88 15.33 1.60

7 9.68 1.31 10.10 1.43 10.65 1.14

8 5.87 1.44 6.41 0.63 6.33 1.10

9 3.86 0.73 4.18 1.32 4.02 0.91

10 6.30 0.52 8.74 1.86 8.12 0.25

11 15.39 2.16 16.71 1.31 16.33 1.53

12 9.18 2.39 9.93 2.96 9.75 2.92

13 5.40 1.23 6.73 0.91 7.35 1.39

14 2.09 1.46 2.43 1.14 2.00 0.79

average 7.27 1.39 8.34 1.45 8.37 1.24
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Group classifier calibration with different electrode setups Classifier calibration

accuracies for the group classifiers trained on the three different electrode setups

are shown in table 3.13. The respective patterns of these group classifiers are de-

picted in figures 3.37 to 3.39.

Table 3.13 Group classifier calibration error rates in percent and standard devi-
ations of training with a 50, 32 and a 24 electrode setup on all data from record-
ing sessions 1 and 2

50 electrode setup 32 electrode setup 24 electrode setup

calibration error SD calibration error SD calibration error SD

17,36 2,76 17,15 2,55 17,28 2,90

Fig. 3.37 Grand average patterns from each 50 ms long time window from 150
to 500 ms of the group classifier trained on data cleaned from eye activity. The
calibration data was all data from recording session 1 and 2 and the classifier
was trained on the 50 electrode setup.
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Fig. 3.38 Grand average patterns from each 50 ms long time window from 150
to 500 ms of the group classifier trained on data cleaned from eye activity. The
calibration data was all data from recording session 1 and 2 and the classifier
was trained on the 32 electrode setup.

Fig. 3.39 Grand average patterns from each 50 ms long time window from 150
to 500 ms of the group classifier trained on data cleaned from eye activity. The
calibration data was all data from recording session 1 and 2 and the classifier
was trained on the 24 electrode setup.
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3.2.6.2 Discussion

In this part of the study, we decreased the number of the initial 50 EEG electrode

setup. We first symmetrically removed electrodes from positions between other

electrodes, recording mostly redundant EEG activity. We then removed the remain-

ing frontal electrodes as the error-detection classifier we developed so far in parts 1

to 5 of this study, is not calibrated on eye related activity as we removed eye activity

from the calibration data through ICA.

Using all data recorded in the first and second data recording session of this

study, we first calibrated subject-specific classifier models. Statistical testing re-

vealed, that the number of electrodes in the setup has an effect on the yielded cal-

ibration error rates of these subject-specific classifiers. Both, the setup with 32

and the one with 24 electrodes had significantly higher calibration error rates, than

subject-specific classifiers trained on all 50 electrodes. Though this difference is

statistically significant, it should be noted, that the average difference between cal-

ibration errors of the 50 electrode setup (M=7.27 percent) and both, the 32 elec-

trode setup (M=8.34 percent) and 24 electrode setup (M=8.37 percent) is only a

little more than 1 percent, which in practice will most likely not have a noticeable

effect on classifier application accuracy. Calibration error rates are not statistically

different between the 32 and the 24 electrode setup. The normalized grand aver-

age patterns of subject-specific classifier models have almost identical time courses

and topographies regarding the classifier weights in all three electrode setups.

When training the group classifier on all data recorded in the first and second

data recording session, classifier error rates improve minimally from the 50 (17.36

percent) electrode setup to the 32 (17.15 percent) and the 24 (17.28 percent) elec-

trode setup, with the lowest calibration error rate in the 32 electrode setup. Again,

patterns of the group classifier models have almost identical time courses and to-

pographies regarding the classifier weights in all three electrode setups.

As the calibration accuracy for the subject-specific error-detection classifiers is

decreasing with reduced electrode setups, it could be concluded that a reduction

of electrodes is inadvisable. However, this decrease is very small (little more than 1

percent on average) which will most likely not have serious effects for classifier ap-

plication. The slight decrease in calibration accuracy must also be weighed against

the advantage which a reduction of electrode numbers in the setup can hold for

real-world applicability of BCIs: Application of hardware, the electrode cap in par-

ticular, is still one of the big bottlenecks for BCI technology preventing its feasible

usage in everyday contexts. A potential user will be reluctant to use a system which

needs a long preparation time each time they want to use it for support in their

everyday tasks. In general, to assure good data quality, each electrode of the EEG



3 | Subject- and session independent classification of error perception 105

headset needs to be examined (and corrected) for good contact to the user’s scalp

before recording EEG data. In the case of gel based EEG headsets, a conductive gel

must be applied to each electrode. Handling each electrode adds up to long prepa-

ration times, unsuitable for real-world contexts. Hence, a reduction of electrodes

in the setup is inevitable for BCI systems that should be used in the real world. In

this study, we aim to define such an error-detection classifier which can be applied

by users in real-world scenarios one day. Thus, and as the difference between the

32 and the 24 electrode setup is not significant for the subject-specific classifiers

and for the group classifier, classification accuracies improve from the 50 electrode

setup to both other reduced electrode setups, we decided to continue our analysis

in the next part of this study with the 24 electrode setup we introduced here.

In the next part of the study, we investigated whether the defined group classifier

trained on data from 24 EEG channels is both, session- and subject-independent.

We will explore the group classifier’s application performance in comparison to

subject-specific classifiers trained on subjects’ data from a new third recording ses-

sion. To examine the group classifier’s performance in a real-world scenario, sub-

jects in a new recording session, will experience online adaptation and correction

through the error-detection BCI model while playing the RLR-game.
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3.2.7 Part 7: Session- and Subject independence - Application of the group clas-

sifier to data from new subjects from a third recording session

In this last part of the study, we investigated whether the group classifier we defined

- based on all data from the first two recording sessions and calibrated on 24 elec-

trodes - is both, subject- and session independent. To this end, we recorded data

from new subjects in a third recording session. Then we compared subject-specific

classifier performance based on the subject-specific new calibration data to the

application performance of the already defined group classifier. Finally, subjects

experienced online adaptation of the RLR-game through an error-detection group

classifier BCI and we evaluated the group classifier’s performance in this real-world

online application scenario.

3.2.7.1 Methods

Participants In this third experimental data recording session, data from 16 sub-

jects was recorded (age: 19 to 40 years).

Apparatus EEG data was recorded from 32 active Ag/Cl-electrodes with electrode

sites according to the extended 10-20 system and with a biosignal amplifier (Brain-

products GmbH, Gilching, Germany). The sampling rate of the recordings was 100

Hz. EMG and EOG were recorded additionally from 4 electrodes. The reference was

the nasion (and the ground electrode at Fpz). All electrode impedances were kept

below 20kΩ.

Experimental paradigm The experimental paradigm remained the same as in

recording sessions 1 and 2. Subjects played the RLR-Game, against an opponent.

We recorded data in four blocks: In block 1, subjects played the game, without any

errors occurring. In the second block, errors were introduced in 30 percent of trials.

In a third block, subjects played the game again, with errors induced, but this time

error correction through the error-detection BCI was simulated in real-time, while

subjects played the game. In a fourth block, errors were detected and automatically

corrected online through the use of a group classifier BCI.

3.2.7.2 Data Analysis

Recording blocks 1 and 2 from the third data recording session served as calibration

data for subject-specific classifiers from subjects of this new recording session. We

first cleaned the data from eye activity. Again, we computed an ICA for each subject

and used the IClabel (Pion-Tonachini et al., 2019) plugin to automatically classify
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EEG independent components. Independent components identified as eye activity

with at least 50 percent certainty, were subtracted from the respective subject’s data.

We then plotted grand average ERPs of these datasets. First, we filtered the data

by applying a lowpass filter of 40 Hz and a highpass filter of 0.5 Hz. Data was rerefer-

enced to the common average using the fullRankAveRef (Miyakoshi, 2017) EEGLAB

plugin. Epochs of 1.2 seconds length were extracted starting 200 ms before erro-

neous and correct rotations. A baseline correction was performed using the 200

ms before stimulus onset. Grand average ERPs were generated from all trials of all

participants for erroneous and correct rotations. The resulting grand averages and

difference curves were plotted for electrode sites Fz, Cz, and Pz as in part 1 and 2 of

this study (see section 3.2.1.2).

Then we calibrated subject-specific classifier models with the same 24 electrode

setup as the group classifier we defined in part 6 of this study on datasets 1 and 2

from each subject of this third session. Here we followed the same classifier cali-

bration approach as described in part 1 of this study (see section 3.2.1.2). We plot-

ted normalized grand average patterns of the subject-specific classifiers. Further,

we again analysed weighted dipole density plots showing the relevance of cortical

areas to the subject-specific windowed means classifiers. We then applied the ob-

tained subject-specific classifier models, as well as the group classifier trained on

24 electrodes, to data of recording block 3 of the respective subject, yielding ap-

plication error rates for both classifier types per subject. Finally, we analysed data

from recording block 4, in which the game paradigm was adapted online through

an online group classifier while subjects played the game.

3.2.7.3 Results

In this section, we present the results of the ERP analysis, classifier calibration and

classifier visualisation from the third data recording session. Results from subject-

specific classifier calibration will be presented, followed by a comparison of appli-

cation performance between these subject-specific classifiers and the afore defined

group classifier. Finally, results from online performance of the group classifier is

reported.

Event-related potentials The grand average ERPs on electrode sites Fz, Cz, and

Pz from calibration data of the third recording session, cleaned from eye activity,

are depicted in figure 3.40. The respective ERP difference curves (error minus no

error) between the two trial classes are shown in figure 3.41. We again analysed the

differences between the two trial classes by performing a permutation test for every

sample in the ERP with 5000 permutations. P-values of samples with significant
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permutation test outcomes are indicated as gray bars in the background.

The time-course and difference curves of the ERPs at all three electrode sites are

very similar to those of the calibration data from the first recordings session, which

was also cleaned from eye activity.

The difference curve at Fz is similar to the ERP from study part 2, with a pos-

itivity that is a little more narrow and significant from 260 to 360 ms, with a peak

at around 320 ms. Again a small, non-significant early negativity is present, peak-

ing around 120 ms. Moreover, at Fz another late and broad negative component is

present where permutations tests showed the difference to be significant for many

samples from 560 to 700 ms.

At electrode Cz no early negativity present. As in study part 2, again a strongly

pronounced positivity for erroneous trials with a peak at around 320 ms can be ob-

served. Similar to parts 1 and 2 of this study, this positivity is again highly signifi-

cant between 270-440 ms. In the difference curve also another late broad significant

positivity can be observed from 490 to 560 ms.

At electrode Pz the difference curve again, as in part 2, shows a delayed early

negativity with a peak at around 270 ms. This negativity is significant between 260

and 270 ms. This negativity is again followed by a broad positivity that is significant

from 370 to 760 ms.
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Subject-specific classifier calibration For all 16 participants of recording session

3, we calibrated subject-specific classifier models on the same 24 electrodes as in

the group classifier setup. The obtained classification error rates derived from the

data cleaned from eye activity are shown in table 3.14. The average classifier cali-

bration error was 9.68 percent (SD=3.61 percent).

Table 3.14 Classifier calibration error rates in percent with standard deviations
of the subject-specific classifiers from recording session 3 (calibration data was
cleaned from eye activity)

subject calibration error SD

1 5.58 3.03

2 10.77 5.03

3 5.81 3.31

4 8.49 5.78

5 13.90 3.03

6 4.47 3.37

7 10.91 4.07

8 15.51 4.91

9 5.36 2.82

10 8.22 3.22

11 10.61 6.68

12 9.06 1.07

13 14.21 2.61

14 7.55 4.81

15 6.31 1.39

16 18.07 2.62

average 9.68 3.61
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Fig. 3.40 Grand average ERPs (n=16) from data cleaned from eye activity
through ICA. Curves show error and no error trials with standard deviations
from electrode sites Fz, Cz and Pz from the third recording session of the ex-
periment.
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Subject-specific classifier visualisation The normalized grand average patterns

from each 50 ms time window from 150 to 500 ms of the subject-specific classifier

models of all 16 subjects are shown in figure 3.42. The patterns show that these

classifiers have the highest weights in the time window 300-350 ms, where the fo-

cus is dipolar on central and occipital sites. This is similar to the subject-specific

classifier patterns from recording session 1, though there the occipital sites were

more right lateral. The classifier weights in this recording session are also more

and mainly focused on the time-window 300-350 ms, while in recording session 1

this was also the time-window with the most weights, but other time-windows re-

ceived significant classifier weights as well. The weighted dipole density plots of

the subject-specific classifiers from the third recording session are shown in figures

3.43 to 3.49.

Fig. 3.41 Grand average difference curves of the ERP (error minus no error) of
data cleaned from eye activity through ICA of the third recording session at
electrode sites Fz, Cz and Pz. Gray bars behind the plot indicate significant p-
values from the permutation tests that were performed for each sample.
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Fig. 3.42 Grand average patterns from each 50 ms long time window from 150
to 500 ms of the subject-specific classifier models of all 16 subjects from the
third recording session trained on data cleaned from eye activity.

Fig. 3.43 Visualisation of the subject-specific classifiers from recording session
3 trained on data cleaned from eye component activation in time window 150-
200 ms: Weighted dipole density plots showing the relevance of cortical areas
to the windowed means classifier. Slices are labelled with their corresponding
MNI coordinates. Top left: sorted dipole weight distribution.
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Fig. 3.44 Visualisation of the subject-specific classifiers from recording session
3 trained on data cleaned from eye component activation in time window 200-
250 ms.

Fig. 3.45 Visualisation of the subject-specific classifiers from recording session
3 in time window 250-300 ms.
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Fig. 3.46 Visualisation of the subject-specific classifiers from recording session
3 in time window 300-350 ms.

Fig. 3.47 Visualisation of the subject-specific classifiers from recording session
3 in time window 350-400 ms.
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Fig. 3.48 Visualisation of the subject-specific classifiers from recording session
3 in time window 400-450 ms.

Fig. 3.49 Visualisation of the subject-specific classifiers from recording session
3 in time window 450-500 ms.
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Subject-specific classifier of recording session 3 and group classifier application

We applied both, the subject-specific classifier models calibrated on data from record-

ing session 3 and the group classifier (trained on data from recording sessions 1

and 2) to data of the third recording block of recording session 3, in which subjects

played the RLR-Game with induced errors and a simulated online error-correction

through BCI support. The application error rates for both classifier types are shown

in table 3.15. We subjected these application error rates of both classifier types to

a paired t-test. Results showed, the difference between application error rates of

subject-specific classifiers (M=20.15 percent, SD=7.38 percent) and the group clas-

sifier (M=23.78 percent, SD=7.94 percent) is not statistically significant, t(15)=2.097,

p=0.053.

Table 3.15 Classifier prediction error rates in percent of applying the subject-
specific classifiers from recording session 3 and the group classifier, both
trained on 24 electrodes, to subject-specific testdata of recording session 3.

subject-specific classifiers group classifier

subject prediction error prediction error

1 14.47 25.79

2 31.00 18.00

3 9.82 16.96

4 15.61 18.05

5 14.81 29.01

6 19.71 16.79

7 26.83 25.85

8 32.21 30.87

9 7.81 9.38

10 14.85 20.30

11 23.47 30.52

12 24.24 26.77

13 21.29 19.80

14 23.13 29.38

15 14.52 20.16

16 28.57 42.86

average 20.15 23.78

Performance of the group classifier in an online scenario Finally, we analysed,

how well the group classifier trained on 24 electrodes performed in an online appli-

cation setting, where subjects received real BCI support through an error-detection
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group classifier. The resulting error rates of the group classifier model for each of

the 16 subjects is shown in table 3.16. The average error rate of the online applica-

tion of the group classifier was at 22.76 percent (SD=8.18 percent).

Table 3.16 Group classifier error rates in percent from the online application
scenario of recording session 3

subject error rate

1 16.34

2 20.00

3 13.43

4 15.34

5 24.08

6 12.80

7 29.47

8 37.13

9 16.13

10 20.87

11 20.73

12 30.60

13 20.83

14 26.97

15 18.98

16 40.43

average 22.76

3.2.7.4 Discussion

In this final part of the study we investigated, if the group classifier, which we de-

fined on data from all subjects of the first two recording sessions and calibrated on

24 electrodes, is subject- as well as session-independent. For this investigation, we

recorded calibration- and testdata in a third recording session with new subjects.

We calibrated subject-specific classifier models on data from this new recording

session. These subject-specific classifiers were similar to subject-specific classifiers

trained on data from the first recording session in terms of calibration accuracy,

pattern features and the visualisation in weighted dipole density plots showing the

relevance of cortical areas to the windowed means classifiers.

We then compared classifier application performance between these subject-

specific classifiers and the group classifier, when they are applied to new data. In

the experimental paradigm for the testdata recordings, an online error-detection
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and correction support through the BCI was simulated, in order to achieve a more

realistic scenario of the real-world application of such error-detection support BCI

for the user. Results showed, that there was no significant difference between the

classifier application performance of the subject-specific classifiers and the group

classifier. This means, that we can train a group classifier on data from other sub-

jects from different recording sessions and yield similar classifier application ac-

curacies, as when we train a subject-specific classifier model on data which was

recorded in the same session. For real-world application of an error-detection clas-

sifier this means, that the application of a group classifier is preferable, because it

eliminates the collection of calibration data and the calibration phase itself. The

support through the error-detection BCI becomes a plug-and-play technology, which

can be made use of immediately after the EEG headset is mounted to the user’s

head.

Finally, all subjects in this third recording session, experienced real online-

adaptation and error-correction support through the BCI classifier model of a group

classifier. Here we examined the group classifier’s performance in such a real-world

online scenario. The results showed, that in this online application, error rates of

the group classifier were comparable to the simulated online experience discussed

before. We conclude that the group classifier which was trained on 24 electrodes of

data from other recording sessions (all data cleaned from eye component activity),

is indeed subject- and session-independent and can be successfully and reliably

applied in an online application scenario.
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3.3 General discussion

In the presented study and its seven distinct parts of analyses, we gradually exam-

ined whether an error-detection passive BCI classifier model can be trained in a way

that it is session-independent, subject-independent and both at the same time for

calibration time reduction. We also tested the applicability of such a session- and

subject independent error-detection classifier model in an online real-world sce-

nario.

We first trained subject-specific classifier models based on approaches for error-

detection classifier calibration deducted from BCI literature. We saw that in er-

roneous trials our experimental paradigm indeed evokes ERP components com-

monly associated with error-processing, namely an ERN followed by a Pe. We trained

classifier models on subject-specific data, following a windowed-means approach,

and applied these classifier models to subject-specific testing data. Resulting er-

ror rates were low for classifier calibration and application. Classifier visualisation

however showed that the classifier models were basing their decisions not on ac-

tivity from cortical areas, but focused on eye activity. Hence, we first tested if one

could calibrate and apply classifiers on EOG data only. We found that classification

in this case was not fully random, meaning that eye activity holds some information

about error processing, but application accuracies were much too low for meaning-

ful classifier application in real-world scenarios.

In a next step, we excluded eye activity from the calibration data to calibrate

error-detection classifier models which would not base their decisions on eye activ-

ity, but on differences in cortical activity. These subject-specific classifiers trained

on eye activity free calibration data had low error rates for classifier calibration and

slightly increased classifier application error rates, which were on average still be-

low 20 percent. Classifier visualisation showed, that these new, now truly "brain"-

computer interface models, were basing their decisions mainly on a cortical area

around the anterior cingulate cortex (ACC) which neuroscientifically is associated

with error-processing. The time-window holding the most relevance for classifica-

tion was from 300-350 ms after stimulus onset. The subject-specific models from

this part of the study still required the recording of new calibration data and calibra-

tion time to train a new classifier model in each session, when the specific subject

wants to use the error-detection classifier.

Therefore, in the following part of the study, we explored whether session to ses-

sion calibration of subject-specific classifier models could be omitted - if the error-

detection classifier was session-independent. To this end we recorded new test-

data from the same subjects on a different day and applied the already calibrated

subject-specific error-detection classifier models to these new testdata. Results
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showed, that indeed classifier application error rates (with an average of around

20 percent) were not different from error rates from classifier application within

the same recording session. These results demonstrate, that intra-individual error-

processing is a process in the individual human’s brain which is constant over time

and we can indeed train an error-detection classifier, which is session-independent.

For real-world application this means, that the calibration data for a subject-specific

classifier only must be recorded once for an initial classifier calibration and that the

user could from then on use this classifier model immediately in a new session for

online support through the BCI.

As we had calibration data from more than one subject available, we investi-

gated the question, whether a classifier trained on the specific subject’s data, as well

as calibration data from all other subjects would be session-independent as well -

by yielding classifier calibration and application error rates similar to the subject-

specific classifier models. We also wanted to investigate, if an error-detection clas-

sifier trained on calibration data from multiple subjects would base its decisions

on activity originating from the same cortical areas as the subject-specific classi-

fier models. We trained this group classifier on calibration data from all subjects

of the first recording session and applied it to the subject-specific testdata from

the second recording session. Results showed, that the calibration accuracy of the

group classifier was slightly lower than in subject-specific classifier models, but

that the classifier application accuracy of the group classifier was not statistically

different from the performance of the subject-specific classifiers. Classifier visual-

isation showed, that the group classifier bases its decisions on very similar corti-

cal areas and time-windows as the subject-specific classifier models. These results

show, that on data from more than one subject, we can train a functioning error-

detection classifier model as well, which is working on the same neural basis as

subject-specifically trained classifiers.

Through both, the session-independent subject-specific and the group classi-

fier, calibration time for online-application of the error-detection classifier model

can be substantially reduced - from recording new calibration data in every ap-

plication session to just one time in an initial session. In order to supersede cal-

ibration time for an individual user completely, one could also try to calibrate the

error-detection classifier model on completely different people’s data and apply it

to testdata of the specific user. Hence, we tested whether our error-detection classi-

fier could work in this sense of subject-independence. To that end, for each subject

we used the subject-specific classifier model of the subject and applied it to test-

data from all other subjects within the first data recording session. Results showed

that, at a classifier application accuracy of around 67 percent, the subject-specific

classifier application to data from other subjects was much worse than when the
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respective subject’s own classifier model was applied (here application accuracy

was about 81 percent). We also calibrated group classifiers in terms of leave-one-

subject-out calibration. Here, for each subject, we calibrated the classifier model

on data from all other subjects and then applied this group classifier to testdata of

the specific subject, whose data was not part of the calibration data. The resulting

leave-one-subject-out group classifier application accuracies were on average at 73

percent, which again is significantly worse than when the respective subject’s own

classifier model was applied (with an application accuracy of 81 percent). How-

ever, the group classifier’s performance also was significantly better, than when the

subject-specific classifier models were applied to other subjects’ data. This investi-

gation into subject-independence of the error-detection classifier showed, that we

can apply subject-specific, as well as group classifiers to data from a completely

new person. Though both classifier types yield worse classifier application per-

formance, than a classifier specifically trained on the specific subject’s calibration

data, their application error rates are far from random, showing that the neuro-

physiology of error-perception is inter-individually highly consistent. The subject-

independent group classifier’s application performance is significantly better than

when classifier models calibrated on data from one specific person are applied to

data from a different person. Even though there is an average decrease of 7 percent

in application performance from the group classifier to the classifier model trained

on the specific person, the subject-independence of the group classifier would not

require any calibration time in any recording session from the end-user of the BCI

system. Classifier calibration would be fully omitted, because the error-detection

classifier model can be trained beforehand on data samples from other individual

users. As calibration time is one of the critical bottlenecks for BCI technology to

find its application in everyday HMI contexts, the benefits of subject-independence

may outweigh the slight decrease in classifier application accuracy.

After finding in the previous parts of the study, that we can train an error-detection

classifier model, which works session- or subject independent, in the final part of

the study, we aimed at combining both features - session- and subject-independence

- in the error-detection classifier model. As classifier application performance in

the subject-independent classifier model was significantly better for the group clas-

sifier, we decided to calibrate a new group classifier on all available data from all

subjects from the first two recording sessions, we then applied this group classifier

model to data from completely new participants of a new recording session. One

step before training this group classifier, we evaluated, whether the number of elec-

trodes (we train the error-detection classifier model on) could be reduced. The re-

duction of required electrodes is another crucial factor, when it comes to real-world

applicability of BCI technology. Every electrode that must be applied to the scalp
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and adjusted for good skin contact, adds to the time required to set up the EEG sys-

tem, before it can actually be applied in a given task. We first reduced the initial 50

electrode setup down to 32 and then finally to 24 electrodes. Classifier calibration

performance of subject-specific classifiers showed that there was a statistically sig-

nificant but practically dismissable (on average 1 percent) decrease in calibration

accuracy from the 50 electrode setup to both, the 32 and the 24 electrode setup.

There was no difference found between the 32 and the 24 channel setup. Calibra-

tion accuracy of the group classifier model increased slightly from 50 electrodes to

both, the 32 and 24 electrode setups. These results indicated that we could reduce

the number of electrodes we would calibrate the group classifier on down to 24.

In the final part of the study, we recorded new calibration and testdata from new

subjects. We used the calibration data to calibrate new subject-specific classifier

models on 24 channels for each of the subjects. After analysis and visualisation of

these new subject-specific classifier models, we applied them to the respective sub-

ject’s specific test data. The resulting application error rates were compared to er-

ror rates of the group classifier to the same testdata. Results showed, that there was

no difference found between classifier application performance of the specifically

trained classifier models and the newly defined group classifier. Finally, we tested

group classifier performance in an online feedback scenario, where automatic er-

ror correction was applied while subjects played the experimental paradigm game.

Here the online application accuracy of the group classifier was on average at 77

percent. The results from the final part of our study showed, that for automatic

error-detection we can train a group classifier, on calibration data of multiple sub-

jects, with a reduced electrode number of 24 channels. This group classifier is session-

and subject-independent, as it can be applied to new data with similar application

accuracies as a specifically trained error-classification model. These application

accuracies remain stable even in an online application context, where the classifier

is used for real-time detection of error potentials and automatic error correction

while the user performs their task.
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3.4 Conclusion

There are several factors today which prevent neuroadaptive technology which is

enabled by passive BCIs from real-world application by users in their everyday lives

and professional environments. One of these factors is the calibration time needed

to collect training data and calibrate a classifier model for the brain-computer in-

terface’s classifier model. Another factor is the time, effort and expertise needed to

mount an EEG headset to the user’s head before data recording and monitoring can

begin - this factor depends strongly on the number and type of EEG electrodes that

are needed for the application.

In this study, we investigated ways to reduce both - classifier calibration time

and EEG headset preparation time. For an automatic error-detection classifier -

one of the most promising and meaningful passive BCI applications for HMI con-

texts in the future - we showed, that a classifier model can be trained which omits

all classifier calibration time for the user. We also demonstrated that the number of

electrodes this classifier model is trained on, can at least be halved from the initial

50 electrodes used in our study down to 24 electrodes. These two improvements to

system preparation time bring automatic error-correction support through passive

BCI support one step closer to be applied in the real-world.

Above that, we also assured thorough classifier model visualisation and valida-

tion, that the classifier models we calibrated and applied were truly basing their

decisions on cortical sources in the brain and not on changes in electrical activity

coming from other sources or modalities, such as the eyes or muscle movements.

The results of our study further gave valuable insight into the neurophysiology

of error processing. They suggest, that error processing in the human brain, even

in single-trial, is a highly similar process in humans. We demonstrated that inter-

and intraindividual variance in neurophysiological changes during error process-

ing does not vary much, making error processing a strongly constant brain process

across subjects.

Regarding the grading of the demonstrated classifier application accuracies, the

actual benefit of using an error-detection passive BCI for automatic error correction

in an HMI context is highly dependent on the situational context, in terms of time,

frequency of the application and the impact of errors made in the specific context.

For example, if an automatic error-detection BCI is used to revert and correct auto-

corrections made by the program during email writing, it is not highly important,

that every error in the auto-correction is detected and adapted. Hence, in this con-

text the demonstrated classifier application accuracies will most likely be sufficient.

But there might also be other contexts, where higher accuracies could be crucial,

e.g. in high focus and danger situations. However, automatic error detection will
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likely improve system performance even with lower classifier application accura-

cies, as it even then would detect and adapt some of the errors committed by the

system in the HMI context which without the error-detection classifier would not

be corrected at all.

Further, more precise performance metrics, such as balanced accuracy as a per-

formance measure in unbalanced class classification, should be employed when

evaluating the real-world applicability of the defined error-detection classifier. Us-

ing balanced accuracy or another measure that takes into account class imbalance

would allow for more precise statements regarding whether the classifier truly per-

forms better than the random level.

For future research, the developed session- and subject-independent group clas-

sifier should be tested and applied for error detection in further tasks and scenar-

ios in HMI where execution or interaction errors can occur. The demonstrated

well-performing classifier model could perform differently under different tasks

and contexts. If the here developed error detection passive BCI model could be suc-

cessfully applied to different tasks for error identification and correction, the classi-

fier would not only be session- and subject-independent, but also task-independent

- making it a generally universal BCI classifier model that can be applied in a variety

of interactions between a human and a system to automatically correct interaction

or execution errors without any required calibration time.

Above that, it should also be investigated, whether the developed group classifier

model can also detect other types of errors than interaction or execution errors, as

e.g. an observation error. Finally, the group classifier should be tested with other

EEG headsets (e.g. dry electrodes), as well as with even more reduced numbers of

electrodes for its application - as in the context of a real-world application, not all

users will have the same EEG headset available as we used to record the EEG data

in this experiment.

The willingness of users to apply a BCI for support will however always depend

at least on the factors, which form the following formula:

BCI application acceptance=
benefit within context

EEG system setup time + calibration time

As long as the benefit of the BCI application is greater than the perceived effort the

user must put into (repeated) classifier calibration and mounting the EEG head-

set, users will tend towards application of the BCI support in the real-world. Today

however, in most cases, the result is the other way around and it is too cumbersome

to prepare the BCI system before starting the task it should support the user in. I

want to note however, that the factors determining the acceptability of BCI systems

in general and for specific applications and user groups are complex and still un-
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der investigation. In a detailed and recent study e.g. Grevet et al. (2023) investigated

factors influencing the acceptability of active motor imagery-based BCI systems for

post-stroke rehabilitation and showed that system characteristics, especially scien-

tific relevance and benefits on risk ratio seem to determine the perceived usefulness

of the BCI. Further, facilitating conditions, specifically ease of learning and playful-

ness, influence the perceived ease of use of a BCI system. Finally, they showed that

social influence also plays a role.

With the presented study and its results, we have taken a big step towards minimis-

ing system preparation time for online application of an automatic error-detection

BCI. We hope that this step will bring this application of neuroadaptive technol-

ogy one step closer to be incorporated in HMI contexts and it will be integrated in

real-world applications to support users in fulfilment of their tasks and wishes.









CHAPTER 4

Study 2: Task-independent mental

workload assessment in a

speed-reading context

Preliminary note: The following study was already published in Andreessen et al.

(2021).

4.1 Summary of the study

As introduced in section 2.7.6 the development of task-independent predictive mod-

els for specific user states would be strongly beneficial for real-world application

of passive BCI technology. As some tasks potentially are based on similar cognitive

processes, it seems unnecessarily effortful to design a specific calibration paradigm

for each use case or specific task that is evoking the same cognitive process or state

across tasks. Krol et al. (2016) proposed a classifier model that is trained to classify

examples of mental workload on the basis of data collected from a subject perform-

ing an arithmetic task, while this model is intended to quantify mental workload in

a generalized way, across tasks. It thus can reliably distinguish between phases of

low and high workload, not only in arithmetic tasks but also in other tasks and do-

mains and is therefore referred to as a task-independent predictive model.

In this study, to further test the task-independence of this promising task-

independent predictive model for mental workload detection, we applied it to a

new task - a speed reading context, where subjects read texts of different difficulty

and at different reading speeds. Firstly, subject-specific classifier models were trained

after subjects completed this potentially task-independent mental workload cal-

ibration paradigm. The resulting predictive models were then applied to mon-

itor mental workload while subjects read text material of different difficulty and

reading-speed. We recorded EEG data from each subject, while twelve texts in blocks

127
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of three were presented to them word by word. Half of the texts were easy, and the

other half were difficult texts according to classic reading formulas. From each text

category three texts were read at a self-adjusted comfortable presentation speed

and the other three at an increased speed. For each subject we applied the trained

predictive model for workload detection to EEG data of each word of the twelve

texts.

We found that the resulting predictive values for mental workload were higher

for difficult texts than for easy texts. Predictive values from texts presented at an in-

creased speed were also higher than for those presented at a normal self-adjusted

speed. These results suggest that the mental workload based predictive model can

be applied to the new tasks of reading texts at different difficulties and reading

speeds, supporting the claim that it can indeed serve as a task-independent classi-

fier for mental workload. Such a model could be employed on a single-subject level

in a system which continuously monitors brain activity related to mental workload

and adapts to specific reader’s abilities and characteristics by adjusting the diffi-

culty of text materials and the way it is presented to the reader in real time. A neu-

roadaptive system like this could foster efficient reading and text-based learning by

keeping readers’ mental workload levels at an individually optimal level.

4.2 Introduction and motivation

The emerging field of neuroadaptive technologies aims to automatically adapt a

machine to changes in its operator’s cognitive or affective state through an ongo-

ing evaluation of neurophysiological activity (Krol and Zander, 2017). One tool to

assess information about the current mental state of a person is a passive Brain-

Computer Interface (pBCI, Zander and Kothe (2011)). A pBCI is trained to distin-

guish between different cognitive or affective aspects of user state. Therefore, it

learns to classify certain patterns of brain activity (i.e. classes), typically recorded

through an electroencephalogram (EEG) in a controlled calibration session. An ap-

proach combining machine learning and signal filtering is used to automatically

analyze a segment of EEG and to provide a guess (i.e. through interpreting the clas-

sifier output as predictive values) to which class the recorded activity belongs (Zan-

der et al., 2010), resulting in a so-called predictive model. This model can then be

applied to new data providing predictive values and hence information about the

current state of the investigated cognitive process. By combining this information

over time with contextual information, a predictive user model can be derived that

provides meaningful details about certain aspects of higher cognition (Zander et al.,

2016). This user model can then be utilized to adapt a system’s behavior in a certain

situation to the current state or specific aims of the user – the system becomes neu-
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roadaptive. This neuroadaptation is intended to improve the interaction between

user and machine by making it safer, more pleasant or more efficient (Hettinger et

al., 2003; Zander, 2012; Zander et al., 2016). A pBCI differs significantly from classic

BCIs (i.e. active or reactive BCIs) which are built on brain activity that is generated

by the operator intentionally in order to send specific control signals to a computer

system, thereby replacing other means of input (e.g. keyboard) (Zander et al., 2010).

4.2.1 Task-independent classification of spectral changes through mental work-

load

One important cognitive state that might be used for neuroadaptive technologies

is mental workload, which is a concept that is well established in experimental

Psychology, and Human Factors/Ergonomics (Kramer, 2020; Wickens, 2008); and,

that is also characterized by specific neurophysiological signatures (e.g., Gevins

and Smith (2000); Gevins et al. (1997); Krause et al. (2000); Pesonen et al. (2007);

Scharinger et al. (2015, 2017)). Recent studies claim that pBCIs can be trained to dis-

tinguish between low and high mental workload states of a user and predict mental

workload in different task domains such as e.g. n-back tasks (Grimes et al., 2008;

Herff et al., 2014), span tasks (Chaouachi et al., 2011), Sternberg tasks (Baldwin and

Penaranda, 2012; Roy et al., 2016), arithmetic tasks (Walter et al., 2017) and visual-

spatial task (e.g. mental rotation; Berka et al. (2007)). However, these attempts have

often been of restricted success due to several methodological limitations (cf. Ger-

jets et al. (2014)). Specifically, efforts taken for designing a task-independent pre-

dictive model that can identify levels of mental workload in general, independent of

the task evoking the mental activity, were not sufficiently successful. However, this

is important for detecting mental workload in real-world applications, as tasks at

hand can change over time. Recently, a more promising task-independent predic-

tive model for mental workload detection has been proposed by Krol et al. (2016).

This model is trained on data collected from a subject performing an arithmetic

task triggering brain activity that is related to mental workload in general. While

it is trained to classify these examples of mental workload, this model is intended

to quantify mental workload in a generalized way, across tasks. This goal was not

achieved by adapting feature extraction or classification algorithms in the predic-

tive model, but by designing an experimental paradigm for the calibration session.

The resulting predictive model was successfully applied to tasks in other domains,

such as n-back tasks, backward span task, solving anagrams, mental rotation or

understanding verbal descriptions of a complex context (Krol et al., 2016; Zhang et

al., 2018). It, thus, can reliably distinguish between phases of low and high work-

load, not only in arithmetic tasks but also in other tasks and is therefore referred to
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as a task-independent predictive model. In this paper, we investigate whether this

task-independent predictive model might also be suitable for a passive BCI-based

assessment of mental workload imposed by text difficulty and presentation speed

during reading. Workload assessment during reading in real time is a crucial pre-

requisite for the development of neuroadaptive support technologies that aim at

improving reading efficiency in the digital age.

4.2.2 Mental workload and text comprehension

Reading is part of our everyday lives. Written language plays a crucial role when

humans intend to share information and acquire new knowledge. From a cognitive

science perspective, mental workload (in terms of working-memory load) is central

for reading as reading comprehension is based on a set of processes at different lev-

els, many of which require working-memory resources (Daneman and Carpenter,

1980; Kintsch and Walter Kintsch, 1998; Perfetti, 1985). For instance, there are read-

ing processes at the word level (e.g., activation of word meaning), at the sentence

level (e.g., integrating word meanings with the syntactical structure to a coherent

sentence), and at the text level (e.g., integrating the read content plus information

inferred from prior knowledge into a local and global coherent situation model).

Inferences at the text level can be broadly defined as information that is not ex-

plicitly stated in the text but generated by the readers themselves from memory or

the given information (Tibus et al., 2013). Inferences are crucial for understanding

(“the cornerstone of comprehension”, Kendeou et al. (2016)). As they are essential

for comprehension, these are generated “online” during the reception process (e.g.

Graesser et al. (2007)). All of the above mentioned processes – but particularly in-

ference generation at the text level – might not only impose time demands for pro-

cessing onto readers but also high levels of mental workload (depending on read-

ers’ level of reading fluency and prior knowledge). Accordingly, the more difficult a

text is and the less working-memory capacity and reading time a reader has at his

disposal the more likely it is that the comprehension process might be disrupted.

According to Cognitive Load Theory, learning and comprehension will break down

once the information that needs to be integrated in working memory at one point

in time exceeds the available working-memory capacity (Sweller et al., 1998). In

line with this assumption, reading research has shown that individual differences in

working memory capacity can account for qualitative and quantitative differences

among readers in several aspects of language comprehension (Just and Carpenter,

1992). In sum, the comprehension of textual information is influenced by several

factors, including features of text materials itself, such as text difficulty (e.g., length

and complexity of sentences or use of technical terms; cf. DuBay (2004); Friedman



4 | Task-independent mental workload assessment in speed-reading 131

and Hoffman-Goetz (2006)). Additionally, text comprehension strongly depends on

characteristics of individual readers, such as their domain-specific prior knowledge

(Moravcsik and Kintsch, 1993), their individual working-memory capacity (Just and

Carpenter, 1992), their level of reading fluency (Kuhn et al., 2010) or the time in-

vested in reading a text (i.e., reading speed). Furthermore, these factors will inter-

act with each other. For instance, reading speed will influence text comprehension

performance in relation to the individual reader’s reading fluency (Bell, 2001; Wallot

et al., 2014). Moreover, text difficulty and domain-specific prior knowledge will in-

teract in affecting mental workload and reading comprehension. For example, the

same text will impose more workload onto low prior-knowledge readers than onto

high prior-knowledge readers (cf. McNamara et al. (1996); Sweller et al. (1998)).

Therefore, developing adaptive support technologies aiming at improving read-

ing efficiency is not trivial. This is particularly true when trying to base adaptations

on measurements of individual readers’ domain-specific prior knowledge, reading

fluency, and working-memory capacity. An alternative strategy – that we will focus

on in this paper – is to base adaptive systems on an online measurement of mental

workload. The reasoning for this is that mental workload during reading is directly

influenced by prior knowledge, reading fluency, and working-memory capacity. It

is also an important factor for successful comprehension processes.

Moreover, mental workload can be used online in order to adapt the presenta-

tion of reading materials, e.g. by adjusting text difficulty. Methodologies of compu-

tational linguistics allow to automatically assess and label the complexity (i.e. read-

ability) of reading materials based on linguistic features. Traditional methods use

rather simple text analysis techniques that provide easily computable complexity-

indices (e.g., the Flesch-Reading-Ease (Flesch, 1948) formula or the Flesch-Kincaid-

Grade-Level formula (Kincaid et al., 1975) using easy to count text features, like

the average sentence and word length). More advanced approaches to readability

analysis employ a range of even more sophisticated techniques, including statisti-

cal language models (Collins-Thompson and Callan, 2004; Kincaid et al., 1975; Pe-

tersen and Ostendorf, 2009; Si and Callan, 2001), machine learning using lexical and

syntactic features (Feng, 2010; Schwarm and Ostendorf, 2005), models integrating

language-specific morphological features (Dell’Orletta et al., 2011; François and Fa-

iron, 2012; Hancke et al., 2012), and approaches emphasizing a cognitive perspec-

tive on coherence/cohesion (esp. Graesser et al. (2014)). These examples indicate

that text complexity can be defined (and consequently automatically assessed) with

respect to different linguistic readability metrics. These metrics range from a focus

on simple linguistic entities (e.g., words) or complex, interrelated linguistic enti-

ties (e.g., sentences, paragraphs, or entire documents). An automated adaptation

(Zander et al., 2010) of reading materials based on mental workload could there-
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fore be carried out by selecting text materials of an appropriate complexity level for

the specific reader. This adaptation can not only be used in order to avoid reading

materials that are too difficult, but also to avoid ones that are too simple, which

can also impair reading comprehension (McNamara et al., 1996). An even more

advanced approach would be to use algorithms for automatically quantifying text

difficulty in order to correctly adjust the complexity of text materials that impose

too much mental workload (Vajjala Balakrishna, 2015; Vajjala and Meurers, 2014).

4.2.3 Rapid serial visual presentation (RSVP) applications for variable text presen-

tation speed

Besides adapting text difficulty to mental workload, an even simpler method for the

adaptation of reading materials to readers’ current mental workload is to control

for reading time investment by varying the speed of text presentation speed. For

instance, state-of-the-art speed-reading applications such as the SpritzTM speed-

reading application (http://www.spritzinc.com) use rapid serial visual presen-

tation (RSVP) to present text materials word for word with an adjustable presenta-

tion speed. Each word of the text is presented successively at a fixed position on

the screen (Hedin and Lindgren, 2007). In the Spritz application a certain letter in

each word, the optimal recognition point (ORP, Benedetto et al. (2015); Hester et al.

(2016)), is highlighted in red and also presented at a fixed position to which read-

ers should allocate their visual focus during reading to minimize eye-movements,

thereby reading more efficiently. Moreover, while the nominal reading speed in

Spritz is set a priori by the reader, the actual reading speed differs from word to

word and is influenced by factors such the length of the words and the length of

the sentences, as well as by the current state of the reader. As a result, longer words

are displayed longer and longer sentences have longer pauses at the end of the sen-

tence (Benedetto et al., 2015). However, up to now, readers have to either manually

adjust the nominal presentation speed of a text passage they are reading (according

to their current perception of the adequacy of reading speed) or read all text pas-

sages at the same speed independent of difference in difficulty. Manual adjustment

is cumbersome, requiring readers to pay attention to the current reading speed and

perform manual acts to make adjustments. An adaptive system operating on the

measurement of mental workload could conceivably change the nominal reading

speed of text materials in a seamless way. This would facilitate an efficient reading

experience that keeps readers always within an optimal range of mental workload,

avoiding possible misapprehensions as well as boredom.

A pivotal prerequisite for the development of such an adaptive system is (of

course) an appropriate online mental workload measure. This measure must be

http://www.spritzinc.com
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sensitive to variations in mental workload that are resulting from text difficulty or

reading speed. Therefore, as a first step towards the development of such a system,

we investigate whether a task-independent predictive model for mental workload,

which is calibrated individually for any subject, can be used to distinguish between

reading materials categorized as difficult or easy according to classic readability

metrics. We also investigate if different levels of reading speed induced by slow or

fast text presentation can be differentiated through this predictive model.
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4.3 Methods

4.3.1 Subjects

Thirteen subjects (one was excluded from analyses – see results section 4.5.1.1) took

part in our study, with an average age of 32.6 years (SD = 7.4 years). Eight of them

were female. The native language of all subjects was German and their vision was

normal or corrected to normal. All subjects were naive to the experiment and none

had former experience with speed reading applications. Prior to the experiment,

subjects gave their written informed consent to participate in the study and were

paid 20 euros for compensation. The experiment was conducted along a guideline

ethically approved by the local ethics committee.

4.3.2 Apparatus

We recorded EEG from 64 active electrodes using an EEG system from Brain Prod-

ucts (Brain Amp DC, Brain Products GmbH, Gilching, Germany). Electrodes were

positioned according to the extended international 10/20 system, with ground elec-

trode at AFz and reference at FCz, and data was rereferenced to common aver-

age reference (CAR). Electrode impedances were kept below 5 kΩ. EEG data was

recorded using the Brain Vision RDA (Brain Products GmbH, Gilching, Germany)

and the LabRecorder (Delorme et al., 2010). The native sampling rate was 5000 Hz

and the recording was then subsampled to 500 Hz. The Matlab embedded tool-

box EEGLAB (Delorme and Makeig, 2004) was used for EEG data analysis. All BCI

classification and model application was performed using the open source toolbox

BCILAB (Kothe and Makeig, 2013).

The experimental paradigm for calibrating the predictive model (mental work-

load paradigm) was implemented using SNAP (Iversen and Makeig, 2019). The text

reading paradigm, presenting the texts to the subjects, was implemented in Matlab,

using the Psychophysics Toolbox extensions (Brainard and Vision, 1997; Kleiner et

al., 2007) and the Spritz API. Only the reading panel of the Spritz reading interface

was shown and there was no menu to adjust reading speed or to play and pause

text presentation. The ORP was highlighted in red as in the original Spritz reading

interface (see 4.1 b)).

4.3.3 Stimuli and procedure

Subjects completed both of the above-mentioned experimental paradigms as shown

in figure 4.2 (mental workload paradigm and text reading paradigm). The mental

workload paradigm (see figure 4.1 a)) served as calibration session for the predic-

tive model, presenting a series of stimuli inducing low and high mental workload.



4 | Task-independent mental workload assessment in speed-reading 135

This paradigm is introduced in Krol et al. (2016) and is described in more detail be-

low. In the text reading paradigm (see figure 4.1 b)), subjects were asked to read

twelve texts. Each text was presented at a certain speed (normal and fast) and had

a certain difficulty (easy and difficult). For each combination of text difficulty and

presentation speed three different texts were presented to the subjects, resulting in

an experimental design with 3x4 texts. Details of this experimental paradigm are

described below, and the timeline of the full experimental procedure is depicted in

Figure 2.

Fig. 4.1 Screenshots of the experimental paradigms. a) Mental workload
paradigm: high workload trial with arithmetic subtraction assignment in the
center of the screen, accompanied by visual distraction represented by colorful
spots randomly moving around the screen. b) Text reading paradigm: Sequen-
tially each word is presented in the RSVP reading interface (here ‘Gegenden’
meaning ‘areas’ in German). During reading the red highlighted letter is fix-
ated. This letter is defined as the optimal point of recognition (ORP) for each
word. The duration of presentation for each word is determined by the subjec-
tively chosen presentation speed and factors such as word length or whether it
is the end of a sentence.

4.3.3.1 Mental workload paradigm

The mental workload paradigm used for calibrating the task-independent predic-

tive model was developed by Team PhyPA (Technical University Berlin). During

this paradigm subjects alternate between two tasks to induce phases of low and

high mental workload. In one task subjects focused on a crosshair in the middle

of an otherwise black screen. In this condition subjects were instructed to relaxing

their mind and keeping their eyes open. This task is intended to induce a low level

of mental workload. To induce levels of high workload an arithmetic subtraction

assignment appeared in the center of the screen. At its appearance subjects were

instructed to silently subtract the number on the right side (range between 6 and

19, excluding 10 and 15) iteratively from the number on the left (range between 200

and 1200) until the assignment disappeared from the screen. In both tasks, 50 per-
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cent of the trials were accompanied by visual distraction represented by colorful

spots randomly moving around the screen. In previous studies, these distractions

have proven to serve the purpose of dissolving dependencies of any class to oc-

ular artefacts in the EEG resulting from visual differences in the tasks (Krol et al.,

2016; Zhang et al., 2018). The rationale here is that ocular artefacts are controlled

by the moving distractors to a high degree. In this way both classes (low and high

workload) contain a similar, randomized amount of ocular artefacts such that the

differences induced by such artefacts are not class dependent. Subjects completed

40 trials of tasks with low and 40 trials with tasks of high induced mental workload.

Each trial had a length of 10 seconds.

4.3.3.2 Text reading paradigm

Each subject read twelve texts from the GEO/GEOlino Corpus (Hancke et al., 2012)

for which we calculated scores of the two common readability formulas Flesch read-

ing ease and the Flesch-Kincaid grade level. The corpus is a collection of 1066 texts

in German from the magazine GEO, which has a focus on topics from nature, cul-

ture and science and the magazine GEOlino, which covers similar topics but is tar-

geted at young people from age 8 to 14. Therefore, texts from GEO are generally

more difficult to read than those from the GEOlino magazine. Six texts were cho-

sen from each magazine, all covering similar topics about animals and their habitat.

The overall average number of words per text was 493 (SD= 34.6 words). GEO texts

had an average word count of 472 words (SD = 23.1 words) and GEOlino texts of

514 words (SD = 31.7 words). GEO texts had an average Flesch reading ease of 45.1

(SD= 2.4), which is equivalent to difficult texts on college level. The Flesch-Kincaid

grade level of GEO texts was 10.9 (SD = .29). For GEOlino texts the average Flesch

reading ease was 62 (SD= 1.38), corresponding to a readability suitable for 13 to 15

years old students. These texts had an average Flesch-Kincaid grade level of 7.9 (SD

= .24).

All textual contents, except experimental instructions, were presented with the

Spritz speed reading application interface. In the beginning of the paradigm sub-

jects read a short text to familiarize themselves with text reading using the Spritz in-

terface. Thereafter, subjects read short passages of a German novel and incremen-

tally adjusted the text presentation speed to a level they felt comfortable reading

at. The initial presentation speed was 200 wpm. After each passage subjects de-

cided by button press whether the current presentation speed appeared too slow,

too fast or just right. According to the subject’s decision in the first presentation,

speed was altered by 100 wpm in the direction favored by the subject (or stayed

the same). For the next passages, the increment was decreased by half in each step
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and again adjusted in the direction the subject wanted the presentation speed to

alter. Presentation speed adjustment continued until the subject had decided that

the current speed was comfortable for two successive text passages. The last speed

value in wpm was set as the individually preferred presentation speed.

Subsequently each subject read all twelve texts. The six texts of each text dif-

ficulty category (easy vs. difficult) were randomly assigned to two groups of three

texts. One of the two groups was presented in the individually adjusted presenta-

tion speed (normal category). The other group was presented at this speed raised

by 40 percent to increase the level of mental workload (fast category). Beforehand,

we assessed in a pre-test (n = 6, age 27.2 years (SD = 3.8 years), all native language

German, five male) that an increase in presentation speed by 40 percent resulted in

higher subjective workload ratings according to the Raw Task Load Index question-

naire (RTLX, Hart (2006)). This is a modified version of the NASA-TLX (Hart and

Staveland, 1988), a standardized questionnaire to assess perceived mental work-

load on a Likert scale along six dimensions, lacking subjective weightings of the

scales as used in the NASA-TLX. Between reading each block of three texts subjects

could rest before starting the next block. The presentation order of the four text

blocks was randomized. After each text block, subjects completed the RTLX ques-

tionnaire to assess their subjectively perceived workload. After each text, subjects

answered three literal text comprehension questions. These questions were gener-

ated by taking facts stated within single sentences in the texts and turning them into

questions (e.g. statement "With a diameter of 37 centimeters its eyes are the biggest

in the animal kingdom." - generated question: "Which part of the giant squid is the

largest of its kind in the animal kingdom?" - displayed answers: 1) teeth 2) nose 3)

brain 4) eye). For each question, four possible answers were displayed only one of

which was the correct choice. Subjects selected their answer by key press. In total

each subject answered 36 literal text comprehension questions (3 questions x 12

texts).
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Fig. 4.2 Experimental procedure: Subjects first completed the mental workload
paradigm. Afterwards they were familiarized with the speed reading presen-
tation technique and adjusted the text presentation speed to a level of words
per minute at which they felt comfortable reading. Then in the text reading
paradigm subjects read all twelve texts in blocks of three. Block order was ran-
domized and the three texts in a block were either easy or difficult texts pre-
sented at either the speed adjusted by the subject or with an increase of 40
percent in speed. After each text subjects answered three literal text compre-
hension questions. Following each block subjects completed the RTLX ques-
tionnaire.

4.4 Data Analysis

4.4.1 EEG data

4.4.1.1 Calibration of the task-independent predictive model

To calibrate a subject-dependent passive BCI classifier for the task-independent

predictive model, features from the spectral domain of the individual EEG were ex-

tracted using filter bank common spatial patterns (fbCSP, Ang et al. (2008)). Neuro-

scientific findings provide evidence that frequency bands from 4-7 (theta band) in

fronto-central areas and 8-13 Hz (alpha band) in parietal areas of the human scalp

show differences with increasing mental workload, in general (see Gerjets et al.

(2014); Krause et al. (2000); Pesonen et al. (2007); Scharinger et al. (2015, 2017). Typ-

ically, increased mental workload is associated with an increase in frontal theta and

a decrease in parietal alpha activity (Gevins and Smith, 2000; Gevins et al., 1997).

Along these findings, each of both frequency bands were selected as a filter bank

for fbCSP. In each trial, for each electrode, the EEG data was preprocessed by filter-
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ing the band power in each of the two frequency bands, serving as input for fbCSP.

This approach resulted in a set of spatial filters to optimally extract features to dis-

criminate between low and high workload. Each set contained 2x3 spatial filters per

frequency band, where each subset of 3 filters was optimized for extracting maximal

bandpower in one class while keeping the bandpower minimal in the other class, re-

flecting the above-mentioned concept of spectral indicators for mental workload.

EEG data projected through each of the 12 resulting filters served as features for

classification.

Data from each trial of 10 seconds was cut into consecutive epochs of one sec-

ond length, defining the training trials for classifier calibration. Each training trial

served as an instance for either high or low workload, according to the class of whole

trial. For each epoch, 3 features were extracted with fbCSP for each class and each

frequency band, as mentioned above, resulting in a set of (3x2x2 =)12 dimensional

feature vectors for each training trial. On the resulting set of 12 dimensional fea-

tures for each class, regularized linear discriminant analysis (LDA) was trained as

a classifier that discriminates between high and low workload. As we expect this

model to be task independent, the accuracy of the classification on the calibration

data provides an estimate for the accuracy of the calibration on the text reading

data. Therefore, a means of estimating classification accuracy was derived by per-

forming a (5,5) cross validation on the calibration data. The data was randomly di-

vided into 5 partitions (indicated by the second number in (5,5)) from which each

was considered to be test data while the remaining four partitions served as calibra-

tion data for the classifier. The classifier was then trained on the calibration data

and tested on the remaining partition, resulting in a classification error for this run

of the cross validation. The average of all runs of the cross validation indicated the

estimate of the classification error. This whole process was repeated 5 times (the

first number in (5,5)) with different random selections of the partitions to minimize

the error resulting from bias in the randomization. The average of each full cross

validation served as a final estimate of the classification error expected for the ap-

plication of the classifier on the text reading data. With this, the signal processing

and machine learning for the task-independent predictive model is defined.

As described in section 2.5.4 these filters are optimal for class discrimination,

they cannot be interpreted spatially from a neuroscientific perspective. By trans-

forming them into so-called spatial patterns, information about scalp projections

of cortical activity that is relevant for classification can be derived and interpreted

neuroscientifically (Haufe et al., 2014). For each feature a neuroscientifically inter-

pretable spatial pattern can be generated, identifying the electrode activity that was

relevant to discriminate the classes in the according frequency band. In that way,

information used by the classifier to discriminate between classes can be identified
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and used to validate the classification approach. Spatial patterns generated in this

process were averaged over the three patterns in each subset and then over all sub-

jects resulting in four grand average patterns displaying the topography for the two

classes of low and high workload in the alpha and the theta frequency band.

4.4.1.2 Classifier application to text reading data

For all subjects with an estimated classification accuracy of 60 percent or higher

the calibration process was deemed as being acceptable as it was statistically bet-

ter than random (Müller-Putz et al., 2008). We used BCILAB’s built in function

onl_simulate to apply the individually calibrated task-independent predictive model

discriminating mental workload to raw data of all twelve texts per subject. The

model was applied to epochs of 1 second length, serving as test trials, starting upon

the onset of each displayed word of a text. The volume of the classes ranged be-

tween 1347 and 1635 samples, as each class was populated with samples from three

texts and the number of words per text ranged between 449 and 545 (see second part

of section Stimuli and procedure 4.3.3), according to the number of words in each

text. The output of that classification was then annotated to the according word,

indicating the workload that was predicted by the model at this time. Epochs of the

test trials overlapped, as there was more than one word displayed within one sec-

ond during the reading task. However, deriving predictive values from overlapping

epochs is unproblematic in our case. We are not performing binary classification

but generating a continuous development of predictive value over time – and are

not aiming at classifying single words, but rather text sections consisting of multiple

words with respective workload predictive values. The resulting predictive values

for each word, ranged between 0 (low predicted workload) and 1 (high predicted

workload) This procedure resulted in a prediction of the mental workload for each

word in each text.

Subject specific text-group averages of predictive values were compared to the

intrinsic difficulty of each text by means of a two-way, repeated measures ANOVA.

The two within factors were text difficulty (easy vs. difficult) and presentation speed

(normal vs. fast).

To obtain further insights into possible effects in the repeated measures ANOVA

detailed above, predictive values for each text category generated from each indi-

vidual task-independent predictive model were subjected to permutation tests (see

section 3.2.1.2 with 5000 permutations. This number of permutations was cho-

sen to ensure a precision of the p value better than 0.001 in a confidence inter-

val of 99 percent, according to Ojala and Garriga (2010). Predictive values from

all subjects according to text difficulty (easy vs. difficult) and presentation speed
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(normal vs. fast) were tested against those from all other categories, resulting in

6
�

=
�

4
2

�

= 3x 2x 1
�

permutation tests. Five of these tests were one-tailed because we

assumed that easy texts would result in lower predictive values than difficult texts.

Also, predictive values from texts of comparable difficulty were expected to be lower

when presented at normal speed than predictive values of texts presented at an in-

creased speed. Easy texts presented at normal speed were expected to have lower

predictive values than those of difficult, fast presented texts. As no assumption re-

garding mental workload could be made, the permutation test comparing predic-

tive values of easy/fast-speed texts and difficult/normal-speed texts was two-tailed.

Finally, we analyzed the predictive values on single-subject level by performing

further one-tailed permutation tests. We hypothesized that predictive values for

easy texts would be lower than those of difficult texts when read at the same pre-

sentation speed. Further we expected texts of the same text difficulty to have lower

workload predictive values for texts read at normal speed than at a faster pace. Fi-

nally, we expected easy texts read at normal speed to have lower predictive values

than difficult texts read at fast speed. The five resulting permutation tests per sub-

ject were computed with again 5000 permutations using all predictive values from

the three texts belonging to the same text category.

To obtain further insight into classification performance on a single-subject level

we performed an analysis of how to determine the amount of read words that need

to be classified to make a reliable discrimination between text categories. For each

word position we averaged the predictive values derived from texts of the same

category (three for each text difficulty or speed) at this position to correct for the

intra-text variance of word and text complexity at that position in that category.

This allows us to calculate the cumulative predictive value for each word position

in each category by averaging these corrected predictive values up to the selected

word position: For each word w k
n in text Tk , that is from a certain text category c ,

the cumulative predictive value c p at position n is derived by

c p c
n =

n
∑

l=1

3
∑

k=1

c l a (w k
l )

3n

Where c l a (w k
l ) denotes the predictive value derived for the word w k

l by linear

discriminant analysis. Let E be the segment of EEG data recorded for word w k
l and

P be the preprocessing of that data as described in the section 4.4.1.1. Then the

application of filter bank CSP on the preprocessed data results in a 12-dimensional

feature vector fbCSP(P (E )), as described in section 4.4.1.1. Applying LDA to this fea-

ture vector then results in the single digit predictive value c l a (w k
l )=LDA(fbCSP(P (E ))).

We plotted the development of the cumulative predictive values
�

c p c
n

�

nε{1,...,422}

for each word position in each text category. As the shortest text contained 422
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words we only considered the cumulative values of each text category up to the

422nd word. We plotted all four combinations of factor comparisons (difficulty

(easy vs. difficult) vs. presentation speed (normal vs. fast)) for each subject. Each

trained task-independent predictive model is a probabilistic operator with a certain

error rate. Hence, each (cp(cn ) should only be considered as an estimate of the actual

workload at that word position. We calculated the individual variance of the error

of the predictive values for each subject by applying the mental workload classifier

again to the calibration paradigm data. The standard deviations of the predictive

values for each class were averaged and served as a criteria for the error range for

the cumulative predictive values
�

c p c
n

�

nε{1,...,422}: For each subject the classifier de-

viation is defined as D :=
s t d (C 1)+s t d (C 2)

2 , where (C k ) denotes the standard deviation

of the predictive values for class k . Since it is taking all predictive values considered

into account, cp(c422) can be seen as the most informed estimate of the workload as-

sociated to that text category. The stability word position W is defined as the highest

word position where the cumulative predictive value exceeds the (rather conserva-

tive) criteria of one quarter of the classifier deviation from cp(c422): For each subject

and text category c , W c := cpc
M , with M =ma xn

��

�c p c
n − c p c

422

�

�> D
4

�

. The cumula-

tive predictive values for each word position following W c can then be considered

to be an estimate for the workload associated to the corresponding text that is as

good as that from cp(c422) . In other words, the text position of the stability word

serves as an estimate of how many words of a text a single person must read such

that the task-independent predictive model can provide a best estimate for mental

workload induced by that particular text category. For each subject, we plotted the

highest text position from the four determined stability word positions (for the four

different text categories) as the general stability word position. We assume that after

this text position, we can use the cumulative value at this text position as a reliable

indicator of induced mental workload for all text categories.

4.4.2 RTLX

Subjective workload ratings assessed in the RTLX questionnaire were converted

to workload scores according to NASA-TLX procedures (Hart, 2006). These scores

were then subjected to a two-way repeated measures ANOVA. The two within fac-

tors are text difficulty (easy vs. difficult) and presentation speed (normal vs. fast).

4.4.3 Literal text comprehension

For each subject we collected the number of incorrect answers (total of 9 questions

per block, three questions per text) per text category. We then computed a two-way

repeated measures ANOVA, with the two within factors text difficulty (easy vs. diffi-
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cult) and presentation speed (normal vs. fast) for the counts of correctly answered

questions.
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4.5 Results

4.5.1 EEG data

4.5.1.1 Mental workload paradigm

Table 4.1 gives an overview of classification error rates estimated from cross vali-

dation in the mental workload paradigm of all initial thirteen subjects. The aver-

age estimated classification error rate was 25.9 percent (SD = 4.9). We performed a

check to see whether individual results provide evidence that the task-independent

predictive model had classification accuracies that are significantly better than ran-

dom classification, taking the confidence interval into account (see Müller-Putz et

al. (2008) for a detailed description of this approach). The results show that, for all

but one subject, classifications are expected to be clearly better than random clas-

sification. Therefore, this subject was excluded from further analysis.

Table 4.1 Estimated classification results of the mental workload paradigm for
all initial thirteen subjects. Obtained error rates (ER) from (5,5) cross valida-
tion in percent and their standard deviations (SD), resulting from variance in
the classification error estimated from each run of the cross validation are re-
ported.

subject calibration error SD

1 23.3 2.0

2 31.0 12.0

3 13.9 3.1

4 25.0 3.4

5 27.1 3.2

6 28.6 6.5

7 10.9 5.5

8 27.8 3.2

9 31.8 2.4

10 27.0 8.4

11 35.8 5.7

12 13.3 4.2

13 41.8 4.1

average 25.9 4.9

Figure 4.3 depicts that the spatial patterns resulting from the classifier model

show a clear focus on fronto-central electrodes for the theta band and on parietal

electrodes for the alpha band, providing evidence that the filters derived by fbCSP
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are in accordance with the underlying neurophysiology.

Fig. 4.3 Spatial patterns available to the mental workload task-independent
predictive model averaged over all twelve subjects where classification was
discriminative. For the high mental workload condition (class 1) the patterns
show a clear increase in frontal theta and a decrease in (lateral) parietal alpha.
These results are in accordance with findings from scientific literature regard-
ing the effects of increased mental workload.

4.5.1.2 Text reading paradigm

Subject specific text-group averages of predictive values are displayed in figure 4.4.

The two-way repeated measures ANOVA (see figure 4.6 a)) performed on mental

workload predictive values yielded significance for the main factor text difficulty, F

(1,11) = 5.04, p = .046. Predictive values of difficult texts (M = .618, SD = .272) were

higher than predictive values for easy texts (M = .553, SD = .259). The main factor

text presentation speed was significant as well, F (1,11) = 11.64, p = .006. Predictive

values of texts presented at normal speed were lower (M = .559, SD = .267) than

those of texts presented at the increased speed (M = .616, SD = .264). There was no

significant interaction, F (1,11) = .036, p = .854.
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Fig. 4.4 Subject-wise predictive values of mental workload derived from ap-
plication of the task-independent predictive model trained on data from the
mental workload paradigm to text reading data. For each text reading condi-
tion all predictive values of all three texts belonging to the respective condition
were averaged. The dotted line displays the grand average of all subjects (n =
12). The results of the ANOVA and the related permutation tests across subjects
are validating the general hypotheses (as depicted in the dotted line), while ac-
cording significant differences between conditions within subjects (solid lines)
were also found in subject-specific permutation tests.

The results of five from the six permutation tests across subjects were highly sig-

nificant (all ps < .0001). Only in the case where predictive values of easy texts pre-

sented at fast speed tested against predictive values from difficult texts presented

at normal speed, results were not significant (p = .340). However, absolute values

of observed differences in predictive values between text conditions (M = .058, SD

= .036) were much smaller in all tests than variances of predictive values within text

conditions (M = .265, SD = .011). Effect sizes were accordingly small (M = .181, SD
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= .069), ranging between .129 (easy fast vs. difficult fast) and .301 (easy normal vs.

difficult fast) in tests with significant results.

Fig. 4.5 Results of subject-wise one-tailed permutation tests performed on pre-
dictive values. For each test the category first named in the table was expected
to have lower workload predictive values. We also noted the individual stabil-
ity word position for predictive values (indicating how many words need to be
read to make a reliable estimation of the average predictive value the reading of
a text induces in the specific subject), as well as the classification error rate of
the mental workload classifiers. The tests were Bonferroni corrected for mul-
tiple testings in each subject, resulting in a significance level of .01
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Fig. 4.6 Cumulative predictive values derived from the predictive models of the
mental workload classifiers. Predictive values of all three texts per category
were averaged and cumulated for each successive word in the texts. The devel-
opment of cumulative predictive values for all four text reading conditions is
shown for the first 422 words in the texts. On the x-axis the text position of the
word is displayed. On the y-axis the averaged cumulative predictive values are
noted. The individual stability word position (highest of all for text categories)
is indicated by a vertical black line.

On single-subject level, one-tailed permutation tests (see table 4.5) showed sig-

nificant results for 9 of 12 subjects when predictive values of easy texts and difficult

texts, both read in normal speed, were tested against each other. 9 tests also yielded

significance when easy texts read at normal speed and difficult texts read fast were

compared. When we compared predictive values from difficult texts read at nor-
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mal and fast speed, 9 of 12 permutation tests were significant. For easy texts read

in normal and fast speed 8 of 12 tests yielded significance. The lowest count of sig-

nificant permutation tests was reached when we tested predictive values of easy

and difficult texts read at both fast speed against each other – here only 7 of 12 tests

had significant results. The average number of significant permutation test results

was 3.67 (SD= 1.07) per subject out of 5 tests. Overall effect sizes of significant per-

mutation test results are close to medium with an average effect size of -.444 (SD

= .379). The individually determined stability word position (see figure 4.6) was at

text position 130.83 (SD = 72.72) on average.

4.5.2 RTLX

The two-way repeated measures ANOVA (see figure 4.7 b)) performed on subjective

workload ratings revealed significance for the main factor text difficulty, F (1,11) =

6.98, p= .023. Overall difficult texts (M= 24.98, SD= 10.76) received higher mental

workload ratings than easy texts (M= 22.78, SD= 10.51). Results for the main factor

presentation speed were significant as well, F (1,11)= 6.48, p= .027. Texts presented

at the normal (M = 21.95, SD = 10.18) self-adjusted reading speed received lower

RTLX ratings than texts presented with an increase of 40 percent (M = 25.81, SD =

11.09). The interaction was not significant, F (1,11) = 1.87, p = .199.

4.5.3 Literal text comprehension

Individually adjusted text presentation rates from all subjects ranged between 150

and 500 wpm. The average adjusted reading speed was 269 wpm (SD = 109 wpm).

The ANOVA performed on incorrect answers given to literal text comprehension

questions (see figure 4.7 c)) revealed neither significant main effects, nor an inter-

action effect, all ps > .249. On average subjects answered 2.6 (SD = 1.7) questions

out of nine per text block incorrectly. An average of 2 (SD = 1.8) incorrect answers

was given for easy texts and 3.1 (SD = 1.3) for difficult texts presented at normal

speed. For texts blocks with an increased presentation speed, questions on easy

texts were answered 2.7 (SD = 1.5) times incorrectly on average and difficult texts

2.8 (SD = 1.9) times.
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4.6 Discussion

The aim of this investigation was to examine whether a task-independent predic-

tive model for mental workload detection shows a sensitivity high enough to iden-

tify the individual difficulty induced by reading a specific text. The results of the

presented experiment show that an individually calibrated model shows signifi-

cant differences between reading easy and difficult texts at different presentation

speeds.

Regarding text readability, results from EEG data suggest that we can signifi-

cantly distinguish easy from difficult texts, even on single-subject level, even though

variances of mental workload predictive values within and between subjects are

high. High variances between subjects most probably are a result of different intra-

subjective ratios between arithmetic and text reading abilities.

To our knowledge no other study has yet investigated whether text difficulty

and reading speed can be directly deduced from mental workload assessed by EEG.

Studies (e.g. Schultheis and Jameson (2004)) have investigated changes in EEG ac-

tivity induced by reading. They provided a descriptive analysis of that brain activ-

ity, but did neither identify sensitive and specific cognitive processes – like mental

workload – related to that activity, nor did they define and investigate a measure

from which text difficulty or reading speed could be deduced.

The neuroadaptive measure defined here showed overall that, predictive values

were higher for words from difficult texts than for words from easy texts. Moreover,

on single-subject level for nine out of twelve subjects, mental workload predictive

values were significantly higher for difficult texts than for easy texts when reading

at a self-adjusted speed level. If difficult texts were read with an increased speed,

predictive values for mental workload were even higher and more distinct from the

lower predictive values of easy texts read at normal speed. The latter was the case

for nine out of twelve subjects as well. When we compared predictive values of

easy and difficult texts both read at an increased speed, only seven out of twelve

permutation tests yielded significant results.

Regarding differences in mental workload induced by different text presenta-

tion speeds we found a highly significant effect for increased presentation speeds

on mental workload predictive values. On single-subject level, in nine out of twelve

cases mental workload predictive values were higher for difficult texts when they

were read at an increased speed compared to reading at a self-adjusted speed level.

For easy texts, in eight out of twelve subjects’ predictive values were considerably

higher when reading at increased texts presentation speed opposed to reading at a

self-adjusted speed. As the chosen texts were written for specific target groups (ed-

ucated adults and young teenagers), it can be assumed that the difficulty of each
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category is aimed at a certain educational level. Furthermore, measures for text

complexity confirmed a difference between easy and difficult texts (see section Ma-

terials and Methods – Stimuli and procedure 4.3.3– 2. Text reading paradigm) and

an increase of reading speed should add a stable amount of mental workload for the

reader. Taken together, it can be assumed that each full text induces a certain level

of mental workload when read, and that these levels can be identified by the used

predictive models. The classifier outputs are in line with this assumption as shown

in figure 5 and table 2. The curves in figure 5 stabilize after about 130 words, show-

ing that the classifier outputs converge to a clear estimate of the induced mental

workload, already after about 30 seconds of reading. In addition, a clear, expected

difference in measured workload can be seen across subjects between the differ-

ent text categories, as validated by the ANOVA and depicted in figure 4. In conclu-

sion, the results of this study are fully in line with the expected effect of the stimuli

on the mental workload of the readers, providing a high validity to the used task-

independent approach based on passive BCI.

Results of the ratings given in the RTLX questionnaire assert that readers per-

ceive a rise in reading speed of 40 percent as an increase in subjectively experienced

mental workload. Also, reading difficult texts was associated with higher scores for

mental workload as compared to easier texts. We therefore conclude that the sub-

jective experience of mental workload was in accordance with the properties of the

predictive values we obtained from the predictive model for each subject with re-

gard to changes in text readability and reading speed.

Since no statistical differences in literal comprehension were shown between

different text difficulties and presentation speeds, it can be concluded that an in-

creased presentation speed did not lead to lower levels of literal comprehension

in our study. On average, two thirds of the comprehension questions within each

text block were answered correctly by subjects. Thus, the results from literal com-

prehension questions indicate that subjects read all variations of texts attentively

and with the same level of basic understanding. However, as we did not include

more complex comprehension questions that require for elaborated inferences, we

cannot rule out that higher comprehension processes might have suffered from in-

creased reading speeds.

The self-selected presentation speed for the normal presentation showed a large

variance between subjects. The aim of selecting the individual speed was to gener-

ate a speed that is comfortable for each individual reader, neither overloading nor

boring them. The results of the text comprehension analysis showed a high com-

prehension rate with low variance, indicating that subjects could follow the texts

easily. This leads to the conclusion that the presentation speeds were indeed com-

fortable for the subjects, even though the presentation speeds differed strongly be-
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tween readers. The overall duration of our experiment was a little less than an hour

on average. We took several counter measures to avoid fatigue overall, as well as

possible effects of it. Firstly, participants were allowed several breaks throughout

the experiment to recover from tasks they were performing. Even if fatigue or high

workload were not avoided by those breaks, they should not have an effect on the

results we saw from the experiment, as the order the four text categories presented

to subjects was randomized and the overall duration of the experiment was about

the same for all subjects, so the induced fatigue should not vary among subjects.

Altogether, the results showed that the task-independent predictive models are

capable of identifying different levels of text readability and presentation speed on

single-subject level. We proposed an estimate of how many words need to be read

to make a reliable estimation of the average mental workload associated to a text.

This criterion suggests that an average count of about 130 words would be suffi-

cient.

In conclusion, the presented results allow to add text readability and presen-

tation speed to the task domains the task-independent mental workload classifier

introduced in Krol et al. (2016) and further investigated by Zhang et al. (2018) can

be successfully applied to.

The presented approach deviates from often-used practices of binary classifi-

cation based on BCI and aims at the identification of the levels of workload on a

continuous scale. Results presented here support the idea that, in future applica-

tions of this approach, the subjective reading difficulty of a certain section in a text

can be identified based on estimations of the induced mental workload. It, hence,

is not necessary to define certain categories of difficulty for texts, as done in the

presented experiment. Instead, the subjective, momentary reading difficulty of a

text can be traced over time on a continuous scale.

However, it remains unclear how well the predictive model would perform for

texts whose readability is more similar than that of the texts used in this study. The

precision of the mental workload classifier should be further investigated in future

research by presenting subjects with a larger spectrum of readability levels. Fur-

thermore, smaller steps of presentation speed alternation should be examined in

order to investigate how mental workload predictive values are changed at presen-

tation speeds lower than an individually adjusted level. It would also be of interest

to determine whether or not predictive values behave linearly with changes in text

readability and presentation speed.

In a real-world reading scenario, the main goal of the user is to read a specific

text. From a user experience point of view, it would be bothersome to have to in-

vest additional time and effort to enable a more individualized user support for the

main task of reading. For the implementation of a neuroadaptive reading interface
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currently such additional effort must be invested by the user, as he undergoes an

initial calibration phase to collect training data for the task-independent mental

workload classifier. In the future, this time consuming step in creating a neuroad-

aptive reading environment could become unnecessary through the establishment

of a mental workload classifier that is not only task-, but subject- independent as

well. In such a universal classification (Zander (2012), p. 96ff. and p. 142ff.) a classi-

fier can be defined that can be transferred between sessions and even between sub-

jects, leading to reduced calibration time for an individual subject or even making

it obsolete. Approaches towards such universal classification focusing specifically

on mental workload are currently investigated (see e.g. Durkee et al. (2016); Zan-

der (2012)). Another approach for reduction of calibration time is transfer learning

between calibration sessions (Jayaram et al., 2016) which has already been applied

to motor imagery classification contexts (J. M. Krauledat (2008), p. 90ff.). In future

investigations such approaches for a reduction of calibration time should be inves-

tigated for the here presented neuroadaptive reading environment.

In addition, it would be of interest how well the results from this study can be

generalized to other forms of reading and text presentation techniques (as e.g. tra-

ditional continuous text reading). We assume that in further studies other reading

scenarios could be investigated by additional collection of eye-tracking data. This

would enable us to map which word of a text currently is read by a subject to the

corresponding EEG data we record.

Though exceeding the scope of this study, it should be further investigated in

what way mental workload is affected by RSVP reading itself. It has already been

found that workload can be increased when long text passages are read with RSVP

presentation (Öquist and Goldstein, 2003) and mental workload in general is higher

for RSVP reading compared to traditional (continuous) reading (Gannon et al., 2016).

An analysis and comparison of RSVP reading and traditional reading regarding men-

tal workload is not a part of our work presented here as it is outside of the realm

of the research questions we pose, which is restricted to RSVP reading only. In a

follow-up study, where the generalizability of our results to traditional reading will

be tested, this comparison of reading techniques would be investigated in more

depth.

Moreover, in this feasibility study the subject’s reading fluency was not assessed.

Hence, possible effects of reading fluency on the classifier performance and work-

load prediction was not analyzed. In a follow-up study with more subjects the ef-

fects of reading fluency should be investigated.

While effect sizes on individual data are at a good level, those between subjects

are rather small. This can be seen as a result of the high variance of the predictive

values between subjects, as shown in figure 4. Currently, the reason for this high
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variance is unclear. We assume, though, that it is a result of differences in mathe-

matical abilities and reading skills, which should be investigated in future studies.

As reproducibility of results is relevant, specifically for new approaches as pre-

sented here, all preprocessed data and analyses code will be linked at the website

of the Society for Neuroadaptive Technology (www.neuroadaptive.org).
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4.7 Conclusion

Neuroadaptive systems have the potential, if well designed, to decrease mental work-

load for users during interaction with a system (Byrne and Parasuraman, 1996).

Such a system can continuously learn while the user interacts with the machine

and thereby build and refine a user model that allows for individualization of soft-

ware and contents over time. Such a model would reflect highly subjective aspects

of information that are not typically included in methods relying on large amounts

of objective data. Statistical inference (see Vapnik (1999b)) based on large amounts

of data can be used to calculate general readability metrics, but leave no room for

adaptations based on individual, momentary situational changes (such as changes

in a person’s mindset). It is precisely this kind of transient information, however,

that is paramount for correct situational interpretation in general (Hudlicka and

Mcneese, 2002). We propose that the approach presented here could be used to

complement models built through statistical inference on large amounts of data by

providing information about the subjective, momentary interpretation of the hu-

man. Technology could then not only learn to understand general patterns that

exist in our world, but also gain a better understanding of the momentary mindset

of individual human beings in this world. The study presented here provides an

additional, supportive argument – with the example of mental workload – for this

vision.

We demonstrate that predictions made by the task-independent predictive model

trained to identify levels of workload can be utilized in order to assess differences

in text readability on a single-subject level. Additionally, changes in mental work-

load induced by different levels of text presentation speeds are also reflected in the

output of the model. These levels can be distinguished through the classifier’s pre-

dictive values of about the first 130 words read, which took about 30 seconds in our

experiments. With that, the system can gain an understanding of the current effect

a text has towards the reader’s cognition and adapt itself accordingly.

Even though questions regarding the precision of the mental workload classifier

in practical contexts remain to be answered, the results of our study suggest pos-

sible benefits this measure could bring in the form of a neuroadaptive system for

(speed) reading applications.

A user model with a classifier trained over time to identify text readability levels

for an individual user could automatically adapt parameters of the reading applica-

tion in real-time, e.g. the presentation speed. Conducting such adaptations within

a closed-loop system between reading application and reader can elicit changes in

the user’s mental state. These changes can then be fed back to the system again

to perform further adaptation or to learn from the induced changes in mental user
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state for future adaptation. The implementation of a neuroadaptive reading ap-

plication could enable more effective, individualized reading at a balanced level of

workload. Readers should neither be over- nor underloaded while reading for an

optimal state of mind to process and store the information read. This was firstly

discussed in instructional design theories (e.g. Vygotsky and Cole (1978); Salomon

(1984)). The main problem for the application of these theories is to measure the

current, actual mental workload, which was difficult so far. The idea of using neu-

roadaptive interfaces to solve this problem is discussed for the first time in a gen-

eral sense in Gerjets et al. (2014). The work presented here builds up on these con-

cepts and describes an approach that allows for the assessment of mental workload

while reading a text. The next steps will be the use of this information in an adaptive

reading interface, closing the loop and keeping the reader in an improved cognitive

state, which can be done in different ways. Apart from presentation speed changes,

possible adaptation of readability levels might include real-time exchange of words

or restructuration of the text material. If the system has e.g. detected that the cur-

rent material is difficult for the user to read, infrequent words could be automati-

cally exchanged by easier synonyms. Furthermore, sentences could be restructured

in order to reduce sentence length. Further possibilities for real-time text simplifi-

cation have been discussed in Crossley et al. (2011).

This study shows a new example of how passive Brain-Computer Interfaces can

be used to develop innovative Neuroadaptive Technologies. It also suggests ways

how such technology could be implemented, inspiring studies that are not aiming

at evaluating BCIs, but furthermore investigating how this approach can be inte-

grated into technologies to support people in their daily life. Neuroadaptive sys-

tems capable of inducing user-specific adaptation to the system’s behavior might

not only improve reading experience but could be particularly useful in any workload-

sensitive context, such as personalized learning environments or online tutoring

systems, leading to new ways for technology to present information to us.









CHAPTER 5

Study 3: Monitoring neural correlates

of human moral assessments for

future human-machine value

alignment

5.1 Motivation and summary of the study

As introduced in 2.7.7 the scope of potential areas of applications (in HMI) for pas-

sive BCI technology could be broadened if even more mental states were assessable

in a user on a single-trial basis through passive BCI technology.

Effective moral value alignment between machines and humans is widely re-

garded as essential for successful future human-machine interaction (HMI). For

this aim, autonomous moral agents (AMAs) must be enabled to learn about how

morally right or wrong their behavior is evaluated. These moral evaluations could

come from the human user who is immediately affected by the agent’s behavior. Po-

tentially, neurophysiological measures reflective of human moral evaluation might

help to achieve this goal.

In this preliminary study we examined the foundations of enabling an intelli-

gent system to automatically assess information about its user’s subjective moral

evaluation through a passive BCI, while the user is interacting with the machine.

Passive BCIs extract information with no need of awareness from the human user,

cognitive overload or any distraction from the ongoing context is avoided. The ap-

proach is thus practically applicable in uncontrolled scenarios. Over time, the AMA

would build up a moral experience by continuously updating a moral value repre-

sentation through learning directly from the user’s cortical responses to moral as-

pects of the context. In that way, an AMA could be morally aligned neuroadaptively

towards a specific user.

159
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To that end, the aim of this study was to investigate neural markers of human

morality and whether a personalized passive BCI can be trained successfully, to dis-

tinguish between morally objectionable and neutral information, hence to be sen-

sitive to moral evaluation as a user state. To date, some neurophysiological studies

indicate that the ERPs of stimuli which are subjectively perceived as morally accept-

able or unacceptable show significant differences in ERP components. However, it

has not been investigated yet, whether these differences in the EEG signal can be

used on a single-trial basis to train a passive BCI classifier model that is sensitive to

human moral evaluation.

This investigation aims to shed light on the question if the output of a passive

BCI can serve as such an indicator of moral evaluations and can therefore be em-

ployed as a reward function to reinforce the moral value representation in an AMA,

potentially in real-time, to that of the perceiving user and provide further insight

into the neurophysiology of human morality. This approach towards neuroadap-

tive human-machine moral value alignment could pose an important step towards

improved and individualized HMI, as well as a basis for successful future human-

machine collaboration.

In the presented study, a picture-based calibration paradigm was developed,

containing pictures which were ranked as morally unacceptable, as well as morally

neutral. We trained a passive BCI classifier model to distinguish between those two

trial classes on a single-trial basis on the basis of recorded EEG data. Results of this

approach showed low classification accuracies which were not better than random.

We then transferred the same passive BCI classifier calibration approach to EEG

data from two other studies (Leuthold et al. (2014) and Berkum et al. (2009)) which

already recorded and investigated differences in EEG between moral properties on

a neurophysiologocal ERP analysis level, where they found significant differences

between morally acceptable and unacceptable trials on an averaged level. For both

of these studies classification accuracies again turned out to be very low. The results

of our study indicate that, to date and with state of the art classification approaches,

it is not possible to train an individualized passive BCI classifier model to reliably

distinguish between a user’s subjective moral evaluations on a single-trial basis.

5.2 Theoretical background

5.2.1 Autonomous Systems

Intelligent computer technology has become indispensable in modern society. Through

advances in artificial intelligence (AI, Russell and Norvig, 2010) – the ability of a

computer or computer-controlled robot to perform tasks commonly associated with
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intelligent beings – machines handle mounting complex tasks with more precision

and in less time than humans. Such intelligent systems have the "capacity to ac-

quire and apply knowledge in an "intelligent" manner and have the capabilities

of perception, reasoning, learning, and making inferences (or decisions) from in-

complete information" (p.4, Karray et al., 2004). The capabilities of intelligent sys-

tems to learn how to solve problems successfully from more complex data have en-

hanced through advances in machine learning (ML, Bishop and Nasrabadi, 2006),

deep learning (Goodfellow and Bengio, 2016) in particular.

To this day the tasks intelligent systems are capable to perform are focused on

highly specific domains (i.e. playing chess (Newborn, 2012) or image classification

(Yang et al., 2002)). However, the scope of tasks intelligent systems are employed

to is mounting, progressively resulting in enhanced interaction between humans

and technological systems through ambient intelligence (Tapia et al., 2010), e.g. in

human-agent teamwork in eHealth (Ball et al., 2010) or personalized learning as-

sistants (Canbek and Mutlu, 2016). In addition, intelligent systems are increasingly

entrusted to autonomously respond to their environment, independent of direct

instruction, as e.g. autonomous cars, assisted living technology or vacuum clean-

ers (Kleinberger et al., 2009; Baber et al., 2005; Saffiotti and Broxvall, 2005). Such

autonomous systems can detect changes in their environment in real-time, mean-

ingfully segment this information to learn about underlying patterns in order to

effectively make a decision and act accordingly.

Regarding successful interaction and collaboration between humans and au-

tonomous systems the question arises, in accordance to which moral values an

autonomous agent obtains its decisions. Thus, as machines act with reduced hu-

man supervision, design principles for intelligent systems are needed that are non-

conflicting with human moral goals (Russell, 2016). Thence, different disciplines of

research have been concerned with the question of how a representation of human

moral values can be implemented in autonomous machines and how such a ma-

chine can integrate those moral values into its decision-making process. The value

alignment problem (Soares and Fallenstein, 2014) – a specification of a moral value

representation for machines reflecting human values – can be structured in three

sub-problems (Yampolskiy, 2019). The first of the sub-problems is concerned with

personalized moral value extraction from individual persons, while the other two

deal with an integration or combination of moral values of humanity as a whole.

Yampolskiy (2019) argues that research should focus on implementing a "solution

which optimally aligns with individual preferences of each user" (p.1), as such a

system would "be easier to design, implement and safeguard" (p.2) due to overall

lower complexity than trying to implement the “likely impossible to solve problem
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of multi-agent value aggregation” (p.4).

5.2.2 Artificial Moral Agents

Artificial moral agents (AMA, Allen et al., 2000) are machines that possess the abil-

ity to reason morally. Thus, autonomous AMAs are systems equipped with a moral

value representation which influences the process of selecting one alternative of

a set of possible actions. Different areas of research have developed theories and

rudimentary implementations of AMAs through different approaches (see e.g. Allen

et al., 2005; Wallach and Allen, 2009).

In top-down approaches, machines are provided with explicit decision rules

and parameters for selection of morally appropriate actions. Such AMA architec-

tures are often based on explicit formulations of normative systems (e.g. utilitari-

anism, Kantian deontology, Ten Commandments, Asimov’s laws of robotics) and

are mostly implemented through logic programming. One problem for the imple-

mentation of AMAs through top-down approaches is that there exists no consen-

sus among different groups and cultures of humans – and even within individu-

als themselves – regarding which existing normative system would be overall pre-

ferred to be implemented in an AMA. In case a set of different moral normative

systems gets implemented in the AMA at once, it can become impossible to reach a

moral decision due to contradicting moral policies. Additionally, according to the

frame problem (Dennett, 1984; Shanahan, 2000) it is often difficult to know which

information is (ir)relevant in a situation and therefore should(n’t) be considered for

moral decision making (Wallach, 2010).

AMAs can be implemented through a bottom-up approach, as well. Here, data

is provided to the machine, representing situations and the morally preferred so-

lution for each case. To derive a model of the underlying human morality, ML al-

gorithms are applied to find patterns – in form of transitive, systematic relations

between events and moral evaluations – in the data. Hence, the representation of

human morality in this approach is a non-static set of rules emergent by learning,

rather than a set of predefined rules and parameters. An example for the bottom-

up approach is the Moral Machine (Awad et al., 2018) project where crowd-sourced

data was used to train an algorithm to decide about moral dilemmas in the context

of self-driving cars. A problem posed by bottom-up approaches is the absence of

transparency, as often it can be challenging to reconstruct a system’s moral reason-

ing (Misselhorn, 2020). Further, as required by current ML approaches, the collec-

tion of large amounts of training data implies high effort and time. Many people

must be questioned regarding their views on specific morally laden situations for

a variety of topics, to achieve a close-to-complete representation of human moral
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values.

As there are relevant limitations to the two approaches above, and currently no

other concepts of great significance are available, it is largely proposed (Allen et al.,

2005; Misselhorn, 2018) that a hybrid approach would prove most effective. Here, a

predetermined fundamental framework of moral decision-rules (top-down) that is

subsequently customized to particular moral scenarios through learning processes

(bottom-up) combines the advantages of both methods. A hybrid approach could

maintain transparency about the underlying processes the system bases its moral

decisions on.

5.2.3 Machine Morality for Human-Machine Interaction

A successful future collaboration between humans and machines is based on a form

of machine morality (Wallach et al., 2008) - machines inhabiting a capacity to as-

sess and respond to moral challenges autonomously – as discussed above. Value

alignment between robots and humans is widely regarded as advantageous for suc-

cessful HMI.

Goetz and Kiesler (2002) e.g. found that personality traits that are displayed by

a robot during HMI can influence the user’s willingness to comply with the robot,

such as AI assistants like Apple’s Siri, Google’s Assistant or Microsoft’s Cortana. Ad-

ditionally, trust is an important factor that mediates interactions between intelli-

gent systems and users (Ghazizadeh et al., 2012). Further, social relatedness seems

to be a factor influencing task performance (Tapus and Matarić, 2008).

Above that, in deliberations concerning AI safety (Amodei et al., 2016)– partic-

ularly in the prospect of sophisticated AI systems potentially leading to superin-

telligence (Shanahan, 2019) – it is widely proposed to aim for intelligent machines

equipped with a moral value representation benevolent towards humans (V. C. Müller

and Bostrom, 2016; Sarma and Hay, 2017). In point 10 of 23 of the Asilomar Princi-

ples (2018) - a set of ethical guidelines for AI developers under the aspect of AI safety

declared by AI experts at the Future of Life Institute’s Beneficial AI Conference 2017

- it is stated that „highly autonomous AI systems should be designed so that their

goals and behaviors can be assured to align with human values throughout their

operation”.

In humans, "morality is primarily learned, built up through experience, trial and

error" (p.152, Allen et al. (2005)). To provide a similar process to a machine, Allen

et al. (2000) propose developing AMAs through a form of simulated childhood. It

would consist "of a training period involving feedback about the moral acceptabil-

ity of actions" (p.258) through an associative learning scheme, e.g. artificial neural

networks. The AMA would work towards an acceptable level of moral behavior by
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going through a series of learning situations created by humans. Quoting Alan Tur-

ing’s idea of the child machine (Turing and Haugeland, 1950), Allen et al. (2005) ar-

gue that putting the computer through an education process, as a child undergoes,

the machine can acquire sensibility towards moral actions and evaluations similar

to humans. Through an ongoing experience process of trial and error, the machine

can then update and refine the learned model of human morality through feed-

back allocation during interaction with humans. The mentioned education process

can be implemented through hybrid approaches, but there is currently no mech-

anism to implement the experience process, which would require an “endless flow

of fresh real world data that expand the domain the system peruses in its quest”

(p.152, Allen et al., 2005).

Approaches for implementation of actual AMA architectures, as introduced in

ii, are highly interdisciplinary with relevant limitations for now, but as pointed out,

a combination of bottom-up at top-down architectures seems promising. Similar

to Yampolskiy (2019), Misselhorn (2018) proposes, that for the bottom-up part, a

moral system might be designed "to adapt to the individual moral value profile of

[a specific] user" (p.166). This would entail representing interindividual differences

in how people weigh moral values, as well as intraindividual changes in importance

of certain moral values in different phases of life (Misselhorn et al., 2013). To im-

plement such a system, Misselhorn (2018) suggests the machine presents scenarios

of morally relevant situations to the user to then develop a moral value represen-

tation based on the user’s reaction to those scenarios. The individual moral model

can then be continuously trained and adapted through interaction between the in-

dividual user and the machine where moral values are weighted and recognized.

Hereby, the system could gain a capacity to incorporate a form of human-imitating

morality into its actions, learning over time to decide what is morally good and bad.

Especially in contexts where a single user is affected by the system’s decisions, "the

system’s decisions should come as close as possible to the decisions that the user

would make in corresponding situations" (p.8, Misselhorn (2018)). Here, the sys-

tem would function as a "moral avatar" (p.8) of its user to improve human-machine

collaboration.

5.2.4 Approaches for Human-Machine Value Alignment

Different approaches have been proposed to accomplish value alignment. E.g. the

Quixote program (Riedl and Harrison, 2016) is aiming to teach morality to robots.

By reading narratives, robots are trained about acceptable sequences of events and

successful ways to behave humanly moral. Here, in accordance to the text’s con-

tents, the machine starts acting morally, as a plot graph is translated into a tra-
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jectory tree from which a reward function is derived for Q-learning (Watkins and

Dayan, 1992). Riedl and Harrison (2016) argue that this approach is suitable for

agents with limited application domains, but a need to interact with humans to

achieve their purpose. This story reading approach can serve towards value align-

ment by training a moral agent in its moral education phase. This approach has

its limitations though, if the goal is to align an agent’s moral value representation

to that of an individual human and adapt this representation over time, as changes

in the user’s moral preferences can occur. Furthermore, it is questionable whether

the approach really can represent a complete moral model of a specific person, as

it appears complicated to compile it in narratives.

Currently, there are no feasible means for everyday practice to continuously col-

lect data on the human user’s moral evaluation of an agent’s moral behaviour. Do-

brovsky et al. (2017) asked participants to observe and evaluate actions of intelli-

gent systems in a serious gaming context. The evaluation, communicated through

button presses, was used as a context-sensitive score for a reward function to en-

able reinforcement learning (Kotsiantis, 2007; Lample and Chaplot, 2017). This ap-

proach of active evaluation, however, is cumbersome and demanding for the ob-

server, poses a potential source of error in highly complex environments and takes a

lot of time to generate larger data sets. Further, active moral evaluation through the

user might interfere with the very process we are aiming to measure, as the user ac-

tively allocates cognitive resources towards the communication of the moral eval-

uation and away from their primary task or activity. Subjective moral evaluation

in real-time would be necessary, though, if the AMA’s moral value representation

should be adaptively aligned to that of its user. Here, an unobtrusive measurement,

indicating the user’s moral assessment towards the machine’s actions, without dis-

traction from the task at hand, would be helpful. Misselhorn (2020) proposes to

"classify the evaluations of the scenarios by the user with the help of an emotion-

recognition software" (p.18). Modern approaches to directly assess information

from brain processes can provide an additional, and probably advanced, solution

for the problem of automatic user-state detection.

5.2.5 Neurophysiology of Human Morality

Moral reasoning and the acquisition of morality in humans has been investigated

in several neurophysiological EEG based studies which found several ERP compo-

nents reflective of cognitive moral evaluation. ERPs’ waveforms are described ac-

cording to latency (in ms) after stimulus onset and amplitude (N - negative, P –

positive), e.g. P300 as described in section 2.4.1. Lahat et al. (2013) showed that

compared to typical (semantic) deviations, moral violations produced greater N200
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amplitudes. Loke et al. (2011) found associations between the P300 and a late posi-

tive potential (LPP - typically starting 300-500 ms after stimulus onset) as responses

to moral scenarios and prosocial behaviors. Leuthold et al. (2014) saw a fronto-

central LPP when participants were presented morally unacceptable statements

or behaviors. The LPP was found by Berkum et al. (2009) as well, alongside an

N400, in response to morally objectionable statements. Yoder and Decety (2014)

also found that differences in moral evaluation were reflected in differential am-

plitudes in the LPP, as well as in the N100 and N200, with the right inferior parietal

cortex and medial prefrontal cortex as potential locations of cortical areas, sensitive

to those moral evaluations. Event-related analyses have the advantage of providing

information to specific events in the context directly and typically provide a good

signal-to-noise ratio. Frequency based analyses (e.g. Fumagalli et al., 2011) would

provide continuous information about cognitive states of morality, but were not

investigated in this study.

As detailed above, some aspects of a human’s internal state are reflected in mea-

surable, neurophysiological changes and can provide insight into the internal psy-

chological state, i.e. into the user’s cognition, emotions, and intentions. The pre-

sented results from moral research demonstrate that aspects of moral cognition

can be measured by EEG recordings. Later components of the ERP, like the LPP, ap-

pear to be good candidates for a general correlate of moral value violations, while

its specificity and its cortical sources are little investigated.

5.2.6 Utilizing Passive BCIs for Neuroadaptive Human-Machine Value Alignment

As introduced in 2.6, passive BCIs extract information with no need of awareness

from the human, cognitive overload or any distraction from the ongoing context is

avoided. The approach is thus practically applicable in uncontrolled scenarios, e.g.

in scenarios where humans interact with machines (personal computers, robots,

avatars). Based on these experiences, cortical correlates of subjective moral eval-

uation arising during human-machine interaction could be assessed in a similar

fashion and used for personalized human-machine moral value alignment, which

is the main motivation for this preliminary study.

For effective human-machine moral value alignment, AMAs must be enabled

to learn about how morally right or wrong their behavior is evaluated. These moral

evaluations could come from the human user who is immediately affected by the

agent’s behavior. Potentially, it might be possible to employ neurophysiological

measures reflective of human moral evaluation to achieve this goal. An intelligent

system could then be enabled to automatically assess information about its user’s

subjective moral evaluation through a passive BCI, while the user is interacting with
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the machine and its environment. In that way, an AMA could be aligned neuroad-

aptively. Over time, it would build up a moral experience by continuously updating

a moral value representation through learning directly from the user’s cortical re-

sponses to moral aspects of the context.

One essential foundation for realization of such neuroadaptive moral alignment

would be that cortical responses reflective of moral judgment can be identified by

a classification scheme in real-time on a single-trial level with sufficient reliability.

Hence, in this study we aim to investigate whether a personalized passive BCI can

be trained successfully to distinguish between morally objectionable and neutral

information. The data collected in our experiment therefore will be processed by a

passive BCI to determine whether classification accuracies are reasonable enough

to serve as a reliable indicator of subjective moral evaluation. Adequate classifica-

tion accuracy is of high importance if the moral value representation in an AMA

should be effectively adapted depending on the classifier’s output.

The specific research questions of this preliminary investigation are detailed in the

following section.
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5.3 Research questions

If a neurophysiological measure should serve as an indicator of human moral eval-

uation, brain responses towards morally acceptable, neutral or unacceptable infor-

mation must exhibit measurably significant differences. Results in recent studies

investigating neurophysiology of human morality through EEG measurement are

not in unison. Nevertheless, they show a sensitivity to moral evaluation in differ-

ent components of the ERP, with a focus on late potentials, like the LPP. As a first

research question of this study, I will investigate which components of the ERP can

be used reliably as an indicator for subjective moral evaluation:

• Research question 1: Does the perception of morally objectionable informa-

tion evoke an ERP that shows a significantly different morphology compared

to neurophysiological responses evoked by morally neutral information?

Further, measurable neurophysiological differences in moral evaluation should

be classifiable by a passive BCI in real-time on single-trial level. This constitutes the

second research question posed in this investigation:

• Research question 2: Can moral objection or neutrality be detected in single-

trial by a passive BCI?

To answer this question, the data collected in the presented experiment was

processed by a passive BCI, trained to discriminate between information an indi-

vidual human finds morally objectionable, or neutral, correctly classifies the infor-

mation on new data significantly better than random (Mueller-Putz et al., 2008).

Adequate classification accuracy is of high importance if the moral value represen-

tation in an AMA should be effectively adapted depending on the classifier’s out-

put. The general aim of this study is to investigate, whether the user state of moral

evaluation can be assessed through a passive BCI - not only for moral value repre-

sentation in AMAs, but also in other applications and contexts. This would broaden

the versatility of passive BCIs on a general level.
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5.4 Methods

5.4.1 Participants

Four subjects took part in this preliminary study, with an average age of 33.5 years

(SD = 7.16 years). Two of these subjects were female. All subjects’ vision was nor-

mal or corrected to normal. Prior to the experiment, subjects gave their written in-

formed consent to participate in the study. The experiment was conducted along a

guideline ethically approved by the local ethics committee.

5.4.2 Apparatus

We recorded EEG from 64 active electrodes using an EEG system from Brain Prod-

ucts (ActiChamp, Brain Products GmbH, Gilching, Germany). Electrodes were po-

sitioned according to the extended international 10/20 system, with ground elec-

trode at AF2 and reference at FCz. Electrode impedances were kept below 10 kΩ.

EEG data was recorded using the Brain Vision RDA (Brain Products GmbH, Gilch-

ing, Germany) and the LabRecorder (Delorme et al., 2012). The native sampling

rate was 500 Hz. The MATLAB embedded toolbox EEGLAB (Delorme and Makeig,

2004) was used for EEG data analysis. All BCI classification and model applica-

tion were performed using the open-source toolbox BCILAB (Kothe and Makeig,

2013). The experimental paradigm was implemented in MATLAB, using the Psy-

chophysics Toolbox extensions (Brainard and Vision, 1997; Kleiner et al., 2007).

5.4.3 Stimuli

It is the aim of this experiment to investigate a participant’s neurophysiological re-

sponse towards a stimulus in dependence of the independent variable moral ac-

ceptability. As stimuli we presented standardized pictures from the Socio-Moral Im-

age Database (SMID, Crone et al., 2018). This image database contains 2.941 freely

available pictures with ratings (scale from 1-5) for moral acceptance, valence and

arousal for each picture from 2.716 participants. Based on these rating, pictures for

three distinct experimental categories were selected:

1. moral: morally bad pictures

2. affect: morally neutral pictures with valence and arousal ratings that do not

significantly differ from those in category 1. (t-tests results: valence: t(199)=0.92,

p= 0.360, arousal: t(199)=-0.303, p= 0.762) and are therefore morally neutral,

but evoke negative affect

3. neutral: overall neutral pictures regarding morality, valence and arousal
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We chose this distinction to be able to dissociate responses evoked from moral

violations from those evoked by negative affect only, as moral violations are often

accompanied with negative emotions. The average ratings for moral acceptance,

valence and arousal for pictures from each experimental category are presented in

table 5.1. Overall participants were presented 100 pictures from each category - 300

pictures in total. For example pictures from the three picture categories please see

Appendix 4 to 6.

Table 5.1 Means and SDs for the three different stimuli categories on the moral
acceptance, valence and arousal ratings scales from the SMID

arousal moral valence

mean SD mean SD mean SD

(1) morally bad 3.62 0.45 1.88 0.34 1.56 0.31

(2) morally neutral.

affect bad
3.57 0.46 2.72 0.21 1.87 0.19

(3) neutral regarding

morality and affect
2.97 0.22 3.01 0.12 2.99 0.25

5.4.4 Procedure

Each participant was presented all 300 pictures in randomized order in blocks of

15 to 20 pictures. Following the presentation of a white cross-hair (duration 3 sec-

onds), each picture was presented in the center of an otherwise black screen for a

duration of 3 seconds with an inter stimulus interval (ISI) of 3 seconds (3 seconds

cross-hair presentation).

To ensure that participants kept their attention on the content of the presented

pictures, but without pointing towards moral evaluation, we asked participants to

briefly answer a question after each block regarding the pictures just presented (e.g.

“Which of the pictures you have just seen did you associated most with the feeling of

anger/joy/disgust etc.? Why? What was displayed in the picture?”). This question

after each block only varied by the emotion that was asked for, which was chosen

randomly from a list of 20 negative and positive emotions. Participants gave their

answer towards the question via keyboard input. After every fourth block partic-

ipants were allowed a self-paced break. The overall duration of the experimental

paradigm was approximately 50 minutes. An overview of the experimental proce-

dure and timeline is given in figure 5.1 and the experimental setup in the laboratory

is shown in 5.2.
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Fig. 5.1 Experimental timeline of the study presenting pictures from the SMID
database. 300 pictures in randomized order in blocks of 15 to 20 pictures were
presented to the participant. Each picture was displayed for 3 seconds with
an ISI of 3 seconds during which a cross-hair was shown. After every block,
participants were asked a question regarding the pictures of the block to which
they give their answer via keyboard

Fig. 5.2 Experimental setup for the SMID paradigm in the laboratory
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5.5 Data Analysis

5.5.1 ERP analysis

EEG data recorded during presentation of the SMID pictures was subjected to an

ERP analysis. The aim of this approach was to review whether the operationaliza-

tion of the experiment produced ERPs which are conform with literature. ERPs of

the investigated moral picture features were compared to ERPs from studies which

had investigated the same moral features before. Raw data from the overall four

participants was preprocessed by applying a bandpass filter from 0.5 to 40 Hz. Then

data was re-referenced to the common average reference. Epochs of 1.2 seconds

length were extracted starting 200 ms before picture presentation. A baseline cor-

rection was performed using the 200 ms before stimulus onset.

Grand average ERPs were generated from all trials of all participants for morally

objectionable, neutral and affectively negative pictures. These grand averages were

plotted for electrode sites Fz, Cz, and Pz, comparing grand averages of the three dif-

ferent condition separately and all together. The respective ERP difference curves

(1) morally bad minus morally neutral, 2) affectively bad minus morally neutral and

3) morally bad minus affectively bad) between the three trial classes were also plot-

ted, including p-values resulting from per sample permutation tests (see section

3.2.1.2), as we further analyzed the differences between the three trial classes, by

performing respective permutation tests with 5000 permutations for every sample

in the ERP as described in section 3.2.1.3.

5.5.2 Classification on stimuli features

In BCILAB features were extracted through the built-in windowed means approach

(Blankertz et al., 2011). In this approach data was first down sampled to 100 Hz

and a bandpass filter from 0.1 to 15 Hz was applied. Epochs of 800 ms length were

extracted starting at stimulus onset. For 14 consecutive time windows of 50 ms

length between 50 and 750 ms after each picture presentation, the average ampli-

tude was calculated. Classification was performed through LDA (Duda et al., 2006)

regularized by shrinkage (Blankertz et al., 2011). A (5x5)-fold cross-validation was

performed to generate an estimate of the model’s online reliability.
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5.6 Results

In this section results from ERP analyses will be presented first, followed by report-

ing classification results from three different collections of data: The first collection

of data was gathered from the experimental paradigm (described above) designed

for this study based on the pictures from the SMID database. The other two collec-

tions of data on which classification was performed came from two studies of other

research groups who investigated differences in EEG activity between morally ac-

ceptable and objectionable information and evaluation. These studies were afore

mentioned Berkum et al. (2009) and Leuthold et al. (2014).

5.6.1 ERP analyses

Grand average ERPs of the three different experimental stimuli classes (morally ob-

jectionable, morally neutral and affectively negative) were plotted and are shown

in 5.3 (overview of all three stimuli classes). Please see Appendix section for pair-

wise plots with standard deviations (1 to 3). Comparing the ERP time courses of

morally objectionable and morally neutral pictures (5.3), we see a slight early pos-

itivity (∼70ms) for morally objectionable trials after stimulus onset at Fz. We also

find a negativity around 100ms and 270ms for morally bad trials at Cz. Form around

350 ms onwards, we see a broad negativity in morally objectionable trials, com-

pared to neutral trials on electordes Fz and Cz. Between ERPs of morally objection-

able and affectively bad trials (5.3), we find almost no differences in time courses,

except for an early positivity (∼70ms) in morally objectionable trials at Fz and a

small negativity for affectively bad trials ∼270ms at Fz. Finally, when comparing

affectively bad and neutral trials, we find an early (∼70ms) negativity in affectively

bad trials at Fz. We further find a negativity around 270ms for affectively bad trials

as well in Cz. From around 350 ms onwards, we see a broad negativity in affectively

bad trials, compared to neutral trials on electordes Fz and Cz. The respective ERP

difference curves between the two trial classes of the respective pairs of the three

experimental stimuli classes are shown in figure 5.4. P-values of samples with sig-

nificant permutation test outcomes are indicated as gray bars in the background.

The results indicate that there are no significant differences between ERP curves for

any combination of the stimuli classes at one of the electrodes Fz, Cz or Pz.
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Fig. 5.3 Grand average ERPs (n=4) of morally objectionable, neutral and af-
fectively negative trials from electrode sites Fz, Cz and Pz from the conducted
experiment
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5.6.2 Classification analyses

In this section I firstly present classification results from the four subjects who com-

pleted the paradigm designed especially for this preliminary study – based on the

above introduced pictures from the SMID database. These classification results

showed (see below and table 5.2) that classification on these preliminary data was

not better than random for any participant when we classified between morally

objectionable and neutral trials. We concluded from these results that potentially

the operationalization of our paradigm was not suited to evoke strong enough ef-

fects of moral evaluation to successfully make a distinction between moral objec-

tion and neutrality. Therefore, we asked authors of two other studies to share their

data with us, so the classifier models could be trained on their data as well. In both

of those studies, EEG data of morally acceptable and objectionable data was com-

pared on grand average ERP level – including findings of significant differences be-

tween these two experimental conditions on a group level. Data from both these

studies was kindly provided to us for classification analysis. Hence, classification

could be performed in the same way as on our data on 24 datasets from an exper-

iment performed by Leuthold et al. (2014) and on 43 datasets from a study con-

ducted by Berkum et al. (2009). Findings on the grand average ERP level from those

two studies as well as our classification results of these two data collections are re-

ported at the end of this section.

5.6.2.1 Classification of data from the SMID pictures paradigm

Classification error rates obtained from the SMID pictures paradigm are shown in

table 5.2. We tested whether the obtained classification performance of the individ-

ual classifier models was better than random classification (see section 2.5.3). The

result of this check showed that the classification of none of the predictive models

was better than random.
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Table 5.2 Estimated classification results of the SMID picture based moral eval-
uation paradigm for all four subjects. Obtained error rates (ER) from (5,5) cross
validation in percent and their standard deviations (SD), resulting from vari-
ance in the classification error estimated from each run of the cross validation
are reported.

Subject ER (SD)

moral vs. neutral affect vs. neutral moral vs. affect

1 48 (9.3) 51.5 (7.6) 44 (5.2)

2 46 (5.8) 39.5 (10.4) 50.5 (9.9)

3 58.5 (6.0) 48 (3.3) 57.5 (10.3)

4 48.5 (2.9) 48 (10.2) 48 (14.2)

Average 50.3 (6.0) 46.8 (7.9) 50 (9.9)

5.6.2.2 Classification on data from Berkum et al. (2009)

In their study van Berkum et al. (2009) created an experimental paradigm in which

they presented statements to male participants who had one of two different value

systems – half of participants were strict-Christians and the other half non-Christians.

The last word of each presented statement would determine, whether the state-

ment was consistent or inconsistent with the specific participant’s moral value sys-

tem (e.g. “I think that euthanasia is acceptable OR unacceptable.”). Each partic-

ipant read 90 of the statements with the critical evaluative word at the end – half

of which were consistent and the other half inconsistent with the respective moral

value system of the participant. While each of the overall 43 participants (21 strict-

Christians and 22 non-Christians) read these statements, EEG was recorded from

32 electrode sites. The recorded EEG data was then subjected to ERP analysis for

each of the experimental participant groups. For trials in which personal moral val-

ues were violated, Van Berkum et al. found a small N400 effect, as well as positivities

around 200 to 250 ms. The LPP (500 to 650 ms) was found as well, in response to

morally objectionable statements. These results were found for both groups of par-

ticipants - strict-Christians and non-Christians.

For data from both experimental groups (non-Christian and strict-Christian)

we applied the same classification scheme as above to train a classifier to distin-

guish between morally objectionable and acceptable trials. For participants from

the strict-Christians group the average classification error rates was 47 percent (SD

= 9.4). For non-Christians the average classification error for was 52.1 percent (SD

= 10.9). All error rates are shown in table 5.3.
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Table 5.3 Estimated classification results of data from Berkum et al. (2009) for
all 43 subjects with morally acceptable and objectionable trials as classifica-
tion classes. Obtained error rates (ER) from (5,5) cross validation in percent
and their standard deviations (SD), resulting from variance in the classifica-
tion error estimated from each run of the cross validation are reported.

Subject ER (SD)

Strict-Christians Non-Christians

1 47.8 (3.0) 53.3 (11.5)

2 44.4 (10.4) 56.7 (14.9)

3 47.8 (10.1) 50.0 (11.8)

4 53.3 (16.9) 54.4 (4.7)

5 46.7 (13.9) 51.1 (17.3)

6 55.6 (11.1) 50.0 (13.0)

7 36.7 (5.0) 40.0 (12.7)

8 43.3 (8.2) 65.6 (10.7)

9 43.3 (12.7) 54.4 (9.1)

10 45.6 (2.5) 51.1 (13.8)

11 37.8 (13.3) 51.1 (13.8)

12 50.0 (11.8) 55.6 (14.7)

13 55.6 (7.9) 47.8 (6.3)

14 36.7 (5.0) 48.9 (7.2)

15 46.7 (9.3) 44.4 (5.6)

16 43.3 (7.2) 63.3 (10.1)

17 57.8 (6.3) 53.3 (10.8)

18 40.0 (12.0) 43.3 (14.9)

19 52.2 (15.0) 56.7 (6.1)

20 51.1 (4.7) 48.9 (8.2)

21 52.2 (10.1) 45.6 (12.7)

22 60.0 (10.7)

Average 47.0 (9.4) 52.1 (10.9)
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Table 5.4 Estimated classification results of data from Leuthold et al. (2014) for
all 24 subjects with morally acceptable and objectionable trials as classifica-
tion classes. Obtained error rates (ER) from (5,5) cross validation in percent
and their standard deviations (SD), resulting from variance in the classifica-
tion error estimated from each run of the cross validation are reported.

Subject ER (SD)

1 57.5 (5.2)

2 47.5 (18.5)

3 48.9 (15.7)

4 62.5 (13.3)

5 63.8 (5.2)

6 55.0 (2.8)

7 62.5 (10.8)

8 42.5 (16.2)

9 48.8 (10.3)

10 50.0 (17.1)

11 47.5 (7.1)

12 53.8 (10.5)

13 42.5 (6.9)

14 48.8 (9.3)

15 53.8 (21.0)

16 47.5 (7.1)

17 42.5 (2.8)

18 41.2 (8.1)

19 42.5 (19.0)

20 57.3 (12.1)

21 57.5 (12.8)

22 36.3 (11.2)

23 46.3 (15.1)

24 51.3 (8.2)

Average 50.3 (11.1)

5.6.2.3 Classification on data from Leuthold et al. (2014)

In (2014) Leuthold et al. conducted a study in which they presented participants vi-

gnettes, which contained socio-normative scenarios, which at the very end either

contained morally acceptable or unacceptable information in the text. Data from

34 participants was obtained, recording EEG activity from 72 electrode sites. Partic-
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ipants first read each scenario’s context text and upon button press, the final target

sentence with the critical word at the end was displayed word by word on the exper-

imental screen. Each participant was presented 40 acceptable and 40 unacceptable

items. The results of an ERP analysis of the EEG data showed a fronto-central LPP

when participants were presented morally unacceptable statements or behaviors.

This broad late positivity started already around 320 ms after stimulus onset, peak-

ing around 500 ms. For data from 24 of the originally 34 participants we applied

the same classification scheme as before to train a classifier to distinguish between

morally objectionable and acceptable trials. The obtained average classification

error rate was 50.3 percent (SD = 11.1). All error rates are shown in table 5.4.
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5.7 Discussion

In this section, the results of this study are detailed and discussed. Subsequently,

two limitations in the experimental setup of this study are detailed, followed by an

outlook on future research where an alternative experimental setup is proposed.

5.7.1 General discussion of the results

In this preliminary study we investigated neural markers of human morality and

whether a passive BCI can be trained successfully, to distinguish between morally

objectionable and neutral information. Such a BCI would be novel in the sense that

it could add the user state of subjective moral evaluation and interpretation to the

mental states that are neurophysiologically assessable through a passive BCI. While

other user states, such as mental workload, error perception or attention (see sec-

tion 2.6.2) can already be measured and monitored through passive BCI technol-

ogy, the assessment of a user’s subjective moral evaluation could enable an intel-

ligent system to automatically obtain information about its user and thereby e.g.

enable effective moral value alignment between machines and humans which is

widely regarded as essential for successful future HMI. Potentially, neurophysio-

logical measures reflective of human moral evaluation might help to achieve this

goal, and could broaden the versatility of passive BCIs in general.

For this investigation, a picture-based calibration paradigm was developed, con-

taining pictures which were ranked as morally unacceptable, as well as morally neu-

tral. We trained a passive BCI classifier model to distinguish between those two

trial classes on a single-trial basis on the basis of recorded EEG data. ERP analyses

showed no significant differences between the ERP curves of the two categories.

Results further showed low classification accuracies (for morally neutral and ob-

jectionable trials) which were not better than random.

We then transferred the same passive BCI classifier calibration approach to EEG

data from two other studies (Leuthold et al. (2014) and Berkum et al. (2009)) which

had already recorded and investigated differences in EEG data between moral prop-

erties on a neurophysiologocal ERP analysis level. Both studies found significant

differences between morally acceptable and unacceptable trials on an averaged

group level. Classification accuracies resulting from training a passive BCI classifier

model on the data of the two studies again turned out to be very low. Altogether,

the results of our study indicate that, to date and with state of the art classification

approaches, it is not possible to train a passive BCI classifier model to reliably dis-

tinguish between a user’s subjective moral evaluations on a single-trial basis.
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5.7.2 Limitations and restrictions

One restriction which all three experimental calibration paradigms investigated

throughout this study have in common, is that the ground truth of the moral ac-

ceptability of the stimulus material is assumed, evaluated and/or averaged prior to

the experiments. However, the actual moral evaluations of the specific individual

subject whose moral evaluations are to be examined and reflected in the data are

not assessed. Hence, the ground truth of the applied stimuli regarding their moral

acceptability in the eyes of an individual subject is not known and rather vague in

all three experiments. This may be problematic for categorizing stimuli into moral

acceptability categories that correspond to the actual moral views of the specific

person - the labeled data given to the classifier for training is not based on the spe-

cific human being whose moral evaluations are to be tested and reflected in the

data. Overall, this unreliably labeled training data may lead to classifiers that do

not perform better than random - as seen in the trained classifier models from all

three experiments we investigated in this study.

In the presented SMID picture based paradigm, the moral content of every spe-

cific picture was rated beforehand by a bigger sample of people and these ratings

were averaged to achieve an approximation of the moral evaluation (as well as af-

fective evaluation) of each specific picture in the corpus – these average ratings can

however strongly differ from the individual human’s moral views.

In the experimental paradigm for the study performed by Berkum et al. (2009)

assumptions about religious beliefs are applied to assign the individual participants

to a group of moral views they are deemed to hold - though the actual moral evalua-

tion of the presented stimuli might differ between individuals and depend on other

factors than religious views - such as personal history or cultural upbringing.

Finally, in the study by Leuthold et al. (2014) assumptions about social situations

and contexts are applied to determine, which scenario is categorized as morally ac-

ceptable. These assumptions again may be a good estimate of the average opin-

ion within the general population about the presented situations, they however

most likely can differ strongly for specific individual participants – again making

the moral labelling of specific stimuli difficult and imprecise. In all three studies

for the presented stimuli it can only be assumed whether a certain stimulus should

be labeled as morally acceptable, neutral or objectionable – but we do not know if

this is the true labeling for the specific human we are testing.

To approximate true labelling of the training data regarding the actual, subjec-

tive moral evaluation of a stimulus, a different experimental setup should be im-

plemented and tested, where the ground truth of the stimuli is assessed within the

experiment for labelling the data for classifier training. These labels should come
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from the specific participants themselves.

Apart from the above restriction regarding the labelling of stimuli, perhaps the

stimuli presented in two of the three examined experiments are too complex. The

pictures from the SMID corpus e.g. depict complex, multifaceted scenes and the

socio-normative scenarios presented in the experiment by Leuthold et al. (2014)

also describe different aspects of scenes. Here, the approach by Berkum et al. (2009)

seems the clearest, as only single sentences or statements are shown to the partic-

ipants.

Finally, we employed LDA regularized by shrinkage for classification in this study.

However, other classification techniques, such as Riemannian classification or Deep

Learning approaches, have recently been shown to achieve high classification ac-

curacies, particularly for ERP classification (Lotte et al., 2018; Congedo et al., 2017).

These promising classification algorithms should be looked at and applied as well

in future studies for investigating the single-trial detectability of moral evaluations.

5.7.3 Outlook and conclusion

Based on the limitations above, we would like to propose an alternative experimen-

tal setup: This experiment again serves to assess participants’ responses towards

short objectionable and acceptable statements regarding multiple moral values.

In a first part of the experiment, participants will complete an online question-

naire at home. Its purpose will be to assess individual participants’ opinions to-

wards different societal moral issues – these opinions will be used as the individual

subject’s ground truth for assigning stimuli to a specific category of morality. To

that end, participants will read single statements containing an opinion towards a

morally laden issue from different contexts. These statements will be structurally

altered versions of original statements from the “Wahl-O-Mat” from the past eight

years. The Wahl-O-Mat is Germany’s official voting guidance program where vot-

ers can test how much their views regarding different issues are congruent to that of

specific political parties. Examples of topics include retirement, health care, animal

rights, the export of weapons, refugees, sovereign debt, fake news, and legalization

of marijuana. Participants will be asked to rate on a 7-point scale how strongly they

agree (7) or disagree (0) to the statement or if they are neutral (4). Each statement

will be stated in two different ways, once with a positive opinion towards the issue

and once with a negative. Overall participants will read and rate 90 statements in

the two versions - 180 in total. For the second part of this experiment, only those

participants will be invited who have a high consistency in accepting one version of

a specific statement and rejecting the other version, or rating both as neutral. The
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results of this part of the experiment will be an approximation of individual moral

attitudes of specific participants towards the given statements.

The second part of the proposed experiment will be an EEG study with partici-

pants in the laboratory. The general experimental procedure will be the same as in

the first part. The independent variable in this part of the experiment, will be the

moral acceptability of each stimulus (objectionable, neutral and acceptable), as in-

dividually determined through the individual participant’s ratings given in the first

part. Participants will read the same statements again with the two versions on a

screen, plus twenty new statements. But participants now will firstly only be pre-

sented the beginning of the statement, which is the same in both versions. Upon

button press, the ending of the statement will be presented, which will define which

of the two versions is presently read. Afterwards participants will rate again how

much they agree to the read statement. Their answers will be compared to those

they gave in the first part of the experiment. Only data of participants with a high

consistency in ratings they gave in parts one and two of the experiment – exam-

ined through interrater reliability – will be further examined. Recorded EEG data

will then be used to train a passive BCI classifier to distinguish between statements

individual participants agreed or disagreed to. The classifiers and ERPs will be in-

terpreted neuroscientifically to ensure their validity and learn about the underlying

neurophysiology.

The above described new experimental setup - with classifier calibration data

labeled by the specific participant themselves for an optimized representation of

the ground truth of their specific moral attitudes - could be expected to result in

workable individual classifiers, whose output could be used to assess participants’

responses towards objectionable and acceptable statements regarding multiple moral

values.

We hope that through the conduction of a new experiment implementing the

experimental paradigm proposed above, we can demonstrate a passive BCI capa-

ble of assessing human moral evaluation, which as described before, could en-

able moral value alignment between a user and an AMA. More generally, subjective

moral evaluation would be added as a new neurophysiological correlate of a mental

states which can be utilized and assessed by a passive BCI for several applications

and contexts.
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CHAPTER 6

Conclusions

In this chapter I will close this thesis with a discussion and conclusion of the three

studies presented in chapters 3 to 5. The detailed results of the individual stud-

ies, as well as the studies’ specific limitations, are described and discussed in the

respective chapters. Finally, I will present the limitations of this work and provide

approaches and perspectives for future research.

6.1 General conclusions

This thesis contributes to the fields of passive BCI and Neuroadaptive Technology

by three studies that examine distinct challenges for passive BCI applications in

real-world contexts. Passive BCI holds enormous potential to improve HMI, by in-

creasing e.g. safety, performance and personalization. Passive BCIs may further

decrease e.g. errors and frustration in different applications and tasks through un-

obtrusive mental user state assessment and monitoring. However, before passive

BCI technology can unfold its full potential towards revolutionizing the interaction

between humans and machines (and possibly between humans themselves), sev-

eral at present existing hurdles and challenges need to be overcome.

In chapter 3, the challenge of subject- and session dependence was investigated

for passive BCI models that classify error potentials.

Today, when the predictive model of a BCI is trained to classify between classes

of data, training data must be collected beforehand from the specific person, who

later wants to use the trained model in an online application with new incoming

data. This step of subject-specific training data collection is often time consuming

and unpractical for most HMI contexts. I therefore investigated the training of a

subject-independent predictive model: this model is trained on a group of other

users’ data and the obtained classifier model is then applied to online-testing data

of a completely new person. This investigation was performed in the context of

training an automatic classifier for (automation) error detection and correction in

a real-world context.

185



186 6 | Conclusions

We first trained subject-specific error detection classifier models with high classifi-

cation accuracies and validated that these models base their decisions - error or

no error detected - on cortical activity, specifically an area around the ACC that

neuroscientifically is liked to error processing. We further showed that subject-

specific classifier models from one recording session can be transferred to new data

recorded on a different day - concluding, that subject-specific classifier models for

error-detection are session-independent. We also trained an error-detection classi-

fier on the basis of data collected from multiple persons and successfully applied

this trained group classifier model to new testing data of a new subject – showing

that the classifier is subject-independent.

Overall the results of this study showed, that we can train a classifier model which

omits all classifier calibration time for the user. We further demonstrated that the

number of electrodes this classifier model is trained on, can at least be halved from

the initial 50 electrodes used in our study down to 24 electrodes - leading to re-

duced preparation time for hardware (sensors) setup. These two improvements

to system preparation time bring automatic error-correction through passive BCI

support one step closer to be applied in the real-world. In future research, the de-

veloped classifier should be tested for its performance in other tasks in which in-

teraction or execution errors can occur during HMI. Above that, it should be inves-

tigated, if the classifier can detect other types of errors, such as e.g. observation er-

rors. Moreover, automatic error-correction through passive BCI monitoring should

be evaluated in different applications from a user experience perspective in order

to identify needs and expectations from the user’s perspective.

In chapter 4 I addressed the problem of task-dependence. In order to gather

training data for calibrating a BCI, usually a so called calibration paradigm is devel-

oped: Here the subject completes a number of trials containing tasks that should

evoke the cognitive signal of interest, as well as other trials where the signal is not

evoked. On the basis of this calibration data, the classifier model is then trained

to distinguish between data in which the neural activity of the cognitive signal of

interest is present and when it is absent. Such a calibration paradigm is usually

generated for every specific context, task and application where a BCI is trained for

online application. Some tasks potentially are based on similar cognitive processes

though, making it unnecessarily effortful to design a specific calibration paradigm

for each use case or task.

Based on promising findings, I tested the application of a potentially task-independent

mental workload calibration paradigm in a new task - a speed reading context,

where subjects read texts of different difficulty and at different reading speeds. Firstly,

subject-specific classifier models were trained after subjects completed this poten-

tially task-independent mental workload calibration paradigm (which is based on
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an arithmetic task). The resulting predictive models were then applied to mon-

itor mental workload while subjects read text material of different difficulty and

reading-speed.

We found that the resulting predictive values for mental workload were higher for

difficult texts than for easy texts. Predictive values from texts presented at an in-

creased speed were also higher than for those presented at a normal self-adjusted

speed.

These results suggest that the mental workload based predictive model can be ap-

plied to the new tasks of reading texts at different difficulties and reading speeds,

supporting the claim that it can indeed serve as a task-independent classifier for

mental workload.

Finally, in chapter 5, I examined the challenge of finding new neural correlates

of mental states which can be utilized and assessed by a passive BCI to generally

broaden the versatility of passive BCI technology. The study aimed at exploring

whether neural correlates of human moral assessment - a person’s individual judg-

ment of the moral quality of an event or scene that is presented to them - could

be measured on a single-trial basis through a passive BCI using EEG data acqui-

sition. A passive BCI capable of classifying and monitoring human moral assess-

ments could e.g. be employed in moral user modelling for future human-machine

(moral) value alignment. Moreover, it would add moral assessment to the possible

user states which can be measured and monitored by a passive BCI. This would in

general increase the versatility of application areas of passive BCIs.

For this investigation a calibration paradigm was developed, containing pictures

which were ranked as morally unacceptable, as well as morally neutral. We trained

a passive BCI classifier model to distinguish between those two trial classes on a

single-trial basis based on recorded EEG data. Results of this approach showed low

classification accuracies which were not better than random. We then transferred

the same passive BCI classifier calibration approach to EEG data from two other

studies which already investigated neurophysiological differences in EEG between

moral properties. For both of these studies classification accuracies again were very

low and not better than random.

The obtained results indicate that, to date and with state-of-the-art classification

approaches, it is not possible to train a passive BCI classifier model to reliably dis-

tinguish between a user’s subjective moral evaluations on a single-trial basis. We

further noticed that all three experimental paradigms taken into account in this

study assumed or estimated the moral ground truth of the provided stimuli - with-

out ensuring or assessing that the moral assessments and stimuli categorizations

correspond to the subjective moral beliefs and evaluations of the individual sub-

jects who completed the studies. Hence, we propose an alternative experimental
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setup, where for each subject, classifier calibration data is labeled by the specific

subject themselves for an optimized representation of the ground truth of their spe-

cific moral attitudes.

Overall, the major results presented in this thesis serve to solve some of the pre-

viously identified challenges of passive BCI technology for HMI and mark a sig-

nificant step towards the application of passive BCIs in real-world situations and

contexts.

However, while these findings represent significant advances in terms of reducing

or eliminating classifier calibration time, hardware preparation (via electrode re-

duction), and providing generalizability of classifiers that function independently

of the specific task at hand, a bottleneck for real-world applications of passive BCI

technology remains in the currently used EEG headsets and hardware - here, more

advances in reduced electrode setups, as well as dry electrode systems that reduce

hardware preparation time to a minimum, are required.

Furthermore, the introduction of passive BCIs and NAT into everyday life would

bring ethical challenges (as already detailed in section 2.7.4) in its wake, which

should be given significant importance in the development and deployment of these

technologies.

Apart from these more general future challenges, other more particular limitations

of the presented work and recommendations for future research are discussed in

the following section.

6.2 Future research and perspectives

Even though the results from the first two experiments presented in this thesis are

a promising step towards overcoming the current challenges of task-, session- and

subject-independence in passive BCI technology, this thesis still leaves a handful

of valuable research areas for future work, which will be pointed out as follows.

• Real-world application in realistic scenarios:

Both, the subject- and session-independent error detection classifier devel-

oped in chapter 3 and the task-independent classifier for mental-workload

assessment investigated in chapter 4, should be investigated for reproducibil-

ity in more natural online application contexts with users who solve real-

world tasks. Even though the error-detection classifier was already applied to

provide real-time feedback to support the user by automatic error-correction

in the experimental setup in 3.2.7, the classifier should be applied in more re-

alistic everyday settings to gain further insights into its performance, robust-

ness and potential issues that may arise from real-world application - such as
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confounding mental states in complex task environments or social settings,

as well as real-life noise in EEG signals.

Further, the users’ needs should be considered as well to ensure efficient BCI

communication based on user-centered design (Kübler et al., 2014). Thus,

testing real-time error detection and correction through the passive BCI clas-

sifier in a multitude of tasks and scenarios could give conclusions e.g. to the

kind of error correction users prefer and find helpful for improved HMI from

a user experience perspective.

• Investigation of universal classification:

The presented studies demonstrated a session- and subject-independent clas-

sifier for error detection, and showed the task-independence of the mental

workload classifier for the task of text reading (text difficulty and reading speed).

A classifier that would show those features together - session-, task- as well as

subject-independence - could be used for universal classification of a specific

mental state (as e.g. error perception or mental workload). A universal clas-

sifier would be desirable, as it could be applied without any calibration data

recording for the specific user and the classifier could be used in a variety

of tasks and scenarios, where the mental state of interest occurs or changes

within a user. To test for universality, e.g. of the error detection group classi-

fier, we would still need to demonstrate that it can be applied in other tasks,

as well as for other types of errors. To that end, the calibration data we col-

lected in the study presented in chapter 3 could be combined with EEG data

from other studies in which errors were induced and studied. These studies

can differ in the performed task by the user and machine, as well as in the

type of error that occurred or should be detected. Through calibration and

classification on subsets of this obtained pool of EEG data the potential for

an additionally task- and/or error-type independent classifier model for er-

ror detection could be investigated.

On the other hand for the task-independent mental workload classifier, subject-

independence could be additionally investigated. For the mental state of men-

tal workload however, subject independence could be difficult to show in ad-

dition to task-independence, due to interindividual differences of task-ability.

While e.g. an arithmetic task (which currently is the calibration task applied

in the calibration paradigm of the task-independent classifier - see section

4.3.3) is relatively difficult for one individual user, the task of text reading or

mental rotation could be relatively easy for this particular user. Hence, for

every task there are different difficulty levels within the task that induce dif-

ferent levels of mental workload in the user, but the overall span of mental
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workload covered by the specific task within the full, general span of mental

workload within a person differs between users, as demonstrate by Zhang et

al. (2018). Due to these interindividual differences in task-ability, it could be

difficult to train a task-independent group classifier model and transfer it to

different users.

• Parallel investigation of current challenges for passive BCI technology:

Currently, many studies researching current challenges in passive BCI tech-

nology aim to implement a solution to single, isolated challenges one at a

time. However, designing experiments that investigate different challenges

in parallel may result in more efficient and more informative results for real-

world applicability of passive BCIs.

In the first study of this thesis we e.g. not only investigated session- and subject-

independence of the error detection classifier, but also explored the reduction

of the employed number of EEG channels for data acquisition. The latter is

an important aspect when considering usability factors for end-users who re-

quest minimal hardware setup preparation time for using BCI technology for

support. As we included electrode reduction into our experimental setup, we

could not only demonstrate session- and subject-independence of the clas-

sifier, but also, that it can still reliably operate with only half the original elec-

trodes - this combination of findings (a plug-and-play classifier model plus

a reduced number of required sensors) allows us to draw more realistic and

optimistic conclusions about the real-world applicability of the investigated

error-detection classifier.

Similarly, we could have applied the error-detection classifier to another HMI

application in which errors occur, to investigate the classifier’s applicability to

other tasks and contexts - its task-independence.

• Provide context information for mapping of events and detected mental

state changes:

Ongoing EEG recordings in real-world measurements inherently lack event

markers that could link specific contextual events to the output of a passive

BCI classifier. Hence, even if subject- or task-independent classification can

be performed, in real-world situations time-locked events are rarely available

to e.g. classify specific events at specific time points for the detection of er-

rors. Thus it can be difficult to connect the outputs of a passive BCI classifier

model with the situation or event which elicited it in real-time applications in

the real world, to later make appropriate adaptations to the application a user

is interacting with. Therefore, measures that can provide context and origin

of events which evoke passive BCI detectable changes in user state should be
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investigated. For instance a multimodal interface that allows for combined

measurement of EEG data and eye tracking, could be employed as an indi-

cator to where the focus of visual attention was, when e.g. an error potential

was identified in the ongoing stream of analysed EEG data.

• Employ classification algorithms that require larger amounts of calibra-

tion data and time:

In (passive) BCI research to date the machine learning procedure of choice

remains LDA - often regularized by shrinkage - (see section 2.5.3) due to its

usefulness in small training samples settings. However, in recent years other

machine learning methods and algorithms for classification of EEG signals

in BCI have been developed and tested - for an extensive overview and re-

view of these classification algorithms for EEG based BCI please see Lotte et

al. (2018).

Deep learning methods for data classification are generally promising ap-

proaches for BCI classification, but their performance suffers greatly when

only small sample sizes are available as training data. This however, usually is

the case in BCI applications, where in a specific, time-limited session training

data is collected from the individual BCI user. Lotte et al. (2018) particularly

conclude that currently the greatest limitation for e.g. Deep Neural Networks

(DNNs) "for EEG-based BCI is that such networks have a very large number

of parameters, which thus requires a very large number of training examples

to calibrate them" (p.35). They propose that one solution to this problem

would be "to obtain BCI applications with very large training data bases, e.g.,

for multi-subject classification" (p.35). This solution can be provided by the

approach for training of a session- and subject independent classifier model

which we presented in chapter 3, which provides a much larger amount of

training samples, as the group classifier for error-detection can be trained on

data from numerous subjects that is collected over time.

The presented approach also provides a solution for another issue which Lotte

et al. (2018) raise for DNN classification: due to their computational complex-

ity, training and testing times are generally long - hours or days - which is not

feasible for online BCI applications, where even a few minutes are too long

for users to wait until the classifier is trained and ready for application. Lotte

et al. (2018) propose that "designing DNNs that do not require any subject-

specific training, i.e., a universal DNN" (p.35) would be an alternative. Here

again, the subject-independent classifier we demonstrated in chapter 3 could

provide an according solution, as the subject-independent error-detection

group classifier can be trained in a single classifier calibration on the basis
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of data from many subjects - at a time before a new user wants to apply the

classifier model to assess their own brain activity.

For future research we therefore propose to train DNN classifiers on the cal-

ibration data from all subjects of the first study of this thesis (and possibly

collect more data from more subjects beforehand).

Based on the research approaches proposed above, another more general rec-

ommendation for future (passive) BCI research emerges: the BCI field might seem-

ingly profit from a centralized repository for experimental recordings, where re-

searchers could be given access to data from other scientific groups that recorded

neurophysiological (calibration) data that can be categorized by the investigated

mental state (mental workload, error perception, emotions etc.), recording sce-

nario (real-world, laboratory), electrodes (number, type and setup), tasks performed

by the user (arithmetic, game play, text reading etc.), sampling rate and other fea-

sible categories for data selection. Recording neurophysiological data is very time

consuming and expensive. Therefore, such a repository would most probably prove

to be very helpful and time efficient, as researchers could potentially find already

existing data in the repository that would be suitable for investigating their research

questions, as e.g. as detailed above, the subject-independent group classifier could

be tested on other data from a different experiment where errors were induced as

well, but a different task was performed by the subject.

Even though the initialization of such a repository may require a substantial amount

of time and effort (and must be maintained and supervised), as well as some level of

agreement between researchers about the data labelling structure and standardiza-

tion, I strongly believe that such a hub for data collaboration and exchange could

accelerate advances in passive BCI research and foster collaboration and knowl-

edge exchange between international research groups and between scientific dis-

ciplines in the future.
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• Additional grand average ERP graphs of the three experimental conditions in

a paired comparison from the third study regarding monitoring of neural cor-

relates of human moral assessments for future human-machine value align-

ment, see chapter 5:

Fig. 1 Grand average ERPs (n=4) of morally objectionable and affectively neg-
ative trials from electrode sites Fz, Cz and Pz from the conducted experiment.
Standard errors of the mean for the two average curves are plotted in transpar-
ent lines.
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Fig. 2 Grand average ERPs (n=4) of morally objectionable and morally neutral
trials from electrode sites Fz, Cz and Pz from the conducted experiment. Stan-
dard errors of the mean for the two average curves are plotted in transparent
lines.



Appendix 227

Fig. 3 Grand average ERPs (n=4) of affectively bad and morally neutral trials
from electrode sites Fz, Cz and Pz from the conducted experiment. Standard
errors of the mean for the two average curves are plotted in transparent lines.
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• Example pictures for each picture category generated from the Socio-Moral

Image Database (SMID, Crone et al., 2018) used in study three (see chapter

5). Each category consisted of 100 pictures which were shown to participants

in randomized order during the experiment.

Fig. 4 Example pictures for the category of morally bad pictures, based on SMID
ratings.

Fig. 5 Example pictures for the category of morally neutral but affectively bad
pictures, based on SMID ratings.

Fig. 6 Example pictures for the category of morally and affectively neutral pic-
tures, based on SMID ratings.
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