
Multi-Objective Optimization of Stochastic Engine
Models

Von der Fakultät für Maschinenbau, Elektro- und Energiesysteme
der Brandenburgischen Technischen Universität Cottbus - Senftenberg

zur Erlangung des akademischen Grades eines
Doktors der Ingenieurwissenschaften

genehmigte Dissertation

vorgelegt von

Master of Science
Tim Franken

geboren am 23. Oktober 1987 in Engelskirchen

Vorsitzender: Prof. Dr.-Ing. Peter Berg
Gutachter: Prof. Dr.-Ing. Fabian Mauß
Gutachter: Univ.-Prof. Dr.-Ing. Jakob Andert
Tag der mündlichen Prüfung: 20.12.2023



DOI: 10.26127/BTUOpen-6633



“I have a truly marvelous demonstration of this proposition that this margin is too narrow to contain.”

Pierre de Fermat



Contents

Contents

1 Abstract 6

2 Nomenclature 7

3 Introduction 17
3.1 Publications related to this PhD thesis . . . . . . . . . . . . . . . . . . . . . . . 17
3.2 Objectives of the thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
3.3 Outline of the thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

4 Stochastic Reactor Models for compression ignition and spark ignition engines 21
4.1 The mass density function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
4.2 Modeling of general phenomena in internal combustion engines . . . . . . . . 22

4.2.1 Convective heat transfer coefficient . . . . . . . . . . . . . . . . . . . . 22
4.2.2 Stochastic heat transfer algorithm . . . . . . . . . . . . . . . . . . . . . 25
4.2.3 Direct injection and vaporization . . . . . . . . . . . . . . . . . . . . . . 29
4.2.4 Gas exchange through valves . . . . . . . . . . . . . . . . . . . . . . . . 32
4.2.5 Particle mixing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
4.2.6 Chemical reaction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

4.3 Modeling of spark ignition engine . . . . . . . . . . . . . . . . . . . . . . . . . 36
4.3.1 k − ε turbulence model . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
4.3.2 Turbulent flame propagation . . . . . . . . . . . . . . . . . . . . . . . . 45
4.3.3 Stochastic combustion model . . . . . . . . . . . . . . . . . . . . . . . . 54
4.3.4 Crevice model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
4.3.5 Cyclic variation model . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

4.4 Modeling of compression ignition engine . . . . . . . . . . . . . . . . . . . . . 62
4.4.1 k − ε turbulence model . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

4.5 Numerical solution method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
4.5.1 Explicit Runge-Kutta Solver . . . . . . . . . . . . . . . . . . . . . . . . . 72
4.5.2 Operator split method . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

4.6 Conclusions for stochastic reactor models . . . . . . . . . . . . . . . . . . . . . 74

5 The Multi-Objective Optimization Platform 76
5.1 General idea of optimization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
5.2 Error calculation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
5.3 Space filling algorithms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
5.4 Response surface models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
5.5 Multi-criteria decision making . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
5.6 Optimization algorithms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
5.7 Conclusions for multi-objective optimization . . . . . . . . . . . . . . . . . . . 93

4



6 Optimization of a spark ignition engine model 95
6.1 Engine specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95
6.2 Physical properties of gasoline fuel . . . . . . . . . . . . . . . . . . . . . . . . . 96
6.3 Operating conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97
6.4 Chemistry model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100
6.5 Optimization sensitivity study . . . . . . . . . . . . . . . . . . . . . . . . . . . 101
6.6 Final validation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108
6.7 Verification with 3D CFD . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117
6.8 Conclusions for spark ignition engine model optimization . . . . . . . . . . . 126

7 Optimization of a compression ignition engine model 128
7.1 Engine specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128
7.2 Physical properties of diesel fuel . . . . . . . . . . . . . . . . . . . . . . . . . . 128
7.3 Operating conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129
7.4 Chemistry model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131
7.5 Optimization sensitvity study . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132
7.6 Final validation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138
7.7 Conclusions for compression ignition engine model optimization . . . . . . . 146

8 Conclusions and Outlook 148

9 Appendix 151
9.1 Thermodynamic polynomials . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151
9.2 Cylinder wall temperature correlation function . . . . . . . . . . . . . . . . . . 151
9.3 Start of vaporization correction function . . . . . . . . . . . . . . . . . . . . . . 152
9.4 Early flame propagation correlation function . . . . . . . . . . . . . . . . . . . 152
9.5 Piston speed . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153
9.6 Tumble ratio . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154
9.7 Swirl ratio . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154
9.8 Uniformity measure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154
9.9 3D CFD simulation setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155
9.10 Liquid thermophysical properties . . . . . . . . . . . . . . . . . . . . . . . . . . 156

References 162



1 Abstract

1 Abstract

This thesis summarizes the author’s developments of combustion models and multi-objective
optimization methods for gasoline and diesel engines. The combustion models belong to the
family of zero-dimensional stochastic reactor models introduced in the 1990s to improve the
prediction of emissions with detailed chemistry in partially stirred reactors.
The first part introduces the fundamentals of the physical and chemical models describing
the combustion process. As a novelty, k − ε turbulence models were implemented in the
stochastic reactor model to predict the turbulent time and length scales in gasoline and
diesel engines. This development allowed an improvement of the models for convective heat
transfer, fuel evaporation, gas exchange across the valves, turbulent flame propagation and
crevice flow, which depend on the turbulent time and length scales.
In the second part, the multi-objective optimization platform for automatic training of the
stochastic reactor model is presented. The optimization method considers multiple operating
points to find a set of model parameters that predict performance and emissions over the
entire engine map. The Non-domination Sorting Genetic Algorithm II is combined with the
stochastic reactor model and response surface models to find the best Pareto front. Multi-
criteria decision making is used to select the best designs from the Pareto front.
Finally, the third part of this thesis deals with the validation of the stochastic reactor model
and the multi-objective optimization platform. For this purpose, experiments of two single-
cylinder research engines with spark ignition, one passenger car engine with compression
ignition and one heavy duty engine with compression ignition are used. For the spark
ignition engines, a set of model parameters was found that predicts well the power and
emissions over the whole engine map. The calculated turbulent kinetic energy, dissipation,
and angular momentum follow the trends of the three-dimensional computational fluid
dynamic simulations to a good approximation for various operating points. For the two
compression ignition engines, the prediction of combustion progress and nitrogen oxide
emissions are in good agreement with the experiments. Larger discrepancies were found for
the prediction of carbon monoxide and unburned hydrocarbon. Optimization of the soot
model parameters improves the prediction of soot mass for operating points throughout the
engine map.

Keywords: Stochastic Reactor Model, Multi-Objective Optimization, Turbulence Mod-
elling, Emissions, Internal Combustion Engine
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MULTI-OBJECTIVE OPTIMIZATION OF STOCHASTIC ENGINE MODELS

2 Nomenclature

Latin symbols

Parameter Unit Description
A m2 Area
A m2 Cross-sectional area
a4 − Peters turbulent flame propagation model

parameter (a4=0.78)
Ai − Molecular mixing source term
ain − Intake flow parameter (ain=20)
A(n) − Thermodynamic polynomial
AR m2 Flow reference area
AT m2 Turbulent flame surface area
b1 − Peters turbulent flame propagation model

parameter (b1=2.0)
b3 − Peters turbulent flame propagation model

parameter (b3=1.0)
bin − Intake flow parameter (bin=0.2)
Bv − Function of edge weight Bv=2 · wv

C − Simple turbulent flame propagation model
parameter (C=2.5)

c1 − Peters turbulent flame propagation model
parameter

c2 − Peters turbulent flame propagation model
parameter

c3 − Peters turbulent flame propagation model
parameter

Caxial − Axial flow parameter (Caxial=0.2)
CBlint − Flame thickness model parameter

(CBlint=2.0)
Cd − Discharge coefficient
C f riction − Friction force parameter (C f riction=1.5)
Ch − Stochastic heat transfer coefficient (Ch=1)
Cinj − Direct injection parameter (Cinj=0)
Ckin,sq − Scaling parameter for kinetic energy of

squish flow (Ckin,sq=0.3)
Cm − Kolla turbulent flame propagation model

parameter (Cm=0.7)
cm m/s Mean piston velocity
cp J/kgK Contant pressure heat capacity

7



2 Nomenclature

cpis m/s Instantaneous piston velocity
cv J/kgK Contant volume heat capacity
Cε − Dissipation parameter (Cε=1.0)
Cε1 − Turbulent length scale parameter (Cε1=7.0)
Cε2 − Turbulent length scale parameter (Cε2=3.0)
Cµ − k − ε model parameter (Cµ=0.09)
Cϕ − Scalar mixing time parameter (Cϕ=1.0)
Cϕ,u − Scalar mixing time parameter of unburnt

zone (Cϕ,u=1.0)
Cϕ,b − Scalar mixing time parameter of burnt zone

(Cϕ,b=1.0)
Cτ,k,in f low − Inflow time scale parameter

(Cτ,k,in f low=0.019)
Cτ,m − Squish flow time scale parameter (Cτ,m=0.5)
D m2/s Molecular diffusivity
Dt m2/s Turbulent diffusivity
Da − Damköhler number
dB m Cylinder bore diameter
dbowl m Piston bowl diameter
dEV m Exhaust valve diameter
dIV m Intake valve diameter
ebowl m2/s2 Kinetic energy of secondary flow in piston

bowl
Ekin,in m2/s2 Kinetic energy of inflow
Ekin,out m2/s2 Kinetic energy of outflow
ekin,axial m2/s2 Kinetic energy of axial flow
ekin,sec m2/s2 Kinetic energy of secondary flow
ekin,sq m2/s2 Kinetic energy of squish flow
F − Cumulative distribution function
f − Probability density function
f⃗ − Optimization objective functions
fin,k − Kinetic energy conversion parameter of in-

flow
fT,spin−up − Tumble spin-up model parameter

( fT,spin−up=1.0)
gj − Optimization contraints
Gi − Chemical reaction source term
h K Temperature fluctuation
hbowl m Bowl depth
H1 m Instantaneous distance betwen piston and

cylinder head
h f ,l J/kg Specific liquid fuel enthalpy

8



MULTI-OBJECTIVE OPTIMIZATION OF STOCHASTIC ENGINE MODELS

h f ,s J/kg Specific fuel enthalpy at saturation temper-
ature

Hg J Gas enthalpy
H(n) J Enthalpy of notional particle
h(n) J/kg Specific enthalpy of notional particle
h(n),g J/kg Specific enthalpy at gas temperature
h(n),s J/kg Specific enthalpy at saturation temperature
Hv J Vaporization enthalpy
hs m Instantaneous piston stroke
hv J/kg Specific vaporization enthalpy
JS kgm2 Moment of inertia of swirl flow
JT kgm2 Moment of inertia of tumble flow
k m2/s2 Turbulent kinetic energy
k − Early flame propagation model parameter

(k=5)
kmax,crev m2/s2 Maximum limit of turbulent kinetic energy

of crevice model
kmin,crev m2/s2 Minimum limit of turbulent kinetic energy

of crevice model
Ka − Karlovitz number
Kaδ − Karlovitz number at the Kolmogorov scale
L m Characteristic length scale
l m Turbulent length scale
lbowl m Characteristic bowl length scale
lcyl,1 m Characteristic cylinder length scale
LEV m Characteristic length scale of exhaust valve

flow
lEV m Instantaneous lift of exhaust valve
lG m Gibson length scale
lI m Integral length scale
lIV m Instantaneous lift of intake valve
LIV m Characteristic length scale of intake valve

flow
lrod m Connecting rod length
LS kgm2/s Angular momentum of swirl flow
lsq m Characteristic length scale of squish flow
LT kgm2/s Angular momentum of tumble flow
lturb,avg m Turbulent length scale of inflow
lturb,sq m Turbulent length scale of squish flow
lturb,vol m Turbulent length scale of system volume
lturb,IV m Turbulent length scale of inflow through in-

take valves

9



2 Nomenclature

lturb,EV m Turbulent length scale of inflow through ex-
haust valves

lvol m Turbulent length scale of system volume
M g/mol Molar weight
m kg Mass
mg kg Gaseous mass
ṁair kg/s Air mass flow
ṁ f kg/s Fuel mass flow
ṁg,in kg/s Massflow into the cylinder
ṁg,out kg/s Massflow out of the cylinder
ṁback,sq kg/s Squish back flow
min f low kg Accumulated mass of inflow
min f low,IV kg Accumulated mass of inflow through intake

valves
min f low,EV kg Accumulated mass of inflow through ex-

haust valves
ṁIV kg/s Massflow through intake valves
mv kg Vapor mass
mvol kg System volume mass
m(n) kg Notional particle mass
msq kg Squish volume mass
N − Number of iterations
n rpm Engine speed
n − Simple turbulent flame propagation model

exponent (n=0.9)
NC − Number of stochastic cycles
Ncrev − Number of notional particles in the crevice

zone
NEV − Number of exhaust valves
Nhot − Number of iterations in the hot phase
Niter − Number of iterations in the stochastic va-

porization model
NIV − Number of intake valves
NP − Number of notional particles
NP,in − Number of notional particles of the intake

flow
nS 1/s Swirl flow rotation speed
nT 1/s Tumble flow rotation speed
NT − Number of notional particles in the mixing

state
NP,t+∆t − Number of notional particles of the next

time step
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MULTI-OBJECTIVE OPTIMIZATION OF STOCHASTIC ENGINE MODELS

Nu − Nusselt number
Pk,in m2/s2/s Turbulent kinetic energy production term

of inflow
p Pa, bar Pressure
ps Pa Saturation pressure
Qi,ht W Convective heat transfer
Pr − Prandtl number
Re − Reynolds number
R⃗ − Linear rank value
R2 − Correlation coefficient
r f m Flame radius
rin,IV m Characteristic length scale of intake valve

flow
rin,EV m Characteristic length scale of exhaust valve

flow
Rgas J/molK Universal gas constant (8.314 J/molK)
RN − Random number
RNres − Residual random number
S J/K Entropy
sL m/s Laminar flame speed
sT m/s Turbulent flame speed
STipp − Tippelmann swirl number
∆SOV ◦CA Shift of start of vaporization
t s Time
Tad K Adiabatic flame temperature
Tg K Gas temperature
tjump s Time jump parameter
T(n) K Temperature of notional particle
Tl K Liquid temperature
Toil K Oil temperature
Ts K Saturation temperature
tsub s Sub time step
TTipp − Tippelmann tumble number
Tu K Unburnt gas temperature
Tw, Twall K Wall temperature
∆T K Temperature difference
∆t s Time step size
U K/s Convective heat transfer source term
UD − Uniformity measure
U∗ m/s Local tangential velocity
uaxial m/s Axial flow velocity
ucc m/s Combustion velocity
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2 Nomenclature

usq,axial m/s Axial squish flow velocity
usq,radial m/s Radial squish flow velocity
u’ m/s Turbulence fluctuation of velocity
uη m/s Kolmogorov velocity
V m3 Volume
v m/s Velocity
Vbowl m3 Bowl volume
vIV m/s Velocity of flow through intake valves
wj − Weight of optimization errors
W(n) − Notional particle weight
W(p) − Weight of notional particle (p)
W(q) − Weight of notional particle (q)
wmod m/s Heat transfer velocity term
wv − Edge weight
x⃗ − Optimization parameters
y(n) − Mass fraction of notional particle
Z − Mixture fraction

Greek symbols

Parameter Unit Description
α W/m2K Heat transfer coefficient
α − Rate of variance decay of scalars
αin f low − Inflow time scale exponent (αin f low=-2/3)
αth m2/s Thermal diffusivity
αtke,crev − Scaling parameter of crevice model
β − Geometry parameter in the local tumble tur-

bulent kinetic energy production term
β′ − Kolla turbulent flame propagation model

parameter (β′=6.7)
γ − Polytropic coefficient
∆mod − Heat transfer combustion term
δ − Kronecker delta
δ − Dimensionless length scale of the inner

layer
δi m Inner layer length scale
δL m Thermal flame thickness
δL,t m Flame brush thickness
ε m2/s3 Dissipation
ε − Optimization error
εCR − Compression ratio

12



MULTI-OBJECTIVE OPTIMIZATION OF STOCHASTIC ENGINE MODELS

η, µ Pa · s Dynamic viscosity
η m Kolmogorov length scale
η0 m Transition length scale
ηc m Early flame propagation model parameter

(ηc=0.003)
θ ◦CA Crank angle
θSOI

◦CA Start of injection
θST

◦CA Spark timing
κ − Flame front curvature
λ W/mK Thermal conductivity
λ − Relative air-fuel ratio
νt m2/s Turbulent viscosity
ρ kg/m3 Density
ρ f kg/m3 Density of fuel
ρu kg/m3 Unburnt gas density
σ − Flame surface area ratio
σθST

◦CA Standard deviation of spark timing
σu′ m/s Standard deviation of turbulence fluctua-

tion
σt − Turbulent part of flame surface area ratio
τ s Time scale
τ − Ratio of burnt and unburnt temperature
τaxial s Axial flow time scale
τc s Chemical time scale
τin f low,k s Time scale of inflow
τm,sq s Time scale of squish flow
τϕ s Scalar mixing time
τϕ,u s Scalar mixing time of unburnt zone
τϕ,b s Scalar mixing time of burnt zone
ϕ − Scalar
⟨ϕ⟩ − Mean of scalar
⟨ϕ′2⟩ − Variance of scalar
ψ − Sample variable
ω̇ mol/s Reaction rate

Index

Index Description
0 Initial state
0 Inner layer state
axial Axial flow
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2 Nomenclature

compressibility Compressibility
CR Compression ratio
crev Crevice
cylinder Cylinder
cyl Cylinder
e f f Effective
EV Exhaust valve
f Fuel
f riction Friction force
geom Geometry
in Inflow
in f low Inflow
init Initial
inj Injection
injection Injection
iter Iteration
IV Intake valve
local tumble Local tumble flow
mani f old Intake and exhaust manifold
max Maximum
min Minimum
mot Motored
(n) Notional particle
OxO2 Oxidation by O2

OxOH Oxidation by OH
PI Particle inception
pilot1 First pilot injection close to main injection
pilot2 Second pilot injection close to first pilot in-

jection
prop Flame propagation
re f Reference
rpm rotation per minute
S Swirl
s Species
shear Shear force
sim Simulation
spin − up Tumble spin-up
squish Squish flow
swirl Swirl flow
T Tumble
TDC Top dead center
therm Thermodynamic
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Tipp Tippelmann
tumble Tumble flow

Abbreviations

Abbrevation Description
0D Zero-dimensional
1D One-dimensional
3D Three-dimensional
C Carbon atom
CA Crank angle
CFD Computational fluid dynamics
CI Compression ignition
CN Cetane number
CO Carbon monoxide
CO2 Carbon dioxide
DI Direct injection
DNS Direct numerical simulation
EAF Empirical attainment function
EGR Exhaust gas recirculation
EMST Euclidean minimum spanning tree
ETRF Ethanol toluene reference fuel
EVO Exhaust valve opening
FAST RSM-based multi-objective optimization
fsSoot Fuel specific soot mass
H Hydrogen atom
HC Hydrocarbon
HCCI Homogeneously charged compression igni-

tion
HRR Heat release rate
ID Identification number
ICE Internal combustion engine
IMEP Indicated mean effective pressure
ISF Incremental space filler
IVC Intake valve closure
KPP Kolmogorov-Petrovsky-Piskunov
LHV Lower heating value
LTC Laminar-to-turbulent conversion
MCDM Multi-criteria decision maker
mdf Mass density function
MOGA Multi-objective genetic algorithm
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2 Nomenclature

MON Motored octane number
MOO Multi-objective optimization
MOPSO Multi-objective particle swarm optimization
MOSA Multi-objective simulated annealing
NO Nitrogen monoxide
NOx Nitrogen oxide
NLT No laminar-to-turbulent conversion
NSGA Non-dominated sorting genetic algorithm
O Oxygen atom
O2 Oxygen
OH Hydroxyl radical
OP Operating point
PAH Polycyclic aromatic hydrocarbons
PaSR Partially stirred reactor
PCP Peak cylinder pressure
PCPCA Peak cylinder pressure crank angle
pdf Probability density function
RANS Reynolds Averaged Navier Stokes
RBF Radial basis function
RMSE Root mean squared error
RON Research octane number
RSM Response surface model
SA Simulated annealing
SI Spark ignition
SOI Start of injection
SOV Start of vaporization
SRM Stochastic Reactor Model
SVD Singular value decomposition
TRF Toluene reference fuel
ULHC Uniform Latin Hypercube
var Variable
ZMP Zone mass proportion
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MULTI-OBJECTIVE OPTIMIZATION OF STOCHASTIC ENGINE MODELS

3 Introduction

This thesis summarizes the author’s developments in numerical engine models and multi-
objective optimization methods for spark ignition and compression ignition engines. The
numerical engine model belongs to the family of zero-dimensional (0D) stochastic reactor
models (SRMs) developed in the 1990s to improve emission prediction with detailed chem-
istry for partially stirred reactors. Some of the results presented here have already been
presented in international journals, research project reports, and at national and international
conferences. The scientific papers, books, and dissertations with the most impact on this
work have been published by Deb et al. [1, 2], Peters [3], Bhave et al. [4], Kozǔch [5], Su [6],
De Bellis et al. [7, 8], Dulbecco et al. [9], Bossung [10], Yang [11] and Bozza et al. [12].
Some of the models described in this thesis were developed by colleagues and have already
been published in other forms. Their developments will be acknowledged here:

• “Stochastic heat transfer algorithm”, Bhave et al. [4]

• “Direct injection and vaporization”, Samuelsson [13] and Tunér [14]

• “Gas exchange through valves”, Pasternak [15]

• “Curl particle mixing model”, Tunér [14]

• “Euclidean minimum spanning tree mixing model”, Matrisciano [16]

• “Kolla turbulent flame propagation model”, Bjerkborn et al. [17, 18]

• “Cyclic variation model”, Netzer et al. [19]

• “Tabulated chemistry model”, Matrisciano [16]

3.1 Publications related to this PhD thesis

At the time of submitting the PhD thesis I published several works in the field of combustion
modeling and multi-objective optimization. While this thesis is written as autonomous
monography the work is related to previous publications. The models presented herein are
based on the work of Franken et. al. (2017) [20], Matrisciano et al. (2017) [21], Franken et
al. (2020) [22], Matrisciano et al. (2020) [23] and Franken et al. (2020) [24]. All publications
which are (co-)authored by myself are treated as any other publication.

Publications in reviewed journals and proceedings:

1. Netzer, C., Franken, T., Mauss, F., Seidel, L., Lehtiniemi, H., and Kulzer, A. C. (2018).
Numerical analysis of the impact of water injection on combustion and thermodynamics
in a gasoline engine using detailed chemistry. SAE International Journal of Engines,
11(6), 1151-1166.

2. Gern, M. S., Kauf, G. M., Vacca, A., Franken, T., and Kulzer, A. C. (2019). Ganzheitliche
methode zur bewertung der wassereinspritzung im ottomotor. MTZ-Motortechnische
Zeitschrift, 80(7), 124-129.
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3. Franken, T., Netzer, C., Mauss, F., Pasternak, M., Seidel, L., Borg, A., Lehtiniemi, H.,
Matrisciano, A., and Kulzer, A. C. (2019). Multi-objective optimization of water injection
in spark-ignition engines using the stochastic reactor model with tabulated chemistry.
International Journal of Engine Research, 20(10), 1089-1100.

4. Franken, T., Mauss, F., Seidel, L., Gern, M. S., Kauf, M., Matrisciano, A., and Kulzer, A.
C. (2020). Gasoline engine performance simulation of water injection and low-pressure
exhaust gas recirculation using tabulated chemistry. International Journal of Engine
Research, 21(10), 1857-1877.

5. Matrisciano, A., Franken, T., Gonzales Mestre, L. C., Borg, A., and Mauss, F. (2020).
Development of a Computationally Efficient Tabulated Chemistry Solver for Internal
Combustion Engine Optimization Using Stochastic Reactor Models. Applied Sciences,
10(24), 8979.

6. Franken, T., Klauer, C., Kienberg, M., Matrisciano, A., and Mauss, F. (2020). Prediction of
thermal stratification in an engine-like geometry using a zero-dimensional stochastic
reactor model. International Journal of Engine Research, 21(9), 1750-1763.

7. Franken, T., Seidel, L., Matrisciano, A., Mauss, F., Kulzer, A. C., and Schuerg, F. (2020).
Analysis of the Water Addition Efficiency on Knock Suppression for Different Octane
Ratings. SAE Int. J. Adv. & Curr. Prac. in Mobility, 2(5), 2531-2552.

8. Picerno, M., Lee, S. Y., Pasternak, M., Siddareddy, R., Franken, T., Mauss, F., and Andert,
J. (2021). Real-Time Emission Prediction with Detailed Chemistry under Transient
Conditions for Hardware-in-the-Loop Simulations. Energies, 15(1), 261.

Publications in conference proceedings with review (included in Scopus):

1. Franken, T., and Mauss, F. (2016). Development of methodology for predictive diesel
combustion simulation using 0D stochastic reactor model. No. 2016-01-0566. SAE
Technical Paper.

2. Franken, T., Sommerhoff, A., Willems, W., Matrisciano, A., Lehtiniemi, H., Borg, A.,
Netzer, C., and Mauss, F. (2017). Advanced predictive diesel combustion simulation
using turbulence model and stochastic reactor model. No. 2017-01-0516. SAE Technical
Paper.

3. Matrisciano, A., Franken, T., Perlman, C., Borg, A., Lehtiniemi, H., and Mauss, F. (2017).
Development of a computationally efficient progress variable approach for a direct
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3.2 Objectives of the thesis

The starting point of this work is the Stochastic Reactor Model (SRM) developed by Su
[6] and Pasternak [15]. Their fundamental work paved the way for zero-dimensional (0D)
simulations of non-premixed and premixed combustion using a probability density function
(pd f ) approach. In addition, the work of Matrisciano [16] in tabulated chemistry enabled the
use of the SRM with multi-objective optimization methods on meaningful time scales.
From here, the question arose of how to train the SRM for the entire operation map to use it
for engine operation extrapolation. This issue was already addressed by Pasternak et al [25]
and the author [26]. However, a drawback of these approaches was the lack of physical basis
of turbulent time and length scales in engines. This realization led to the definition of the first
objective of this thesis, to implement a k − ε turbulence model for spark ignition (SI) and
compression ignition (CI) engines in order to calculate the turbulent time and length scales.
The integration of a k − ε turbulence model into SRM enabled the models for turbulent flame
propagation, convective heat transfer, valve flow, direct injection, crevice flow, and molecular
mixing to be linked across the turbulent time and length scales. Thus, the second objective
of this thesis was to implement new physically based models and to extend existing models.
This should make it possible to improve combustion and emission prediction for different
operating points in the engine map.
The final obstacle was determining the model parameters of the SRM for the entire operation
map of a given engine. Manual training requires the simultaneous input of a large number of
values and an associated time-consuming iteration loop to approximate the experiments. If
the investigated operating range was extended and the prediction worsened, the training has
to be repeated which results in additional time consumption. This led to the definition of the
third objective of this thesis, the development of a multi-objective optimization platform for
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the automatic training of the model parameters of the SRM considering multiple operating
points of the engine map.

3.3 Outline of the thesis

In addition to the introduction and the appendix, the thesis is divided into five main chapters.
Chapter 4 describes the fundamentals of SRM for engine simulation. The physics-based
models for convective heat transfer, direct injection, vaporization, valve flow, molecular
mixing, chemical reactions, turbulent flame propagation, crevice flow, and micro- and macro-
scale flow in the cylinder are explained in detail. Chapter 5 describes the multi-objective
optimization platform, including optimization objective functions*, space filler algorithms,
response surface models, multi-criteria decision making, and optimization algorithms. In
Chapter 6, the performance of the multi-objective optimization platform for automatic
model training of an SI research engine is investigated. The trained model parameters
are validated using experimental data from a second SI research engine. Then, the k − ε

turbulence model results are verified using three-dimensional (3D) computational fluid
dynamics (CFD) simulation results. In Chapter 7, the performance of the multi-objective
optimization platform for model training of a CI passenger car engine is investigated. The
trained model parameters are validated using experimental data from a second heavy-duty
CI engine. Chapter 8 summarizes the results and conclusions of this work and provides
an outlook for future development work in the area of turbulence modeling, Runge-Kutta
solvers, vaporization models, wall film models, crevice flow, spark ignition models, and
turbulent flame propagation.

*In the text the optimization objective functions are also named errors.
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4 Stochastic Reactor Models for compression ignition and

spark ignition engines

The SRM is introduced to describe the partially mixing of molecules and its effect on reactive
mixtures. Therefor, the mixture in a defined volume is discretized into a number of notional
particles NP each of which containing the information of species composition y(n) and en-
thalpy H(n). A particle mixing process is introduced which is depending on the mixing time
scale τϕ and describes the exchange frequency of information between the notional particles.
With τϕ → 0 the mixture would be perfectly mixed, while with τϕ → ∞ the mixture stays
segregated. The stochastic of the model is introduced by a Monte Carlo process which selects
the notional particles that can mix with each other. Correa [27] and Correa and Braaten [28]
introduced the partially stirred reactor model (PaSR) based on this theory to investigate the
sensitivity of NO and CO formation towards turbulent stirring rates. Chen [29] extended the
PaSR model by introducing the probability density function Fϕ(ψ, t) for multiple reactive
scalars ϕ based on the joint scalar pd f from Pope [30]. Kraft [31] introduced two new models
for the PaSR and partially stirred plug flow reactor (PaSPFR) and discussed new numerical
solution methods for the SRM.

4.1 The mass density function

In the following years the SRM is introduced by several groups for internal combustion
engine (ICE) applications. Tunér [14] published the SRM for different engine applications
and performed a thorough analysis of the influence of number of notional particles, time step
size, number of stochastic cycles and scalar mixing time on the numerical solution. Su [6] con-
ducted a detailed analysis of SRM for homogeneously charged compression ignition (HCCI)
engines and investigated new types of particle mixing, fuel vaporization and crevice flow
models. Pasternak [15] investigated the SRM for diesel engine applications and developed a
new method to describe the time dependent solution of the mixing time in engines.
The mass density function Fϕ(ψ, t) for variable density flows is introduced by Pope [30]. The
mass density function (md f ) how it is formulated in this work is outlined in the following
equation.
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∂

∂t
Fϕ(ψ, t) =− 1

V
dV
dt

Fϕ(ψ, t)  
Piston Movement

−
s+1

∑
i=1

∂

∂ψi

[
Gi(ψ)Fϕ(ψ, t)

]
  

Chemical Reaction

− ∂

∂ψs+1

[
U(ψs+1)Fϕ(ψ, t)

]
  

Convective Heat Transfer

+
s+1

∑
i=1

∂

∂ψi

[
Ai(ψ)Fϕ(ψ, t)

]
  

Mixing

+
Fϕ,in(ψ, t)−Fϕ(ψ, t)

τin  
Gas Exchange

+
Fϕ,inj(ψ, t)

τinj  
Injection and Vaporization

+
Fϕ,crev(ψ, t)

τcrev  
Crevice

+
Fϕ,prop(ψ, t)

τprop  
Flame Propagation

(4.1)
The individual terms of the md f in equation (4.1) will be discussed in the following sections.

Only the piston movement term won’t be explained in detail because it simply describes the
change of volume due to the reciprocal movement of the piston and a description can be
found in [14].
The initial conditions in equation (4.2) and the boundary conditions have to be provided for
the respective engine which is under investigation. They are required to be able to solve the
md f .

F (ψ, 0) = F0(ψ) (4.2)

4.2 Modeling of general phenomena in internal combustion engines

The subsection about general phenomena comprises the model description of fundamental
physics and chemistry processes of non-premixed and premixed combustion in ICE. For
simplicity the combustion chamber will be denoted as system in the subsequent sections.
Beside the description of the physical and chemical phenomena, a detailed explanation of its
implementation into the SRM framework is provided.

4.2.1 Convective heat transfer coefficient

The temperature change over time of the bulk gas is denoted as U in equation (4.1) and
applies for the scalar ψs+1* which is the temperature of the system. The unit of U is K

s . U
is derived from the energy balance in equation (4.3) where the left hand side describes the
change of energy of the bulk gas, and the right hand side describes the convective heat
transfer. The negative sign of of the right hand side is because convective heat transfer is
commonly treated as a loss in the system.

U · m · cp = −α · A ·
(
Tg − Twall

)
(4.3)

*s denotes the number of species of the reaction mechanism applied
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Convective heat transfer is governed by the temperature difference between bulk gas Tg

and temperature at the wall Twall. The amount of heat transfered is also dependent of the
system surface size A and the heat transfer coefficient α. As shown in equation (4.4) the heat
transfer coefficient α can be determined based on the thermal conductivity λ of the gas and
the characteristic length L of the system. The proportionality factor Nu is well know as the
dimensionless Nusselt number.

α = Nu · λ

L
(4.4)

The Nusselt number Nu can be determined based on the ratio of inertial forces v · L† and
viscous forces ν* described by the dimensionless Reynolds number Re and the ratio of the
kinematic viscosity ν and thermal conductivity λ described as the dimensionless Prandtl
number Pr.

Nu = C · Rem · Prn (4.5)

Introducing the definitions of Nu, Re and Pr in equation (4.5) one obtains equation (4.6),
where the constant C and the exponents m and n have to be determined for the geometry
under investigation.

α · L
λ

= C ·
(

ρ · v · L
η

)m
·
(η · cp

λ

)n
(4.6)

This equation was the starting point for Woschni [32], Hohenberg [33] and Heinle [34] to
develop convective heat transfer models for 0D modeling applications. Based on extensive
engine experiments Woschni correlated the characteristic length with the cylinder bore L ∼ dB,
the density and viscosity with the cylinder pressure ρ, η ∼ p and the thermal conductivity
and heat capacity with the cylinder temperature λ, cp ∼ T. The velocity is correlated with the
mean piston velocity in axial direction and a pressure difference term induced by combustion
v ∼ cm, (p − pmot) as shown in equation (4.7).

αWoschni = C · d−0.2
B · p0.8 · T−0.53 ·

[
C1 · cm + C2 ·

V · T0

p0 · V0
· (p − pmot)

]0.8

(4.7)

Therein, V is the instantaneous cylinder volume, T0 is the initial temperature, p0 is the
initial pressure and V0 is the initial volume. The pressure difference term is calculated
based on the instantaneous cylinder pressure p and the motored cylinder pressure pmot. The
constants C, C1 and C2 are adjustable and the default values are summarized in table 5.

Hohenberg proposed another heat transfer model in equation (4.8) where he correlated
the characteristic length with the cylinder volume L ∼ V and introduced a constant C2 for

†v denotes the velocity of the flow
*ν denotes the kinematic viscosity of the gas
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Parameter Value
C 3.26
C1 2.28
C2 0.0035

Table 5: Woschni heat transfer model parameters.

the velocity due to combustion. The remaining terms of the equations are similar compared
to the Woschni model.

αHohenberg = C1 · V−0.06 · p0.8 · T−0.53 ·
[

T0.163 · (cm + C2)
]0.8

(4.8)

The Hohenberg model parameters C1 and C2 are adjustable and the default values are
outlined in table 6.

Parameter Value
C1 130
C2 1.4

Table 6: Hohenberg heat transfer model parameters.

The Heinle heat transfer model in equation (4.9) is developed more recently and similarly
to the Hohenberg model it correlates the characteristic length with the cylinder volume L ∼ V.
The exponents were adjusted to gain a better fit with the convective heat transfer in modern
combustion engines.

αHeinle = C∗ · V−0.073 · p0.78 · T−0.477 · w0.78
mod · ∆mod (4.9)

The remaining terms will not be explained in detail at this point but can be found in
[34] and [22]. Only the velocity term w−0.78

mod will be illuminated further. The corresponding
equation is outlined in (4.10) and shows that the Heinle model considers the influence of
turbulent kinetic energy k in the convective heat transfer. This is important for modern down-
sized combustion engines which show a higher level of turbulent kinetic energy compared to
historic engines investigated during the times of Woschni and Hohenberg.

wmod =

√
8
3
· k + c2 + u2

cc (4.10)

The investigation of the performance of the three heat transfer models for an engine-like
geometry is part of this work and was published in [22]. At this point only some of the
results are outlined here. The initial and boundary conditions from the direct numerical
simulation (DNS) experiment by Schmitt [35] are used to set up the SRM. The Woschni,
Hohenberg and Heinle heat transfer models are used with default settings and the simulation
is performed for a compression stroke at 560 rpm engine speed. The default Hohenberg and
default Heinle models only slightly under-predict the DNS experiment, while the Woschni
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model significantly under-performs as shown in figure 1. This trend is attributed to the
difference in correlating the characteristic length L where the Hohenberg and Heinle models
use the cylinder volume V. Close to top dead center (TDC) the default Hohenberg model
satisfactorly predicts the strong rise in heat transfer rate, while the default Heinle and default
Woschni models under-perform at this point.

(a) Cylinder pressure (b) Cylinder temperature

(c) Cylinder heat transfer rate (d) Total heat transfer

Figure 1: Comparison of Woschni, Hohenberg and Heinle heat transfer models with DNS experiment by Schmitt
[35]. Top dead center is at 360◦CA.

Optimized parameters of the heat transfer models are published in [22] to obtain a better
match with the DNS experiments. In the subsequent section the updated stochastic heat
transfer algorithm is dicussed and only the heat transfer simulation results of the optimized
Heinle model are shown.

4.2.2 Stochastic heat transfer algorithm

The stochastic heat transfer algorithm for the SRM was first introduced by Bhave et al. [4]
for natural gas fuelled HCCI engines. It reflects the stochastic transport process of bulk gas
entering in the wall boundary layer and exchanging heat with the walls. In equation (4.1) the
convective heat transfer term U(ψs+1)F (ψ, t) is replaced by a differencing scheme including
the temperature fluctuation h. If U(ψs+1) becomes negative which means heat is transfered
from the bulk gas to the walls, the temperature fluctuation h is substracted from the gas
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temperature ψs+1 as shown in equation (4.11).

1
h
[U(ψs+1)F (ψ, t)− U(ψs+1 − h)F (ψ1..s, ψs+1 − h, t)] , i f U(ψs+1) < 0 (4.11)

If U(ψs+1) becomes positive which means heat is transfered from the walls to the bulk
gas, the temperature fluctuation h is added to the gas temperature ψs+1 as shown in equation
(4.12).

1
h
[U(ψs+1)F (ψ, t)− U(ψs+1 + h)F (ψ1..s, ψs+1 + h, t)] , i f U(ψs+1) > 0 (4.12)

The stochastic heat transfer algorithm is updated in this work introducing a random num-
ber RN in the calculation of the temperature fluctuation of the notional particle h(n). Further,
a residual random number RNres is determined to distribute the remaining temperature
fluctuation from the current heat transfer time step. The comparison of the SRM simulation
using the updated stochastic heat transfer algorithm and the optimized Heinle heat transfer
model with the DNS experiment is shown in figure 2.* The SRM simulations are conducted
with 1000 notional particles, 1 stochastic cycle, 0.5◦CA time step size, Ch=1.0 and Cϕ=100. The
SRM shows a close match with the DNS experiment while the fluctuations in the heat transfer
rate originate from the stochastic heat transfer algorithm. As it is shown in [22] increasing
the number of stochastic cycles to 15 would cause a significant reduction of the variation of
heat transfer rate.

The temperature distribution of the notional particles predicted by the SRM is compared to
the DNS experiment in figure 3. The initial temperature distribution of the DNS experiment
is mapped to the notional particles of SRM. During the early stage of the compression stroke
at 225◦CA the temperature distribution remains narrow for both cases. With progress in the
compression stroke the bulk gas temperature increases while the gas close to the cylinder walls
remain cooler because of heat loss. This effect leads to a broader temperature distribution
for both cases. At TDC the temperature distribution spans from 700K to 1200K showing
a pronounced temperature stratification. The SRM closely predicts the DNS experiment
outlining its capability to capture spatial inhomogeneity effects.

Implementation of the stochastic heat transfer algorithm Initialize the
algorithm by setting the sub time step tsub,0 = 0. The algorithm is repeated for each
surface Ai which defines the combustion chamber. Following, the time jump parameter
tjump is calculated based on the stochastic heat transfer coefficient Ch, the notional
particle number NP and the total convective heat transfer Qi,ht. The total convective
heat transfer is calculated using one of the models outlined in section 4.2.1.

tjump =
Ch · NP

−Qi,ht
(4.13)

*All results of the updated stochastic heat transfer algorithm can also be found in [22].
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(a) Pressure (b) Temperature

(c) Heat Transfer Rate (d) Heat Transfer

Figure 2: Comparison of DNS and SRM simulation pressure, temperature, heat transfer rate and accumulated
heat transfer. Top dead center is at 360◦CA.

A homogeneously distributed random number RN is drawn in the range of 0 and 1.

RN ∈ {0, 1} (4.14)

The advance of the sub time step tsub,j+1 is determined by increasing tsub,j by the
reciprocal of the time jump parameter tjump times the random number RN.

tsub,j+1 = tsub,j +
1

tjump
· RN (4.15)

If tsub,j+1 < ∆t then pick a random notional particle (n) out of the interval of notional
particles [1, NP]. Calculate the amount of heat h(n) to be transferred between notional
particle and combustion chamber wall and assign the new temperature T(n) to the
notional particle.

h(n) =
(T(n) − Ti,wall) · RN

Ch
(4.16)
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(a) 225◦CA (b) 270◦CA (c) 306◦CA

(d) 333◦CA (e) 346◦CA (f) 360◦CA

Figure 3: Comparison of DNS and SRM temperature pdf for different crank angles. Top dead center is at
360◦CA.

T(n) = Ti,wall − h(n) (4.17)

If tsub,j+1 >= ∆t then pick a random notional particle (n) out of the interval of notional
particles [1, NP]. Calculate a residual random number RNres to determine the remaining
heat to be transferred between notional particle and combustion chamber wall and
assign the new temperature T(n) to the notional particle.

T(n) = Ti,wall − h(n) (4.18)

RNres =
(
tsub,j+1 − tsub,j

)
· tjump (4.19)

h(n) =
(T(n) − Ti,wall) · RNres

Ch
(4.20)

T(n) = Ti,wall − h(n) (4.21)

Finally, exit the loop.
The parameter h(n) describes the fluctuation of the temperature, while the mean tem-
perature is conserved. The magnitude of these fluctuations is defined by the stochastic
heat transfer coefficient Ch. On one hand, a low Ch value means less notional particles
are exchanging heat with the cylinder walls over a longer period of time. On the
other hand, a high Ch value means that more notional particles are exchanging heat
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with the combustion chamber walls over a shorter period of time. The purpose of the
implemented stochastic heat transfer algorithm is to mimic the effects of the thermal
boundary layer and the inhomogeneous distribution of heat transfer in the SRM.

4.2.3 Direct injection and vaporization

The direct injection and vaporization model is introduced in the SRM code by Samuelsson
[13] and Tunér [14]. In this thesis the model is extended to calculate the early direct injection
of spark ignited engines. Figure 4 shows a comparison of a SRM simulation* and 3D CFD
Reynolds Averaged Navier Stokes (RANS) simulation for direct injection of gasoline E10 in
a spark ignition engine. The injection starts at -300◦CA with 200bar injection pressure. The
SRM simulation uses the same injection rate as the 3D CFD RANS simulation. The liquid
properties of gasoline E10 outlined in table 51 are used for the simulation. At -250◦CA and
-160◦CA the SRM shows a faster mixing compared to 3D CFD RANS wherefor the second
peak of the probability density function f (ϕ) is shifted to the lean side. Further, the 3D CFD
RANS simulation shows formation of liquid wall film during injection which inhibits the
mixing of air and fuel. At -100◦CA and -20◦CA the ϕ distribution of SRM converges towards
the 3D CFD RANS solution wherefor similar mixture conditions can be achieved at spark
ignition.

Implementation of the stochastic vaporization algorithm The stochastic
vaporization model assumes that the enthalpy required for the vaporization Hv(T) of
the injected liquid fuel is completely extracted from the gas in the cylinder Hg(T). The
enthalpy balance is outlined in the following equation:

Hv(T) = Hg(T) (4.22)

The enthalpy balance can also be expressed by using the specific enthalpy of vaporiza-
tion hv(T) and constant pressure heat capacity cp(T) of the bulk gas.

mv · hv(T) = mg · cp(T) · ∆T (4.23)

A homogeneously distributed random number RN is drawn to select the notional
particle with index (n) out of the interval [1, NP] that will be mixed with the injected fuel
mass. The notional particle should contain sufficient enthalpy for the fuel vaporization
and its reaction progress c should be lower than 0.001. Hence, auto-igniting notional
particles are excluded from the selection.

RN ∈ {0, 1} (4.24)

*Simulation was performed with 500 notional particles, 0.5◦CA time step size and Curl mixing model. The mixing time was calculated
using the Bossung turbulence model.
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(a) -250◦CA (b) -160◦CA

(c) -100◦CA (d) -20◦CA

Figure 4: Comparison of 3D CFD RANS and 0D SRM equivalence ratio distribution at 2000 rpm 6 bar IMEP for
a SI engine. Firing top dead center is at 0◦CA.

The mass of the selected notional particle (n) is determined by multiplying its weight
W(n) with the total cylinder mass mg.

W(n) =
m(n)

mg
(4.25)

The maximum available enthalpy for vaporization of the notional particle (n) is deter-
mined by the specific enthalpy difference between notional particle temperature T(n),g

and saturation temperature Ts. By multiplication with the notional particle mass the
total enthalpy H(n),g is determined.

H(n),g =
[

h(n),g(T(n),g)− h(n),s(Ts)
]
· m(n),g (4.26)

The total vaporization enthalpy Hv is determined by the difference between fuel specific
enthalpy at saturation point h f ,s(Ts) and the liquid fuel specific enthalpy h f ,l(Tl). The
mass mv denotes the mass available for vaporization in the current time step of the
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operator split.

Hv =
[
h f ,s(Ts)− h f ,l(Tl)

]
· mv (4.27)

If H(n),g > Hv then all available mass mv will be vaporized and assigned to the selected
notional particle (n). In this case the remaining vaporization mass mv,remain will be
zero.

mv,∗ = mv (4.28)

If H(n),g < Hv then only a part of the available mass mv will be vaporized and assigned
to the selected notional particle (n). The mass to be vaporized mv,∗ will be determined
by the quotient of the total notional particle enthalpy H(n),g and the specific enthalpy
difference h f ,s(Ts)− h f ,l(Tl).

mv,∗ =
H(n),g

h f ,s(Ts)− h f ,l(Tl)
(4.29)

The remaining mass for vaporization mv,remain is determined as the difference between
the available vaporization mass mv and the actual vaporized mass mv,∗.

mv,remain = mv − mv,∗ (4.30)

The new mass m(n),t+∆t of the selected notional particle (n) is increased by the actual
vaporized mass mv,∗.

m(n),t+∆t = m(n) + mv,∗ (4.31)

If mv,remain = 0 the new specific enthalpy h(n),g,t+∆t of the notional particle (n) is
determined by substracting the enthalpy required for vaporization.

h(n),g,t+∆t = h(n),g −
Hv

m(n)
(4.32)

If mv,remain > 0 the new specific enthalpy h(n),g,t+∆t of the notional particle (n) is set
equal the enthalpy at saturation temperature Ts.

h(n),g,t+∆t = h(n),s(Ts) (4.33)

The new thermodynamic polynomials A(n),t+∆t (see section 9.1) of the notional particle

(n) are determined by accounting for the mass fraction of the notional particle
m(n)

m(n)+mv,∗

and vaporized fuel mass mv,∗
m(n)+mv,∗

and the thermodynamic polynomials of the notional
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particle A(n) and the gaseous fuel A f ,g.

A(n),t+∆t =
A(n),g · mi + A f ,g · mv,∗

m(n) + mv,∗
(4.34)

The new notional particle weight W(n),t+∆t is determined by the increase of the notional
particle mass m(n) + mv,∗ and the total mass mg + mv,∗.

W(n),t+∆t =
m(n) + mv,∗

mg + mv,∗
(4.35)

The remaining vaporization mass mv,remain will be assigned for another vaporization
loop in the current time step.
If the number of iterations reaches Niter > 10 the remaining vaporization mass mv,remain

is saved in the liquid fuel mass m f ,l variable and will be assigned to the available
vaporization mass mv,t+∆t of the next time step t + ∆t.

4.2.4 Gas exchange through valves

The gas exchange model is implemented according to Heywood [36] for a poppet valve
geometry. It distinguishes two cases depending on the pressure difference between manifold
and cylinder. If the pressure in the manifold is larger than in the cylinder pmani f old > pcylinder

the mass is flowing into the cylinder and the mass flow rate ṁg,in can be calculated according
to the following equation.

ṁg,in =
Cd · AR · pmani f old(
Rgas · Tmani f old

) 1
2

(
pcylinder

pmani f old

) 1
γ

·

⎡⎢⎣ 2γ

γ − 1
·

⎛⎜⎝1 −
(

pcylinder

pmani f old

)( γ−1
γ

)⎞⎟⎠
⎤⎥⎦

1
2

(4.36)

Therein, the discharge coefficient Cd describes the ratio of the real mass flow to the ideal
mass flow and it usually has a value lower than 1. For poppet valves Cd is provided as a
function of valve lift. The reference flow area AR is calculated according to the geometry of
the valve, the runners and the current valve lift.*

If the pressure in the manifold is lower than in the cylinder pmani f old < pcylinder the mass is
flowing out of the cylinder and the mass flow rate ṁg,out can be calculated according to the
following equation.

ṁg,out =
Cd · AR · pcylinder(

Rg · Tcylinder
) 1

2

(
pmani f old

pcylinder

) 1
γ

·

⎡⎢⎣ 2γ

γ − 1
·

⎛⎜⎝1 −
(

pmani f old

pcylinder

)( γ−1
γ

)⎞⎟⎠
⎤⎥⎦

1
2

(4.37)

*The polytropic coefficient γ is calculated as the ratio of constant pressure heat capacity cp and constant volume heat capacity cv of the
gas in the manifold.
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In the case pcylinder/pmani f old is larger than [2/(γ + 1)]γ/(γ−1) the incoming flow becomes
choked and the mass flow ṁg,in is calculated instead according to the following equation.

ṁg,in =
Cd · AR · pmani f old(
Rgas · Tmani f old

) 1
2

γ
1
2

(
2

γ + 1

) γ+1
2(γ−1)

(4.38)

In the case pmani f old/pcylinder is larger than [2/(γ + 1)]γ/(γ−1) the outcoming flow becomes
choked and the mass flow ṁg,out is calculated instead according to the following equation.

ṁg,out =
Cd · AR · pcylinder(
Rgas · Tcylinder

) 1
2

γ
1
2

(
2

γ + 1

) γ+1
2(γ−1)

(4.39)

If ṁg,in > 0 the total mass in the cylinder is increased by mg,t+∆t = mg + mg,in and new
notional particles are added according to NP,t+∆t = NP + NP,in.† After the incoming mass
mg,in is added to the total mass in the cylinder mg the weight W(n) of the notional particles is
updated as shown in the following equation.

W(n),t+∆t = W(n) ·
mg

mg,t+∆t
(4.40)

If ṁg,out > 0 the total mass in the cylinder is decreased by mg,t+∆t = mg − mg,out. Therefor,
a notional particle is selected randomly by drawing a homogeneously distributed random
number RN in the range of RN ∈ {0, 1} and it is erased from the system. This procedure
is repeated until the outgoing mass mg,out is fully consumed. After the procedure the new
weight W(n),t+∆t of the remaining notional particles is calculated according to equation (4.40).
The performance of the gas exchange model in SRM is evaluated by comparing the predicted
intake and exhaust valve mass flow with 3D CFD RANS simulation results in figure 5. The
3D CFD calculations are performed for two operating points at 1500 rpm and 2000 rpm engine
speed and 6 bar IMEP. The predicted exhaust valve mass flow of SRM between 120 ◦CA and
360 ◦CA follows the trend of the 3D CFD RANS simulation. However, the strong fluctuations
during the open valve phase are not captured by the gas exchange model. For the predicted
intake valve mass flow of SRM between 360 ◦CA and 600 ◦CA the match with the 3D CFD
RANS simulation is good while some fluctuations of the 3D CFD RANS are not captured by
the gas exchange model. The total valve mass for 3D CFD RANS is predicted slightly higher
for the intake and exhaust valve. Overall the gas exchange model in SRM is able to follow
the predictions of the 3D CFD RANS simulation.

4.2.5 Particle mixing

In this thesis two particle mixing models are considered for closure of the molecular mixing
term in equation (4.1). The coalescence/dispersal (C/D) model or Curl mixing model and
the Euclidean Minimum Spanning Tree (EMST) mixing model. The Curl mixing model was
initially proposed by Curl [37] and further improved by Janicka et al. [38]. The model was

†The number of new notional particles added is determined according to the incoming mass mg,in, the total mass in the cylinder mg and
the weight W(n) of the existing notional particles NP,in = mg,in/(W(n) · mg).
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(a) 1500 rpm 6 bar (b) 2000 rpm 6 bar

(c) 1500 rpm 6 bar (d) 2000 rpm 6 bar

Figure 5: Comparison of 3D CFD and 0D SRM intake and exhaust valve mass flow and total valve mass at 1500
rpm 6 bar IMEP and 2000 rpm 6 bar IMEP for a SI engine. Gas exchange top dead center is at 360◦CA.

implemented by Tunér [14] in SRM code and updated to consider the particle weights W(q)

and W(p) of the notional particles (q) and (p). The calculation of the median of scalar ϕ of
two randomly selected particles (q) and (p) is shown in equation (4.41). The Curl mixing
model implementation in SRM is investigated by Tunér [14], Pasternak [15] and Matrisciano
[16].

dϕ(p)(t)
dt

=
W(q) · ϕ(q)(t)− W(p) · ϕ(p)(t)

W(q) + W(p)
,

dϕ(q)(t)
dt

=
W(p) · ϕ(p)(t)− W(q) · ϕ(q)(t)

W(q) + W(p)

(4.41)

The EMST mixing model was introduced by Subramaniam and Pope [39] to consider the
local gas composition in particle mixing. The EMST mixing model was first introduced in
SRM by Su [6]. Later the model was modified to only consider mixture fraction (Z) and
enthalpy (H) as scalars for the mixing process. The Z-EMST model* was investigated in detail
by Franken et al. [20], Svensson [40] and Matrisciano [16], while the H-EMST model was
investigated in [22] and [41].

*The mixture fraction based EMST mixing model is named Z-EMST and the enthalpy based EMST mixing model is named H-EMST.
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The time evolution of scalars ϕ of notional particle (i) is described by equation (4.42). For
the Z-EMST and H-EMST mixing models the mixing problem reduces to a simple unordered
list where each notional particle (i) has two neighboring particles nν and mν. Only the two
notional particles at the edges of the list have one neighboring particle.

W(i)
dϕ(i)

dt
= α

NT−1

∑
ν=1

Bν

[(
ϕ(i) − ϕ(nν)

)
δimν

+
(

ϕ(i) − ϕ(mν)

)
δinν

]
(4.42)

Therein, Bν is a function of the edge weight wν and δ is the Kronecker delta. NT denotes
the number of particles which are currently in the mixing state. The model parameter α

describes the rate of variance decay of scalars [39]. Its definition can be derived for a single
conserved passive scalar field with mean ⟨ϕ⟩ and variance ⟨ϕ′2⟩. The mean value is not
changing due to mixing wherefore the following equation holds true.

d⟨ϕ⟩
dt

= 0 (4.43)

The change of variance follows an exponential decay law in equation (4.44) based on the
scalar mixing time τϕ. The scalar mixing time τϕ can be calculated using the k − ε turbulence
models in SRM [20].

d⟨ϕ′2⟩
dt

= −⟨ϕ′2⟩
τϕ

(4.44)

Following, α is selected so that the decay rate of the ensemble scalar variance ⟨ϕ′2⟩N

implied by the EMST mixing model follows the decay law in equation (4.44).

d⟨ϕ′2⟩N

dt
=

NT

∑
i=1

W(i)2ϕ′
(i)

d⟨ϕ′
(i)⟩

dt
= −α

NT

∑
i=1

W(i)2ϕ′
(i)Mijϕ

′
j (4.45)

where Mij is quotient of the interaction matrix Mij and α.

Mij =
1
α

Mij (4.46)

Mij = −α
NT−1

∑
ν=1

Bν

{
δimν

δjnν
+ δjmν

δinν

}
with j ̸= i (4.47)

Equating the two decay rates in (4.44) and (4.45) yields the final definition of α:

α =
⟨ϕ′2⟩N

τϕ ∑NT
i=1 ∑N

j=1 W(i)2ϕ′
(i)Mijϕ

′
j

(4.48)

4.2.6 Chemical reaction

The SRM incorporates detailed kinetic models to calculate the change of gas composition
in equation (4.49) and change of enthalpy in equation (4.50) due to chemical reactions. The
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kinetic model contains among other things the information of species molar weight Mi

and the reaction rate parameters of the elementary reactions. The parameters are used to
determine the reaction rate ω̇i of species i. The heat capacity cp, enthalpy H and entropy S of
the mixture are calculated using the species specific coefficients of the thermodynamic NASA
polynomials.

Gi =
Miω̇i

ρ
, i = 1, ..., s (4.49)

Gs+1 = − 1
ρcp

s

∑
i=1

ui Miω̇i −
V

mcp

dp
dt

(4.50)

During the SRM simulation a non-linear equation system is solved using a backward
differential function method combined with a Newton algorithm [14]. Depending on the
number of species and number of reactions of the reaction mechanism the computational cost
of the SRM simulation is rising [15].
Lehtiniemi et al. [42, 43] and Matrisciano [16] developed the combustion progress variable
(CPV) tabulated chemistry model for prediction of ignition processes and emission formation
with low computational costs. Tabulated chemistry implies that the data is stored in look-up
tables where the information is extracted during the simulation runtime. To reconstruct
the reaction path for the table look-up for different thermodynamic conditions, the combus-
tion progress variable c is introduced and it is determined based on the latent enthalpy of
formation h298 [16].*

4.3 Modeling of spark ignition engine

The SRM for spark ignition engines (SI-SRM) distinguishes the combustion chamber into
three zones: Unburnt zone (uz), burnt zone (bz) and crevice zone (cz). The gas composition
and enthalpy of each zone is described by the ensemble of notional particles belonging to each
zone. The mass transport between the zones is goverened by specific models for turbulent
flame propagation and crevice flow which will be described in the following section. The
turbulence in the system is modeled using a k − ε model which calculates the production and
dissipation of turbulent kinetic energy k and the change of angular momentum of tumble flow
LT. Finally, a cyclic variation model is incorporated to account for influence of turbulence
variation and ignition kernel size variation on combustion progress and emission formation.

4.3.1 k − ε turbulence model

The k − ε turbulence model for SI engines is implemented according to the work of Bossung
[10] and the derived equations are based on Wilcox [44]. The model calculates the change of
turbulent kinetic energy dk/dt by a set of differential terms which describe the production
and dissipation of k in a cylinder-shaped geometry with a tumble flow motion around the
cross-axis of the cylinder. The differential terms for valve flow, axial flow, tumble flow motion,

*The latent enthalpy of formation h298 is found to be a suitable progress variable since it has a steady progress during the two stage
ignition process.
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direct injection, compressibility and dissipation outlined in equation (4.51) will be described
more in detail.

dk
dt

=

(
dk
dt

)
in f low

+

(
dk
dt

)
axial

+

(
dk
dt

)
tumble

+

(
dk
dt

)
injection

+

(
dk
dt

)
compressibility

− ε (4.51)

The production of turbulent kinetic energy from valve flow is related to the production
term Pk,in f low which is normalized by the total mass mg of the system.(

dk
dt

)
in f low

=
Pk,in f low

mg
(4.52)

The production term Pk,in f low is defined as the exponential decay of the effective kinetic
energy Ekin,in f low,e f f with the time scale τin f low,k.†

Pk,in =
Ekin,in f low,e f f

τin f low,k
(4.53)

The effective kinetic energy Ekin,in f low,e f f in the system is changing over time depending

on the rate of kinetic energy flowing into the system
dEkin,in,e f f

dt , flowing out of the system
dEkin,out

dt and due to production of turbulent kinetic energy Pk,in.

dEkin,in f low,e f f

dt
=

dEkin,in,e f f

dt
+

dEkin,out

dt
− Pk,in (4.54)

The rate of kinetic energy of the inflow dEkin,in
dt is calculated based on the intake mass flow

ṁIV and inflow velocity vIV which are calculated by the gas exchange model in section 4.2.4.

dEkin,in

dt
=

1
2
·

NIV

∑
i=1

ṁIV · v2
IV (4.55)

The rate of kinetic energy of inflow is scaled by a conversion parameter fin,k to obtain

the rate of effective kinetic energy of inflow
dEkin,in,e f f

dt which is relevant for turbulent kinetic
energy production.

dEkin,in,e f f

dt
= fin,k ·

dEkin,in

dt
, ṁin/out ≥ 0 (4.56)

The conversion parameter fin,k is defined as a linear function depending on the instanta-
neous intake valve lift lIV and has a value between 0 and 1.*

fin,k = ain · lIV + bin (4.57)

The influence of the model parameters ain and bin on turbulent kinetic energy k and
production of turbulent kinetic energy is shown in figure 6 (a) and (b). Increasing the
parameters leads to higher production of kinetic energy from inflow which increases the

†The time scale is defined as τin f low,k = Cτ,k,in f low · (n/60)αin f low , where n is the engine speed, Cτ,k,in f low is set to 0.019 and αin f low is set
to −2/3.

*The default value for ain is set to 20 and the default value for bin is set to 0.2.
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production rate of turbulent kinetic energy and dissipation. The ain and bin model parameters
mostly influences the production of turbulent kinetic energy during valve opening while a
minor decrease of k can be observed during combustion at 0◦CA.

(a) ain model parameter (b) bin model parameter

Figure 6: Turbulent kinetic energy and inflow production term in dependence of ain and bin parameters at 2000
rpm and 6 bar IMEP. The dashed lines highlight the intake and exhaust valve lift. The start of fuel injection is at
-300 ◦CA.

The flow of kinetic energy out of the system is a sink in the balance equation (4.54) and is
proportional to the outflow rate ṁout and the effective kinetic energy Ekin,in f low,e f f .

dEkin,out

dt
=

ṁout

mgas
· Ekin,in f low,e f f , ṁin/out < 0 (4.58)

The piston movement in axial direction induces a flow field with the kinetic energy ekin,axial

and which is proportional to the instantaneous piston speed cpis.†

ekin,axial =
1
6
· c2

pis (4.59)

When the axial kinetic energy decays during the deacceleration of the piston, secondary
flow motions are induced with the kinetic energy ekin,sec. Therefor, a negative rate dekin,axial

dt
means the production of kinetic energy of secondary flow motions and the production of
turbulent kinetic energy means the decay of kinetic energy of the secondary flow motions.

ekin,sec

dt
= max

(
−dekin,axial

dt
, 0
)
−
(

dk
dt

)
axial

(4.60)

The decay of the secondary flow motion leads to the production of turbulent kinetic
energy as described in equation (4.61). Thereby, it is assumed that the exponential decay of
the secondary flow motion follows a characteristic time scale τaxial which is proportional to
the piston stroke and mean piston speed.*(

dk
dt

)
axial

=
ekin,sec

τaxial
(4.61)

†The instantaneous piston speed cpis is calculated according to section 9.5.
*The time scale is calculated according to τaxial = Caxial · hs

cm
where Caxial is a model parameter, hs is the stroke and cm is the mean piston

speed.
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The time scale τaxial can be modified by tuning the model parameter Caxial. Decreasing
Caxial leads to a reduced time scale and consequently a stronger production of turbulent
kinetic energy due to secondary flow decay. The highest production rate of turbulent kinetic
energy is found close to TDC where the piston is deaccelerating.

Figure 7: Turbulent kinetic energy and axial flow production term in dependence of Caxial parameter at 2000
rpm and 6 bar IMEP. The dashed lines highlight the intake and exhaust valve lift. The start of fuel injection is at
-300 ◦CA.

The production of turbulent kinetic energy due to direct injection is described by equation
(4.62). The turbulent kinetic energy is proportional to the injection velocity and injection
mass. The Bernoulli equation is applied to determine the injection velocity in dependence
of the pressure difference pinj − pcyl and the density of the fuel ρ f . The fuel mass flow ṁ f

and injection pressure pinj are determined by the injection and vaporization model in section
4.2.3. The turbulent kinetic energy is normalized by the total mass mg.(

dk
dt

)
injection

= Cinj · ṁ f ·
pinj − pcyl

ρ f
· 1

mg
(4.62)

The model parameter Cinj is introduced to control the contribution of direct injection
to the production of turbulent kinetic energy. The results of turbulent kinetic energy and
the production term for different Cinj model parameter values are outlined in figure 8.
Increasing the value of Cinj leads to an increase of turbulent kinetic energy and production
rate during injection. The increase of Cinj shows no effect on the turbulent kinetic energy
during combustion.

The contribution of tumble flow motion decay to production of turbulent kinetic energy is
described by equation (4.63). The tumble flow motion is a rotating flow motion around the
cross-axis of the cylinder within the x-z plane. Its rotational energy can be determined by the
angular momentum of a rotating cylinder LT with its length equal to the cylinder bore dB

and its radius equal to the instantaneous distance between piston and cylinder head H1.*(
dk
dt

)
tumble

=
9 · π8

1024
· νt ·

(d2
B + H2

1)
2

d8
B · H6

1
· 1

ρ2 · L2
T (4.63)

Therein, νt is the turbulent viscosity which is calculated based on turbulent kinetic energy
*The instantaneous distance between piston and cylinder head is calculated with H1 = V

π·
d2

B
4

.
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Figure 8: Turbulent kinetic energy and direct injection production term in dependence of Cinj parameter at 2000
rpm and 6 bar IMEP. The dashed lines highlight the intake and exhaust valve lift. The start of fuel injection is at
-300 ◦CA.

and dissipation in equation (4.64). Cµ is a model parameter with the default value of 0.09 for
standard k − ε models.

νt = Cµ ·
k2

ε
(4.64)

The change of angular momentum of the tumble flow motion LT is described by the
equation (4.65). Angular momentum can be produced due to inflow through the valves and
spin-up due to piston acceleration. Angular momentum decays due to outflow out of the
system and shear forces.

dLT

dt
=

(
dLT

dt

)
in
+

(
dLT

dt

)
out

+

(
dLT

dt

)
shear

+

(
dLT

dt

)
spin−up

(4.65)

The production of angular momentum LT due to inflow is proportional to the mass flow
ṁin, the density ρ and the bore diameter dB as shown in equation (4.66). Thereby, the angular
momentum is scaled by the Tippelmann tumble number TTipp.(

dLT

dt

)
in
=

2 · TTipp · ṁ2
in

dB · ρ
, ṁin ≥ 0 (4.66)

TTipp is a model parameter and can change for different operating conditions and engines.
Increasing TTipp increases the angular momentum and tumble ratio* as shown in figure 9 (b).
The higher angular momentum during the intake valve opening also increases the angular
momentum during compression stroke and combustion.

The decay of angular momentum due to outflow out of the system is proportional to the
mass flow out of the system ṁout and the instantaneous angular momentum LT.(

dLT

dt

)
out

= LT · ṁout

mg
(4.67)

Equation (4.68) describes the decay of angular momentum due to shear forces and the
production of turbulent kinetic energy.

*The calculation of the tumble ratio is outlined in section 9.6.
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(a) Turbulent kinetic energy and production (b) Angular momentum and tumble ratio

Figure 9: Turbulent kinetic energy, tumble flow production term, angular momentum and tumble ratio in
dependence of TTipp parameter at 2000 rpm and 6 bar IMEP. The dashed lines highlight the intake and exhaust
valve lift. The start of fuel injection is at -300 ◦CA.

(
dLT

dt

)
shear

= −sign(LT) ·
2048
9 · π6 ·

d6
B · H4

1
3
4 d2

B + H2
1
· ρ2

2 · |LT|
·
(

dk
dt

)
tumble

(4.68)

The last term on the right hand side of equation (4.65) describes the tumble flow motion
during compression. The model parameter fT,spin−up can be changed and is defined in the
range of 0 and 1. (

dLT

dt

)
spin−up

= fT,spin−up ·
d2

B

d2
B · H1 +

4
3 · H3

1
· LT · dhs

dt
(4.69)

When fT,spin−up is equal to 1 the tumble flow experiences no acceleration while when
fT,spin−up is equal to 0 the tumble is accelerated during compression and reaches a maximum
shortly before TDC as shown in figure 10.

(a) Turbulent kinetic energy and production (b) Angular momentum and tumble ratio

Figure 10: Turbulent kinetic energy, tumble flow production term, angular momentum and tumble ratio in
dependence of fT,spin−up parameter at 2000 rpm and 6 bar IMEP. The dashed lines highlight the intake and
exhaust valve lift. The start of fuel injection is at -300 ◦CA.

For the compressible case the Boussinesq approximation introduces two terms for the
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closure of the Reynolds stress tensor [44]. The first term describes the production of turbulent
kinetic energy due to shear forces and is assumed to be zero for the case of isentropic
compression. The second term describes the influence of compressibility on the production
of turbulent kinetic energy. Using the continuity equation the term can be described in
dependence of density changes. If it is further assumed that the mass in the system is
constant (mg = const) then the influence of compressibility can be described by volume
changes [10] as outlined in the following equation.(

dk
dt

)
compressibility

= −2
3
· dV

dt
· k

V
(4.70)

The last term of equation (4.51) describes the destruction of turbulent kinetic energy due to
dissipation. According to Wilcox [44] the dissipation is proportional to the turbulent kinetic
energy k and inversly proportional to a turbulent length scale l. Therefor, dissipation ε can be
determined according to the following equation [10].

ε = Cε ·
k

3
2

lI
(4.71)

Therein, lI is the integral length scale that describes the dimension of the large flow struc-
ture in the system. The model parameter Cε reflects the proportionality between dissipation
ε, turbulent kinetic energy k and integral length scale lI . The ratio of Cε and Cµ reflects the
proportionality of the integral length scale lI to the turbulent length scale l.

lI =
Cε

Cµ
· l (4.72)

The increase of the model parameter Cε leads to a decrease of the turbulent kinetic energy
and dissipation over the full engine cycle as shown in figure 11.

Figure 11: Turbulent kinetic energy and dissipation in dependence of Cε parameter at 2000 rpm and 6 bar IMEP.
The dashed lines highlight the intake and exhaust valve lift. The start of fuel injection is at -300 ◦CA.

The turbulent length scale l is determined according to Qirui [45] and accounts for the
system volume length scale lvol and valve flow length scale lturb,avg. The contribution of each
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length scale is based on its mass mvol* and min f low
† in relation to the total mass in the system

mg.

l =
mg(

mvol
lvol

+
min f low
lturb,avg

) (4.73)

The length scale lvol is determined according to a sphere whose volume is equal to the
instantaneous volume of the system V.

lvol =
Cµ

Cε1

·
(

6 · V
π

) 1
3

(4.74)

The model parameters Cµ and Cε1 account for the proportionality between the turbulent
length scale l and the characteristic length scale L. The model parameter Cµ is set equal to
0.09 while the model parameter Cε1 can be adjusted. Decreasing the value of Cε1 leads to an
increase of the turbulent length scale l for the full engine cycle. The turbulent kinetic energy
is increasing during the gas exchange while it decreases before firing TDC at 0◦CA.

(a) Turbulent kinetic energy (b) Turbulent length scale

Figure 12: Turbulent kinetic energy, dissipation and turbulent length scale in dependence of Cε1 parameter at
2000 rpm and 6 bar IMEP. The dashed lines highlight the intake and exhaust valve lift. The start of fuel injection
is at -300 ◦CA.

The length scale lturb,avg is determined based on the intake valve length scale lturb,IV and
the exhaust valve length scale lturb,EV .

lturb,avg =
lturb,IV · min f low,IV + lturb,EV · min f low,EV

min f low
(4.75)

The two length scales can be calculated according to equation (4.76) and (4.77). They are
depending on a characteristic length scale LIV and LEV which are influenced by the valve
lifts lIV and lEV . The proportionality between the turbulent length scale l and characteristic
length scale L is goverend by the model parameters Cµ and Cε2 .

*The mass mvol is calculated according to mvol = mg − min f low.
†The mass min f low is calculated based on the accumulated inflow masses through the intake (min f low,IV ) and exhaust valve (min f low,EV )

using the following definition min f low = ∑ min f low,IV + ∑ min f low,EV .
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lturb,IV =
Cµ

Cε2

· LIV (4.76)

lturb,EV =
Cµ

Cε2

· LEV (4.77)

The increase of the model parameter Cε2 leads to a decrease of the turbulent length scale
l during the valve opening as shown in figure 13. At the same time the turbulent kinetic
energy is decreasing during valve opening while it increases close to firing TDC at 0◦CA.

(a) Turbulent kinetic energy (b) Turbulent length scale

Figure 13: Turbulent kinetic energy, dissipation and turbulent length scale in dependence of Cε2 parameter at
2000 rpm and 6 bar IMEP. The dashed lines highlight the intake and exhaust valve lift. The start of fuel injection
is at -300 ◦CA.

The calculated turbulent kinetic energy and dissipation are used to determine the turbulent
mixing time of the unburnt mixture. The turbulent mixing time is proportional to the scalar
mixing time τϕ,u which is the time scale that governs the particle mixing as explained in
section 4.2.5. Equation (4.78) outlines the calculation of the scalar mixing time and introduces
the proportionality parameter Cϕ,u which can be adjusted according to the investigated
application.

τϕ,u = Cϕ,u ·
k
ε

(4.78)

The scalar mixing time of burnt mixture τϕ,b is determined using an additional scaling
factor Cϕ,b. The value of Cϕ,b is usually in the range of 0.001 − 0.1.

τϕ,b = Cϕ,b · τϕ,u (4.79)

The turbulent kinetic energy is further used to calculate the turbulence fluctuation u′ [44]
which is an input parameter for the turbulent flame propagation in section 4.3.2. Additionally,
the integral length scale lI is used as an input in the turbulent flame propagation to determine
the turbulence and flame interaction.

u′ =

√
2
3
· k (4.80)
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4.3.2 Turbulent flame propagation

The combustion regime diagram in figure 14 is introduced by Peters [3]. It distinguishes the
different regimes based on turbulence fluctuation u′, laminar flame speed sL, integral length
scale lI and flame thickness δL. For the investigations in this thesis two regimes are relevant:
The corrugated flamelets and thin reactions regimes. Damköhler already described these
regimes in his work [46] and denoted them as areas of large scale turbulence and small scale
turbulence.

Figure 14: Regimes of turbulent premixed combustion in the Borghi-Peters diagram.

The boundaries of the two combustion regimes can be determined by the Reynolds number,
the Damköhler number and the Karlovitz number. The Reynolds number is defined according
to equation (4.81).

Re =
u′ · l

sL · δL
(4.81)

Therein, u′ is the turbulence fluctuation and l is the turbulent length scale which are
calculated according to equations (4.73) and (4.80). The flame thickness δL is defined as the
ratio of thermal diffusivity αth and laminar flame speed sL. The thermal conductivity λ0 and
heat capacity cp,0 are defined for the inner layer of the flame and the density ρu is defined for
the unburnt mixture [3]. The laminar flame speed sL is defined based on the properties of the
unburnt mixture.

δL =
αth
sL

=

(
λ0

cp,0·ρu

)
sL

(4.82)

In the SRM the thermal diffusivity αth in equation (4.82) is not defined based on the inner
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layer but on the unburnt mixture properties wherefor it is corrected according to the definition
by Blint [47] in equation (4.83).

δL = 2 · αth
sL

·
(

1 +
(Tad − Tu)

Tu

)0.7

with αth =

(
λ

cp · ρ

)
u

(4.83)

The Damköhler number is defined by equation (4.84) and denotes the ratio of turbulent
time scales and chemical time scales.

Da =
l · sL

u′ · δL
(4.84)

Peters [3] introduced two Karlovitz numbers Ka and Kaδ to distinguish the combustion
regimes. Ka is the ratio of the flame scales δL and the Kolmogorov scales η. It can also be
described as the ratio of the Kolmogorov velocity uη and the laminar flame speed sL. For
Ka = 1 the Kolmogorov scale becomes equal to the flame scale η = δL. In figure 14 this
condition separates the corrugated flamelet regime from the thin reactions regime. The
corrugated flamelet regime is further defined for decreasing Ka and is limited downwards
by the condition u′ = sL where the turbulent fluctuation cannot compete anymore with the
laminar flame propagation.

Ka =
δ2

L
η2 =

u2
η

s2
L

(4.85)

The second Karlovitz number Kaδ describes the ratio of the inner layer scale δi and the
Kolmogorov scale. It can be related to the first Karlovitz number Ka by the dimensionless
scale δ of the inner layer.* For Kaδ = 1 the Kolmogorov scale becomes equal to the inner
layer scale η = δi. In figure 14 this condition separates the thin reactions regime from the
distributed reactions regime. The thin reactions regime is further defined by decreasing Ka
numbers and is limited downwards by the condition Ka = 1 where the smallest turbulent
eddies become too large to interact with the reaction zone.

Kaδ =
δ2

i
η2 = δ2 · Ka (4.86)

The Karlovitz number can also be expressed based on the turbulence fluctuation u′, the
laminar flame speed sL, the turbulent length scale l and the flame thickness δL.

Ka =

⎛⎜⎝
(

u′
sL

)3

l
δL

⎞⎟⎠
1
2

(4.87)

Simple model According to Damköhler [46] the mass flux ṁ through a turbulent flame
surface area AT can be equated to mass flux through a cross-sectional area A of a pipe by

*The dimensionless scale δ is defined as the ratio of the inner layer thickness δi and the flame thickness δL.
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using the laminar sL and turbulent flame speed sT and the density of the unburnt mixture
ρu.*

ṁ = ρu · AT · sL = ρu · A · sT (4.88)

For constant density (ρu = const) one obtains the following relationship

AT

A
=

sT

sL
(4.89)

For the corrugated flamelet regime Damköhler [46] stated that the interaction of the flame
front and turbulence is purely kinematic and he derived the following relationship

AT

A
∼ u′

sL
(4.90)

Considering equation (4.89) and (4.90) one obtains that the turbulent flame speed sT is
in the same order of magnitude than the turbulence fluctuation u′. This relationship was
confirmed for the G-equation modeling by Peters [3].

sT ∼ u′ (4.91)

For the thin reactions regime Damköhler [46] stated that the turbulence modifies the
transport between reaction zone and unburnt gas. Based on the relationship between laminar
flame speed sL and molecular diffusivity D in equation (4.92), he proposed a similar rela-
tionship for the turbulent flame speed sT and the turbulent diffusivity Dt in equation (4.93).
Thereby, it is assumed that the chemical time scale τc is not affected by the turbulence [3].

sL ∼
(

D
τc

)1/2

(4.92)

sT ∼
(

Dt

τc

)1/2

(4.93)

Based on equation (4.92) and (4.93) Damköhler derived a relationship of the turbulent
flame speed and laminar flame speed.

sT

sL
∼
(

Dt

D

)1/2

(4.94)

Using the proportionality of turbulent diffusivity and the product of turbulence fluctuation
and turbulent length scale Dt ∼ u′l and the proportionality of molecular diffusivity and
product of laminar flame speed and flame thickness D ∼ sLδL one obtains the relationship in
equation (4.95). Based on a similarity analysis with the G-equation model Peters [3] stated
that the thin reactions regime is goverend by scalar dissipation.

sT

sL
∼
(

u′

sL

l
δL

)1/2

(4.95)

*Assumption of an idealized premixed steady flame in a pipe according to Peters [3].
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Based on equation (4.95) the expression in equation (4.96) is dervived which introduces an
exponent n* and a constant C which is expected to be dependent on the ratio l/δL [3]. The
first term on the right hand side includes the condition u′ → 0 where sT = sL.

sT

sL
= 1 + C ·

(
u′

sL

)n

(4.96)

The best practice parameters in the SRM which were used in [48] and [24] are summarized
in table 7.

Parameter Value
C 2.5
n 0.9

Table 7: Model parameters for the simple turbulent flame propagation model.

Peters model Peters introduced the G-equation model in equation (4.97) to describe the
turbulent premixed combustion in the corrugated flamelet and thin reactions regime [3].

ρ
∂G
∂t

+ ρu · ∇G = (ρs0
L)σ − (ρD)κσ with G(x, t) = G0 (4.97)

Therein, ρ is the density, u is the velocity vector, s0
L is the unstretched laminar burning

velocity, x is the location, t is the time, σ is defined as the gradient |∇G| of the G-field and κ is
the curvature. Peters [3] introduced G = G0 as the instantaneous flame front which is related
to the instantaneous flame front surface area AT. For a two-dimensional representation of the
flame front denoted by G = G0 he derived the relationship between a differential section dS
of G, a differential section dy of the cross-sectional area A and the gradient σ.

dS
dy

= σ (4.98)

Therefor, σ can also be denoted as the flame surface area ratio. Following, he then derived
a transport equation for σ similar to equation (4.97).

∂σ

∂t
+ u · ∇σ = −n · ∇u · nσ + s0

L(κσ +∇2G) + Dn · ∇(κσ) (4.99)

Therein, n is the normal vector to the flame front G = G0 and D is the molecular diffusivity.
The terms on the left hand side describe the accumulation and convection term. The first term
on the right hand side describes the production of σ because of straining by the flow field.
The second term describes the kinematic influence and the third term describes the scalar
dissipation influence. Peters introduced an averaging of σ and obtained a mean gradient of
the G-field |∇G̃| and a turbulent part σt.

σ = |∇G̃|+ σt (4.100)

By insertion of definition (4.100) into equation (4.99) he obtained a transport equation for
the turbulent part of the flame surface area ratio σt. The transport equation can be simplified

*The value of exponent n is usually in the range of 0.5 − 1.0.
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by considering a steady planar flame which allows to eliminate the accumulation, convection
and tangential transport term. Further, the production term due to mean velocity gradients is
eliminated by assuming that the result of mean velocity production is much smaller than the
result of turbulent production.

c1 ·
Dt

δ2
L,t

− c2 ·
s0

L
δL,t

σt

|∇G̃|
− c3 ·

D
δ2

L,t

σ2
t

|∇G̃|2
= 0 (4.101)

The constants c1, c2, c3 and the flame brush thickness δL,t and the turbulent diffusivity Dt

are replaced with suitable terms based on the turbulent length scale l and the turbulence
fluctuation u′. Following, for the case of constant density the difference of the turbulent and
laminar flame speed is introduced.

∆s = sT − sL = sL
σt

|∇G̃|
(4.102)

The following quadratic equation is obtained after insertion of above solutions and addi-
tional conversions. (

∆s
sL

)2

+
a4b2

3
2b1

l
δL

(
∆s
sL

)
− a4b2

3
u′l

sLδL
= 0 (4.103)

Solving the quadratic equation only the positive solution of the quadratic equation is
considered since the negative solution has no physical significance.

∆s
sL

= −
a4b2

3
2b1

l
δL

+

⎡⎣( a4b2
3

2b1

l
δL

)2

+ a4b2
3

u′l
sLδL

⎤⎦1/2

(4.104)

Conversion of the equation and insertion of the Damköhler number Da* yields the follow-
ing equation for the ratio of turbulent and laminar flame speed.

sT

sL
= 1 +

u′

sL

⎧⎪⎨⎪⎩−
a4b2

3
2b1

Da +

⎡⎣( a4b2
3

2b1
Da

)2

+ a4b2
3Da

⎤⎦ 1
2
⎫⎪⎬⎪⎭ (4.105)

The model parameters a4, b3 and b1 are defined according to Peters [3] and are summarized
in table 8.

Parameter Value
a4 0.78
b3 1.0
b1 2.0

Table 8: Model parameters for the Peters turbulent flame propagation model.

*Here equation (4.84) is inserted.
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Kolla model In his thesis Kolla [49] proposed an algebraic scalar dissipation rate model
which is valid for large Da numbers.

ε̃c ≃
1
β′

(
[2K∗

c − τC4]
sL

δL
+ C3

ε̃

k̃

)
c̃′′2 (4.106)

Following, the KPP theorem [50, 51] provided an equation of turbulent flame speed (4.107)
which could be used to validate the new scalar dissipation rate model.

sT = 2

√
νt

ρuScc

(
∂ω̇

∂c̃

)
c̃→0

(4.107)

Therein, νt is the turbluent viscosity which is defined by equation (4.63), ρu is the density
of the unburnt mixture, Scc is the Schmidt number of the progress variable c̃ and ω̇ is the
average reaction rate. Bray [52] introduced a relationship between the reaction rate ω̇ and the
scalar dissipation rate ε̃c.

ω̇ =
2

(2Cm − 1)
ρε̃c (4.108)

Therein, Cm has typically a value of 0.7 [53]. The term c̃′′2 in equation (4.106) is approxi-
mated with c̃′′2 ≈ c̃(1 − c̃) for high Da numbers [49]. After some adjustments the equation
(4.109) is obtained for the ratio of turbulent and laminar flame speed. The model parameters
are outlined in table 9. The model was implemented and validated by Bjerkborn et al. in
SRM [17, 18].

sT

sL
=

{
18 · Cµ

β′ · (2Cm − 1)

[
[2K∗

c − τ · C4]

(
u′l

sLδL

)
+

2C3

3

(
u′

sL

)2
]} 1

2

(4.109)

Parameter Value
Cµ 0.09
β′ 6.7

Cm 0.7
K∗

c /τ > 0.8 (for methane-air flames)
τ (Tad − Tu)/Tu

C4 1.1 (1 + Ka)−0.4

C3 1.5/(1 + Ka−0.5)

Table 9: Model parameters for the Kolla turbulent flame propagation model.

The performance of the three turbulent flame propagation models is compared in figure
15. The turbulence fluctuation u′ is calculated based on the integral length scale and scalar
mixing time according to u′ = lI/τϕ where lI = 0.014m and τϕ = 2.6ms. The Simple model
incorporates the ratio of integral length scale and flame thickness indirectly by the model
constant C.* For the Peters and Kolla model the flame thickness is set to 0.01mm. The Simple
and Peters model show a similar trend for the calculated flame radius and turbulent flame
speed. The Kolla model calculates a higher turbulent flame speed wherefor the calculated

*For this investigation the model constant C is set to 2.5.

50



MULTI-OBJECTIVE OPTIMIZATION OF STOCHASTIC ENGINE MODELS

flame radius becomes higher. Kolla et al. showed in their publication [54] that the model
predicts higher sT/sL values at higher u′/sL values in comparison to the Peters model
wherefor the trend shown in figure 15 is in agreement.

(a) Laminar flame speed (b) Thermal flame thickness

(c) Flame radius (d) Turbulent flame speed

Figure 15: Comparison of the laminar flame speed, flame thickness, flame radius and turbulent flame speed for
Simple, Peters and Kolla turbulent flame propagation models at 2000 rpm and 6 bar IMEP. The spark timing is
at -13.3 ◦CA.

Early flame propagation The early flame propagation model is implemented based
on the work of Su et al. [55] and a similar approach was proposed by Keum et al. [56]. The
laminar-to-turbulent transition is characterized by the transition scale η0.

η0 = k · lG + ηc (4.110)

The transition scale η0 is a function of the Gibson scale lG defined by Peters [3] and the
correction parameter ηc defined by Su et al. [55]. The Gibson scale is defined as the smallest
eddy size where the eddy still interacts with the flame front. It is derived for the condition
that the turnover velocity of the turbulent eddy uη is equal to the laminar flame speed sL.
The correction factor ηc accounts for inaccuracies of the transition prediction introduced by
near-wall turbulence effects at the spark plug [55]. The constant k is larger than 1 and should
have the same value for all operating points of the engine investigated.
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The Gibson scale is calculated based on the laminar flame speed sL and the dissipation ε. The
dissipation ε is determined according to the equation (4.52) of the k − ε turbulence model.

lG =
s3

L
ε

(4.111)

The transition between laminar flame velocity sL and turbulent flame velocity sT is governed
by the parameter w.

sT = (1 − w) · sL + w · sT (4.112)

It is modeled as a function of the flame radius r f , the flame thickness δL and the transition
scale η0.

w =
1
2
·
{

tanh

[
4
(
r f − δL

)
η0 − δL

− 2

]
+ 1

}
(4.113)

The two model parameters that can be adjusted to match the flame propagation of the
experiments are summarized in table 10.

Parameter Value
k 5.0
ηc 3 mm

Table 10: Model parameters of the early flame propagation model by Su et al. [55].

The effect of the variation of the model constant k and the near-wall correction factor ηc on
the flame radius r f is outlined in figure 16. The increase of the value of the model constant k
extends the Gibson scale to larger eddy sizes, wherefor the laminar-to-turbulent transition
takes longer time. The same effect can be observed by increasing the value of the correction
factor ηc since both parameters affect the transition scale η0.

In figure 17 the performance of the early flame propagation model (LTC) is compared to a
case without transition (NLT). For the LTC case the model constant k is set to 5*, while the
correction factor ηc is set to 9mm†. For the NLT case the spark timing is delayed by 5.5◦CA
to match the center of combustion of both cases. Further, the flame thickness δL is defined
as a constant and is set to 40µm. During the initial phase after spark ignition until -3◦CA
both cases show a constant laminar flame speed sL. The LTC case shows a slight decrease
in the flame thickness δL and a steady increase of the flame radius r f . The turbulent flame
speed sT of the LTC case shows a stronger increase at the start because of the initialization of
the ignition kernel. The ignition kernel is initialized with 0.002% of the total mass or 3% of
the injected fuel mass. Subsequently, sT is slowly accelerating according to the laminar-to-
turbulent transition in equation (4.113). After the flame propagation becomes fully turbulent

*This value is also used by Su et al. [55].
†Su et al. [55] used a value of 1.5mm.

52



MULTI-OBJECTIVE OPTIMIZATION OF STOCHASTIC ENGINE MODELS

(a) Variation of k parameter (b) Variation of ηc parameter

Figure 16: Comparison of temporal evolution of the flame radius r f for different k and ηc parameter values of
the early flame propagation model at 2000 rpm and 6 bar IMEP.

at -3◦CA the flame thickness is decreasing even more becomes of the increase of laminar
flame speed sL and unburnt temperature Tu. The NLT case starts with fully turbulent flame
propagation from the start and the range of sT and r f is similar to the LTC model. This was
achieved by adjusted the constant flame thickness of the NLT model to the value of 40µm.

(a) Laminar flame speed (b) Flame thickness

(c) Flame radius (d) Turbulent flame speed

Figure 17: Comparison of temporal evolution of the laminar flame speed, thermal flame thickness, flame radius
and turbulent flame speed for NLT and LTC at 2000 rpm and 6 bar IMEP.
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4.3.3 Stochastic combustion model

Direct injection of fuel in SI engines can lead to inhomogeneous mixtures ahead of the flame
front which affect the local flame propagation. Hélie et al. [57] performed DNS calculations
of a mean stoichiometric mixture with various degree of inhomogeneity of the composition.
They showed that the local mass burning rate per unit premixed flame surface area is af-
fected by the variance of the mixture composition. The overall reaction rate was 20% lower
compared to a homogeneously premixed case. Pasquier et al. [58] performed experimental
optical measurements of homogeneous and stratified propane-air mixtures to determine the
local flame propagation velocities. They stated that local flame propagation of stoichiometric
equivalence ratio is only slightly affected by stratified conditions. For lean equivalence ratios
their results revealed an enhancement of local flame propagation in locally lean mixtures.
This effect is attributed to the burning of locally rich regions which increase the burnt tem-
perature. The higher burnt temperature improved the heat conduction into the locally lean
mixtures wherefor flame propagation was enhanced.
The stochastic combustion model accounts for the effect of equivalence ratio inhomogeneity
on the mass burn rate by incorporating a probability density function f (ϕ) shown in figure
18. The distribution f (ϕ) is determined according to the sL-profile of a gasoline flame at 15bar
pressure and 800K temperature.* The stochastic combustion algorithm implemented in SRM
in explained below.

Figure 18: Probability density function based on equivalence ratio of gasoline for stochastic combustion
algorithm in SRM.

The stochastic algorithm is evaluated in comparison to an averaging algorithm for two
different relative air-fuel ratios λ=1.0 and λ=1.5 in figure 19. The averaging algorithm
calculates the mean properties of the unburnt notional particles and creates a new burnt
notional particle with the properties of the mean unburnt mixture.† The stochastic algorithm
selects randomly an unburnt notional particle and moves it to the burnt zone. The scalar
mixing time factor Cϕ,u is increased to create an inhomogeneous mixture and the burnt scalar

*These conditions should reflect a mean condition in the operation of a SI engine.
†This algorithm is applied in SRM by Pasternak et al. [48] and Netzer et al. [59] to investigate SI engine performance.
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mixing time factor Cϕ,b is set to 0.001 which makes the burnt notional particles mix fast.
For the λ=1.0 case the stochastic model burns rich at 10% combustion progress because the
distribution f (ϕ) is skewed to the rich side (see figure 18). Further, the maximum burnt
temperature is lower compared to the averaging model and the combustion progress is
delayed. At 50% combustion progress more rich particles are burnt for the stochastic model
compared to the averaging model. However, the equivalence ratio of the burnt particles
approaches the averaging model results. For lean conditions at λ=1.5 the stochastic model
burns close to stoichiometric conditions at 10% progress and the maximum burnt temperature
is higher compared to the averaging model. At 50% progress the burnt equivalence ratio of the
stochastic model approaches the result of the averaging model while the burnt temperature
remains higher.

(a) λ=1.0 and 10% MFB (b) λ=1.0 and 50% MFB

(c) λ=1.5 and 10% MFB (d) λ=1.5 and 50% MFB

Figure 19: ϕ-T maps at 10% and 50% combustion progress for λ=1.0 and λ=1.5 at 2000 rpm and 6 bar IMEP.

Stochastic combustion algorithm During the initialisation step of the stochastic
algorithm the cumulative distribution function F(ϕ) is calculated based on the user-
provided probability density function f (ϕ) in figure 18.

F(ϕ) =
∫

f (ϕ)dϕ (4.114)
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where ϕ represents the equivalence ratio of the unburnt mixture.
After spark timing the flame propagation is initiated by establishing the ignition kernel
at the spark plug. The stochastic combustion algorithm is called and generates a
homogeneously distributed random number RN in the range between 0 and 1.

RN ∈ {0, 1} (4.115)

Using the random number RN the respective probability of equivalence ratio ϕRN is
determined based on F(ϕ) in equation (4.114).

RN = F(ϕ) → ϕRN (4.116)

Next the algorithm loops over the number of notional particles of the unburnt zone
to determine the notional particle ∗ whos equivalence ratio is closest to the randomly
selected ϕRN.

ϕ∗ = min(|ϕi − ϕRN |) (4.117)

According to the notional particle mass and the calculated burnt mass for the current
time step t the notional particle is moved partially or completely from the unburnt to
the burnt zone.

4.3.4 Crevice model

The crevice volume at the piston ring land of spark ignition engines contributes to the unburnt
hydrocarbon engine-out emissions [60]. The early injected gasoline fuel penetrates into the
crevice volume during the compression stroke and becomes inaccessible for the flame [61].
During the expansion stroke the unburnt fuel mass is released from the crevice volume to the
bulk gas and burns only partially wherefor unburnt hydrocarbon emissions are increased.
The crevice volume is implemented as a third zone into the SRM. The specifications of
the implementation are highlighted in the paragraph below. The crevice volume is treated
adiabatically and the reactants trapped are not participating in chemical reactions. Mass can
be pushed to the crevice volume or extracted from it wherefor the zone mass proportions
(ZMP) are changing over time as shown in figure 20 (a). The maximum percentage of total
mass trapped in the crevice volume is approximately 5% at the time of maximum cylinder
pressure. The temperature in the crevice zone follows the one from the unburnt mixture as
shown in figure 20 (b). In contrast Malfi et al. [62] determined the temperature in the crevice
volume in between the unburnt and burnt temperature using an in-house developed model.

The volume of the crevice can differ for different engines. Hence, the model parameter
Ccrev is introduced in SRM to scale the volume up or down. The effect of the crevice volume
factor is shown in figure 21.* During the compression stroke the HC mole fraction is increasing
and reaches its maximum shortly before TDC as shown in figure 21 (a). The size of the crevice

*The default crevice volume is 2% of the clearance volume.
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(a) Zone mass proportion (b) Zone temperature

Figure 20: Comparison of zone mass proportion and temperature of unburnt zone, burnt zone and crevice zone
at 2000 rpm and 6 bar IMEP.

volume shows no distinct effect for the HC mole fraction in the crevice. During the expansion
stroke the HC mole fraction is only slightly decreasing. The overall HC mole fraction in figure
21 (b) is increasing during the beginning of direct injection at -120 ◦CA and is composed
of unburnt fuel species. Subsequently the HC mole fractions remain constant until start of
combustion shortly before TDC. During the combustion the fuel is oxidized and the HC
mole fractions decrease rapidly. At the end of combustion at 20 ◦CA the consumption of
HC is slowing down and a clear effect of the crevice volume size is observed. The larger
crevice volume (Ccrev=4.0) shows higher HC mole fractions at the end of combustion because
more unburnt HC mass is trapped in the crevice volume. The unburnt HC is released from
the crevice volume during the expansion stroke but can only be partially oxidized because
of the low temperatures. Malfi et al. [62] reported similar results of the release of unburnt
hydrocarbons during the expansion stroke as a potential source of HC emissions in lean-burn
engines.

(a) HC in crevice zone (b) Total HC

Figure 21: Comparison of unburnt hydrocarbon mole fraction in the crevice zone and in total for different Ccrev
values at 2000 rpm and 6 bar IMEP. Start of fuel injection is at -120 ◦CA. Firing top dead center is at 0 ◦CA.
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Crevice zone algorithm The geometrical volume Vcrev,geom of the piston crevice is
set as 2% of the clearance volume Vclearance and can be modified by the factor Ccrev in
the following equation.

Vcrev,geom = Ccrev · 0.02 · Vclearance (4.118)

The thermodynamic volume Vcrec,therm of the crevice is determined by assuming ideal
gas for the notional particles in the crevice Ncrev using the following equation:

Vcrev,therm =
Ncrev

∑
i=1

R · Wi · mgas · Ti

p · Mi
(4.119)

The difference between the two volumes ∆Vcrev drives the mass transfer between bulk
and crevice.

∆Vcrev = Vcrev,geom − Vcrev,therm (4.120)

If the ∆Vcrev > 1 then mass from the unburnt zone is moved to the crevice zone. The
notional particle moved partially or completely to the crevice zone is selected according
to a homogeneously distributed random number RN. However, if the reaction progress
c of the selected notional particle is larger than 0.001 due to auto-ignition another
notional particle is randomly selected.

RN ∈ {0, 1} (4.121)

If the ∆Vcrev < 1 then mass from the crevice zone is moved to the unburnt zone. If the
unburnt zone is completely consumed (ZMP=0) then the mass is moved to the burnt
zone.
The extension of the crevice zone algorithm allows to account for the influence of
turbulent kinetic energy on the amount of unburnt hydrocarbons to be trapped in the
crevice zone. To achieve this, a scaling parameter αtke,crev based on the turbulent kinetic
energy k is defined:

αtke,crev =
k − kmin,crev

kmax,crev − kmin,crev
(4.122)

where k is calculated based on equation (4.51) and kmin,crev and kmax,crev are model
constants. Following, a scaling factor for the unburnt hydrocarbons (HC) is defined as
well:

αyHC,(n),crev =
yHC,(n) − yHC,min,crev

yHC,max,crev − yHC,min,crev
(4.123)

where yHC,(n) is the mass fraction of unburnt hydrocarbons of the notional particle with
index (n) and yHC,min,crev and yHC,max,crev are the respective minimum and maximum
mass fractions of unburnt hydrocarbons of all the notional particles [1..NP] at the cur-
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rent time step.
Finally, the notional particle (n) to be moved to the crevice zone is selected by deter-
mining the minimum difference between the two scaling factors of equations (4.122)
and (4.123).

min
(
|αtke,crev − αyHC,(n),crev |

)
→ (n) (4.124)

The parameter kmax,crev of the extended crevice model will therefor control the upper limit
and the parameter kmin,crev will control the lower limit of turbulent kinetic energy at which
HC-rich particles are preferably pushed to the crevice volume.*

Increasing the model parameter kmax,crev will decrease the probability to push HC-rich no-
tional particles to the crevice volume wherefor the HC mole fraction is decreasing in the
crevice as shown in figure 22 (a).† For the case with kmax,crev = 100 the HC mole fraction is in-
creasing strongest during the compression stroke because the value of kmax,crev = 100 is close
to the calculated turbulent kinetic energy in the system. Shortly before TDC at 0◦CA the HC
mole fraction is dropping because of a decline in the turbulent kinetic energy wherefor less
HC-rich notional particles are moved to the crevice volume. The decrease of kmax,crev shows a
small effect for the overall HC mole fractions in figure 22 (b). The most noticable increase in
HC mole fraction at the end of combustion at 20◦CA is observed for case kmax,crev = 100.
Increasing the model parameter kmin,crev will decrease the probability to push HC-rich no-
tional particles to the crevice volume.‡ However, figure 22 (c) show a slight increase of HC
mole fraction in the crevice while no significant impact is found for the total HC mole fraction
in figure 22 (d). For the subsequent investigations the kmax,crev model parameter is set to 500
and the kmin,crev model parameter is set to 1.

4.3.5 Cyclic variation model

The cyclic variation model was introduced by Netzer et al. [19] in SRM to investigate
the influence on knocking combustion in a spark ignition engine. They applied normal
distributions for the scalar mixing time factor Cϕ and the spark timing delay ∆θST to account
for stochastic variation in the turbulent mixing and initial flame kernel development close
to the spark plug. Pera et al. [63] reported similar results for their two-dimensional DNS
simulation of the early flame kernel development for a stoichiometric and lean mixture. They
reported the strongest influence on cyclic variation for stoichiometric mixtures by initial
kernel size and turbulence structure while turbulence intensity and integral length scale had
a reduced effect. For lean mixtures the influence of initial kernel size, turbulence intensity
and integral length scale is increasing while for the turbulence structure it is decreasing.
The effect of turbulence intensity on the cyclic variation is accounted for by applying a normal

*Turbulent kinetic energy is used as an indicator for the strength of the large scale flow motion. It is assumed that a strong flow motion
will lead to more transport of unburnt fuel towards the crevice volume.

†The model parameter kmin,crev is set to 1 for this investigation.
‡The model parameter kmax,crev is set to 500 for this investigation.
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(a) HC in crevice zone (b) Total HC

(c) HC in crevice zone (d) Total HC

Figure 22: Comparison of unburnt hydrocarbon mole fraction in the crevice zone and in total for different
kmax,crev and kmin,crev values at 2000 rpm and 6 bar IMEP. Start of fuel injection is at -120 ◦CA. Firing top dead
center is at 0 ◦CA.

distribution f (u′) as shown in figure 23 (a). The standard deviation σu′ is set in the range of
0.1 - 0.3 m/s. The effect of initial kernel size variance is indirectly captured by accounting for
slower or faster initial flame kernel propagation using a normal distribution f (θST) for the
spark timing θST as shown in figure 23 (b). The standard deviation σθST is usually set in the
range of 1 - 5 ◦CA.

The simulation results of a SI engine operated at 2000 rpm and 20 bar IMEP are compared
to the experiments in figure 24.* The standard deviation σθST is set to 1.1 ◦CA and the standard
deviation σu′ is set to 0.1 m/s. The SRM shows a close match of the experiment cylinder
pressure in figure 24 (a). The cyclic variation of the maximum cylinder pressure pmax and
the crank angle of maximum cylinder pressure θpmax shown in figure 24 (b) to (d) is well
matched. However, the findings of Pera et al. [63] suggest that the choice of u′ for modeling
of cyclic variations seem not to be ideal. The largest effect on cyclic variation is reported for
the variance in turbulence structure wherefor the choice of Netzer et al. [19] using the scalar
mixing time τϕ as variance parameter is probably better.

*SRM simulations are performed with 500 notional particles, 0.5 ◦CA time step size, 150 stochastic cycles and Curl mixing model.
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(a) Normal distribution of u′ (b) Normal distribution of θST

Figure 23: Normal distribution of u′ and θST of the cyclic variation model.

(a) Cylinder Pressure (b) pmax vs. θpmax

(c) Distribution f (pmax) (d) Distribution f (θpmax )

Figure 24: SRM simulation results for cyclic variation at 2000 rpm and 20 bar IMEP. 150 stochastic cycles are
calculated by SRM and 150 cycles are recorded in the experiment.

Cyclic variation algorithm The cyclic variation model is initialized at the begin-
ning of the simulation run. The standard deviation of the normal distribution of spark
timing σθST and turbulence frequency σu′ are defined a priori. Then, a homogeneously
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distributed random number RN1 is drawn.

RN1 ∈ {0, 1} (4.125)

The random number RN1 and the standard deviation of spark timing are used to
calculate a normal distributed value for every stochastic cycle (m)

θST,(m) = θST +
√

2 · σθST · er f−1 (2 · RN1 − 1) (4.126)

where (m) = [1..Nc]. Subsequently, a second homogeneously distributed random
number RN2 is drawn to determine the normal distribtion of the turbulence frequency.

RN2 ∈ {0, 1} (4.127)

Again the normal distributed value of the turbulence frequency is calculated for every
stochastic cycle using the inverse error function.

u′
(m) = u′ +

√
2 · σu′ · er f−1 (2 · RN2 − 1) (4.128)

4.4 Modeling of compression ignition engine

The SRM for compression ignition engines with direct injection (DI-SRM) defines the com-
bustion chamber as one zone. The gas composition and enthalpy is described by an ensemble
of notional particles. The turbulence in the system is modeled using a k − ε turbulence model
that calculates the generation and dissipation of turbulent kinetic energy k and the change of
angular momentum of swirl flow LS.

4.4.1 k − ε turbulence model

The k − ε turbulence model for CI engines is implemented according to the work of Qirui
[45]. The model is based on the work of Bossung [10] and the derived equations are based
on Wilcox [44]. The model calculates the change of turbulent kinetic energy dk/dt by a
set of differential terms which describe the production and dissipation of k in a cylinder-
shaped geometry with a swirl motion around the center-axis of the cylinder. The differential
terms for valve flow, axial flow, squish flow, local tumble motion, direct injection, swirl flow,
compressibility and dissipation outlined in equation (4.129) are described more in detail in
the following paragraphs.

dk
dt

=

(
dk
dt

)
in f low,IV/EV

+

(
dk
dt

)
axial

(
dk
dt

)
squish

+

(
dk
dt

)
local tumble

+

(
dk
dt

)
injection

+

(
dk
dt

)
swirl

(
dk
dt

)
compressibility

− ε

(4.129)

The production of turbulent kinetic energy is goverend by the flow of gas into the system
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through the intake valves (mi,IV) and exhaust valves (mi,EV) in equation (4.130) and (4.131).
The kinetic energy of the inflow is depending on the relative velocity difference between
inflow vi,in and instantaneous piston speed cpis*. The characteristic length scale ri,in,IV of
the inflow is determined by the valve diameter dIV and the instantaneous valve lift LIV in
equation (4.132), where Cε2 is a scaling parameter between the turbulent and integral length
scale.† The characteristic length scale ri,in,EV is defined in a similar manner by equation
(4.133).*

(
dk
dt

)
in f low,IV

=
Nin,valve

∑
i=1

2 · νt ·
(

vi,in − cpis

ri,in,IV

)2

· mi,IV

mgas
(4.130)

(
dk
dt

)
in f low,EV

=

⎧⎨⎩ ∑N
i=1 2 · νt ·

(
vi,out−cpis

ri,in,EV

)2
· mi,EV

mgas
, −360◦ ≤ θ ≤ −180◦

0
(4.131)

rin,IV = (0.125 · dIV + 0.003) +
LIV

Cε2

(4.132)

rin,EV = (0.125 · dEV + 0.003) +
LEV

Cε2

(4.133)

The model parameter Cε2 affects the amount of turbulent kinetic energy produced by the
mass flow of gas into the system. It affects the turbulent kinetic energy in the system during
the valve opening as shown in figure 25. Increasing the Cε2 parameter leads to a reduction of
the characteristic length scale of the valve flow and an increase of turbulent kinetic energy.
The increase of turbulent kinetic energy during the intake valve flow shows no impact during
the combustion due to the strong dissipation.

(a) Turbulent kinetic energy (b) Turbulent length scale

Figure 25: Turbulent kinetic energy, dissipation and length scale in dependence of Cε2 parameter at 1750 rpm
and 12 bar IMEP. The dashed lines highlight the intake and exhaust valve lift. The start of fuel injection is at -41
◦CA.

*The instantaneous piston speed is calculated according to equation (9.8)
†The same scaling parameter Cε2 is also introduced in the Bossung turbulence model in equation (4.75).
*The masses flowing through the valves mi,IV and miEV , the valve flow velocities vi,in and vi,out and the valve lifts LIV and LEV are

determined by the gas exchange model in section 4.2.4.
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The source term for production of turbulent kinetic energy from secondary axial flows is
outlined in equation (4.134). It follows the same definition as it is used in the Bossung model
in equation (4.61).† (

dk
dt

)
axial

=
ekin,sec

τaxial
(4.134)

The production of kinetic energy of secondary flows is depending on the production of
kinetic energy of axial flows and the production of turbulent kinetic energy as outlined in
equation (4.135).

ekin,sec

dt
= max

(
−dekin,axial

dt
, 0
)
−
(

dk
dt

)
axial

(4.135)

The production of kinetic energy of axial flow is calculated according to equation (4.136)
and determines a higher energy level during the expansion stroke and exhaust gas exchange.

ekin,axial =

{
1
2 · u2

axial, −360◦CA ≤ θ ≤ 0◦CA
2
3 · u2

axial
(4.136)

The axial flow velocity uaxial is determined according to equation (4.137). During the intake
gas exchange the instantaneous piston speed cpis determines the axial flow velocity.* During
the compression and expansion stroke additional axial squish flows usq,axial are induced by
the piston bowl geometry.†

uaxial =

⎧⎪⎨⎪⎩
cpis, −360◦CA ≤ θ ≤ −180◦CA

0.5 ·
cpis·V+usq,axial ·

(
Vbowl+H1·π

d2
bowl

4

)
V

(4.137)

The axial squish velocity usq,axial is derived from the radial squish velocity usq,radial assum-
ing a idealized flow field and considering the geometrical dimensions of the piston bowl
volume Vbowl and the cylinder-shaped volume above the piston bowl [45].

usq,axial = usq,radial · (H1 · π · dbowl) ·

Vbowl

Vbowl+H1·π·
d2

bowl
4

π · d2
bowl
4

(4.138)

usq,radial = −
dV
dt
V

· Vbowl
(V − Vbowl)

·
d2

B − d2
bowl

4 · dbowl
(4.139)

The effect of the axial flow factor on the turbulent kinetic energy and scalar mixing time is
shown in figure 26. The decrease of the axial flow factor results in a minor increase of the
turbulent kinetic energy during the intake valve flow. The scalar mixing time is decreasing
with increasing axial flow factor during the compression and expansion stroke while no effect

†The time scale is calculated according to τaxial = Caxial · hs
cm

where Caxial is a model parameter, hs is the stroke and cm is the mean piston
speed.

*The instantaneous piston speed is calculated according to equation (9.8).
†The instantaneous stroke H1 is determined by H1 = V−Vbowl

π·
d2

B
4

where Vbowl is the piston bowl volume and dbowl is the piston bowl

diameter.
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is observed during the combustion phase.

Figure 26: Turbulent kinetic energy and axial flow production term in dependence of Caxial parameter at 1750
rpm and 12 bar IMEP. The dashed lines highlight the intake and exhaust valve lift. The start of fuel injection is
at -41 ◦CA.

The change of kinetic energy of the squish flow dekin,sq/dt is proportional to the radial
squish flow velocity in equation (4.139).

dekin,sq

dt
= 0.5 · u3

sq,radial ·
H1 · π · dbowl

V
(4.140)

Introducing the scaling parameter Ckin,sq the squish flow can split into another kinetic
energy of secondary flows within the piston bowl ebowl.

debowl
dt

=

{ (
1 − Ckin,sq

)
· dekin,sq

dt , −180◦CA ≤ θ ≤ 180◦CA
0

(4.141)

The first source term in equation (4.142) describes the production of turbulent kinetic
energy during the compression stroke where large scale flow motion is squished and decayed
into turbulent kinetic energy.*

(
dk
dt

)
squish

=

{
Ckin,sq ·

dekin,sq
dt , −180◦CA ≤ θ ≤ 0◦CA

0
(4.142)

The second term in equation (4.143) describes the production of turbulent kinetic energy
during the compression and expansion stroke. The mass flow between squish and piston
volume has to pass the edge of the piston bowl. At the edge of the bowl the flow detaches due
to its high inertia and forms a secondary tumble flow motion which decays into turbulent
kinetic energy.† (

dk
dt

)
local tumble

= ebowl · νt · β (4.143)

The terms for squish injection and local tumble contribute to the production of turbulent
kinetic energy close to the firing TDC as shown in figure 27. The model parameter Ckin,sq can

*The default value for the squish flow parameter Ckin,sq is 0.3.
†The geometry parameter β is calculated according to β = π2 · 2 · d4

bowl+6·d2
bowl ·h

2
bowl+4·h4

bowl
d2

bowl ·h
2
bowl ·(d2

bowl ·h
2
bowl)

.
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be changed to distribute the squish flow kinetic energy differently to the two production terms.
However, the contribution of the two squish flows to turbulent kinetic energy production is
assumed to be much lower compared to direct injection.

(a) Squish injection production term (b) Local tumble production term

Figure 27: Turbulent kinetic energy, squish injection and local tumble production term in dependence of Ckin,sq
parameter at 1750 rpm and 12 bar IMEP. The dashed lines highlight the intake and exhaust valve lift. The start
of fuel injection is at -41 ◦CA.

The production of turbulent kinetic energy due to direct injection is defined the same way
as in the k − ε turbulence model for SI engines in equation (4.62).(

dk
dt

)
injection

= Cinj · ṁ f ·
pinj − pcyl

ρ f
· 1

mg
(4.144)

The results of the variation of the model parameter Cinj are shown in figure 28. Increasing
the Cinj parameter leads to higher production of turbulent kinetic energy during fuel injection.

Figure 28: Turbulent kinetic energy and direct injection production term in dependence of Cinj parameter at 1750
rpm and 12 bar IMEP. The dashed lines highlight the intake and exhaust valve lift. The start of fuel injection is
at -41 ◦CA.

The swirl production term in equation (4.145) is divided into two terms which describe
the decay of swirl angular momentum LS into turbulent kinetic energy.(

dk
dt

)
swirl

=

(
dk
dt

)
shear

+

(
dk
dt

)
wall f riction

(4.145)
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The shear force term describes the decay of angular momentum due to inner friction in
the fluid which is governed by the turbulent viscosity νt and the geometric dimensions.

(
dk
dt

)
shear

= νt ·
(

28.55
ρ2

)
·
(

H1 + hbowl

H1 · d3
B + hbowl · d3

bowl

)2

·
(

H1 · d2
B + hbowl · d2

bowl

)
· L2

S

(4.146)

The differential equation of swirl angular momentum LS in equation (4.147) includes
different production and consumption terms based on valve flow, shear forces, wall friction
and shift of mass into the piston bowl.

dLS

dt
=

dLS,intake

dt
+

dLS,exhaust

dt
+

dLS,shear

dt
+

dLS, f riction

dt
+

dLS,piston

dt
(4.147)

The generation of angular momentum due to mass flowing into the system is decribed
by equation (4.148). It depends on the volume flow through the valves ṁin/ρ and the lever
length dB/2.

dLS,intake

dt
= STipp ·

ṁ2
in

dB
2 · ρ

(4.148)

The effictiveness of intake flow generating angular momentum is decribed by the Tippel-
mann swirl number STipp as shown in figure 29. It accounts for the type of intake port and
how it directs the flow into the system to form a swirl motion. Increasing the Tippelmann
swirl number leads to an increase of swirl angular momentum and higher swirl ratio over
the whole engine cycle.*

(a) Turbulent kinetic energy (b) Angular momentum

Figure 29: Turbulent kinetic energy, swirl production term, swirl angular momentum and swirl ratio in
dependence of STipp parameter at 1750 rpm and 12 bar IMEP. The dashed lines highlight the intake and exhaust
valve lift. The start of fuel injection is at -41 ◦CA.

The flow out of the system ṁout can transport swirl angular momentum and is a sink term
in equation (4.147). The amount of swirl angular momentum leaving the system is scaling
with the total mass mg.

*The swirl ratio is calculated according to section 9.7.
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dLS,exhaust

dt
= LS ·

ṁout

mg
(4.149)

Another sink term describes the decay of swirl angular momentum due to shear forces
and production of turbulent kinetic energy and is outlined in the following equation. The
decay due to shear forces occurs mainly during the compression stroke because of the high
angular momentum created by the mass flow through the intake valves.*

dLS,shear

dt
=

{
−2.175 · νt · H1+hbowl

H1·d2
B+hbowl ·d2

bowl
· LS, θ > −180◦CA

0
(4.150)

The sink term due to swirl flow and wall interaction is described by equation (4.151) and
it diminishes angular momentum during the compression stroke. It is scaling with the local
tangential velocity U∗ and the dynamic viscosity µ.*

dLS,wall f riction

dt

=

{
−(0.05 · (H1 · d1.8

B + hbowl · d1.8
bowl) + C f riction · (0.0136 · d2.8

B + 0.0071 · d2.8
bowl) · ρ0.8 · µ0.2 · |U∗|1.8, θ > −180◦CA

0
(4.151)

The local tangential velocity U∗ is derived from the angular momentum LS using the
relationship LS = r · m · U∗ where r is the lever length and m is the mass. Accounting for the
instantaneous stroke H1

†, the piston bowl depth hbowl and diameter dbowl and the density ρ,
the tangential velocity can be determined for the system by the following equation.

U∗ = π2 · LS

2 · (π − 2) · ρ · (H1 · d3
B + hbowl · d3

bowl)
(4.152)

The increase of the model parameter C f riction leads to a decrease of the angular momentum
and swirl ratio during the compression and expansion stroke as shown in figure 30.

The reduction of angular momentum due to shift of mass from the cylinder to the piston
bowl during the compression stroke is described by the following equation.

dLS,piston

dt
=

{
2 · π−2

π2 · U∗ ·
(

ρ · d3
B · cpis + (H1 · d3

B + hbowl · d3
bowl) ·

dρ
dt

)
,−180◦CA ≤ θ ≤ 0◦CA

0
(4.153)

The wall friction term describes the production of turbulent kinetic energy due to decay
of angular momentum from swirl flow and wall interaction and is governed by the local
tangential velocity U∗ and the kinematic viscosity µ/ρ.

*The turbulent viscosity νt is calculated by equation (4.64).
*The dynamic viscosity µ is calculated according to following empirical equation µ = 0.612 · 10−6 · T0.609 where µ has the unit Pa · s

and T has the unit K.
†The instantaneous distance between piston and cylinder head is calculated with H1 = V

π·
d2

B
4

.
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(a) Turbulent kinetic energy (b) Angular momentum

Figure 30: Turbulent kinetic energy, swirl production term, swirl angular momentum and swirl ratio in
dependence of C f riction parameter at 1750 rpm and 12 bar IMEP. The dashed lines highlight the intake and
exhaust valve lift. The start of fuel injection is at -41 ◦CA.

(
dk
dt

)
wall f riction

=

(
0.083 · d1.7

B + 0.044 · d1.7
B + C f riction · 0.254 ·

(
H1 · d0.7

B + hbowl · d0.7
bowl
)

V

)

·
(
|U∗|1.8 ·

(
µ

ρ

)0.2
)1.5

(4.154)
The closure term of the Reynolds stress tensor for compressible flows [44] is included in a

similar manner as for the k − ε turbulence model of SI engines in equation (4.70).

(
dk
dt

)
compressibility

=

{
− 2

3 ·
dV
dt · k

V , −180◦CA ≤ θ ≤ 180◦CA
0

(4.155)

The dissipation ε is the last term of equation (4.129) and is the sink for turbulent kinetic en-
ergy. It is calculated proportional to the turbulent kinetic energy k and inversely proportional
to the integral length scale lI .

ε = Cε ·
k

3
2

lI
(4.156)

The ratio of Cε and Cµ reflects the proportionality of the integral length scale lI to the
turbulent length scale l.

lI =
Cε

Cµ
· l (4.157)

If the model parameter Cε is increased the turbulent kinetic energy is reduced as shown in
figure 31.

The turbulent length scale l is determined by the characteristic turbulent length scale
lturb,vol of the cylinder, the characteristic turbulent length scale lturb,avg of the inflow in the
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Figure 31: Turbulent kinetic energy and dissipation in dependence of Cε parameter at 1750 rpm and 12 bar
IMEP. The dashed lines highlight the intake and exhaust valve lift. The start of fuel injection is at -41 ◦CA.

system and the characteristic turbulent length scale lturb,sq of the squish flow.

l =
mg

mvol
lturb,vol

+
min f low
lturb,avg

+
msq

lturb,sq

(4.158)

The characteristic turbulent length scale lturb,vol is determined based on the model param-
eters Cµ and Cε1 and the product of the swirl number S* and the characteristic length scale
lvol.

lturb,vol =
Cµ

Cε1

+ |S| · lvol (4.159)

The characteristic length scale lvol is determined based on the cylinder length scale lcyl,1

and the bowl length scale lbowl.

lvol =
lcyl,1 · (V − Vbowl) + lbowl · Vbowl

V
(4.160)

lcyl,1 =

(
6 · V − Vbowl

π

) 1
3

(4.161)

lbowl =

(
4 · Vbowl

π2

) 1
3

(4.162)

The model parameter Cε1 influences the turbulent length scale over the whole engine cycle
as shown in figure 32. The largest effect on the turbulent kinetic energy can be observed for
the inflow during the intake valve opening. During the combustion no significant effect can
be observed.

The turbulent length scale lturb,avg is determined based on the intake valve length scale
lturb,IV and the exhaust valve length scale lturb,EV .*

*The swirl number is determined according to equation (9.12).
*The mass min f low is calculated based on the accumulated inflow mass of the intake (min f low,IV ) and exhaust valves (min f low,EV ) using

the following definition min f low = ∑ min f low,IV + ∑ min f low,EV .
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(a) Turbulent kinetic energy and dissipation (b) Turbulent length scale

Figure 32: Turbulent kinetic energy, dissipation and turbulent length scale in dependence of Cε1 parameter
at 1750 rpm and 12 bar IMEP. The dashed lines highlight the intake and exhaust valve lift. The start of fuel
injection is at -41 ◦CA.

lturb,avg =
lturb,IV · min f low,IV + lturb,EV · min f low,EV

min f low
(4.163)

The two length scales can be calculated according to equation (4.164) and (4.165). They
are depending on the characteristic length scale LIV and LEV which are related to the instan-
taneous valve lift lIV and lEV . The proportionality between the turbulent length scales l and
the characteristic length scales L is goverend by the model parameters Cµ and Cε2 .

lturb,IV =
Cµ

Cε2

· LIV (4.164)

lturb,EV =
Cµ

Cε2

· LEV (4.165)

The length scale lturb,sq of the squish flow is proportional to the characteristic length scale
Lsq.

lturb,sq =
Cµ

Cε2

· Lsq (4.166)

The characteristic length scale Lsq is relevant during the time when mass is flowing back
from the bowl into the squish. This backflow occurs during the expansion stroke while for
the remaining parts of the engine cycle the characteristic length scale Lsq is zero.

Lsq =

{
∑

dLsq
dt · ∆t, 0◦CA ≤ θ ≤ 180◦CA

0
(4.167)

The change of the characteristic length scale Lsq is dependent on the backflow rate ṁback,sq,
the instantaneous stroke H1 and the current characteristic length scale Lsq.

dLsq

dt
= ṁback,sq ·

H1 − Lsq

msq
(4.168)
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The mass in the squish volume msq is based on the backflow rate ṁback,sq and the mass
flow into the bowl which is dependent on the characteristic time scale τm,sq.

ṁsq = ṁback,sq −
msq

τm,sq
(4.169)

The characteristic time scale τm,sq is proportial to the piston bore dB and the mean piston
speed cm.† The model parameter Cτ,m can be changed to adjust the mass flow rate between
squish and bowl volume.

τm,sq = Cτ,m · dB

cm
(4.170)

The backflow rate ṁback,sq is proportional to the radial squish velocity usq,radial in equation
(4.139) and the mass in the cylindric volume above the piston bowl.

ṁback,sq =

{
|usq,radial| · H1 · π · dbowl · ρ, 0◦CA ≤ θ ≤ 180◦CA

0
(4.171)

The scalar mixing time τϕ can now be determined based on the turbulent kinetic energy
k and dissipation ε. The model parameter Cϕ relates the turbulent mixing time τt with the
scalar mixing time τϕ and can be adjusted depending on the application.

τϕ = Cϕ · k
ε

(4.172)

4.5 Numerical solution method

The md f in equation (4.1) is numerically solved using an operator split method which was
proposed by Tunér [14] for SRM. The differential equations for turbulent kinetic energy
(4.51) and (4.129), dissipation (4.71) and (4.156) and angular momentum (4.65) and (4.147)
are solved using an explicit Runge-Kutta solver. The structure of the operator split method
and Runge-Kutta solver are briefly introduced in the subsequent sections.

4.5.1 Explicit Runge-Kutta Solver

The differential equations for turbulent kinetic energy k, dissipation ε and angular momentum
L are solved using the explicit Runge-Kutta algorithm in equation (4.173).

yn+1 = yn + h ·
(

1
6

k1 +
1
3

k2 +
1
3

k3 +
1
6

k4

)
(4.173)

Therein, yn is a vector including the solutions of k, ε and L of the current operator split
step n. h is the sample size of the Runge-Kutta algorithm and is equal to the operator split
time step ∆t. k1−4 are vectors and consist of the solutions of the intermediate steps 1 − 4 and
yn+1 is the solution of the Runge-Kutta algorithm.
The solutions of the intermediate steps k1−4 are determined by the following equations.*

†The mean piston speed cm is determined according to equation (9.7).
*tn denotes the current time step of the operator split method.
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k1 = f (tn, yn) (4.174)

k2 = f
(

tn +
h
2

, yn +
h
2

k1

)
(4.175)

k3 = f
(

tn +
h
2

, yn +
h
2

k2

)
(4.176)

k4 = f (tn + h, yn + hk3) (4.177)

The flow chart of the solutions steps for the k − ε turbulence model are outlined in figure
33.

Runge-Kutta algorithm The Runge-Kutta algorithm is initialized for the current
operator split time step tn and the turbulent viscosity νt is calculated first. Next, the
turbulent length scale l is calculated based on the current solutions yn. The maximum
number of iteration steps is set to 20. The iteration loop for the Runge-Kutta solver is
started and the solutions of ki, εi and Li for the current iteration step i are calculated. If
convergence is not achieved the next iteration step i + 1 is executed. Convergence of
the solution is achieved when the following criteria is fulfilled:⏐⏐⏐⏐⏐yn+1,i − yn+1,i−1

yn+1,i

⏐⏐⏐⏐⏐ < 10−4 (4.178)

The iteration loop is finished if convergence is achieved or the maximum iteration
number is reached. After leaving the iteration loop the solutions yn+1,i are stored
in yn+1 for the next operator split time step tn+1. The scalar mixing time scale τϕ is
calculated and the Runge-Kutta algorithm is finalized.

4.5.2 Operator split method

The models outlined in the previous sections are solved sequentially using the operator split
algorithm in SRM [14]. The flow chart in figure 34 outlines the solution steps for the SI-SRM.
For the DI-SRM the solution steps for flame propagation and crevice are omitted. At the start
the notional particles and zones are initialized and all model parameters are set according to
the user input. Subsequently, the solutions for piston movement, gas exchange, injection and
vaporization, flame propagation, crevice, turbulence and particle mixing, chemical reaction
and convective heat transfer are determined. All calculation steps are performed assuming
constant pressure. Therefor, a pressure correction is performed at the end of the operator
split time step. The operator split algorithm is continued until the end of the simulation is
reached. The calculations are finalized and the results are written to output files.

73



4 Stochastic Reactor Models for compression ignition and spark ignition engines

Figure 33: Solution steps during the current SRM operator split time step for the differential equations of the
k − ε turbulence model.

Figure 34: Solution steps of the operator split algorithm in SRM.

4.6 Conclusions for stochastic reactor models

This chapter introduces the numerical models which are implemented in the SRM and
optimized during the course of this thesis. The novelty is the implementation of the k − ε
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turbulence models for SI and CI engines. The model determines the turbulent time and length
scales which occur in piston engines in a physical manner. Even though the implementation
of the k − ε turbulence model for SI and CI engines is still separated in the code both models
share a common physical basis which allow to merge them in the future. Other models for
turbulent flame propagation, particle mixing, convective heat transfer and crevice flow are
developed and improved during this thesis by incorporating the turbulent kinetic energy k
and integral length scale lI .
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5 The Multi-Objective Optimization Platform

The multi-objective optimization (MOO) platform is introduced for the automated SRM
training over the whole engine operation map. It incorporates models for design space
filling, error calculation, response surface modeling, optimization and decision making. The
models are explained in the following sections and their performance is evaluated. The MOO
platform is developed in the software package modeFRONTIER v2020R2 from ESTECO [64].

5.1 General idea of optimization

A multi-objective optimization aims to find the best solution for the optimization parameters
x⃗ by minimizing or maximizing multiple objective functions fi(x⃗). Thereby, the optimum
solutions of the defined objective functions can be opposed yielding not one optimum solution
but many which are defined as Pareto solutions. The optimum solution is defined as follows:
x⃗0 belongs to the Pareto front when no better solution fi(x⃗∗) for the objective function fi(x⃗0)

exists.

∀i∄(x⃗∗) : fi(x⃗∗) ≤ fi(x⃗0) (5.1)

Further, constraints gj(x⃗) can be defined to restrict certain parameter or objective function
ranges and narrow down the design space of optimum solutions. The optimization run is
divided into several generations which in turn consist of a number of individuals or designs.
Each design is evaluated during the optimization run and has its own results for the objective
functions and constraints.⎧⎪⎨⎪⎩

min fi(x⃗) = ( f1(x⃗), f2(x⃗), ..., fk(x⃗))T

=
{

x⃗ ∈ Rp|gj(x⃗) ≤ 0, (j = 1, ..., m)

(5.2)

The objective functions fi(x⃗) and constraints gj(x⃗) are defined in dependence of the
optimization parameters x⃗ as shown in equation (5.3). The parameter vector x⃗ consists of p
different parameters which characterize the individual designs of the optimization. In this
thesis the objective functions are also referred to as errors ε and their definition is explained
in the subsequent section. Increasing the number of objective functions and constraints
will increase the computational cost of the multi-objective optimization. The optimization
algorithms investigated in this thesis usually perform well with up to three objective functions
defined [65] while for higher number of objectives many-objective optimization algorithms
are recommended [66, 67].⎧⎪⎨⎪⎩

fi(x⃗) = fi(x1, x2, ..., xp), i = 1, ..., k

gj(x⃗) = gj(x1, x2, ..., xp), j = 1, ..., m
(5.3)

The single steps involved in the multi-objective optimization using the SRM are outlined
in figure 35. The selection of the optimization parameters, objective functions and constraints
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is already done during the setup of the optimization problem.

Optimization procedure The initial populationa is created using a space filler
algorithm and the newly created designs are evaluated using the SRM. Based on the
simulation results of the SRM the user-defined error functions ε are evaluated. The
results are stored in the design database and are ranked according to the criteria set
by the optimization algorithm. A new population of designs is created and evaluated
using the SRM and the procedure is repeated until all generations are evaluated.
The optimization procedure can be extended by an internal optimization run using
response surface models (RSM) [68]. The RSM library includes polynomial singular
value decomposition (SVD), Kriging, Radial Basis Function (RBF) and Neural Network
models. The RSMs are trained for each objective function and constraint based on
the existing design database.b Their performance is evaluated by calculating a mean
normalized error. Subsequently they are competing with each other in a tournament
process. The tournament process always selects the best RSM for the next upcoming
generation. The internal optimization is performed using an initial population consist-
ing of 50% of designs from the best last evaluated designs and 50% of designs created
by a space filler algorithm.c The best designs of the internal optimization are selected
and added to the new population which will be evaluated by the SRM in the next step.
After the optimization is finished a multi-criteria decision making process is started to
select the best designs from the Pareto solutions. The weights of the objectives can be
adjusted to influence the decision making process and retrieve the desired design from
the database.

aA population describes the set of designs of a generation. This term is typical for genetic optimization algorithms while it can
be named differently for heuristic optimization algorithms.

bThe number of designs used for RSM training is limited to 1000 in this thesis.
cAdding 50% randomly generated designs improves the exploration capability and robustness of the optimization algorithm.

Figure 35: Flow chart for multi-objective optimization with SRM.
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5.2 Error calculation

A sum of least square method is used in this thesis to determine the error functions of the
SRM simulation results in comparison to the experimental reference data.* The first error
function εPressure in equation (5.4) determines the normalized least square error of the cylinder
pressure for a number of time steps N and a number of training points R. The weight of the
training points wj can be adjusted.†

εPressure =
R

∑
j=1

wj ·

⎧⎨⎩ N

∑
i=1

(
psim,ij − pre f ,ij

pre f ,ij

)2
⎫⎬⎭ (5.4)

The second error function εPCP in equation (5.5) determines the normalized least square
error of the peak cylinder pressure (PCP)* for a number of training points R.

εPCP =
R

∑
j=1

wj ·

⎧⎨⎩
(

PCPsim,j − PCPre f ,j

PCPre f ,j

)2
⎫⎬⎭ (5.5)

The third error function εPCPCA in equation (5.6) determines the normalized least square
error of the peak cylinder pressure crank angle (PCPCA)† for a number of training points R.

εPCPCA =
R

∑
j=1

wj ·

⎧⎨⎩
(

PCPCAsim,j − PCPCAre f ,j

PCPCAre f ,j

)2
⎫⎬⎭ (5.6)

The fourth error function εyA,EVO determines the normalized least square error of species
mass fraction yA where A is a place holder for different species‡ and is defined more in
general in equation (5.7). The species mass fraction is determined at exhaust valve opening
(EVO). The difference of simulated and measured species mass fraction is normalized by the
maximum measured species mass fraction of the training points R. The natural logarithm
accounts for differences of several magnitudes in measured species mass fraction.

εyA,EVO =
R

∑
j=1

wj ·

⎧⎨⎩
(

ln(yA,EVO,sim,j)− ln(yA,EVO,re f ,j)

ln(max(yA,EVO,re f ))

)2
⎫⎬⎭ (5.7)

The fifth error function εyA,gradient calculates the difference of species mass fraction of two
training points for the simulation and reference data and determines the sum of least square
error. This error function should ensure that the trend of the measurements between the
training points is matched by the SRM simulation.

εyA,gradient =
R−1

∑
k=1

wk ·
{(

∆yA,EVO,sim,k − ∆yA,EVO,re f ,k
)2
}

with ∆yA = yA,k+1 − yA,k (5.8)

*The SRM results are denoted by sim and the experiments are denoted by re f .
†The optimizations investigated in this thesis are performed using equi-weighted training points.
*The peak cylinder pressure is defined as the maximum of the crank-angle-based cylinder pressure profile PCP = max(pi)where i =

1, ..., N.
†The peak cylinder pressure crank angle is defined as the crank angle of maximum cylinder pressure.
‡Species mass fraction is used as an example while the error can also be defined based on mole fraction, total mass or specific mass.
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5.3 Space filling algorithms

The space filler algorithm is applied for the initial population generation and the design
space exploration. The design space is a hypercube with the dimension equal to the number
of optimization parameters p.* A measure of a good performance of a space filler algorithm
is the uniformity of the sample distribution in the hypercube [69] especially for low number
of samples. In the literature the uniformity is defined as the distances between the samples in
the design space [70].†

The Random, Uniform Latin Hypercube (ULHC), Sobol and Incremental Space Filler (ISF)
algorithms are introduced briefly while more detailed information can be found in the
literature. The algorithms are tested during the course of the thesis but finally the ULHC
algorithm is selected as best practice.

Random The random space filler algorithm creates samples of the optimization parameters
according to a uniform distributed random number. This algorithm often suffers from
clustering and low uniformity of the design samples [69].

Uniform Latin Hypercube The ULHC algorithm is the generalization of the Latin
Square for hypercube dimensions [71]. The Latin Square is a n × n matrix filled with n
different values each of them occuring only once in each column and row. Therefor, the
ULHC algorithm provides a good representation of all values of the optimization parameters.
The ULHC algorithm shows usually good performance for low number of samples and
high-dimensional design spaces.

Sobol The Sobol sequence is based on the more general defined Faure and Halton se-
quences [72] which in turn are based on the Van-der-Corput sequence [73]. The Faure and
Halton sequences are calculated using different prime numbers as base while the Sobol
sequence uses the prime number 2 as base. With Sobol the samples of the first dimension of
the design space are calculated using the Van-der-Corput sequence while the samples for all
subsequent dimensions are permutations of the first dimension. Since the Sobol algorithm is
based on a sequence it naturally considers previous samples when it calculates new samples
wherefor design spaces created by Sobol are easily extendable.

Incremental Space Filler The ISF algorithm generates new samples by trying to max-
imize the minimum distance between the samples [70]. It is using a Greedy algorithm to
determine the maximum distance of the samples. The algorithm selects incrementally the
maximum distance from the previously included samples which will not always be the
overall maximum distance of all samples.

Figure 36 compares the distributions for 10 samples and it includes the measure for uni-
formity UD of each algorithm. The best performing algorithms regarding uniformity are

*We are using the same notation as it is introduced in equation (5.2) and (5.3).
†Discrepancy is another measure of uniformity [69]. The definition of Montrone et al. [70] is outlined in section 9.8.
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ULHC and ISF. Even though the Sobol algorithm shows visually a good uniformity it does
not perform as good as ULHC and ISF. The Random algorithm shows some clustering and
large gaps in the distribution while it is only slightly worse than the Sobol algorithm.

(a) Random (UD = 0.1999) (b) ULHC (UD = 0.2389)

(c) Sobol (UD = 0.2060) (d) ISF (UD = 0.2953)

Figure 36: Distribution of 10 samples in a two-dimensional design space using Random, Uniform Latin
Hypercube, Sobol and Incremental Space Filler algorithms.

Figure 37 repeats the comparison of the space filler algorithms for 100 samples. The
Random algorithm shows more clustering and gaps in the distribution wherefor the uni-
formity measure is the lowest. The Sobol sequence performs better compared to the ULHC
algorithm which highlights the strength of the algorithm for large number of samples. The
best performance is obtained by the ISF algorithm which shows by far the highest uniformity
measure. During the optimization the number of samples is low wherefor the choice of the
ULHC or ISF algorithm is reasonable. Finally, the ULHC algorithm is chosen because the
computational cost of the ISF algorithm is higher.

5.4 Response surface models

As shown in figure 35 the internal optimization loop uses RSM models. There are four types
of RSM applied in this thesis: Polynomials, Neural Networks, RBF and Gaussian regression
(Kriging). Each of the models will be briefly introduced while more detailed information can
be found in the literature.
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(a) Random (UD = 0.0557) (b) ULHC (UD = 0.0573)

(c) Sobol (UD = 0.0607) (d) ISF (UD = 0.0866)

Figure 37: Distribution of 100 samples in a two-dimensional design space using Random, Uniform Latin
Hypercube, Sobol and Incremental Space Filler algorithms.

Polynomial Singular Value Decomposition A set of measurements Ym(x) can be
approximated by m number of polynomials of order n.

Ym(x) = c1 + c2xm + c3x2
m + c4x3

m + ... + cn+1xn
m (5.9)

The polynomial in equation (5.9) can also be expressed as a linear system of equations
with A ∈ Rm×n.

Ac = Y (5.10)

Using singular value decomposition (SVD) yields the expression of A where U ∈ Rm×m

and V ∈ Rn×n are orthogonal matrices and Σ ∈ Rm×n is a diagonal matrix [74].

A = UΣVT (5.11)

Combining equation (5.11) and (5.10) and rearrangement of the equation to c yields the
following expression that can be used to determine the coefficients c of the polynomial to
approximate the measured data.
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c = VΣ−1UT(Y) (5.12)

Neural network A classic feedforward neural network with one hidden layer is utilized
in this thesis. It is extended with a back-propagation algorithm, where the RSM output is
compared with the training data, to optimize the network weights. The number of neurons
in the hidden layer is calculated based on the number of input and output parameters from
the training data set [75, 76, 77].

Radial basis function To approximate a set of measured points Y(xj) a weighted sum of
RBF can be calculated [78]. Thereby, a RBF model is similar in structure to a Neural Network
with one hidden layer. The method divides the set of measured points xj into n smaller shares
each of them defined by a centroid ci. Thereby, the number of neurons σ of the RBF is equal
to the number of centroids c. The approximation Ys(xs) can be determined by the inverse of
the weight matrix θ′ and the activation function ϕ∗

s *.

Ys = θ′ · ϕ∗
s (5.13)

The activation function ϕis of a centroid ci can be described by a Gaussian function.

ϕis = exp (−β · ∆is) (5.14)

Therein, β is calculated according to β = 1
2·σ and ∆is is the distance between the centroid

ci and the xs points according to ∆is = (ci − xs)
2.

Kriging Gaussian process regression [79] is a suitable tool for predicting the relationship
of non-linear responses. In equation (5.15) for an ordinary Kriging model, the interpolated
value vector b⃗

∗
is determined by the expectation µ, the sample vector b⃗ and the weight matrix

β.

b⃗
∗
= µ − β ·

(
b⃗ − µ

)
(5.15)

The weight matrix β describes the mutual correlation between the sample points, using a
Gaussian correlation function. The function is based on the distance x between the sample
points and the correlation length θ. Other correlation functions can be selected to obtain a
better fit of the data.

f (x) = exp
(
−π ·

(x
θ

)2
)

(5.16)

5.5 Multi-criteria decision making

The selection of the best solution from the Pareto front is performed using a Multi-Criteria
Decision Maker (MCDM) [80]. The MCDM is executed as a post-process at the end of the

*xs denotes the sample points of the measured points Y(x). The ∗ marks that a bias term is added to the activation function ϕs to
increase its robustness.
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optimization process.

MCDM procedure First, the normalized objective vector f⃗ k,norm(x⃗0) is determined
according to the following equation.

f⃗ k,norm(x⃗0) =
f⃗ k(x⃗0)− fk,min(x⃗0)

fk,max(x⃗0)− fk,min(x⃗0)
(5.17)

Therein, fk,min and fk,max correspond to the minimum and maximum values of the
objective vector f⃗ k. Subsequently, a rank value vector R⃗ is determined based on the
normalized objective vector f⃗ k,norm and weight factors for the objectives wk ∈ {0, 1}
are introduced as outlined in equation (5.18). Changing the value of the weight factors
puts more emphasize on one of the objectives.

R⃗ =
k

∑
i=1

wi · f⃗ i,norm(x⃗0)
α (5.18)

Therein, the exponent α is set to 1 to determine a linear rank value. The best solution
corresponds to the design with the minimum rank value min(R⃗).

5.6 Optimization algorithms

Different optimization algorithms are tested for the training of the model parameters of
the SRM. From the family of heuristic optimizers the MOSA and MOPSO algorithms are
chosen and from the family of genetic optimizers the MOGA-II and NSGA-II are chosen.
Additionally, the RSM based optimization (FAST) is tested using the NSGA-II algorithm. First
a short outline of the optimization algorithms is provided while more detailed information
can be found in the literature. Subsequently, the performance of the optimization algorithms
is tested for a SRM sample case of a CI engine.*

NSGA-II The Non-dominated Sorting Genetic Algorithm II (NSGA-II) introduced by Deb
et al. [1, 2] categorizes the solutions based on a domination count into different Pareto fronts.
Additionally, the diversity and equal spread of solutions along the Pareto front is ensured by
a crowding distance function. The reproduction of solutions is obtained by using crossover
and mutation. Crossover ensures the convergency towards the currently best Pareto front
while mutation ensures the diversity of the solutions.

The settings of the NSGA-II algorithm used in this thesis are outlined in table 11. The
number of generations is set to 500 to have a large number of Pareto solutions. The number
of individuals per generations is set to 10 wherefor in total 5000 designs are evaluated by
the NSGA-II algorithm. The crossover probability is set to 0.9. The mutation probability is
determined according to n which denotes the number of optimization parameters. A low
distribution index for crossover and mutation means a wide spread of offspring designs

*The SRM model is set up with 100 notional particles, 1.0◦CA time step, 1 stochastic cycle and initial random seed equal to 1.
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while a large distribution index means a narrow spread of offspring designs. The initial
random seed is set to 1.

Parameter Value
Number of generations 500
Number of individuals 10

Crossover probability ∈ {0, 1} 0.9
Mutation probability ∈ {0, 1} 1/n

Distribution index for crossover 20.0
Distribution index for mutation 20.0

Initial random seed 1

Table 11: NSGA-II optimization algorithm settings.

The aim of the NSGA-II optimization is to find the best set of SRM parameters for mini-
mizing the sum of least squares of cylinder pressure εPressure, peak cylinder pressure εPCP,
peak cylinder pressure crank angle εPCPCA and carbon monoxide mass fraction εyCO . The
optimization parameters include the coefficients B1, B2 and B3 which belong to the SOV
correction function in equation (9.5), the Cpilot1 and Cpilot2 parameters which are multipliers
of the pilot injection masses, the injection parameter Cinj, the turbulent length scale parameter
Cε2 and the scalar mixing time parameter Cϕ. The four-dimensional objective and Pareto
solution space is translated into two two-dimensional plots shown in figure 38. The NSGA-II
is able to drive the designs towards the area of low optimization errors ε. However, there is
a trade-off between the lowest combustion progress related error (εPressure) and the lowest
engine-out emission related error (εyCO). Overall, the NSGA-II achieves the lowest error for
εPressure compared to the other optimization algorithms.

(a) Cylinder pressure vs. CO mole fraction (b) PCP vs. PCPCA

Figure 38: Pareto solutions for the NSGA-II optimization run with 5000 designs.

Further analysis of the Pareto solutions is done by using the parallel coordinates plot in
figure 39. The Pareto solutions are now shown as grey-colored lines while the best selected
design is highlighted with a bold black line.* The NSGA-II shows some distinct clustering
of designs where it tries to minimize either εPressure or εyCO . This makes it behave distinctly
different than other genetic algorithms investigated in this thesis.

*The best design is selected using the MCDM from section 5.5 with the weights wεPressure = wεPCP = wεPCPCA = 0.33.
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Figure 39: Parallel coordinates of optimization parameters and objectives for the NSGA-II optimization run
with 5000 designs. The grey lines show the Pareto solutions. The black thick line shows the design selected by
MCDM with equi-weighted objectives.

FAST NSGA-II The principle of the FAST optimization is already introduced in figure 35.
This method extends the external optimization using the NSGA-II and SRM with an internal
optimization using NSGA-II and RSMs [68]. The FAST NSGA-II algorithm settings are shown
in table 12. The NSGA-II settings are the same as shown in table 11. As for the NSGA-II the
number of generations is set to 500 and the number of individuals is set to 10. The Polynomial
SVD, Kriging and Neural Network models are selected for the internal optimization. The
training set size for the RSMs is set to 1000 designs. The external/internal optimization
ratio is set to 0 so that only internal optimization is performed. The internal exploration /
exploitation ratio is set to 0.5 so that 50% of designs in one generation are created by the
space filler algorithm and the other 50% of designs are created by the optimization algorithm.

Parameter Value
Number of generations 500
Number of individuals 10

Response surface model Polynomial, Kriging, Neural Network
RSM training data set size 1000

External/internal optimization ratio ∈ {0, 1} 0
Internal exploration/exploitation ratio ∈ {0, 1} 0.5

Initial random seed 1

Table 12: FAST NSGA-II optimization algorithm settings.

The optimization results in figure 40 show a more widely distributed set of feasible designs
compared to the NSGA-II algorithm. The FAST NSGA-II algorithm performs slightly better
finding lower εyCO errors while it does not perform as good as the NSGA-II regarding the
εPressure and εPCPCA errors.

The MCDM selection of the best design applies the same weights for the objectives as for
the NSGA-II. The ranges of the optimization parameters of the best design are similar to
the NSGA-II. However, the distribution of the Pareto solutions is much more diverse for the
FAST NSGA-II compared to the NSGA-II and all optimization parameter ranges seem to be
covered.

The robustness of the NSGA-II and FAST NSGA-II algorithm is further investigated by
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(a) Cylinder pressure vs. CO mole fraction (b) PCP vs. PCPCA

Figure 40: Pareto solutions for the FAST NSGA-II optimization run with 5000 designs.

Figure 41: Parallel coordinates of optimization parameters and objectives for the FAST NSGA-II optimization
run with 5000 designs. The grey lines show the Pareto solutions. The black thick line shows the design selected
by MCDM with equi-weighted objectives.

comparing the empirical attainment function (EAF) [81, 82]. To generate the EAF of the two
algorithms the optimizations are repeated 10 times and for each repetition the initial seed is
increased by one. This yields a different random number sequence during the optimization
and it is a reliable test for the robustness of the algorithms. Figure 42 shows the difference
of the two EAFs by using a grey colormap. The darker the color the better the performance
of the algorithm in comparison to the other algorithm. Further the solid black lines indicate
the variation of the Pareto solutions for the 10 different runs. Overall, the NSGA-II shows a
slightly better performance compared to the FAST NSGA-II especially for low errors of εyCO .

MOGA-II The Multi-Objective Genetic Algorithm II (MOGA-II) [83] is an extension of
MOGA introduced by Poloni [84]. MOGA-II evolves the designs by using genetically inspired
reproduction and elitism. The reproduction step consists of one-point crossover, directional
crossover and mutation. One-point crossover takes two designs and randomly cuts them
in half at the crossing point. The two corresponding halfs of the designs are swapped and
the designs are rejoined. Directional crossover accounts for the fitness of the designs and
performs the crossover according to it. Mutation randomly pertubes the parameters of the
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Figure 42: Comparison of the EAF of FAST NSGA-II and NSGA-II. The solid black lines indicate the best and
worst Pareto front and the dashed black line indicates the median Pareto front of each algorithm. The darker
the color of the colormap the better the performance of the algorithm in comparison to the other algorithm.

designs and ensures diversity of the solutions [83]. Elitism keeps the best designs of the
previous generations and ensures convergency towards the Pareto front.

The settings of the MOGA-II algorithm are shown in figure 13. The directional crossover
considers additional designs from the current generation with a high fitness value to decide
in which direction to push the optimization and its probability is set to 0.5. The selection
probability defines how many of the good designs of the previous generations are kept and
its value is set to 0.05. The mutation procedure is driving the exploration of the design space
and its probability is set to 0.1. The mutation ratio defines how many of the optimization
parameters will be mutated at once. The classic crossover probability is automatically
calculated from the values of the other probabilities assuming that they all sum up to 1.

Parameter Value
Number of generations 500
Number of individuals 10

Directional crossover probability ∈ {0, 1} 0.5
Selection probability ∈ {0, 1} 0.05
Mutation probability ∈ {0, 1} 0.1

Mutation ratio ∈ {0, 1} 0.05
Initial random seed 1

Table 13: MOGA-II optimization algorithm settings.

The MOGA-II results in figure 43 show a different behaviour compared to the other
optimization algorithms. The feasible and Pareto solutions are much closer together in the
objective space compared to NSGA-II and FAST NSGA-II. Further, the MOGA-II predicts low
εyCO errors similar to the FAST NSGA-II while it does not perform so well for the minimization
of the εPCP and εPCPCA errors.

Evaluating the Pareto solutions and the best design in figure 44 underlines the different
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(a) Cylinder pressure vs. CO mole fraction (b) PCP vs. PCPCA

Figure 43: Pareto solutions for the MOGA-II optimization run with 5000 designs.

behaviour of the MOGA-II algorithm compared to NSGA-II and FAST NSGA-II. The NSGA-
II and FAST NSGA-II algorithms showed a wide distribution of optimum solutions while
the MOGA-II converges to one optimum solution. The optimized parameters are also in a
different range compared to the other optimization algorithms.

Figure 44: Parallel coordinates of optimization parameters and objectives for the MOGA-II optimization run
with 5000 designs. The grey lines show the Pareto solutions. The black thick line shows the design selected by
MCDM with equi-weighted objectives.

MOSA The Multi-Objective Simulated Annealing (MOSA) algorithm is an extension of
the Simulated Annealing (SA) algorithm introduced by Kirkpatrick et al. [85, 86] and belongs
to the family of heuristic optimizers. The SA is a single-objective optimization algorithm and
is based on the analogy of a hot metal that cools down over time following an exponential
function. Thereby, the hot temperature phase represents the exploration phase and the cold
temperature phase represents the exploitation phase in the optimization. A temperature
scheduler is applied to describe the change of temperature T in dependence of the number of
iterations N [87].

T = T0

(
1 − N

Nhot

)2

(5.19)
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Therein, T0 is the initial temperature and Nhot is the number of iterations of the hot phase.
For the cold phase the case T = 0 is always true. For the multi-objective SA a dominance
criteria is introduced which ranks the designs according to their position in the objective
space [87].
The settings of the MOSA algorithm are shown in table 14. The initial temperature T0 is a
normalized value and it is set to 0.1. A large value for T0 increases the variation of designs
and improves the robustness of finding the global best solutions. A low value of T0 improves
the convergence towards the optimum solution. The pertubation length defines the distance
between the newly created designs where a large pertubation length creates far distant
designs. The initial pertubation length is set to 1 at the beginning of the hot phase and is
continuously decreased until it reaches the minimum pertubation length with a value of 0.05
at the beginning of the cold phase.

Parameter Value
Number of generations 500
Number of individuals 10

Initial temperature (T0) ∈ {0, 1} 0.1
Fraction of hot iterations (Nhot) ∈ {0, 1} 0.5

Minimum pertubation length of the cold phase ∈
{

10−6, 1
}

0.05
Initial random seed 1

Table 14: MOSA optimization algorithm settings.

The feasible and Pareto solutions in figure 45 show a good performance of the MOSA
algorithm minimizing the selected errors. Thereby, it shows a similar good performance as
the FAST NSGA-II and MOPSO algorithms. The MOSA algorithm shows a good performance
regarding minimization of εyCO and εPressure at the same time.

(a) Cylinder pressure vs. CO mole fraction (b) PCP vs. PCPCA

Figure 45: Pareto solutions for the MOSA optimization run with 5000 designs.

The parallel coordinates in figure 46 show an even distribution of the solutions. The best
design selected by MCDM is different compared to all other algorithms with a lower integral
length scale during intake valve flow and higher injection masses for the pilot injections.

MOPSO The Multi-Objective Particle Swarm Optimizer (MOPSO) belongs to the group
of heuristic optimizers. Its initial purpose was to use it to study the behaviour of a swarm
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Figure 46: Parallel coordinates of optimization parameters and objectives for the MOSA optimization run with
5000 designs. The grey lines show the Pareto solutions. The black thick line shows the design selected by
MCDM with equi-weighted objectives.

of birds that rapidly changes direction while it keeps its internal organization intact [88].
Comparing it to a genetic algorithm the swarm is similar to a population and the particle is
similar to an individual. The particle evolution over time xi(t + 1) is driven by its velocity
vi(t + 1) which can be determined by the following equation [89]

vij(t + 1) = vij(t) + c1r1j(t)
[
yij(t)− xij(t)

]
+ c2r2j(t)

[
ŷj(t)− xij(t)

]
(5.20)

where vij(t) is the velocity of particle i in dimension j at time t, xij(t) is the position
of particle i in dimension j at time t and c1j and c2j are model constants used to scale
the contribution of cognitive learning and social learning [89]. The cognitive learning is
influenced by the best position yij(t) of particle i in dimension j ever obtained since the
beginning of the optimization. The social learning is influenced by the best position ŷj(t) of
all particles in dimension j ever obtained since the beginning of the optimization. r1j(t) and
r2j(t) represent uniformly distributed random numbers in the range r ∈ {0, 1} that account
for a stochastic influence in the optimization [89].
The MOPSO algorithm additionally incorporates an elite set which contains the best swarm
according to the Pareto dominance criteria [90]. New particles are added to the elite set after
each iteration. The elite set can influence the velocity of a particle to drive it towards the
direction of the current best Pareto front.
The settings of the MOPSO algorithm are outlined in table 15. The elite set size is set to
10. The inertia weight defines the importance of the current particle velocity to continue
moving in the same direction. The inertia weight is set to 0.721. The cognitive learning weight
and social learning weight are set to 0.745. The elite learning weight is set higher to 1.49.
Turbulence defines a probability of adding a random offset to the particle position and it
increases the robustness of the algorithm. Lifecycle is the number of iterations in which a
particle does not change its position. If the Lifecycle limit is reached without any change the
particle position is changed randomly.

The results of the MOPSO algorithm in figure 47 resemble the ones of FAST NSGA-II and
MOSA. The feasible and Pareto solutions are widely distributed accross the objective space

90



MULTI-OBJECTIVE OPTIMIZATION OF STOCHASTIC ENGINE MODELS

Parameter Value
Number of generations 500
Number of individuals 10
Elite set size ∈ {10, 100} 10
Inertia weight ∈ {0, 1} 0.721

Cognitive learning weight ∈ {0, 2} 0.745
Social learning weight ∈ {0, 2} 0.745
Elite learning weight ∈ {0, 2} 1.49

Turbulence ∈ {0, 0.9} 0.1
Lifecycle ∈ {0, 100} 20
Initial random seed 1

Table 15: MOPSO optimization algorithm settings.

and the optimization errors are minimized effectively.

(a) Cylinder pressure vs. CO mole fraction (b) PCP vs. PCPCA

Figure 47: Pareto solutions for the MOPSO optimization run with 5000 designs.

The parallel coordinates of the MOPSO algorithm results in figure 48 show that the al-
gorithm covers the optimization parameter ranges evenly. The best design selected by the
MCDM is similar to the one from NSGA-II and FAST NSGA-II which is an excellent confir-
mation of the robustness of the optimization approach. Limitations of further minimization
of the error values are attributed to the SRM setup and selection of optimization parameters.

Comparison of the algorithms The predicted scalar mixing times τϕ for the selected
designs using equi-weighted objectives of the five investigated optimization algorithms are
shown in figure 49. The scalar mixing time is depicted using a logarithmic scale to account
for the different magnitudes of time scales. The comparison shows overall the same trend
for the different algorithms with small deviations for the pilot injections due to the different
values of Cpilot1 and Cpilot2 parameters, and differences in the main injection for the MOPSO
algorithm because of the higher value of the Cinj parameter.

The predicted cylinder pressure of the five optimization algorithms is shown in figure
50. The coarse setup of the SRM with 100 notional particles, 1 ◦CA time step size and 1
stochastic cycle chosen for this investigation results in jagged pressure profiles. The cylinder
pressure shows some larger deviations between the different optimization algorithms which
is reasonable given that the optimization errors εPressure, εyCO and εPCPCA of the selected
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Figure 48: Parallel coordinates of optimization parameters and objectives for the MOPSO optimization run
with 5000 designs. The grey lines show the Pareto solutions. The black thick line shows the design selected by
MCDM with equi-weighted objectives.

Figure 49: Comparison of scalar mixing time of the selected designs of the five different optimization runs with
NSGA-II, FAST NSGA-II, MOGA-II, MOSA and MOPSO.

designs are different.
The CO mole fractions outlined in figure 51 show jagged profiles as well. The CO profiles

show variations for the different optimization algorithms especially during the expansion
stroke. The MOPSO algorithms shows the lowest CO mole fractions during the expansion
stroke for most of the operating points because of the lower scalar mixing time at that time as
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Figure 50: Comparison of cylinder pressure of the selected designs of the five different optimization runs with
NSGA-II, FAST NSGA-II, MOGA-II, MOSA and MOPSO.

a result of the higher value of the Cinj parameter.

5.7 Conclusions for multi-objective optimization

The aspects of multi-objective optimization of the SRM model parameters are introduced
in this chapter. Among them is the definition of the optimization errors εPressure, εyCO , εPCP

and εPCPCA for multiple operating points which are defined to measure the fitness of SRM
towards the experimental combustion progress and engine-out emissions. The exploration of
the design space is handeled by the space filler algorithm and different algorithms are tested.
The ISF algorithm showed overall the best performance regarding uniformity of the design
space while finally the ULHC algorithm was chosen because of the lower computational
demand. The selection of the best design is performed using a MCDM algorithm which
allows to adjust the weights of the optimization errors to influence the decision process.
Different genetic and heuristic optimization algorithms are compared for the multi-objective
optimization of SRM model parameters for a CI engine. Overall, all five optimization
algorithms are able to minimize the optimization errors. However, the absolute values of
the optimization errors of the optimization algorithms are different wherefor the optimum
SRM model parameters are deviating from each other. The FAST NSGA-II, MOSA and
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Figure 51: Comparison of CO mole fraction of the selected designs of the five different optimization runs with
NSGA-II, FAST NSGA-II, MOGA-II, MOSA and MOPSO.

MOPSO algorithms showed the overall best performance minimizing all four optimization
errors and they yield a diverse distribution of Pareto solutions. Finally, the RSM-based
optimization (FAST NSGA-II) together with the ULHC space filler is selected as best practice
since it showed a good performance minimizing the εPressure and εyCO errors at the same
time. Further, it shows a diverse distribution of the Pareto solutions even when reducing
the number of generations from 500 to 300. Overall, the multi-objective optimization of
5000 designs for 16 training points using 100 notional particles, 1.0◦CA time step size and 1
stochastic cycle took 55 hours on a AMD Epyc 7551 32-core processor.
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6 Optimization of a spark ignition engine model

The SI-SRM introduced in chapter 4.3 and the MOO platform introduced in chapter 5 are
validated for two single-cylinder research engines. The two SI engines are investigated
in the industry funded research projects “Water injection in SI engines” [91] and “Fuel
composition for CO2 Reduction” [92]. The experimental measurements were provided by the
project partners from TU Berlin and RWTH Aachen. The engine specifications and operating
conditions are outlined in the next sections.

6.1 Engine specifications

The SI engine from the research project [92] is named as Engine A in the following sections
and its specifications are outlined in table 16. The engine bore is similar to a passenger car
sized engine while the stroke is longer to support the tumble flow motion. The crank is
slightly offsetted. The base compression ratio is 10.8:1 and the modified compression ratio is
increased to 13:1. The engine is equipped with a six hole direct injector mounted centrally in
the cylinder head.

Parameter Unit Value
Bore mm 75.0

Stroke mm 113.2
Rod Length mm 220
Crank Offset mm -0.4

Compression Ratio (Base) − 10.8:1
Compression Ratio (Modified) − 13:1

Crevice Volume % 4

Table 16: Specification of engine parameters of Engine A.

The cylinder head and piston geometry of Engine A are adapted in SI-SRM using the
model introduced by Bjerkborn et al. [18]. The result is shown in figure 52 where the blue dot
highlights the spark plug. The same method is applied for the second SI engine investigated
in this work.

Figure 52: Engine A cylinder head and piston geometry.

The SI engine from the research project [91] is named Engine B in the following sections
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and its specifications are outlined in table 17. The engine bore, stroke and connecting rod
length are smaller compared to Engine A. The compression ratio is slightly larger compared
to Engine A. The relative piston crevice volume is found to be similar for both investigated
engines.

Parameter Unit Value
Bore mm 71.9

Stroke mm 82.0
Rod Length mm 137

Compression Ratio − 11.07:1
Crevice Volume % 4

Table 17: Specification of engine parameters of Engine B.

6.2 Physical properties of gasoline fuel

The Engine A is operated with a standard gasoline fuel with research octane number (RON)
95.4 and motored octane number (MON) 85.0. The fuel is blended with 9.9 liquid volume
percent of ethanol. The complexity of the gasoline fuel composition is represented by a
multi-component surrogate which is developed based on the method of Seidel [93, 94]. The
method is validated extensively using SRM and detailed 3D CFD simulations to predict
knocking combustion in SI engines by Netzer et al. [59, 95, 96]. The surrogate model Fuel A
is compared with the experiment fuel in table 18. The surrogate closely matches the RON
and MON, lower heating value (LHV), C:H:O ratio and density of the experiment fuel.

Parameter Unit Experiment Surrogate
RON − 95.4 95.4
MON − 85.0 86.8
LHV MJ/kg 41.62 41.32

C:H:O − 6.6:12.8:0.21 6.31:12.2:0.21
Density kg/m3 747.2 748.6

Table 18: Comparison of experiment gasoline fuel and ETRF surrogate for Fuel A.

The composition of Fuel A in liquid volume percent is outlined in table 19. It consists of
four species to adjust the properties to the experiment fuel. The n-heptane and iso-octane
fractions are adjusted to match the RON, and the toluene fraction represents the aromatic
content of the experiment fuel. The Modified linear by Volume Method from Morgan et
al. [97] is used to determine the Toluene Reference Fuel (TRF) mixture. The compostion of
the ethanol - TRF (Ethanol Toluene Reference Fuel) mixture is calculated by the assumption
of linear blending on a molar basis according to Anderson et al. [98]. The equations are
implemented and validated in LOGEtable v2.0 [99] based on the work of Seidel [93].

Species Unit Liquid Volume Fraction
iso-Octane % 47.9
n-Heptane % 14.7

Toluene % 27.5
Ethanol % 9.9

Table 19: Liquid volume fraction of ETRF surrogate species of Fuel A.
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The Engine B is operated as well with a standard gasoline fuel with RON 96.7 and MON
85.8. The fuel is blended with 10.1 liquid volume percent of ethanol. The surrogate Fuel B is
developed using the same method as for Fuel A.

Parameter Unit Experiment Surrogate
RON − 96.7 96.7
MON − 85.8 87.4
LHV MJ/kg 41.78 41.13

C:H:O − 6.6:12.8:0.21 6.3:11.8:0.21
Density kg/m3 748.7 756.4

Table 20: Comparison of experiment gasoline fuel and ETRF surrogate for Fuel B.

The composition of Fuel B in liquid volume percent is outlined in table 21. It consists of
the same four species as the Fuel A surrogate. However, the aromatic and alcohol content
is slightly increased compared to Fuel A wherefor RON and MON are higher. The liquid
properties of Fuel A and Fuel B are summarized in table 51.

Species Unit Liquid Volume Fraction
iso-Octane % 44.0
n-Heptane % 14.1

Toluene % 31.8
Ethanol % 10.1

Table 21: Liquid volume fraction of ETRF surrogate species of Fuel B.

6.3 Operating conditions

The operating conditions of Engine A used for the investigation in this thesis are outlined
in figure 53. The base engine map covers the operating range from 1000 to 4000 rpm and
10 to 70 mg/stroke injected fuel mass at stoichiometric conditions. Additionally, a relative
air-fuel ratio (λ) sweep at 1500 and 2000 rpm engine speed and a spark timing sweep at
1500 and 2000 rpm high load are investigated. The spark timing sweep is conducted at the
modified compression ratio of 13:1. The data set is distributed into 8 training points (full
black diamonds) and 73 validation points (hollow circles). The selection of the training points
covers two different engine speeds, part and high load conditions and stoichiometric and
lean mixtures.

The SI-SRM simulation is started at intake valve closure (IVC) and a full engine cycle
is calculated. The valve lift profiles are provided by the experiments and are the same for
all operating conditions. The timings of the intake and exhaust valves are changing for the
different operating conditions. The intake and exhaust manifold pressures are measured using
a low-pressure indication system and this information is provided as boundary conditions to
the SI-SRM. The start of fuel injection is at -300 ◦CA with 200 bar injection pressure and the
injection duration is adjusted according to the injected mass. The cylinder liner, head and
piston wall surface temperatures are calculated using the correlation function in equation
(9.4). The resulting wall surface temperatures are outlined in figure 115. The initial turbulent
kinetic energy kinit is calculated using the equation (6.1) and the results are shown in figure
54 (c).
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(a) Engine speed

(b) Injected mass

(c) Equivalence ratio

(d) Spark timing

Figure 53: Training and validation points of Engine A.

kinit = 0.45 · ṁ2
air (6.1)

The pressure, temperature and EGR at IVC are determined using the thermodynamic
analysis of LOGEengine v3.2 [100]. The thermodynamic analysis matches the experimental
compression stroke pressure by optimizing the aforementioned parameters. The results are
shown in figure 54 (a), (b) and (d).

The operating conditions of Engine B are outlined in figure 55. The data set just comprises
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(a) Initial cylinder pressure

(b) Initial cylinder temperature

(c) Initial turbulent kinetic energy

(d) Exhaust gas recirculation

Figure 54: Initial conditions of Engine A.

8 operating points which will be used for the validation of the SI-SRM. The operating
range includes 1500 to 2500 rpm engine speed and 10 to 50 mg/stroke injected fuel mass
at stoichiometric conditions. The start of fuel injection is at -270 ◦CA with 150 bar injection
pressure. The intake and exhaust valve lift profiles and timings are the same for all operating
points. The pressure and temperature in the intake and exhaust manifold are measured using
a low-pressure indication system and are provided as boundary conditions to the SI-SRM.
Further detailed investigations on Engine B were conducted regarding water injection and
fuel sensitivity using 3D CFD in the work of Vacca et al. [101, 102] and Franken et al. [24, 103].
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More details on the experimental setup and measurement devices can be found in the work
of Gern et al. [104, 105, 106].

(a) Engine speed (b) Injected mass

(c) Equivalence ratio (d) Spark timing

Figure 55: Validation points of Engine B.

The initial conditions of Engine B are obtained by a thermodynamic analysis of the mea-
sured cylinder pressure profiles. The pressure, temperature and EGR at IVC are shown in
figure 56. The initial turbulent kinetic energy kinit is determined using equation (6.1). The
calculated wall surface temperatures are shown in figure 116.

6.4 Chemistry model

The tabulated chemistry model for Fuel A is based on the detailed chemistry model from
Seidel [93]. The settings of the tabulated chemistry model are summarized in table 22. The
pressure is tabulated from 1 to 200 bar with non-equidistant fix points. The temperature is
tabulated from 300 to 1400 K and the equivalence ratio from 0.05 to 6.0 to cover the broad
range of mixture conditions during direct fuel injection. The EGR is tabulated from 0 to 40%
to account for the high EGR rates of the engine.

The tabulated chemistry model for Fuel B is outlined in table 23. The model is based as well
on the detailed chemistry model by Seidel [93] and it was also used in the work of Franken
et al. [24]. The model applies the same ranges as for Fuel A. The model was validated by
Matrisciano et al. [23] by comparison with direct solution of the detailed chemistry in SI-SRM.
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(a) Initial cylinder pressure (b) Initial cylinder temperature

(c) Initial turbulent kinetic energy (d) Exhaust gas recirculation

Figure 56: Initial conditions of Engine B.

Parameter Value
Surrogate composition see table 19

Detailed chemistry model see Seidel [93]
Pressure (min, max) 1 bar, 200 bar

Temperature (min, max) 300 K, 1400 K
Equivalence ratio (min, max) 0.05, 6.0

EGR (min, max) 0%, 40%

Table 22: Tabulated chemistry model settings for Fuel A.

6.5 Optimization sensitivity study

The optimization sensivity study is conducted using the FAST NSGA-II algorithm introduced
in section 5.6. The algorithm settings for Engine A optimization are outlined in table 24. The
remaining parameters use the default settings of NSGA-II in table 11 and FAST NSGA-II in
table 12.

The SI-SRM models and settings applied for the sensitvity study are outlined in table
25. The stochastic heat transfer coefficient (Ch) is set to 15 even though a value of 1 is
recommended in section 4.2.2. The crevice volume is set to 4% of the clearance volume in the
crevice model as it is already outlined in the engine specification table 16. The cyclic variation
model is only active when the number of stochastic cycles is larger than 1.

Selection of optimization parameters The objective of the optimization is to mini-
mize the errors εPressure, εPCP and εPCPCA. To determine the best set of optimization parame-
ters a sensitivity study is performed by switching off one parameter by another and evaluate
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Parameter Value
Surrogate composition see table 21

Detailed chemistry model see Seidel [93]
Pressure (min, max) 1 bar, 200 bar

Temperature (min, max) 300 K, 1400 K
Equivalence ratio (min, max) 0.05, 6.0

EGR (min, max) 0%, 40%

Table 23: Tabulated chemistry model settings for Fuel B.

Parameter Value
Algorithm FAST NSGA-II

Space filler algorithm Uniform Latin Hypercube
Number of generations 300
Number of individuals 10

Response surface models Polynomials, Kriging, Neural Network
RSM training data set size 1000

Initial random seed 1

Table 24: FAST NSGA-II algorithm settings for Engine A optimization.

the influence on the Pareto solutions. The selected optimization parameters and its ranges for
this investigation are summarized in table 26.

The Pareto solutions of the different optimization runs are outlined in figure 57. The
first optimization run All is performed using all optimization parameters. Following the
order of parameters in the legend of figure 57 the parameters are switched off and the
Pareto solutions are depicted. The lowest errors for εPressure, εPCP and εPCPCA are obtained
using all optimization parameters. Switching off the parameters B2−3 of the early flame
propagation correlation function shows an increase of the errors. Switching off the parameter
b1 of the turbulent flame propagation model of Peters shows a minor decrease of the errors
while switching off Cε of the k − ε turbulence model shows a noticable increase of all errors.
Finally, the set of optimization parameters and ranges presented in table 26 is used for the
investigations in the following sections.

(a) Cylinder pressure vs. PCP (b) Cylinder pressure vs. PCPCA

Figure 57: Pareto front of optimization runs with different optimization parameters and 3000 designs of Engine
A.
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Process Model
Convective heat transfer Heinle model (section 4.2.1)

Stochastic heat transfer coefficent (Ch) 15.0 (section 4.2.2)
Direct injection yes (section 4.2.3)
Gas exchange yes (section 4.2.4)

Particle mixing Curl model (section 4.2.5)
Turbulence k − ε model (section 4.3.1)

Flame propagation Peters model with early flame propagation (section 4.3.2)
Crevice yes (section 4.3.4)

Cyclic variation yes (section 4.3.5)

Table 25: SI-SRM settings for optimization sensitivity study for Engine A.

Parameter Lower Limit Upper Limit
Cε 0.1 2.0
Cε1 0.1 1.5
Cε2 0.1 1.5
b1 2 3
B1 -0.003 0.003
B2 -0.016 -0.008
B3 0 1.5E-7
B4 -100 100

Table 26: Optimization parameters and objectives for Engine A.

Influence of SI-SRM setup The parameter variation for the SI-SRM setup sensitivity
study is shown in table 27. Five different sets are investigated using different number of
notional particles, different time step sizes and different number of stochastic cycles. For sets
with number of stochastic cycles larger than 1 the initial random seed is set to variable (var)
to generate a different sequence of random numbers in each stochastic cycle.

Parameter Set 1 Set 2 Set 3 Set 4 Set 5
Number of particles 100 100 100 100 500

Time step size 1.0◦CA 0.5◦CA 0.5◦CA 0.5◦CA 0.5◦CA
Number of cycles 1 1 5 30 1

Initial random seed 1 1 var var 1

Table 27: SI-SRM settings for investigation of setup sensitivity for Engine A.

The Pareto fronts of the investigated sets 1-5 are compared in figure 58. Decreasing the
time step size from 1.0 ◦CA to 0.5 ◦CA slightly reduces all errors (Set 1 → Set 2). Further,
increasing the number of stochastic cycles to 5 reduces the error of the Pareto solutions (Set 2
→ Set 3) while further increasing the number of cycles to 30 shows a slight increase of the
εPressure error (Set 3 → Set 4). The reason is the larger stochastic variance with low number of
stochastic cycles which can randomly lead to a better mean Pareto solution compared to the
case with higher number of stochastic cycles. The increase of number of notional particles
shows a slight increase of the errors (Set 2 → Set 5).

The validation results of Set 1-5 are shown in figure 59. The figure compares the 10%
and 50% combustion progress and the NOx and CO engine-out emissions. The correlation
coefficient (R2) and root mean squared error (RMSE) are included in the plots to evaluate the
performance. Decreasing the time step size from 1.0 ◦CA to 0.5 ◦CA shows an increase of
R2 and decrease of RMSE. The increase of number of stochastic cycles to 5 further improves
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(a) Cylinder pressure vs. PCP (b) Cylinder pressure vs. PCPCA

Figure 58: Pareto front of optimization runs with Set 1-5 and 3000 designs of Engine A.

the R2 and RMSE values while the increase to 30 stochastic cycles slightly reduces the R2

and increases the RMSE values. The increase of number of notional particles from 100 to 500
shows a slight reduction of R2 and increase of RMSE.

(a) 10% combustion progress in ◦CA (b) 50% combustion progress in ◦CA

(c) Nitrogen oxide in mole ppm (d) Carbon monoxide in mole ppm

Figure 59: Validation results for the best designs of Set 1-5 of Engine A using equi-weighted objectives in the
MCDM. The plots include the R2 and RMSE values.
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Influence of number of operating points The selection of the training points is
outlined in figure 60. The set with 4 training points just covers two different engine speeds
and loads. For the set with 8 training points four additional points are added with lean
air-fuel ratio. The third set extends the operation range to lower and higher engine speeds
and lower and higher loads. The optimizations are performed using the SI-SRM setup Set 2
from table 27.

Figure 60: Selected operating points for the optimization runs with 4, 8 and 16 training points of Engine A.

The Pareto fronts shown in figure 61 are normalized for the number of operating points
to account for the difference in the accumulated errors. The Pareto fronts show a significant
difference in the errors εPressure, εPCP and εPCPCA while all optimization runs show the
minimization of the errors. With increasing number of training points the errors are increasing
while for the optimization with 16 training points the errors are increasing much more. The
operating points at lowest engine load at 1000, 2000 and 3000 rpm show the large deviations
wherefor the overall error is increasing. Further, the number of Pareto solutions for the
optimization with 16 operating points is much lower compared to the other two cases.

(a) Cylinder pressure vs. PCP (b) Cylinder pressure vs. PCPCA

Figure 61: Pareto front of optimization runs with 4, 8 and 16 training points and 3000 designs of Engine A.

The best design from the Pareto solutions is selected by the MCDM with equi-weighted
objectives. The validation results are shown in figure 62. The lowest R2 and largest RMSE
values for 10% and 50% combustion progress are found for the case with 4 training points.
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Increasing the number of training points to 16 shows a slight increase of R2 and decrease of
RMSE. For NOx emissions the R2 value is decreasing and the RMSE value is increasing with
increasing number of training points so that the case with 4 training points achieves the best
fit of the experiments. For the CO emissions no significant change can be found regarding R2

while RMSE is increasing by increasing the number of training points.

(a) 10% combustion progress in ◦CA (b) 50% combustion progress in ◦CA

(c) Nitrogen oxide in mole ppm (d) Carbon monoxide in mole ppm

Figure 62: Validation results for number of training points 4, 8 and 16 of Engine A using equi-weighted objectives
in the MCDM. The plots include the R2 and RMSE values.

Influence of set of training points The three different training sets shown in figure
63 consist each of 8 training points with different distribution of the points in the engine map.
The Set B is covering a larger operating range for speed and load while it does not contain
any lean operating point. The Set C focuses on the variation of spark timing at the higher
compression ratio 13:1 and only covers one high load operating condition at two different
engine speeds.

The optimization results of the different sets are shown in figure 64. The lowest errors are
obtained by Set A while Set B and Set C show higher errors. The Set B shows a significant
over-prediction of the cylinder pressure profiles for the three low load operating points
at 1000, 2000 and 3000 rpm engine speed. The optimizer is not able to find one set of
SI-SRM parameters that is able to match the combustion at low and high load operating
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Figure 63: Selected operating points for the sets A, B and C.

conditions at the same time. For Set C six out of the eight operating points are measured
with a higher compression ratio of 13.5 compared to the default compression ratio of 10.8.
The operating points with the higher compression ratio predict a higher maximum cylinder
pressure and advanced center of combustion. To obtain a better match with the experimental
cylinder pressure the dissipation factor Cε should be higher. Since the optimizer changes
the dissipation factor the same way for all eight operating points it is not able to find lower
εPressure, εPCP and εPCPCA errors.

(a) Cylinder pressure vs. PCP (b) Cylinder pressure vs. PCPCA

Figure 64: Pareto front of optimization runs with training set A, B and C and 3000 designs of Engine A.

The validation results of Set A, B and C are highlighted in figure 65. Set A shows the
highest R2 and lowest RMSE values for 10% and 50% combustion progress while Set B and
C predict the 10% combustion progress too early and the 50% combustion progress too late.
The R2 and RMSE values of the NOx emissions are worse for Set A compared to Set B and
C. For the R2 and RMSE values of the CO emissions the Sets B and C are performing better
again compared to Set A.
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(a) 10% combustion progress in ◦CA (b) 50% combustion progress in ◦CA

(c) Nitrogen oxide in mole ppm (d) Carbon monoxide in mole ppm

Figure 65: Validation results for the training sets A, B and C of Engine A using equi-weighted objectives in the
MCDM. The plots include the R2 and RMSE values.

6.6 Final validation

The final validation of the optimized SI-SRM setup is conducted for the validation data
set of Engine A and Engine B. It is important to notice that no additional optimization is
performed for Engine B and the optimized SI-SRM parameters of Engine A are just transfered
to Engine B. The optimization results of Set 5 from table 27 are selected to generate the final
SI-SRM setup. In the following paragraphs the Set 5 will be denoted as training set and
the SI-SRM setup accounting for cyclic variation will be denoted as validation set as it is
summarized in table 28. The cyclic variation model parameters σθST and σu′ are calibrated
using the experimental measurements of PCP standard deviation.

Parameter Training Set Validation Set
Number of particles 500 500

Time step size 0.5◦CA 0.5◦CA
Number of cycles 1 150

Initial random seed 1 var

Table 28: SI-SRM model setup for validation of Engine A.
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Optimization results of Engine A The optimization results of Engine A using the
training set from table 28 are presented in figure 66. The optimization algorithm is able to
find minimized solutions of the errors εPressure, εPCP and εPCPCA. Further, it is noticed that the
Pareto solutions are quite close to each other and a correlation between the three objectives is
observed. Objectives for minimization of CO and HC engine-out emissions are not defined.
The NOx engine-out emissions are predicted in SI-SRM by the tabulated chemistry model
using a source term submodel [16]. The parameters of the NOx source terms are adjusted
after the optimization of the k − ε model parameters is finished.

(a) Cylinder pressure vs. PCP (b) Cylinder pressure vs. PCPCA

Figure 66: Pareto solutions of the FAST NSGA-II optimization run with 3000 designs for Engine A.

Using the MCDM from section 5.5 with different weights of the objectives three designs
are selected from the Pareto solutions and are investigated more in detail. The design ID
476 is selected by setting the weight of objective εPCP to zero and use equi-weights for the
remaining two objectives. The design ID 1987 is selected by using equi-weights for all three
objectives. The design ID 2638 is selected by increasing the weight of objective εPCP to be
twice as much as the weights of the other two objectives. The three selected designs are
shown in figure 67 and define the edges of the Pareto solution space.

(a) Cylinder pressure vs. PCP (b) Cylinder pressure vs. PCPCA

Figure 67: Selected Pareto solutions of the FAST NSGA-II optimization run with 3000 designs for Engine A.
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Validation results of Engine A Using the validation data set of Engine A and the
training set settings from table 28 the results in figure 68 for 1 stochastic cycle are obtained.
The design ID 476 shows a slightly higher R2 value and lower RMSE for 10% and 50%
combustion progress compared to design ID 1987 and ID 2638. The selection of ID 476 put
more decision weight on the error for crank angle of the maximum pressure εPCPCA wherefor
the match of the center of combustion for the validation data set is better as well. Nevertheless,
some operating points with early 50% combustion progress are under-predicted for all three
designs. For NOx engine-out emissions the design ID 1987 shows a higher R2 value while
the lowest RMSE is obtained for design ID 476. For CO engine-out emissions the design ID
476 is showing the highest R2 value and lowest RMSE.

(a) 10% combustion progress in ◦CA (b) 50% combustion progress in ◦CA

(c) Nitrogen oxide in mole ppm (d) Carbon monoxide in mole ppm

Figure 68: Validation results with 1 stochastic cycle for the designs ID 476, ID 1987 and ID 2638 of Engine A. The
plots include the R2 and RMSE values.

The three designs are further investigated by using the validation set from table 28 and
account for cyclic variations. It has to be noted that the experimental measurements used
for training and validation of the SI-SRM model parameters consist of the average results
of 150 consecutive cycles. Therefor, the SI-SRM simulation with cyclic variation model is
conducted for 150 stochastic cycles as well. The 10% and 50% combustion progress results in
figure 69 show a higher R2 value and RMSE compared to the results using 1 stochastic cycle
in figure 68. Regarding the NOx engine-out emissions an increase of the R2 and reduction of
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RSME can be observed for design ID 1987 and ID 2638 which perform better compared to
design ID 476. For CO engine-out emissions the R2 value decreases and RSME increases for
the designs ID 1987 and ID 2638 while R2 increases and RSME decreases for design ID 476
which performs better in this case. The different sensitivity of the two designs ID 1987 and
ID 2638 compared to design ID 476 is related to the difference in combustion progress shown
in figure 68. Both designs show a shift of combustion progress to later crank angles using
the validation set wherefor the emissions change as well. Overall, the match of combustion
becomes worse for design ID 1987 and ID 2638 using the validation set. Design ID 476
shows an improvement of combustion progress and engine-out emissions running with 150
stochastic cycles and cyclic variation model.

(a) 10% combustion progress in ◦CA (b) 50% combustion progress in ◦CA

(c) Nitrogen oxide in mole ppm (d) Carbon monoxide in mole ppm

Figure 69: Validation results with 150 stochastic cycles and cyclic variation model for the designs ID 476, ID
1987 and ID 2638 of Engine A. The plots include the R2 and RMSE values.

The design ID 476 is selected as the final best design. The SI-SRM setup is one more time
revised by modifying the ηc value of the early flame propagation model as shown in figure 70
(a) and (b). Even though the optimized coefficients B1−5 of the correlation function in equation
(9.6) provide a good approximation of the start of flame propagation in dependence of the
equivalence ratio and engine load, it does not capture well the dependence on engine speed.
The ηc parameter is generally increasing with decreasing equivalence ratio and decreasing
engine load. With the modification, the ηc model parameter is additionally decreasing with
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increasing engine speed (see figure 70 (b)). Furthermore, the low load operating points in the
ϕ range of 0.7 to 0.8 show a drop for the ηc parameter which is not captured by the optimized
correlation function in figure 70 (a). Since a spark ignition energy model is not implemented
in SI-SRM at the moment the ηc model parameter indirectly captures the longer ignition delay
for lean and low load operating conditions.

(a) Optimized ηc model parameter (b) Modified ηc model parameter

Figure 70: Comparison of the optimized and modified early flame propagation model parameter ηc for different
equivalence ratios, engine speeds and loads for Engine A.

The second term of the early flame propagation model in equation (4.110) is governed by
the Gibson length scale lG. The predicted Gibson length scale is compared in figure 71 for
different equivalence ratios, engine speeds and loads. It is overall two magnitudes lower
compared to the ηc parameter and shows an inverted trend in dependence of equivalence
ratio. Further, for the operating point at high engine speed and load the Gibson length scale
is significantly lower compared to the other operating conditions which is because of the
stronger turbulence fluctuation.

Figure 71: Comparison of the Gibson length scale at 10% combustion progress for different equivalence ratios,
engine speeds and loads for Engine A.

The low burning velocity (see figure 72 (a)) and high stretch rate (Ka>1) of lean mixtures
thicken the flame front so that smaller eddies can corrugate it more easily [107]. As a result,
the Gibson length scale is smaller for lean mixtures. On the other hand side, the dissipation
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ε does not change significantly for ϕ greater than 0.8, so that the turbulent flow field can
be assumed to be stable. At higher load operating conditions and ϕ smaller than 0.8, the
turbulence intensity and dissipation increase (see figure 72 (b)), causing smaller eddies to
corrugate the flame front, further lowering the Gibson length scale.

(a) Laminar flame speed (b) Dissipation

Figure 72: Comparison of the laminar flame speed sL and dissipation ε at 10% combustion progress for different
equivalence ratios, engine speeds and loads for Engine A.

For the operating conditions with increased compression ratio of 13:1 and late spark
timing the Cε model parameter is increased by 0.5 points. The Cε value of design ID 476
predicts turbulence dissipation too low for these operating conditions wherefor combustion
is accelerated too much by high u′/sL values.
The standard deviation of spark timing σθST and turbulence fluctuation σu′ of the cyclic
variation model from section 4.3.5 are shown in dependence of equivalence ratio, engine
speed and load in figure 73. The standard deviation for spark timing is increasing with
decreasing equivalence ratio and decreasing engine load because of the increasing combustion
instability. The standard deviation for turbulence fluctuation σu′ is not changed for different
operating conditions.

(a) Standard deviation of spark timing (b) Standard deviation of turbulence fluctuation

Figure 73: Standard deviation of spark timing σθST and turbulence fluctuation σu′ in dependence of equivalence
ratio for Engine A.
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The cyclic variation of the SI-SRM simulation and experiment for Engine A is compared by
evaluating the mean and standard deviation of PCP in figure 74. The SI-SRM shows a slight
over-prediction of both quantities compared to the experiment but it accurately predicts the
trend between the different operating conditions of the engine.

(a) Mean of PCP in bar (b) Standard deviation of PCP in bar

Figure 74: Comparison of the mean and standard deviation of PCP of modified design ID 476 of Engine A.

The validation results of the optimized and modified design ID 476 are compared in figure
75. The adjustments of the early flame propagation model show an improvement of the 10%
and 50% combution progress. The operating points at the high values of 50% combustion
progress belong to the spark timing variation and are predicted too late by the modified
design ID 476. The NOx engine-out emissions are showing a better fit with the experimental
data while the CO engine-out emissions have not changed much.

Validation results of Engine B The SI-SRM setup of the modified design ID 476
is transfered to the second validation data set which belongs to Engine B. In total eight
validation points with stoichiometric air-fuel ratio are tested for Engine B as outlined in
section 6.3. The ηc model parameter is adjusted for the engine case because the combustion
chamber geometry is much different compared to Engine A. The ηc model parameter and
calculated Gibson length scale lG for Engine B are outlined in figure 76. Similar to Engine A
the ηc model parameter is decreasing with increasing engine load and decreasing engine
speed. The Gibson length scale shows a trade-off for the engine load where it increases for the
10 bar IMEP operating points but decreases towards lower and higher engine loads. Similar
to Engine A the Gibson length scale decreases with increasing engine speed.

The significantly higher Gibson length scale for operating point 1 at 1500 rpm and 15 bar
IMEP is because of the low dissipation wherefor the small turbulent eddies cannot distort the
flame front. With increasing engine speed the turbulence instensity and dissipation in the
cylinder increase wherefor the Gibson length scale is reduced. The trade-off of the Gibson
length scale for different engine loads is due to the laminar flame speed which is highest for
10 bar IMEP for 2000 rpm and 2500 rpm engine speed.

The σθST and σu′ model parameters of the cyclic variation model are set constant for all
operating conditions of Engine B as shown in figure 78. Compared to Engine A the cyclic
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(a) 10% combustion progress in ◦CA (b) 50% combustion progress in ◦CA

(c) Nitrogen oxide in mole ppm (d) Carbon monoxide in mole ppm

Figure 75: Validation results with 150 stochastic cycles and cyclic variation model for the optimized and
modified design ID 476 of Engine A.

(a) ηc model parameter (b) Gibson length scale

Figure 76: Comparison of the ηc model parameter and Gibson length scale at 10% combustion progress for
different operating conditions for Engine B.

variation is lower for Engine B wherefor the spark timing parameter σθST is just set to 1.1 ◦CA.
The simulation results for 10% and 50% combustion progress and NOx engine-out emis-

sions in figure 79 show a good agreement with the experiments and the RMSE are much
lower compared to Engine A. The NOx engine-out emissions shown in figure 79 (c) follow
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(a) Laminar flame speed (b) Dissipation

Figure 77: Comparison of the laminar flame speed sL and dissipation ε at 10% combustion progress for different
operating conditions for Engine B.

(a) Standard deviation of spark timing (b) Standard deviation of turbulence fluctuation

Figure 78: Standard deviation of spark timing σθST and turbulence fluctuation σu′ in dependence of different
operating conditions for Engine B.

the trend of the experiments while they are over-predicted for high load operating conditions.
The RMSE is in the same range as for the Engine A case. The CO engine-out emissions in
figure 79 (d) are significantly higher for the experiment than for the SI-SRM simulation.*

In general, the experimentally measured CO and HC emissions are significantly higher
for Engine B compared to Engine A. The source of the high CO and HC emissions are not
determined for the experiment while 3D CFD simulation results published in the FVV project
report of “Water injection in SI engines II” [108] indicated liquid wall film vaporization during
the expansion stroke of Engine B which could be a possible source of unburnt HC and CO
emissions.

The predicted average PCP and its standard deviation are outlined in figure 80. The
SI-SRM simulation predicts the average PCP of the experiments closely. However, the
standard deviation of PCP is predicted higher by the SI-SRM but can follow the trend of the
experiments. Overall, the RMSE is in the same range as for the Engine A case.

*HC emissions are not shown in the figure but they are generally under-predicted by the SI-SRM simulation.
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(a) 10% combustion progress in ◦CA (b) 50% combustion progress in ◦CA

(c) Nitrogen oxide in mole ppm (d) Carbon monoxide in mole ppm

Figure 79: Validation results with 150 stochastic cycles and cyclic variation model for the modified design ID
476 of Engine B.

(a) Mean of PCP in bar (b) Standard deviation of PCP in bar

Figure 80: Comparison of the mean and standard deviation of PCP of modified design ID 476 of Engine B.

6.7 Verification with 3D CFD

The SI-SRM simulation results of modified design ID 476 of Engine A are further verified by
comparing them to 3D CFD Reynolds-Averaged Navier Stokes (RANS) simulation results.
The details of the 3D CFD simulation setup are summarized in section 9.9 and will not be
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discussed in detail at this point. A relative air-fuel ratio (λ) sweep at 2000 rpm and 6 bar IMEP
is selected for the investigation. The SI-SRM simulations are performed using the validation
set from table 28 and the 3D CFD simulations are performed for one full engine cycle.
The predicted cylinder pressure profiles of SI-SRM and 3D CFD are compared to the ex-
periments in figure 81. The SI-SRM shows an accurate match of the compression stroke
pressure while it over-predicts the maximum cylinder pressure for all λ values. The 3D CFD
simulation over-predicts the compression stroke pressure and for some λ values over-predicts
the maximum cylinder pressure as well. Both models show a decrease of the maximum
cylinder pressure with increasing λ which is because of the lower burning velocity at lean
conditions.

(a) λ=1.0 (b) λ=1.1 (c) λ=1.2

(d) λ=1.3 (e) λ=1.4 (f) λ=1.5

Figure 81: Cylinder pressure of experiment, SI-SRM and 3D CFD RANS for operating point 2000 rpm and 6 bar
IMEP and different λ of Engine A.

The corresponding heat release rate profiles are shown in figure 82. The SI-SRM shows
higher energy release during the initial phase of combustion wherefor the maximum cylinder
pressure is increased. However, the maximum heat release rate is slightly under-predicted
and the burn out during the expansion stroke is accurately matched. The 3D CFD simulation
shows a similar early combustion phase as the SI-SRM with exception of λ=1.3 case where
the 3D CFD simulation under-predicts the heat release rate of experiment noticably. Further,
the 3D CFD simulation shows an extended energy release during the expansion stroke which
is more pronounced for lean operating conditions.

The k − ε turbulence model performance of SI-SRM using the optimized parameters is
further investigated by comparing with the 3D CFD results in figure 83. The SI-SRM predicts
a much larger turbulent length scale l compared to 3D CFD during the combustion and
exhaust valve opening phase which is because of the optimum Cε1 parameter is found at 0.14.
During the intake valve opening the turbulent length scale predicted by SI-SRM is dropping
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(a) λ=1.0 (b) λ=1.1 (c) λ=1.2

(d) λ=1.3 (e) λ=1.4 (f) λ=1.5

Figure 82: Rate of heat release of experiment, SI-SRM and 3D CFD RANS for operating point 2000 rpm and 6
bar IMEP and different λ of Engine A.

strongly because the optimum Cε2 parameter is much higher than Cε1 with a value of 0.67.
The reduced turbulent length scale during intake valve opening leads to a lower formation of
turbulent kinetic energy due to inflowing mass. The sharp increase of turbulent length scale
at intake valve closure is because the Cε2 parameter is larger than Cε1 which further causes a
strong increase of turbulent kinetic energy. Following, the turbulent kinetic energy predicted
by SI-SRM is higher during the compression stroke and at spark timing compared to 3D CFD.
The increased turbulent length scale further causes a lower dissipation rate for SI-SRM. The
increase of turbulent kinetic energy between 120 ◦CA and 360 ◦CA in the 3D CFD simulation
is because of backflow of mass through the exhaust valves into the cylinder. This backflow is
not predicted by the SI-SRM wherefor no turbulent kinetic energy is produced during that
time. On the other hand, the angular momentum of the tumble flow is well captured by the
SI-SRM compared to 3D CFD using a Tippelmann tumble number (TTipp) of 0.5.

The combustion regimes for different λ values predicted by SI-SRM and 3D CFD are
compared using the Borghi-Peters diagrams as shown in figure 84. The change of λ is
indicated by the grey color scale where stoichiometric conditions are colored black and lean
conditions are colored light grey. The single points of each λ case represent a different point of
time during flame propagation. The largest deviation between the two models are the higher
predicted length scale ratios l/δL of SI-SRM and the different time evolution of 3D CFD. For
both models the flame propagation starts at high Ka numbers and moves towards lower Ka
and higher Da numbers which are characterized by low turbulence intensity u′ and small
flame thicknesses δL. In difference to the SI-SRM flame propagation which finishes at the low
Ka numbers, the 3D CFD predicted flame continues propagating to lower Re numbers and
continues further on to lower Ka numbers. During the late phase of combustion of 3D CFD

119



6 Optimization of a spark ignition engine model

(a) Turbulent kinetic energy (b) Dissipation

(c) Turbulent length scale (d) Angular momentum of tumble flow

Figure 83: Turbulent kinetic energy, dissipation, turbulent length scale and angular momentum of tumble flow
predicted by SI-SRM and 3D CFD RANS for operating point 2000 rpm, 6 bar IMEP and λ=1.0 of Engine A.

the decrease of the Ka number is due to the increasing turbulent length scale wherefor the
stretching of the flame front due to turbulence is further reduced (see figure 83 (a)).

(a) RANS (b) SRM

Figure 84: Combustion regimes for λ variation of 3D CFD RANS and SI-SRM at 2000 rpm and 6 bar IMEP of
Engine A.

The initial phase of flame propagation in SI-SRM is determined by initialization of the
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flame kernel and the laminar-to-turbulent transition which is sensitive for lean burning
conditions. With increasing λ the laminar-to-turbulent transition phase is extended due to
the lower laminar flame speed as can be seen in figure 85 (a) and (b). The flame thickness δL

is continuously decreasing after spark ignition and during flame propagation because the
thermal diffusivity (α) is decreasing as shown in figure 85 (c) and (d). The thermal diffusivity
is decreasing because of the increasing cylinder pressure and density.

(a) Flame radius (b) Laminar flame speed

(c) Flame thickness (d) Thermal diffusivity

Figure 85: Flame radius, laminar flame speed, flame thickness and thermal diffusivity predicted by SI-SRM for
different λ at operating point 2000 rpm and 6 bar IMEP of Engine A.

Following, the combustion regimes of two different engine speeds at 6 bar IMEP are
investigated and the results are shown in figure 86. Increasing the engine speed leads to
an increase of turbulent intensity wherefor the Re number increases. At the same time the
laminar flame speed increases as well as shown in figure 87 (b) which is why the change of
Ka number is rather small. The length scale ratio l/δL is increasing at the same time as well
due to the decreasing flame thickness at higher engine speeds wherefor the Da number is not
changing significantly.

The start of flame propagation is predicted earlier for higher engine speed because of the
earlier spark timing while the initial flame kernel mass is the same. The flame thickness is
reduced for the higher engine speed because of the higher laminar flame speed and thermal
diffusivity (see figure 87). As a result of the lower flame thickness, the laminar-to-turbulent

121



6 Optimization of a spark ignition engine model

(a) RANS (b) SRM

Figure 86: Combustion regimes for two different engine speeds at 6 bar IMEP and λ=1.0 of 3D CFD RANS and
SI-SRM of Engine A.

phase is extended and the flame radius is predicted lower for the higher engine speed.

(a) Flame radius (b) Laminar flame speed

(c) Flame thickness (d) Thermal diffusivity

Figure 87: Flame radius, laminar flame speed, flame thickness and thermal diffusivity predicted by SI-SRM for
two different engine speeds at 6 bar IMEP and λ=1.0 of Engine A.

Increasing the IMEP at a constant engine speed of 2000 rpm leads to an increase of the
Ka and Re numbers while the Da number is not significantly changing as can be observed
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in figure 88 for both models. Thereby, the SI-SRM shows a stronger change of Ka number
compared to 3D CFD.

(a) RANS (b) SRM

Figure 88: Combustion regimes for two different engine loads at 2000 rpm and stoichiometric conditions of 3D
CFD and SI-SRM.

The spark timing is significantly delayed for higher IMEP because of the higher risk of
knocking combustion. However, the laminar-to-turbulent transition time is shorter and the
combustion duration is reduced. Due to the higher cylinder pressures at high IMEP the
laminar flame speed and thermal diffusivity are reduced and as a result the flame thickness
is reduced as well.

The influence of the difference in turbulent length scale l and dissipation ε between SI-SRM
and 3D CFD shown in figure 83 is further investigated by adjusting the turbulent length scale
parameters of the k − ε model. The Cε1 parameter is set to 3.5 and the Cε2 parameter is set to
2.0 to obtain a better match with the 3D CFD simulation. The simulation results are shown
in figure 90 and the turbulent length scale and dissipation of SI-SRM is close to the 3D CFD
solution. The turbulent kinetic energy is predicted higher compared to 3D CFD, while the
trend is matching. Due to the missing backflow the SI-SRM does not predict the decrease in
turbulent length scale and increase of turbulent kinetic energy during exhaust valve opening.
The angular momentum LT predicted by the SI-SRM is slightly lower compared to 3D CFD
but matches the trend.

The reduced turbulent length scale leads to a lower Da number according to equation
(4.84). Following, the turbulent flame speed is reduced according to equation (4.105), and
the heat release rate would be under-predicted by the SI-SRM. To compensate the effect of
turbulent length scale, the equation for flame thickness is extended by introducing the model
parameter CBlint.

δL = CBlint ·
αth
sL

·
(

1 +
Tad − Tu

Tu

)0.7

(6.2)

Following, another optimization campaign is performed setting the turbulent length scale
parameters Cε1 and Cε2 constant, and selecting Cε, b1 and CBlint as optimization parameters.
The training set from table 28 is used for the optimization. The design ID 227 is selected from
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(a) Flame radius (b) Laminar flame speed

(c) Flame thickness (d) Thermal diffusivity

Figure 89: Flame radius, laminar flame speed, flame thickness and thermal diffusivity predicted by SI-SRM for
two different engine loads at 2000 rpm and λ=1.0 of Engine A.

the Pareto solutions and the design parameters are compared with design ID 476 in table 29.
The reduced turbulent length scale leads to an increase of dissipation ε wherefor turbulent
kinetic energy is reduced. This effect is compensated by the optimization by decreasing the
dissipation parameter Cε which lowers the dissipation according to equation (4.71). The CBlint

parameter is decreased by the optimization to balance the effect of the reduced turbulent
length scale in regard to the Da number, and the Peters model parameter b1 is increased to
2.53 to predict the maximum heat release rate. The cyclic variation model parameters are
adjusted for design ID 227 by increasing the standard deviation of turbulence fluctuation
of velocity σu′ for lean mixtures and decrease the standard deviation of spark timing σθST to
0.5 ◦CA and keep it constant.

The simulation results of heat release rate for design ID 227 and λ variation are compared to
design ID 476 in figure 91. Both designs show overall a good agreement with the experiments,
while design ID 227 shows a better match of the maximum heat release rate. Further,
both designs over-predict the phase with the highest gradient in heat release rate which
indicates that the laminar-to-turbulent transition is too strong at the time shortly before flame
propagation becomes fully turbulent.

The combustion regimes for design ID 476 and ID 227 are shown in figure 92. The decrease
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(a) Turbulent kinetic energy (b) Dissipation

(c) Turbulent length scale (d) Angular momentum of tumble flow

Figure 90: Turbulent kinetic energy, dissipation, turbulent length scale and angular momentum of tumble flow
predicted by SI-SRM and 3D CFD RANS for operating point 2000 rpm, 6 bar IMEP and λ=1.0 of Engine A.

Parameter ID 476 ID 227
Cε 1.27 0.57

Cinj 0 0
Caxial 0.2 0.2

fT,spin−up 1.0 1.0
TTipp 0.5 0.5

ain 20 20
bin 0.2 0.2
Cε1 0.14 3.5
Cε2 0.67 2.0
Cϕ,u 1.0 1.0
Cϕ,b 0.0025 0.0025

CBlint 2.0 1.0
b1 2.85 2.53

σθST 2.1 ◦CA - 4.1 ◦CA 0.5 ◦CA
σu′ 0.1 m/s 0.15 m/s - 0.225 m/s

Table 29: Model parameters for the k − ε turbulence model, turbulent flame propagation model and scalar
mixing time τϕ.

of the turbulent length scale moves the combustion regime of design ID 227 towards lower
Da numbers and higher Ka numbers where is matches closer with the 3D CFD results in
figure 84 (a). The increased turbulent kinetic energy shown in figure 90 moves the design ID
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(a) λ=1.0 (b) λ=1.0 (c) λ=1.2

(d) λ=1.3 (e) λ=1.4 (f) λ=1.5

Figure 91: Rate of heat release of experiment and SI-SRM for design ID 476 and ID 227 for operating point
2000 rpm, 6 bar IMEP and different λ of Engine A.

227 further to high Ka numbers.

(a) ID 476 (b) ID 277

Figure 92: Combustion regimes for λ variation of SI-SRM at 2000 rpm, 6 bar IMEP of Engine A.

The effect of the CBlint parameter on the flame thickness is shown in figure 93. The
predicted flame thickness of design ID 227 is only half of the one of design ID 476. The
increase of the flame thickness for higher λ values is kept the same. Furthermore, the change
of the combustion regimes for different engine speeds and IMEPs are kept the same as shown
in figure 86 and 88, while they are moved towards lower l/δL ratios.

6.8 Conclusions for spark ignition engine model optimization

The SI-SRM presented in section 4.3 is implemented into the the multi-objective optimization
platform from section 5 and validated for two SI single-cylinder research engine cases. The
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(a) ID 476 (b) ID 227

Figure 93: Flame thickness predicted by SI-SRM for different λ at operating point 2000 rpm, 6 bar IMEP of
Engine A.

best practice optimization setup comprises the FAST NSGA-II algorithm with 3000 designs
evaluated in total. The selection of designs from the Pareto solutions is done using the
MCDM. The best practice SI-SRM setup consists of 500 notional particles and 0.5 ◦CA time
step size. The cyclic variations of the real engine are reflected by using a probability based
modeling approach.
The best performing training procedure included eight operating points selected at 1500 rpm
and 2000 rpm engine speed and 6 bar and 15 bar IMEP. Further, the training set included
stoichiometric and lean operating conditions. It is found that increasing the number of
training points improves the prediction of combustion progress using the validation set while
no improvement was found for NOx and CO engine-out emissions. The parameterization of
the ηc model parameter using equation (9.4) allowed to account for the laminar-to-turbulent
transition of early flame propagation for different operating conditions.
The k − ε model is verified using 3D CFD simulation results of one of the SI engine cases.
The model predicts the production of turbulent kinetic energy, dissipation and angular
momentum of tumble flow accurately for varying operating conditions. Its implementation
allowed to capture the different combustion regimes especially for lean operation.
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7 Optimization of a compression ignition engine model

The DI-SRM introduced in chapter 4.4 and the MOO platform introduced in chapter 5
are validated for two multi-cylinder engines. The first compression ignition (CI) engine
is investigated in the public funded research project “Co-Simulation Platform Connecting
Chemistry and Powertrain Dynamics to Traffic Simulation (Connecdt)” and data is published
by Picerno et al. [109]. The experimental measurements are provided by the project partner
from RWTH Aachen. The second CI engine experimental data is already published by
Matrisciano [16] and is used as second validation data set in this thesis.

7.1 Engine specifications

The CI engine from Picerno et al. [109] is named as Engine C in the following sections and
its specifications are outlined in table 30. The engine bore is similar to a passenger car sized
engine. The crank is slightly offsetted. The compression ratio is 15.5:1. The engine is equipped
with an eight hole direct injector mounted centrally in the cylinder head.

Parameter Unit Value
Bore mm 83.0

Stroke mm 92.35
Rod Length mm 140.006
Pin Offset mm 0.5

Compression Ratio − 15.5:1

Table 30: Specification of engine parameters of Engine C.

The CI engine taken from the thesis of Matrisciano [16] is named Engine D in the following
sections and its specifications are outlined in table 31. The engine bore, stroke and connecting
rod length are larger compared to Engine C and it belongs to the class of heavy-duty engines.
The compression ratio is 16.2:1 which is larger compared to Engine C.

Parameter Unit Value
Bore mm 130.0

Stroke mm 163.0
Rod Length mm 245.0

Compression Ratio − 16.2:1

Table 31: Specification of engine parameters of Engine D.

7.2 Physical properties of diesel fuel

Engine C is operated with B7 Diesel with cetane number (CN) 53.3. The fuel is blended
with 7 vol-% of biodiesel. The complexity of the diesel fuel composition is represented by
a multi-component surrogate which is developed based on the method of Seidel [94]. The
surrogate model Fuel C is compared with the experiment fuel in table 32. The surrogate
closely matches the CN, lower heating value (LHV) and C:H:O ratio of the experiment fuel.

The composition of Fuel C in liquid volume percent is outlined in table 33. It consists
of three species to adjust the properties to the experimental fuel. The n-decane and α-
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Parameter Unit Experiment Surrogate
CN − 52.5 - 52.9 53.3

LHV MJ/kg 42.71 42.56
C:H:O − 13.6:25.1:0.1 10.27:19.4:0.12

Table 32: Comparison of experiment B7 Diesel fuel and surrogate for Fuel C.

methylnaphthalene fractions are adjusted to match the CN, and the α-methylnaphthalene
fraction represents the aromatic content of the experimental fuel. The fraction of methyl
decanoate represent the biodiesel content of the experimental fuel.

Species Unit Liquid Volume Fraction
n-Decane % 65.0

α-Methylnaphthalene % 27.0
Methyl decanoate % 8.0

Table 33: Liquid volume fraction of surrogate species of Fuel C.

Engine D is operated with a standard diesel fuel with CN 53. The surrogate Fuel D matches
closely the CN, LHV and C:H ratio of the experimental fuel as shown in table 34.

Parameter Unit Experiment Surrogate
CN − 53.0 52.48

LHV MJ/kg 42.72 42.78
C:H − 1.8317:1 1.827:1

Table 34: Comparison of experiment diesel fuel and surrogate for Fuel D.

The composition of Fuel D in liquid volume percent is outlined in table 35. It consists
of two species n-decane and α-methylnaphthalene. The aromatic content is represented by
α-methylnaphthalene and is slightly higher compared to Fuel C. The liquid properties of
Diesel-2 fuel are used to calculate the vaporization rate of the two surrogates. The liquid
property data is summarized in table 55.

Species Unit Liquid Volume Fraction
n-Decane % 69.0

α-Methylnaphthalene % 31.0

Table 35: Liquid volume fraction of surrogate species of Fuel D.

7.3 Operating conditions

The operating conditions of Engine C used for the investigation are outlined in figure 94 and
95. The engine map covers the operating range from 1000 to 4000 rpm and 10 to 70 mg/stroke
injected fuel mass at lean conditions. The equivalence ratio range spans from 0.85 down to 0.3.
The exhaust gas recirculation (EGR) rate ranges from 0% up to 55%. The intake and exhaust
valve timings are adjusted for each operating point as shown in figure 94 (b). The data set is
distinguished into 16 training points (full black diamonds) and 11 validation points (hollow
circles). The selection of the training points covers a broad range of operating conditions to
achieve a robust DI-SRM training.
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(a) Engine speed (b) Intake valve closure timing

(c) Equivalence ratio (d) EGR

Figure 94: Training and validation points of Engine C.

The injection strategy of Engine C is outlined in figure 95. The engine incorporates up to
two pilot injections and one post injection. The different injection strategies are covered by
the selected training and validation points.

The DI-SRM simulation is started at IVC and a full engine cycle is calculated. The valve lift
profiles are provided by the experiments and are the same for all operating conditions. The
timings of the intake and exhaust valves are changing for the different operating conditions
as shown in figure 94 (b). The intake and exhaust manifold pressures and temperatures are
calculated by a one-dimensional (1D) gas exchange model which was calibrated for Engine C.
The calculated manifold pressure and temperature are provided as boundary conditions to
the DI-SRM. The cylinder liner, head and piston wall surface temperatures are set constant
to 450 K for all operating points. The initial turbulent kinetic energy kinit is calculated using
the equation (6.1) and the results are shown in figure 96 (c). The pressure, temperature
and EGR at IVC are determined using the thermodynamic analysis of LOGEengine v3.2
[100]. The thermodynamic analysis matches the experimental compression stroke pressure
by optimizing the aforementioned parameters. The results are shown in figure 96 (a), (b) and
(d).

The validation points for Engine D are shown in figure 97. The set include a narrow
variation of engine speed between 1000 to 1700 rpm and a broad variation of injection fuel
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(a) Mass main injection (b) Mass pilot no. 1 injection

(c) Mass pilot no. 2 injection (d) Mass post injection

Figure 95: Injection strategy of Engine C.

mass from 70 to 260 mg/stroke. The valve lift profile and timing is the same for all 10
operating points. A single injection strategy is applied for the operating points 1 to 9 and
a double injection strategy with one pilot injection is applied for operating point 10. The
equivalence ratio ranges from close to stoichiometric down to lean operating conditions.

The initial conditions are outlined in figure 98. The Engine D does not incorporate external
EGR and the EGR is set to 4% to reflect the internal EGR of the engine. The cylinder liner,
head and piston temperatures are set to 403 K, 503 K and 603 K respectively.

7.4 Chemistry model

The tabulated chemistry model for Fuel C is based on the detailed chemistry model from
Wang [110] and includes the polycyclic aromatic hydrocarbons (PAH) chemistry for detailed
soot calculation. The model was also utilized by Picerno et al. [109] for transient driving
cycle simulations. The settings of the tabulated chemistry model are summarized in table 36.
The pressure is tabulated from 1 to 200 bar with non-equidistant fix points. The temperature
is tabulated from 300 to 1400 K and the equivalence ratio from 0.05 to 6.0 to cover the broad
range of mixture conditions during direct fuel injection. The EGR is tabulated from 0 to 60%
to account for the high EGR rates of the engine.
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(a) Mass main injection (b) Mass pilot no. 1 injection

(c) Mass pilot no. 2 injection (d) Mass post injection

Figure 96: Initial and boundary conditions of Engine C.

Parameter Value
Surrogate composition see table 33

Detailed chemistry model see Wang [110]
Includes PAH chemistry yes

Pressure (min, max) 1 bar, 200 bar
Temperature (min, max) 300 K, 1400 K

Equivalence ratio (min, max) 0.05, 6.0
EGR (min, max) 0%, 60%

Table 36: Tabulated chemistry model settings for Fuel C.

The tabulated chemistry model for Fuel D is outlined in table 37. The model is based on
the detailed chemistry model by Wang [110] and was also used in the work of Franken et
al. [111]. The model applies the same ranges as for Fuel C while only the EGR is tabulated
differently in the range of 0 to 40%. The model was validated by Matrisciano et al. [23] by
comparison with direct solution of the chemistry equations in DI-SRM.

7.5 Optimization sensitvity study

The optimization sensivity study is conducted using the FAST NSGA-II algorithm introduced
in section 5.6. The algorithm settings for Engine C optimization are outlined in table 38. The
remaining parameters are set to the default values of NSGA-II in table 11 and FAST NSGA-II
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(a) Engine speed (b) Intake valve closure timing

(c) Equivalence ratio (d) Injected fuel mass

Figure 97: Training and validation points of Engine D.

Parameter Value
Surrogate composition see table 35

Detailed chemistry model see Wang [110]
Includes PAH chemistry yes

Pressure (min, max) 1 bar, 200 bar
Temperature (min, max) 300 K, 1400 K

Equivalence ratio (min, max) 0.05, 6.0
EGR (min, max) 0%, 40%

Table 37: Tabulated chemistry model settings for Fuel D.

in table 12.

Parameter Value
Algorithm FAST NSGA-II

Space filler algorithm Uniform Latin Hypercube
Number of generations 150
Number of individuals 10

Response surface models Polynomials, Kriging, Neural Network
RSM training data set size 1000

Initial random seed 1

Table 38: FAST NSGA-II algorithm settings for Engine C optimization.

The DI-SRM models and settings applied for the sensitvity study are outlined in table

133



7 Optimization of a compression ignition engine model

(a) Mass main injection (b) Mass pilot no. 1 injection

(c) Mass pilot no. 2 injection (d) Mass post injection

Figure 98: Initial and boundary conditions of Engine D.

39. The stochastic heat transfer coefficient (Ch) is set to 15.0 even though a value of 1 is
recommended in section 4.2.2. The particle mixing is modeled using the mixture fraction
based EMST model (Z-EMST) as introduced in section 4.2.5.

Process Model
Convective heat transfer Woschni model (section 4.2.1)

Stochastic heat transfer coefficent (Ch) 15.0 (section 4.2.2)
Direct injection yes (section 4.2.3)
Gas exchange yes (section 4.2.4)

Particle mixing Z-EMST model (section 4.2.5)
Turbulence k − ε model (section 4.4.1)

Table 39: DI-SRM settings for optimization sensitivity study for Engine C.

Selection of optimization parameters The objective of the optimization is to min-
imize the errors εPressure, εyCO , εPCP and εPCPCA. To determine the best set of optimization
parameters a sensitivity study is performed by switching off one parameter by another and
evaluate the influence on the Pareto solutions. The selected optimization parameters and its
ranges for this investigation are summarized in table 40.

The Pareto solutions of the different optimization runs are outlined in figure 99. The first
optimization case All is performed using all optimization parameters. Following the order of
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Parameter Lower Limit Upper Limit
Cε 0.5 3.0
Cε2 0.1 3.0
Cinj 0.001 0.1
Cϕ 8 14
B1 0 8
B2 -0.0001 0.0001
B3 50 500

Cpilot1 0.1 2.0
Cpilot2 0.1 2.0

Table 40: Optimization parameters investigated for Engine C.

parameters in the legend of figure 99 the parameters are switched off and the Pareto solutions
are depicted. The lowest errors for εPressure, εyCO , εPCP and εPCPCA are obtained using all
optimization parameters. Switching off the parameters B1−3 and Cpilot1−2 shows an increase
of the errors as seen for case w/o B1−3. Switching off the parameters Cε and Cε2 show only a
minor increase of the errors while switching off Cϕ shows again a noticable increase of all
errors.

(a) Cylinder pressure vs. CO mole fraction (b) PCP vs. PCPCA

Figure 99: Pareto front of optimization run with different optimization parameters and 1500 designs of Engine
C.

Following, the best practice optimization parameters are selected and summarized in
table 41. Since Cε and Cε2 showed only a minor impact on the optimization results they were
excluded from the optimization parameters. Further, the range of Cϕ is increased to allow the
optimizer to search for Pareto solutions at lower and higher values of Cϕ.

Parameter Lower Limit Upper Limit
Cinj 0.001 0.1
Cϕ 6 15
B1 0 8
B2 -0.0001 0.0001
B3 50 500

Cpilot1 0.1 2.0
Cpilot2 0.1 2.0

Table 41: Best practice optimization parameters of Engine C.
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Influence of DI-SRM setup To investigate the influence of the DI-SRM setup on the
optimization performance different sets are defined and summarized in table 42. The first set
uses only 100 notional particles and 1.0 ◦CA time step size wherefor the simulation times
are very short. For set 2, 3 and 4 the number of notional particles is increased to 200 and the
number of stochastic cycles is varied from 1 to 30. For the sets 3 and 4 the initial random
seed is not fixed but is variable to introduce stochastic. For the set 5 the number of notional
particles is further increased to 500 and the number of stochastic cycles is set to 5 with a
variable initial random seed. Opposed to table 39 for this investigation the Curl particle
mixing model from section 4.2.5 is used.

Parameter Set 1 Set 2 Set 3 Set 4 Set 5
Number of particles 100 200 200 200 500

Time step size 1.0 ◦CA 0.5 ◦CA 0.5 ◦CA 0.5 ◦CA 0.5 ◦CA
Number of cycles 1 1 5 30 5

Initial random seed 1 1 var var var

Table 42: DI-SRM model setup for investigation of setup sensitivity for Engine C.

The Pareto solutions of the optimization runs of the different sets are shown in figure 100.
Suprisingly the lowest errors are obtained using the set 1 which has a coarse resolution of the
cylinder domain and time step and hence was expected to show large inaccuracy. Increasing
the number of notional particles show an increase in the errors εPressure and εyCO while the
errors εPCP and εPCPCA are only slightly worse than set 1. Increasing the number of stochastic
cycles to 5 shows an increase for the erros εPressure and εyCO as well while for 30 number of
stochastic cycles the errors are not changing as much.

(a) Cylinder pressure vs. CO mole fraction (b) PCP vs. PCPCA

Figure 100: Pareto front of optimization run with set 1-5 and 1500 designs of Engine C.

The validation results of the different SI-SRM setups are shown in figure 101. Surprisingly,
the set 1 with lowest number of notional particles and 1.0 ◦CA time step size is performing
better than set 2, 3 and 5 which have a higher number of notional particles and lower time step
size. The best performance regarding RMSE is achieved by set 4 with 200 notional particles,
0.5 ◦CA time step size and 30 stochastic cycles. However, regarding R2 and RMSE the set
5 is performing best for prediction of 50% combustion progress, NOx and CO engine-out
emissions.
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(a) 10% combustion progress in ◦CA (b) 50% combustion progress in ◦CA

(c) Nitrogen oxide in mole ppm (d) Carbon monoxide in mole ppm

Figure 101: Validation results of different SI-SRM setups of Engine C.

Influence of number of training points The selection of training points for the
investigation is shown in figure 102. The three sets of training points show a large span
over the engine operation map while the focus is mostly on the low engine speed area. The
optimizations are performend using the Curl particle mixing model from section 4.2.5 and
the DI-SRM set 1 from table 42.

Figure 102: Selected operating points for the optimization runs with 4, 8 and 16 training points for Engine C.

The optimizer tries to push the Pareto front to minimum εPressure, εyCO , εPCP and εPCPCA
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values for all three sets. Thereby, the lowest errors are achieved by the optimizations with
4 and 8 training points. Further, it can be noticed that with increasing number of training
points the number of Pareto solutions is increased and more spread.

(a) Cylinder pressure vs. CO mole fraction (b) PCP vs. PCPCA

Figure 103: Pareto front of optimization run with 4, 8 and 16 training points and 1500 designs of Engine C.

The best designs of the Pareto solutions are selected using the MCDM with equi-weights
for εPressure, εPCP and εPCPCA while the weight of the εyCO objective is set to zero. Next, the
best designs are tested using the validation data set and the results are shown in figure 104.
For 10% combustion progress all three cases show a large variation and the R2 value is low.
For 50% combustion progress the case 4 OP is performing slightly better while all three cases
show an acceptable correlation with the experiments. For NOx emissions an improvement
can be observed when using 16 training points and the R2 value is the highest. The CO
emissions are significantly over-predicted for all three cases and show no correlation with the
experiments.

7.6 Final validation

The final validation of the optimized DI-SRM setup is conducted for the validation data set of
Engine C and Engine D. It is important to notice that no additional optimization is performed
for Engine D and simply the optimized DI-SRM parameters of Engine C are transfered. The
optimization results of Set 3 from table 42 are selected to generate the final DI-SRM setup
and the Z-EMST particle mixing model is used. In the following paragraphs the Set 3 will be
denoted as Training Set and the DI-SRM setup with increased number of stochastic cycles
will be denoted as Validation Set 1 and 2 as it is summarized in table 43.

Parameter Training Set Validation Set 1 Validation Set 2 Validation Set 3
Number of particles 200 200 200 200

Time step size 0.5◦CA 0.5◦CA 0.5◦CA 0.5◦CA
Number of cycles 5 5 30 100

Initial random seed var var var var

Table 43: DI-SRM model setup for validation of Engine C.
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(a) 10% combustion progress in ◦CA (b) 50% combustion progress in ◦CA

(c) Nitrogen oxide in mole ppm (d) Carbon monoxide in mole ppm

Figure 104: Validation results of number of training points 4, 8 and 16 of Engine C.

Validation results of Engine C The results of the optimization run for Engine C using
the training set from table 43 are shown in figure 105. Even though the Set 3 is used the
results are significantly improved compared to the results shown in figure 100 where the
Curl particle mixing model was used. Further, the FAST NSGA-II algorithm shows an even
distribution of designs along the Pareto front and a trade-off between εPressure and εyCO can
be found. This indicates that the designs with best match of combustion do not coincide with
the designs with good match of CO emissions. The εPCP and εPCPCA errors usually decrease
if the εPressure is decreasing.

Using the MCDM three designs are selected from the Pareto solutions as shown in figure
106 to investigate the sensivity of the selected designs for the validation data set. The design
ID 525 is selected by setting the MCDM weight of the εPressure error to one. The design ID
917 puts a higher MCDM weight on εyCO error to be able to predict lower CO engine-out
emissions. The design ID 526 puts the highest MCDM weight on εyCO to get the best match
for CO engine-out emissions for the validation data set.

The validation results of the three selected designs are outlined in figure 107. The simula-
tions are performed using the validation set 1 in table 43. The 10% combustion progress is
predicted earlier for all three designs. The reason is the faster ignition of the pilot injections
for DI-SRM. The predicted 50% combustion progress correlates with the experiments for all
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(a) Cylinder pressure vs. CO mole fraction (b) PCP vs. PCPCA

Figure 105: Feasible and Pareto designs of the FAST NSGA-II optimization run with 1500 designs of Engine C.

(a) Cylinder pressure vs. CO mole fraction (b) PCP vs. PCPCA

Figure 106: Selected Pareto solutions for the FAST NSGA-II optimization run with 1500 designs of Engine C.

three designs. Even though the combustion progress is matching the design ID 917 shows a
high combustion efficiency wherefor the NOx emissions are predicted higher. The best match
for NOx emissions is obtained for design ID 525 which also predicted the lowest εPressure

error. The design ID 526 was selected because of the lower εyCO error and it also shows the
best match for the validation data set. Nevertheless, all three designs indicate the difficulty to
match the experimental CO emissions and having at the same time a reasonable match of the
combustion.

Soot optimization for Engine C The design ID 525 is finally selected because of
the better prediction of combustion progress and NOx emissions. Subsequently, the FAST
NSGA-II optimization of the soot mass is performed. The set 3 is used for the optimization.
The method of soot source term tabulation is introduced by Matrisciano et al. [43, 112, 113]
and uses the detailed soot model by Mauß [114] in conjunction with a detailed PAH chemistry.
The detailed soot model describes the soot formation and oxidation by incorporating source
terms for particle inception, surface reaction, condensation, coagulation and fragmentation.
The surface reactions are divided into surface growth by acetylene addition and oxidation
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(a) 10% combustion progress in ◦CA (b) 50% combustion progress in ◦CA

(c) Nitrogen oxide in mole ppm (d) Carbon monoxide in mole ppm

Figure 107: Validation results for design ID 525, ID 526 and ID 917 of FAST NSGA-II optimization run with 1500
designs of Engine C.

by OH and O2. The surface sites of a soot particle actually undergoing surface reactions are
described by the fraction of active sites which is set to 0.3 according to Pasternak et al. [115].
The shape of a soot particle is mathematical defined by the fractal dimension where a value
of 2 denotes a sphere and a value of 3 denotes an chain-like structure. The optimization
parameters in table 44 represent scaling factors of the soot source terms.

Parameter Lower limit Upper limit
Particle inception source term 0.1 10.0
Surface growth source term 0.1 10.0

Oxidation by OH source term 0.1 10.0
Oxidation by O2 source term 0.1 10.0

Fractal dimension 2 3

Table 44: Soot optimization parameters for Engine C.

As objectives the εsoot and εsoot,gradient errors are defined for the soot mass according to
the equations (5.7) and (5.8). The feasible designs of the soot optimization show a very large
spread in figure 108 and the Pareto solution only consists of a few designs which make the
MCDM selection difficult. From the Pareto solutions the three designs ID 2487, ID 2488 and
ID 2707 are selected to investigate their performance for the validation data set. Design ID
2487 uses equi-weights in the MCDM for the εsoot and εsoot,gradient errors while design ID 2488
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prefers lower εsoot errors and design ID 2707 focuses on the low εsoot,gradient errors.

Figure 108: Selected Pareto solutions from the soot optimization run with 1500 designs and FAST NSGA-II of
Engine C.

The simulation of the validation data set is performed using the Validation Set 3 from
table 43 and the results of the fuel specific fuel mass ( f sSoot) are outlined in figure 109. The
results of all three designs include the standard deviation of soot mass for 100 stochastic
cycles which are shown as error bars in the plot. The designs ID 2487 and ID 2707 show a
quite similar performance with the tendency to predict higher soot mass compared to design
ID 2488. Both designs have a lower particle inception scaling factor (CPI=8.31 / =8.82) and
oxidation by OH and O2 scaling factor (COxOH=0.96 / =0.86 and COxO2=4.29 / =3.14) in
comparison to design ID 2488 (CPI=9.86, COxOH=1.44 and COxO2=4.80). All three designs
predict the fractal dimension to be close to 2 wherefor the soot particles have a more spherical
shape. The design ID 2487 and ID 2707 show a good performance in predicting the high soot
masses of the operating points 3, 6, 12, 17 and 18 while the design ID 2488 is performing
better predicting the low soot masses of the operating points 2, 15, 19, 21, 22, 24 and 25.

Figure 109: Comparison of fuel specific soot mass for design ID 2487, ID 2488 and ID 2707 including standard
deviation as error bars of Engine C. The R2 values and RMSE are included in the legend.

The sensitivity of the number of stochastic cycles is further investigated for design ID 2707

142



MULTI-OBJECTIVE OPTIMIZATION OF STOCHASTIC ENGINE MODELS

by running the simulation with validation set 1, 2 and 3. The results in figure 110 include the
mean soot mass and its standard deviation. With increasing number of stochastic cycles from
5 to 30 the mean soot mass is significantly decreasing for all operating points. Increasing the
number of stochastic cycles even further to 100 shows a slight decrease of soot mass. Further,
the standard deviation is the highest for low number of stochastic cycles which indicates the
high uncertainty of the soot mass prediction.

Figure 110: Comparison of fuel specific soot mass for design ID 2707 with 5, 30 and 100 stochastic cycles
including standard deviation as error bars of Engine C. The R2 values and RMSE are included in the legend.

Finally, the design ID 2707 with validation set 3 is selected as the best performing DI-SRM
setup. The predicted soot masses using the optimized soot source term scaling factors are
compared with the results of design ID 525 without soot source term optimization in figure
111. The design ID 525 under-predicts the soot mass by a margin which indicates the necessity
to optimize the soot model parameters. The optimizer fulfilled this task for design ID 2707 by
increasing the scaling factor of particle inception wherefor more primary soot particles are
formed.

Validation results of Engine D The optimized design ID 2707 with optimized soot
model parameters from the previous section is further tested for the case Engine D. The
initial and boundary conditions are outlined in section 7.3 and the Validation Sets 1 to 3
from table 43 are used for the DI-SRM simulation. It has to be noted that for Engine D no
measurement data is available for the pressure and temperature in the intake and exhaust
manifold. Therefor, the gas exchange model from section 4.2.4 is not used and the turbulent
kinetic energy and angular momentum production terms in the k − ε turbulence model
from section 4.4 are not calculated. Further, no experimental data for soot mass is available
wherefor only the gaseous emissions are evaluated.
The simulation results are outlined in figure 112. The DI-SRM shows an earlier prediction
of 10% combustion progress while 50% combustion progress is slightly higher. The NOx

emissions are under-predicted and the CO emissions are over-predicted using the design ID
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Figure 111: Comparison of fuel specific soot mass for design ID 525 and ID 2707 including standard deviation
as error bars of Engine C. The R2 values and RMSE are included in the legend.

2707 model parameters. Further, increasing the number of stochastic cycles shows no change
of the predicted results.

(a) 10% combustion progress in ◦CA (b) 50% combustion progress in ◦CA

(c) Nitrogen oxide in mole ppm (d) Carbon monoxide in mole ppm

Figure 112: Validation results of design ID 2707 for Engine D.
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The simulation results of OP5 and OP10 are investigated more in detail and the cylinder
pressure and heat release rate are shown in figure 113. Both cases show a lower predicted
maximum cylinder pressure and the combustion duration is longer compared to the experi-
ments. The differences are a result of the inactive gas exchange model wherefor the influence
of inflowing mass for turbulent kinetic energy and swirl angular momentum production is
not captured. Therefor, the length scale parameter Cε1 of the large-bore engine case Engine D
is adjusted* to get a better match of the cylinder pressure and heat release rate to investigate
the impact on NOx and CO engine-out emission prediction.
The simulation results for OP5 and OP10 with the modified Cε1 parameter show an improve-
ment of the cylinder pressure and heat release rate. For both operating points the maximum
cylinder pressure is closely match and the burn duration matches with the experiments.

(a) Cylinder pressure - OP5 (b) Heat release rate - OP5

(c) Cylinder pressure - OP10 (d) Heat release rate - OP10

Figure 113: Predicted cylinder pressure and heat release rate of OP5 and OP10 of Engine D.

Reviewing the simulation results in figure 114 of all operating points with modified
Cε1 parameter shows an improved match of the 50% combustion progress, NOx and CO
engine out emissions. However, the emissions still differ significantly from the experiments
even though the combustion shows a better agreement. For NOx emissions, especially the
operating points with high concentrations in the experiments are under-predicted by the
DI-SRM simulation.

*The value of Cε1 is increased from 7 to 9.
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(a) 10% combustion progress in ◦CA (b) 50% combustion progress in ◦CA

(c) Nitrogen oxide in mole ppm (d) Carbon monoxide in mole ppm

Figure 114: Simulation results of design ID 2707 with modified Cε1 parameter for Engine D.

7.7 Conclusions for compression ignition engine model optimization

The DI-SRM presented in section 4.4 is implemented into the the multi-objective optimization
platform from section 5 and validated for a small-bore and large-bore engine case. The
best practice optimization setup comprises the FAST NSGA-II algorithm with 1500 designs
evaluated in total. The selection of designs from the Pareto solutions is done using the
MCDM. The best practice DI-SRM setup consists of 200 notional particles and 0.5◦CA time
step size. To determine statistically stable mean results of soot mass 100 stochastic cycles are
simulated.
The best performing training procedure included sixteen operating points distributed over
the whole engine operation range. The injection strategy of the different operating conditions
include up to two pilot injections and for some cases one post injection. It is found that
decreasing the number of training points showed no negative impact on the prediction of
combustion progress while NOx emission prediction was diminished. The parameterization
of the ∆SOV using equation (9.3) allowed to account for the vaporization delay for different
operating conditions.
The soot mass optimization is performed for the small-bore engine case Engine C. The
optimized k − ε model parameters are used and the soot model source term parameters
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of particle inception, surface growth, oxidation by OH and O2 are optimized. Following,
the validation set is tested for different number of stochastic cycles which showed that the
standard deviation of soot mass is decreasing with increasing number of stochastic cycles. To
obtain a statistical stable result of the mean soot mass 100 stochastic cycles are calculated.
The validation of Engine D showed larger deviations for combustion progress and engine out
emissions. For Engine D no experimental data for the intake and exhaust manifold model
was available wherefor the gas exchange model from section 4.2.4 is not used. This did not
allow to transfer the optimized k − ε model parameters from Engine C because the turbulent
kinetic energy and angular momentum production due to intake flow is not calculated.
The turbulent length scale parameter Cε1 is adjusted to obtain an improved match of the
combustion progress, however the NOx emissions are still under-predicted and the CO
emissions are still over-predicted by the DI-SRM.
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8 Conclusions and Outlook

This thesis summarizes the author’s developments in the area of k − ε turbulence models
for the prediction of turbulent length and time scales in 0D SRM, and multi-objective opti-
mization methods for automatic model training. The performance of the newly implemented
models for the prediction of combustion processes and emission formation was demonstrated
for SI and CI engines. Finally, the performance of the developed optimization platform for
automated model training is demonstrated for multiple operating points of the engine map.
The convective heat transfer model in 0D SRM is extended by a term that considers the
influence of turbulent scales. Furthermore, a stochastic algorithm describing the influence of
turbulence on heat loss is implemented. The models are validated using DNS simulations for
temperature stratification in an engine-like geometry. An increase in turbulent kinetic energy
leads to higher convective heat loss. The temperature distribution during the compression
stroke is in good approximation with the DNS results.
The injection and vaporization model was extended by a stochastic algorithm that randomly
distributes the injected liquid fuel mass among the notional particles in the cylinder. During
the early phase of injection, the ϕ-distribution predicted by the 0D SRM deviates from the
3D CFD RANS results, and is shifted to lean mixtures. The differences are due to a delayed
evaporation rate of the injected fuel mass in the 0D SRM. During the compression stroke,
the ϕ-distribution converges to the 3D CFD RANS simulation, and at spark ignition, both
solutions are close.
The gas exchange through the valves is modeled in the 0D SRM using the experimental data
of pressure and temperature in the intake manifold and exhaust manifold. The calculated
mass flow through the inlet valves agrees well with the 3D CFD RANS results. Backflow
of mass through the exhaust valves into the cylinder predicted by 3D CFD RANS is not
captured by the 0D SRM. The gas exchange through the valves was coupled with the newly
implemented k − ε turbulence model, so that it creates a tumble flow motion and leads to the
generation of turbulent kinetic energy during the compression and combustion phases.
The k − ε turbulence model for SI engines was implemented in 0D SRM to predict the
turbulent length and time scales for different operating points. The model considers the
influence of valve flow, axial flow, direct injection, and tumble decay on turbulent kinetic
energy generation. The tumble flow motion is described by the angular momentum generated
by the valve flows, which decays into turbulent kinetic energy due to shear forces and wall
friction forces in the cylinder. The 0D SRM simulation results were compared with 3D CFD
RANS results and show good agreement. The k − ε turbulence model is able to predict the
change in turbulent time and length scales for different operating conditions.
The turbulent flame propagation model of Peters was implemented in 0D SRM, which is
valid for flames in the corrugated and thin reaction zone regime. The input parameters for
turbulence fluctuation and turbulent length scale are calculated using the k − ε turbulence
model. The model was extended to include a flame propagation model for early flames,
which describes the transition from laminar to turbulent flame propagation as a function of
the turbulent time and length scales. The model is able to accurately predict combustion in
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gasoline engines for various operating conditions, including lean mixtures. In addition, a
stochastic algorithm has been implemented to account for the ϕ-distribution in mass transfer
between the unburnt and burnt zones. The algorithm allows the calculation of premixed and
partially premixed flames.
A source of unburned hydrocarbons is considered by applying a crevice model that calcu-
lates the volume of the crevice as 2-4% of the cylinder volume. The mass enclosed in the
crevice is calculated based on the ideal gas law. Here, the enclosed mass depends on the
pressure difference and the turbulent kinetic energy. As the turbulent kinetic energy increases,
more mass of unburned hydrocarbons is transported into the crevice. This is based on the
assumption that a high turbulent kinetic energy correlates with a strong flow motion toward
the piston crevice, which traps more unburned hydrocarbons in the crevice. As a result, the
crevice model increases the mass of unburned hydrocarbons, which means that the results of
the 0D SRM are in good agreement with the experiments.
The strong cycle variations of cylinder pressure in gasoline engines are accounted for by
a pd f -based cyclic variation model. The model assigns a normally distributed random
number for the turbulence variation and the ignition timing. Through this variation, faster or
slower firing cycles can be calculated in the 0D SRM. The experimentally measured standard
deviation of the maximum cylinder pressure and crank angle is predicted by the model to a
good approximation.
The k − ε turbulence model for CI engines was implemented in 0D SRM to calculate the
generation of turbulent kinetic energy and dissipation for different operating points over
the engine map. The model considers the influence of valve flow, axial flow, direct injection,
secondary flows in the piston bowl, and swirl flow on the generation of turbulent kinetic
energy in the cylinder. The motion of the swirl flow is described by the angular momentum
generated by the valve flow, which is amplified by the displacement into the piston bowl
during the compression stroke. The shear forces and wall friction forces occurring in the
cylinder cause the angular momentum to decay and generate turbulent kinetic energy.
The optimal 0D SRM parameters are determined using the developed multi-objective opti-
mization platform. Several genetic and heuristic algorithms were tested to determine the
most reliable optimization method. The tested heuristic algorithms are based on the particle
swarm method (MOPSO) and the simulated annealing method (MOSA). They show good
performance in finding the best Pareto front, exhibiting a diverse distribution of solutions.
The genetic algorithms tested are based on the Non-domination Sorting Method (NSGA-II)
and the Multi-objective Method (MOGA-II). They show a stronger formation of clusters
which is why the solution space is not always evenly covered. The coupling of the RSM-
based optimization (FAST) with the genetic algorithm NSGA-II shows a good performance
in finding the best Pareto front, with a diverse distribution of solutions. Thus, the FAST
NSGA-II algorithm was selected to find the best set of model parameters for 0D SRM. To
systematize the selection of solutions from the Pareto front, a multi-criteria decision maker
was implemented.
The 0D SRM for SI engines is trained for a single-cylinder research engine and validated for
another single-cylinder research engine. The trained 0D SRM is able to accurately predict
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the combustion characteristics of the studied engines, with a correlation factor between
0.98 < R2 < 0.99. The prediction of NOx and CO emissions shows some larger deviations
(R2 ≈ 0.7). In particular, for the second single-cylinder research engine, the predicted CO
and HC emissions are significantly lower compared to the experiments. The reason for the
increased measured CO and HC emissions is attributed to a strong spray-wall interaction
and evaporation of the liquid wall film during the expansion stroke.
The 0D SRM for CI engines is trained for a passenger car engine and validated for an
additional heavy duty engine. The trained 0D SRM is able to predict the combustion cen-
ter of the studied engines in a good approximation with a correlation coefficient between
0.67 < R2 < 0.82. The 10% combustion advance is predicted too early for low load operating
points. CO emissions are predicted too high for high load operating point, indicating that
mixture formation is not well predicted. NOx emissions show good agreement with experi-
ments (R2 = 0.89). Optimization of the soot model parameters shows an improvement in
the prediction of the fuel-specific soot mass and the results are in good approximation to the
experiments. The trend of soot mass is well matched by the model for most of the operating
points, but some operating points show larger deviations. The soot mass predicted by the 0D
SRM shows a dependence on the number of calculated stochastic cycles. To achieve a stable
prediction of the mean soot mass, 100 stochastic cycles are calculated.

In the future, work will be done on merging the two k − ε turbulence models for SI and
CI engines to obtain a general model. This will make it possible to increase the physical
significance of the turbulence model by providing a unified definition of the turbulent time
and length scales. Furthermore, it will be possible to implement new angular momentum
flow terms that can compute mixed swirling and tumbling motions. In addition, the explicit
Runge-Kutta solver solver will be extended to include an algorithm that improves conver-
gence at large operator split time steps relevant to real-time simulation.
The simplified stochastic vaporization model is replaced by a detailed physical vaporization
model that takes into account the multiphase mass transfer of liquid droplets and the distri-
bution of the spray into the cylinder. The information about the distribution of liquids and
vapors in the cylinder is needed to implement models that account for the formation of a wall
film and the interaction between the spray and the piston crevice. The latter is required for
the extension of the crevice model. In the new model, the rotational speed of the tumble, the
penetration depth of the spray and the piston position are related to each other to determine
the probability with which unburned hydrocarbons are pushed into the piston crevice. A
model for calculating the wall film allows another source of unburned hydrocarbons and
soot mass in SI engines to be taken into account.
The onset of flame propagation is predicted using a spark ignition model that accounts for
discharge energy and discharge duration. The initial mass burned is predicted based on the
physical properties of the fuel and the discharge energy. The subsequent flame propagation is
calculated by a new model that determines the flame propagation of the individual notional
particles. The new model will thus be able to account for inhomogeneities of the flame front
that lead to different turbulent flame propagation velocities.
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9 Appendix

9.1 Thermodynamic polynomials

Heat capacity
cp(T)

R
=

(
A1 + A2 · ln(T) + A3 · T +

A4

T2

)
(9.1)

Enthalpy

H(T)
R

=

(
A5 + (A1 − A2) · T + A2 · T · ln(T) +

1
2

A3 · T2 − A4

T

)
(9.2)

Entropy
S(T)

R
=

(
A6 + A1 · ln(T) +

1
2

A2 · ln(T)2 + A3 · T − 1
2

A4

T2

)
(9.3)

9.2 Cylinder wall temperature correlation function

The correlation function in equation (9.4) for the wall temperature of cylinder liner, head and
piston is developed based on the work of Barra [116]. Further, experimental measurement
data of a single-cylinder spark ignition engine from the FVV project “Water injection in SI
engines” [117] is used to investigate the performance of the model.

Tw,i = (B1 · Toil + B2) ·
(

Tw,0,i + B3 ·
(

nB4 + mB5
f + |θSOI |B6

))
(9.4)

Therein, i is a counter for the cylinder area (liner, head, piston), Toil is the oil temperature,
Tw,0,i is a default wall temperature, n is the engine speed, m f is the injected fuel mass and
SOI is the start of injection. The values of the parameters B1 - B6 are given in the table 45.
The transient change of wall temperature during the engine cycle is neglected.

Parameter Unit Value
B1

1
K 0.00128

B2 − 0.535
B3 − 0.008
B4 − 1.0
B5 − 2.2
B6 − 1.5

Tw,0,liner K 390
Tw,0,head K 430

Tw,0,piston K 430

Table 45: Cylinder wall temperature correlation function parameters for a warm engine.

The calculated wall temperatures for the training and validation points of Engine A are
outlined in figure 115.

The calculated wall temperatures for the validation points of Engine B are outlined in
figure 116.
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(a) Cylinder liner temperature

(b) Cylinder head temperature

(c) Piston head temperature

Figure 115: Calculated wall temperatures of cylinder liner, head and piston head of Engine A.

9.3 Start of vaporization correction function

The correction function of ∆θSOV is introduced to account for the time delay of fuel vapor-
ization of direct injection Diesel engines. The stochastic vaporization model introduced in
section 4.2.3 underpredicts the vaporization delay wherefor the correction is applied.

∆θSOV = B1 + B2 · n + B3 ·
(
0.06 · m f

)3/2 · exp
(
−1 ·

(
0.06 · m f

)5/2
)
·
√

1
n

(9.5)

Therein, B1, B2 and B3 are model parameters which can be adjusted, n is the engine speed
and m f is the injection fuel mass.

9.4 Early flame propagation correlation function

The correlation function η∗
c estimates the correction parameter ηc of the early flame prop-

agation model in section 4.3.2 based on the equivalence ratio ϕ, injected fuel mass m f and
compression ratio εCR.
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(a) Cylinder liner temperature (b) Cylinder head temperature

(c) Piston head temperature

Figure 116: Calculated wall temperatures of cylinder liner, head and piston head of Engine B.

ηc = B1 + B2 · ϕ2 + B3 ·
1

m f
+ B4 · ϕ · m f + B5 · εCR (9.6)

Therein, B1, B2, B3, B4 and B5 are model parameters which can be adjusted.

9.5 Piston speed

The mean piston speed cm is calculated according to equation (9.7). Therein, hs is the stroke
and n is the engine speed.

cm = 2 · hs ·
n
60

(9.7)

The instantaneous piston speed cpis can be calculated based on the mean piston speed. θ is
the current crank angle, lrod is the connecting rod length and hs is the stroke.

cpis = cm · π

2
· sin(θ) ·

⎛⎜⎝1 +

⎛⎝ cos(θ)√
lrod
2·hs

⎞⎠2

− sin2(θ)

⎞⎟⎠ (9.8)
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9.6 Tumble ratio

The tumble ratio T is defined as the ratio of tumble rotation speed nT and engine speed n.

T =
nT

n
(9.9)

The tumble rotation speed nT is determined by the angular momentum LT and the moment
of inertia JT.

nT =
1

2π
· LT

JT
(9.10)

The momentum of inertia JT of the cylinder is calculated according to the following
equation.

JT = mg ·
(

1
4
·
(

dB

2

)2

+
1
12

· H2
1

)
(9.11)

9.7 Swirl ratio

The swirl ratio S is defined as the ratio of swirl rotation speed nS and engine speed n.

S =
nS

n · 60
(9.12)

The swirl rotation speed nS is determined by the angular momentum LS and the moment
of inertia JS.

nS =
1

2 · π
· LS

JS
(9.13)

The momentum of inertia JS of the cylinder is calculated according to the following
equation.

JS = π · ρ

32
·
(

H1 · d4
B + hbowl · d4

bowl

)
(9.14)

9.8 Uniformity measure

The uniformity measure is defined according to Montrone et al. [70].
Given a dataset of n points in a d-dimensional space

D = {xi|i = 1, ..., n} (9.15)

for each point xi one can denote the minimum distance from all other points as qi

qi = min
∀j ̸=i

{
||xi − xj||

}
(9.16)

Considering the whole set of minimum distances
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Q = {qi|i = 1, ..., n} (9.17)

the uniformity measure UD is the median value of this set

UD = Q̃ (9.18)

For a fixed number of points, the higher the value of the uniformity measure, the better
the uniformity of points.

9.9 3D CFD simulation setup

The 3D CFD simulations are performed for Engine A using the CFD code Converge v2.4 [118].
The selected CFD models are outlined in table 46 and references to the original publications
are provided in the table as well. More simulation results on the 3D CFD simulation can
be found in [92]. Details on the spray model setup can be found in [103]. Details on the
combustion model setup can be found in [95].

Model Unit Parameter
Base grid size (x,y,z) mm 2, 2, 2

Adaptive mesh refinement − Temperature, velocity, species
Fixed embedding − Cylinder, valves and spark

Minimum grid size mm 0.125 (around spark)
Wall-film model − O’Rourke [119]
Collision model − NTC [120]

Evaporation model − Frossling with boiling model [121]
Liquid mass diffusivity of iso-octane − D0=7.9E-6 m2

s , n=1.87 [118]
Initial droplet size distribution − Rosin-Rammler (qrr=5.5) [122]

Break-up model − Kelvin-Helmholtz and Rayleigh-Taylor [123]
Flame propagation − G-Equation with CEQ solver in the reaction zone [3, 124, 125]

Laminar flame speed − Same look-up table as for SI-SRM
Turbulent flame speed − Peters model [3]
Unburnt / burnt zone − SAGE with detailed chemistry [126]
Reaction mechanism − see section 6.4

Spark model − Initialize passive scalar of G-Equation model
Turbulence model − RNG k − ε [127]

Table 46: 3D CFD model settings.
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9.10 Liquid thermophysical properties

ps [Pa] Ts [K] Hv [J/kg] ps [Pa] Ts [K] Hv [J/kg]
3.308200E+0 2.000000E+2 3.575500E+5 2.082000E+5 4.000000E+2 2.509200E+5
1.056200E+1 2.100000E+2 3.521600E+5 2.629600E+5 4.100000E+2 2.441500E+5
2.986900E+1 2.200000E+2 3.468700E+5 3.280400E+5 4.200000E+2 2.370100E+5
7.608000E+1 2.300000E+2 3.416600E+5 4.046200E+5 4.300000E+2 2.294700E+5
1.769900E+2 2.400000E+2 3.365400E+5 4.939500E+5 4.400000E+2 2.214700E+5
3.804900E+2 2.500000E+2 3.314800E+5 5.973300E+5 4.500000E+2 2.129400E+5
7.633100E+2 2.600000E+2 3.264800E+5 7.161300E+5 4.600000E+2 2.037900E+5
1.440900E+3 2.700000E+2 3.215200E+5 8.518000E+5 4.700000E+2 1.939000E+5
2.577800E+3 2.800000E+2 3.165700E+5 1.005900E+6 4.800000E+2 1.831100E+5
4.397200E+3 2.900000E+2 3.116300E+5 1.180000E+6 4.900000E+2 1.712100E+5
7.190000E+3 3.000000E+2 3.066700E+5 1.376100E+6 5.000000E+2 1.578800E+5
1.132100E+4 3.100000E+2 3.016700E+5 1.596400E+6 5.100000E+2 1.425800E+5
1.723500E+4 3.200000E+2 2.966100E+5 1.843300E+6 5.200000E+2 1.243600E+5
2.545700E+4 3.300000E+2 2.914600E+5 2.120500E+6 5.300000E+2 1.010300E+5
3.659400E+4 3.400000E+2 2.862000E+5 2.433400E+6 5.400000E+2 6.363100E+4
5.133200E+4 3.500000E+2 2.808100E+5 2.553900E+6 5.500000E+2 2.934200E+4
7.043500E+4 3.600000E+2 2.752600E+5 2.653900E+6 5.600000E+2 0.000000E+0
9.473900E+4 3.700000E+2 2.695300E+5
1.251500E+5 3.800000E+2 2.635800E+5
1.626300E+5 3.900000E+2 2.573900E+5

Table 47: Liquid vapor staturation pressure, temperature and heat of vaporization of iso-Octane [128].

ps [Pa] Ts [K] Hv [J/kg] ps [Pa] Ts [K] Hv [J/kg]
2.142400E+0 2.000000E+2 4.290700E+5 2.180400E+5 4.000000E+2 2.950900E+5
7.265500E+0 2.100000E+2 4.220100E+5 2.772900E+5 4.100000E+2 2.868500E+5
2.165300E+1 2.200000E+2 4.151200E+5 3.481300E+5 4.200000E+2 2.782000E+5
5.774500E+1 2.300000E+2 4.083900E+5 4.319400E+5 4.300000E+2 2.690500E+5
1.398700E+2 2.400000E+2 4.017900E+5 5.302100E+5 4.400000E+2 2.593500E+5
3.116000E+2 2.500000E+2 3.953100E+5 6.444900E+5 4.500000E+2 2.489800E+5
6.451500E+2 2.600000E+2 3.889200E+5 7.764200E+5 4.600000E+2 2.378100E+5
1.252500E+3 2.700000E+2 3.826000E+5 9.277600E+5 4.700000E+2 2.256900E+5
2.297300E+3 2.800000E+2 3.763400E+5 1.100400E+6 4.800000E+2 2.123800E+5
4.007200E+3 2.900000E+2 3.701000E+5 1.296300E+6 4.900000E+2 1.975600E+5
6.684500E+3 3.000000E+2 3.638600E+5 1.517900E+6 5.000000E+2 1.807400E+5
1.071600E+4 3.100000E+2 3.575900E+5 1.767700E+6 5.100000E+2 1.610900E+5
1.657900E+4 3.200000E+2 3.512600E+5 2.049100E+6 5.200000E+2 1.369900E+5
2.484700E+4 3.300000E+2 3.448600E+5 2.366300E+6 5.300000E+2 1.042400E+5
3.619000E+4 3.400000E+2 3.383400E+5 2.727900E+6 5.400000E+2 2.210300E+4
5.137400E+4 3.500000E+2 3.316700E+5 2.827900E+6 5.500000E+2 0.000000E+0
7.125900E+4 3.600000E+2 3.248400E+5
9.679500E+4 3.700000E+2 3.178000E+5
1.290100E+5 3.800000E+2 3.105200E+5
1.690300E+5 3.900000E+2 3.029600E+5

Table 48: Liquid vapor staturation pressure, temperature and heat of vaporization of n-Heptane [128].
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ps [Pa] Ts [K] Hv [J/kg] ps [Pa] Ts [K] Hv [J/kg]
1.083300E+0 2.000000E+2 4.754600E+5 2.562200E+5 4.200000E+2 3.354400E+5
3.763200E+0 2.100000E+2 4.683600E+5 3.207500E+5 4.300000E+2 3.278500E+5
1.147900E+1 2.200000E+2 4.614900E+5 3.969800E+5 4.400000E+2 3.199400E+5
3.131400E+1 2.300000E+2 4.548200E+5 4.861900E+5 4.500000E+2 3.116500E+5
7.754200E+1 2.400000E+2 4.483200E+5 5.897400E+5 4.600000E+2 3.029400E+5
1.764900E+2 2.500000E+2 4.419800E+5 7.090500E+5 4.700000E+2 2.937500E+5
3.731200E+2 2.600000E+2 4.357600E+5 8.455900E+5 4.800000E+2 2.840200E+5
7.392300E+2 2.700000E+2 4.296600E+5 1.000900E+6 4.900000E+2 2.736500E+5
1.382900E+3 2.800000E+2 4.236300E+5 1.176600E+6 5.000000E+2 2.625500E+5
2.458600E+3 2.900000E+2 4.176800E+5 1.374500E+6 5.100000E+2 2.505800E+5
4.177400E+3 3.000000E+2 4.117600E+5 1.596400E+6 5.200000E+2 2.375900E+5
6.816500E+3 3.100000E+2 4.058600E+5 1.844400E+6 5.300000E+2 2.233200E+5
1.072700E+4 3.200000E+2 3.999600E+5 2.120700E+6 5.400000E+2 2.074700E+5
1.634000E+4 3.300000E+2 3.940300E+5 2.427900E+6 5.500000E+2 1.895400E+5
2.417000E+4 3.400000E+2 3.880500E+5 2.769100E+6 5.600000E+2 1.687400E+5
3.482100E+4 3.500000E+2 3.820000E+5 3.147900E+6 5.700000E+2 1.436200E+5
4.898000E+4 3.600000E+2 3.758500E+5 3.568800E+6 5.800000E+2 1.106900E+5
6.741800E+4 3.700000E+2 3.695700E+5 4.038500E+6 5.900000E+2 5.056300E+4
9.098800E+4 3.800000E+2 3.631500E+5 4.088500E+6 6.000000E+2 3.529300E+4
1.206200E+5 3.900000E+2 3.565500E+5 4.188500E+6 6.100000E+2 0.000000E+0
1.573100E+5 4.000000E+2 3.497500E+5
2.021400E+5 4.100000E+2 3.427200E+5

Table 49: Liquid vapor staturation pressure, temperature and heat of vaporization of Toluene [128].

ps [Pa] Ts [K] Hv [J/kg] ps [Pa] Ts [K] Hv [J/kg]
1.101800E+0 2.000000E+2 1.008500E+6 5.236800E+5 4.000000E+2 7.516600E+5
4.145600E+0 2.100000E+2 1.000300E+6 6.945200E+5 4.100000E+2 7.259000E+5
1.369400E+1 2.200000E+2 9.921100E+5 9.063600E+5 4.200000E+2 6.979600E+5
4.040400E+1 2.300000E+2 9.838500E+5 1.165300E+6 4.300000E+2 6.677200E+5
1.080400E+2 2.400000E+2 9.754600E+5 1.477600E+6 4.400000E+2 6.350700E+5
2.649900E+2 2.500000E+2 9.668900E+5 1.849900E+6 4.500000E+2 5.998600E+5
6.022900E+2 2.600000E+2 9.580600E+5 2.289000E+6 4.600000E+2 5.617000E+5
1.279500E+3 2.700000E+2 9.489100E+5 2.802300E+6 4.700000E+2 5.198600E+5
2.559700E+3 2.800000E+2 9.393500E+5 3.397600E+6 4.800000E+2 4.728700E+5
4.852900E+3 2.900000E+2 9.292900E+5 4.083900E+6 4.900000E+2 4.176400E+5
8.767900E+3 3.000000E+2 9.186400E+5 4.871900E+6 5.000000E+2 3.461600E+5
1.516900E+4 3.100000E+2 9.072700E+5 5.776700E+6 5.100000E+2 2.211800E+5
2.523800E+4 3.200000E+2 8.950600E+5 6.187500E+6 5.200000E+2 7.161900E+4
4.053100E+4 3.300000E+2 8.818900E+5 6.287500E+6 5.300000E+2 0.000000E+0
6.303300E+4 3.400000E+2 8.676400E+5
9.520700E+4 3.500000E+2 8.521600E+5
1.400300E+5 3.600000E+2 8.353400E+5
2.009900E+5 3.700000E+2 8.170200E+5
2.821500E+5 3.800000E+2 7.970700E+5
3.880300E+5 3.900000E+2 7.753300E+5

Table 50: Liquid vapor staturation pressure, temperature and heat of vaporization of Ethanol [128].
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ps [Pa] Ts [K] Hv [J/kg] ps [Pa] Ts [K] Hv [J/kg]
9.0445E-04 1.6000E+02 5.1572E+05 7.6723E+04 3.6000E+02 3.8074E+05
8.8144E-03 1.7000E+02 5.1007E+05 1.0639E+05 3.7000E+02 3.7223E+05
6.1632E-02 1.8000E+02 5.0433E+05 1.4468E+05 3.8000E+02 3.6344E+05
3.3084E-01 1.9000E+02 4.9850E+05 1.9331E+05 3.9000E+02 3.5436E+05
1.4340E+00 2.0000E+02 4.9258E+05 2.5413E+05 4.0000E+02 3.4497E+05
5.2154E+00 2.1000E+02 4.8657E+05 3.2914E+05 4.1000E+02 3.3522E+05
1.6395E+01 2.2000E+02 4.8046E+05 4.2049E+05 4.2000E+02 3.2508E+05
4.5600E+01 2.3000E+02 4.7424E+05 5.3043E+05 4.3000E+02 3.1451E+05
1.1433E+02 2.4000E+02 4.6791E+05 6.6133E+05 4.4000E+02 3.0344E+05
2.6231E+02 2.5000E+02 4.6146E+05 8.1566E+05 4.5000E+02 2.9181E+05
5.5750E+02 2.6000E+02 4.5490E+05 9.9593E+05 4.6000E+02 2.7953E+05
1.1088E+03 2.7000E+02 4.4820E+05 1.2047E+06 4.7000E+02 2.6648E+05
2.0810E+03 2.8000E+02 4.4137E+05 1.4447E+06 4.8000E+02 2.5254E+05
3.7117E+03 2.9000E+02 4.3440E+05 1.7184E+06 4.9000E+02 2.3748E+05
6.3288E+03 3.0000E+02 4.2728E+05 2.0285E+06 5.0000E+02 2.2104E+05
1.0369E+04 3.1000E+02 4.1999E+05 2.3776E+06 5.1000E+02 2.0280E+05
1.6393E+04 3.2000E+02 4.1254E+05 2.7684E+06 5.2000E+02 1.8207E+05
2.5103E+04 3.3000E+02 4.0490E+05 3.2032E+06 5.3000E+02 1.5761E+05
3.7355E+04 3.4000E+02 3.9706E+05 3.6847E+06 5.4000E+02 1.2665E+05
5.4166E+04 3.5000E+02 3.8902E+05 4.2152E+06 5.5000E+02 7.9339E+04

Table 51: Liquid vapor staturation pressure, temperature and heat of vaporization of RON95E10 [128].

ps [Pa] Ts [K] Hv [J/kg] ps [Pa] Ts [K] Hv [J/kg]
2.8673E+00 250.00 3.8874E+05 8.3911E+04 440.00 2.8104E+05
7.9180E+00 260.00 3.8282E+05 1.0855E+05 450.00 2.7462E+05
1.9993E+01 270.00 3.7700E+05 1.3855E+05 460.00 2.6797E+05
4.6638E+01 280.00 3.7126E+05 1.7465E+05 470.00 2.6107E+05
1.0141E+02 290.00 3.6560E+05 2.1767E+05 480.00 2.5387E+05
2.0709E+02 300.00 3.6001E+05 2.6846E+05 490.00 2.4633E+05
3.9985E+02 310.00 3.5447E+05 3.2790E+05 500.00 2.3841E+05
7.3415E+02 320.00 3.4898E+05 3.9696E+05 510.00 2.3004E+05
1.2883E+03 330.00 3.4353E+05 4.7664E+05 520.00 2.2115E+05
2.1704E+03 340.00 3.3809E+05 5.6801E+05 530.00 2.1165E+05
3.5240E+03 350.00 3.3266E+05 6.7222E+05 540.00 2.0142E+05
5.5338E+03 360.00 3.2722E+05 7.9054E+05 550.00 1.9028E+05
8.4305E+03 370.00 3.2175E+05 9.2432E+05 560.00 1.7803E+05
1.2495E+04 380.00 3.1623E+05 1.0751E+06 570.00 1.6431E+05
1.8060E+04 390.00 3.1065E+05 1.2447E+06 580.00 1.4862E+05
2.5513E+04 400.00 3.0498E+05 1.4353E+06 590.00 1.3004E+05
3.5300E+04 410.00 2.9921E+05 1.6497E+06 600.00 1.0673E+05
4.7917E+04 420.00 2.9331E+05 1.8918E+06 610.00 7.3445E+04
6.3919E+04 430.00 2.8726E+05

Table 52: Liquid vapor staturation pressure, temperature and heat of vaporization of n-Decane [128].
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ps [Pa] Ts [K] Hv [J/kg] ps [Pa] Ts [K] Hv [J/kg]
3.3875E-02 250.00 4.3750E+05 1.9452E+05 550.00 3.1695E+05
1.3016E-01 260.00 4.3432E+05 2.3405E+05 560.00 3.1149E+05
4.3464E-01 270.00 4.3110E+05 2.7951E+05 570.00 3.0587E+05
1.2879E+00 280.00 4.2784E+05 3.3144E+05 580.00 3.0007E+05
3.4445E+00 290.00 4.2454E+05 3.9042E+05 590.00 2.9408E+05
8.4301E+00 300.00 4.2120E+05 4.5701E+05 600.00 2.8788E+05
1.9099E+01 310.00 4.1781E+05 5.3180E+05 610.00 2.8145E+05
4.0442E+01 320.00 4.1438E+05 6.1538E+05 620.00 2.7477E+05
8.0680E+01 330.00 4.1090E+05 7.0834E+05 630.00 2.6781E+05
1.5268E+02 340.00 4.0737E+05 8.1127E+05 640.00 2.6054E+05
2.7570E+02 350.00 4.0379E+05 9.2476E+05 650.00 2.5291E+05
4.7740E+02 360.00 4.0016E+05 1.0494E+06 660.00 2.4489E+05
7.9612E+02 370.00 3.9647E+05 1.1857E+06 670.00 2.3640E+05
1.2834E+03 380.00 3.9272E+05 1.3344E+06 680.00 2.2738E+05
2.0065E+03 390.00 3.8891E+05 1.4959E+06 690.00 2.1773E+05
3.0511E+03 400.00 3.8504E+05 1.6707E+06 700.00 2.0731E+05
4.5239E+03 410.00 3.8111E+05 1.8595E+06 710.00 1.9595E+05
6.5547E+03 420.00 3.7710E+05 2.0628E+06 720.00 1.8338E+05
9.2992E+03 430.00 3.7303E+05 2.2810E+06 730.00 1.6919E+05
1.2940E+04 440.00 3.6888E+05 2.5146E+06 740.00 1.5271E+05
1.7689E+04 450.00 3.6465E+05 2.7641E+06 750.00 1.3259E+05
2.3789E+04 460.00 3.6034E+05 3.0299E+06 760.00 1.0550E+05
3.1512E+04 470.00 3.5594E+05 3.3125E+06 770.00 5.3691E+04
4.1162E+04 480.00 3.5145E+05
5.3075E+04 490.00 3.4686E+05
6.7615E+04 500.00 3.4217E+05
8.5177E+04 510.00 3.3737E+05
1.0619E+05 520.00 3.3246E+05
1.3109E+05 530.00 3.2742E+05
1.6037E+05 540.00 3.2226E+05

Table 53: Liquid vapor staturation pressure, temperature and heat of vaporization of α-Methylnaphthalene
[128].
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ps [Pa] Ts [K] Hv [J/kg] ps [Pa] Ts [K] Hv [J/kg]
3.9161E-02 310.00 3.4226E+05 3.8679E+04 560.00 2.2927E+05
1.1918E-01 320.00 3.3654E+05 4.9360E+04 570.00 2.2490E+05
3.3321E-01 330.00 3.3099E+05 6.2335E+04 580.00 2.2043E+05
8.6317E-01 340.00 3.2562E+05 7.7959E+04 590.00 2.1583E+05
2.0872E+00 350.00 3.2039E+05 9.6623E+04 600.00 2.1107E+05
4.7418E+00 360.00 3.1531E+05 1.1876E+05 610.00 2.0614E+05
1.0180E+01 370.00 3.1037E+05 1.4484E+05 620.00 2.0100E+05
2.0759E+01 380.00 3.0555E+05 1.7540E+05 630.00 1.9562E+05
4.0390E+01 390.00 3.0084E+05 2.1100E+05 640.00 1.8996E+05
7.5283E+01 400.00 2.9624E+05 2.5232E+05 650.00 1.8397E+05
1.3491E+02 410.00 2.9174E+05 3.0007E+05 660.00 1.7760E+05
2.3321E+02 420.00 2.8733E+05 3.5510E+05 670.00 1.7076E+05
3.8997E+02 430.00 2.8300E+05 4.1838E+05 680.00 1.6335E+05
6.3251E+02 440.00 2.7873E+05 4.9105E+05 690.00 1.5522E+05
9.9742E+02 450.00 2.7453E+05 5.7451E+05 700.00 1.4615E+05
1.5325E+03 460.00 2.7038E+05 6.7050E+05 710.00 1.3579E+05
2.2989E+03 470.00 2.6627E+05 7.8131E+05 720.00 1.2354E+05
3.3728E+03 480.00 2.6220E+05 9.1012E+05 730.00 1.0819E+05
4.8476E+03 490.00 2.5814E+05 1.0618E+06 740.00 8.6858E+04
6.8360E+03 500.00 2.5409E+05 1.2444E+06 750.00 0.0000E+00
9.4712E+03 510.00 2.5004E+05
1.2909E+04 520.00 2.4597E+05
1.7330E+04 530.00 2.4188E+05
2.2939E+04 540.00 2.3774E+05
2.9968E+04 550.00 2.3354E+05

Table 54: Liquid vapor staturation pressure, temperature and heat of vaporization of Methyl Decanoate [128].

160



MULTI-OBJECTIVE OPTIMIZATION OF STOCHASTIC ENGINE MODELS

ps [Pa] Ts [K] Hv [J/kg] ps [Pa] Ts [K] Hv [J/kg]
1.85E-02 2.00E+02 4.23E+05 5.32E+04 5.00E+02 2.58E+05
5.10E-02 2.10E+02 4.17E+05 6.83E+04 5.10E+02 2.53E+05
8.35E-02 2.20E+02 4.10E+05 8.68E+04 5.20E+02 2.47E+05
1.16E-01 2.30E+02 4.04E+05 1.09E+05 5.30E+02 2.42E+05
1.48E-01 2.40E+02 3.97E+05 1.36E+05 5.40E+02 2.36E+05
1.81E-01 2.50E+02 3.91E+05 1.67E+05 5.50E+02 2.31E+05
2.13E-01 2.60E+02 3.84E+05 2.04E+05 5.60E+02 2.24E+05
2.46E-01 2.70E+02 3.78E+05 2.47E+05 5.70E+02 2.18E+05
2.78E-01 2.80E+02 3.71E+05 2.96E+05 5.80E+02 2.11E+05
8.22E-01 2.90E+02 3.65E+05 3.53E+05 5.90E+02 2.04E+05
2.22E+00 3.00E+02 3.59E+05 4.18E+05 6.00E+02 1.97E+05
5.53E+00 3.10E+02 3.53E+05 4.93E+05 6.10E+02 1.89E+05
1.28E+01 3.20E+02 3.47E+05 5.77E+05 6.20E+02 1.80E+05
2.79E+01 3.30E+02 3.42E+05 6.72E+05 6.30E+02 1.70E+05
5.75E+01 3.40E+02 3.36E+05 7.80E+05 6.40E+02 1.60E+05
1.12E+02 3.50E+02 3.31E+05 9.00E+05 6.50E+02 1.48E+05
2.09E+02 3.60E+02 3.26E+05 1.04E+06 6.60E+02 1.34E+05
3.73E+02 3.70E+02 3.21E+05 1.19E+06 6.70E+02 1.18E+05
6.40E+02 3.80E+02 3.16E+05 1.36E+06 6.80E+02 9.63E+04
1.06E+03 3.90E+02 3.11E+05 1.55E+06 6.90E+02 6.08E+04
1.70E+03 4.00E+02 3.06E+05
2.65E+03 4.10E+02 3.01E+05
4.02E+03 4.20E+02 2.96E+05
5.95E+03 4.30E+02 2.92E+05
8.60E+03 4.40E+02 2.87E+05
1.22E+04 4.50E+02 2.82E+05
1.69E+04 4.60E+02 2.77E+05
2.30E+04 4.70E+02 2.73E+05
3.09E+04 4.80E+02 2.68E+05
4.08E+04 4.90E+02 2.63E+05

Table 55: Liquid vapor staturation pressure, temperature and heat of vaporization of Diesel-2 [128].
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