
Advances in Continuous
and Discrete Models

Schneidereit and Breuß Advances in Continuous and Discrete Models (2023) 2023:42
https://doi.org/10.1186/s13662-023-03789-x

R E S E A R C H Open Access

Adaptive neural-domain refinement for
solving time-dependent differential
equations
Toni Schneidereit1* and Michael Breuß

*Correspondence:
Toni.Schneidereit@b-tu.de
1Applied Mathematics Group,
Brandenburg University of
Technology Cottbus-Senftenberg,
Platz der Deutschen Einheit 1,
03046 Cottbus, Germany

Abstract
A classic approach for solving differential equations with neural networks builds upon
neural forms, which employ the differential equation with a discretisation of the
solution domain. Making use of neural forms for time-dependent differential
equations, one can apply the recently developed method of domain segmentation.
That is, the domain may be split into several subdomains, on which the optimisation
problem is solved.
In classic adaptive numerical methods, the mesh as well as the domain may be

refined or decomposed, in order to improve the accuracy. Also, the degree of
approximation accuracy may be adapted. Therefore, it is desirable to transfer such
important and successful strategies to the field of neural-network-based solutions. In
the presented work, we propose a novel adaptive neural approach to meet this aim
for solving time-dependent problems.
To this end, each subdomain is reduced in size until the optimisation is resolved up

to a predefined training accuracy. In addition, while the neural networks employed
are by default small, we propose a means to adjust also the number of neurons in an
adaptive way. We introduce conditions to automatically confirm the solution
reliability and optimise computational parameters whenever it is necessary. Results
are provided for several initial-value problems that illustrate important computational
properties of the method.

Keywords: Neural forms; Differential equations; Physics-informed neural networks;
Adaptive neural refinement; Domain decomposition

1 Introduction
Differential equations (DEs) are important models in many areas of science and engineer-
ing, as they often represent real-world phenomena [1]. A special class of DEs are initial-
value problems (IVPs), describing the time evolution of a system. The variety of neural-
network approaches for solving DEs has increased over the last years and decades [2–4].
They mostly focus on obtaining a loss function out of the DE structure and given initial or
boundary conditions. The loss function in this context has the characteristic of connect-
ing the DE with the neural-network framework [5, 6]. This may be achieved with so-called
neural forms (NFs), which are in fact trial solutions satisfying the given conditions [7–9].

© The Author(s) 2023. Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit
to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The
images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise
in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not
permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright
holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

https://doi.org/10.1186/s13662-023-03789-x
https://crossmark.crossref.org/dialog/?doi=10.1186/s13662-023-03789-x&domain=pdf
https://orcid.org/0000-0003-3602-1893
mailto:Toni.Schneidereit@b-tu.de
http://creativecommons.org/licenses/by/4.0/

Schneidereit and Breuß Advances in Continuous and Discrete Models (2023) 2023:42 Page 2 of 27

The NF approach results in an unsupervised learning framework. In the end, the NF rep-
resents the solution of the DE.

Other neural approaches combine unsupervised and supervised training, where the
neural-network outcome is compared to true (known) data corresponding to certain do-
main data [10–13]. Typically, the unsupervised part arises from the DE structure, while
given initial or boundary conditions are directly added to the loss function and are treated
in a supervised way [14]. The resulting difference, is then used for learning the adjustable
neural-network parameters. Therefore, the neural network itself represents the solution
of the DE after training in such approaches.

Turning to classical numerical methods for solving all kinds of DEs, one may consider,
e.g. Runge–Kutta methods [15, 16] for time integration or the finite-element method
(FEM) [17]. In order to obtain high accuracy and robustness, many numerical schemes
feature adaptive mechanisms regarding, e.g. step-size control [1, 15] or mesh refinement
[18–20]. That is, certain areas of the solution domain may require more elements or grid
points, in other words a refined mesh, for improved reliability and accuracy. Such adap-
tive mesh-refinement techniques enable the mesh to be locally refined based on a suitable
error estimate.

Several works offer neural-network-based strategies and approaches to generate optimal
meshes or mesh refinements for use with the finite-element method [21, 22]. Predicting
areas that are of interest in the sense of a required mesh refinement using neural networks
is the objective of [23]. Their time-series analysis is employed to predict element-wise so-
lution gradient values. The used neural network yields an indicator based on local gradient
values in space and time. This indicator is then used to predict whether a mesh refinement
or a coarsening may be suitable. While in this method the mesh-refinement indicator is
realised by a neural network, the FEM is used for solving the partial differential equation
(PDEs) examples. Complementary to the latter approach, in [24] a learning strategy is de-
veloped that keeps the mesh fixed but selects the numerical scheme that gives locally high
accuracy based on local gradients.

The most relevant related article in the context of our work may be the adaptive neural
approach in [25], so let us discuss this work more in detail. It features a feedforward neural
network in a framework combining both supervised and unsupervised terms, similar to
[10, 12, 13]. The training process includes several evolution steps, each consisting of the
optimisation over the training points combined with an evaluation of results at a finer grid.
The latter is realised with the same set of neural-network parameters obtained from the
training step. It is proposed to start with a coarse grid and to perform local grid refinement
whenever the resulting network loss differs. The method is developed for boundary-value
problems arising with stationary PDEs, like, e.g. the Poisson equation. Results indicate
that more complex neural-network architectures (w.r.t. number of layers and neurons) or
more training points may increase the accuracy.

Let us stress that in the discussed work [25], the mesh is refined but treated in a global
fashion and not decomposed into subdomains. However, we also find the combination of
domain decomposition with neural networks [12, 13], which is also related to our method.
The so-called physics-informed neural networks may be independent (e.g. in size and ini-
tialisation) in predefined and discrete subdomains. At the subdomain interfaces, a physical
continuity condition holds and the average solution of the two corresponding neural net-
works at each interface is enforced. Several neural networks learn the governing DE locally

Schneidereit and Breuß Advances in Continuous and Discrete Models (2023) 2023:42 Page 3 of 27

instead of using a single one for the entire domain, which results overall in a small network
loss.

Problem statement and contribution. In our previous work, we investigated the compu-
tational characteristics of a small feedforward neural network with only one hidden layer
[26]. It is well known that the parameters within a neural network are not independent of
each other. That is, changing one component of the setup may require a change to other
components to improve or at least to maintain the results. Computationally, larger domain
sizes appear to be challenging for the NF approach [7] together with the studied neural-
network setup. Turning to weight initialisation, the use of random initial weights allows
us to achieve results that can be considered as reliable, while they lead to variances in re-
peated computations, based on the initially generated values. The use of the same initial
weight value for each neuron, e.g. zero, typically results in less-accurate approximations.
However, for testing frameworks, this deterministic initialisation leads to identical results
in repeated computations and creates a baseline. Based on these investigations, we pro-
posed a collocation polynomial extension for the NF and a subdomain-division approach,
which splits the solution domain into equidistant subdomains [5]. Since the NF adopted
from [7] directly incorporate the initial condition in its construction, each temporal sub-
domain generates a new initial condition for the subsequent subdomain. As it turns out,
both extensions to the original NF approach were able to improve the computational re-
sults with respect to weight initialisation and larger domain sizes. However, equidistant
subdomains may not be the optimal choice in regions where the solution is easy or difficult
to learn.

Therefore, we now propose the adaptive neural-domain refinement (ANDRe), which
makes use of the subdomain collocation (polynomial) neural forms (SCNF). These are
optimised repeatedly over the domain. The domain itself is allowed to split into subdo-
mains, which may locally decrease in size, whenever the network loss is not sufficiently
small. Therefore, we combine the advantageous characteristics from domain decomposi-
tion and adaptive mesh refinement. Furthermore, we embed into the described process a
means to adapt the number of neurons used for optimisation in each subdomain. This is
done with the aim to increase reliability and accuracy of the approximation.

Thus, we also combine adaptive refinement of the domain with adaptivity in the neu-
ral sense. In addition, the results provide an opportunity to discuss the relation between
different measurement metrics like, e.g. the numerical error and the neural-network loss.

The following section introduces the subdomain collocation neural form (SCNF), as
well as the incorporated neural networks and the optimisation. Based on the SCNF, we
continue to propose the adaptive domain refinement (ANDRe) algorithm. Later, this ap-
proach is applied to four IVPs, each representing a different type. The results are discussed
in detail and we finish the paper by a conclusion with an outlook to possible future work.

2 The methods
The overall aim is to solve IVPs in form of

G
(
t, u(t), u̇(t)

)
= 0, u(t0) = u0, t ∈ D ⊂R, (1)

with given initial values u(t0) = u0. We identify u̇(t) as the time derivative of u(t). Let us
note at this point, that G in Eq. (1) may also denote a system of IVPs. In the following, we

Schneidereit and Breuß Advances in Continuous and Discrete Models (2023) 2023:42 Page 4 of 27

will first focus on IVPs with only one equation and later provide the necessary information
in order to extend the approach to systems of IVPs.

2.1 The subdomain collocation neural form (SCNF)
The NF approach [7] seeks to replace the solution function with a differentiable trial so-
lution

ũ(t, p) = A(t) + F(t, p), (2)

which connects the given IVP with a neural-network term, incorporating the weight vec-
tor p. In Eq. (2), both A(t) and F(t, p) are problem specific and have to be constructed
under the requirement of fulfilling the initial condition. in addition to replacing the so-
lution function, its time derivative is expressed as well by differentiating the constructed
NF.

One of the possible NF constructions, to which we will refer as classic NF and that has
been proposed in [7], is to set A(t) = u0 and F(t, p) = N(t, p)(t – t0). The neural-network
term N(t, p) receives given (later discretised) points from the domain and depends on the
neural-network weights p. Further details are provided in the upcoming subsection. This
configuration (ũ(t, p) = u0 + N(t, p)(t – t0)) ensures removal of the impact of N(t, p) at the
initial point t0, whereas then ũ(t, p) equals the initial value u0.

The subdomain collocation neural-form (SCNF) approach [5] now opts to extend the
classic NF (Eq. (2)) in two directions, (i) by increasing the polynomial degree of the term
F(t, p) as explained below and (ii) by introducing domain segmentation, which is a novel
approach to solve the IVP on subdomains in order to increase the numerical accuracy.

Since u0 is a constant value and N(t, p) is multiplied by (t – t0), we find

ũ(t, p) = u0 + N(t, p)(t – t0) (3)

to resemble a first-order polynomial in (t – t0) (in detail: ũ(t, p) = u0(t – t0)0 + N(t, p)(t –
t0)1). Hence, we propose to extend the polynomial order of the classic NF, inspired by
collocation polynomials [1]. Therefore, we transform ũ(t, p) → ũC(t, Pm) with

F(t, p) → F(t, Pm) =
m∑

k=1

Nk(t, pk)(t – t0)k (4)

to find

ũC(t, Pm) = u0 +
m∑

k=1

Nk(t, pk)(t – t0)k . (5)

Here, m represents the SCNF order. This polynomial extension adds more flexibility to the
approach. However, this is achieved in a different way from just increasing the number of
hidden-layer neurons in a single neural network, since additional networks are connected
to the factors (t – t0)k . We expected a higher accuracy from the use of higher orders, which
has partially been confirmed, see [5]. Since we are testing our framework with determinis-
tic initial weights (zero), let us mention that each neural network effectively acts as having

Schneidereit and Breuß Advances in Continuous and Discrete Models (2023) 2023:42 Page 5 of 27

Figure 1 SCNF domain-segmentation example
with fixed and equidistant subdomains, (orange)
analytical IVP solution (cf. IVP in Eq. (29)),
(black/marked) subdomain boundaries, see [5] for
details

a single neuron in the hidden layer. Although the corresponding values and weight are
split between the neurons. Therefore, the monomials (t – t0)k do have a certain impact on
the NF and the flexibility increases.

The weight matrix Pm in Eq. (5) stores each weight vector pk , k = 1, . . . , m as column
vectors. We discretise the domain D by the collocation method employing a uniform grid
with n + 1 grid points ti (t0 < t1 < · · · < tn), so that our novel collocation NF approach for
the IVP (1) leads to the �2 loss function formulation

E[Pm] =
1

2(n + 1)

n∑

i=0

{
G

(
ti, ũC(ti, Pm), ˙̃uC(ti, Pm)

)}2. (6)

Since the domain variable in (ti – t0)k effectively acts as a scaling of Nk(ti, pk), we con-
jecture that a large domain-size variation may introduce the need for a larger number of
training points or the use of a more complex neural-network architecture. Having this in
mind, it appears very natural to couple the collocation NF with a technique that refines the
computational domain. To this end we will consider the non-adaptive version of domain
segmentation that opts to split the domain into a fixed number of equidistant subdomains.

That said, we split the solution domain D into subdomains Dl , l = 1, . . . , h, with n + 1
grid points ti,l per domain segment. Now, the NF is resolved separately in each subdo-
main. The interfacing grid points overlap, e.g. the computed value ũC(tn,l–1, Pm,l–1) at the
last grid point of any subdomain Dl–1 is set to be the new initial value ũC(t0,l, Pm,l) for
the next subdomain Dl . The general idea is visualised in Fig. 1, where the black/vertical
marks represent the equidistantly distributed subdomain boundaries for the solution of
an example IVP.

Summarising the construction up to now, the SCNF satisfies the new initial values in
each domain segment, namely

ũC(ti,l, Pm,l) = ũC(t0,l, Pm,l) +
m∑

k=1

Nk(ti,l, pk,l)(ti,l – t0,l)k . (7)

The neural-network terms are now scaled by (ti,l – t0,l)k . Depending on the subdomain
size, those factors may up- or downscale Nk(ti,l, pk,l). Incorporated in Eq. (6), the SCNF
time derivative reads

˙̃uC(ti,l, Pm,l) =
m∑

k=1

[
Ṅk(ti,l, pk)(ti,l – t0,l)k (8)

+ Nk(ti,l, pk)k(ti,l – t0,l)k–1].

Schneidereit and Breuß Advances in Continuous and Discrete Models (2023) 2023:42 Page 6 of 27

In order to keep the overview of all terms and indices, we sum them up again: The ith grid
point in the lth subdomain is denoted by ti,l , while t0,l is the initial point in the subdomain
Dl with the initial value ũC(t0,l, Pm,l). That is, tn,l–1 and t0,l are overlapping grid points. In
D1, ũC(t0,1, Pm,1) = u(t0) holds. The matrix Pm,l contains the set of the m neural-network
weight vectors pk , k = 1, . . . , m in the corresponding subdomain. Finally, Nk(ti,l, pk,l) de-
notes the kth neural network in Dl .

The loss function employing the SCNF aims to minimise for each subdomain Dl the
energy

El[Pm,l] =
1

2(n + 1)

n∑

i=0

{
G

(
ti,l, ũC(ti,l, Pm,l), ˙̃uC(ti,l, Pm,l)

)}2. (9)

Similar to Eq. (6), the loss function now incorporates ũC(ti,l, Pm,l) instead of u(t). Let us
mention at this point that the (n + 1) grid points in Eq. (9) are used for the neural-network
training and are referred to training points. Afterwards, the neural networks are used to
verify the result with the learned weights and so-called verification points (VP). The latter
are also grid points, but differently distributed from the training points (TP). Therefore,
the corresponding grid points will later be referred to as nTP with loss-function notation
ETP

l [Pm,l] and nVP with EVP
l [Pm,l], respectively.

If G in Eq. (1) represents a system of IVPs, each solution function requires its own SCNF
and the loss function derives from the sum over all the separate �2-norm terms, i.e. one
for each equation involved. We will address this extension in detail in the corresponding
example later.

2.2 Neural-network architecture and optimisation
Let us start with an overview on the kth neural-network architecture as displayed in Fig. 2.
The term Nk , cf. Eq. (7), represents in general a feedforward neural network with one
input-layer neuron for the discretised domain data ti,l , H hidden-layer neurons and one
output-layer neuron. In addition, both input layer and hidden layer incorporate one bias
neuron. In general, the number of neurons in the hidden layer directly impacts the number
of adjustable network weights, labelled as νj,k (input-layer neuron), ηj,k (input-layer bias
neuron), ρj,k (hidden-layer neurons) and γk (hidden-layer bias neuron) in Fig. 2. These
weights are stored in the weight vector pk . The neural-network output reads

Nk(ti,l, pk) =
H∑

j=1

ρj,kσ (zj,k) + γk . (10)

Here, σj,k = σ (zj,k) = 1/(1 + e–zj,k) represents the sigmoid activation function, with the
weighted sum zj,k = νj,kti,l + ηj,k . Therefore, H hidden-layer neurons result in (3H + 1)
neural-network weights in our framework. The input layer passes the domain data ti,l ,
weighted by νj,k and ηj,k , to the hidden layer for processing. The neural-network output
Nk(ti,l, pk) is again a weighted sum of the values ρj,kσ (zj,k) and γk .

The neural-network training is the process of minimising the loss function, cf. Eq. (9),
with respect to the neural-network weights pk . In addition, and in contrast to the (3H +
1) weights for the kth neural network, the minimisation of El[Pm,l] requires m(3H + 1)
weights to be adjusted, due to the SCNF order m.

Schneidereit and Breuß Advances in Continuous and Discrete Models (2023) 2023:42 Page 7 of 27

Figure 2 Architecture of the kth neural network in the lth
subdomain

In practice, the goal is to find a local minimum in the weight space (or energy land-
scape), which perhaps consists of many extreme points. This may be realised by first- or
second-order optimisation techniques, which use the first or second loss-function deriva-
tives, respectively. One epoch of training includes the computation of the loss-function
gradient (first-order derivatives) ∇El[Pm,l] w.r.t. the adjustable network weights, averaged
over all training points (grid points). We will refer to this learning procedure as full batch
training, since the neural-network weights are updated only once per epoch. That is, the
loss function and its gradient are computed and averaged with respect to all grid points in
a subdomain. One subdomain may consist of, e.g. ten training points. Afterwards, the av-
eraged (over all grid points of one subdomain) loss-function gradient is used to update the
weights. This usually takes several epochs for a successful training. In this paper, we use
Adam optimisation [27] in order to update the neural-network weights. With full batch
training, the loss function also returns an (averaged) scalar value for each epoch. It pro-
vides information about the training status and whether the minimisation of El[Pm,l] can
be considered as accomplished or not. Let us recall, that each pk is separately optimised.

Details on the optimisation Let us consider the example IVP

u̇(t) = t sin(10t) – u(t), u(0) = –1 (11)

for which we find G, as a part of the loss function, in Eq. (9) as

G = ˙̃uC(ti,l, Pm,l) + ũC(ti,l, Pm,l) – ti,l sin(10ti,l) = 0. (12)

The minimisation of Eq. (9) aims to obtain G in Eq. (12) as close to zero as possible. That
is, the expression of interest actually reads

˙̃uC(ti,l, Pm,l) + ũC(ti,l, Pm,l) ≈ ti,l sin(10ti,l). (13)

Here, the values of ti,l sin(10ti,l) are predetermined by the domain grid points, whereas the
SCNF and its time derivative additionally depend on the neural-network weights and their
optimisation. Hence, Eq. (13) can be considered as satisfied for various combinations of
˙̃uC(ti,l, Pm,l) + ũC(ti,l, Pm,l). Hence, the results may highly depend on the final location in
the weight space.

Schneidereit and Breuß Advances in Continuous and Discrete Models (2023) 2023:42 Page 8 of 27

One reason for this circumstance may relate to the complexity of the energy landscape,
which has multiple (local) minima that can lead to several combinations of the left-hand
side in Eq. (13). Not all of these combinations must be real or useful solutions for the given
domain-training points. This issue may occur, e.g. when the initial weights are far away
from a suitable minimum for a helpful approximation. Also, when there is an unfavourable
local minimum close to the initialisation, the optimiser may only find this one. However,
fine tuning all the incorporated computational parameters is a challenging task since some
of these are not independent of each other [9, 26].

3 The novel adaptive neural-domain refinement (ANDRe)
We propose in this section the embedding of the previously introduced SCNF approach
into an adaptive algorithm. The resulting refinement strategy features two components,
(i) verification of the SCNF training status arising from the loss function (Eq. (9)) in each
subdomain serving as an error indicator and (ii) an algorithmic component to perform the
domain refinement.

Algorithm summary In Fig. 3, we consider an artificial example to sketch the concept
behind ANDRe in a visual way. The basic idea is to optimise the loss function El[Pm,l] for
a given number of equidistant training points (nTP) in each subdomain and to evaluate
the results at equidistant verification points (nVP), intermediate to nTP. To obtain the sub-
domains, the algorithm starts with the loss-function optimisation on the entire domain
(Fig. 3(1.)). If the predefined verification-loss bound σ > 0 is not fulfilled, the domain is
split in half. Now the optimisation task starts again for the left half since we only know the
initial value for this subdomain. When the verification loss EVP

l [Pm,l] (loss function evalu-
ated for nVP) again fails to go below σ , the current (left) subdomain is reduced in size (see
differences in Fig. 3(2.) to (3.)), whereas a splitting is only performed when the computa-
tion takes place in the rightmost subdomain and σ is not satisfied by EVP

l [Pm,l], meaning
that the original right domain border is always kept and not shifted during refinement.
The process of comparing the verification loss to its error bound, reducing the current
subdomain and starting the optimisation another time, is repeated until EVP

l [Pm,l] ≤ σ .
Therefore, in the artificial example in Fig. 3(3.), the leftmost subdomain is now consid-
ered to be learned.

Figure 3 A visualisation of the basic idea behind ANDRe, with the error comparison and (sub-)domain
split/reduction

Schneidereit and Breuß Advances in Continuous and Discrete Models (2023) 2023:42 Page 9 of 27

Now, the process starts again for the rightmost subdomain (see Fig. 3(3.) and (4.)) with
a new initial condition provided by the learned (left) subdomain. However, the current
(new) subdomain starts at the right boundary of the first (learned) subdomain and ends
at the right boundary of the entire domain. Therefore, the already learned subdomain is
excluded from further computations.

If a subdomain becomes too small or if the verification loss increases after a subdomain
split/reduction, the computational parameters are adjusted in a predefined, automated
way. Details on the parameter adjustment will be provided in a corresponding paragraph
later.

Let us now provide detailed information about ANDRe, which is shown as a flowchart
in Fig. 4. The starting point is the choice of the SCNF order m and the subdomain-resize
parameter δ, which acts as a size reduction whenever a decrease is necessary. For optimisa-
tion we use equidistant training points nTP. An important constant is the verification-loss
bound σ > 0, used to verify the SCNF solution in the corresponding subdomain. After
each complete optimisation, the results are evaluated by the loss function with the previ-
ous learned weights at intermediate verification points, resulting in EVP

l [Pm,l]. The latter
(scalar value) is then compared to σ in order to determine whether the solution can be
considered as reliable or not. We define l as the index of the subdomain, in which the
SCNF is currently solved and h represents the total number of subdomains. The latter is
not fixed and will increase throughout the algorithm. Finally, the first domain is set to be

Figure 4 Flowchart for the ANDRe algorithm

Schneidereit and Breuß Advances in Continuous and Discrete Models (2023) 2023:42 Page 10 of 27

the entire given domain D1 = [tstart, tend] = [t1, t2]. Please note, while on the computational
side, the subdomains are discretised and corresponding grid points denoted by ti,l , we only
refer to subdomain boundaries by tl in this paragraph, for simplicity.

Flowchart explanation The first processing operation

Initialise neural networks for ũC(ti,l, Pm,l) (14)

covers setting the initial architecture parameters such as number of hidden-layer neurons,
Adam learning rate and initialising the weights for Pm,l .

Afterwards, the optimisation problem

minimise ETP
l [Pm,l] (15)

evaluate EVP
l [Pm,l] (16)

is solved by training the SCNF framework for given equidistant nTP over the entire domain
D1 = [t1, t2] (cf. Fig. 3(1.)). The evaluation for equidistant and intermediate nVP leads to the
verification loss EVP

l [Pm,l].
Then, the first decision block compares the verification loss (after the training process

has ended) to the error bound σ :

EVP
l [Pm,l] ≤ σ ? (17)

• Eq. (17) NO: If the verification loss did not go below σ , the size of the current subdomain
will be reduced. However, first, another decision has to be made here. Namely, has
El[Pm,l] been solved for the first time on the current, rightmost (sub-)domain or in
other words, is the current domain index l equal to the number of total subdomains h:

l = h? (18)

• Eq. (18) YES: This means the right boundary is tend and we have to split the current
subdomain l first, which leads to an increase of the number of total subdomains by
1 (h = h + 1). The boundaries now have to be adjusted with the left one tl to remain
unchanged, while the former right boundary is now scaled by tl+1 = tl + δ(tl+1 – tl),
after tl+2 = tl+1 is set to be the right boundary of domain l + 1. For example, if
an entire domain D1 = [t1, t2] = [0, 10] has to be split for the first time with δ =
0.5, the resulting subdomains are D1 = [t1, t2] = [0, 5] and D2 = [t2, t3] = [5, 10].
Afterwards, the algorithm leads back to Eq. (14).

• Eq. (18) NO: In this case the current subdomain has already been split up. Now,
the right boundary has to be adjusted in order to decrease the current subdomain
size. However, beforehand we check for a complex condition (highlighted in blue)
to ensure that a subdomain does not become too small. Additionally, we also check
if the verification loss decreased compared to the prior computation on the same
subdomain l. That is, the algorithm compares the verification loss from the for-
merly larger subdomain l to the current, size reduced subdomain l. The condition

Schneidereit and Breuß Advances in Continuous and Discrete Models (2023) 2023:42 Page 11 of 27

itself may come in different shapes. We decided to check for one of the

complex conditions:

tl+1 – tl ≤ 0.1?

or

EVP
l from previous (l �= h) subdomain ≤ current EVP

l ?

(19)

• Eq. (19) YES: At this point we employ a

parameter adjustment, (20)

which may be realised to be problem specific and is later addressed in a cor-
responding paragraph. Afterwards, the algorithm leads back to Eq. (14). Basi-
cally speaking, the adjustable parameters may include the number of hidden-
layer neurons, the learning rate, the number of training points and so on.

• Eq. (19) NO: In this case, the subdomain is still large enough to be reduced in
size while the verification loss decays. Therefore, we resize the right subdo-
main boundary tl+1 to

tl+1 = tl + δ(tl+1 – tl), (21)

where δ denotes the domain-resize parameter. Continuing the example from
above, resizing D1 of the already split domain leads to D1 = [t1, t2] = [0, 2.5]
and D2 = [t2, t3] = [2.5, 10]. Afterwards, the algorithm leads back to Eq. (14).

• Eq. (17) YES: In the case of the verification loss being smaller or equal compared to σ ,
the current subdomain l has been successfully learned by means of a sufficiently small
verification loss. Now, it is necessary to determine whether we are in the last subdo-
main (right boundary is tend) or if there is still one subdomain to solve the optimisation
problem on, namely

l = h? (22)

• Eq. (22) NO: There is at least one subdomain left and therefore the current sub-
domain index is updated to l = l + 1 in order to solve the optimisation problem
on the adjacent subdomain. Additionally, we reset all the possibly adjusted pa-
rameters to the initial ones. Thus, we make sure to not overuse the variable pa-
rameters in regions where the solution computes by using the initial ones. The
algorithm then leads back to Eq. (14).

• Eq. (22) YES: All subdomains have been successfully learned and the IVP is en-
tirely solved.

We developed ANDRe in four steps, making it an adaptive neural algorithm for domain
refinement. Excluding the blue part in Fig. 4, the black part represents a fully functional
algorithm that can refine the domain in an adaptive way with the focus laying on the ver-
ification loss. Prior to this final version, the training loss was used as the main training
status indicator. The evaluation stage (verification loss) on the other hand was later added,

Schneidereit and Breuß Advances in Continuous and Discrete Models (2023) 2023:42 Page 12 of 27

in addition to the training loss. It turned out that small training losses do not necessarily
result in a comparable numerical error, presumably due to possible overfitting. Therefore,
we included the verification stage, to reduce the impact of overfitting on the end result.
However, we later recognised that the verification loss has a much stronger relation to
the numerical error. Therefore, we were able to reduce the complexity by laying the fo-
cus directly on the verification. Furthermore, in some examples we recognised that the
preset neural-network architecture may not be flexible enough to learn certain subdo-
mains. Hence, we upgraded ANDRe to incorporate an automated parameter-adjustment
mechanism, highlighted in Fig. 4 as blue. Whenever a subdomain becomes too small or
the verification loss in a subdomain increases compared to the previous optimisation on
the same subdomain (e.g. prior to a size reduction), network- and optimisation-related
parameters may be re-balanced in a predefined way. We will later provide experimental
evidence to prove the capabilities of ANDRe.

4 Computational results and discussion
In this section we discuss the computational results for different IVPs, solved by ANDRe.
Beforehand, the framework parameters and methods are further specified.

Details on parameters and measurement metrics The NF approach comes with plenty
of parameters. We have already shown in a computational study [26], that they are not
independent of each other. Changing one parameter may require another parameter to be
changed as well in order to improve or maintain the reliability.

Table 1 lists the computational parameters that are initially fixed in our computational
setup. Parameters marked with (∗) will be separately discussed in the corresponding para-
graph. The initial weight values, the SCNF order as well as the number of epochs and
training points (nTP) have been previously investigated and are fixed to suitable values,
see [5, 26] for further details. Nonetheless, each parameter has its impact on the solution.
Key in training the neural networks are the training points ti, i = 0, . . . , 9, schematically de-
picted in Fig. 5 as green circles. Generally speaking, Fig. 5 shows an arbitrary subdomain
and the notation ti was chosen for simplicity. From now on, the grid points in subdomain
l are again referred to as ti,l and follow the structure in Fig. 5.

Table 1 Initial computational parameters, (∗) part of parameter adjustment

Comp. parameter Value

hidden-layer neurons∗ 5
initial weight values 0
initial learning rate∗ 1e-3
number of epochs 1e5
training points (nTP) 9
verification points (nVP) 11
SCNF order (m) 5
resize parameter (δ) 0.5

Figure 5 Visualisation of grid-point distribution in a subdomain, (green/circle) 10 equidistant training points
ti , (orange/cross) 12 equidistant verification points. Please note that, e.g. nTP = 9 refers to ten training points in
Table 1

Schneidereit and Breuß Advances in Continuous and Discrete Models (2023) 2023:42 Page 13 of 27

They serve as the input data and are important for the optimisation of the loss function

ETP
l [Pm,l] =

1
2(n + 1)

nTP∑

i=0

{
G

(
ti,l, ũC(ti,l, Pm,l), ˙̃uC(ti,l, Pm,l)

)}2 (23)

in the lth subdomain. Let us comment on an optimisation procedure in some detail, re-
ferred to as incremental learning, employed in [10]. Here, the computation includes sev-
eral complete optimisations per (temporarily untouched) subdomain. That is, for example
with five increments in Fig. 5, the training points are split into five sets and the first op-
timisation only takes t0 and t1 into account. Then, the second one uses t0, t1, t2, t3 with
the same weights from the first (complete) optimisation. This is continued until the opti-
misation uses all training points. The incremental learning procedure only applies to the
training process and ETP

l [Pm,l], not to the verification.
Speaking of that, the verification is performed with the loss function and the corre-

sponding verification points (nVP), which are differently distributed (cf. Fig. 5) than the
training points. With these discrete points and after the training process, the loss func-
tion returns a scalar value named verification loss

EVP
l [Pm,l] =

1
2(n + 1)

nVP∑

i=0

{
G

(
ti,l, ũC(ti,l, Pm,l), ˙̃uC(ti,l, Pm,l)

)}2. (24)

As the naming suggests, this verification loss is used to evaluate and verify the training re-
sults to indicate whether the IVP has been solved sufficiently well or not. For this purpose,
the verification-loss bound σ will be compared to Eq. (24).

The domain-resize parameter has also been fixed for all computations to δ = 0.5. A larger
value, up to δ = 0.9, would find individual subdomains faster due to the larger size reduc-
tion, but perhaps result in too many subdomains. On the other hand, a smaller value, down
to δ = 0.1 may find the individual subdomains more carefully but would also heavily in-
crease the computation time. We will discuss an experiment regarding the domain-resize
parameter later.

Table 1 will later also be extended by problem-specific parameters, which are (i)
verification-loss bound σ , (ii) computational domain size, (iii) initial conditions and (iv)
learning increments. These parameters will be specified and discussed in a subsequent
paragraph.

Turning to the measurement metrics for the results, we will compare ANDRe to the
analytical solutions of four different IVPs. We make use of the absolute value differences
between the analytical solution and ANDRe in the context of the (averaged) �1-norm 	ul,1

and the �∞-norm 	ul,∞

	ul,1 =
1

n + 1

n∑

i=0

∣∣u(ti,l) – ũC(ti,l, Pm,l)
∣∣, (25)

	ul,∞ = max
i

∣∣u(ti,l) – ũC(ti,l, Pm,l)
∣∣, (26)

where 	u1 and 	u∞ average the numerical error over all subdomains

	u1 =
1
h

h∑

l=1

	ul,1, (27)

Schneidereit and Breuß Advances in Continuous and Discrete Models (2023) 2023:42 Page 14 of 27

	u∞ =
1
h

h∑

l=1

	ul,∞. (28)

The �∞-norm basically returns the largest numerical error value. We will later refer to the
corresponding norms as �1-error and �∞-error.

Details on parameter adjustment Let us now comment on the parameter adjustment
since this part of the algorithm required a lot of fine tuning. After several experiments
with different parameter-adjustment methods, not documented here, the Adam learning
rate and the number of hidden-layer neurons were chosen to be a part of the parameter
adjustment and may change during the process. The number of hidden-layer neurons di-
rectly determines the number of adjustable weights. Furthermore, they are connected to
the universal approximation theorem [28]. This basically states that one hidden layer with
a finite number of sigmoidal neurons is able to approximate every continuous function on
a subset of R. Since the finite number is not known beforehand, making the number of
hidden-layer neurons an adjustable parameter in this approach, seems reasonable and so
does starting with a small number (five neurons).

The initial learning rate of Adam optimisation impacts how significant the location in
the weight space changes after a weight update. Figuratively speaking, the larger the ini-
tial learning rate, the farther the optimiser can travel in the weight space, adding more
flexibility and increasing the chance to find a suitable minimum. In this context, such a
suitable minimum can be located at different positions, depending on the subdomain. It is
not guaranteed by any means to find one near by the starting point. That motivates us to
start the computation with a fairly small initial learning rate (values taken from [27]) and
to enable ANDRe to increase this value outside the optimisation cycle. That is, the initial
learning rate can increase several times before the number of hidden-layer neurons rear-
ranges by two additional neurons. Adjusting the number of neurons resets the learning
rate to its default parameter.

Once a subdomain has been successfully learned in this way, both parameters are reset to
their initial values. Let us recall that the parameter adjustment does not take place during
an optimisation cycle, it rather appears outside. In other words, we do not perturb the
neural-network training during the optimisation process.

4.1 The evaluation of ANDRe for different initial-value problems
In [5] we have shown that the SCNF with a fixed number of subdomains is capable of
solving IVPs on larger domains. Increasing this number resulted in a decreasing numer-
ical error. Now with ANDRe, we show that by demanding the network error to become
sufficiently small in each subdomain, the algorithm can automatically determine a suitable
number (and distribution) of the subdomains.

The following paragraph will introduce the IVPs for our evaluation. We have chosen
these examples because (i) each one represents a different IVP type, (ii) except for the
last (system of IVPs) example, the analytical solutions are available and (iii) each of them
incorporates at least one interesting behaviour. However, the difficulty is limited because
of (ii), but the focus of this paper does not lie on competitiveness in the first place. We
rather show that the NF approach [7, 26] benefits from our extension in terms of accuracy
on large domains. In addition, this paper serves as an investigation of the relation between
both numerical error and neural-network loss.

Schneidereit and Breuß Advances in Continuous and Discrete Models (2023) 2023:42 Page 15 of 27

Example IVPs and their analytical solutions As a first example, we take on the following
IVP with constant coefficients

⎧
⎨

⎩
ψ̇(t) – t sin(10t) + ψ(t) = 0, ψ(0) = –1,

ψ(t) = sin(10t)(99
10,201 + t

101) + cos(10t)(20
10,201 – 10t

101) – 10,221
10,201 e–t ,

(29)

which incorporates heavily oscillating and increasing characteristics, similar to instabili-
ties. This example is still relatively simple and serves to demonstrate the main properties
of our approach. We then proceed to an IVP with non-constant coefficients, that includes
trigonometric and exponentially increasing terms:

⎧
⎨

⎩
φ̇(t) + 1+ 1

1000 et cos(t)
1+t2 + 2t

1+t2 φ(t) = 0, φ(0) = 5,

φ(t) = 1
1+t2 (–t – et cos(t)

2000 – et sin(t)
2000 + 10,001

2000).
(30)

Furthermore, we choose to investigate the results for the non-linear IVP

⎧
⎨

⎩

ω̇(t)
cos2(ω(t))

1
cos2(2t) – 2 = 0, ω(0) = π

4 ,

ω(t) = arctan(1
4 sin(4t) + t + 1),

(31)

which also has non-constant coefficients. Finally, we used ANDRe to solve the following
non-linear system of IVPs

⎧
⎨

⎩
τ̇ (t) = Aτ (t) – Bτ (t)κ(t), τ (0) = τ0,

κ̇(t) = –Cκ(t) + Dτ (t)κ(t), κ(0) = κ0,
(32)

which is also known as the Lotka–Volterra equations [29], with parameters A = 1.5, B = 1,
C = 3, D = 1. The initial values are τ0 = 3, κ0 = 1, κ0 = 3, κ0 = 5 depending on the subsequent
experiment. The chosen value for κ0 will be explicitly addressed. Since the Lotka–Volterra
equations in Eq. (32) do not have an analytical solution, we will compare the results to a
numerical solution method, namely Runge–Kutta 4.

We take the coupled IVPs in Eq. (32) to demonstrate how the loss function for the NF
approach reads. It is obtained as the sum of �2-norms of each equation, cf. Eq. (9). We use
τ̃C = τ̃C(ti,l, Pm,l) and κ̃C = κ̃C(ti,l, Pm,l) as shortcuts:

El[Pm,l] =
1

2(n + 1)

n∑

i=0

[{ ˙̃τC – Aτ̃C + Bτ̃C κ̃C}2

+ { ˙̃κC + Cκ̃C – Dτ̃C κ̃C}2].

(33)

This equation is then subject to optimisation/training and verification.

ANDRe and the analytical solutions In this section we demonstrate the results for ap-
plying ANDRe to the previously introduced example IVPs. We discuss the contrast to the
analytical solutions and in the case of Lotka–Volterra, to the numerical results provided
by Runge–Kutta 4. In addition to the already given computational parameters in Table 1,

Schneidereit and Breuß Advances in Continuous and Discrete Models (2023) 2023:42 Page 16 of 27

the problem-specific parameters are listed in Table 2. The corresponding initial conditions
are given with the examples above.

The domain sizes are chosen in this way, so that interesting parts in the analytical solu-
tion are visible and as challenges available for ANDRe. During the experimental testing,
we recognised that the neural-network loss and especially the verification loss EVP

l [Pm,l]
were not becoming arbitrarily small. In addition, the experiments revealed the problem-
specific dependencies of (local) minima locations in the weight space. Therefore, we had
to find (in an experimental way) the verification-loss bounds σ for each example IVP.

In Fig. 6, both the analytical solution (orange/solid) and ANDRe solution (black/dot-
ted) are shown for the IVP in Eq. (29). Table 3 shows that 113 subdomains were necessary
in order to satisfy the chosen verification-loss bound. The corresponding (averaged) �1-
error indicates a decent behaviour, which we consider to represent a reliable solution to
the IVP. It also compares to the results from our SCNF approach [5] (predefined equidis-
tant subdomain distribution). In comparison to ANDRe, a computation with the same
number of subdomains (113) using the non-adaptive SCNF approach, returned an �1-
error of 3.9294e-4. Therefore, ANDRe maintains the solution accuracy and comes with
an advanced measurement metric to non-equidistantly distribute the training points (see
Fig. 6b). We expected the density of this distribution to be higher at peaks and dips than in
between. However, the subdomain D3 = [0.9229, 1.8027] is fairly large with certain peaks

Table 2 Problem-specific parameters, (σ) represents the verification-loss bound, (inc) is short for
increments and refers to the learning procedure discussed in the context of Fig. 5

Example Domain σ Inc.

IVP in Eq. (29) t ∈ [0, 15] 1e-5 5
IVP in Eq. (30) t ∈ [0, 25] 1e-4 5
IVP in Eq. (31) t ∈ [0, 20] 1e0 2
IVP in Eq. (32) t ∈ [0, 30] 1e-3 5

Figure 6 IVP in Eq. (29). Comparison between (orange/solid) analytical solution and (black/dotted) ANDRe
solution

Table 3 Overview of the numerical results for the example IVPs in Eq. (29)–Eq. (32), where �1- and
�∞-error are shown for IVPs with an exact solution given, (h) total number of learned subdomains

Example Domain h �1-error �∞-error

IVP in Eq. (29) t ∈ [0, 15] 113 1.4499e-4 1.9268e-4
IVP in Eq. (30) t ∈ [0, 25] 50 6.8152e-4 9.8980e-4
IVP in Eq. (31) t ∈ [0, 20] 32 4.6545e-3 4.9861e-3
IVP in Eq. (32) t ∈ [0, 30] 51 – –

Schneidereit and Breuß Advances in Continuous and Discrete Models (2023) 2023:42 Page 17 of 27

and dips. Compared to its adjacent subdomain D4 = [1.8027, 2.0089], the size of D3 is
unique, but also has a lower numerical error assigned. Hence, the (local) numerical er-
ror in one subdomain, as well as the subdomain size itself do not necessarily share the
global behaviour, while a larger number of subdomains in the non-adaptive domain seg-
mentation approach leads to a decreasing numerical error [5].

Figure 7 shows the subdomain distribution related to Fig. 6 in the beginning for D =
[0, 5]. We find the domain-size adjustment parameter δ to show a significant influence
here. It appears to be very important where one subdomain ends, as this may cause the
adjacent one to be more difficult to solve. Please note that this statement holds under the
consideration of the chosen neural-network parameters.

In contrast to the previous example, the IVP in Eq. (30) is solved on an even larger do-
main with extensively increasing values. The results are shown in Fig. 8 and aim to show
that ANDRe is capable of solving time-integration problems on large domains with small
neural networks. This is of particular importance as the domain size has been identified
as an intricate parameter of the underlying problem, see also the detailed study in [26].

Figure 7 IVP in Eq. (29). ANDRe subdomain
distribution for a cut-out of Fig. 6a, (orange/solid)
analytical solution, (black/marked) subdomain
boundaries, cf. Fig. 1

Figure 8 IVP in Eq. (30). Comparison between (orange/solid) analytical solution and (black/dotted) ANDRe
solution

Schneidereit and Breuß Advances in Continuous and Discrete Models (2023) 2023:42 Page 18 of 27

Figure 9 IVP in Eq. (31). Comparison between (orange/solid) analytical solution and (black/dotted) ANDRe
solution

As displayed in Fig. 8, the ANDRe solution fits the analytical solution (orange) again on
a qualitative and useful level. In total, the algorithm has finished after splitting the solution
domain into 50 subdomains with the averaged �1-error of 	φ1 = 6.8152e-4 (cf. Table 3).
In comparison, the non-adaptive SCNF approach did solve the IVP for the 50 subdomains
ANDRe required.

Results for the IVP in Eq. (31) are displayed in Fig. 9. We decided to investigate this ex-
ample because of the saddle points, which repeatedly occur. We observe a reliable solution
approximation in the beginning of Fig. 9a. However, from subdomain D7 and t = 4.7760 on,
we can see that ANDRe starts to differ from the analytical solution. Although it keeps the
general trend, and seems to converge against the analytical solution again in the end, the
differences in this region are remarkable. This also marks a turning point computational-
wise, which we will discuss more in detail in the corresponding experimental paragraph.
Nonetheless, we had to decide to limit the verification-loss bound to σ = 1e0, since the
computation with a lower error bound always became stuck around this area. This means
both the Adam learning rate and the number of hidden-layer neurons started to increase
heavily. Although one would suggest, based on the universal approximation theorem, that
at some point ANDRe would move on, we cancelled the time-consuming computation at
this point. A computation with 32 subdomains using the non-adaptive SCNF approach
returned an �1-error of 	ω1 = 2.1308e-3 and therefore compares to the results from the
ANDRe solution.

In Fig. 10, both the Runge–Kutta 4 solutions and the ANDRe solutions are shown. For
a fair comparison on the quantitative side, both methods should use an equal number of
training points, which in this case would arise from ANDRe solution. However, we are
more interested in a qualitative comparison, since the Runge–Kutta 4 is known to provide
very good results. ANDRe found a useful solution for the Lotka–Volterra equations in
Fig. 10a, since there are only minor differences from the qualitative perspective.

Figure 10b shows the solution related to three different initial values for the predators.
Let us note that although Fig. 10b only displays the solution at the training points (the
same holds for the previous example IVPs), the trained SCNF is capable of evaluating the
solution at every arbitrary discrete grid point over the entire domain, which is an advan-
tage over numerical integration methods.

Numerical error and neural-network loss The measurement metrics (numerical error
and verification loss) are highly relevant to discuss for ANDRe. In the subsequent diagrams

Schneidereit and Breuß Advances in Continuous and Discrete Models (2023) 2023:42 Page 19 of 27

Figure 10 IVP in Eq. (32). Comparison between (coloured/solid) Runge–Kutta 4 solution with 1e3 grid points
and (black/dotted) ANDRe solution

we show the �1-error (blue/solid), the �∞-error (black/dotted), as well as the verification
loss (green/solid) and the training loss (orange/marked) over the successfully learned sub-
domains.

Commenting on the relation between the verification and the training loss in Fig. 11a for
the IVP in Eq. (29) (cf. Eqs. (23) and (24)), we see that both are mostly equal. This implies
that the corresponding subdomains have been effectively learned up to the desired state.
Since the main goal of ANDRe is to make use of the verification loss as a measurement met-
ric for the numerical error, finding a relation between both metrics is desirable. In Fig. 11a,
there are some regions that may indicate such a relation. However, in other regions almost
no consistent relation is visible, which makes it difficult to find a clear statement regarding
a possible relation.

Let us comment on the behaviour of both verification and training loss, displayed in
Fig. 11b. While both match, they undergo the preset of σ = 1e-4 in some cases by several
orders. Two adjacent subdomains may have a verification/training loss with significant
differences. In addition to local differences between subdomains, all of the results dis-
played in this paragraph show unique trends, solidifying the difficulty of finding a relation
between the neural-network loss and the numerical error.

Commenting on Fig. 11c for the IVP in Eq. (31), the possible local relations between the
numerical error and neural-network loss seem to have disappeared. For the corresponding
verification-loss bound σ = 1e0, even the training and verification loss are most of the
time no longer equal. We find that even when the training/verification loss indicates a
shallow (local) minimum in the weight space, the numerical error can still be useful. These
findings are interesting, since in some parts one may not consider the neural network to
have learned the underlying structure, based on the loss.

The results for the Lotka–Volterra equations in Fig. 11d also seem to indicate an ar-
bitrary behaviour. That is, the local minima of orders around ≈1e-8 relate to arbitrary
subdomains, that are not connected to, e.g. the periodic extreme points of the solution.

In the context of using neural networks, the initialisation plays an important role. Al-
though we have decided to test ANDRe with a deterministic initialisation (all weights are
zero), to avoid stochastic influences, a random initialisation is supposed to be more suit-
able in general. Therefore, we also want to provide results regarding different random ini-
tialisation. Table 4 shows five different initialisations with random values between [–1, 1]

Schneidereit and Breuß Advances in Continuous and Discrete Models (2023) 2023:42 Page 20 of 27

Figure 11 Error comparison, (blue/solid) numerical
error, (black/dotted) infinity norm, (orange/marked)
training loss, (green/solid) verification loss

Table 4 IVP in Eq. (29). Results for different (random) initialisations

Number h 	ψ1

1 105 1.2793e-4
2 112 1.7026e-4
3 104 1.2479e-4
4 111 7.4877e-5
5 108 8.4929e-5

for the IVP in Eq. (29). Let us recall that ANDRe with a deterministic initialisation required
113 subdomains with an �1-error of 	ψ1 = 1.4499e-4. We find that the results using ran-

Schneidereit and Breuß Advances in Continuous and Discrete Models (2023) 2023:42 Page 21 of 27

Figure 12 IVP in Eq. (29). Solved with ANDRe and
random initialisation, (blue/solid) �1-error,
(black/dotted) �∞-error, (orange/marked) training
loss, (green/solid) verification loss

Figure 13 IVP in Eq. (30). Solved with ANDRe and the alternative SCNF approach in Eq. (34)

dom initial weights are similar, also regarding the number of subdomains that are required
to find a suitable solution. However, the range of 	ψ1 clearly shows how sensitive a neural-
network approach is in terms of numerical accuracy, where some random initial weights
lead to a better or a less good �1-error. For initialisation number 1 in Table 4, we display
the numerical errors and the training/verification loss in Fig. 12. The general trend here is
also comparable to its deterministic counterpart in Fig. 11a. We find this result to be a jus-
tification of using deterministic initial weights for testing, although random initialisations
are preferable for future work.

The diagram in Fig. 13a shows the results for a different SCNF approach [5, 10], com-
bined with ANDRe. In contrast to the NF approach described in Sect. 2.1 (using the initial
condition to construct the NF), now we directly combine with neural networks with the
polynomial ansatz [5, 26]:

φ̃C(ti,l, Pm,l) = N1(ti,l, p1,l) +
m∑

k=2

Nk(ti,l, pk,l)(ti,l – t0,l)k–1. (34)

Since the initial condition is not included in Eq. (34), it appears as an additional term
directly in the loss function. Here, we use

g(t) =
1 + 1

1000 et cos(t)
1 + t2 (35)

Schneidereit and Breuß Advances in Continuous and Discrete Models (2023) 2023:42 Page 22 of 27

as a shortcut for:

El[Pm,l] =
1

2(n + 1)

n∑

i=0

{
˙̃
φC(ti,l, Pm,l) + g(t) +

2t
1 + t2 φ̃C(ti,l, Pm,l)

}2

+
1
2
{

N1(t0,l, p1,l) – φ̃C(t0,l, Pm,l)
}2.

(36)

Hence, the initial condition is learned by the first neural network. The loss-function con-
struction concept is very similar to physics-informed neural networks [12, 13]. However,
the polynomial approach is different in this context. Let us recall that the initial values
follow φ̃C(t0,1, Pm,1) = φ(0) in the leftmost subdomain and φ̃C(t0,l, Pm,l) = φ̃C(tn,l–1, Pm,l–1)
elsewhere. Since both approaches (Eq. (7) and Eq. (34)) only differ in their loss-function
construction, it appears natural to compare them. That is, the results in Fig. 13a compare
to Fig. 11b. The behaviour of both verification/training loss does not seem to be connected
to the numerical error, for both methods. Figure 13a shows less-accurate results for the
�1-error. The loss of accuracy possibly relates to the fact that here the new initial condi-
tion for the next subdomain is not fixed by adding it to the NF. It rather has to be learned
again, which in practice may harm the usefulness of this approach. The gap between both
�1-error and �∞-error closes at a certain point.

When turning to Fig. 13b, we observe that the parameter adjustment brought the Adam
learning rate (coloured) up to various values in order to finish learning the subdomains.
Additionally, the necessary number of hidden-layer neurons also heavily increases towards
higher subdomains.

Although the results in terms of the numerical error are not better than in Fig. 11b, we
see here the benefits of the automatic parameter adjustment. With this feature, ANDRe
was able to solve the IVP. That is, we see our approach to enable the parameter adjustment
when necessary, to be justified by the results. However, this does not support the overall
usage of this alternative SCNF approach in the context of ANDRe.

Method and parameter evaluation In this paragraph we investigate and evaluate differ-
ent parts of the method.

In Fig. 14, the sizes of the learned subdomains for the IVP in Eq. (29) are shown. As the
general trend points towards smaller subdomains, we witness that there are local differ-
ences. Let us compare both the numerical error in Fig. 11a and the subdomain sizes in
Fig. 14. In the first ten subdomains there seems to be a certain correlation, a larger size in
this range results in a larger numerical error. A smaller verification-loss bound σ to deal
with the discrepancy between verification and training loss in Fig. 11a may have resulted

Figure 14 IVP in Eq. (29). Visualisation of the learned
subdomain sizes

Schneidereit and Breuß Advances in Continuous and Discrete Models (2023) 2023:42 Page 23 of 27

Figure 15 IVP in Eq. (30). Output of the incorporated
SCNF neural networks, (blue) N1, (orange) N2,
(yellow) N3, (purple) N4, (green) N5

Table 5 IVP in Eq. (29). Results for a complete learning procedure for one subdomain

t25 t26 	ψ1 ETP
25 EVP

25 α

5.5953 15.000 1.3557 22.888 23.598 1e-3
5.5953 10.298 2.3780 1.7622 22.695 1e-3
5.5953 7.9465 1.3774 6.8529 34.448 1e-3
5.5953 7.9465 0.3868 10.640 9.9730 6e-3
5.5953 6.7709 3.4447e-2 3.2209e-2 3.9242e-2 6e-3
5.5953 6.1831 1.1881e-2 3.4791e-2 3.5682e-2 6e-3
5.5953 5.8892 3.3488e-4 1.0875e-4 1.0779e-4 6e-3
5.5953 5.7423 1.6882e-4 2.4565e-6 2.3747e-6 6e-3

in another size reduction with better results. However, the statement that a smaller (lo-
cal) subdomain size implies a better numerical error does not hold here. Since the lower
limit for the subdomain size is set to 0.1 in ANDRe, in practice, at a certain point, the
subdomain size does not become smaller than this preset value.

Turning to Fig. 15, the (learned) neural-network outputs are displayed for the incorpo-
rated SCNF (cf. Eq. (7)) order m = 5 of the IVP in Eq. (30) (cf. Fig. 8). That is, the displayed
graphs represent each of the five neural networks Nk(ti,l, pk), k = 1, . . . , 5, without the scal-
ing factors (ti,l – t0,l)k , over the subdomains. We see the first and second SCNF orders
dominate the results in the later subdomains. A subdomain size below 1 implies a smaller
influence of the higher SCNF orders. However, since there are the raw network outputs
displayed, the scaling factors appear to have a direct impact on the training of the corre-
sponding network.

In Table 5, quantitative results for the entire learning process of one subdomain of the
IVP in Eq. (29) are displayed. The left subdomain boundary t25 remains constant, while
the right subdomain boundary t26 is adjusted as in Eq. (21). The verification-loss values
EVP

25 demonstrate the appearance of non-uniform learning during the solution process and
show how important the verification loss and the parameter adjustment are. While ETP

25

decreases (as intended) for the first two subdomain-size reductions, it increases for the
third one, which leads to a growth of the initial learning rate α. Now, for the same subdo-
main size, EVP

25 decreased significantly (while ETP
25 has increased again). That circumstance

enables ANDRe to continue reducing the subdomain size until it is sufficiently small.
From the perspective of employing a condition for minimising the loss function, the

question arises as to how the algorithm outcome is affected by different error-bound val-
ues σ . Table 6 shows the overall �1-error, verification loss and training loss for differ-
ent σ regarding the IVP in Eq. (30). The choice of σ has a direct impact on each error
value, as they all decrease the smaller σ becomes. However, an experiment for σ = 1e-7
did not finish learning the subdomains. We terminated the computation after the num-

Schneidereit and Breuß Advances in Continuous and Discrete Models (2023) 2023:42 Page 24 of 27

Table 6 IVP in Eq. (30). Results for different σ , on domain t ∈ [0, 25]

σ h 	φ1 EVP[Pm,l] ETP[Pm,l]

1e-1 37 5.5512e-2 1.8907e-2 1.8537e-2
1e-2 39 1.0749e-2 1.5714e-3 1.6255e-3
1e-3 47 6.2122e-3 1.1582e-4 1.1917e-4
1e-4 50 6.8152e-4 2.6581e-5 2.7788e-5
1e-5 59 3.0005e-4 1.9260e-6 2.2057e-6
1e-6 74 1.1870e-4 2.1157e-7 2.2076e-7

Table 7 IVP in Eq. (31). Results for different domain-size reduction parameter values δ , on domain
t ∈ [0, 5]

δ h 	ω1

0.9 5 6.2398e-3
0.8 5 7.0250e-4
0.7 4 3.4629e-3
0.6 5 9.1571e-2
0.5 4 6.9541e-4
0.4 5 6.2569e-3
0.3 5 4.4258e-3
0.2 7 1.1200e-3
0.1 13 2.7217e-4

Table 8 IVP in Eq. (31). Results for different numbers of training points nTP , on domain t ∈ [0, 10]

nTP h 	ω1

10 10 1.4801e-2
20 12 4.5183e-3
40 13 3.4629e-3
80 10 4.6137e-2

ber of hidden-layer neurons crossed fifty one. In this subdomain, the smallest verification
loss was 1.9881e-7 but the optimisation did not manage to go below σ = 1e-7. This phe-
nomenon may again relate to the complexity of the loss-function energy landscape. Either
such a (local) minimum could not be found by the Adam optimiser for various reasons,
or even the global minimum is still too shallow for that error bound. The results in Ta-
ble 6 also confirm the results from [5], where an increasing number of subdomains shows
a decreasing numerical error.

In the following, we want to discuss experimental results for different domain-resize
parameter values δ in Table 7 for the IVP in Eq. (31). The higher this value is set, the
more aggressive each subdomain is reduced in size. On the other hand, the smaller δ is,
the finer the subdomains are reduced in size. However, one would expect the necessary
number of subdomains to increase, the larger the resize parameter is. This assumption is
based on the fact that a larger δ possibly reduces the size of each subdomain much more
than necessary, making them smaller than required. However, in reality the results and the
amount of subdomains are comparable for all δ, if we exclude δ = 0.1. On the �1-error side,
except for δ = 0.6, all the results are comparable. Although the results are highly problem
specific and may change with a larger domain size, we find δ = 0.5 to provide the best
mix with h = 4 and 	ω1 = 6.9541e-4. This domain-size parameter was used for all the
computations.

For the last parameter-evaluation experiment we decided to investigate different num-
bers of training points nTP. For each computation, see Table 8, we doubled the number

Schneidereit and Breuß Advances in Continuous and Discrete Models (2023) 2023:42 Page 25 of 27

of training points. There are always 20% more grid points used for verification (nVP) than
for training. The results indicate, at least for this particular IVP and computational setup,
that doubling the number of grid points from initially nTP = 10 to nTP = 20 is beneficial.
The �1-error is almost one order better in this case. However, the verification-loss bound
is still σ = 1e0 as even with more grid points the computation did not finish for smaller σ .
Continuing the research on ANDRe, further investigations are required to determine why
the first-order optimisation is sometimes not able to minimise the training/verification
loss up to a desired bound (σ).

5 Conclusion and future work
The proposed ANDRe is based on two components. First, the resulting verification loss
arising from the inbound subdomain collocation neural form (SCNF) acts as a measure-
ment metric and refinement indicator. The second component is the proposed algorithm
that refines the solution domain in an adaptive way. In this paper, we have shown that the
approach is capable of solving time-dependent DEs of different types, incorporating vari-
ous interesting characteristics, in particular including large domains and extensive varia-
tions of solution values.

A significant advantage of ANDRe is the verification step to make sure that the solution
is also useful outside of the chosen training points. All this makes ANDRe a unique and
conceptually useful framework.

However, several questions remain open for future work. While there seems to be a cer-
tain and natural relation between the neural-network loss and the numerical error, in re-
ality this relation appears to be sometimes a sensitive issue. It is unclear yet, whether some
minima in the loss-function energy landscape contribute better to the numerical error, or
not. However, we find the verification loss to already serve as a useful error indicator in
ADNRe. In addition, we would like the numerical error to proportionally correspond to
the neural-network verification. If we could manage to achieve an improvement in the cor-
relation between both errors or understand the relation more in detail on the theoretical
level, we think that the ANDRe approach can perform even better in the future.

We also find it relevant to further investigate the computational parameters and fine
tuning the parameter-adjustment part of ANDRe. The verification step may be considered
as a part in the optimisation process, to predict early, whether a further optimisation in
the corresponding subdomain is useful or a size reduction is mandatory. This could lower
the computational cost but has to be incorporated and tested carefully so as not to lose
any information during the optimisation process.

Since ANDRe represents an additional discretisation in time, the approach should also
work for PDEs with both time and spatial components and it appears natural to extend in
future work the method to multidimensional DEs.

Acknowledgements
The authors want to thank the unknown reviewer for his or her excellent job on carefully reading this manuscript and
providing highly useful feedback and suggestions for further improving this work.

Funding
Open Access funding enabled and organized by Projekt DEAL. This publication was funded by the Graduate Research
School (GRS) of the Brandenburg University of Technology Cottbus-Senftenberg and the Federal Ministry for Education
and Research (Germany) as part of the project KI@MINT.

Schneidereit and Breuß Advances in Continuous and Discrete Models (2023) 2023:42 Page 26 of 27

Abbreviations
DE, differential equation; NF, neural form; FEM, finite-element method; PDE, partial differential equation; ANDRe, adaptive
neural-domain refinement; SCNF, subdomain collocation polynomial neural form; TP, training points; VP, verification
points..

Availability of data and materials
The authors declare that upon reasonable request, the code is available from the corresponding author.

Declarations

Competing interests
The authors declare no competing interests.

Author contributions
The authors declare that the main idea and experiments were proposed by TS and the manuscript was written in
cooperation with MB. All authors read and approved the final manuscript.

Received: 18 January 2023 Accepted: 11 October 2023

References
1. Antia, H.M.: Numerical Methods for Scientists and Engineers, 1st edn. Hindustan Book Agency, New Delhi (2012)
2. Maede, A.J. Jr, Fernandez, A.A.: The numerical solution of linear ordinary differential equations by feedforward neural

networks. Math. Comput. Model. 19(12), 1–25 (1994). https://doi.org/10.1016/0895-7177(94)90095-7
3. Yadav, N., Yadav, A., Kumar, M.: An Introduction to Neural Network Methods for Differential Equations. SpringerBriefs

in Applied Sciences and Technology. Springer, Dordrecht (2015). https://doi.org/10.1007/978-94-017-9816-7
4. Dissanayake, M.W.M.G., Phan-Thien, N.: Neural-network-based approximations for solving partial differential

equations. Commun. Numer. Methods Eng. 10(3), 195–201 (1994). https://doi.org/10.1002/cnm.1640100303
5. Schneidereit, T., Breuß, M.: Collocation polynomial neural forms and domain fragmentation for initial value problems.

Neural Comput. Appl. 34, 7141–7156 (2022). https://doi.org/10.1007/s00521-021-06860-4
6. Mall, S., Chakraverty, S.: Application of Legendre neural network for solving ordinary differential equations. Appl. Soft

Comput. 43, 347–356 (2016). https://doi.org/10.1016/j.asoc.2015.10.069
7. Lagaris, I.E., Likas, A., Fotiadis, D.I.: Artificial neural networks for solving ordinary and partial differential equations. IEEE

Trans. Neural Netw. 9(5), 987–1000 (1998). https://doi.org/10.1109/72.712178
8. Lagari, P.L., Tsoukalas, L.H., Safarkhani, S., Lagaris, I.E.: Systematic construction of neural forms for solving partial

differential equations inside rectangular domains, subject to initial, boundary and interface conditions. Int. J. Artif.
Intell. Tools 29(5), 2050009 (2020). https://doi.org/10.1142/S0218213020500098

9. Schneidereit, T., Breuß, M.: Solving ordinary differential equations using artificial neural networks—a study on the
solution variance. In: Proceedings of the Conference Algoritmy, pp. 21–30 (2020)

10. Piscopo, M.L., Spannowsky, M., Waite, P.: Solving differential equations with neural networks: applications to the
calculation of cosmological phase transitions. Phys. Rev. D 100(1), 016002 (2019).
https://doi.org/10.1103/PhysRevD.100.016002

11. Lagaris, I.E., Likas, A., Papageorgiou, D.G.: Neural-network methods for boundary value problems with irregular
boundaries. IEEE Trans. Neural Netw. 11(5), 1041–1049 (2000). https://doi.org/10.1109/72.870037

12. Raissi, M., Perdikaris, P., Karniadakis, G.E.: Physics-informed neural networks: a deep learning framework for solving
forward and inverse problems involving nonlinear partial differential equations. J. Comput. Phys. 378, 686–707
(2019). https://doi.org/10.1016/j.jcp.2018.10.045

13. Jagtap, A.D., Kharazmi, E., Karniadakis, G.E.: Conservative physics-informed neural networks on discrete domains for
conservation laws: applications to forward and inverse problems. Comput. Methods Appl. Mech. Eng. 365, 113028
(2020). https://doi.org/10.1016/j.cma.2020.113028

14. Blechschmidt, J., Ernst, O.G.: Three ways to solve partial differential equations with neural networks—a review.
GAMM-Mitt. 44(2), e202100006 (2021). https://doi.org/10.1002/gamm.202100006

15. Hairer, E., Nørsett, S.P., Wanner, G.: Solving Ordinary Differential Equations 1: Nonstiff Problems, 2nd edn. Springer
Series in Computational Mathematics. Springer, Berlin (1993). https://doi.org/10.1007/978-3-540-78862-1

16. Hairer, E., Wanner, G.: Solving Ordinary Differential Equations 2: Stiff and Differential-Algebraic Problems, 2nd edn.
Springer Series in Computational Mathematics. Springer, Berlin (1996). https://doi.org/10.1007/978-3-642-05221-7

17. Zienkiewicz, O.C., Taylor, R.L., Zhu, J.Z.: The Finite Element Method: Its Basis and Fundamentals, 7th edn. Elsevier
Butterworth-Heinemann, Oxford (2013). https://doi.org/10.1016/B978-1-85617-633-0.00019-8

18. Bangerth, W., Rannacher, R.: Adaptive Finite Element Methods for Differential Equations. Lectures in Mathematics.
Springer, Basel (2003). https://doi.org/10.1007/978-3-0348-7605-6

19. Berger, M.J., Oliger, J.: Adaptive mesh refinement for hyperbolic partial differential equations. J. Comput. Phys. 53(3),
484–512 (1984). https://doi.org/10.1016/0021-9991(84)90073-1

20. Verfürth, R.: A posteriori error estimation and adaptive mesh-refinement techniques. J. Comput. Appl. Math. 50(1),
67–83 (1994). https://doi.org/10.1016/0377-0427(94)90290-9

21. Alfonzetti, S.: A finite element mesh generator based on adaptive neural network. IEEE Trans. Magn. 34(5), 3363–3366
(1998). https://doi.org/10.1109/20.717791

22. Bohn, J., Feischl, M.: Recurrent neural networks as optimal mesh refinement strategies. Comput. Math. Appl. 97,
61–76 (2021). https://doi.org/10.1016/j.camwa.2021.05.018

23. Manevitz, L., Bitar, A., Givoli, D.: Neural network time series forecasting of finite-element mesh adaptation.
Neurocomputing 63, 447–463 (2005). https://doi.org/10.1016/j.neucom.2004.06.009

24. Breuß, M., Dietrich, D.: Fuzzy numerical schemes for hyperbolic differential equations. In: KI 2009: Advances in Artificial
Intelligence. Lecture Notes in Computer Science, vol. 5803, pp. 419–426. Springer, Berlin (2009).
https://doi.org/10.1007/978-3-642-04617-9_53

https://doi.org/10.1016/0895-7177(94)90095-7
https://doi.org/10.1007/978-94-017-9816-7
https://doi.org/10.1002/cnm.1640100303
https://doi.org/10.1007/s00521-021-06860-4
https://doi.org/10.1016/j.asoc.2015.10.069
https://doi.org/10.1109/72.712178
https://doi.org/10.1142/S0218213020500098
https://doi.org/10.1103/PhysRevD.100.016002
https://doi.org/10.1109/72.870037
https://doi.org/10.1016/j.jcp.2018.10.045
https://doi.org/10.1016/j.cma.2020.113028
https://doi.org/10.1002/gamm.202100006
https://doi.org/10.1007/978-3-540-78862-1
https://doi.org/10.1007/978-3-642-05221-7
https://doi.org/10.1016/B978-1-85617-633-0.00019-8
https://doi.org/10.1007/978-3-0348-7605-6
https://doi.org/10.1016/0021-9991(84)90073-1
https://doi.org/10.1016/0377-0427(94)90290-9
https://doi.org/10.1109/20.717791
https://doi.org/10.1016/j.camwa.2021.05.018
https://doi.org/10.1016/j.neucom.2004.06.009
https://doi.org/10.1007/978-3-642-04617-9_53

Schneidereit and Breuß Advances in Continuous and Discrete Models (2023) 2023:42 Page 27 of 27

25. Anitescu, C., Atroshchenko, E., Alajlan, N., Rabczuk, T.: Artificial neural network methods for the solution of second
order boundary value problems. Comput. Mater. Continua 59(1), 345–359 (2019).
https://doi.org/10.32604/cmc.2019.06641

26. Schneidereit, T., Breuß, M.: Computational characteristics of feedforward neural networks for solving a stiff differential
equation. Neural Comput. Appl. 34, 7975–7989 (2022). https://doi.org/10.1007/s00521-022-06901-6

27. Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization (2017). arXiv:1412.6980
28. Cybenko, G.: Approximation by superpositions of a sigmoidal function. Math. Control Signals Syst. 2(4), 303–314

(1989). https://doi.org/10.1007/BF02551274
29. Anisiu, M.C.: Lotka, Volterra and their model. Didáct. Math. 32, 9–17 (2014)

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

https://doi.org/10.32604/cmc.2019.06641
https://doi.org/10.1007/s00521-022-06901-6
http://arxiv.org/abs/arXiv:1412.6980
https://doi.org/10.1007/BF02551274

	Adaptive neural-domain reﬁnement for solving time-dependent differential equations
	Abstract
	Keywords

	Introduction
	The methods
	The subdomain collocation neural form (SCNF)
	Neural-network architecture and optimisation
	Details on the optimisation

	The novel adaptive neural-domain reﬁnement (ANDRe)
	Algorithm summary
	Flowchart explanation

	Computational results and discussion
	Details on parameters and measurement metrics
	Details on parameter adjustment
	The evaluation of ANDRe for different initial-value problems
	Example IVPs and their analytical solutions
	ANDRe and the analytical solutions
	Numerical error and neural-network loss
	Method and parameter evaluation

	Conclusion and future work
	Acknowledgements
	Funding
	Abbreviations
	Availability of data and materials
	Declarations
	Competing interests
	Author contributions
	References
	Publisher's Note

