
A Relevance Feedback Approach for
Social Network Clustering in the Context

of Triangle Inequality Violations

Von der Fakultät 1 - MINT - Mathematik, Informatik, Physik, Elektro- und
Informationstechnik der Brandenburgischen Technischen Universität

Cottbus–Senftenberg genehmigte Dissertation zur Erlangung des
akademischen Grades eines Dr.-Ing.

vorgelegt von

Sanjit Kumar Saha

geboren am 30.12.1986 in Gopalganj

Vorsitzender: Prof. Dr.-Ing. Andriy Panchenko

Gutachter: Prof. Dr.-Ing. habil. Ingo Schmitt

Gutachterin: Prof. Dr.-Ing. habil. Meike Klettke

Tag der mündlichen Prüfung: 27.09.2023

DOI: https://doi.org/10.26127/BTUOpen-6519

https://doi.org/10.26127/BTUOpen-6519

Acknowledgements

I want to start by expressing my gratitude to Professor Ingo Schmitt for being my supervisor.
He gave me the opportunity to complete this dissertation. He gave my work a lot of feedback
and ideas. He frequently emphasized new ideas and suggestions for further research. It really
helped me advance my work. He always had confidence in my abilities. He always made
time for me, despite his busy schedule, when I needed direction or inspiration. He allowed
me the freedom and support to pursue my ideas. His insights and recommendations always
added something worthwhile to my work and helped me with a variety of issues. In addition,
he taught me how to write short papers, which has turned out to be one of my most useful
skills.

I am immensely grateful to Professor Meike Klettke for her valuable and diverse feedback
on my work. To complete the research, the Graduate Research School is the key stakeholder.
I convey my sincere thanks for the financial and administrative support of Mr. Robert Rode
from the Graduate Research School. He has assisted me in my educational expenses.

Undoubtedly, a supportive environment was necessary for the success of this thesis.
Therefore, I would like to thank my pleasant office mates, Alexander Stahl and Rrezart
Murtezaj. I am also much obliged to the staff, particularly Ekkehard Schwaar, for his
continuous support. I would like to thank Sandy Schneider for her assistance in sorting
through various official documents regarding scholarships and conference registration.

Last but certainly not least, I want to express how grateful I am to my family, especially
my mother, Laxmi Rani Saha and mother-in-law, Bakul Rani Banik, for their endless love,
care, and support throughout my life. My mother has always believed in me and has helped
me in any way she can. I also want to thank my lovely wife, Tapashi Gosswami, for being so
patient with me and for always making me smile, especially when I was having bad moods
toward the end of this thesis. I am grateful to my son, Soptok Gosswami Saha. He was
born during my PhD studies, and I did not give him enough time as a father because of
my engagement in thesis writing. I am grateful to my elder brother, Ranajit Shaha, and my
brother-in-law, Bishwajit Gosswami, for always inspiring me. Finally, I am eternally grateful
to Almighty God for the blessings he has bestowed upon me with all his grace.

Abstract

People in a social network are connected, and their homogeneity is reflected by the similarity
of their attributes. For effective clustering in such a network, the similarities among people
within a cluster must be much higher than the similarities between different clusters. The
higher the similarity within a cluster and the greater the difference between clusters, the more
effective the clustering results will be. Traditional clustering algorithms like hierarchical
(agglomerative) clustering or k-medoids take distances between objects as input and find
clusters of objects. The distance functions used should comply with the triangle inequality
(TI) property, but sometimes this property may be violated, thus negatively impacting the
quality of the generated clusters.

However, in certain scenarios, such as social networks, it is still possible to achieve
meaningful clustering even if the TI does not hold. One possibility to find meaningful
clusters are quantum-logic-inspired query languages such as the commuting quantum query
language (CQQL). It is the base for the clique-guided non-TI clustering approach, which
is used in this thesis. The CQQL is particularly noteworthy as it allows the formulation of
logic-based queries that incorporate both Boolean and similarity conditions. Therefore, it
can be used to derive the similarity value between two objects.

Furthermore, attributes in the network may not have equal impact on similarity and
affect the resulting clusters, impacting user satisfaction. CQQL incorporates weights to
express the varying importance of sub-conditions in a query while preserving consistency
with Boolean algebra. This enables personalization of results through relevance feedback
(RF), which enhances user interaction with the system. The approach incorporates user
feedback to enhance the quality of clusters, finds clusters relevant to user needs, and also
provides alternative possible feedback to the user.

The main challenge of comparing clusterings is that there is no ground truth data asso-
ciated with this approach to compare to. In such situations, the relevance of any clustering
can be measured based on human judgment. Human-generated gold standard clustering,
which is considered to be "correct" in some sense, can be used in this scenario. However,
the question is how to compare the performance of common clustering approaches to that of
human-generated gold standard clustering. A noteworthy technique for comparing clusterings

vi

involves counting the pairs of objects that are grouped identically in both clusterings. By
doing so, a clustering distance is calculated that measures the dissimilarity between the two
clusterings.

To validate the utility of the non-TI clustering approach, experiments are conducted on
social networks of different sizes. Three central questions are addressed by the experiments
mentioned: first, is it possible to detect meaningful clusters even though TI violates; second,
how does a user interact with the system to provide feedback based on their needs; and
third, how fast do the detected clusters based on the proposed approach converge to the ideal
solution during the relevance feedback process?

To sum up, the experiments’ objective is to demonstrate the validity of a theoretical
approach. The research findings presented here provide sufficient evidence for detecting
meaningful clusters based on user interaction. Furthermore, the experiments clearly demon-
strate that the non-TI clustering approach can be used as an RF technique in clustering.

Zusammenfassung

Menschen in einem sozialen Netzwerk sind miteinander verbunden. Ihre Homogenität
spiegelt sich in der Ähnlichkeit ihrer Eigenschaften wider. Für eine effektive Clusterbildung
in einem solchen Netzwerk müssen die Ähnlichkeiten zwischen Personen innerhalb eines
Clusters größer sein als die Ähnlichkeiten zwischen Personen verschiedener Cluster. Je größer
die Ähnlichkeit innerhalb eines Clusters und je größer der Unterschied zwischen den Clustern
ist, desto effektiver sind die Clustering-Ergebnisse. Herkömmliche Clustering-Algorithmen
wie etwa hierarchisches (agglomeratives) Clustering oder k-Medoids nutzen Abstände zwis-
chen Objekten zum Finden von Clustern von Objekten. Die verwendete Abstandsfunktion
sollte die Eigenschaft der Dreiecksungleichheit (TI) aufweisen, aber manchmal kann diese
Eigenschaft verletzt sein, was sich negativ auf die Qualität der erzeugten Cluster auswirken
kann.

In bestimmten Szenarien, z.B. in sozialen Netzwerken, ist es jedoch möglich, eine sin-
nvolle Clusterbildung zu erzielen, selbst wenn die TI nicht erfüllt ist. Eine Möglichkeit,
sinnvolle Cluster zu finden, sind von der Quantenlogik inspirierte Anfragesprachen wie die
Commuting Quantum Query Language (CQQL). Sie ist die Grundlage für den cliquenges-
teuerten Non-TI-Clustering-Ansatz, der in dieser Arbeit verwendet wird. Die Sprache
CQQL ist besonders bemerkenswert, da sie die Formulierung von logikbasierten Abfragen
erlaubt, die sowohl Boole’sche als auch Ähnlichkeitsbedingungen enthalten. Daher kann sie
verwendet werden, um einen Ähnlichkeitswert zwischen zwei Objekten ermitteln.

Darüber hinaus haben die Attribute im Netzwerk möglicherweise nicht den gleichen
Einfluss auf die Ähnlichkeit und beeinflussen die resultierenden Cluster, was sich auf die Be-
nutzerzufriedenheit auswirkt. CQQL bietet ein Gewichtungsschema, um die unterschiedliche
Wichtigkeit von Unterbedingungen in einer Abfrage auszudrücken, wobei jedoch die Kon-
sistenz mit der Boole’schen Algebra gewahrt bleibt. Dies ermöglicht eine Personalisierung
der Ergebnisse durch Relevanz-Feedback (RF), was die Interaktion der Benutzer mit dem
System erweitert. Der Ansatz bezieht das Feedback der Benutzer ein, um die Qualität der
Cluster zu verbessern, findet also Cluster, die für die Bedürfnisse der Benutzer relevant sind,
und bietet dem Benutzer alternative Rückmeldungen.

viii

Die größte Herausforderung beim Vergleich von Clustern besteht darin, dass es bei
diesem Ansatz keine anzustrebende Cluster als ground truth gibt. In solchen Situationen kann
die Relevanz eines jeden Clusters auf der Grundlage eines menschlichen Urteils gemessen
werden. Ein vom Menschen erstelltes Goldstandard-Clustering, das in gewissem Sinne
als "richtig" angesehen wird, kann in diesem Szenario verwendet werden. Es stellt sich
jedoch die Frage, wie die Leistung gängiger Clustering-Ansätze mit der eines vom Menschen
erstellten Goldstandard-Clustering verglichen werden kann. Eine Technik zum Vergleich
von Cluster-Ergebnissen besteht darin, die Paare von Objekten zu zählen, die in beiden
Cluster-Ergebnissen gleich gruppiert sind. Auf diese Weise wird ein Clustering-Abstand
berechnet, der die Unähnlichkeit zwischen den zwei Cluster-Ergebnissen misst.

Um den Nutzen des Non-TI-Clustering-Ansatzes zu überprüfen, werden Experimente
mit sozialen Netzwerken unterschiedlicher Größe durchgeführt. Drei zentrale Fragen werden
in den Experimenten behandelt: Erstens, ist es möglich, sinnvolle Cluster zu erkennen,
auch wenn die TI verletzt wird; zweitens, wie interagiert ein Benutzer mit dem System,
um Feedback auf der Grundlage seiner Bedürfnisse zu geben; und drittens, wie schnell
konvergieren die Cluster auf der Grundlage des vorgeschlagenen Ansatzes während des
Relevanz-Feedback-Prozesses zur idealen Lösung?

Zusammenfassend lässt sich sagen, dass das Ziel der Experimente darin besteht, die
Gültigkeit eines theoretischen Ansatzes zu demonstrieren. Die hier vorgestellten Forschungsergeb-
nisse liefern ausreichenden Nachweis für die Erkennung von sinnvollen Clustern auf der
Grundlage von Benutzerinteraktionen. Darüber hinaus zeigen die Experimente deutlich, dass
der Non-TI-Clustering-Ansatz als RF-Technik für das Clustering verwendet werden kann.

Table of contents

List of figures xiii

List of tables xvii

1 Introduction 1
1.1 Motivation . 5
1.2 Contributions . 10
1.3 Structure of the Dissertation . 11

2 Fundamentals 13
2.1 Logic . 13
2.2 Boolean Algebra . 13
2.3 Hilbert Space . 15
2.4 Dirac notation . 15
2.5 Notation . 16

3 Social Network Analysis 19
3.1 Social Network . 19
3.2 Varieties of Social Networks . 20
3.3 Social-Network Graph Drawing . 22
3.4 Social-Network Graphs Clustering . 23

3.4.1 Measures for Social-Network Graphs 23
3.4.2 Matrices that describe Graphs . 26
3.4.3 Clustering Methods . 28

3.5 Summary . 34

4 A Quantum Logic-based Model for Non-TI Clustering 37
4.1 Theoretical Concept of Commuting Quantum Query Language 38
4.2 Construction and Arithmetic Evaluation of CQQL 41

x Table of contents

4.3 Weighting of CQQL Conditions . 44
4.3.1 Weights based on the Influence of Objects 45
4.3.2 Complimented Form of a Weight 46

4.4 CQQL: A Logical Query Language with Multiple Modes 47
4.5 Non-TI Clustering Approach . 52
4.6 Clustering Properties . 54
4.7 Summary . 54

5 Relevance Feedback-based Learning of Personalized CQQL Queries 57
5.1 Relevance Feedback . 58
5.2 Types of Relevance Feedback . 58

5.2.1 Explicit Feedback . 58
5.2.2 Implicit Feedback . 61
5.2.3 Pseudo Feedback . 62

5.3 Relevance Feedback within the CQQL-based Non-TI Clustering 63
5.4 Weight Learning . 67
5.5 Summary . 73

6 Comparing Clusterings for Non-TI Clustering 75
6.1 Clustering Comparison Criteria . 76
6.2 Common Approaches in Comparing Clusterings 77

6.2.1 Clustering Comparison by Counting Pairs 77
6.2.2 Clustering Comparison by Set Matching 80
6.2.3 Clustering Comparison based on Information Theoretic Approaches 80

6.3 Clustering Comparison for Non-TI Clustering 82
6.4 Summary . 84

7 Implementation and Evaluation 87
7.1 Experimental Setup . 88
7.2 Datasets . 88
7.3 Experiments and Results . 88

7.3.1 Clustering of a social network . 89
7.3.2 CQQL query with conjunction (∧) 89
7.3.3 CQQL query with disjunction (∨) 98

7.4 Summary . 103

Table of contents xi

8 Conclusions 105
8.1 Contributions and Research Findings . 105
8.2 Future Works . 106

Appendix A Mathematical Foundations 109
A.1 Numbers, Sets, Relations and Functions 109
A.2 Vectors and Matrices . 112
A.3 Graphs . 112

Appendix B Transformation of CQQL Queries 115

Appendix C Experimental Results 119
C.1 Clustering of a social network (20 people) 119

C.1.1 CQQL query with conjunction (∧) 120
C.1.2 CQQL query with disjunction (∨) 129

C.2 Clustering of a social network (50 people) 134
C.2.1 CQQL query with conjunction (∧) 135
C.2.2 CQQL query with disjunction (∨) 149

C.3 Clustering of a social network (100 people) 154
C.3.1 CQQL query with conjunction (∧) 155
C.3.2 CQQL query with disjunction (∨) 167

Appendix D List of Publications 173

Bibliography 175

List of figures

1.1 TI violation in k-medoids clustering: due to the problem of visualizing
non-TI in a plane object d appears twice. 6

1.2 Non-TI clustering. 7
1.3 Example of a small social network G. 8

3.1 A small social network. 20
3.2 A small telephone network. 20
3.3 Clustering of data objects {a,b,c,d,e, f ,g,h, i, j} using the k-medoids method. 30
3.4 Hierarchical clustering of data objects {a,b,c,d,e, f ,g,h, i, j}. 31
3.5 DBSCAN clustering of data objects (ε = 0.3,minPts = 3). 32
3.6 Clique based clustering of data objects {a,b,c,d,e, f ,g,h, i, j}. 34

4.1 Transformation of CQQL queries. 43
4.2 Non-TI Clustering. 52

5.1 Relevance feedback. 58
5.2 Explicit relevance feedback. 59
5.3 Implicit relevance feedback. 61
5.4 Pseudo relevance feedback. 62
5.5 Evaluation of qΘ(p1, p2)= school(p1, p2)∧

(
graduation(p1, p2)∧θ admission(p1, p2)

)
with respect to θ . 64

5.6 Inconsistent case of feedback f {p1,p2} (left) and f p1,{p1,p2,...} (right) for two
specific objects. 65

5.7 State diagram of relevance feedback. 66
5.8 Clusters (C0). 67
5.9 Evaluation of qΘ(p1, p2)= school(p1, p2)∧

(
graduation(p1, p2)∧θ1,θ2 admission(p1, p2)

)
by two weights θ1 and θ2. 69

5.10 Evaluation of qΘ(p1, p2)= school(p1, p2)∧
(

graduation(p1, p2)∨θ1,θ2 admission(p1, p2)
)

by two weights θ1 and θ2. 71

xiv List of figures

5.11 Non-linear optimization. 72

7.1 Structure of a six-people network. 90
7.2 Clustering on a six-people network in conjunction. 91
7.3 Clustering based on f co on a six-people network in conjunction. 93
7.4 Ideal Solution. 94
7.5 Clustering distances based on f co in Figure 7.3. 95
7.6 Clustering based on f o,c on a six-people network in conjunction. 95
7.7 Clustering based on f co on a six-people network in conjunction. 96
7.8 Clustering distances based on f co in Figure 7.7. 97
7.9 Clustering based on f o,c on a six-people network in conjunction. 97
7.10 Clustering on a six-people network in disjunction. 99
7.11 Clustering based on f co on a six-people network in disjunction. 101
7.12 Clustering distances based on f co in 7.11. 102
7.13 Clustering based on f o,c on a six-people network in disjunction. 102

B.1 Transformation algorithm. 115
B.2 Example transformations and arithmetic evaluation. 117

C.1 Structure of a twenty-people network. 119
C.2 Clustering on a twenty-people network in conjunction. 120
C.3 Clustering based on f co on a twenty-people network in conjunction. 122
C.4 Ideal Solution. 123
C.5 Clustering distances based on f o,c in Figure C.3. 125
C.6 Clustering based on f o,c on a twenty-people network in conjunction. 126
C.7 Clustering based on f co on a twenty-people network in conjunction. 127
C.8 Clustering distances based on f o,c in Figure C.7. 128
C.9 Clustering on a twenty-people network in disjunction. 129
C.10 Clustering based on f co on a twenty-people network in disjunction. 132
C.11 Clustering distances based on f co in Figure C.10. 133
C.12 Clustering based on f o,c on a twenty-people network in disjunction. 133
C.13 Structure of a fifty-people network. 134
C.14 Clustering on a fifty-people network in conjunction. 135
C.15 Clustering based on f co on a fifty-people network in conjunction. 137
C.16 Ideal Solution. 137
C.17 Clustering distances based on f co in Figure C.15. 146
C.18 Clustering based on f o,c on a fifty-people network in conjunction. 146
C.19 Clustering based on f co on a fifty-people network in conjunction. 147

List of figures xv

C.20 Clustering distances based on f co in Figure C.19. 148
C.21 Clustering based on f o,c on a fifty-people network in conjunction. 148
C.22 Clustering on a fifty-people network in disjunction. 149
C.23 Clustering based on f co on a fifty-people network in disjunction. 152
C.24 Clustering distances based on f co in Figure C.23. 153
C.25 Clustering based on f o,c on a fifty-people network in disjunction. 153
C.26 Structure of a 100-people network. 154
C.27 Clustering on a 100-people network in conjunction. 155
C.28 Clustering based on f co on a 100-people network in conjunction. 163
C.29 Clustering based on f o,c on a 100-people network in conjunction. 164
C.30 Clustering based on f co on a 100-people network in conjunction. 165
C.31 Clustering based on f o,c on a 100-people network in conjunction. 166
C.32 Clustering on a 100-people network in disjunction. 167
C.33 Clustering based on f co on a 100-people network in disjunction. 171
C.34 Clustering based on f o,c on a 100-people network in disjunction. 172

List of tables

2.1 Semantics of Boolean logical connectors and propositions A and B 14
2.2 General notation and symbols. 16
2.3 Notation and symbols for Sets. 17
2.4 Notation and symbols for graphs. 17

4.1 Concepts that are associated with database querying and quantum mechanics 40
4.2 Impact of Weights in CQQL . 45

6.1 Contingency matrix . 83

7.1 Clusters after clustering on a six-people network in conjunction 92
7.2 Ground-truth clustering . 94
7.3 Clusters after clustering on a six-people network in disjunction 98

B.1 Atomic conditions . 116

C.1 Clusters after clustering on a twenty-people network in conjunction 121
C.2 Ground-truth clustering . 124
C.3 Clusters after clustering on a twenty-people network in disjunction 130
C.4 Clusters after clustering on a fifty-people network in conjunction 136
C.5 Ground-truth clustering . 138
C.6 Clusters after clustering on a fifty-people network in disjunction 150
C.7 Clusters after clustering on a 100-people network in conjunction 156
C.8 Clusters after clustering on a 100-people network in disjunction 168

Chapter 1

Introduction

A group of individuals can be used to represent a person’s, group’s, or community’s social
context. Some of them communicate with one another, while others don’t. A social network
is a pattern made up of all these communication ties. A network like this shows who commu-
nicates with whom. These communication ties form a web of direct and indirect connections
between persons when taken together. The dyadic link of interpersonal communication
between two people is referred to as the communication tie. The structure of a social network
can be visualized as a graph composed of individuals or organizations (known as social
actors) and the connections between them, represented by nodes and edges respectively.

After services like Facebook, Twitter, and Instagram emerged and became a part of
our daily lives, the concept of a social digital network became widespread. Entities and
relationships among these entities participating in the network are the two main aspects of
social networks. Entities may be "people," and binary relationships may be these people’s
"friendship," as on Facebook and most other social media platforms, but they are not restricted
to "people" and "friendship". Entities can be anything, such as organizations or websites,
and relationships can be anything, such as business, trade, or collaboration.

The structure of a network is a reflection of its distinct information flow patterns. In a
social networking service like Facebook, users feed their account with personal information,
making these networks a rich data source. While data is valuable in and of itself, its full
potential can only be realized by learning from it. The ability of humans to analyze data and
extract information is impressive, but they simply cannot match the enormous amount of
data that is available.

The ordinary human cannot even comprehend datasets of several kilobytes, such as a table
with multiple rows and columns, while research and industry begin to prepare for Exascale
computing. To address this issue, research areas such as machine learning, data mining, and
knowledge discovery have emerged, each of which provides methods for processing large

2 Introduction

volumes of data that cannot be evaluated manually. The methods and algorithms created
in this field are intended to automate, replicate, and supplement various forms of human
reasoning so that usable knowledge can be extracted from data.

One of the fundamental methods of gaining understanding and learning is by grouping
data into meaningful categories. When faced with a complicated and unknown situation
involving multiple entities, people tend to examine it and search for similarities in their
appearance or behavior, and then categorize the entities based on these similarities. This idea
of similarity indicating a semantic or functional relationship allows for new knowledge to be
derived, even for complex problems. To help with this, the process of clustering is utilized in
data analysis, which involves dividing a set of entities into separate groups called clusters.
The members within each cluster are similar to one another and distinct from those in other
clusters.

Even though the problem appears to be well-defined, solving it is incredibly difficult
for two reasons. The first is the subjective and changing nature of similarity. While there
are numerous functions for determining this attribute, each is based on a different concept
of resemblance. As a result, the degree of similarity between objects is determined by the
measuring function used. Furthermore, obtaining a number for object similarity is insufficient
to determine whether or not they are similar enough to be classified together. A threshold
must be established for this decision. Assessing similarity is a complex and subjective task
that can be affected by various factors like application domain, experience, and personal bias.
Developing a standardized framework for making decisions in an algorithm is challenging
due to this subjectivity.

Clustering also faces the challenge of working with unknown data. The objective of
clustering is to extract new and meaningful insights from the data. Although the discovered
cluster structure provides new information, there is no guarantee that it will be useful. Since
clustering aims to uncover new knowledge, there is no established reference point to validate
its results. As a result, clustering outcomes should be considered as tentative findings that
need to be further tested within the context of the application domain from which the data
was collected.

A plethora of clustering methods have been proposed over the years. The first, and
certainly most widely used, method for locating clusters in networks is to look for strongly
coupled nodes in comparison to other nodes. The way this idea is converted into operational
implementations varies due to the generality of the notion.

Several formulations rely on detection of actors or edges with high centrality, as for
instance, the very popular method of Newman and Girvan [2004], a divisive algorithm for
undirected and unweighted graphs based on edge-betweenness, afterwards generalized by

3

Chen and Yuan [2006]. Further methods relying on a similar ground build on the optimisation
of the cluster modularity (Danon et al. 2005), so that each community will include a larger
number of inner edges than expected by chance. The Louvain method is unarguably one of
the most popular representative of this category (Blondel et al. 2008). The aforementioned
methods result in cohesive communities where transitivity is high and each actor is highly
connected to each other inside the group. Notwithstanding, the idea of high density within
a group may be also intended as the one arising in star-shaped clusters, where density is
concentrated in the figure of some hubs attracting less prominent actors. Evidence of such
a theoretical mechanism of aggregation has been explained by Goyal et al. [2006] as a
combination of small-world behavior guided by the presence of interlinked stars. In fact,
this principle has been largely neglected by SNA, with the works of Kloster and Gleich
[2014], based on the local optimization of the so-called conductance and, to some extent,
Falkowski et al. [2007] representing an exception. A further facet of the clustering problem
in networks, known as cut-based perspective, aims at partitioning networks in a fixed number
of balanced groups with a small number of edges between them, and no guarantees about a
possible denser structure of inner connection. In this context, networks are often of a mesh-
or grid-like form. Methods in this class refer back to the seminal work of Kernighan and Lin
[1970] and often build on the spectrum of of the data.

All of these methods have one thing in common: they divide a network into distinct clus-
ters, with each node belonging to just one of them. While this paradigm is well-understood,
it is incapable of simulating real-world settings in which nodes may belong to many clusters.
For example in a social network, a person might be part of a group of friends at work, a group
of friends from school, a group of friends at a sport club and also a close family circle [Ahn
et al. 2010; Leskovec and Mcauley 2012]. As a result, many overlapping community models
and algorithms have been presented. Because it is more difficult to come up with excellent
global quality indicators that can be optimized efficiently for overlapping communities, there
is a much larger focus on the quality of individual communities [Xie et al. 2013; Amelio and
Pizzuti 2014; Fortunato and Hric 2016]. To avoid confusion, we regard a community as a
cluster.

The idea behind clustering is to group objects together based on their similarities, such
that the similarities within each cluster are greater than the similarities between different
clusters. To measure the similarity between objects, most clustering techniques use distance
functions. These functions must satisfy certain properties, including the triangle inequality
(TI), the d(x1,x3)≤ d(x1,x2)+d(x2,x3) property where x1, x2, and x3 are objects, and the
d(xi,x j) ∈ [0,∞] distance function that returns the distance value of an object pair {xi,x j}.
However, sometimes the TI property is not satisfied, and these distance functions are called

4 Introduction

non-TI functions. The violation of TI can negatively impact the quality of the clustering
results.

Some researchers proposed clique based method that can solve this issue.

Definition 1.1 (Clique). For an undirected graph G = (V,E) of a set of N nodes V =

{v1,v2,v3, ...,vN} and edges E = (vi,v j), a clique C is a subset of nodes C ⊆V (G) such that
any two distinct nodes vi,v j ∈C are connected by an edge. A maximal clique is a clique that
cannot be enlarged by adding an additional neighboring node.

A clique a closely connected group of individuals which follow a unique pattern of
communication. One of the important maximal cliques extraction methods, is the Bron
and Kerbosch [1973]. But it is ineffective when talking about a graph containing dozens
of non-maximal cliques, since for each maximal clique, it makes a recursive call. For this
reason, Bron and Kerbosch also described another variant of this algorithm involving a new
heuristic called "Pivot" [Himmel et al. 2017]. The purpose of this heuristic is to limit the
number of recursive calls made to save computation time [Tomita et al. 2006]. However,
this version did not get any advantage compared to the basic version since its computation
time was extended because of its degeneration, which requires additional time. For this
reason, Eppstein et al. [2013] have proposed an alternative method, which extracts all the
maximal cliques. This algorithm performs the external level of recursion by Bron–Kerbosch
Algorithm, using a degeneracy order to order the sequence of recursive calls. Then, it
performs the internal levels of recursion based on the pivot rule of Tomita et al. [2006]. Hao
et al. [2016] used the basic component analysis method for finding maximum k-clique on
social networks. Mirghorbani and Krokhmal [2013] proposed a method for finding a k-sized
clique in k-segmented graphs. This method is based on the bit pattern used to find cliques.
Though these approaches produce some satisfying results, they introduce a new problem:
"not all attributes of an object have the same influence on the network, which may affect
the network and compromise the quality of the resulting clusters" [Saha and Schmitt 2020].
Therefore, sometimes it does not meet user satisfaction. Sometimes a user wants to interact
by providing feedback to reform clusters.

An important aspect of clustering algorithm implementation is determining how effective
it is. This is a challenging challenge in and of itself due to the lack of a widely accepted
definition of what defines a good cluster. We either don’t know what clustering a user is
searching for or if it can even be recognized in most graphs formed from real-world networks
[Bader et al. 2014; Fortunato and Hric 2016]. Certain internal criteria, rooted in the inherent
characteristics of the data and clusters, such as compactness, separation, and cohesion, serve
as benchmarks for effective clustering. These criteria evaluate the extent to which objects
within a cluster exhibit similarity to one another and the degree of differentiation between

1.1 Motivation 5

clusters. It’s important to note, however, that these criteria do not assess the alignment of
clustering results with external information or the extent to which they diverge from random
or expected clustering. Therefore, they are not enough in the context of social network
clustering. A human-generated clustering, as an ideal solution, can be used as a remedy. This
type of clustering uses objects that are considered as "ground truth" and can be expected to
be recognizable by a user due to the method used to cluster a network.

Concerning the selection and comparison of clustering approaches, Rand [1971] examined
the characteristics of clustering functions. He posed four questions:

1. "How well does a method retrieve “natural” clusters?

2. How sensitive is a method to perturbations of the data?

3. How sensitive is a method to incomplete dataset?

4. Given two methods, do they produce different results on the same data?"

In summary, modern clustering provides a diverse set of specialized tools geared precisely
at professionals. This is an unpleasant condition, since enormous amounts of data collections
in an increasing number of application fields, necessitating the use of clustering as a technique
for data analysis. Clustering has gained additional users as it has progressed from a specialist
use in research to a widely used analysis approach. As a result, previously overlooked
concerns such as usability and applicability become vital issues. Users that want to use
clustering currently have two options: employ professionals and set up a multi-year project to
design a tailored clustering solution, or go on a trial-and-error journey attempting to build a
suitable solution from existing methodologies. The goal of this thesis is to improve the current
state of clustering despite TI violations by transforming clustering into a feedback-driven
process with user interaction.

1.1 Motivation

A database object type usually consists of multiple attributes. Clustering objects involves the
descriptive task of grouping these objects into clusters based on how similar their attribute
values are when compared pairwise. Similarity values typically fall within the range of [0,1].
When the similarity value is higher, it indicates that the objects are more alike, and conversely,
a lower similarity value implies less similarity. The degree of similarity is assessed using
a measure that quantifies how closely objects resemble each other. Consequently, when
considering all possible pairs of objects, a similarity measure leads to the creation of a
quadratic similarity matrix.

6 Introduction

Clustering requires that objects within the same cluster should exhibit significantly greater
similarities compared to objects in different clusters. The quality of clustering improves as
the similarity within a cluster increases and the dissimilarity between clusters becomes more
pronounced. From a technical standpoint, most clustering methods rely on distance measures
between pairs of objects as input. These distance functions often include the Euclidean and
Manhattan distance functions. Distance functions must satisfy amongst other the triangle
inequality (TI) property.

The triangle inequality can be understood as saying that "if object x is relatively close to
object y, and object y is also relatively close to object z, then objects x and z cannot be very
far apart from each other". If we convert distance values to similarity values within the range
[0,1] using the formula s(x,y) = e(−d(x,y)), where s represents the similarity measure and
d is the distance measure, we obtain for property TI:

d(x,z)≤ d(x,y)+d(y,z)
·(−1)⇐==⇒−d(x,z)≥−d(x,y)−d(y,z)

(exp)⇐==⇒

e−d(x,z) ≥ e−d(x,y)−d(y,z)⇔ e−d(x,z) ≥ e−d(x,y) · e−d(y,z)

which gives, s(x,z)≥ s(x,y) · s(y,z). And thus,

d(x,z)≤ d(x,y)+d(y,z)⇔ s(x,z)≥ s(x,y) · s(y,z) holds.

Fig. 1.1 TI violation in k-medoids clustering: due to the problem of visualizing non-TI in a
plane object d appears twice.

Sometimes there are functions that fulfil all distance properties except TI. We will call
them non-TI functions. The violation of TI may compromise the quality of the resulting
clusters. In traditional k-medoids clustering technique, see Figure 1.1 for example, a single
cluster can be found having all objects where g is the medoid. The triple {a,g,d} within
the cluster has two edges among them. There are edges between {a,g} and between {g,d}

1.1 Motivation 7

but no edge between {a,d}. That means the distance from a to d exceeds the sum of the
distances from a to g to d. Therefore, the cohesion of d may be seriously impacted because
a is close to g but very far away from d. Thus, it may violate TI property.

Fig. 1.2 Non-TI clustering.

But it is still possible to find meaningful clusters in such a way that a and d reside in
different clusters and g resides in more than one cluster at the same time.

Consider a small social network G with eight objects namely {a,b,c,d,e, f ,g,h}. Sup-
pose a similarity matrix S = {si j} of G is a symmetric 8×8 matrix as follows:

S =

a b c d e f g h

a 1 0.86 0.58 0.71 0.43 0.2 0.37 0.48
b 0.86 1 0.65 0.98 0.15 0.29 0.47 0.4
c 0.58 0.65 1 0.55 0.3 0.49 0.18 0.25
d 0.71 0.98 0.55 1 0.82 0.77 0.64 0.9
e 0.43 0.15 0.3 0.82 1 0.58 0.7 0.66
f 0.2 0.29 0.49 0.77 0.58 1 0.82 0.57
g 0.37 0.47 0.18 0.64 0.7 0.82 1 0.65
h 0.48 0.4 0.25 0.9 0.66 0.57 0.65 1

It is obvious in S that the triple {c,d,e} violates the triangle inequality:

s(c,e)≥ s(c,d) · s(d,e)⇒ 0.3 ≱ 0.55 ·0.82⇒ 0.3 ≱ 0.451

8 Introduction

Despite of this violation, it still makes sense to find meaningful clusters. For example,
an adjacency matrix Ad j = (ai j) can be derived from the similarity matrix S by using a
mathematical function with threshold value θ = 0.5:

ai j =

1 if si j ≥ θ

0 otherwise
(1.1)

Adj =

a b c d e f g h

a 1 1 1 1 0 0 0 0
b 1 1 1 1 0 0 0 0
c 1 1 1 1 0 0 0 0
d 1 1 1 1 1 1 1 1
e 0 0 0 1 1 1 1 1
f 0 0 0 1 1 1 1 1
g 0 0 0 1 1 1 1 1
h 0 0 0 1 1 1 1 1

Therefore, Figure 1.3 shows the graphical representation of a small social network G

based on adjacency matrix Adj.

a

b

c

d

e

f

g h

Fig. 1.3 Example of a small social network G.

Technically, G contains two maximal cliques, {a,b,c,d} and {d,e, f ,g,h}. And the node
d is common for both clusters. We regard cliques as clusters. They are meaningful in that
scenario, although TI does not hold.

The Non-TI clustering approach introduced by Saha and Schmitt [2020] offers promising
results, however it creates a new problem of not always satisfying the user’s needs.

Example 1.1. In a social network of alumni of a school, let P = {p1, p2,, pn} be a set of
n people and the similarity among people can be sufficiently expressed by relying on their
admission year and graduation year. The similarity value between two people p1 and p2

1.1 Motivation 9

can be expressed as a Commuting Quantum Query Language (CQQL) [read Chapter 4 for
details] condition q proposed by Schmitt [2008].

The set P = {p1, p2,, pn} represents n people in a social network of alumni from a
school. The similarity between individuals can be determined using their admission year and
graduation year. The similarity between two people, p1 and p2, can be expressed using the
Commuting Quantum Query Language (CQQL) [read Chapter 4 for details] condition q, as
proposed by Schmitt [2008]:

q(p1, p2) = school(p1, p2)︸ ︷︷ ︸
Boolean condition

∧graduation(p1, p2)︸ ︷︷ ︸
similarity condition

∧admission(p1, p2)︸ ︷︷ ︸
similarity condition

(1.2)

where

school(p1, p2) = (p1.school = p2.school) ∈ {0,1}
graduation(p1, p2) = (p1.graduation≈ p2.graduation) ∈ [0,1]

admission(p1, p2) = (p1.admission≈ p2.admission) ∈ [0,1]

The similarity between persons can be accurately expressed by taking into account their
year of admission and graduation. However, it is possible for friends to have different
graduation years but the same admission year. In this case, their graduation year should
have less impact on the similarity calculation than their admission year. A solution to this is
the "quantitative weighting approach", which allows for the assigning of weights to atomic
conditions based on their relevance. By re-weighting, new clusters are formed. This approach
is referred to as "adaptive clustering". Systems that use this method are not limited to
pre-defined user requirements and can better meet their needs compared to systems with a
fixed set of aspects.

In this dissertation, CQQL [Schmitt 2008] is used to implement the Relevance Feedback
(RF) based on user needs. This thesis combines two approaches for social network clustering:
CQQL, a quantum logic-based query language that incorporates weights that reflect the vary-
ing significance of sub-conditions and personalises resulting clusters using an RF approach,
and user feedback, which addresses the dynamic nature of the search process and information
need. The formulation of weighted CQQL queries and the idea behind relevance feedback
make up the theoretical background of the dissertation, offering a holistic and consistent
theory for social network clustering.

10 Introduction

1.2 Contributions

Clustering is a technique that has many available tools but lacks clear guidance on how
to effectively use them. To achieve successful clustering, users must select an appropriate
algorithm and run it with the right parameters. Both activities have a significant impact on
the outcome and, if not done appropriately, might result in pointless clusterings. The user
must analyze the produced result and determine whether or not the clusters are meaningful.
If the result isn’t satisfactory, the parameters or algorithm must be tweaked to produce a
better result. To carry out these tasks efficiently, a certain level of understanding is required.
Current clustering practice focuses primarily on clustering generation and treats all of the
aforementioned activities as separate tasks. Clustering is a difficult technique for novice
users to adopt due to the loose coupling of activities and the arbitrariness with which they
are carried out.

The main objective of this thesis is to address the challenges faced in conventional
clustering practices by introducing a new approach that involves user interaction in the
design of clustering structures. This approach aims to simplify the process for users by
integrating them into the design and eliminating complex technical aspects. The clustering
actions are no longer seen as separate stages but as integral parts of a comprehensive process,
which gives users a standardized procedure to follow. The goal is not to create a universal
clustering algorithm that can handle all datasets, but a flexible tool that can be easily applied
to current methodologies. The thesis utilizes simplicity and abstraction to create a template
for the process, which is versatile and offers essential qualities that can be achieved in
different ways. The novel interaction introduced in the thesis allows users to understand and
improve clustering results through natural feedback, which requires new ways of clustering
construction that can handle a wide range of existing techniques and provide an interface
for incorporating user feedback into the results. In summary, this thesis presents a new
and innovative way of designing clustering structures by involving users and improving the
process through natural feedback.

• We provide an analysis and assessment of the existing clustering algorithms in use
today. We focus on the basic types of clustering algorithms and introduce some of
their representatives to give an idea of the range of options available. We also go over
many methods for evaluating findings that are currently available. All of the techniques
presented are evaluated for their applicability and usability. Versatility, robustness,
configuration, complexity, and user support are all factors to consider. We deduce the
primary repercussions users encounter in current clustering from our analysis.

1.3 Structure of the Dissertation 11

• A template for a flexible clustering procedure is defined. This provides a summary of
the essential tasks and requirements that must be met to achieve a comprehensive and
user-friendly clustering application. The procedure has two primary purposes. The
first is to take care of clustering creation in its entirety, including method definition
and specification, options for integrating and managing existing clustering techniques,
and the establishment of a control interface that receives and applies user feedback.
The provision of an interactive interface, which communicates the properties of the
clustering result to the user, is the second key role.

• We suggest novel approaches for incorporating existing clustering techniques into our
workflow. The concept of ensemble clustering is utilized as a starting point for this since
it allows various solutions to be combined into a single final solution, which enhances
overall quality. This concept is expanded upon, and approaches for the controlling
integration of various outcomes are proposed. This integration approach also serves as
an abstraction layer for the management of numerous alternative clustering algorithms,
due to the control choices we’ve presented.

• We define a compact set of universally valid feedback options for clustering adjustment.
We do this by taking the users’ perspective, abstracting the most basic clustering
modifications, and converting them into feedback. Unlike typical adjustments, which
change the reason for clustering, i.e. the parameters used to create it, our feedback
directly expresses the impacts a user wishes to establish in the result. Usability is
improved by keeping feedback stable and independent of the underlying algorithms, in
addition to this direct character.

• We use a human-generated clustering as a benchmark for evaluating the effectiveness
of our approach. This benchmark clustering is considered to be the ideal solution and
serves as a reference point to calculate the clustering distance, which is a measure of
the dissimilarity between two clusterings.

1.3 Structure of the Dissertation

There are five main sections to the thesis. The implementation and evaluation presented in
part four have a theoretical foundation in the first three parts. The final section of the thesis
concludes by recapping its main points and identifying possible avenues for further research.
The dissertation is organized in the following manner:

12 Introduction

Part I. Foundations and Background To make reading easier, a list of central definitions
crucial for understanding is provided in Chapter 2.

Chapter 3 outlines the core concepts and techniques of Social Network and Social Network
Clustering by defining key terms and laying out fundamental principles. Additionally, it
provides a comprehensive look at conventional Social Network Clustering methods.

Part II. Learning User-specific Weights in Logic-based Queries In Chapter 4, the imple-
mentation of a Non-TI Clustering based on Quantum Logic is described, including an
explanation of the theoretic foundation of the CQQL query language which is based on
quantum logic.

The Relevance Feedback based learning approach, which is fundamentally based on CQQL,
is introduced in Chapter 5. The concept of feedback is also covered in this chapter, with
a particular emphasis on the so-called Explicit and Implicit feedback approaches used in
databases.

The chapters 4 and Chapter 5 provide the theoretical foundation for the conceptual design
and implementation discussed in Chapter 7 of the dissertation.

Part III. Adaptation of Clustering by Feedback Adjustment Chapter 6 defines the adap-
tation of clustering through feedback adjustment, and it evaluates the dissimilarity between
two clusterings through the calculation of a clustering distance.

Part IV. Implementation and Evaluation In Chapter 7, experiments are performed to eval-
uate the non-TI clustering approach. It is divided into three separate evaluations of the non-TI
clustering approach:

• Clustering with unweighted and weighted CQQL.

• Clustering based on user feedback.

• Effectiveness of the clustering based on clustering distance.

Part V. Conclusions Finally, Chapter 8 summarizes the findings and contributions of this
work. The limitations of the proposed methods along with possible future works are briefly
addressed at the end of the chapter.

Chapter 2

Fundamentals

2.1 Logic

According to the definition provided by the Oxford English Dictionary, logic can be defined
as

"the systematic use of symbolic and mathematical techniques to determine the forms
of valid deductive argument."

The focus of this thesis is on formal logical systems used for reasoning such as classical
Boolean logic. Schöning1989, Siefkes [1990], and Dominich [2008] all have similar defi-
nitions. A formal logic is a language that operates on symbols to determine the truth value
of a statement. A statement is composed of propositions represented by capital letters and
logical connectors such as conjunction (∧), disjunction (∨), and negation (¬). In Boolean
logic, propositions (or elementary propositions [Wittgenstein Wittgenstein, see. Sec. 5 and
5.01]) can be replaced with their truth value, either true or f alse, which are represented by 1
and 0, respectively. The rules for determining the truth value of a sentence in a formal logical
system, such as classical Boolean logic, are then put into practice, as outlined in Table 2.1.
These rules are defined by axioms. For example, the law of the excluded middle, represented
as A∨¬A, and the law of identity, expressed as A = A, are two axioms. It is true that both of
these statements are true.

2.2 Boolean Algebra

A Boolean algebra is a formal logical systems with at least two elements, 0 and 1, endowed
with binary operations ∧ and ∨ and a unary operation ¬. The Boolean operations satisfy the
following axioms:

14 Fundamentals

Table 2.1 Semantics of Boolean logical connectors and propositions A and B

A B A∧B A∨B ¬A
0 0 0 0 1
0 1 0 1 1
1 0 0 1 0
1 1 1 1 0

Definition 2.1 (Axiom of Associativity).

(A∧B)∧C = A∧ (B∧C) and (A∨B)∨C = A∨ (B∨C) (2.1)

Definition 2.2 (Axiom of Commutativity).

A∧B = B∧A and A∨B = B∨A (2.2)

Definition 2.3 (Axiom of Distributivity).

A∧ (B∨C) = (A∧B)∨ (A∧C) and A∨ (B∧C) = (A∨B)∧ (A∨C) (2.3)

Definition 2.4 (Axiom of Identity).

A∧1 = A and A∨0 = A (2.4)

Definition 2.5 (Axiom of Complements).

A∧¬A = 0 and A∨¬A = 1 (2.5)

Definition 2.6 (Axiom of Idempotence).

A∧A = A and A∨A = A (2.6)

Definition 2.7 (Axiom of Double Negation).

¬(¬A) = A (2.7)

Definition 2.8 (De Morgan’s Law).

¬(A∧B) = ¬A∨¬B and ¬(A∨B) = ¬A∧¬B (2.8)

2.3 Hilbert Space 15

2.3 Hilbert Space

A Hilbert space H is a mathematical vector space with either finite or infinite dimensions. It
must have an inner product to measure the distance and angle between vectors. The Hilbert
space must also be complete, meaning it has limits and is suitable for the use of calculus
techniques (see Dieudonné [1960, p. 115]).

2.4 Dirac notation

"Dirac [1958] introduced the Dirac notation, which can be considered the lingua franca of
quantum mechanics. The definitions that follow are similar to the overviews of notation
provided by Schmitt [2008, cf. Sec. 2] and van Rijsbergen [2004, cf. App. I]. More examples
of the notation can be found in these contributions.

Definition 2.9 (Ket vector). A column vector x in a Hilbert space H is represented by a ket:
|x⟩.

Definition 2.10 (Bra vector). The transpose of |x⟩ yields a row vector bra: ⟨x|.

Definition 2.11 (Inner product in bra-ket form). The inner (or scalar) product of two ket
vectors |x⟩ and |y⟩ is stated by a bra(c)ket: ⟨x|y⟩.

Definition 2.12 (Norm of a ket vector). The norm || |x⟩ || of a ket |x⟩ is defined as:
√
⟨x|x⟩.

Definition 2.13 (Outer product in bra-ket form). The outer product of two kets |x⟩ and |y⟩,
which generates a linear operator in form of a matrix, is denoted by: |x⟩⟨y|.

Definition 2.14 (Tensor product). The tensor product between two kets |x⟩ and |y⟩ is denoted
by |x⟩⊗ |y⟩ or short by |xy⟩. If |x⟩ is m-dimensional and |y⟩ n-dimensional then |xy⟩ is
an m ·n-dimensional ket vector. The tensor product of two-dimensional kets |x⟩ and |y⟩ is
defined by:

|xy⟩ ≡ |x⟩⊗ |y⟩ ≡

(
x1

x2

)
⊗

(
y1

y2

)
≡

x1y1

x1y2

x2y1

x2y2

The tensor product of matrices is defined analogously.

Definition 2.15 (Projector). A projector p = ∑i |i⟩⟨i| is a symmetric (pt = p) and idempotent
(pp = p) linear operator defined over a set of orthonormal vectors |i⟩. Multiplying a projector
with a state vector means to project the vector onto the respective vector subspace."

[Schmitt et al. 2008]

16 Fundamentals

2.5 Notation

Notation and symbols used throughout this thesis are summarized in Tables 2.2, 2.3, and 2.4.

Table 2.2 General notation and symbols.

SYMBOL MEANING

N,N+ Natural numbers with and without zero
R,R≥0,R+ All, non-negative, positive real numbers

vi = [v]i Element at position i of vector v
∥v∥ Norm

mi j = [M]i j Element at (i, j) of matrix M
f (x) Function of x
≈ Similarity
∑ Summation: sum of all values in range of series
⊗ Tensor Product
∀ For All
∃ There Exists

2.5 Notation 17

Table 2.3 Notation and symbols for Sets.

SYMBOL MEANING

{} Set: a collection of elements
A∪B Union: in A or B (or both)
A∩B Intersection: in both A and B
A⊆ B Subset: every element of A is in B
A⊂ B Proper Subset: every element of A is in B, but B has more elements
A ̸⊂ B Not a Subset: A is not a subset of B

AC Complement: elements not in A
A−B Difference: in A but not in B
a ∈ A Element of: a is in A
b /∈ A Not element of: b is not in A

/0 Empty set
U Universal Set: set of all possible values (in the area of interest)
|A| Cardinality: the number of elements of set A
| Such that

Table 2.4 Notation and symbols for graphs.

SYMBOL MEANING

G A graph
V Set of nodes in the graph
E Set of edges in the graph
|G| Order of G, i.e., |V (G)|
∥G∥ Size of G, i.e., |E(G)|

deg(v) Degree of vertex v
N(v) Neighbors of v

G Complement graph of G
G[V] Subgraph induced by V
Ad j Adjacency matrix, |V |× |V |

S Similarity matrix, |V |× |V |
⊂,⊑ Subgraph, induced subgraph relation
G\S Graph obtained by deleting S

Chapter 3

Social Network Analysis

3.1 Social Network

The relationships between social entities can be depicted in a social network. This network is
represented as an undirected graph with a set of actors, such as individuals or organizations,
as nodes and ties between them as edges. An example of this concept can be seen in a
friendship network on Facebook where students from the same department of a college may
form a group due to their shared location and academic background. In contrast, students
with different backgrounds, education, or geography have a lower likelihood of forming
networks. The homogeneity of the network can reflect the similarity between nodes in terms
of parameters like location or education.

A graph is represented by G = (V,E), where V = {v1,v2, ...,vn} is the set of n nodes
and E is the set of edges. The nodes represent the network entities and edges represent
the relationships between the entities. An edge ei j ∈ E between two nodes vi and v j is
represented by a pair of the nodes (vi,v j). A graph G is called a weighted graph if a weight
is assigned to each edge.

Example 3.1. An illustration of a small social network is shown in Figure 3.1. The nodes,
labeled as a to j, are the entities, and the edges signify the relationships, such as friendship,
between them. For instance, node b has a friendship relationship with nodes a, c, d, and e.

Clusters in a network are groups of nodes or vertices within the network that exhibit a
higher degree of connectivity to each other compared to nodes outside of the group. Edges
and vertices are not distributed uniformly, but rather in locally dense groups. Common
interests or goals, friendship, or other similarities between actors are common reasons for the
implicit or explicit formation of groups.

20 Social Network Analysis

Fig. 3.1 A small social network.

3.2 Varieties of Social Networks

There are numerous instances of social networks beyond just networks of friends. Let’s list
some other examples of networks that display a local quality of relationships.

Telephone Networks

The example in Figure 3.2 illustrates a small telephone network. The nodes in the network
represent individual phone numbers and if a call was made between two nodes during a
specific time period, such as last month or "ever," an edge is formed between them. The
edges can be weighted based on the number of calls made between the phones throughout
the specified time period.

Fig. 3.2 A small telephone network.

In a telephone network, communities will arise from groups of individuals who com-
municate frequently, such as friends, members of a club, or people who work for the same
company.

3.2 Varieties of Social Networks 21

Email Networks

Individuals are represented by the nodes, which are email addresses. An edge indicates that at
least one email was sent between the two addresses in at least one direction. Alternatively, if
there were emails in both directions, we could only place an edge. We avoid seeing spammers
as "friends" with all of their victims in this way. Another option is to categorize edges as
strong or weak. Communication in both directions is represented by strong edges, and
communication in one direction is represented by weak edges. The communities identified in
email networks are formed by the same kind of groupings that we see in telephone networks.
Individuals who text other people on their cell phones form a similar network.

Collaboration Networks

Individuals who have published research articles are depicted as nodes. Edges exist between
two individuals who have co-authored one or more papers. The strength of these edges can be
determined by the number of joint publications. Communities can be formed in this network
based on the authors who focus on a particular subject matter.

Another way to look at the same data is as a graph with nodes that are publications. If
two papers share at least one author, they are related by an edge. We now create communities,
which are collections of writings on a single subject.

There are various additional types of data that can be used to create two networks in the
same way. We may look at the people who edit Wikipedia pages as well as the articles that
they edit, for example. If two editors have edited the same article, they are related. The
communities are groups of editors who share a common interest in a particular topic. The
creation of a network of articles that are connected if they were modified by the same person
can be used to find communities of articles on similar topics.

This concept can be applied to the data used in collaborative filtering, where two networks
are established, one for customers and one for items. The communities in these networks are
determined by customers who buy similar items and by products that are purchased by the
same customers.

Other Examples of Social Graphs

Many other processes, particularly those demonstrating locality, result in graphs that resem-
ble social graphs. Information networks (documents, web graphs, patents), infrastructure
networks (roads, airlines, water pipelines, power grids), biological networks (genes, proteins,

22 Social Network Analysis

food-webs of animals eating each other), and other sorts, such as product co-purchasing
networks, are only a few examples (e.g., Groupon).

3.3 Social-Network Graph Drawing

A drawing of a graph is a pictorial representation of the vertices and edges of a graph. It
is important to note that this visual representation should not be confused with the graph
itself, as different layouts can represent the same graph. In abstract, what truly matters is
identifying which pairs of nodes are connected by edges.

There are many different graph layout strategies available that can be used to visualise
a graph. We discuss the force-directed placement strategy proposed by Fruchterman and
Reingold [1991] in this dissertation.

Normally, graphs are depicted with their vertices as points in a plane and their edges
as line segments or curves connecting those points. Fruchterman-Reingold concentrates on
the most general class of graphs: general, undirected graphs, drawn with straight edges. In
their paper, they introduced an algorithm that attempts to produce aesthetically–pleasing,
two–dimensional pictures of graphs by doing simplified simulations of physical systems.

They are concerned with drawing general undirected graphs according to some gener-
ally–accepted aesthetic criteria:

• Evenly distribute the vertices in the frame.

• Minimize edge crossings.

• Make edge lengths uniform.

• Reflect inherent symmetry.

• Conform to the frame.

They have only two principles for graph drawing:

• Vertices that are neighbors should be drawn near each other.

• Vertices should not be drawn too close to each other.

How close vertices should be placed depends on how many there are and how much
space is available. For more details please read Fruchterman and Reingold [1991].

3.4 Social-Network Graphs Clustering 23

3.4 Social-Network Graphs Clustering

A cluster is a set of nodes, and clustering is the process of grouping a set of nodes into subsets,
where each subset represents a cluster. Consider the nodes: S = x1,x2, ...,xn. Clustering
divides this set into k subsets (C1,C2, ...,Ck), each representing a cluster of similar nodes.
That is, S =C1∪C2∪ ...∪Ck and clustering C = {C1,C2,,Ck}.

A measure of similarity or dissimilarity is required to organize similar nodes into groups.
The degree to which two nodes are alike is measured numerically by the similarity between
them. As a result, dissimilarity is a numerical measure of how distinct the two nodes are.
The higher the similarity, the lower the dissimilarity, and the lower the similarity, the higher
the dissimilarity. When discussing dissimilarity, the term "distance" is commonly employed.
The discussion of the various clustering techniques and their applications is relevant because
the objective of clustering aligns with our aim of identifying groups of actors who are similar
or close to each other.

3.4.1 Measures for Social-Network Graphs

The first step in applying typical clustering techniques to a social-network graph is defining a
distance measure. Depending on what the weights on the graph’s edges indicated, as in a
telephone network (see Figure 3.2), these weights may be used to label a distance measure.
However, when the edges are unweighted, as in a "friends" graph (see Figure 3.1), we are
limited in our ability to establish one suitable distance.

Distance Measure

In social network clustering, distance measures are used to quantify the similarity or dissimi-
larity between nodes (individuals) within the network. These measures help identify clusters
or communities of nodes that exhibit similar patterns of connections or interactions.

A distance d(x,y) between two nodes x and y fulfils the following properties:

• Non-negativity: d(x,y)≥ 0 for all x and y

• Identity of indiscernibles: d(x,y) = 0 only if x = y

• Symmetry: d(x,y) = d(y,x) for all x and y

• Triangle inequality: d(x,z)≤ dist(x,y)+d(y,z) for all x, y and z

Distance measures that adhere to all of the specified properties are referred to as metrics.
These properties can be beneficial for certain applications, for instance, if the triangle

24 Social Network Analysis

inequality property holds, clustering can be performed more efficiently. Here are some
common distance measures used in social network clustering:

Euclidean distance

This measure calculates the straight-line distance between two nodes in a multi-dimensional
space. In social networks, each dimension may represent a different attribute or feature of
the nodes. Euclidean distance can be used to assess the dissimilarity between nodes based on
their attribute values. The Euclidean distance between two nodes in n-dimensional space is
defined by the following formula:

d(P,Q) =
√

∑
n
i=1(Pi−Qi)2

where P = {p1, p2, ..., pn} and Q = {q1,q2, ...,qn}.

Manhattan distance

The Manhattan distance between two nodes P = {p1, p2, ..., pn} and Q = {q1,q2, ...,qn} in
n-dimensional space is the sum of the distances in each dimension.

d(P,Q) = ∑
n
i=1 |Pi−Qi|

Distance functions must satisfy amongst other the triangle inequality property. But sometimes
the triangle inequality property is violated. The reason is that when there are three nodes
connected by two edges, if there is an edge between nodes A and B and another edge between
nodes B and C but no edge between nodes A and C, then the distance between nodes A and
C is greater than the sum of the distances between nodes A and B and nodes B and C.

Similarity Measure

The similarity measure is a way of measuring how nodes or objects are related or being close
to each other. Typically, the similarity values are expressed within the range of [0,1]. A
similarity value closer to 1 indicates a stronger similarity between the objects, whereas a
value closer to 0 indicates less similarity. The degree to which objects are alike is determined
by a measure that assesses their similarities. As a result, calculating the similarity between
all pairs of objects results in a quadratic similarity matrix.

Similarities, also have some well known properties.

1. s(x,y) = 1 (or maximum similarity) only if x = y

2. s(x,y) = s(y,x) for all x and y (Symmetry)

3.4 Social-Network Graphs Clustering 25

where s(x,y) is the similarity between nodes, x and y.

If we transform distance values into similarity values within the range of [0,1] using the
function s(x,y) = e−d(x,y), we obtain for property TI:

d(x,z)≤ d(x,y)+d(y,z)
·(−1)⇐==⇒−d(x,z)≥−d(x,y)−d(y,z)

(exp)⇐==⇒

e−d(x,z) ≥ e−d(x,y)−d(y,z)⇔ e−d(x,z) ≥ e−d(x,y) · e−d(y,z)

which gives, s(x,z) ≥ s(x,y) · s(y,z). And thus, d(x,z) ≤ d(x,y) + d(y,z)⇔ s(x,z) ≥
s(x,y) · s(y,z) holds.

Cosine similarity

Cosine similarity is a technique used to determine the similarity between two documents or
to rank documents in relation to a set of query words. Given vectors P and Q, the cosine
similarity between these vectors is calculated as:

sim(P,Q) = P·Q
|P||Q|

where P ·Q = ∑
n
i=1 PiQi is the dot product of the vectors P and Q, and |P| is the Euclidean

norm of vector P = {p1, p2, ..., pn}, which is defined as
√

p2
1 + p2

2 + ...+ p2
n, or the length of

the vector. Similarly, |Q| is the Euclidean norm of vector Q. The cosine similarity measure is
calculated as the cosine of the angle between the two vectors. If the cosine value is equal to
0, it indicates that the vectors are orthogonal and have no match. The closer the cosine value
is to 1, the lower the angle between the vectors and the better the match. Note that cosine
similarity is referred to as a non-metric measure as it does not satisfy all the properties of a
metric measure.

Jaccard similarity index

The Jaccard similarity index (also known as the Jaccard similarity coefficient) analyzes
members from two sets to determine which are common and which are unique. It’s a
proportional measure of similarity between two sets of data, ranging from 0% to 100%.
The larger the proportion, the closer the two groups are. Although it is simple to use, it is
particularly sensitive to tiny sample sizes and can produce incorrect findings, especially when
dealing with very small samples or data sets with missing observations.

The Jaccard similarity measures is defined as the cardinality of the intersection of sets
divided by the cardinality of the union of the sample sets.

J(P,Q) = |P∩Q|
|P∪Q|

26 Social Network Analysis

CQQL

CQQL, which stands for Commuting Quantum Query Language, is a language used for
querying the similarity between two objects. It provides the ability to incorporate weighting
into queries and formulate logic-based queries that include both Boolean and similarity
conditions. The evaluation of a CQQL condition returns a similarity value within the interval
of [0,1] for the similarity condition, indicating the closeness of attribute values between two
objects. A CQQL expression can be seen as a similarity measure when all atomic conditions
are similarity measures between two objects and CQQL combines them by logic junctors.
The boolean values true for perfect match and f alse otherwise are mapped to the score
values 1 or 0, respectively, for the boolean condition. A detailed discussion can be found in
Schmitt [2008] and Schmitt [2019].

3.4.2 Matrices that describe Graphs

To utilize the concept of matrix algebra in finding good partitions in a graph, it’s necessary
to have an understanding of three different matrices that represent aspects of the graph.
Consider a set of n individuals, denoted as P = {p1, p2, ..., pn}. The first should be familiar:
the adjacency matrix Ad j = {ai j} is the n×n matrix defined as

ai j =

1 if there is an edge (pi, p j)

0 otherwise
(3.1)

The adjacency matrix for the social network of Figure 3.1 appears below:

Adj =

a b c d e f g h i j

a 0 1 1 1 1 1 1 0 0 0
b 1 0 1 1 1 0 0 0 0 0
c 1 1 0 1 1 1 1 1 1 0
d 1 1 1 0 1 0 0 0 0 0
e 1 1 1 1 0 0 0 0 0 0
f 1 0 1 0 0 0 1 0 0 0
g 1 0 1 0 0 1 0 0 0 0
h 0 0 1 0 0 0 0 0 1 0
i 0 0 1 0 0 0 0 1 0 1
j 0 0 0 0 0 0 0 0 1 0

3.4 Social-Network Graphs Clustering 27

The second matrix we need is the degree matrix for a graph. This example matrix has
nonzero entries only on the diagonal. The entry for row and column i is the degree of the ith
node.

The degree matrix for the social network of Figure 3.1 is shown below:

Deg =

a b c d e f g h i j

a 6 0 0 0 0 0 0 0 0 0
b 0 4 0 0 0 0 0 0 0 0
c 0 0 8 0 0 0 0 0 0 0
d 0 0 0 4 0 0 0 0 0 0
e 0 0 0 0 4 0 0 0 0 0
f 0 0 0 0 0 3 0 0 0 0
g 0 0 0 0 0 0 3 0 0 0
h 0 0 0 0 0 0 0 2 0 0
i 0 0 0 0 0 0 0 0 3 0
j 0 0 0 0 0 0 0 0 0 1

The Laplacian matrix, represented as L = Deg−Ad j, is a matrix that can be derived

from a graph’s adjacency matrix Ad j and degree matrix Deg. The Laplacian matrix is the
difference between the degree matrix and the adjacency matrix. The diagonal entries of the
Laplacian matrix are the same as those in the degree matrix Deg. For entries off the diagonal,
at the ith row and jth column, a value of −1 is present if there is an edge between nodes i
and j, and a value of 0 if not. The Laplacian matrix has the property that each row and each
column adds up to zero, which is typical of any Laplacian matrix.

The Laplacian matrix for the social network 3.1 is shown below:

L =

a b c d e f g h i j

a 6 −1 −1 −1 −1 −1 −1 0 0 0
b −1 4 −1 −1 −1 0 0 0 0 0
c −1 −1 8 −1 −1 −1 −1 −1 −1 0
d −1 −1 −1 4 −1 0 0 0 0 0
e −1 −1 −1 −1 4 0 0 0 0 0
f −1 0 −1 0 0 3 −1 0 0 0
g −1 0 −1 0 0 −1 3 0 0 0
h 0 0 −1 0 0 0 0 2 −1 0
i 0 0 −1 0 0 0 0 −1 3 −1
j 0 0 0 0 0 0 0 0 −1 1

28 Social Network Analysis

3.4.3 Clustering Methods

The various clustering techniques discussed in the following can be adapted to graphs as
they are based on a general distance or similarity measure. We will briefly touch upon their
suitability and direct readers to later chapters for more in-depth information on the methods.

Partitioning Methods

The main aim of dividing data objects into k distinct clusters is to identify groups where the
members exhibit high similarity within their respective clusters but differ significantly from
members in other clusters. The Partitioning Around Medoids (PAM) method, introduced
by Kaufman and Rousseeuw [1990], aims to identify a representative object, known as a
medoid, for each cluster. These medoids are the objects that are most centrally located within
their respective clusters.

Initially, a set of k objects is chosen as the initial medoids. Then, during each step of the
algorithm, all objects in the input dataset that are not currently designated as medoids are
individually assessed to determine if they should replace one of the existing medoids. In
other words, the algorithm checks if there is an object that would be a better fit as a medoid
than the current ones. The decision to swap medoids with other non-selected objects is based
on minimizing the total cost.

PAM’s approach involves representing a cluster by its medoid, and as a result, it is
also commonly referred to as the k-medoids algorithm. Algorithm 1 summarizes the PAM
technique.

When evaluating the cost associated with swapping a non-medoid object (let’s call it
prand) with a medoid object (let’s call it pi), there are four scenarios to consider for each
non-medoid object p. These scenarios are as follows:

Case 1: If p originally belongs to the medoid object pi, and after the swap, p becomes closer
to another medoid object p j than to pi, then p is reassigned to p j.

Case 2: If p originally belongs to the medoid object pi, and after the swap, p becomes closer
to prand than to pi, then p is reassigned to prand .

Case 3: If p originally belongs to one of the other medoid object p j (where j is not equal to
i), and after the swap, p remains closest to p j, then there is no need to reassign p.

Case 4: If p originally belongs to one of the other medoid object p j, and after the swap, p
becomes closer to prand than to p j, then p is reassigned to prand .

3.4 Social-Network Graphs Clustering 29

Algorithm 1: PAM algorithm for partitioning.
Input: k: the number of clusters, D: a data set containing n objects
Output: A set of k clusters

1 Arbitarily choose k objects in D as initial medoids
2 C =−∞

3 while C < 0 do
4 for each non-medoid object p in D do
5 find the nearest medoid and assign p to the corresponding cluster
6 end
7 randomly select a non-medoid prand
8 compute the overall cost C of swapping a medoid pi with prand
9 if C < 0 then

10 swap p j with prand to form a new set of k medoids
11 end
12 end
13 return k clusters

The cost function in this context is defined as the change in the value of the distortion
function that occurs when a medoid object is replaced by a non-medoid object. The total
cost C of making such replacements is calculated as the sum of the costs incurred by all non-
medoid objects. If the total cost C is negative, it indicates that the replacement is permissible
because it reduces the value of the distortion function.

Example 3.2. Consider a social network of objects located in a 2−dimensional space, as
shown in Figure 3.1. The user wants to divide the objects into 3 clusters, with k = 3.

The starting point of the k-medoids method is the dissimilarity matrix which is obtained by
using distance or similarity measure. Clustering by k-medoids partitioning involves selecting
three random objects as initial cluster centers (medoids) and assigning each object to a cluster
based on its proximity to the cluster center. The cluster centers will then be updated. Figure
3.3 shows the resulting clusters {a,c,g, f},{b,d,e}, and {h, i, j} by applying k-medoids
clustering method. The Fruchterman-Reingold algorithm [Fruchterman and Reingold 1991]
is used to visualize social networks by creating 2D representations based on the adjacency
matrix, which is derived from the dissimilarity matrix.

By observing the triple {h, i, j} closely, it is visible that the triple violates the TI property.
Because there are edges between {h, i} and between {i, j}, but there is no edge between
{h, j}. Therefore, h and j must belong to different clusters to achieve meaningful clusters.

30 Social Network Analysis

Fig. 3.3 Clustering of data objects {a,b,c,d,e, f ,g,h, i, j} using the k-medoids method.

Hierarchical Methods

Hierarchical clustering creates a cluster hierarchy, often known as a dendrogram, or a tree of
clusters. Child clusters exist in every cluster node, while sibling clusters divide the points
covered by their shared parent. This method enables data exploration at many levels of
granularity. Hierarchical clustering methods are categorized into agglomerative (bottom-up)
and divisive (top-down) [Jain and Dubes 1988]. An agglomerative clustering starts with
one-point (singleton) clusters and merges two or more of the most appropriate clusters in a
recursive manner. A divisive clustering starts with a single cluster of all objects and splits
the most appropriate cluster recursively. The process continues until a stopping criterion
(frequently, the requested number k of clusters) is achieved.

Example 3.3 (Agglomerative versus divisive hierarchical clustering.). Consider the social
network of a data set of ten objects {a,b,c,d,e, f ,g,h, i, j}, as depicted in Figure 3.1. The
single linkage method is a well-known agglomerative hierarchical clustering technique. In
this approach, the distance between two clusters is determined by measuring the distance
between the closest pair of objects, with each object belonging to a different cluster. During
the merging step, the algorithm identifies the nearest pair of clusters and combines them into a
new, single cluster. Subsequently, it updates the distances between this newly formed cluster
and the other clusters that remain unchanged. This merging process continues iteratively
until the number of clusters ultimately reaches one.

3.4 Social-Network Graphs Clustering 31

The outcome of this algorithm is the creation of clusters in such a way that every member
of a cluster shares a closer relationship with at least one other member of the same cluster
than with any object outside of it. Additionally, this method has the capability to group
together a chain of objects into a single cluster and can identify clusters with arbitrary shapes.

(a) Dendogram (single-linkage) (b) Clusters (k = 3)

Fig. 3.4 Hierarchical clustering of data objects {a,b,c,d,e, f ,g,h, i, j}.

In contrast, the divisive method works in a different way. To begin, all of the objects
are combined into one cluster. The cluster is divided based on some criterion, such as the
maximum Euclidean distance between the cluster’s nearest neighbors. The process of cluster
splitting continues until each new cluster contains only one object.

A dendrogram showing the clustering of objects {a,b,c,d,e, f ,g,h, i, j} is depicted in
Figure 3.4a. The vertical axis represents the distance scale between the clusters. The
algorithm merges two groups of objects into a single cluster when their distance is roughly
0.38, for example, {a,b,c,d,e, f ,g} and {h, i, j}

Figure 3.4b shows three clusters {a,b,c,d,e, f ,g}, {h, i}, and { j} by applying single-linkage
hierarchical clustering method. It is clearly visible that the triple {b,a, f} violates the TI
property. Because there are edges between {b,a} and between {a, f} but there is no edge
between {b, f}. But b and f must belong to different clusters.

Density-based Methods

A cluster in density-based clustering is a region with a high density of points surrounded
by a low density region. DBSCAN, a density-based algorithm introduced by Ester et al.
[1996], produces a partitional clustering and defines a cluster as a continuous area of any
shape with greater density than its surroundings. The algorithm scans the data points in a

32 Social Network Analysis

dataset, computes neighborhoods with a defined radius and minimum number of points, and
connects these dense neighborhoods to form clusters. A neighborhood with a defined radius
and minimum number of points is referred to as a core point, while a data point without
such a neighborhood is either considered a noise point or a border point if it is in the same
neighborhood as a core point. The radius ε and the minimum number of points MinPts serve
as thresholds for determining the density of a neighborhood.

DENGRAPH is a graph clustering algorithm based on density, developed by Falkowski
et al. [2007] to identify groups of similar nodes in graphs that contain numerous noise objects.
Clusters in the graph are areas where nodes are densely packed and separated by low node
density regions. DENGRAPH calculates neighborhoods by utilizing a specific radius (ε)
and a minimum number of nodes (MinPts) to ensure that they are dense. A node with a
neighborhood of this type is referred to as a core node. Nodes lacking such a neighborhood
are classified as either border nodes if they are within a core node’s neighborhood or noise
nodes.

Fig. 3.5 DBSCAN clustering of data objects (ε = 0.3,minPts = 3).

To group similar data vertices, a measure of similarity or dissimilarity is needed. The
similarity between two vertices is quantified by a numerical measure of how similar they are,
and dissimilarity is quantified by the numerical difference between two objects. The higher
the similarity, the more alike the objects are and the lower the dissimilarity. When referring
to dissimilarity, the term "distance" is often used.

3.4 Social-Network Graphs Clustering 33

Figure 3.5 shows two clusters {a,b,c,d,e, f ,g} and {h, i, j} by applying DENGRAPH.
Unfortunately, the triples for example, {b,a, f} and {h, i, j} violates TI property. Thus may
compromises the quality of resulting clusters.

Clique-based Methods

A clique is defined as a complete network on a set of nodes, with each pair of nodes connected
by an edge in graph theory. If a clique can’t be extended to a larger clique by including any
nearby node, it’s called maximal. Each community in a network should be a maximal clique
in the ideal clustering outcome. In practice, this is difficult to achieve. It’s considerably more
difficult to guarantee that each community forms a clique in many real-world social networks.
As a result, an acceptable measure for assessing a community’s degree of connectivity is
required.

Bron and Kerbosch [1973] presented a depth-first search algorithm for generating all the
maximal cliques of an undirected graph as shown in Algorithm 2. That is, it lists all subsets
of vertices with the two properties that each pair of vertices in one of the listed subsets is
connected by an edge, and no listed subset can have any additional vertices added to it while
preserving its complete connectivity.

Algorithm 2: Algorithm for searching all maximal cliques.
clique(P,R,X)

1 if P∪X = /0 then
2 report R as a maximal clique
3 end
4 choose a pivot u ∈ P∪X to maximize |P∩N(u)|
5 for each vertex v ∈ P\N(u) do
6 clique(P∩N(v),R∪{v},X ∩N(v))
7 P← P\{v}
8 X ← X ∪{v}
9 end

The Bron–Kerbosch algorithm is a simple recursive algorithm that maintains three sets
of vertices: a partial clique R, a set of candidates for clique expansion P, and a set of
forbidden vertices X . In each recursive call, a vertex v from P is added to the partial clique
R, and the sets of candidates for expansion and forbidden vertices are restricted to include
only neighbors of v. If P∪X becomes empty, the algorithm reports R as a maximal clique,
otherwise the algorithm chooses a vertex u in P∪X called a pivot. All maximal cliques must
contain a non-neighbor of u (counting u itself as a non-neighbor), and therefore, the recursive
calls can be restricted to the intersection of P with the non-neighbors.

34 Social Network Analysis

Example 3.4. Consider the social network of ten objects shown in Figure 3.1. Algorithm 2
generates all maximal cliques {a,b,c,d,e}, {a,c, f ,g}, {c,h, i} and {i, j} shown in Figure
3.6 where intra-cluster similarities of objects are higher and each cluster capture the natural
structure of objects that reflects their relationship.

Fig. 3.6 Clique based clustering of data objects {a,b,c,d,e, f ,g,h, i, j}.

Computing both the pivot and the vertex sets for the recursive calls can be done in time
O(|P| · (|P|+ |X |)) within each call to the algorithm, using an adjacency matrix to quickly
test the adjacency of pairs of vertices. This pivoting strategy, together with this adjacency-
matrix-based method for computing the pivots, leads to a worst case time bound of O(3n/3)

for listing all maximal cliques.

3.5 Summary

To analyze experimental data in a variety of scientific disciplines, a large collection of
clustering algorithms is available. In the scientific literature, new clustering programs are
constantly appearing. The majority of these algorithms, however, are based on two popular
clustering techniques: partitional clustering and agglomerative hierarchical clustering.

This chapter focused on the theoretical concepts of different clustering techniques and
the measures used in these techniques: distance measure and similarity measure. It explained

3.5 Summary 35

the violation of TI for detecting clusters in a social network using traditional clustering
techniques and finally described a clique-guided approach to detect meaningful clusters.

Chapter 4

A Quantum Logic-based Model for
Non-TI Clustering

The origins of quantum mechanics (QM) can be traced back to the early twentieth century.
Physicists such as Einstein, Planck, Bohr, Schrödinger, and Heisenberg had a significant im-
pact on the theory. It is concerned with elementary particle phenomena such as measurement
uncertainty in closed microscopic physical systems and entangled states. In recent years,
computer scientists have become interested in quantum mechanics as they attempt to use its
power to solve computationally difficult problems.

Quantum logic, first developed by Birkhoff and Neumann [1936], is an appealing part of
the mathematical formalism of quantum mechanics. Quantum logic is an unconventional
logic that is based on projectors of a complex separable Hilbert space. Many mathematicians
have investigated quantum logic’s properties. A concise summary of the most important
findings is given in Beltrametti and Fraassen [1981], Lock and Hardegree [1985a], Lock and
Hardegree [1985b], and Ziegler [2005].

Schmitt [2008] developed the Commuting Quantum Query Language (CQQL), a query
language that is rooted in the mathematical formalism of quantum mechanics. This language
is used in this thesis as the query language for non-TI clustering.

Section 4.1 in this thesis explains how Schmitt [2008] defines and employs the funda-
mental principles of quantum mechanics to develop a retrieval model resulting in CQQL.
Section 4.2 then presents CQQL and its formal evaluation procedure. The use of weights
to customize CQQL queries is discussed in Section 4.3. The capabilities of CQQL as a
multimodal logical query language are demonstrated through an example in Section 4.4.
Section 4.5 illustrates how CQQL can be viewed as a non-TI clustering implementation, with
the help of a flow diagram. Finally, the chapter concludes in Section 4.6 with a discussion of
clustering properties.

38 A Quantum Logic-based Model for Non-TI Clustering

4.1 Theoretical Concept of Commuting Quantum Query
Language

Traditional database systems based on Boolean logic typically evaluate each database object
to determine if it is part of the result set, returning a Boolean value of true for a perfect
match and false otherwise (ignoring the unknown case). However, this approach fails to meet
user requirements in text retrieval searches, where a complete match is often impossible or
when vague aspects are part of the query. To address these issues, various query languages
have been proposed that incorporate vague or imprecise predicates through the use of fuzzy
logic. Fuzzy set theory and its derivatives have been applied in various areas of information
retrieval (IR).

A Fuzzy set consists of a set of ordered pairs, the first element of which denotes an
element of a predefined universe and the second the degree of membership of that element as
value from interval [0,1]. This membership values µ can be interpreted as similarity values
in the IR domain. But fuzzy set theory suffers from weaknesses in the context of IR.

First, Fuzzy set theory only deals with membership values, not considering the origin
or meaning of these values (such as the evaluation of a database or information retrieval
condition). Hence, the entire theory is built solely on the basis of membership values.

Second, the dominance problem affects some fuzzy set operations such as union (∪),
intersection (∩) and complement (¬). For instance, if X is a set of objects represented by
x and µ(x) is its membership function, Zadeh [1965] suggests using the min function for
intersection, max function for union, and 1−µ(x) for complement. However, the dominance
problem arises with the use of the min function, which only returns the minimum of two
values and ignores the larger value, as well as their absolute difference. This can lead to
unexpected results, as demonstrated in [Lee et al. 1994]. For example, min(0.1,0.9) and
min(0.1,0.2) both return 0.1, neglecting the significant difference in similarity between the
two cases. As a result, one value dominates the other, losing potentially valuable information.

Third, not all fuzzy set operations obey the laws of Boolean algebra. Although min/max
are idempotent, they violate the complement axiom, as follows:

For example, for µ(x) = 0.5,

µx∧¬x(x) = min(µ(x),1−µ(x)) = min(0.5,0.5) = 0.5 ̸= 0

Substituting min/max by other t-norms/t-conorms cause other violations of the
Boolean algebra described by Fagin and Wimmers [2000]. One alternative to min/max
is to express the intersection by the algebraic product (x · y) and the union by the algebraic

4.1 Theoretical Concept of Commuting Quantum Query Language 39

sum (x+ y− x · y). By involving both values in the evaluation, this function set overcomes
the dominance problem. It equals the CQQL formula presented by Schmitt [2008] but is
not idempotent in the case of fuzzy logic because the fuzzy model does not account for the
properties of the projector lattice:

x∧ x⇝ x · x = x2 ̸= x

The CQQL query language offers the ability to calculate the similarity between two
objects by incorporating both Boolean and similarity conditions into logical-based queries.
It also enables the addition of weighting to the query. The similarity values used in the
queries typically range from 0 to 1 and are used to determine the proximity of attribute values
between the two objects being compared.

Schmitt’s [2008] works are based on the mathematical formalism of quantum mechanics,
but this dissertation does not intend to provide a comprehensive introduction or discussion
of QM. It only provides a general overview of the core concepts necessary to understand
CQQL. For a more in-depth definition and understanding of the theoretical foundations of
CQQL, it is recommended to refer to Schmitt [2008].

The Dirac (or bra-ket) notation, which is explained in Section 2.4, is used in all definitions
and throughout the rest of the thesis. The formalism of quantum mechanics deals with vectors
of a complex separable Hilbert space H. Schmitt’s [2008] presented four postulates sketched
below:

"Postulate 1: Every closed physical microscopic system corresponds to a separable complex
Hilbert space and every state of the system is completely described by a ket vector |ϕ⟩ of
length one.

Postulate 2: Every evolution of a state |ϕ⟩ can be represented by the product of |ϕ⟩ and an
orthonormal operator.

Postulate 3: This postulate describes how to measure a state, which entails calculating
the probability of various outcomes. When a specific outcome is measured, the system
switches to that mode automatically. Here, we focus on a simplified measurement provided
by projectors (each one represents one possible outcome and is bijectively associated with
one vector subspace). The probability of an outcome associated with a projector p and a
state |ϕ⟩ is defined by

⟨ϕ|p|ϕ⟩= ⟨ϕ|
(

∑i |i⟩⟨i|
)
|ϕ⟩= ∑i ⟨ϕ|i⟩⟨i|ϕ⟩

Thus, the probability value equals the squared length of the state vector |ϕ⟩ after its projec-
tion onto the subspace spanned by the vectors |i⟩. Due to normalization, the probability

40 A Quantum Logic-based Model for Non-TI Clustering

value, furthermore, equals geometrically the squared cosine of the minimal angle between
|ϕ⟩ and the subspace represented by p.

Postulate 4: This postulate defines how to assemble various quantum systems into one
system. The base vectors of the composed system are constructed by applying the tensor
product ′⊗′ on the subsystems base vectors."

[Schmitt 2008]
The core concept of using quantum mechanics for database querying involves representing

objects as state vectors and queries as projectors within a carefully crafted vector space.
In this setup, a state vector, serving as a database object, holds all possible measurement
outcomes, while queries, represented as projectors, specify subspaces. Table 4.1 shows how
retrieval concepts are related to quantum mechanics concepts.

Table 4.1 Concepts that are associated with database querying and quantum mechanics

Database querying Quantum mechanics
Database tuple State vector
Query Projector
Query processing Quantum measurement
Truth values Probability values
Boolean logic Quantum logic

CQQL, being a quantum logic-based query language, requires an understanding of
quantum logic (QL). QL was first introduced by Neumann [1932] and Birkhoff and Neumann
[1936] and is a logic used to analyze formal structures within the Hilbert space.

Let P be the set of all projectors of a vector space H of dimensions greater than two.
Each projector p ∈ P is bijectively related to a closed subspace via p(H) = {p |ϕ⟩ | |ϕ⟩ ∈H}.
The subset relation p1(H)⊆ p2(H) on P which is equivalent to p2 p1 = p1 p2 = p1 forms a
complete poset. Furthermore, we obtain a lattice with the binary operations meet (∧) and join
(∨) being defined as intersection of the corresponding subspaces and linear hull of vectors of
their union

pp1(H)∧ pp2(H)≡ pp1(H)∩p2(H)

pp1(H)∨ pp2(H)≡ pclosure(p1(H)∪p2(H))

where closure() yields the set of all possible vector linear combinations.
The negation (orthocomplement) for our quantum logic is defined as ¬p≡ I− p encom-

passing all projectors being orthogonal to p.

4.2 Construction and Arithmetic Evaluation of CQQL 41

Quantum logic violates the distributive law and therefore cannot form a Boolean algebra,
which is required for CQQL to be relationally complete. This is proven in Schmitt [2008].
To address this issue, it is necessary to identify a sublattice of quantum logic that complies
with Boolean algebra laws, which can be achieved by considering commuting projectors.

Definition 4.1 (commuting projectors). "Two projectors p1 and p2 of a vector space H are
called commuting projectors if and only if p1 p2 = p2 p1 holds.

From linear algebra we know that two projectors p1 = ∑i |i⟩⟨i| and p2 = ∑ j | j⟩⟨ j| com-
mute if and only if their ket vectors |i⟩ and | j⟩ are basis vectors of the same orthonormal
basis of the underlying vector space. In that case, we can write p1 = ∑i1 |ki1⟩⟨ki1 | and
p2 = ∑i2 |ki2⟩⟨ki2 | where the ket vectors |ki⟩ form an orthonormal basis. If two projectors
commute then their join corresponds to the union of the respective one-dimensional operators
{
∣∣ki j

〉〈
ki j

∣∣} and their meet to their intersection. Thus, all projectors over a given orthonormal
basis form a Boolean algebra."

[Schmitt 2008]
To summarize, QL is a generalization of Boolean algebra that violates the distributivity

law. As a result, QL’s expressive power must be limited to only allow commuting projectors -
hence Schmitt’s proposed query language’s name: the commuting quantum query language
(CQQL).

This dissertation focuses on the evaluation rules of CQQL and how the query language can
be used, rather than delving into the details of how CQQL is derived from QL or the mapping
of database or retrieval conditions to state vectors. It is recommended to refer to Schmitt
[2008] (the central work on CQQL and its origin in QL) for a complete understanding of the
theoretical aspects. To continue with the thesis, it is only necessary to have an understanding
of the summarized comparisons presented in Table 4.1.

4.2 Construction and Arithmetic Evaluation of CQQL

This section of the dissertation sketches the construction and evaluation of CQQL based on
the discussion presented in Schmitt [2008].

Definition 4.2 (Basic CQQL elements). "Let A = {a j} be a finite set of attributes and
AC = {aci(a j)} be a finite set of atomic attribute conditions of the form:

• ′a j = value′ (Boolean or database condition), or

• ′a j ≈ value′ (retrieval or proximity condition).

42 A Quantum Logic-based Model for Non-TI Clustering

Let furthermore be given a function vs(aci(a j)) = {aci
1, ...,aci

k} which assigns to every
condition a set of orthonormal vectors forming a vector subspace. The condition set AC is
called commutative if ∀aci1(a j1),aci2(a j2) ∈ AC : (type(aci1(a j1)) ̸= d∧ type(aci2(a j2)) ̸=
d∧ j1 = j2) =⇒ i1 = i2 holds where type returns d for a database condition and p or r for a
proximity or retrieval condition, respectively.

Commutativity means that no two proximity or retrieval conditions ′a j ≈ value′1 and
′a j ≈ value′2’ with value1 ̸= value2 on the same attribute a j are allowed.

Lemma 4.1. Let AC be a commutative set of atomic conditions over A = {a j}. The set
CV S(AC) =

⋃
aci(a j)∈AC vs(aci(a j)) is a set of mutually orthonormal projectors.

The lemma is a direct consequence of how the mapping function vs is realized (for more
details see Schmitt [2008]). It is very essential because it means that every subset of CV S(AC)

spans a vector subspace and corresponds bijectively to a CQQL condition."
[Schmitt et al. 2008]

Definition 4.3 (CQQL conditions). Let AC be a set of atomic conditions on database tuples
(objects). In this set, there is a constraint that no two distinct similarity conditions are
expressed concerning the same attribute. Each ac(o1,o2) ∈ AC is a binary condition on two
objects that measures the closeness of two given objects based on the values of an attribute.
A CQQL condition ϕ(o1,o2) on an object pair (o1,o2) is recursively defined by

ϕ(o1,o2)
de f
= ac(o1,o2) ∈ AC,

ϕ(o1,o2)
de f
= (ϕ1(o1,o2)∧ϕ2(o1,o2)),

ϕ(o1,o2)
de f
= (ϕ1(o1,o2)∨ϕ2(o1,o2)),

ϕ(o1,o2)
de f
= (¬ϕ1(o1,o2))

where ϕ1, ϕ2 are CQQL conditions with

vs(ϕ1∧ϕ2) = vs(ϕ1)∩ vs(ϕ2)⊆CV S(AC)

vs(ϕ1∨ϕ2) = vs(ϕ1)∪ vs(ϕ2)⊆CV S(AC)

vs(¬ϕ1) =CV S(AC)\ vs(ϕ1)⊆CV S(AC)

Theorem 4.1. "All CQQL conditions over a commutative set of atomic conditions together
with conjunction, disjunction, and negation form a boolean algebra.

4.2 Construction and Arithmetic Evaluation of CQQL 43

Proof. The function vs maps bijectively every condition to a subset of CV S(AC). Conjunc-
tion, disjunction, and negation are mapped to corresponding set operations. A set together
with these standard set operations is a boolean algebra."

[Schmitt 2008]

Arithmetic Evaluation of CQQL

"A CQQL condition can be evaluated using simple and straightforward arithmetic" [Schmitt
2008] (see Figure 4.1). The necessary syntax normalization algorithm has been omitted here
for the sake of simplicity but described with an example in Appendix B. Schmitt [2008]
provide a comprehensive description of the algorithm. Because CQQL follows the laws
of Boolean algebra, the operations carried out by the algorithm can be easily understood.
Therefore, all CQQL conditions can be transformed into the necessary syntactical form,
making it possible to apply Boolean transformation rules.

Fig. 4.1 Transformation of CQQL queries.

Definition 4.4 (CQQL evaluation). Let eval(ϕ(o1,o2)) be the evaluation of a condition ϕ

on two objects o1 and o2 in a special syntactical normal form. If ϕ is an atomic condition,
eval(ϕ(o1,o2)) forms the base case for the evaluation of a condition and results either a
Boolean or similarity value for the pair of objects, o1 and o2, i.e.,

• for a Boolean or database condition, where 0 means f alse and 1 refers to true:

eval(ϕ(o1,o2))→{0,1}

• for a retrieval or similarity condition, where 0 indicates maximum dissimilarity and 1
maximum similarity:

eval(ϕ(o1,o2))→ [0,1]

44 A Quantum Logic-based Model for Non-TI Clustering

which fulfils the following properties:

• Reflexivity: ϕ(o1,o1) = 1

• Symmetric: ϕ(o1,o2) = ϕ(o2,o1).

Subsequently, the evaluation of a CQQL condition in a special syntactical normal form is
performed by recursively applying the succeeding formulas until the base case is reached:

eval(ϕ1∧ϕ2) = eval(ϕ1) · eval(ϕ2) (4.1)

eval(ϕ1∨ϕ2) = eval(ϕ1)+ eval(ϕ2)− eval(ϕ1) · eval(ϕ2) (4.2)

eval(ϕ1
.
∨ϕ2) = eval(ϕ1)+ eval(ϕ2) (4.3)

eval(¬ϕ1) = 1− eval(ϕ1) (4.4)

For simplification, the objects o1 and o2 are dropped here. The dot (.) over disjunction
operator (∨) signals an exclusive disjunction (

.
∨).

Equation 1 and 2 applies when ϕ1 and ϕ2 are not exclusive and equation 3 applies when
ϕ1 and ϕ2 are exclusive (i.e. eval(ϕ1∧ϕ2) = 0).

An example demonstrating the application of CQQL as a query language for social
network clustering will be provided in Section 4.5 after discussing another aspect of the
language, which is the integration of weighted logical connectors.

4.3 Weighting of CQQL Conditions

CQQL uses weights to reflect the varying significance of sub-conditions within a query, while
maintaining consistency with Boolean algebra. The weights Θ = θi are considered to be
values within the range of [0,1]. These weights allow for the sub-conditions in a conjunction
or disjunction to have varying levels of influence on the outcome of the evaluation.

The idea behind weighted CQQL queries is straightforward: every logical connector is
assigned a weight to regulate its operand’s impact on the evaluation outcome. To convert
this weighted query into a weightless logical formula, Schmitt [2019] proposes transforming
the weighting variables θi ∈ [0,1] attached to the logical connectors into constants. When
θi = 0, the operand has no effect on the result, and when θi = 1, the operand behaves as in
an unweighted scenario. The formalization of weighted CQQL queries qΘ can be done by
following the cases:

• Weights based on the Influence of Objects

4.3 Weighting of CQQL Conditions 45

• Complimented Form of a Weight

The details of these cases are discussed in the following subsections.

4.3.1 Weights based on the Influence of Objects

The weight θi regulates the impact of a condition ϕi for a weighted conjunction ϕ1∧θ1,θ2 ϕ2

and an analogous disjunction ϕ1 ∨θ1,θ2 ϕ2. The core idea of this approach is the direct
transformation of a weighted conjunction or disjunction into a logical expression in which
weight values are converted into score values:

ϕ1∧θ1,θ2 ϕ2 = (ϕ1∨¬θ1)∧ (ϕ2∨¬θ2) (4.5)

ϕ1∨θ1,θ2 ϕ2 = (ϕ1∧θ1)∨ (ϕ2∧θ2) (4.6)

Therefore the arithmetic evaluation of the weighted conjunction and weighted disjunction
is:

eval(ϕ1∧θ1,θ2 ϕ2) = (ϕ1 +¬θ1−ϕ1 ·¬θ1) · (ϕ2 +¬θ2−ϕ2 ·¬θ2) (4.7)

eval(ϕ1∨θ1,θ2 ϕ2) = (ϕ1 ·θ1)+(ϕ2 ·θ2)− (ϕ1 ·ϕ2 ·θ1 ·θ2) (4.8)

where ¬θx = 1−θx.
Table 4.2 presents the "truth" table for the weighted conjunction and disjunction under

various weight configurations.

Table 4.2 Impact of Weights in CQQL

ϕ1 ϕ2 θ1 θ2 ϕ1∨¬θ1 ϕ2∨¬θ2 ϕ1∧θ1,θ2 ϕ2 ϕ1∧θ1 ϕ2∧θ2 ϕ1∨θ1,θ2 ϕ2

0.3 0.7

0.0 0.0 1.0 1.0 1.00 0.0 0.0 0.00
0.0 1.0 1.0 0.7 0.70 0.0 0.7 0.70
1.0 0.0 0.3 1.0 0.30 0.3 0.0 0.30
1.0 1.0 0.3 0.7 0.21 0.3 0.7 0.79

For a logical connector of any arbitrary n-ary, the concept is generalized by asso-
ciating the operands with the respective weight constants. Thus, a ternary conjunction
∧θ1,θ2,θ3(ϕ1,ϕ2,ϕ3) is transformed into:

∧θ1,θ2,θ3(ϕ1,ϕ2,ϕ3) = (ϕ1∨¬θ1)∧ (ϕ2∨¬θ2)∧ (ϕ3∨¬θ3) (4.9)

∧θ1,θ2,θ3(ϕ1,ϕ2,ϕ3) = (ϕ1 +¬θ1−ϕ1 ·¬θ1) · (ϕ2 +¬θ2−ϕ2 ·¬θ2) · (ϕ3 +¬θ3−ϕ3 ·¬θ3)

(4.10)

46 A Quantum Logic-based Model for Non-TI Clustering

The disjunction is treated analogously:

∨θ1,θ2,θ3(ϕ1,ϕ2,ϕ3) = (ϕ1∧θ1)∨ (ϕ2∧θ2)∨ (ϕ3∧θ3) (4.11)

Equation 4.10 suggests the possible intricacy of the evaluation that results from the rules
presented earlier. The formula includes a non-exclusive disjunction, which increases the
computational cost of the evaluation due to the arithmetic sum (a+b−a ·b) (as shown in
Equation 4.2).

Fortunately, adding weights to CQQL does not violate its Boolean algebra property (proof
can be found in Schmitt 2019). This means that all Boolean transformation rules hold and
can be employed to simplify complex logical statements, as demonstrated in an example:

(ϕ1∧θ1)∨ (ϕ2∧θ2)∨ (ϕ3∧θ3)~www�Double negation

(ϕ1∧θ1)∨ (ϕ2∧θ2)∨ (ϕ3∧θ3)~www�De Morgan’s law

(ϕ1∧θ1)∧ (ϕ2∧θ2)∧ (ϕ3∧θ3)~www�Arithmetic evaluation

1− ((1− (ϕ1 ·θ1)) · (1− (ϕ2 ·θ2)) · (1− (ϕ3 ·θ3)))

Therefore the arithmetic evaluation of the ternary disjunction of Equation 4.11 is:

eval(∨θ1,θ2,θ3(ϕ1,ϕ2,ϕ3)) = 1− ((1− (ϕ1 ·θ1)) · (1− (ϕ2 ·θ2)) · (1− (ϕ3 ·θ3))) (4.12)

4.3.2 Complimented Form of a Weight

We present an interesting special case of a weighting that requires fewer weighting variables
compared with the previous weighting concept. It is simply a complemented form of a weight
one against another:

ϕ1∧θ ϕ2 = (ϕ1∨¬θ)∧ (ϕ2∨θ) (4.13)

ϕ1∨θ ϕ2 = (ϕ1∧θ)
.
∨ (ϕ2∧¬θ) (4.14)

After undergoing a logical normalization process to achieve a special syntactical normal
form, the weighted conjunction or disjunction will be evaluated between two objects o1

and o2 using basic arithmetic operations like addition, subtraction, and multiplication. The

4.4 CQQL: A Logical Query Language with Multiple Modes 47

evaluation formula of the weighted disjunction is the weighted sum that results from this
process.

eval(ϕ1
.
∨θ ϕ2) = ϕ1 ·θ +ϕ2 · (1−θ) (4.15)

Very surprisingly, logical transformation based on Boolean algebra shows that connected
weights in a conjunction equals exactly connected weights in a disjunction.

(ϕ1∨¬θ)∧ (ϕ2∨θ)

↓
(ϕ1∧ϕ2)∨ (ϕ1∧θ)∨ (ϕ2∧¬θ)∨ (θ ∧¬θ)

↓
(ϕ1∧ϕ2∧θ)∨ (ϕ1∧ϕ2∧¬θ)∨ (ϕ1∧θ)∨ (ϕ2∧¬θ)

↓
(((ϕ1∧ϕ2)∨ϕ1)∧θ)

.
∨ (((ϕ1∧ϕ2)∨ϕ2)∧¬θ)

↓
(ϕ1∧θ)

.
∨ (ϕ2∧¬θ)

Therefore the arithmetic evaluation of the weighted conjunction is also the weighted sum:

eval(ϕ1∧θ ϕ2) = ϕ1 ·θ +ϕ2 · (1−θ)” (4.16)

Schmitt et al. [2008] summarizes the weighting approach, which shows the following
properties:

1. An operand with zero weight has no impact on the result.

2. An operand with a weight of one behaves equivalently to an unweighted operand.

3. Weighting is achieved through conjunction, disjunction, and negation, ensuring that
all the rules of Boolean algebra remain applicable. In contrast, many other weighting
methods, like the one proposed by Fagin and Wimmers [2000], involve arithmetic
operations outside the logical framework, thereby contradicting the laws of Boolean
algebra.

4.4 CQQL: A Logical Query Language with Multiple Modes

As previously mentioned, CQQL offers a way to merge different retrieval approaches and
weights to express the significance of various conditions (which is subjective). This section
illustrates how CQQL can be employed in Non-TI clustering through the use of an example.

48 A Quantum Logic-based Model for Non-TI Clustering

Example 4.1. In a social network comprising former students of a school, consider a set
of n people denoted as P = p1, p2, ..., pn. The degree of similarity among these people can
effectively be expressed by considering their respective admission and graduation years.

The similarity value between two people p1 and p2 can be expressed as a CQQL condition
q as:

q(p1, p2) = school(p1, p2)∧
(

graduation(p1, p2)∧admission(p1, p2)
)

︸ ︷︷ ︸
con junction

(4.17)

Alternatively

q(p1, p2) = school(p1, p2)∧
(

graduation(p1, p2)∨admission(p1, p2)
)

︸ ︷︷ ︸
dis junction

(4.18)

where

school(p1, p2) = (p1.school = p2.school)

graduation(p1, p2) = (p1.graduation≈ p2.graduation)

admission(p1, p2) = (p1.admission≈ p2.admission)

The similarity between two people can be effectively represented by considering both their
admission year and graduation year. However, it’s worth noting that friends can complete
their degrees in different graduating classes while still sharing the same admission year. Due
to this variation in graduation years, the impact of their respective similarity values on the
final result should be relatively minor. Therefore, the CQQL query q(p1, p2) can be written
as a weighted CQQL query qΘ(p1, p2) with weight variables Θ = {θi}. A weighting function
w assigns every weight variable θi ∈Θ a value from [0,1].

Weighted conjunction

1. Complimented form of a weight
Following Schmitt [2019], we reformulate the query q in Equation 4.17 by assigning a
weight to each atomic condition in a complimented form of one against other.

4.4 CQQL: A Logical Query Language with Multiple Modes 49

qΘ(p1, p2) = school(p1, p2)∧
(

graduation(p1, p2)∧θ admission(p1, p2)
)

(4.19)

To perform the evaluation of this query, the weighted conjunction needs to undergo
transformation following the rules outlined in Section 4.3:

(p1.school = p2.school)∧
((p1.graduation≈ p2.graduation∨¬θ)∧ (p1.admission≈ p2.admission∨θ))~�

(p1.school = p2.school)∧
((p1.graduation≈ p2.graduation∧θ)

.
∨ (p1.admission≈ p2.admission∧¬θ))

To facilitate reading, the query will be subdivided into parts that are evaluated sepa-
rately.

(p1.school = p2.school)︸ ︷︷ ︸
school︸ ︷︷ ︸

db_part

∧

((p1.graduation≈ p2.graduation︸ ︷︷ ︸
graduation

∧θ)

︸ ︷︷ ︸
weighted_graduation

.
∨(p1.admission≈ p2.admission︸ ︷︷ ︸

admission

∧¬θ)

︸ ︷︷ ︸
weighted_admission

)

︸ ︷︷ ︸
retrieval_part

Using Equation 4.16 the arithmetic evaluation of qΘ(p1, p2) yields:

weighted_graduation← graduation ·θ ∈ [0,1]

weighted_admission← admission · (1−θ) ∈ [0,1]

retrieval_part← weighted_graduation+weighted_admission ∈ [0,1]

db_part← school ∈ {0,1}

⇓
db_part · retrieval_part ∈ [0,1]

2. Weights based on Influence
we reformulate the query q in Equation 4.17 by assigning weights to each atomic
condition.

qΘ(p1, p2)= school(p1, p2)∧
(

graduation(p1, p2)∧θ1,θ2 admission(p1, p2)
)

(4.20)

50 A Quantum Logic-based Model for Non-TI Clustering

To perform the evaluation of this query, the weighted conjunction needs to undergo
transformation following the rules outlined in Section 4.3:

(p1.school = p2.school)∧
((p1.graduation≈ p2.graduation∨¬θ1)∧ (p1.admission≈ p2.admission∨¬θ2))

To facilitate reading, the query will be subdivided into parts that are evaluated sepa-
rately.

(p1.school = p2.school)︸ ︷︷ ︸
school︸ ︷︷ ︸

db_part

∧

((p1.graduation≈ p2.graduation︸ ︷︷ ︸
graduation

∨¬θ1)

︸ ︷︷ ︸
weighted_graduation

∧(p1.admission≈ p2.admission︸ ︷︷ ︸
admission

∨¬θ2)

︸ ︷︷ ︸
weighted_admission

)

︸ ︷︷ ︸
retrieval_part

Using Equation 4.16 the arithmetic evaluation of qΘ(p1, p2) yields:

weighted_graduation←
(

graduation+(1−θ1)−graduation · (1−θ1)
)
∈ [0,1]

weighted_admission←
(

admission+(1−θ2)−admission · (1−θ2)
)
∈ [0,1]

retrieval_part← weighted_graduation ·weighted_admission ∈ [0,1]

db_part← school ∈ {0,1}

⇓
db_part · retrieval_part ∈ [0,1]

Weighted disjunction

1. Complimented form of a weight
We reformulate the query q in Equation 4.18 by assigning a weight in a disjunction to
each atomic condition in a complimented form of one against other.

qΘ(p1, p2) = school(p1, p2)∧
(

graduation(p1, p2)
.
∨θ admission(p1, p2)

)
(4.21)

But the logical transformation in Section 4.3.2 shows that connected weights in a
conjunction equals exactly connected weights in a disjunction. That means,

4.4 CQQL: A Logical Query Language with Multiple Modes 51

school(p1, p2)∧ (graduation(p1, p2)∧θ admission(p1, p2)) =

school(p1, p2)∧ (graduation(p1, p2)
.
∨θ admission(p1, p2))

Therefore, the formulation and evaluation are the same as described in 4.4.

2. Weights based on Influence
For more than one weighting variable, we reformulate the query q in Equation 4.18 by
assigning weights to each atomic condition.

qΘ(p1, p2)= school(p1, p2)∧
(

graduation(p1, p2)∨θ1,θ2 admission(p1, p2)
)

(4.22)

To perform the evaluation of this query, the weighted conjunction needs to undergo
transformation following the rules outlined in Section 4.3:

(p1.school = p2.school)∧
((p1.graduation≈ p2.graduation∧θ1)∨ (p1.admission≈ p2.admission∧θ2))

To facilitate reading, the query will be subdivided into parts that are evaluated sepa-
rately.

(p1.school = p2.school)︸ ︷︷ ︸
school︸ ︷︷ ︸

db_part

∧

((p1.graduation≈ p2.graduation︸ ︷︷ ︸
graduation

∧θ1)

︸ ︷︷ ︸
weighted_graduation

∨(p1.admission≈ p2.admission︸ ︷︷ ︸
admission

∧θ2)

︸ ︷︷ ︸
weighted_admission

)

︸ ︷︷ ︸
retrieval_part

Using Equation 4.16 the arithmetic evaluation of qΘ(p1, p2) yields:

db_part← school ∈ {0,1}

weighted_graduation←
(

graduation ·θ1

)
∈ [0,1]

weighted_admission←
(

admission ·θ2

)
∈ [0,1]

retrieval_part←
(

weighted_graduation+weighted_admission

−weighted_graduation ·weighted_admission
)
∈ [0,1]

52 A Quantum Logic-based Model for Non-TI Clustering

⇓
db_part · retrieval_part ∈ [0,1]

The query condition is executed on P×P. The evaluation of qΘ(p1, p2) is realized by the
function eval(qΘ(pi, p j),w) (see Definition 4.4) which calculates a similarity value from
[0,1] for every pair of objects (pi, p j)∈P×P and hence provides a similarity matrix S = (si j).

4.5 Non-TI Clustering Approach

The flowchart in Figure 4.2 depicts our approach for discovering clusters based on similarity
values.

Fig. 4.2 Non-TI Clustering.

In our approach, we initially calculate the similarities between objects, forming a sim-
ilarity matrix. We then derive an adjacency matrix from the similarity matrix based on a

4.5 Non-TI Clustering Approach 53

threshold value, th. Using the clique approach described in Section 3.4.3, we identify the
clusters. Later we incorporate weight(s) on each atomic condition, taking into account their
relative importance in calculating the similarities between objects. Additionally, for improved
user satisfaction, we adjust the weight(s) based on relevance feedback from the user, leading
to the discovery of more meaningful clusters (for more information on relevance feedback,
read Chapter 5).

As an illustration, we can recall the Example 4.1 and take into account a weighted CQQL
query qΘ(p1, p2) that has weight variables Θ = {θi}. The weighting function w assigns a
value in the range of [0,1] to every weight variable θi ∈Θ. Therefore,

1. Considering weighted conjunction

• Complimented form of a weight
Assigning a weight to each atomic condition in a complimented form of one
against other, the arithmetic evaluation of Equation 4.19 yields:.

school(p1, p2) ·
(

graduation(p1, p2) ·θ +admission(p1, p2) · (1−θ)
)

• Weights based on Influence
Considering the weighted query qΘ(p1, p2) with two weight variables θ1,θ2 ∈Θ,
the arithmetic evaluation of 4.20 yields:

school(p1, p2) ·
(
(graduation(p1, p2)+(1−θ1)−graduation(p1, p2) · (1−

θ1)) · (admission(p1, p2)+(1−θ2)−admission(p1, p2) · (1−θ2))
)

2. Considering weighted disjunction

• Complimented form of a weight
The logical transformation in Section 4.3.2 shows that connected weights in a
conjunction equals exactly connected weights in a disjunction. Therefore, the
arithmetic evaluation of Equation 4.21 yields:.

school(p1, p2) ·
(

graduation(p1, p2) ·θ +admission(p1, p2) · (1−θ)
)

• Weights based on Influence
Considering the weighted query qΘ(p1, p2) with two weight variables θ1,θ2 ∈Θ,
the arithmetic evaluation of 4.22 yields:

school(p1, p2) ·
(
(graduation(p1, p2) ·θ1 +admission(p1, p2) ·θ2−

graduation(p1, p2) ·admission(p1, p2) ·θ1 ·θ2)
)

54 A Quantum Logic-based Model for Non-TI Clustering

The query condition is executed on P×P. The evaluation of qΘ(p1, p2) is done through
the use of the function eval(qΘ(pi, p j),w) which determines a similarity value in the range of
[0,1] for each pair of objects (pi, p j) ∈ P×P and generates a similarity matrix S = (si j). The
adjacency matrix Ad j = {ai j} can be derived from the similarity matrix S by using Equation
4.23 with a set threshold value th.

ai j =

1 if si j ≥ th

0 otherwise
(4.23)

Next, an undirected graph G is constructed using the adjacency matrix Ad j. With the
algorithm presented by Bron and Kerbosch [1973], maximal cliques can be discovered in G,
which are lists of vertex subsets that have two properties: every pair of vertices in one of the
listed subsets is connected by an edge, and no additional vertices can be added to the listed
subset while preserving its complete connectivity. Cliques are considered as clusters, though
it is important to note that they can overlap.

4.6 Clustering Properties

Let P = {p1, p2, ..., pn} be a finite set of actors (objects) having two attributes admission and
graduation and S = {pi j} be a similarity matrix which consists of similarity values for pairs
of actors.. For simplicity, we use A for admission and G for graduation. Hence an adjacency
matrix Ad j = {ai j} can be derived from the similarity matrix S by applying Equation 4.23
with threshold th where ai j = 1 means there is an edge (similar) between pi and p j and
ai j = 0 means no edge (dissimilar).

Property 4.1 (Set Operation). If EA ⊆ P×P is a set of edges based on A and EG ⊆ P×P
is a set of edges based on G, then EA∧θ G is a set of edges of weighted conjunction or
EA∨θ G is a set of weighted disjunction of A and G with weighted variable θ ∈ [0,1] so that
EA∧θ G,EA∨θ G ⊆ EA∪EG holds.

Proof. Using Equation 4.16 it can be demonstrated easily that if θ = 1 then EA∧θ G = EA =

EA∨θ G and if θ = 0 then EA∧θ G = EG = EA∨θ G and for other values of θ within [0,1],
EA∧θ G,EA∨θ G ⊆ EA or EA∧θ G,EA∨θ G ⊆ EG or EA∧θ G,EA∨θ G ⊆ EA∩EG.

4.7 Summary

In summary, this chapter focused on the mathematical formalism of CQQL based on quantum
mechanics. It described the construction and arithmetic evaluation of a CQQL query. It

4.7 Summary 55

explains how weights can be incorporated into a query based on influences to personalize
the CQQL query. With an example, we explained how CQQL can be used as a multimodal
logical query language. Using a flow diagram, we explained our proposed non-TI clustering
approach. This chapter concluded with clustering properties.

Chapter 5

Relevance Feedback-based Learning of
Personalized CQQL Queries

Personalization is the act of customizing information outcomes to meet an individual’s
specific information needs (IN). This is crucial because a single query result may not fulfill
the user’s expectations. Personalization has a long history in information retrieval (IR), with
many methods having been developed over the years. These methods can be divided into two
types: explicit and implicit [Hearst 2009, cf. Ch. 9]. Explicit personalization is when the user
directly provides information about their IN, such as in the case of relevance feedback (RF).
Implicit personalization is when the user’s IN is inferred based on their feedback history or
query log data.

Commercial web IR engines often use implicit personalization techniques, such as con-
sidering the user’s location and profile, or reordering results based on data analysis of query
logs or click-through records. Explicit personalization strategies include recommendations,
such as frequently viewed clusters or term options for the user to select from. Personal-
ization is linked to query reformulation, which entails modifying a query after reviewing
the initial results. In IR, query reformulation can be facilitated through term suggestions or
reformulation (RF).

For clarity, we group personalization and RF into the same category since RF in CQQL
does not modify the logical structure of a query. The term "query reformulation" refers only
to alterations made to the logical structure of a query.

58 Relevance Feedback-based Learning of Personalized CQQL Queries

5.1 Relevance Feedback

Introduced in the mid-1960s, relevance feedback (RF) is a technique that helps users in
improving the quality of their query statements. Users can select nodes expected to reside in
the same cluster to their needs and submit that information to the IR system. The information
can then be utilized to find clusters that satisfy the user’s needs [Ruthven 2001]. RF is a
cyclical process: a set of clusters retrieved in response to an initial query are presented to the
user, who indicates whether clusters are meaningful or not. The system uses this information
to generate a modified query, which is then used to retrieve a new set of clusters for the user
to view. This process is known as an iteration of RF and repeats until it satisfies the user’s
needs as shown in Figure 5.1.

Fig. 5.1 Relevance feedback.

5.2 Types of Relevance Feedback

The types which are mainly discussed in Relevance Feedback are explicit feedback, implicit
feedback, and pseudo feedback.

5.2.1 Explicit Feedback

Assessors of relevance provide explicit feedback on the relevance of nodes retrieved for a
query. Only when the assessors (or other system users) are aware that the feedback provided
is understood as relevance judgments is this form of input classified as explicit.

5.2 Types of Relevance Feedback 59

Users can use a binary or graded relevance system to express their significance. For a
particular query, binary relevance feedback tells whether a document is relevant or irrelevant.
On a scale of numbers, letters, or descriptions, graded relevance feedback reveals the
relevance of a document to a query (such as "not relevant", "somewhat relevant", "relevant",
or "very relevant"). Graded relevance can alternatively be expressed as a cardinal ordering of
documents established by an assessor, in which the assessor arranges documents in a result
set in order of (typically descending) significance.

Fig. 5.2 Explicit relevance feedback.

Figure 5.2 shows the flowchart of a typical Content based image retrieval process with
relevance feedback [Liu et al. 2007]. Based on the above general assumptions, a typical
scenario for relevance feedback in content-based image retrieval is as below [Liu et al. 2007;
Zhu and Huang 2003]:

1. The system provides initial retrieval results given query examples.

60 Relevance Feedback-based Learning of Personalized CQQL Queries

2. The user determines how relevant (positive examples) or irrelevant (negative examples)
the preceding results are to the query.

3. The user’s feedback is used to train a machine learning algorithm to create a new
ranking model. Return to Step (2) and repeat the process.

Steps (2)− (3) are repeated till the user is satisfied with the results.
Step (3) is comparably the most important step and different approaches can be used to

learn the new query. A few generally adopted approached are introduced in the following.

Re-Weighting Approaches

The explicit personalization technique of assigning weights to different parts of a query has
been used since the early days of Information Retrieval (IR). Researchers such as Lee [1994]
have explored extended Boolean models, such as Fuzzy Set, Waller-Kraft, Paice, P-Nonn,
and Infinite-One, which enable users to express the significance of their query terms by
assigning weights at the time the query is formulated (QFT). Assigning weights allows the
user to express the significance of the co-occurrence of query terms within the text.

A typical approach in step (3) is to automatically adjust the weights of low-level features
to accommodate the users’ need, rather than asking the user to specify the weights as adopted
in earlier content based image retrieval systems. This re-weighting step dynamically updates
the weights embedded in the query (not only the weights to different types of low level
features such as color, texture, shape, but also the weights to different components in the
same feature vector) to model the high-level concepts and perception subjectivity [Rui et al.
1998].

Query Point Movement Approaches

The query-point-movement (QPM) approach [Liu et al. 2007] is another method. It enhances
the query point’s estimation by moving it toward positive examples and away from negative
examples. The Rocchio’s formula [Rocchio 1971] is a widely used query point moving
technique.

Machine Learning Approaches

The use of machine learning techniques is also common. An active learning algorithm based
on support vector machines (SVM) can be used to conduct relevance feedback in image
retrieval. This algorithm identifies the most informative images to query a user and quickly
learns a boundary that distinguishes the images meeting the user’s query concept from the

5.2 Types of Relevance Feedback 61

remaining dataset. SVM offers the advantages of (i) high generalization ability and (ii)
minimal training sets.

5.2.2 Implicit Feedback

For completeness, implicit relevance feedback is noted even though it is not explored in
detail in this dissertation. The user’s behavior is used to indicate this type of feedback.
Such as the type of document they view or do not view, and the amount of time they spend
viewing a document. The user is not a participant in the feedback process. Instead, as
shown in Figure 5.3, the system derives the feedback information implicitly. There are
two basic approaches to compiling feedback information: it derives feedback information
from the top-ranked documents in the result set, which is known as local analysis, or (ii)
derive feedback information from external sources, such as a thesaurus or term relations
extracted from document collections, which is known as global analysis (read Baeza-Yates
and Ribeiro-Neto [2011], cf. Chapter 5 for details).

Fig. 5.3 Implicit relevance feedback.

62 Relevance Feedback-based Learning of Personalized CQQL Queries

5.2.3 Pseudo Feedback

Pseudo relevance feedback, often called blind relevance feedback, is a technique for per-
forming automatic local analysis. This Feedback method automates the manual part of the
feedback, resulting in better results for the user. The system locates relevant documents
and assumes that the top k rated documents are those that are relevant, using the relevance
feedback methodology. The procedure of Relevance feedback is:

1. From the initial user query q, the system generates a result set, which is a ranking of
relevant documents.

2. The top k best ranked documents in the result set are used to extract and rank the
candidate expansion terms.

3. The top m terms, or groups of terms, are added to the original query q to create a new
system query q′, depending on the ranking technique adopted.

4. The system generates a final result set, which it then sends to the user.

Fig. 5.4 Pseudo relevance feedback.

5.3 Relevance Feedback within the CQQL-based Non-TI Clustering 63

Several approaches, such as local clustering [Attar and Fraenkel 1977] and local context
analysis [Xu and Croft 1996], can be used to rank such candidate expansion terms. In the
first scenario, terms are clustered based on their frequency of co-occurrence within the top k
best ranked documents, and each term is given a score based on its distance from query terms
inside the cluster more closely connected to the query. In the second scenario, groupings
of terms are derived from the top k best ranked documents and scored using a variant of
t f − id f ranking based on their similarity to the entire query q.

5.3 Relevance Feedback within the CQQL-based Non-TI
Clustering

The core idea of relevance feedback is to modify and learn weights through user interactions
that rely completely on user feedback. The idea behind user feedback is simple: the user is
given the opportunity to modify resulting clusters.

We consider a weighted CQQL query, denoted as qΘ, applied to pairs of objects with
weight variables represented by Θ = θi. A weighting function, denoted as w, assigns
values within the range of [0,1] to the weight variable θi ∈ Θ. We use wI to refer to an
initial weighting function that sets the weight variable(s) to an initial value, which can be
either 0.5 or 1. The query is executed on pairs from n objects. The evaluation of qΘ is
accomplished through the function eval(qΘ,w). Executing eval(qΘ,w) results in a similarity
value within the range of [0,1] for each pair of objects (oi,o j) ∈ O×O, thereby generating
a similarity matrix S = (si j) with respect to the query and the specified weighting scheme.
Additionally, we make the assumption that there exists an unknown target function, denoted
as wT , associated with qΘ. This target function produces a similarity matrix that optimally
matches the user’s intended semantics of the query..

During the initial query formulation, wT is usually unknown. This presents a challenge
because the initial weighting scheme wI often generates clusters that do not align well with
the user’s expectations. Consequently, there is a need to progressively approximate the target
clusters that would be generated by wT based on user feedback.

Definition 5.1 (Feedback). Let C be a set of clusters of objects O, th ∈ [0,1] be a threshold,
c ∈C be a cluster and co⊆ O be a set of objects. Depending on the user interaction, every
feedback falls into one of the two feedback categories below:

(i) Feedback for constructing a new cluster: A feedback f co requires all objects o ∈ co
to reside in a same cluster i.e. co⊆ c ∈C produced by a weighted query qΘ. A weighting
scheme w fulfills the feedback f co if and only if

64 Relevance Feedback-based Learning of Personalized CQQL Queries

∀o1,o2 ∈ co : eval(qΘ(o1,o2),w)≥ th (5.1)

holds. That is there are edges between all object pairs.
(ii) Feedback for removing an object from a cluster: A feedback f o,c requires an object

o ∈ c should be outside of the cluster c i.e. o /∈ c produced by a weighted query qΘ. A
weighting scheme w fulfils the feedback f o,c if and only if

∃o1 ∈ c : eval(qΘ(o1,o),w)< th (5.2)

holds.

For example, if we take the complementary form of a weight from Equation 4.16, Fig-
ure 5.5 illustrates the results of evaluating the CQQL query qΘ(p1, p2) = school(p1, p2)∧(

graduation(p1, p2)∧θ admission(p1, p2)
)

. This evaluation considers various weight val-
ues for the weighting variable θ and includes three conditions related to attributes like school,
graduation, and admission. These attributes represent the similarities between two friends,
p1 and p2, with sp1,p2(1,0.6,0.3), where school(p1, p2) = 1, graduation(p1, p2) = 0.6, and
admission(p1, p2) = 0.3. The threshold th is set at 0.5 (indicated by the red horizontal line).

Considering the feedback f p1,p2 , it becomes evident that with an initial weight value of
0.5, there is no connection between p1 and p2 (highlighted in yellow). This implies that,
initially, they cannot be placed in the same cluster. However, if the user requests them to be
in the same cluster, it is achievable with a weight value of w(θ)≤ 0.33.

Fig. 5.5 Evaluation of qΘ(p1, p2) = school(p1, p2) ∧
(

graduation(p1, p2) ∧θ

admission(p1, p2)
)

with respect to θ .

5.3 Relevance Feedback within the CQQL-based Non-TI Clustering 65

Fig. 5.6 Inconsistent case of feedback f {p1,p2} (left) and f p1,{p1,p2,...} (right) for two specific
objects.

Every feedback with respect to a weighted query can be:

• Inconsistent: If no w(Θ) ∈ [0,1] can satisfy f co or f o,c (see Figure 5.6).

• Consistent: Otherwise, the feedback is called consistent (see Figure 5.5).

To provide an example of an inconsistent feedback, consider a user feedback f p1,p2 . We
can demonstrate inconsistency by setting the threshold to th= 0.5 and defining the similarities
between two friends, p1 and p2, with respect to attributes like school, graduation, and
admission as sp1,p2(1,0.1,0.4), where school(p1, p2) = 1, graduation(p1, p2) = 0.1, and
admission(p1, p2) = 0.4.

Similarly, we can show an inconsistent feedback f p1,p1,p2,... by setting the threshold
to th = 0.5 and defining the similarities as sp1,p2(1,0.98,0.51), where school(p1, p2) = 1,
graduation(p1, p2) = 0.98, and admission(p1, p2) = 0.51.

Both the feedback f p1,p2 and f p1,p1,p2,... cannot be satisfied because there is no weight
that can be found, as illustrated in Figure 5.6.

In the process of relevance feedback, clusters are shown to the user, allowing them to
make modifications based on their subjective needs. The initial point of relevance feedback
is a structured query, which, in our context, is a weighted CQQL query. Figure 5.7 shows the
state diagram of relevance feedback, and the states and transitions are defined as follows:

• Start: The system starts and initializes weight(s) w = wI .

• User interaction: A set of clusters is shown to user so that he/she can provide feedback
to modify clusters, if needed. For instance, new clusters can be stated or existing ones
may be removed.

66 Relevance Feedback-based Learning of Personalized CQQL Queries

Fig. 5.7 State diagram of relevance feedback.

• Inconsistency: If the user feedback does not fulfil the constraint, the user is notified
that the modification of clusters is not possible.

• Learning: Learning is used to find weight(s) w(Θ) ∈ [0,1] that fulfils the feedback f co

or f o,c by satisfying the constraint.

• Weight(s): The results of the learning is a weight(s) for a given, weighted CQQL, which
express the user-defined feedback.

• Query Evaluation: The query evaluation is the actual matching step which takes the
learnt weight to produce clusters.

• Similarity matrix: The results of the query evaluation is a symmetric similarity matrix.

• Cluster detection: It yields a set of clusters from the current similarity matrix.

• Ok: User stops altering clusters because of satisfaction.

• Clusters: A set of final clusters are presented to the user.

• Abort: User terminates the system.

• End: The system ends.

Following the user’s adjustments to the clusters, it is necessary to inspect them for
inconsistencies according to Definition 5.1. When the user modifies one or more clusters,

5.4 Weight Learning 67

it typically results in the formation of new clusters. This process may also lead to the
disappearance of old clusters while introducing new ones. If the user decides to stop altering
these clusters either due to satisfaction with the results or discontinuation of the process,
the system reaches a stable state. At this stage, the clusters no longer undergo any further
changes, and it’s important to note that in each round, all feedback must be gathered, forming
a set of feedbacks. Consequently, the constraints become progressively stricter.

5.4 Weight Learning

The aim of the learning process is to determine weight values that establish a new set of
clusters that align with user feedback. As an illustration, taking the complimented form of a
weight as described in Equation 4.16, Figure 5.8 displays the clusters generated for clustering
C0 using an initial weight value (θ = 0.5).

Fig. 5.8 Clusters (C0).

A user observes that karim and peter are currently placed in separate clusters, even
though they know each other and should ideally be in the same cluster. To address this, the
user provides feedback, denoted as f {karim,peter}, with the requirement that karim and peter
should be in the same cluster.

The learning process attempts to find a weight value, represented as w(θ), within the
range of [0,1], which would establish an edge between karim and peter in the clustering.
However, if it’s not possible to establish such an edge, the user is informed with a message
stating that modifying the clusters isn’t possible due to an unsatisfiable constraint. In the
case where an edge is possible, the learning process infers the appropriate weight value for a
weighted CQQL query that meets the user’s feedback.

As previously mentioned, in each round of the process, every feedback must be included
in a feedback set, and this set represents a collection of constraints. In each round, it’s
imperative to ensure that the entire set of constraints is met. If it’s not possible to find weight

68 Relevance Feedback-based Learning of Personalized CQQL Queries

values that satisfy the complete set of constraints, the system proceeds to examine subsets
of constraints. In such cases, the system provides the user with multiple sets of alternative
potential feedbacks that can be fulfilled. The steps of this procedure are outlined in Algorithm
3.

Algorithm 3: Algorithm for a new feedback.

Data: f /* new feedback */
Result: w(Θ), Falt

1 isPossible := true
2 F := F ∪ f /* F is the set of feedbacks */
3 isPossible := check if F is satisfiable
4 if ¬isPossible then
5 Report ”no weight(s) is found that fulfils the feedbacks F”
6 k := |F |−1
7 do
8 Falt := {} /* set of sets of alternate possible fulfilled

feedbacks */
9 S := generate all k-subsets of F containing f

10 for every subset Fs in S do
11 isPossible := check if Fs is satisfiable
12 if isPossible then
13 Falt := Falt ∪Fs

14 end
15 end
16 if Falt ̸= /0 then
17 Report ”Falt are the set of sets of alternate possible feedbacks that can be

fulfilled”
18 end
19 k := k−1

20 while k ̸= 1

21 end
22 else
23 Report ”weight(s) w(Θ) fulfils the feedback F”
24 end

As an illustration, suppose a user provides a set of feedbacks F = { f1, f2} and a weight
value w(Θ) ∈ [0,1] has been found that satisfies the related constraints. If the user then
provides a new feedback f3, and the system determines that no weight value satisfies the

5.4 Weight Learning 69

constraints for the set of feedbacks F = { f1, f2, f3}, it will then check the constraints for the
2-subsets containing feedback f3 ({ f1, f3} and { f2, f3}) and present the user with a set of
alternate possible feedback sets Falt that can be satisfied.

Weighted conjunction based on influence

Let’s revisit the example from Section 4.1 and take into account the weighted query
qΘ(p1, p2), which involves two weight variables, θ1,θ2 ∈ Θ. We can reformulate the query
in Equation 4.17 as:

qΘ(p1, p2) = school(p1, p2)∧
(

graduation(p1, p2)∧θ1,θ2 admission(p1, p2)
)

Using Equation 4.7, the arithmetic evaluation of qΘ(p1, p2) yields:

school(p1, p2) ·
(
(graduation(p1, p2)+(1−θ1)−graduation(p1, p2) · (1−θ1)) ·

(admission(p1, p2)+(1−θ2)−admission(p1, p2) · (1−θ2))
)
∈ [0,1]

Fig. 5.9 Evaluation of qΘ(p1, p2) = school(p1, p2) ∧
(

graduation(p1, p2) ∧θ1,θ2

admission(p1, p2)
)

by two weights θ1 and θ2.

Figure 5.9 illustrates the results of evaluating a given CQQL query, qΘ(p1, p2) =

school(p1, p2)∧
(

graduation(p1, p2)∧θ1,θ2 admission(p1, p2)
)

, using various weight val-
ues for the weighting variables θ1 and θ2. There are three conditions related to the attributes

70 Relevance Feedback-based Learning of Personalized CQQL Queries

of school, graduation and admission that represent the similarities between two friends, p1

and p2, defined as sp1,p2(1,0.6,0.3), where school(p1, p2) = 1, graduation(p1, p2) = 0.6
and admission(p1, p2) = 0.3. Additionally, there’s a threshold th set at 0.5 (indicated by the
red frame). Considering the feedback f {p1,p2}, it is visible that with the initial weight values
set at 1, there is no edge (indicated by the green circle) between p1 and p2. This implies that,
initially, they cannot be placed in the same cluster. However, if the user requests that they
should be in the same cluster, it becomes apparent that this feedback can indeed be fulfilled,
as the plane intersects the threshold level when certain weight values are applied.

Weighted disjunction based on influence

Again, lets revisit the example in Section 4.1 and consider the weighted query qΘ(p1, p2)

in Equation 4.22 with two weight variables θ1,θ2 ∈ Θ where the CQQL conditions with
respect to graduation and admission are in conjunctive form. We can reformulate the query
in Equation 4.17 as:

qΘ(p1, p2) = school(p1, p2)∧
(

graduation(p1, p2)∨θ1,θ2 admission(p1, p2)
)

Using Equation 4.8, the arithmetic evaluation of qΘ(p1, p2) yields:

school(p1, p2) ·
(

graduation(p1, p2) ·θ1 +admission(p1, p2) ·θ2−graduation(p1, p2) ·

admission(p1, p2) ·θ1 ·θ2

)
∈ [0,1]

Figure 5.10 visualizes the results of the evaluation of the given CQQL query qΘ(p1, p2) =

school(p1, p2) ∧
(

graduation(p1, p2) ∨θ1,θ2 admission(p1, p2)
)

using various values for
the weighting variables θ1 and θ2 and with three conditions with respect to attributes
school, graduation and admission representing the similarities of two friends p1 and p2 as
sp1,p2(1,0.6,0.3) where school(p1, p2)= 1, graduation(p1, p2)= 0.6 and admission(p1, p2)=

0.3 and threshold th is 0.5 (red frame). if the user provides a feedback f {p1,p2} that they
should be in the same cluster, it becomes apparent that this feedback can indeed be fulfilled,
as the plane intersects the threshold level when certain weight values are applied.

It is clear that we face a non-linear optimization issue, because different weights can be
present within the CQQL query. Therefore, sequential least squares quadratic programming
(SLSQP) method implemented by Kraft [1988] can be used to solve non-linear optimization
problem.

SLSQP uses Sequential Least Squares Programming to minimize an objective function
of several variables with any combination of bounds, equality and inequality constraints.

5.4 Weight Learning 71

Fig. 5.10 Evaluation of qΘ(p1, p2) = school(p1, p2) ∧
(

graduation(p1, p2) ∨θ1,θ2

admission(p1, p2)
)

by two weights θ1 and θ2.

The method wraps the SLSQP Optimization subroutine. Note that the wrapper handles
infinite values in bounds by converting them into large floating values. The method optimizes
successive second-order (quadratic/least-squares) approximations of the objective function
(via BFGS updates), with first-order (affine) approximations of the constraints. Figure 5.11
shows the flow chart of SLSQP.

For example, consider x1 = sp1 p2(graduation) be a similarity value with respect to
graduation year and x2 = sp1 p2(admission) be a similarity value with respect to admission
year of two people p1 and p2. Set threshold th = 0.5.

• A complimented form of a weight

Logical transformation shows that the weighted conjunction is exactly equals to
weighted disjunction. Therefore,

Initialization: θ = 0.5
Objective function: x1 ·θ + x2 · (1−θ)
Constraint: x1 ·θ + x2 · (1−θ)≥ th

72 Relevance Feedback-based Learning of Personalized CQQL Queries

• Weights based on influence

For weighted conjunction:

Initialization: θ1 = 0.5,θ2 = 0.5
Objective function: (x1 +(1−θ1)− x1 · (1−θ1)) · (x2 +(1−θ2)− x2 · (1−θ2))

Constraint: (x1 +(1−θ1)− x1 · (1−θ1)) · (x2 +(1−θ2)− x2 · (1−θ2))≥ th

For weighted disjunction:

Initialization: θ1 = 0.5,θ2 = 0.5
Objective function: (x1 ·θ1)+(x2 ·θ2)− (x1 · x2 ·θ1 ·θ2)

Constraint: (x1 ·θ1)+(x2 ·θ2)− (x1 · x2 ·θ1 ·θ2)< th

Fig. 5.11 Non-linear optimization.

5.5 Summary 73

5.5 Summary

Relevance Feedback is only used for user communication, whereas numeric weights are used
for internal representation. The system redetects a set of clusters based on these weights,
which must be consistent with the user’s subjective perception of similarity to a given query.

While interacting with the system, the user is given the opportunity to reform the clusters
by expressing which objects reside within the same clusters and which objects do not belong
to a specific cluster. Based on this feedback, the system is able to learn numeric weight
values for a query. When applied iteratively, this feedback results in an approximation of the
desired clustering.

Chapter 6

Comparing Clusterings for Non-TI
Clustering

Clustering objects involves grouping them based on how similar they are in their attribute
values. Objects that have a high similarity value are considered more similar to each other and
vice versa. The effectiveness of the clustering depends on the similarity within each group
and the difference between groups. To evaluate the similarity between objects, a measure is
used to determine the degree of resemblance. This leads to the creation of a similarity matrix,
which quantifies the similarity between all pairs of objects.

The traditional clustering algorithms such as k−means, hierarchical clustering, and
DBSCAN group objects based on their similarities in attributes, creating subsets where
members are more alike within the same subset than between different subsets. The aim
is to maximize cohesion within the subset and separation between subsets, but this can be
problematic if the distance function is inadequate, as it may separate objects that should be
together or vice versa. In such cases, a desired feature template or gold standard can be used
to guide the separation process.

Comparing the similarity between sets of clusters produced by different algorithms has not
received much attention. Clustering is used in many applications to reflect human intuition,
physical, biological, or social connections, or laws, but incorporating human interpretation
and biases into information retrieval tasks, such as web search, is a challenging problem.
In such scenarios, human judgment is the standard for measuring relevance, raising the
question of how to compare the performance of common clustering techniques and distance
measures against a human-generated gold standard partitioning. Despite the lack of research
into techniques for comparing clusterings, some significant work has been done, such as by
Falkowski et al. [2007], Rand [1971] and Meilă [2003].

76 Comparing Clusterings for Non-TI Clustering

Several measures, such as Rand [1971] Index and Fowlkes and Mallows [1983] Index,
have been proposed for comparing clustering pairs. Clustering performance can be eval-
uated using measures comparing the results of different algorithms on a dataset. These
measures are often displayed using a 2×2 contingency matrix for ease of comparison. A pair
counting method is combined in this research to populate the contingency matrix, offering a
straightforward way to summarize the relationship between two sub-cluster memberships.

6.1 Clustering Comparison Criteria

In addition to selecting or creating a clustering method, once a collection of clusters has
been established, there is still the concern of membership assignment quality in relation
to the initial purpose of the clustering. This can be addressed through Internal criteria,
external criteria, and relative criteria, according to Halkidi et al. [2001]. Relative and
internal criteria evaluate whether the clustering is significantly different from chance through
the use of Monte Carlo methods, while external criteria are used to compare the membership
and structure of two clusterings, as noted by Theodoridis and Koutroubas [1999]. This
dissertation focuses solely on external criteria.

Internal criteria are assessments of the clustering or its producing algorithm based on
the attributes of the data set, such as the proximity matrix. These measurements evaluate
characteristics like cohesion, separation, distortion, and likelihood. The results of these
assessments can be greatly influenced by pre-determined parameters, such as the number
of required clusters or minimum density, making them sensitive to both the quality of the
clustering and the evaluation criteria used.

Relative criteria are used to evaluate and rank a clustering solution by comparing it to
other clustering results generated by the same algorithm using different input parameters.
These criteria are specifically chosen to match the algorithm and the data being analyzed.

External criteria serve the purpose of comparing one clustering to another clustering, a
predefined gold standard, or a template representing desired features. Consequently, they
create measures that are not influenced by the algorithm used for clustering, any predefined
clustering assessment, the dataset itself, or problem-specific criteria.

The task of comparing clusterings is not straightforward as it involves more than just
comparing two clusterings using similarity/dissimilarity measurements or algorithm traits.
The meaning of comparing clusterings must be established.

Additionally, when comparing clustering pairs without a reference point such as a gold
standard or desirable feature template, the comparison will only be numerical and will not

6.2 Common Approaches in Comparing Clusterings 77

assess the quality of the clustering or its individual clusters. A sense of "goodness" must be
introduced through a gold standard or desirable feature template.

6.2 Common Approaches in Comparing Clusterings

Evaluating the results of different clustering algorithms that have been applied to the same
data set is crucial for improving the algorithms, quantifying their results, and determining
their accuracy. This evaluation can be performed through the use of external criteria, which
involves comparing two partitions and determining their similarity. There are several methods
for performing this comparison, including pair counting, set matching, and information-
theoretic approaches. This section will briefly cover these different clustering comparison
methods.

A clustering C is a set {c1,c2, ...,ck} of non-empty subsets called clusters of a data
set D of elements n such that ∪k

i=1ci = D. Assume that ci > 0 for all i = 1,2, ...,k. Let
C′ = {c′1,c′2, ...,c′l} be the second clustering of the same dataset D such that ∪l

j=1c j = D.
Note that the two clustering may have different numbers of clusters.

The confusion matrix M = (mi j) (or contingency table) of the pair C,C′ is a k× l matrix
whose i j-th entry equals the number of elements in the intersection of the clusters ci and c′j:

mi j = |ci∩ c′j|

6.2.1 Clustering Comparison by Counting Pairs

Pair counting is a method of comparing pairs of entities based on the magnitudes of their
attributes, traits, and other characteristics. It was first introduced scientifically by Thurstone
[1927] in the Law of Comparative Judgement. In this approach, comparisons are made
between pairs of entities. To apply pair counting to a confusion matrix, the members of one
clustering are incrementally paired based on certain properties.

• Symmetric: (p1, p2) = (p2, p1)

where p1, p2 ∈C

The comparison of the pairs is made with the members of the other clustering that are
similarly paired. The values in the confusion matrix are determined based on the relationships
between the pairs from the two partitions.

T11 = pairs in the same cluster under C and C′

78 Comparing Clusterings for Non-TI Clustering

T00 = pairs in different clusters under both C and C′

T10 = pairs in the same cluster under C but not under C′

T01 = pairs in different clusters under C′ but not under C

Note that the sum λ of these four factors equals the number of all possible point pairs

λ = T11 +T00 +T10 +T01 =
n(n−1)

2 .

Below is a general overview of the key techniques that utilize the pair counting method:

Chi Squared Coefficient

The earliest methods for comparing clusterings were created for statistical purposes. One
well-known example is the Chi Squared Coefficient, which is considered representative of
these methods. The measure is expressed as:

X(C,C′) = ∑
k
i=1 ∑

l
j=1

(mi j−Ei j)
2

Ei j
where Ei j =

|ci||c′j|
n

The Chi Squared Coefficient, developed by Pearson [1900], is a well-known measure for
comparing clusterings and evaluating similarity between them. However, using the coefficient
for this purpose requires assuming independence of the two clusterings, which is not always
true. The coefficient measures the deviation from the independence assumption, and a high
number indicates similar clusterings, as discussed in the work of Mirkin [2001].

Fowlkes and Mallows Index

The Fowlkes and Mallows Index is a metric used to evaluate the similarity between two
hierarchical clusterings. It was introduced by Fowlkes [1983] and is calculated by counting
the intersections of two hierarchical trees at each clustering level and summing up the counts
of the intersections. The index ranges from 0 (maximum dissimilarity) to 1 (maximum
similarity) and represents the cumulative similarity between the different levels of clustering.
The measure is expressed as:

FM(C,C′) = T11√
(T11+T10)(T11+T01)

However, this measure has a drawback: for small numbers of clusters, the index is very
high, even for independent clusterings, which can result in a maximum value for small
numbers of clusters.

6.2 Common Approaches in Comparing Clusterings 79

Rand Index

The Rand Index, proposed by Rand [1971], is a metric for evaluating the similarity between
two different clusterings. It can be used to compare any two clusterings, whether they are
produced by different algorithms, have different numbers of clusters, or are evaluated against
different ground truth datasets or criteria. The measure is expressed as:

R(C,C′) = 2(T11+T00)
n(n−1)

The Rand Index ranges from 0 (no similar pairs) to 1 (identical clusterings), and represents
the likelihood that two objects will be treated similarly in both clusterings.

Adjusted Rand Index

The Rand Index of two arbitrary partitions is not constant as expected. To address this
issue, Hubert and Arabie [1985] introduced an adjustment based on the null hypothesis
of a generalized hyper-geometric distribution. The Adjusted Rand Index is calculated by
subtracting the expected value under the null hypothesis of random clusterings with a fixed
number of clusters and elements in each cluster from the Rand Index. The Adjusted Rand
Index normalizes the difference and provides a more accurate representation of the similarity
between the two partitions. It is defined as follows:

AR(C,C′) =
T11−

(T11+T10)(T11+T01)
λ

2T11+T10+T01
2 − (T11+T10)(T11+T01)

λ

The Variation of Information (VI) measure has an expected value of 0 for independent
clusterings and a maximum value of 1 for identical clusterings. However, its significance is
questionable due to the strong assumptions it makes about the distribution. Some pairs of
clusterings may result in negative values, as noted by Meilă [2003].

Precision, Recall and F-measure

Another way of comparing clusterings is to use the well known precision and recall measures.
For a gold standard P, then:

Precision(C,C′) = T11
T11+T10

and Recall(C,C′) = T11
T11+T01

The F-measure is a symmetric measure that combines precision and recall. The F-
measure is defined as:

F-measure(C,C′) = 2T11
2T11+T10+T01

80 Comparing Clusterings for Non-TI Clustering

6.2.2 Clustering Comparison by Set Matching

Meilă and Heckerman [2001] computed the criteria H: a best match for each cluster of C in
C′ is done by scanning the elements mi j of the contingency table in decreasing order. The
largest of them, call it mab, entails a match between ca and c′b, the second largest not in row a
or column b entails the second match, and so on until min(k, l) matches are made. The index
of the cluster c′j in C′ that matches cluster ci is denoted by match(i). Then

H(C,C′) = 1
n ∑ j=match(i)mi j

The index is symmetric and takes value 1 for identical clusterings. But the criteria suffer
from the "problem of matching". It first find the "best match" for each cluster and then add
up the contributions of the match found. In doing so, it completely ignore what happens to
the "unmatched" part of each cluster.

6.2.3 Clustering Comparison based on Information Theoretic Approaches

The field of information theory aims to enhance the description and quantification of data
by utilizing the minimum amount of information for storage and communication. This is
achieved through the use of information entropy, a measure that expresses the average number
of bits required for data storage or communication. To compare the difference between two
partitions, information-theoretic methods employ entropy in different ways. Two examples
of these methods are Meila’s Variation of Information [Meilă 2003] and Normalized Mutual
Information [Strehl and Ghosh 2003 and Fred and Jain 2003].

Entropy can be described as the information conveyed by the uncertainty that a randomly
selected point belongs to a certain cluster. In the context of clustering Entropy is defined as:

H(C) =−∑
k
i=1 P(i) logP(i) where P(i) = |ci|

n

Informally, entropy of a clustering C is used to quantify the uncertainty of a randomly
selected element’s cluster. The entropy of a trivial clustering, which is one with only one
cluster or n clusters, is zero since we already know the cluster of a randomly selected element.

Normalized Mutual Information

The mutual information between two clusterings C and C′ is a measure of how much the
knowledge of one clustering can reduce the uncertainty about a randomly picked element’s
cluster in the other clustering. It is calculated as the average amount of information that
can be gained about the cluster of an element when the cluster of that element in the other
clustering is known. It is defined as:

6.2 Common Approaches in Comparing Clusterings 81

I(C,C′) = ∑
k
i=1 ∑

l
j=1 P(i, j) log2

P(i, j)
P(i)P(j)

where P(i, j) is the probability that an element belongs to cluster ci in C and to cluster c′j
in C′:

P(i, j) =
|ci∩c′j|

n

The Mutual Information I is a metric used to compare two clusterings, however, it is not
limited to a constant value, making interpretation difficult. The bound of Mutual Information
between two clusterings is determined by their entropies:

I(C,C′)≤min{H(C),H(C′)}

The Normalized Mutual Information (NMI) is a metric on the space of all clusterings,
normalized to be in the range [0,1]. It was proposed by Strehl and Ghosh [2003] and Fred
and Jain [2003] to address the difficulty in interpreting the mutual information due to its
unbounded value. The NMI normalizes the mutual information between two clusterings by
the geometric or arithmetic mean of their entropies, providing a meaningful interpretation
of the similarity between two clusterings. The normalized mutual information between two
clusterings is defined as:

NMI1(C,C′) = I(C,C′)√
H(C)H(C′)

This index has expected value 1 for identical clustering and 0 for independent clusterings
if P(i, j) = 0 or P(i, j) = P(i) ·P(j) for all i, 1≤ i≤ k, and for all j, 1≤ j ≤ l.

The expected value of this index is zero for clusterings that are independent and its
maximum value is 1 for identical clusterings.

According to Fred and Jain [2003], obtaining a dependable clustering of a set of ele-
ments requires utilizing a combination of multiple clusterings instead of relying on a single
algorithm. Hence, the normalized mutual information between two clusterings is as follows:

NMI2(C,C′) = 2I(C,C′)
H(C)+H(C′)

This index has expected value 1 for identical clustering and 0 for independent clusterings
if P(i, j) = 0 or P(i, j) = P(i) ·P(j) for all i, 1≤ i≤ k, and for all j, 1≤ j ≤ l.

Variation of Information

The Variation of Information (VI) measure was introduced by Meilă [2003] to evaluate the
similarity between two clusterings of the same data. It calculates the amount of information
lost or gained when changing from one clustering C to another clustering C′. The measure
is positive, symmetric, and transitive, and Meilă considers it a metric. However, it is not
normalized, which would enhance its comparability to other measures.

82 Comparing Clusterings for Non-TI Clustering

V I(C,C′) = H(C)+H(C′)−2I(C,C′)

6.3 Clustering Comparison for Non-TI Clustering

Comparing clusterings presents a significant challenge because there is no available ground
truth data for reference. As a result, it’s not possible to assess performance quantitatively
due to the absence of such ground truth data. Nevertheless, for the purpose of testing our
approach, we make an assumption that involves considering a social network with clustering
done by humans as an ideal solution. We use this human-generated clustering in our approach
to evaluate a clustering distance, which measures the dissimilarity between two different sets
of clusters.

To avoid any potential confusion, it’s important to distinguish between a cluster, which
refers to a group of data points, and clustering, which denotes the set of clusters produced
through a clustering process.

The method of comparing clusterings using pair counting involves counting the number
of pairs of objects that are grouped similarly in both clusterings. The process begins by
pairing all members of one cluster and then comparing them to the correspondingly paired
members in the other clustering. A contingency matrix is subsequently used to assign values
based on different relationships between the pairs in each of the clusterings.

Given a human generated (ideal solution) clustering CI and a clustering C produced
by our approach of the data set P = {pi}n

i=1 with n peoples, we first define data set pairs
TP = {(pi, p j)|pi, p j ∈ P and i < j} as all the pairs realizable from the complete data set.
Second, clustered pairs TCI = {(p1, p2) ∈ TP|{p1, p2} ⊆ cI ∈ CI} and TC = {(p1, p2) ∈
TP|{p1, p2} ⊆ c ∈C} that cluster together in CI and C respectively. Using TCI , TC and TP the
values of the four quadrants of the contingency matrix are realized as:

T11 = |TCI ∩TC|
{

pairs in CI and C
}

T10 = |TC \TCI |
{

pairs in C but not in CI

}
T01 = |TCI \TC|

{
pairs in CI but not in C

}
T00 = |TP \ (TCI ∪TC)|

{
pairs not in both C and CI

}
Note that the sum λ of these four quadrants equals the number of all possible people

pairs

λ = |TP|= T11 +T10 +T01 +T00 =

(
n
2

)
=

n(n−1)
2

6.3 Clustering Comparison for Non-TI Clustering 83

In Table 6.1, each column of the matrix represents the instances within a cluster generated
by humans (referred to as the "Ideal Solution"), while each row corresponds to the instances
within a cluster produced by the system. By comparing the ideal solution against the produced
it is easy to see if a system is confusing two clusters (i.e. commonly mislabelling one as
another).

Table 6.1 Contingency matrix

Human generated (Ideal solution)

Pairs in CI Pairs not in CI

Produced (cluster)
Pairs in C T11 T10
Pairs not in C T01 T00

The Accuracy A for a clustering C concerning a certain human generated clustering CI

indicates how good the clustering C describes the clustering CI . It can be defined as:

A (CI,C) =
T11 +T00

λ

where A ranges from 0 (no pair classified in the same way under both clusterings) to 1
(identical clusterings).

We can derive the clustering distance d(CI,C) from the similarity measure A (CI,C) by
applying A (x,y) = e−d(x,y) as:

d(CI,C) =−ln(A (CI,C))

where d ranges from 0 (identical clusterings) to ∞ (no pair classified in the same way
under both clusterings).

We propose Algorithm 4 to calculate the clustering distance d between CI and C.

84 Comparing Clusterings for Non-TI Clustering

Algorithm 4: Algorithm for clustering distance.
Data: C,CI

Result: d
1 TC := {}
2 TCI := {}
3 for each cluster c in C do
4 if |c|> 1 then
5 tc := generate all 2-subsets of c
6 TC := TC∪ tc
7 end
8 end
9 for each cluster cI in CI do

10 if |cI|> 1 then
11 tcI := generate all 2-subsets of cI

12 TCI := TCI ∪ tcI

13 end
14 end
15 λ = n·(n−1)

2
16 T11 := |TCI ∩TC|
17 T10 := |TC \TCI |
18 T01 := |TCI \TC|
19 T00 := λ −T11−T10−T01

20 A := T11+T00
λ

21 d :=−ln(A)

22 return d

6.4 Summary

This chapter focuses on comparing the memberships of subgroups in two different clusterings.
A contingency matrix with two columns and two rows (see Table 6.1) is used to evaluate
the relationships between the members of the two subclusters. The matrix summarizes
the pairwise relationships between the memberships of the two subclusters and is used to
perform pair counting measures. The contingency matrix, typically used for comparing
two populations, is used here to compare two partitioned spaces by assigning values to
the matrix using a pair counting approach. The contingency matrix is used to identify the

6.4 Summary 85

important connections between two clusterings by examining the presence of member pairs,
non-member pairs, and member pairs that are not shared.

Chapter 7

Implementation and Evaluation

When developing a Non-TI clustering approach, two questions usually arise: how fast is it
and how good and meaningful are its results? Measuring running times in a reproducible
manner is not easy because they depend on a variety of factors, but given a specific computer
system and input instance, it is quite simple. Measuring the quality of the results, on the other
hand, is much more difficult, even given a specific input graph. Depending on the application,
smaller or larger cluster sizes, or more or less uniform cluster sizes, may be desired.

Graphs from applications are frequently unavailable due to data security or corporate
interests. Graphs from applications where we know which clusters we want to find are even
rarer, and even when they are, it is not always clear whether those clusters can be discovered
solely from the graph structure.

We quantify the qualitative performance of the Non-TI clustering approach in various
social and information networks by comparing it to state-of-the-art clustering methods. We
evaluate the performance of the approach by calculating the clustering distance of the detected
clustering when compared to the gold-standard, ground-truth clustering.

We conducted experiments on social networks, varying the sizes of the networks, to
validate our proposed non-TI clustering approach. In this thesis, we describe datasets of four
social networks with N = 6, N = 20, N = 50, and N = 100 people, where we have network
information as well as node attributes, for our evaluation. We have explicit ground-truth
cluster labels in addition to networks and attributes. The availability of such ground-truth
allows us to evaluate clustering methods by quantifying the degree of similarity between the
detected clustering and ground-truth clustering.

In this chapter, we start by describing our experimental setup and then continue with the
results on the social networks by varying network sizes. We discuss the result of the proposed
approach by comparing it with the shortcomings of the traditional clustering methods. To

88 Implementation and Evaluation

evaluate the performance, we calculate the clustering distance of the detected clustering by
comparing it with the ground-truth clustering.

7.1 Experimental Setup

The experiments were performed on a HP Pavilion x360 Convertible Laptop equipped with
an Intel Core i5-10210U CPU running at a clock speed of 1.60 GHz (8 CPUs), 2.1 GHz and
with 8 GB RAM. The operating system was Windows 11 Home 64-bit and the algorithms
were implemented using Python 3.8.5. We use the Fruchterman-Reingold algorithm to
visualize social networks by creating 2D representations based on the adjacency matrix.

7.2 Datasets

Social networks typically contain a massive amount of content and linkage data that can
be analyzed. These data are further classified as unstructured or structured, depending on
whether they are organized in a predefined manner or not. Graph-structured data is the most
common type of structured data. In the simplest framework, they are represented as a graph
G = (V,E), where V is a set of nodes or entities (e.g., people, organizations, and products)
and E is a set of edges or relationships that connect the nodes through patterns of interactions.
This type of data is measured using social network analysis, a graph analytics application
that focuses on extracting intelligence from such interconnected data. Unstructured data, on
the other hand, refers to content data such as text, images, videos, tweets, product reviews,
and other multimedia data shared on online social networks, also known as User Generated
Content (UGC). Unfortunately, sometimes unstructured data from some social networks
is not available to all. Therefore, we generate datasets of social network types of small
(6 people), medium (20 people and 50 people), and large sizes (100 people and so on),
respectively.

7.3 Experiments and Results

To assess the effectiveness of the proposed method, we conducted experiments on social
networks of varying sizes. The process involve obtaining a similarity matrix S by us-
ing a conjunctive or disjunctive query q on the attributes of people pairs, such as school,
admissionyear, and graduationyear. From this similarity matrix, we derive an adjacency
matrix Ad j, setting a threshold value of 0.5. This adjacency matrix is used to create an

7.3 Experiments and Results 89

undirected graph using the undirected graph drawing algorithm proposed by Fruchterman
and Reingold [1991]. For comparison purposes, traditional clustering algorithms are also
applied. To evaluate the performance of the proposed clique-guided approach, we calculate
a clustering distance metric by comparing the detected clustering with the ground-truth
clustering using the pair counting approach outlined in Section 6.3.

In user interaction, a user provides feedback based on his needs. In every round, the
system adds the feedback to a feedback set that must be fulfilled. In addition, it provides the
user with alternate feedbacks that can be fulfilled if no weight(s) is found that satisfies the
corresponding constraints of the feedback set.

We conducted several experiments by varying the social network size. For a better
understanding, we use a single experiment performed on a small social network of 6 people.
We discuss three more experimental details and results from a social network of 20, 50,
and 100 people in Appendix C. Within each experiment, we perform traditional clustering
methods, an unweighted Non-TI clustering approach, and a weighted clustering approach
with (i) a complimented form of a weight and (ii) weights based on influence, respectively.
For comparing the similarities between ground-truth clustering and detected clustering, we
calculate the clustering distance.

7.3.1 Clustering of a social network

Figure 7.1 illustrates the network structure of three attributes of a small social network of
six people. The weighted edge between two people reflects the similarities among them.
The corresponding weight of an edge is the similarity value obtained by the evaluation of a
CQQL query.

We subdivide the experiment into two parts based on the operand conjunction (∧) or
disjunction (∨) contained inside the CQQL query. In the following, both conjunction and
disjunction are taken into account.

7.3.2 CQQL query with conjunction (∧)

First, we execute the CQQL query of Example 4.1 on a small social network dataset of six
people (N = 6) that returns a similarity matrix. Following the flow diagram in Figure 4.2,
we generate a graph structure and perform clustering approaches on it to detect meaningful
clusters. Later, we incorporate atomic condition weights into a CQQL query based on the
effects of attributes on user interaction.

90 Implementation and Evaluation

(a) school (b) admission_year

(c) graduation_year

Fig. 7.1 Structure of a six-people network.

Clustering approaches

The first experiment in Figure 7.2 analyzes how clusters can be found by applying both tradi-
tional clustering techniques and our proposed Non-TI clustering approach. After executing
the unweighted query q(pi, p j) = school(pi, p j)∧

(
graduation(pi, p j)∧admission(pi, p j)

)
︸ ︷︷ ︸

con junction
where i = j = {1,2,3, ...,N}, a similarity matrix is obtained. Figure 7.1 depicts the net-
work structure constructed by the adjacency matrix derived from that similarity matrix with
th = 0.5. An edge between a pair of nodes indicates that they know each other. It is noted

7.3 Experiments and Results 91

(a) Unweighted (b) k-medoids (k = 3) clustering

(c) Dendogram (d) Hierarchical clustering

(e) Non-TI

Fig. 7.2 Clustering on a six-people network in conjunction.

that the edges among objects in the resulting clusters are taken over from the original graph
to visualize relationships.

92 Implementation and Evaluation

At first we apply k-medoids clustering method with k = 3 where k is the number of
clusters. The starting point of the k-medoids method is the dissimilarity matrix. After
executing the CQQL query, we get a similarity matrix. We obtain the dissimilarity matrix
from the similarity matrix using transformation. Three clusters can be found: {eliza},
{siam,ayon} and {alan, joe,diana}. Compared with the unweighted network structure, it is
clear that the detected clusters do not have any clusters with {diana,ayon} or {eliza,siam}
even if they know each other. Therefore, the detected clusters are not meaningful.

Applying single-linkage hierarchical clustering algorithm, a cluster hierarchy is cre-
ated, often known as a dendrogram as shown in Figure 7.2c. Figure 7.2d shows that
three clusters {diana,ayon,siam}, {alan, joe} and {eliza} can be found by drawing a hor-
izontal line (red line as depicted in Figure 7.2c) using the threshold value 0.5. But the
cluster {diana,ayon,siam} violates the TI property because there is no edge within the pair
{diana,siam} which is visible in Figure 7.2d. Also, there are some pairs who know each
other but detected clusters do not reflect their relationship.

Meaningful clusters can be found by applying our proposed Non-TI clustering approach
where intra-cluster objects are close to each other (i.e., they are connected to each other with
an edge) as shown in Figure 7.2e. Clustering methods with their corresponding detected
clusters are summarized in Table 7.1.

Table 7.1 Clusters after clustering on a six-people network in conjunction

Methods Clusters
k-medoids (k=3) {eliza}, {siam, ayon}, {alan, joe, diana}
Hierarchical (Single-linkage) {siam, ayon, diana}, {eliza}, {alan, joe}
Non-TI {siam, eliza}, {siam, ayon}, {diana, joe, alan},

{diana, ayon}

User interaction

The next experiment analyzes how meaningful clusters can be found using our proposed
approach with user interaction. To understand the concepts and performance of relevance
feedback with user interaction, we consider both weighting strategies (see Section 4.3) in our
experiments. In the following, we describe weighting strategies individually.

Complimented form of a weight

We conduct the experiment using the CQQL query with a weighted conjunction qΘ(pi, p j) =

school(pi, p j)∧
(

graduation(pi, p j)∧θ admission(pi, p j)
)

where i = j = {1,2,3, ...,N}. A

7.3 Experiments and Results 93

user provides feedback of expecting either (i) a pair of people to reside within the same cluster
or (ii) a person should be outside of a specific cluster. The user provides feedback until he
stops or is satisfied with the resulting clusters. The following describes the experiments with
results and performance compared the results with ground-truth clustering in detail.

Fig. 7.3 Clustering based on f co on a six-people network in conjunction.

1. Feedback for constructing a new cluster
The experiment starts by assuming equal importance between the two attributes (by setting

94 Implementation and Evaluation

θ = 0.5) while conducting a conjunction (∧) on query qΘ as seen in Figure 7.3 (top left).
If the user provides feedback f1 = f co, requesting that the pair co = {′diana′,′ siam′} be
placed in the same cluster, it can be seen from Figure 7.3 (top right) that a weight of
w(θ)= 0.71 has been found that satisfies the constraint and clusters the pair. This feedback
is added to the set F = { f1}. The user provides a second feedback f2 = f co, requesting
that co = {′eliza′,′ alan′} be placed in the same cluster and a weight of w(θ) = 0.84 has
been found that satisfies the feedback and all previous feedbacks in F to form clusters, as
seen in Figure 7.3 (bottom right in second row). This feedback is added to F = { f1, f2}.
The user then provides a third feedback f3 = f co, requesting that co = {′siam′,′ alan′}
be in the same cluster, and a weight of w(θ) = 0.93 has been found that satisfies the
constraint and clusters the group, as shown in Figure 7.3 (bottom left in second row).
This feedback is added to the set F = { f1, f2, f3}. Finally, the user provides a feedback
f4 = f co, requesting that co = {′eliza′,′ diana′} be placed in the same cluster. In this case,
no weight w(θ) ∈ [0,1] that satisfies the feedback along with all previous feedbacks in
F can be found, and no alternative feedbacks are possible. The user is notified of this as
seen in Figure 7.3 (bottom left in third row).

Fig. 7.4 Ideal Solution.

Table 7.2 Ground-truth clustering

Clusters
{diana, eliza, siam, ayon},
{diana, eliza, siam, alan},
{diana, joe, alan}

To test our approach, we evaluate a clustering distance of detected clustering compared
with ground-truth clustering d in every round of our experiment in Figure 7.3. The inter-
actions conform to the ideal solution. Figure 7.4 is our ideal solution and corresponding
clusters of ground-truth clustering are listed in Table 7.2. It is visible in Figure 7.5 that the
clustering distance d in every round decreases and converges towards the ideal solution.

2. Feedback for removing a person from a cluster
The next experiment shows user feedback (category f o,c) requiring that a person be
outside of a cluster. If the user provides feedback by expecting to see o =′ alan′ outside

7.3 Experiments and Results 95

Fig. 7.5 Clustering distances based on f co in Figure 7.3.

of c = cluster 1, Figure 7.6 demonstrates that w(θ) = 0.82 is found, which fulfills the
feedback by satisfying the constraint and detecting clusters.

Fig. 7.6 Clustering based on f o,c on a six-people network in conjunction.

Weights based on Influence

We expand our experiment using two weighting variables θ1,θ2 ∈ Θ for a user feedback of
both feedback categories f co and f o,c.

1. Feedback for constructing a new cluster
The experiment starts with a query, qΘ(pi, p j)= school(pi, p j)∧(graduation(pi, p j)∧θ1,θ2

admission(pi, p j)), where i = j = {1,2,3, ...,N}, and is performed as a conjunction (∧)
with equal weights for both attributes, which is set as w(θ1,θ2) = {1,1} (refer to Figure
7.7 (top left)). If a user gives feedback f1 = f co requiring co = {′diana′,′ siam′} to be

96 Implementation and Evaluation

in the same cluster, Figure 7.7 (top right) shows that w(θ1,θ2) = {0.53,0.7} is found to
fulfill the feedback and form clusters. This feedback is added to the set F = { f1}.

The user then gives a second feedback f2 = f co requiring co = {′eliza′,′ alan′} to be in the
same cluster, and w(θ1,θ2) = {0.54,0.68} is found to fulfill this feedback along with the
previous feedbacks F and form clusters, as shown in Figure 7.7 (bottom right in second
row). This feedback is added to F = { f1, f2}.

After that, the user gives a third feedback f3 = f co requiring co = {′siam′,′ alan′} to be
in the same cluster, and w(θ1,θ2) = {0.54,0.66} was found to fulfill this feedback and
form clusters, as shown in Figure 7.7 (bottom left in second row). This feedback is added
to the set F = { f1, f2, f3}.

Fig. 7.7 Clustering based on f co on a six-people network in conjunction.

To test our approach, we evaluate a clustering distance of detected clustering compared
with ground-truth clustering d in every round of our experiment in Figure 7.7. Figure 7.4
is our ideal solution and corresponding clusters of ground-truth clustering are listed in

7.3 Experiments and Results 97

Fig. 7.8 Clustering distances based on f co in Figure 7.7.

Table 7.2. Figure 7.8 shows that the clustering distance d in every round decreases and
finally converges to the ideal solution.

2. Feedback for removing a person from a cluster
The next experiment shows user feedback (category f o,c) requiring that a person should
be outside of a cluster. If the user provides feedback of expecting o =′ alan′ outside
of c = cluster 1, Figure 7.9 shows that w(θ1,θ2) = {0.75,0.5} is found that fulfills the
feedback by satisfying the constraint and it finds clusters.

Fig. 7.9 Clustering based on f o,c on a six-people network in conjunction.

98 Implementation and Evaluation

7.3.3 CQQL query with disjunction (∨)

Alternatively, we can use disjunction (∨) between two attributes, graduation and admission,
in a query q(pi, p j) = school(pi, p j)∧

(
graduation(pi, p j)∨admission(pi, p j)

)
︸ ︷︷ ︸

dis junction

where i =

j = {1,2,3, ...,N}. First, we conduct experiments using clustering approaches to detect
meaningful clusters and compare the resulting clustering of one approach to the other.
Following that, we broaden our experiment by taking user feedback into account in order to
re-detect clusters that are relevant to their needs.

Clustering approaches

The first experiment in Figure 7.2 analyzes how clusters can be found by applying both
traditional clustering techniques and our proposed Non-TI clustering approach. Figure 7.2a
shows the network structure constructed by unweighted query q of Equation 4.18.

At first we apply k-medoids clustering method with k = 3 on the network. Three clusters
can be found: {eliza}, {siam,ayon} and {alan, joe,diana}. Compared with the unweighted
network structure, it is clear that the detected clusters do not have any clusters with for
example{diana,ayon} or {eliza,siam} even if they know each other. Therefore, the detected
clusters are not meaningful.

A dendogram is created using the single-linkage hierarchical clustering algorithm, as
shown in Figure 7.10c. Figure 7.10c demonstrates that a horizontal line (red line) with
threshold 0.05 intersects three vertical lines, which means three clusters can be found, as
shown in Figure 7.2d.

But meaningful clusters can be found by applying our proposed Non-TI clustering
approach where intra-cluster objects are close to each other (i.e., they are connected to each
other with an edge) as shown in Figure 7.2e. Clustering methods with their corresponding
detected clusters are summarized in Table 7.3.

Table 7.3 Clusters after clustering on a six-people network in disjunction

Methods Clusters
k-medoids (k=3) {eliza}, {siam, ayon}, {alan, joe, diana}
Hierarchical (Single-linkage) {alan, joe, diana}, {eliza}, {siam, ayon}
Non-TI {diana, alan, eliza, siam}, {diana, alan, joe},

{diana, ayon, eliza, siam}

7.3 Experiments and Results 99

(a) Unweighted (b) k-medoids (k = 3) clustering

(c) Dendogram (d) Hierarchical clustering

(e) Non-TI

Fig. 7.10 Clustering on a six-people network in disjunction.

User interaction

The next experiment analyzes how meaningful clusters can be found with user interaction.
We consider both weighting strategies (see Section 4.3) in this experiment as well.

100 Implementation and Evaluation

Complimented form of a weight

The logical transformation in Section 4.3.2 shows that connected weights in a conjunction
equals exactly connected weights in a disjunction. Therefore, the experimental procedure
and results will be equal for the same parameter settings as described in 7.3.2.

Weights based on Influence

We expand our experiment using two weighting variables θ1,θ2 ∈ Θ for a user feedback of
both feedback categories f co and f o,c.

1. Feedback for constructing a new cluster

The experiment starts with a query qΘ(pi, p j)= school(pi, p j)∧(graduation(pi, p j)∨θi,θ j

admission(pi, p j)) where i = j = 1,2,3, ...,N and w(θ1,θ2) = {0.5,0.5} while perform-
ing disjunction (∨) (refer to Figure 7.11 top left). The user then provides feedback
f1 = f co that requires co = {′diana′,′ siam′} to be in the same cluster, which leads to
w(θ1,θ2) = {0.71,0.51} being found as the solution that satisfies the constraint and
creates clusters, as shown in Figure 7.11 top right. The feedback is added to the set
F = { f1}.

The user continues to provide a second feedback f2 = f co that requires co= {′eliza′,′ alan′}
to be in the same cluster. w(θ1,θ2) = {0.84,0.51} is found as the solution that satisfies
both the second feedback and the previous feedbacks in the set F , resulting in clusters
as shown in Figure 7.11 bottom right in the second row. The feedback is then added to
F = { f1, f2}.

The user provides a third feedback f3 = f co that requires co = {′siam′,′ alan′} to be in
the same cluster, and w(θ1,θ2) = {0.93,0.51} is found as the solution that satisfies the
constraint and creates clusters, as shown in Figure 7.11 bottom left in the second row. The
feedback is added to the set F = { f1, f2, f3}.

The user then provides a fourth feedback f4 = f co that requires co = {′eliza′,′ diana′} to
be in the same cluster, and w(θ1,θ2) = {0.93,0.54} is found as the solution that satisfies
both the fourth feedback and the previous feedbacks in the set F , resulting in clusters as
shown in Figure 7.11 bottom right in the second row. The feedback is added to the set
F = { f1, f2, f3, f4}.

To test our approach, we evaluate a clustering distance of detected clustering compared
with ground-truth clustering d in every round of our experiment in Figure 7.7. Figure 7.4

7.3 Experiments and Results 101

Fig. 7.11 Clustering based on f co on a six-people network in disjunction.

is our ideal solution and corresponding clusters of ground-truth clustering are listed in

102 Implementation and Evaluation

Fig. 7.12 Clustering distances based on f co in 7.11.

Table 7.2. Figure 7.12 shows that the clustering distance d in every round decreases and
finally converges to the ideal solution.

2. Feedback for removing a person from a cluster

The experiment demonstrates that user feedback in category f o,c requires a person to be
outside of a cluster. If the feedback is that a person named o =′ alan′ should be outside
of c = cluster 1, the figure shown in Figure 7.13 indicates that the weight w(θ1,θ2) =

{0.83,0.51} satisfies this requirement by fulfilling the constraint and locating clusters.

Fig. 7.13 Clustering based on f o,c on a six-people network in disjunction.

7.4 Summary 103

7.4 Summary

In this chapter, we first calculated similarity values among people in a social network using
CQQL, which returns a similarity matrix. A adjacency matrix was derived from the similarity
matrix using a threshold value of th = 0.5. The Fruchterman-Reingold algorithm was utilized
to generate two-dimensional representations of social networks by using the adjacency matrix
for visualization purposes.

The traditional clustering techniques like k−medoids and hierarchical clustering were
applied to the network, however their results may be impacted by the violation of the TI
property. To address this issue, our proposed clique-guided non-TI clustering approach was
used to detect meaningful clusters.

It is not obvious that the resulting clusters satisfy user needs. Therefore, we extended
our non-TI clustering approach by incorporating weights in CQQL conditions based on the
influence of the attributes of a person’s similarity. The user provides feedback by interacting
with the system, and it checks for weights that satisfy the corresponding constraints of the
feedback. To evaluate the performance of our relevance feedback based non-TI clustering
approach, we computed the clustering distance of the resulting cluster and compared it with
the ground-truth clustering.

One limitation of this work is the complexity (O(3n/3)) of the clique algorithm. We tested
our approach on social networks with a maximum size of 1000 people. The complexity
will certainly increase with the increase of network sizes. Nevertheless, the promising
performance of the proposed approach indicates its potential in the detection of meaningful
clusters and indicates its prospects for future developments.

Chapter 8

Conclusions

For analyzing experimental data from a social network, a large collection of clustering
algorithms is available. The scientific literature continues to be flooded with new clustering
algorithms. Most clustering algorithms work by taking the distances between objects as input
and then discovering clusters of objects. However, distance functions may sometimes not
satisfy the triangle inequality property, which can greatly impact the quality of the resulting
clusters.

In this thesis, we presented three major contributions towards the clustering of a social
network: one for detecting clusters based on a non-TI clustering approach; one for adapting
clusters with user interaction by providing feedback; and one for evaluating the non-TI
approach. Firstly, we proposed a CQQL-based clique-guided non-TI clustering approach that
detects meaningful clusters. Secondly, we proposed a weighted CQQL query where weights
reflect the influence of similarity conditions based on feedback from user interaction. Finally,
we calculated the clustering distance by comparing the detected clustering with ground truth
clustering. The clustering distance evaluates the performance of our approach compared with
the ideal solution.

The findings of this thesis have been published in three peer-reviewed conference papers
[listed in Appendix D]. Below, we summarize our main contributions, research findings and
suggest future research directions in social network clustering.

8.1 Contributions and Research Findings

Non-TI clustering approach

Our proposed non-TI clustering approach, based on CQQL, aims to detect meaningful
clusters. The approach first calculates the similarity between objects using CQQL, resulting

106 Conclusions

in a similarity matrix with dimensions of N×N. This similarity matrix is then transformed
into an adjacency matrix using a threshold value. Finally, the clique algorithm is applied to
detect clusters.

Our proposed approach outperforms traditional clustering algorithms to detect clusters.
Traditional clustering algorithms rely on distance functions that satisfy various properties,
including the triangle inequality (TI). However, if the distance function violates the TI
property, it may negatively impact the quality of the resulting clusters. Despite this violation,
our proposed approach still successfully detects meaningful clusters.

Relevance feedback in user interaction

The concept behind using feedback is straightforward: the user is given the chance to change
the initial cluster results by transferring objects from one cluster to another or by taking an
object out of a cluster. A CQQL query uses weights that are based on the impact of similarity
criteria. The main idea is to change and improve these weights through user feedback. As a
result, two types of feedback were proposed: (i) feedback for creating a new cluster and (ii)
feedback for removing an object from a cluster. The type of feedback depends on the user’s
interaction and can either be considered consistent if the weights do meet the constraints or
inconsistent if the weights do not meet the constraints.

Each feedback received in every round is added to a feedback set—a set of constraints.
This set must be satisfied in every round. If it is not possible to find a weight(s) that satisfies
all constraints, the system checks subsets of constraints and provides the user with a set of
alternate possible sets of feedback that can be fulfilled.

Clustering distance

We tested our approach by calculating a clustering distance by comparing the resulting
clustering with a ground truth clustering. The clustering distance measures the difference
between two clusterings. We used the concept of counting pairs of object approach to
compare clusterings.

8.2 Future Works

Despite the fact that this thesis made significant contributions to social network clustering
research, some limitations remain that offer directions for future research, as discussed below.

8.2 Future Works 107

Reducing complexity of clique algorithm

The Bron-Kerbosch algorithm with pivoting takes O(3n/3) time in the worst case. We
performed our experiment by varying node sizes from up to 1000 nodes. More nodes
increase running time. The main concern of our thesis is not to reduce the complexity of the
clique algorithm. Therefore, reduction of the complexity of the Clique algorithm will be a
prominent work in the future. One probable way of reducing the complexity is by weakening
the clique condition, for example, by discovering cliques with a size of at least 3 instead of
all maximal cliques. Another way is to parallelize or distribute the approach across multiple
processors or machines. This can significantly reduce the time it takes to locate all cliques in
a social network.

Graphical user interface

Our future work will focus on creating a graphical user interface that helps the user refine
queries as a result of the promising outcomes of our experiments. The theoretical core of
the user interface will be built on the exploitation of feedback regions and the corresponding
weight maxima to provide useful suggestions during the refinement process.

Star Satellite clustering approach

Another clustering approach that can be used to find meaningful clusters based on the distance
between nodes is the star satellite clustering approach. The approach starts by choosing
one node in the network as the central node (a star), and then grouping all of the nodes that
are nearby it (satellites). This process is repeated for each satellite by selecting each one as
the new star node and identifying its close neighbors as satellites, until all nodes have been
assigned to a cluster. The result is a set of clusters, each of which is centered around a star
node and contains the satellites that are close to it. The time complexity of the Star Satellite
approach is O(n+mlogn), where n is the number of nodes in the graph and m is the number
of edges.

Appendix A

Mathematical Foundations

The purpose of this appendix is to provide an overview of the mathematical foundations
needed to comprehend the thesis. It is not meant to substitute for a comprehensive introduc-
tion to the relevant topics, particularly in statistics and probability theory, which are more
thoroughly covered by Mendenhall et al. [2020], Miller et al. [1999], or Ash [2008].

Several authors, including Bondy and Murty [1976], provide basic overviews of the
mathematical concepts of graph theory.

A.1 Numbers, Sets, Relations and Functions

Numbers

The set of natural numbers that includes zero is represented as N = {0,1,2, ...}. The real
numbers are symbolized by R. The non-negative real numbers are referred to as R≥0, and
the positive real numbers are denoted as R+.

Sets

A set is an aggregation of objects known as elements. The elements of a set can be any kind
of objects, such as numbers, letters, or even other sets. A set is defined as a collection of
distinct elements, and the order of the elements within the set is usually not important. The
logical statement "a is a member of the set A" is written as

a ∈ A

Likewise, its logical negation "a is not a member of the set A" is written a /∈ A. Therefore,
exactly one of these two statements is true.

110 Mathematical Foundations

Some important sets are:

• N= {0,1,2,3, ...} is the set of natural numbers with 0.

• Z= {...,−3,−2,−1,0,1,2,3, ...} is the set of integers.

• Q is the set of rational numbers.

• R is the set of real numbers.

• C is the set of complex numbers.

Empty Set. A set with no elements is called empty set (or null set, or void set), and is
represented by /0 or {}.

Subset. A set S is considered a subset of another set A, or contained in A, if all elements
of S are also elements of A. This relationship is represented mathematically as S⊆ A. This
means that for all elements x in S, it must also be an element of A.

A proper subset of a set A, represented as S⊂ A, is a subset that satisfies S⊆ A but is not
equal to A. This means that there exists at least one element in A that is not in S. In other
words, a proper subset is a subset that is strictly contained within another set.

Definition A.1. For a finite set A, the cardinality |A| equals the number of elements in A.

Definition A.2. We say that A equals B (denoted A = B) if, for all x, x ∈ A iff x ∈ B. This
means that A = B ⇐⇒ ∀x((x ∈ A)↔ (x ∈ B)).

Ordered Pairs. A set is a collection of distinct elements. An ordinary pair, represented as
a,b, is a set with two elements where the order of the elements is irrelevant. This means that
a,b = b,a and no distinction is made between the elements in terms of their arrangement.

On the other hand, an ordered pair, represented as (a,b), is a different object used when
the order of the elements is relevant. In this case, (a,b) ̸= (b,a) unless a = b. The elements
in an ordered pair are arranged in a specific order, and this order is important.

Two ordered pairs are equal if and only if both the first and second elements are equal. In
mathematical terms, (a,b) = (a′,b′) if and only if a = a′ and b = b′.

Partition. A partition of a set A is a grouping of its elements into non-overlapping and
non-empty subsets such that their union is equal to the original set A. In other words, a
partition of a set A is a collection of subsets of A such that each element in A belongs to
exactly one subset in the collection, and the subsets in the collection cover all elements of A.
The subsets in the partition are called "blocks".

Sets of Sets. So far, most of our sets contain atomic elements (such as numbers or strings)
or tuples (e.g. pairs of numbers). Sets can also contain other sets. For example, {Z,Q} is a
set containing two infinite sets. {{a,b},{c}} is a set containing two finite sets.

A.1 Numbers, Sets, Relations and Functions 111

Set Operations

Let A, B be any two sets.

Definition A.3. The union of A and B (denoted A∪B) is the set of elements in either A or B.
That means A∪B = {x ∈ A or x ∈ B} is also defined by

x ∈ A∪B ⇐⇒ (x ∈ A)∨ (x ∈ B)

Definition A.4. The intersection of A and B (denoted A∩B) is the set of elements in both A
and B. That means A∩B = {x ∈ A and x ∈ B} is also defined by

x ∈ A∩B ⇐⇒ (x ∈ A)∧ (x ∈ B)

Two sets are said to be disjoint if A∩B = /0.

Definition A.5. The set difference between A and B (denoted A−B or A \B) is the set of
elements in A but not in B. That means

x ∈ A−B ⇐⇒ (x ∈ A)∧ (x /∈ B)

If there is some implied universal set U , then the complement (denoted Ac) is defined by
Ac =U−A.

Definition A.6. The Cartesian Product, denoted A×B, of two sets is the set of ordered
pairs (a,b)|a ∈ A,b ∈ B. For n−tuples taken from the same set, the notation An denotes the
n−fold product A×A× ...×A.

An example of Cartesian product is the real plane R2, where R is the set of real numbers.

Binary Relations

A binary relation ∼ between elements of the set A is defined by the pairs (x,y) ∈ A×A for
which the relation holds. Specifically, the binary relation is defined by the subset of ordered
pairs E ⊆ A×A where the relation a∼ b holds; so x∼ y iff (x,y) ∈ E. A binary relation on
A is said to be:

1. Reflexive: if x∼ x holds for all x ∈ A

2. Symmetric: if x∼ y implies y∼ x for all x,y ∈ A

3. Transitive: if x∼ y and y∼ z, then x∼ z for all x,y,z ∈ A

112 Mathematical Foundations

Functions

A function f : X → Y from X to Y is defined by a subset F ⊂ X ×Y such that Ax = {y ∈
Y |(x,y) ∈ F} has exactly one element for each x ∈ X . The value of f at x ∈ X , denoted f (x),
is the unique element of Y contained in Ax.

A.2 Vectors and Matrices

Vectors

A k−dimensional vector a is an ordered collection of k real numbers a1,a2, ...,ak, and is
written as a = ⟨a1,a2, ...,ak⟩. The numbers a j where j = 1,2, ...,k are called the components
of the vector a.

Definition A.7. A dot product is a way of multiplying two vectors to get a number, or scalar.
If b = ⟨b1,b2, ...,bk⟩ is also a vector then the dot product of two vectors a and b is defined as

a ·b = ∑
k
j=1 a jb j

Definition A.8. The norm of a vector, written as |a| or ||a|| is the square root of the dot
product of a with itself, is defined as

|a|=
√

a ·a

Matrices

A matrix is a group of numbers (elements) that are arranged in rows and columns. In general,
an m×n matrix is a rectangular array of mn numbers (or elements) arranged in m rows and n
columns. If m = n the matrix is called a square matrix. Sometime we use the abbreviation
S = (si j) for a matrix where si j would be the element at ith row and jth column.

Definition A.9. A square matrix S = (si j) is called a symmetric matrix if si j = s ji, i.e. the
elements of the matrix are symmetric with respect to the main diagonal.

Definition A.10. Two matrices P and Q are equal if and only if they have the same size m×n
and their corresponding elements are equal.

A.3 Graphs

Throughout this thesis, unless specified otherwise, we consider simple undirected graphs as
defined below. The set of all such graphs is symbolized as G.

A.3 Graphs 113

Definition A.11 (Graph). A graph G = (V,E) is composed of a finite set of vertices V =

1,2, ...,n and a finite set of edges E ⊆V ×V , which are pairs of distinct vertices. Two vertices
u and v are said to be adjacent (or neighbors) if (u,v) ∈ E. The neighborhood of a vertex
v, denoted N(v) (or NG(v) when the graph needs to be mentioned explicitly), is defined as
N(v) = {u ∈V |(u,v) ∈ E}. The degree of a vertex v is the number of vertices adjacent to it
and is denoted as deg(v).

Definition A.12 (Subgraph). A graph G′ = (V ′,E ′) is considered a subgraph of a graph
G = (V,E), denoted as G′ ⊆G, when V ′ ⊆V and E ′ ⊆ E. If G′ is a subgraph of G, then G is
referred to as a supergraph of G′. If a subgraph G′ ⊆ G is not equal to G, it is referred to as
proper and written as G′ ⊂ G.

Definition A.13 (Clique). A clique of a graph, also called a complete subgraph, is a set C⊆V
of pair-wise adjacent vertices.A clique C is considered maximal if there is no vertex in V \C
that is connected to all vertices in C..

The order of a graph G is defined as the number of its vertices, and represented as
|G| = |V (G)|. The size of G is represented by ||G|| = |E(G)|, which is the number of its
edges. If a graph G has |G|= 0, it is referred to as an empty graph. The adjacency matrix of
a graph G of order n is a symmetric matrix A ∈ 0,1n×n that reflects the presence of edges
between vertices. The matrix element ai j is equal to 1 if viv j ∈ E(G), and 0 otherwise, where
vi and v j are the vertices that are numbered.

Appendix B

Transformation of CQQL Queries

"A CQQL condition (or query) in a specific syntactical form can be evaluated by means
of simple, straightforward arithmetics [Schmitt 2008]. The algorithm for transforming an
arbitrary CQQL query e is given in Figure B.1.

Fig. B.1 Transformation algorithm.

116 Transformation of CQQL Queries

Example B.1. Consider a collection of XML documents about paintings. Each has a textual
content description in the <desc> tag, a paint technique in the <technique> tag, and
the century it was created in the <century> tag. The query ’retrieve all oil paintings
showing evening twilight painted about in sixteenth century’ combines a database query
(technique=’oil’), a text retrieval query (desc is about ’evening twilight’), and a
proximity query (century approx 16th).

Next, we demonstrate the evaluation. The atoms of the example query are shown in Table
B.1. The condition on a painting’s textual description is a text retrieval query, the condition
on the century of its creation is a proximity query, and the conditions on the three different
painting techniques are traditional database queries.

Table B.1 Atomic conditions

Condition
d : desc=’crucifixion’
c : century=’16th’
t1 : technique=’oil’
t2 : technique=’pencil’
t3 : technique=’watercolor’

In the example query shown in Figure B.2, we search for crucifixion paintings or water-
color paintings. If created in the sixteenth century, the crucifixion should be painted in oil,
otherwise in pencil. Figure B.2 shows the transformation algorithm in detail as well as the
final arithmetic evaluation formula."

[Schmitt et al. 2008]

117

Fig. B.2 Example transformations and arithmetic evaluation.

Appendix C

Experimental Results

C.1 Clustering of a social network (20 people)

(a) school (b) admission_year

(c) graduation_year

Fig. C.1 Structure of a twenty-people network.

120 Experimental Results

C.1.1 CQQL query with conjunction (∧)

Clustering approaches

(a) Unweighted (b) k-medoids (k = 7) clustering

(c) Dendogram of Figure C.2d

(d) Hierarchical (k = 7) clustering (e) Non-TI

Fig. C.2 Clustering on a twenty-people network in conjunction.

C.1 Clustering of a social network (20 people) 121

Table C.1 Clusters after clustering on a twenty-people network in conjunction

Methods Clusters
k-medoids (k=7) {raju, saiful, peter}, {siam, ayon, alan, deba},

{lina, rono}, {ayuba, rezart, rajat}, {eliza}, {di-
ana, kayle}, {joe, yousef, polash, max, chris}

Hierarchical (Single-linkage k=7) {ayon, alan, diana, ayuba, deba, rezart, yousef,
rajat, max, chris}, {raju}, {joe, kayle, polash,
peter}, {siam}, {eliza}, {rono}, {lina, saiful}

Non-TI {kayle, polash, joe}, {joe, max, polash, chris},
{joe, max, ayon}, {joe, max, alan}, {joe, di-
ana}, {joe, deba, alan}, {joe, deba, ayon}, {rajat,
ayuba, eliza, ayon}, {rajat, ayuba, eliza, rezart},
{rajat, rono}, {rajat, yousef, chris}, {rajat, raju},
{rajat, deba, ayon}, {polash, peter, saiful}, {alan,
yousef, max}, {alan, peter, deba}, {alan, ayuba},
{alan, siam, deba}, {saiful, peter, raju}, {saiful,
peter, lina}, {saiful, eliza}, {lina, ayon}, {lina,
rono}, {siam, ayon, deba}, {diana, ayuba}, {max,
yousef, chris}

122 Experimental Results

User interaction

Complimented form of a weight

Feedback for constructing a new cluster

Fig. C.3 Clustering based on f co on a twenty-people network in conjunction.

C.1 Clustering of a social network (20 people) 123

Fig. C.4 Ideal Solution.

124 Experimental Results

Table C.2 Ground-truth clustering

Clusters
{joe, rono, chris, alan, kayle, ayuba}, {joe, rono, chris, alan, kayle, yousef}, {joe, rono,
chris, lina, ayon, saiful}, {joe, rono, chris, lina, ayon, ayuba}, {joe, rono, chris, lina, rezart,
saiful}, {joe, rono, chris, lina, rezart, ayuba, kayle}, {joe, rono, chris, yousef, ayon}, {joe,
rono, chris, yousef, rezart, kayle}, {joe, deba, polash, raju, alan, kayle}, {joe, deba, polash,
raju, alan, siam}, {joe, deba, polash, raju, lina, saiful, diana}, {joe, deba, polash, raju,
lina, kayle}, {joe, deba, polash, raju, siam, diana} ,{joe, deba, polash, yousef, alan, kayle,
chris} ,{joe, deba, polash, yousef, diana} ,{joe, deba, polash, chris, lina, saiful} ,{joe,
deba, polash, chris, lina, kayle} ,{joe, deba, ayon, siam} ,{joe, deba, ayon, chris, saiful,
lina} ,{joe, deba, ayon, chris, yousef} ,{joe, deba, rezart, lina, saiful, diana} ,{joe, deba,
rezart, lina, saiful, chris} ,{joe, deba, rezart, lina, kayle, chris} ,{joe, deba, rezart, yousef,
diana} , {joe, deba, rezart, yousef, kayle, chris} , {joe, ayuba, alan, kayle, polash, raju}
, {joe, ayuba, alan, kayle, polash, chris} , {joe, ayuba, lina, raju, polash, diana} , {joe,
ayuba, lina, raju, polash, kayle} , {joe, ayuba, lina, diana, rezart} , {joe, ayuba, lina, chris,
polash, kayle} , {joe, max, polash, chris, kayle, alan, yousef} , {joe, max, polash, chris,
kayle, lina} , {joe, max, polash, diana, lina} , {joe, max, polash, diana, yousef} , {joe, max,
polash, diana, siam} , {joe, max, polash, siam, alan} , {joe, max, ayon, chris, lina} , {joe,
max, ayon, chris, yousef} , {joe, max, ayon, siam} , {rajat, raju, deba, peter, polash, saiful,
lina} ,{rajat, raju, deba, peter, polash, alan, siam} , {rajat, raju, deba, eliza, saiful, lina}
, {rajat, raju, deba, eliza, alan, siam} , {rajat, raju, ayuba, alan, polash, peter} , {rajat,
raju, ayuba, alan, eliza} , {rajat, raju, ayuba, lina, polash, peter} , {rajat, raju, ayuba, lina,
eliza} , {rajat, chris, alan, peter, polash, deba} ,{rajat, chris, alan, peter, polash, ayuba}
, {rajat, chris, alan, peter, polash, max} , {rajat, chris, alan, ayuba, eliza} , {rajat, chris,
alan, ayuba, rono} , {rajat, chris, alan, yousef, rono} , {rajat, chris, alan, yousef, deba,
polash} , {rajat, chris, alan, yousef, deba, eliza} , {rajat, chris, alan, yousef, max, polash}
, {rajat, chris, alan, yousef, max, eliza} , {rajat, chris, lina, saiful, deba, polash, peter} ,
{rajat, chris, lina, saiful, deba, eliza, ayon} , {rajat, chris, lina, saiful, deba, eliza, rezart} ,
{rajat, chris, lina, saiful, rono, ayon} , {rajat, chris, lina, saiful, rono, rezart} , {rajat, chris,
lina, ayuba, polash, peter} , {rajat, chris, lina, ayuba, rono, ayon} , {rajat, chris, lina,
ayuba, rono, rezart} , {rajat, chris, lina, ayuba, eliza, ayon} , {rajat, chris, lina, ayuba,
eliza, rezart} , {rajat, chris, lina, max, polash, peter} , {rajat, chris, lina, max, ayon, eliza}
, {rajat, chris, yousef, ayon, eliza, deba} , {rajat, chris, yousef, ayon, eliza, max} , {rajat,
chris, yousef, ayon, rono} , {rajat, chris, yousef, rezart, deba, eliza} ,{rajat, chris, yousef,
rezart, rono} , {rajat, siam, deba, ayon, eliza} , {rajat, siam, max, ayon, eliza} , {rajat,
siam, max, alan, polash, peter} , {rajat, siam, max, alan, eliza} , {diana, eliza, deba, lina,
saiful, raju} , {diana, eliza, deba, lina, saiful, rezart} , {diana, eliza, deba, yousef, rezart}
, {diana, eliza, deba, siam, raju} , {diana, eliza, ayuba, lina, raju} , {diana, eliza, ayuba,
lina, rezart} , {diana, eliza, max, lina}

C.1 Clustering of a social network (20 people) 125

Fig. C.5 Clustering distances based on f o,c in Figure C.3.

126 Experimental Results

Feedback for removing a person from a cluster

Fig. C.6 Clustering based on f o,c on a twenty-people network in conjunction.

C.1 Clustering of a social network (20 people) 127

Weights based on influence

Feedback for constructing a new cluster

Fig. C.7 Clustering based on f co on a twenty-people network in conjunction.

128 Experimental Results

Fig. C.8 Clustering distances based on f o,c in Figure C.7.

C.1 Clustering of a social network (20 people) 129

C.1.2 CQQL query with disjunction (∨)

Clustering approaches

(a) Unweighted (b) k-medoids (k = 7) clustering

(c) Dendogram of Figure C.9d

(d) Hierarchical (k = 7) clustering (e) Non-TI

Fig. C.9 Clustering on a twenty-people network in disjunction.

130 Experimental Results

Table C.3 Clusters after clustering on a twenty-people network in disjunction

Methods Clusters
k-medoids (k=7) {ayon, kayle, yousef, rono, chris}, {lina, ayuba, rezart, saiful, rajat}, {alan, max}, {siam, deba},

{eliza, diana}, {raju, polash, peter}, {joe}
Hierarchical (Single-
linkage k=7)

{alan, eliza, diana, lina, ayuba, deba, rezart, yousef, rono, saiful, rajat}, {ayon, max}, {chris},
{raju}, {joe, kayle, polash}, {siam}, {peter}

Non-TI {lina, joe, chris, kayle, rezart, yousef, deba}, {lina, joe, chris, kayle, rezart, yousef, rono}, {lina,
joe, chris, kayle, rezart, ayuba, rono}, {lina, joe, chris, kayle, alan, polash, yousef, max}, {lina, joe,
chris, kayle, alan, polash, yousef, deba}, {lina, joe, chris, kayle, alan, polash, peter, ayuba}, {lina,
joe, chris, kayle, alan, polash, peter, max}, {lina, joe, chris, kayle, alan, polash, peter, deba}, {lina,
joe, chris, kayle, alan, rono, yousef}, {lina, joe, chris, kayle, alan, rono, ayuba}, {lina, joe, chris,
ayon, yousef, max}, {lina, joe, chris, ayon, yousef, deba}, {lina, joe, chris, ayon, yousef, rono}, {lina,
joe, chris, ayon, ayuba, rono}, {lina, joe, chris, ayon, saiful, deba}, {lina, joe, chris, ayon, saiful,
rono}, {lina, joe, chris, saiful, deba, rezart}, {lina, joe, chris, saiful, deba, polash, peter}, {lina, joe,
chris, saiful, rono, rezart}, {lina, joe, diana, rezart, ayuba}, {lina, joe, diana, rezart, deba, yousef},
{lina, joe, diana, rezart, deba, saiful}, {lina, joe, diana, polash, saiful, deba, raju}, {lina, joe, diana,
polash, alan, ayuba, raju}, {lina, joe, diana, polash, alan, max, yousef}, {lina, joe, diana, polash,
alan, deba, yousef}, {lina, joe, diana, polash, alan, deba, raju}, {lina, joe, raju, polash, peter, kayle,
alan, ayuba}, {lina, joe, raju, polash, peter, kayle, alan, deba}, {lina, joe, raju, polash, peter, saiful,
deba}, {lina, rajat, chris, ayuba, ayon, eliza}, {lina, rajat, chris, ayuba, ayon, rono}, {lina, rajat,
chris, ayuba, rezart, eliza}, {lina, rajat, chris, ayuba, rezart, rono}, {lina, rajat, chris, ayuba, alan,
eliza}, {lina, rajat, chris, ayuba, alan, polash, peter}, {lina, rajat, chris, ayuba, alan, rono}, {lina,
rajat, chris, max, yousef, ayon, eliza}, {lina, rajat, chris, max, yousef, alan, eliza}, {lina, rajat, chris,
max, yousef, alan, polash}, {lina, rajat, chris, max, peter, polash, alan}, {lina, rajat, chris, deba,
yousef, eliza, ayon}, {lina, rajat, chris, deba, yousef, eliza, rezart}, {lina, rajat, chris, deba, yousef,
eliza, alan}, {lina, rajat, chris, deba, yousef, polash, alan}, {lina, rajat, chris, deba, peter, polash,
saiful}, {lina, rajat, chris, deba, peter, polash, alan}, {lina, rajat, chris, deba, saiful, eliza, ayon},
{lina, rajat, chris, deba, saiful, eliza, rezart}, {lina, rajat, chris, rono, yousef, ayon}, {lina, rajat,
chris, rono, yousef, rezart}, {lina, rajat, chris, rono, yousef, alan}, {lina, rajat, chris, rono, saiful,
ayon}, {lina, rajat, chris, rono, saiful, rezart}, {lina, rajat, diana, eliza, ayuba, rezart}, {lina, rajat,
diana, eliza, ayuba, alan, raju}, {lina, rajat, diana, eliza, max, yousef, alan}, {lina, rajat, diana,
eliza, deba, yousef, rezart}, {lina, rajat, diana, eliza, deba, yousef, alan}, {lina, rajat, diana, eliza,
deba, rezart, saiful}, {lina, rajat, diana, eliza, deba, raju, saiful}, {lina, rajat, diana, eliza, deba,
raju, alan}, {lina, rajat, diana, polash, saiful, deba, raju}, {lina, rajat, diana, polash, alan, ayuba,
raju}, {lina, rajat, diana, polash, alan, max, yousef}, {lina, rajat, diana, polash, alan, deba, yousef},
{lina, rajat, diana, polash, alan, deba, raju}, {lina, rajat, raju, peter, polash, ayuba, alan}, {lina,
rajat, raju, peter, polash, deba, saiful}, {lina, rajat, raju, peter, polash, deba, alan}, {lina, eliza,
kayle, chris, yousef, max, alan}, {lina, eliza, kayle, chris, yousef, deba, rezart}, {lina, eliza, kayle,
chris, yousef, deba, alan}, {lina, eliza, kayle, chris, ayuba, rezart}, {lina, eliza, kayle, chris, ayuba,
alan}, {lina, eliza, kayle, raju, alan, ayuba}, {lina, eliza, kayle, raju, alan, deba}, {siam, joe, max,
ayon}, {siam, joe, max, polash, alan, peter}, {siam, joe, max, polash, alan, diana}, {siam, joe, deba,
ayon}, {siam, joe, deba, raju, polash, alan, peter}, {siam, joe, deba, raju, polash, alan, diana},
{siam, rajat, max, ayon, eliza}, {siam, rajat, max, alan, eliza, diana}, {siam, rajat, max, alan, polash,
peter}, {siam, rajat, max, alan, polash, diana}, {siam, rajat, deba, ayon, eliza}, {siam, rajat, deba,
raju, alan, eliza, diana}, {siam, rajat, deba, raju, alan, polash, peter}, {siam, rajat, deba, raju, alan,
polash, diana}

C.1 Clustering of a social network (20 people) 131

User interaction

Complimented form of a weight

The logical transformation in Section 4.3.2 shows that connected weights in a conjunction
equals exactly connected weights in a disjunction. Therefore, the experimental procedure
and results will be equal for the same parameter settings as described in C.1.1.

132 Experimental Results

Weights based on influence

Feedback for constructing a new cluster

Fig. C.10 Clustering based on f co on a twenty-people network in disjunction.

C.1 Clustering of a social network (20 people) 133

Fig. C.11 Clustering distances based on f co in Figure C.10.

Feedback for removing a person from a cluster

Fig. C.12 Clustering based on f o,c on a twenty-people network in disjunction.

134 Experimental Results

C.2 Clustering of a social network (50 people)

(a) school (b) admission_year

(c) graduation_year

Fig. C.13 Structure of a fifty-people network.

C.2 Clustering of a social network (50 people) 135

C.2.1 CQQL query with conjunction (∧)

Clustering approaches

(a) Unweighted (b) k-medoids (k = 10) clustering

(c) Dendogram of Figure C.14d

(d) Hierarchical (single-linkage k = 10) clustering (e) Non-TI

Fig. C.14 Clustering on a fifty-people network in conjunction.

136 Experimental Results

Table C.4 Clusters after clustering on a fifty-people network in conjunction

Methods Clusters
k-medoids (k=10) {rezart, justin, sharon, samuel, walter, keith}, {scott, jose, megan, andrea}, {polash, ryan, jack, tyler, joan, harold},

{henry, ethan, roger}, {diana, ayuba, kayle, rono, max, eric, larry, joyce}, {ayon, deba, yousef, rajat, ruth, kelly},
{joe, raju, saiful, ronald, judith, martha}, {alan, lina, chris, jason}, {siam, amy, nathan}, {eliza, peter, laura,
hannah}

Hierarchical (Single-
linkage k=10)

{eric, harold, roger}, {rezart, keith}, {siam, ayon, alan, joe, eliza, diana, ayuba, deba, kayle, yousef, polash, rono,
saiful, rajat, max, peter, chris, ryan, jason, ronald, amy, justin, sharon, scott, laura, samuel, ruth, tyler, henry,
nathan, kelly, ethan, joan, walter, megan, judith, andrea}, {joyce}, {lina, martha}, {raju}, {hannah}, {larry}, {jose},
{jack}

Non-TI {roger, justin, eric}, {roger, joan, polash}, {roger, joan, ronald}, {roger, joan, kayle}, {roger, rajat, judith}, {roger,
joyce, henry}, {roger, judith, polash}, {roger, judith, henry}, {roger, eric, kayle}, {roger, eric, henry}, {keith, justin,
rezart}, {keith, scott, martha}, {keith, scott, walter}, {keith, scott, joan}, {keith, jose, walter}, {keith, jose, ethan},
{keith, sharon, martha}, {keith, sharon, joan}, {keith, sharon, diana, rezart}, {keith, sharon, samuel}, {keith, sharon,
ethan}, {keith, amy, samuel}, {keith, amy, diana}, {keith, walter, diana}, {keith, ronald, martha}, {keith, ronald,
joan}, {eliza, lina}, {eliza, diana, tyler, amy}, {eliza, peter, amy}, {eliza, peter, hannah}, {eliza, eric, rono, yousef},
{eliza, eric, samuel}, {eliza, eric, tyler}, {eliza, amy, samuel}, {eliza, hannah, yousef}, {eliza, alan}, {kayle, larry,
eric}, {kayle, larry, max, diana}, {kayle, jason, joan}, {kayle, jason, megan}, {kayle, jason, diana}, {kayle, jason,
kelly}, {kayle, jason, eric, ayuba}, {kayle, andrea, joan}, {kayle, max, megan}, {kayle, chris, kelly}, {kayle, chris,
alan}, {kayle, chris, eric}, {kayle, nathan}, {siam, martha, rono}, {siam, martha, scott}, {siam, martha, lina,
sharon}, {siam, justin, nathan}, {siam, joan, rono}, {siam, joan, scott}, {siam, joan, sharon}, {siam, joan, harold},
{siam, rajat, amy}, {siam, rajat, sharon}, {siam, rajat, nathan}, {siam, jose, rono}, {siam, jose, harold}, {larry,
scott, max}, {larry, ayon, samuel}, {larry, joyce, rono}, {larry, joyce, max, diana}, {larry, eric, rono}, {larry, eric,
samuel}, {ayon, ruth, walter}, {ayon, ruth, rajat}, {ayon, jason, judith}, {ayon, jason, joan}, {ayon, jason, ayuba,
samuel}, {ayon, jason, ayuba, ethan}, {ayon, jason, rezart}, {ayon, joe, judith}, {ayon, joe, ethan}, {ayon, rajat,
judith}, {ayon, rajat, samuel, ayuba}, {ayon, yousef, rezart}, {ayon, yousef, ethan}, {ayon, yousef, walter}, {ayon,
lina, raju}, {ayon, lina, ethan}, {ayon, raju, judith, walter}, {yousef, justin, rezart, eric}, {yousef, jose, rono},
{yousef, jose, walter}, {yousef, jose, ethan, andrea}, {yousef, deba, rono}, {yousef, deba, walter}, {yousef, deba,
kelly}, {yousef, deba, rezart}, {yousef, joyce, rono}, {yousef, joyce, hannah}, {yousef, eric, ethan}, {yousef, hannah,
ethan}, {jose, megan, walter}, {jose, henry, ethan}, {jose, tyler, walter}, {jose, ayuba, ethan}, {deba, ruth, rono},
{deba, ruth, walter}, {deba, ruth, kelly, rajat}, {deba, samuel, sharon, rajat}, {deba, sharon, rezart}, {laura, scott,
martha}, {laura, scott, hannah}, {laura, scott, andrea}, {laura, joe}, {laura, harold}, {laura, sharon, martha},
{laura, sharon, hannah}, {laura, amy}, {joyce, jason, ayuba}, {joyce, jason, diana}, {joyce, amy, ayuba}, {joyce,
amy, diana}, {joyce, chris}, {rono, ryan}, {polash, joan, tyler}, {polash, joan, sharon}, {polash, joan, jack}, {polash,
ryan, jack}, {walter, megan, scott}, {walter, megan, ryan, raju}, {walter, megan, ruth}, {walter, megan, peter},
{walter, diana, raju}, {walter, diana, ruth, tyler}, {walter, judith, scott}, {walter, alan, raju, ryan}, {saiful, martha,
kelly}, {saiful, martha, sharon}, {saiful, martha, ronald}, {saiful, martha, jack}, {saiful, ruth, kelly}, {saiful, ruth,
megan, max}, {saiful, ruth, megan, ronald}, {saiful, ruth, amy}, {saiful, megan, raju}, {saiful, megan, peter, max},
{saiful, megan, peter, ronald}, {saiful, megan, jason}, {saiful, amy, peter}, {saiful, kelly, peter}, {saiful, kelly, jason},
{saiful, kelly, joe}, {saiful, rezart, jason}, {saiful, rezart, sharon}, {saiful, ethan, jason, jack}, {saiful, ethan, joe,
nathan}, {saiful, ethan, sharon, henry}, {saiful, ethan, andrea}, {saiful, ethan, peter}, {saiful, ronald, joe}, {justin,
megan, ruth}, {justin, megan, peter}, {scott, joan, andrea}, {scott, megan, max}, {scott, judith, kelly}, {scott, kelly,
martha}, {joan, jason, tyler}, {joan, jason, harold, jack}, {harold, alan, jack}, {harold, jason, kelly}, {harold, jason,
eric}, {harold, max}, {samuel, jason, ryan}, {samuel, jason, eric, ayuba}, {samuel, rajat, amy, ayuba}, {samuel,
rajat, nathan}, {samuel, andrea}, {samuel, eric, chris}, {samuel, chris, sharon}, {chris, judith, kelly}, {chris, eric,
ethan}, {chris, lina, kelly}, {chris, lina, sharon, ethan}, {hannah, raju}, {hannah, ethan, peter}, {hannah, ethan,
sharon}, {ayuba, ethan, eric, jason}, {ayuba, ronald}, {rajat, peter, kelly}, {rajat, peter, amy}, {rajat, amy, ruth},
{rajat, judith, kelly}, {rajat, jack}, {lina, martha, kelly}, {lina, megan, raju, ryan}, {lina, megan, max}, {lina, andrea,
ethan}, {diana, ruth, tyler, amy}, {diana, ruth, max}, {diana, jason, tyler}, {diana, jason, rezart}, {judith, kelly,
jason}, {judith, kelly, joe}, {ryan, jason, megan}, {ryan, jason, jack}, {ryan, jack, alan}, {eric, jason, tyler}, {eric,
jason, rezart}, {eric, henry, ethan}, {alan, martha, jack}

C.2 Clustering of a social network (50 people) 137

User interaction

Complimented form of a weight

Feedback for constructing a new cluster

Fig. C.15 Clustering based on f co on a fifty-people network in conjunction.

Fig. C.16 Ideal Solution.

138 Experimental Results

Table C.5 Ground-truth clustering

{sharon, samuel, chris, lina}, {sharon, samuel, rajat, jason, joan}, {sharon, samuel,
rajat, jason, ayuba}, {sharon, samuel, rajat, joan, polash}, {sharon, samuel, rajat, lina,
laura}, {sharon, samuel, rajat, deba, laura}, {sharon, samuel, rajat, deba, polash},
{sharon, samuel, rajat, deba, ayuba}, {sharon, samuel, keith, joan}, {sharon, samuel,
keith, justin}, {sharon, samuel, ryan, jason}, {sharon, samuel, ryan, polash}, {sharon,
samuel, ryan, lina}, {sharon, samuel, justin, laura}, {sharon, samuel, justin, ayuba},
{sharon, martha, diana, keith, justin}, {sharon, martha, rajat, polash, jack}, {sharon,
martha, rajat, polash, deba}, {sharon, martha, rajat, henry, ayuba}, {sharon, martha,
rajat, deba, laura}, {sharon, martha, rajat, deba, ayuba}, {sharon, martha, rajat, lina,
jack}, {sharon, martha, rajat, lina, laura}, {sharon, martha, rajat, lina, siam}, {sharon,
martha, harold, justin, jack}, {sharon, martha, harold, justin, laura}, {sharon, martha,
harold, justin, siam}, {sharon, martha, harold, polash, jack}, {sharon, martha, keith,
saiful, ethan}, {sharon, martha, ethan, siam, lina}, {sharon, martha, ethan, saiful, jack,
lina}, {sharon, martha, ethan, saiful, henry, ayuba}, {sharon, martha, justin, ayuba},
{sharon, martha, saiful, polash, jack}, {sharon, jason, diana, rezart}, {sharon, jason,
henry, rajat, ayuba}, {sharon, jason, henry, ryan, saiful}, {sharon, jason, henry, ethan,
hannah}, {sharon, jason, henry, ethan, saiful, ayuba}, {sharon, jason, jack, rajat, joan},
{sharon, jason, jack, harold, joan}, {sharon, jason, jack, ethan, hannah}, {sharon, jason,
jack, ethan, saiful}, {sharon, jason, jack, ryan, saiful}, {sharon, jason, siam, joan, rajat},
{sharon, jason, siam, joan, harold}, {sharon, jason, siam, ethan}, {sharon, jason, rezart,
saiful}, {sharon, chris, siam, lina, ethan}, {sharon, rezart, keith, justin, diana}, {sharon,
rezart, keith, saiful}, {sharon, rezart, polash, deba}, {sharon, rezart, polash, saiful},
{sharon, ryan, saiful, polash, jack}, {sharon, ryan, saiful, lina, jack}, {sharon, joan,
polash, jack, rajat}, {sharon, joan, polash, jack, harold}, {sharon, hannah, laura, deba},
{walter, joan, samuel, scott, keith}, {walter, joan, samuel, rajat, ayon}, {walter, joan,
samuel, rajat, peter}, {walter, joan, yousef, ayon}, {walter, joan, tyler, kayle}, {walter,
joan, tyler, peter}, {walter, joan, jack, rajat, ayon}, {walter, joan, jack, rajat, roger},
{walter, joan, jack, kayle, roger}, {walter, joan, roger, scott}, {walter, joan, roger, rajat,
peter}, {walter, ruth, max, hannah}, {walter, ruth, max, lina, megan}, {walter, ruth, max,
tyler, megan}, {walter, ruth, max, tyler, diana}, {walter, ruth, diana, jose, tyler}, {walter,
ruth, rajat, jack, ayon, lina}, {walter, ruth, rajat, samuel, ayon, lina},

C.2 Clustering of a social network (50 people) 139

{walter, ruth, rajat, samuel, deba}, {walter, ruth, rajat, jose}, {walter, ruth, tyler, megan,
jose}, {walter, ruth, megan, deba}, {walter, ruth, hannah, jack}, {walter, ruth, hannah,
jose}, {walter, ruth, hannah, deba}, {walter, alan, joe, scott}, {walter, alan, joe, ethan},
{walter, alan, ethan, jack}, {walter, alan, ethan, chris}, {walter, alan, ethan, ayuba},
{walter, alan, kayle, jack, roger}, {walter, alan, kayle, chris}, {walter, alan, kayle, raju},
{walter, alan, kayle, ayuba}, {walter, alan, ryan, raju}, {walter, alan, ryan, roger, jack},
{walter, alan, ryan, roger, scott}, {walter, alan, scott, chris}, {walter, rajat, samuel, ayon,
judith}, {walter, rajat, samuel, ayon, laura, lina}, {walter, rajat, samuel, ayon, ayuba},
{walter, rajat, samuel, peter, laura, lina}, {walter, rajat, samuel, peter, laura, deba},
{walter, rajat, samuel, deba, ayuba}, {walter, rajat, roger, judith}, {walter, rajat, roger,
deba, peter}, {walter, rajat, jose, ayuba}, {walter, raju, diana, keith}, {walter, raju, diana,
kayle}, {walter, raju, diana, yousef}, {walter, raju, judith, ayon}, {walter, raju, judith,
kayle}, {walter, raju, judith, hannah}, {walter, raju, ayon, laura, lina}, {walter, raju,
ayon, yousef}, {walter, raju, megan, keith}, {walter, raju, megan, lina, laura}, {walter,
raju, megan, lina, ryan}, {walter, raju, megan, deba, laura}, {walter, raju, megan, deba,
kayle}, {walter, raju, megan, deba, yousef}, {walter, raju, hannah, deba, laura}, {walter,
raju, hannah, deba, yousef}, {walter, lina, samuel, scott, chris}, {walter, lina, samuel,
scott, laura}, {walter, lina, samuel, scott, ryan}, {walter, lina, max, megan, scott, chris},
{walter, lina, max, megan, scott, laura}, {walter, lina, max, megan, scott, ryan}, {walter,
lina, max, megan, peter, laura}, {walter, lina, jack, ethan, ayon}, {walter, lina, jack,
ryan}, {walter, lina, ethan, chris}, {walter, lina, ethan, peter}, {walter, jack, hannah,
ethan}, {walter, keith, scott, megan}, {walter, keith, jose, megan}, {walter, keith, jose,
diana}, {walter, keith, jose, ethan}, {walter, ayon, ayuba, ethan}, {walter, ayon, joe,
laura, larry}, {walter, ayon, joe, ethan, judith}, {walter, ayon, joe, ethan, yousef, larry},
{walter, ayon, samuel, larry, laura}, {walter, kayle, max, chris, megan}, {walter, kayle,
max, tyler, megan}, {walter, kayle, max, tyler, diana, larry}, {walter, kayle, judith, chris},
{walter, kayle, judith, roger}, {walter, kayle, deba, roger}, {walter, kayle, deba, ayuba},
{walter, kayle, ayuba, tyler}, {walter, joyce, samuel, ryan}, {walter, joyce, samuel, judith,
chris}, {walter, joyce, samuel, deba, ayuba}, {walter, joyce, samuel, larry}, {walter, joyce,
max, chris, megan}, {walter, joyce, max, hannah}, {walter, joyce, max, tyler, megan},
{walter, joyce, max, tyler, diana, larry}, {walter, joyce, max, ryan, megan}, {walter, joyce,
judith, roger}, {walter, joyce, judith, ethan, chris}, {walter, joyce, judith, ethan, joe},
{walter, joyce, judith, ethan, hannah}, {walter, joyce, yousef, megan, chris}, {walter,
joyce, yousef, megan, jose}, {walter, joyce, yousef, megan, deba}, {walter, joyce, yousef,
diana, jose}, {walter, joyce, yousef, diana, larry},

140 Experimental Results

{walter, joyce, yousef, ethan, chris}, {walter, joyce, yousef, ethan, joe, larry}, {walter,
joyce, yousef, ethan, hannah, jose}, {walter, joyce, yousef, deba, joe}, {walter, joyce,
yousef, deba, hannah}, {walter, joyce, tyler, jose, megan}, {walter, joyce, tyler, jose,
diana}, {walter, joyce, tyler, jose, ayuba}, {walter, joyce, ryan, roger}, {walter, joyce,
roger, deba}, {walter, joyce, ayuba, jose, ethan}, {walter, scott, joe, judith}, {walter,
scott, joe, laura, larry}, {walter, scott, max, hannah, laura}, {walter, scott, max, larry,
laura}, {walter, scott, samuel, judith, chris}, {walter, scott, samuel, larry, laura}, {walter,
scott, judith, roger}, {walter, scott, judith, hannah}, {walter, laura, peter, hannah, max},
{walter, laura, peter, hannah, deba}, {walter, laura, peter, deba, megan}, {walter, laura,
deba, joe}, {walter, peter, diana, max, tyler}, {walter, peter, ethan, hannah}, {walter,
peter, tyler, megan, max}, {ronald, joan, jack, roger, harold}, {ronald, joan, amy, keith},
{ronald, joan, amy, roger, peter}, {ronald, joan, amy, roger, harold}, {ronald, alan,
roger, jack, harold}, {ronald, alan, martha, jack, harold}, {ronald, alan, martha, joe},
{ronald, alan, martha, ayuba}, {ronald, harold, megan, laura, martha}, {ronald, harold,
laura, amy}, {ronald, harold, eric, roger}, {ronald, laura, hannah, peter}, {ronald,
laura, joe, martha}, {ronald, laura, peter, megan}, {ronald, laura, peter, amy}, {ronald,
hannah, jack, ruth}, {ronald, saiful, martha, jack}, {ronald, saiful, martha, keith, megan},
{ronald, saiful, martha, joe}, {ronald, saiful, martha, ayuba}, {ronald, saiful, ruth, jack},
{ronald, saiful, ruth, amy}, {ronald, saiful, ruth, megan}, {ronald, saiful, rezart, keith,
eric}, {ronald, saiful, amy, keith}, {ronald, saiful, amy, peter}, {ronald, saiful, amy,
ayuba}, {ronald, saiful, eric, ayuba}, {ronald, saiful, peter, megan}, {henry, martha,
scott, megan}, {henry, martha, scott, alan}, {henry, martha, megan, joyce}, {henry,
martha, megan, saiful}, {henry, martha, ayuba, alan, ethan}, {henry, martha, ayuba,
joyce, ethan}, {henry, jason, megan, ryan, joyce}, {henry, jason, megan, ryan, saiful},
{henry, jason, rajat, ayon, judith}, {henry, jason, rajat, ayon, amy, ayuba}, {henry, jason,
rajat, nathan}, {henry, jason, ryan, andrea, saiful}, {henry, jason, ryan, alan}, {henry,
jason, ethan, judith, ayon}, {henry, jason, ethan, judith, hannah, joyce}, {henry, jason,
ethan, andrea, ayon, saiful}, {henry, jason, ethan, andrea, nathan, hannah}, {henry,
jason, ethan, andrea, nathan, saiful}, {henry, jason, ethan, ayuba, alan}, {henry, jason,
ethan, ayuba, ayon, saiful, amy}, {henry, jason, ethan, ayuba, ayon, saiful, eric}, {henry,
jason, ethan, ayuba, joyce, amy}, {henry, scott, judith, roger}, {henry, scott, judith,
hannah}, {henry, scott, hannah, andrea}, {henry, scott, ryan, andrea}, {henry, scott,
ryan, alan, roger}, {henry, scott, ryan, megan}, {henry, roger, rajat, judith}, {henry, roger,
rajat, amy}, {henry, roger, eric}, {henry, roger, joyce, judith}, {henry, roger, joyce, amy},
{henry, roger, joyce, ryan}, {henry, jose, megan, joyce}, {henry, jose, rajat, nathan},
{henry, jose, rajat, ayuba}, {henry, jose, ethan, hannah, andrea, nathan}, {henry, jose,
ethan, hannah, joyce}, {henry, jose, ethan, ayuba, joyce},

C.2 Clustering of a social network (50 people) 141

{harold, joan, scott, siam}, {harold, joan, scott, roger}, {harold, joan, amy, jason, siam},
{harold, joan, amy, yousef}, {harold, joan, roger, polash, jack}, {harold, judith, kelly,
jason, raju}, {harold, judith, kelly, roger, scott}, {harold, judith, polash, roger, joyce},
{harold, judith, joyce, jason}, {harold, alan, jack, jason}, {harold, alan, kelly, jason,
raju}, {harold, alan, kelly, scott, roger}, {harold, alan, kelly, scott, martha}, {harold,
jack, roger, justin}, {harold, megan, jason, kelly, raju, siam}, {harold, megan, jason,
joyce}, {harold, megan, raju, kelly, yousef}, {harold, megan, raju, justin, laura}, {harold,
megan, raju, justin, siam}, {harold, megan, raju, justin, yousef}, {harold, megan, jose,
siam}, {harold, megan, jose, joyce, polash}, {harold, megan, jose, joyce, yousef}, {harold,
megan, martha, justin, scott, laura}, {harold, megan, martha, justin, scott, siam}, {harold,
megan, martha, justin, yousef}, {harold, megan, martha, max, scott, kelly, siam}, {harold,
megan, martha, max, scott, laura}, {harold, megan, martha, max, joyce}, {harold, megan,
martha, polash, joyce}, {harold, megan, martha, yousef, kelly}, {harold, megan, martha,
yousef, joyce}, {harold, amy, kelly, siam, jason}, {harold, amy, kelly, siam, max}, {harold,
amy, kelly, roger}, {harold, amy, kelly, yousef}, {harold, amy, laura, max}, {harold,
amy, joyce, jason}, {harold, amy, joyce, roger}, {harold, amy, joyce, max}, {harold,
amy, joyce, yousef}, {harold, eric, jason}, {harold, eric, justin, roger}, {harold, eric,
justin, yousef}, {harold, roger, justin, scott}, {eliza, samuel, rono, larry, laura}, {eliza,
samuel, rono, larry, eric}, {eliza, samuel, rono, larry, joyce}, {eliza, samuel, rono, joan},
{eliza, samuel, rono, lina, laura}, {eliza, samuel, rono, lina, eric}, {eliza, samuel, judith,
scott}, {eliza, samuel, judith, joyce}, {eliza, samuel, scott, joan}, {eliza, samuel, scott,
laura, larry}, {eliza, samuel, scott, laura, lina}, {eliza, samuel, amy, peter, joan}, {eliza,
samuel, amy, peter, laura}, {eliza, samuel, amy, joyce}, {eliza, samuel, peter, lina, laura},
{eliza, max, laura, larry, scott}, {eliza, max, laura, larry, rono}, {eliza, max, laura, amy,
peter}, {eliza, max, laura, hannah, scott}, {eliza, max, laura, hannah, peter}, {eliza,
max, laura, lina, peter}, {eliza, max, laura, lina, martha, scott}, {eliza, max, laura, lina,
martha, rono}, {eliza, max, diana, tyler, peter, amy}, {eliza, max, diana, tyler, joyce,
amy}, {eliza, max, diana, tyler, joyce, martha}, {eliza, max, diana, tyler, joyce, larry},
{eliza, max, joyce, hannah}, {eliza, max, joyce, rono, martha}, {eliza, max, joyce, rono,
larry}, {eliza, judith, hannah, scott}, {eliza, judith, hannah, joyce}, {eliza, alan, martha,
scott}, {eliza, alan, martha, rono}, {eliza, yousef, joan, amy}, {eliza, yousef, joan, rono},
{eliza, yousef, eric, rono, larry}, {eliza, yousef, joyce, hannah, jose}, {eliza, yousef, joyce,
rono, martha}, {eliza, yousef, joyce, rono, jose}, {eliza, yousef, joyce, rono, larry}, {eliza,
yousef, joyce, diana, amy}, {eliza, yousef, joyce, diana, martha}, {eliza, yousef, joyce,
diana, jose}, {eliza, yousef, joyce, diana, larry}, {eliza, joan, tyler, amy, peter}, {eliza,
eric, tyler, larry}, {eliza, jose, tyler, diana, joyce}, {siam, tyler, max, megan, martha},
{siam, tyler, max, amy}, {siam, tyler, max, larry}, {siam, tyler, martha, megan, justin},
{siam, tyler, nathan, jason, joan}, {siam, tyler, nathan, justin, larry}, {siam, tyler, nathan,
jose},

142 Experimental Results

{siam, tyler, megan, jason}, {siam, tyler, megan, jose}, {siam, tyler, amy, jason, joan},
{siam, kelly, jason, rajat, amy}, {siam, kelly, jason, ethan, amy}, {siam, kelly, larry, max,
scott}, {siam, kelly, larry, max, rono}, {siam, kelly, larry, ethan}, {siam, kelly, lina, chris,
megan, scott, max}, {siam, kelly, lina, chris, ethan}, {siam, kelly, lina, raju, megan},
{siam, kelly, lina, martha, rajat}, {siam, kelly, lina, martha, max, scott, megan}, {siam,
kelly, lina, martha, max, rono}, {siam, kelly, lina, martha, ethan}, {siam, nathan, rajat,
jason, joan}, {siam, nathan, rajat, jose}, {siam, nathan, rono, joan}, {siam, nathan, rono,
jose}, {siam, nathan, rono, larry}, {siam, nathan, ethan, jason}, {siam, nathan, ethan,
jose}, {siam, nathan, ethan, larry}, {siam, joan, rajat, jason, amy}, {siam, justin, larry,
scott}, {amy, ruth, kelly, ayon, rajat}, {amy, ruth, kelly, ayon, saiful}, {amy, ruth, kelly,
rajat, deba}, {amy, ruth, kelly, max, diana}, {amy, ruth, kelly, max, saiful}, {amy, ruth,
samuel, rajat, ayon}, {amy, ruth, samuel, rajat, deba}, {amy, ruth, tyler, max, diana},
{amy, ruth, tyler, max, saiful}, {amy, yousef, kelly, ayon, saiful, ethan}, {amy, yousef,
kelly, diana}, {amy, yousef, kelly, deba}, {amy, yousef, joan, ayon}, {amy, yousef, joyce,
deba}, {amy, yousef, joyce, ethan}, {amy, keith, samuel, joan}, {amy, keith, diana},
{amy, keith, ethan, saiful}, {amy, ayon, jason, saiful, kelly, ethan}, {amy, ayon, jason,
rajat, kelly}, {amy, ayon, jason, rajat, samuel, joan}, {amy, ayon, jason, rajat, samuel,
ayuba}, {amy, ayon, laura, rajat, samuel}, {amy, joyce, jason, diana, tyler}, {amy, joyce,
jason, ayuba, samuel}, {amy, joyce, jason, ayuba, tyler}, {amy, joyce, roger, deba}, {amy,
joyce, deba, samuel, ayuba}, {amy, peter, max, kelly, diana}, {amy, peter, max, kelly,
saiful}, {amy, peter, max, saiful, tyler}, {amy, peter, jason, kelly, rajat}, {amy, peter,
jason, kelly, diana}, {amy, peter, jason, kelly, saiful, ethan}, {amy, peter, jason, joan,
rajat, samuel}, {amy, peter, jason, joan, tyler}, {amy, peter, jason, tyler, diana}, {amy,
peter, jason, tyler, saiful}, {amy, peter, deba, rajat, kelly, roger}, {amy, peter, deba, rajat,
laura, samuel}, {amy, peter, roger, rajat, joan}, {amy, ayuba, jason, tyler, saiful}, {amy,
ayuba, deba, rajat, samuel}, {eric, samuel, chris, lina}, {eric, samuel, keith, justin},
{eric, samuel, ayon, jason, ayuba}, {eric, samuel, ayon, lina}, {eric, samuel, ayon, larry},
{eric, samuel, justin, larry}, {eric, samuel, justin, ayuba}, {eric, chris, kayle}, {eric,
chris, ethan, yousef}, {eric, chris, ethan, lina}, {eric, kayle, roger, justin}, {eric, kayle,
rono, larry}, {eric, kayle, tyler, larry, justin}, {eric, kayle, tyler, ayuba, jason}, {eric,
kayle, tyler, ayuba, justin}, {eric, larry, yousef, ayon, ethan}, {eric, larry, yousef, justin},
{eric, justin, keith, rezart}, {eric, justin, rezart, yousef}, {eric, saiful, keith, ethan}, {eric,
saiful, rono, rezart, yousef}, {eric, saiful, rono, lina}, {eric, saiful, ayon, rezart, jason},
{eric, saiful, ayon, rezart, yousef}, {eric, saiful, ayon, ethan, yousef}, {eric, saiful, ayon,
ethan, lina}, {eric, saiful, tyler, jason, ayuba},

C.2 Clustering of a social network (50 people) 143

{justin, samuel, ruth, nathan}, {justin, samuel, keith, scott}, {justin, samuel, laura,
andrea, scott}, {justin, samuel, laura, andrea, nathan}, {justin, samuel, laura, peter},
{justin, samuel, laura, larry, scott}, {justin, samuel, laura, larry, nathan}, {justin, diana,
yousef, raju}, {justin, diana, yousef, martha}, {justin, diana, yousef, rezart}, {justin,
diana, yousef, larry}, {justin, diana, tyler, ruth}, {justin, diana, tyler, kayle, larry}, {justin,
diana, tyler, peter}, {justin, diana, tyler, martha}, {justin, diana, keith, raju}, {justin,
diana, raju, kayle}, {justin, andrea, raju, laura}, {justin, andrea, raju, kayle}, {justin,
andrea, raju, yousef}, {justin, andrea, kayle, nathan}, {justin, jack, ruth}, {justin, jack,
kayle, roger}, {justin, nathan, kayle, larry, tyler}, {justin, nathan, tyler, ruth}, {justin,
scott, keith, megan, martha}, {justin, scott, keith, rezart}, {justin, megan, ruth, tyler},
{justin, megan, kayle, raju}, {justin, megan, kayle, tyler}, {justin, megan, raju, keith},
{justin, megan, peter, laura}, {justin, megan, peter, tyler}, {justin, roger, peter}, {justin,
ayuba, tyler, martha}, {jason, samuel, andrea, joan, ayon}, {jason, samuel, andrea, joan,
nathan}, {jason, samuel, andrea, ryan}, {jason, samuel, rajat, judith, ayon}, {jason,
samuel, rajat, nathan, joan}, {jason, samuel, joyce, judith}, {jason, samuel, joyce, ryan},
{jason, diana, kelly, kayle, raju}, {jason, diana, kelly, rezart}, {jason, diana, joyce,
rezart}, {jason, diana, tyler, kayle}, {jason, raju, andrea, kayle}, {jason, raju, andrea,
hannah}, {jason, raju, andrea, saiful, ayon}, {jason, raju, andrea, saiful, ryan}, {jason,
raju, kelly, judith, ayon}, {jason, raju, kelly, judith, kayle}, {jason, raju, kelly, judith,
hannah}, {jason, raju, kelly, alan, kayle}, {jason, raju, kelly, megan, kayle}, {jason,
raju, kelly, megan, saiful}, {jason, raju, kelly, saiful, ayon}, {jason, raju, ryan, megan,
saiful}, {jason, raju, ryan, alan}, {jason, tyler, megan, kayle}, {jason, tyler, megan, peter,
saiful}, {jason, tyler, megan, joyce}, {jason, tyler, nathan, joan, kayle}, {jason, tyler,
nathan, saiful}, {jason, jack, alan, kayle}, {jason, jack, alan, ethan}, {jason, jack, alan,
ryan}, {jason, jack, kayle, joan}, {jason, jack, ayon, joan, rajat}, {jason, jack, ayon,
ethan, saiful}, {jason, kelly, rajat, judith, ayon}, {jason, kelly, peter, megan, saiful},
{jason, kelly, peter, ethan, hannah}, {jason, kelly, rezart, ayon, saiful}, {jason, kelly,
ethan, judith, ayon}, {jason, kelly, ethan, judith, hannah}, {jason, kelly, ethan, alan},
{jason, kayle, joan, andrea, nathan}, {jason, kayle, ayuba, alan}, {andrea, rono, nathan,
jose}, {andrea, rono, nathan, samuel, joan}, {andrea, rono, nathan, samuel, laura},
{andrea, rono, nathan, kayle, joan}, {andrea, rono, nathan, saiful}, {andrea, rono, ryan,
lina, samuel}, {andrea, rono, ryan, lina, saiful}, {andrea, rono, yousef, joan}, {andrea,
rono, yousef, jose}, {andrea, rono, yousef, saiful}, {andrea, rono, lina, laura, samuel},
{andrea, polash, samuel, joan}, {andrea, polash, samuel, ryan}, {andrea, polash, jose},
{andrea, polash, saiful, ryan}, {andrea, chris, kayle}, {andrea, chris, yousef, ethan},
{andrea, chris, lina, scott, samuel}, {andrea, chris, lina, ethan}, {andrea, yousef, ayon,
joan}, {andrea, yousef, ayon, saiful, raju}, {andrea, yousef, ayon, saiful, ethan}, {andrea,
yousef, hannah, raju},

144 Experimental Results

{andrea, yousef, hannah, jose, ethan}, {andrea, lina, scott, samuel, laura}, {andrea,
lina, scott, samuel, ryan}, {andrea, lina, ayon, raju, laura}, {andrea, lina, ayon, raju,
saiful}, {andrea, lina, ayon, samuel, laura}, {andrea, lina, ayon, ethan, saiful}, {andrea,
lina, ryan, raju, saiful}, {andrea, scott, samuel, joan}, {andrea, scott, hannah, laura},
{andrea, laura, nathan, hannah}, {andrea, laura, hannah, raju}, {nathan, joe, deba,
laura}, {nathan, joe, laura, larry}, {nathan, joe, ethan, larry}, {nathan, joe, ethan, saiful},
{nathan, ruth, hannah, jose}, {nathan, ruth, hannah, deba}, {nathan, ruth, rajat, samuel,
deba}, {nathan, ruth, rajat, jose}, {nathan, ruth, rono, samuel, deba}, {nathan, ruth,
rono, jose}, {nathan, ruth, rono, saiful}, {nathan, ruth, tyler, jose}, {nathan, ruth, tyler,
saiful}, {nathan, rajat, samuel, laura, deba}, {nathan, deba, hannah, laura}, {nathan,
deba, rono, laura, samuel}, {nathan, deba, rono, kayle}, {nathan, larry, rono, laura,
samuel}, {nathan, larry, rono, kayle}, {rezart, scott, kelly}, {rezart, polash, joyce, deba},
{rezart, yousef, kelly, ayon, saiful}, {rezart, yousef, kelly, rono, deba}, {rezart, yousef,
kelly, rono, saiful}, {rezart, yousef, kelly, diana}, {rezart, yousef, joyce, rono, deba},
{rezart, yousef, joyce, diana}, {polash, rajat, judith, samuel}, {polash, rajat, judith,
roger}, {polash, rajat, peter, joan, samuel}, {polash, rajat, peter, joan, roger}, {polash,
rajat, peter, deba, samuel}, {polash, rajat, peter, deba, roger}, {polash, rajat, roger,
jack, joan}, {polash, rajat, jose}, {polash, jack, roger, ryan}, {polash, joyce, samuel,
judith}, {polash, joyce, samuel, deba}, {polash, joyce, samuel, ryan}, {polash, joyce,
ryan, megan}, {polash, joyce, ryan, roger}, {polash, joyce, tyler, megan, jose}, {polash,
joyce, tyler, megan, martha}, {polash, joyce, deba, roger}, {polash, joyce, deba, martha,
megan}, {polash, joan, tyler, peter}, {polash, peter, megan, saiful, tyler}, {polash, peter,
megan, deba}, {polash, saiful, megan, ryan}, {polash, saiful, megan, martha, tyler},
{martha, tyler, max, megan, joyce}, {martha, tyler, max, megan, saiful}, {martha, tyler,
ayuba, joyce}, {martha, tyler, ayuba, saiful}, {martha, jack, alan, ethan}, {martha, kelly,
max, diana}, {martha, kelly, max, lina, saiful, megan}, {martha, kelly, max, lina, saiful,
rono}, {martha, kelly, alan, joe, scott}, {martha, kelly, alan, joe, ethan}, {martha, kelly,
alan, rono}, {martha, kelly, rajat, deba}, {martha, kelly, yousef, saiful, megan}, {martha,
kelly, yousef, saiful, joe, ethan}, {martha, kelly, yousef, saiful, rono}, {martha, kelly,
yousef, diana}, {martha, kelly, yousef, deba, megan}, {martha, kelly, yousef, deba, joe},
{martha, kelly, yousef, deba, rono}, {martha, kelly, lina, ethan, saiful}, {martha, joyce,
yousef, ethan, joe}, {martha, joyce, yousef, deba, megan}, {martha, joyce, yousef, deba,
joe}, {martha, joyce, yousef, deba, rono}, {martha, joyce, ayuba, deba}, {martha, laura,
joe, scott}, {martha, laura, joe, deba}, {martha, laura, lina, max, megan, scott}, {martha,
laura, deba, megan}, {martha, laura, deba, rono}, {rono, ruth, deba, kelly}, {rono, ruth,
lina, kelly, max, saiful}, {rono, ruth, lina, samuel}, {rono, deba, samuel, joyce},

C.2 Clustering of a social network (50 people) 145

{rono, deba, kayle, kelly}, {rono, kelly, kayle, alan}, {rono, kelly, kayle, larry, max},
{rono, kelly, larry, yousef}, {rono, ryan, alan}, {rono, ryan, samuel, joyce}, {rono, ryan,
max, joyce}, {rono, ryan, max, saiful, lina}, {kelly, joe, judith, scott}, {kelly, joe, judith,
ayon, ethan}, {kelly, joe, ayon, yousef, ethan, larry}, {kelly, joe, ayon, yousef, ethan,
saiful}, {kelly, joe, larry, scott}, {kelly, max, megan, kayle, chris}, {kelly, max, megan,
lina, ruth, saiful}, {kelly, max, megan, lina, peter, saiful}, {kelly, max, hannah, scott},
{kelly, max, hannah, ruth}, {kelly, max, hannah, peter}, {kelly, max, diana, kayle, larry},
{kelly, ruth, ayon, lina, rajat}, {kelly, ruth, ayon, lina, saiful}, {kelly, ruth, deba, megan},
{kelly, ruth, deba, hannah}, {kelly, chris, judith, scott}, {kelly, chris, judith, kayle}, {kelly,
chris, judith, ethan}, {kelly, chris, alan, scott}, {kelly, chris, alan, kayle}, {kelly, chris,
alan, ethan}, {kelly, chris, yousef, megan}, {kelly, chris, yousef, ethan}, {kelly, yousef,
larry, diana}, {kelly, yousef, raju, ayon, saiful}, {kelly, yousef, raju, saiful, megan},
{kelly, yousef, raju, diana}, {kelly, yousef, raju, deba, megan}, {kelly, yousef, raju, deba,
hannah}, {kelly, yousef, ethan, hannah}, {kelly, lina, raju, saiful, megan}, {kelly, lina,
raju, saiful, ayon}, {kelly, lina, ayon, ethan, saiful}, {kelly, lina, peter, rajat}, {kelly,
lina, peter, ethan, saiful}, {kelly, deba, raju, kayle, megan}, {kelly, deba, kayle, roger},
{kelly, deba, peter, megan}, {kelly, deba, peter, hannah}, {kelly, scott, hannah, judith},
{kelly, roger, judith, rajat}, {kelly, roger, judith, kayle}, {kelly, roger, alan, kayle}, {saiful,
ruth, lina, jack, ayon}, {saiful, ruth, tyler, megan, max}, {saiful, ayon, ethan, jack, lina},
{saiful, ryan, lina, megan, raju}, {saiful, ryan, lina, megan, max}, {saiful, raju, keith,
megan}, {saiful, peter, tyler, max, megan}

146 Experimental Results

Fig. C.17 Clustering distances based on f co in Figure C.15.

Feedback for removing a person from a cluster

Fig. C.18 Clustering based on f o,c on a fifty-people network in conjunction.

C.2 Clustering of a social network (50 people) 147

Weights based on influence

Feedback for constructing a new cluster

Fig. C.19 Clustering based on f co on a fifty-people network in conjunction.

148 Experimental Results

Fig. C.20 Clustering distances based on f co in Figure C.19.

Feedback for removing a person from a cluster

Fig. C.21 Clustering based on f o,c on a fifty-people network in conjunction.

C.2 Clustering of a social network (50 people) 149

C.2.2 CQQL query with disjunction (∨)

Clustering approaches

(a) Unweighted (b) k-medoids (k = 10) clustering

(c) Dendogram of Figure C.22d

(d) Hierarchical (single-linkage k = 10) clustering

Fig. C.22 Clustering on a fifty-people network in disjunction.

150 Experimental Results

Table C.6 Clusters after clustering on a fifty-people network in disjunction

Methods Clusters
k-medoids (k=10) {rezart, justin, sharon, samuel, walter, keith},

{scott, jose, megan, andrea}, {polash, ryan, jack,
tyler, joan, harold}, {henry, ethan, roger}, {di-
ana, ayuba, kayle, rono, max, eric, larry, joyce},
{ayon, deba, yousef, rajat, ruth, kelly}, {joe, raju,
saiful, ronald, judith, martha}, {alan, lina, chris,
jason}, {siam, amy, nathan}, {eliza, peter, laura,
hannah}

Hierarchical (Single-linkage k=10) {eric, harold, roger}, {rezart, keith}, {siam,
ayon, alan, joe, eliza, diana, ayuba, deba, kayle,
yousef, polash, rono, saiful, rajat, max, peter,
chris, ryan, jason, ronald, amy, justin, sharon,
scott, laura, samuel, ruth, tyler, henry, nathan,
kelly, ethan, joan, walter, megan, judith, an-
drea}, {joyce}, {lina, martha}, {raju}, {hannah},
{larry}, {jose}, {jack}

C.2 Clustering of a social network (50 people) 151

User interaction

Complimented form of a weight

The logical transformation in Section 4.3.2 shows that connected weights in a conjunction
equals exactly connected weights in a disjunction. Therefore, the experimental procedure
and results will be equal for the same parameter settings as described in C.2.1.

152 Experimental Results

Weights based on influence

Feedback for constructing a new cluster

Fig. C.23 Clustering based on f co on a fifty-people network in disjunction.

C.2 Clustering of a social network (50 people) 153

Fig. C.24 Clustering distances based on f co in Figure C.23.

Feedback for removing a person from a cluster

Fig. C.25 Clustering based on f o,c on a fifty-people network in disjunction.

154 Experimental Results

C.3 Clustering of a social network (100 people)

(a) school (b) admission_year

(c) graduation_year

Fig. C.26 Structure of a 100-people network.

C.3 Clustering of a social network (100 people) 155

C.3.1 CQQL query with conjunction (∧)

Clustering approaches

(a) Unweighted (b) k-medoids (k = 10) clustering

(c) Dendogram of Figure C.27d

(d) Hierarchical (single-linkage k = 10) clustering (e) Non-TI

Fig. C.27 Clustering on a 100-people network in conjunction.

156 Experimental Results

Table C.7 Clusters after clustering on a 100-people network in conjunction

Methods Clusters
k-medoids (k=16) {siam, ayon, joe, eliza, diana, lina, ayuba, kayle, raju, rezart, yousef,

polash, rono, saiful, rajat, max, peter, chris, jason, eric, larry, amy,
justin, sharon, scott, laura, samuel, jack, tyler, joyce, henry, ethan,
joan, walter, megan, andrea, roger, hannah, martha, leo, joy, orko,
hari, cleo, elus, manat, raje, faris, pijus, posto, debes, faria, narin,
khil, febo, jagu, daya, dino, goni, roki, boby, dipak, gaye, rikul, josh,
arus, niki, loki, soma, jeet, akil, laxi, tusi, jani, epic, polin, moni,
manab, tupu}, {ronald, holin}, {nathan, kuku}, {ryan, keith, piu},
{judith, kakir}, {olip}, {ila}, {tip}, {kelly}, {deba}, {jose, harold},
{ruth}, {dak}, {nores}, {claus}, {alan}

Hierarchical
(Single-linkage
k=16)

{scott, manat, raje, febo, olip, tusi}, {eliza, lina, jose, henry, kelly,
judith, khil, dino, goni, arus}, {sharon, andrea, hannah, pijus, daya,
kuku}, {amy, laura, joyce, orko, rikul, epic}, {joe, diana, polash,
peter, jack, walter, debes, jagu, roki, boby, gaye, manab}, {ayon,
ronald, justin, nathan, megan, elus, tupu}, {rajat, josh, jani, moni},
{chris, faria, loki, jeet}, {saiful, larry, joy, narin, holin}, {deba, rono,
martha}, {siam, raju, ryan, samuel, joan, leo, claus, dak, dipak,
akil}, {rezart, max, jason, faris, nores, posto, kakir, niki, laxi}, {alan,
kayle, soma, polin}, {ayuba, eric, harold, tip, cleo, ila}, {tyler, ethan,
keith, roger, hari}, {yousef, ruth, piu}

C.3 Clustering of a social network (100 people) 157

Non-TI {ayon, posto, chris, ethan, rezart, elus, walter, kelly, jason, manab,
megan, joe, sharon, polash, rajat, josh, henry, khil, piu, roki, tip,
gaye, pijus, justin, orko, faria, peter, alan, febo, diana, harold, ruth,
manat, andrea, kayle, jani, max, jose, debes, nathan, soma, rikul,
goni, joyce, daya, judith, scott, holin, laura, cleo, eric, tusi, arus,
raje, epic, tupu, jeet, tyler, lina, boby, loki, ayuba, yousef, faris,
martha, moni, hannah, rono, eliza, jagu, nores, narin, kakir, roger,
deba, laxi, hari, larry, niki, ila, jack, amy, polin, ronald, joy, kuku,
olip, Samuel},{ayon, posto, chris, ethan, rezart, elus, walter, kelly,
jason, manab, megan, joe, sharon, polash, rajat, josh, henry, khil,
piu, roki, tip, gaye, pijus, justin, orko, faria, peter, alan, febo, diana,
harold, ruth, manat, andrea, kayle, jani, max, jose, debes, nathan,
soma, rikul, goni, joyce, daya, judith, scott, holin, laura, cleo, eric,
tusi, arus, raje, epic, tupu, jeet, tyler, lina, boby, loki, ayuba, yousef,
faris, martha, moni, hannah, rono, eliza, jagu, nores, narin, kakir,
roger, deba, laxi, hari, larry, niki, ila, jack, amy, polin, ronald,
joy, kuku, olip, saiful, dak},{ayon, posto, chris, ethan, rezart, elus,
walter, kelly, jason, manab, megan, joe, sharon, polash, rajat, josh,
henry, khil, piu, roki, tip, gaye, pijus, justin, orko, faria, peter, alan,
febo, diana, harold, ruth, manat, andrea, kayle, jani, max, jose,
debes, nathan, soma, rikul, goni, joyce, daya, judith, scott, holin,
laura, cleo, eric, tusi, arus, raje, epic, tupu, jeet, tyler, lina, boby,
loki, ayuba, yousef, faris, martha, moni, hannah, rono, eliza, jagu,
nores, narin, kakir, roger, deba, laxi, hari, larry, niki, ila, jack, amy,
polin, ronald, joy, kuku, olip, saiful, joan},{ayon, posto, chris, ethan,
rezart, elus, walter, kelly, jason, manab, megan, joe, sharon, polash,
rajat, josh, henry, khil, piu, roki, tip, gaye, pijus, justin, orko, faria,
peter, alan, febo, diana, harold, ruth, manat, andrea, kayle, jani,
max, jose, debes, nathan, soma, rikul, goni, joyce, daya, judith,
scott, holin, laura, cleo, eric, tusi, arus, raje, epic, tupu, jeet, tyler,
lina, boby, loki, ayuba, yousef, faris, martha, moni, hannah, rono,
eliza, jagu, nores, narin, kakir, roger, deba, laxi, hari, larry, niki, ila,
jack, amy, polin, ronald, joy, kuku, olip, saiful, raju},

158 Experimental Results

{ayon, posto, chris, ethan, rezart, elus, walter, kelly, jason, manab,
megan, joe, sharon, polash, rajat, josh, henry, khil, piu, roki, tip,
gaye, pijus, justin, orko, faria, peter, alan, febo, diana, harold, ruth,
manat, andrea, kayle, jani, max, jose, debes, nathan, soma, rikul,
goni, joyce, daya, judith, scott, holin, laura, cleo, eric, tusi, arus,
raje, epic, tupu, jeet, tyler, lina, boby, loki, ayuba, yousef, faris,
martha, moni, hannah, rono, eliza, jagu, nores, narin, kakir, roger,
deba, laxi, hari, larry, niki, ila, jack, amy, polin, ronald, joy, kuku,
olip, saiful, leo},{ayon, posto, chris, ethan, rezart, elus, walter, kelly,
jason, manab, megan, joe, sharon, polash, rajat, josh, henry, khil,
piu, roki, tip, gaye, pijus, justin, orko, faria, peter, alan, febo, diana,
harold, ruth, manat, andrea, kayle, jani, max, jose, debes, nathan,
soma, rikul, goni, joyce, daya, judith, scott, holin, laura, cleo, eric,
tusi, arus, raje, epic, tupu, jeet, tyler, lina, boby, loki, ayuba, yousef,
faris, martha, moni, hannah, rono, eliza, jagu, nores, narin, kakir,
roger, deba, laxi, hari, larry, niki, ila, jack, amy, polin, ronald, joy,
kuku, olip, saiful, dipak},{ayon, posto, chris, ethan, rezart, elus,
walter, kelly, jason, manab, megan, joe, sharon, polash, rajat, josh,
henry, khil, piu, roki, tip, gaye, pijus, justin, orko, faria, peter, alan,
febo, diana, harold, ruth, manat, andrea, kayle, jani, max, jose,
debes, nathan, soma, rikul, goni, joyce, daya, judith, scott, holin,
laura, cleo, eric, tusi, arus, raje, epic, tupu, jeet, tyler, lina, boby,
loki, ayuba, yousef, faris, martha, moni, hannah, rono, eliza, jagu,
nores, narin, kakir, roger, deba, laxi, hari, larry, niki, ila, jack, amy,
polin, ronald, joy, kuku, olip, saiful, ryan},{ayon, posto, chris, ethan,
rezart, elus, walter, kelly, jason, manab, megan, joe, sharon, polash,
rajat, josh, henry, khil, piu, roki, tip, gaye, pijus, justin, orko, faria,
peter, alan, febo, diana, harold, ruth, manat, andrea, kayle, jani,
max, jose, debes, nathan, soma, rikul, goni, joyce, daya, judith,
scott, holin, laura, cleo, eric, tusi, arus, raje, epic, tupu, jeet, tyler,
lina, boby, loki, ayuba, yousef, faris, martha, moni, hannah, rono,
eliza, jagu, nores, narin, kakir, roger, deba, laxi, hari, larry, niki, ila,
jack, amy, polin, ronald, joy, kuku, olip, siam, dipak},

C.3 Clustering of a social network (100 people) 159

{ayon, posto, chris, ethan, rezart, elus, walter, kelly, jason, manab,
megan, joe, sharon, polash, rajat, josh, henry, khil, piu, roki, tip,
gaye, pijus, justin, orko, faria, peter, alan, febo, diana, harold, ruth,
manat, andrea, kayle, jani, max, jose, debes, nathan, soma, rikul,
goni, joyce, daya, judith, scott, holin, laura, cleo, eric, tusi, arus,
raje, epic, tupu, jeet, tyler, lina, boby, loki, ayuba, yousef, faris,
martha, moni, hannah, rono, eliza, jagu, nores, narin, kakir, roger,
deba, laxi, hari, larry, niki, ila, jack, amy, polin, ronald, joy, kuku,
olip, keith, dak},{ayon, posto, chris, ethan, rezart, elus, walter, kelly,
jason, manab, megan, joe, sharon, polash, rajat, josh, henry, khil,
piu, roki, tip, gaye, pijus, justin, orko, faria, peter, alan, febo, diana,
harold, ruth, manat, andrea, kayle, jani, max, jose, debes, nathan,
soma, rikul, goni, joyce, daya, judith, scott, holin, laura, cleo, eric,
tusi, arus, raje, epic, tupu, jeet, tyler, lina, boby, loki, ayuba, yousef,
faris, martha, moni, hannah, rono, eliza, jagu, nores, narin, kakir,
roger, deba, laxi, hari, larry, niki, ila, jack, amy, polin, ronald,
joy, kuku, olip, keith, joan},{ayon, posto, chris, ethan, rezart, elus,
walter, kelly, jason, manab, megan, joe, sharon, polash, rajat, josh,
henry, khil, piu, roki, tip, gaye, pijus, justin, orko, faria, peter, alan,
febo, diana, harold, ruth, manat, andrea, kayle, jani, max, jose,
debes, nathan, soma, rikul, goni, joyce, daya, judith, scott, holin,
laura, cleo, eric, tusi, arus, raje, epic, tupu, jeet, tyler, lina, boby,
loki, ayuba, yousef, faris, martha, moni, hannah, rono, eliza, jagu,
nores, narin, kakir, roger, deba, laxi, hari, larry, niki, ila, jack, amy,
polin, ronald, joy, kuku, olip, keith, raju},{ayon, posto, chris, ethan,
rezart, elus, walter, kelly, jason, manab, megan, joe, sharon, polash,
rajat, josh, henry, khil, piu, roki, tip, gaye, pijus, justin, orko, faria,
peter, alan, febo, diana, harold, ruth, manat, andrea, kayle, jani,
max, jose, debes, nathan, soma, rikul, goni, joyce, daya, judith,
scott, holin, laura, cleo, eric, tusi, arus, raje, epic, tupu, jeet, tyler,
lina, boby, loki, ayuba, yousef, faris, martha, moni, hannah, rono,
eliza, jagu, nores, narin, kakir, roger, deba, laxi, hari, larry, niki, ila,
jack, amy, polin, ronald, joy, kuku, olip, keith, leo},

160 Experimental Results

{ayon, posto, chris, ethan, rezart, elus, walter, kelly, jason, manab,
megan, joe, sharon, polash, rajat, josh, henry, khil, piu, roki, tip,
gaye, pijus, justin, orko, faria, peter, alan, febo, diana, harold, ruth,
manat, andrea, kayle, jani, max, jose, debes, nathan, soma, rikul,
goni, joyce, daya, judith, scott, holin, laura, cleo, eric, tusi, arus,
raje, epic, tupu, jeet, tyler, lina, boby, loki, ayuba, yousef, faris,
martha, moni, hannah, rono, eliza, jagu, nores, narin, kakir, roger,
deba, laxi, hari, larry, niki, ila, jack, amy, polin, ronald, joy, kuku,
olip, keith, dipak},{ayon, posto, chris, ethan, rezart, elus, walter,
kelly, jason, manab, megan, joe, sharon, polash, rajat, josh, henry,
khil, piu, roki, tip, gaye, pijus, justin, orko, faria, peter, alan, febo,
diana, harold, ruth, manat, andrea, kayle, jani, max, jose, debes,
nathan, soma, rikul, goni, joyce, daya, judith, scott, holin, laura,
cleo, eric, tusi, arus, raje, epic, tupu, jeet, tyler, lina, boby, loki,
ayuba, yousef, faris, martha, moni, hannah, rono, eliza, jagu, nores,
narin, kakir, roger, deba, laxi, hari, larry, niki, ila, jack, amy, polin,
ronald, joy, kuku, olip, keith, ryan},{ayon, posto, chris, ethan, rezart,
elus, walter, kelly, jason, manab, megan, joe, sharon, polash, rajat,
josh, henry, khil, piu, roki, tip, gaye, pijus, justin, orko, faria, peter,
alan, febo, diana, harold, ruth, manat, andrea, kayle, jani, max, jose,
debes, nathan, soma, rikul, goni, joyce, daya, judith, scott, holin,
laura, cleo, eric, tusi, arus, raje, epic, tupu, jeet, tyler, lina, boby,
loki, ayuba, yousef, faris, martha, moni, hannah, rono, eliza, jagu,
nores, narin, kakir, roger, deba, laxi, hari, larry, niki, ila, jack, amy,
polin, ronald, joy, kuku, olip, akil},{ayon, posto, chris, ethan, rezart,
elus, walter, kelly, jason, manab, megan, joe, sharon, polash, rajat,
josh, henry, khil, piu, roki, tip, gaye, pijus, justin, orko, faria, peter,
alan, febo, diana, harold, ruth, manat, andrea, kayle, jani, max, jose,
debes, nathan, soma, rikul, goni, joyce, daya, judith, scott, holin,
laura, cleo, eric, tusi, arus, raje, epic, tupu, jeet, tyler, lina, boby,
loki, ayuba, yousef, faris, martha, moni, hannah, rono, eliza, jagu,
nores, narin, kakir, roger, deba, laxi, hari, larry, niki, ila, jack, amy,
polin, ronald, joy, kuku, olip, claus},

C.3 Clustering of a social network (100 people) 161

{ayon, posto, chris, ethan, rezart, elus, walter, kelly, jason, manab,
megan, joe, sharon, polash, rajat, josh, henry, khil, piu, roki, tip,
gaye, pijus, justin, orko, faria, peter, alan, febo, diana, harold, ruth,
manat, andrea, kayle, jani, max, jose, debes, nathan, soma, rikul,
goni, joyce, daya, judith, scott, holin, laura, cleo, eric, tusi, arus,
raje, epic, tupu, jeet, tyler, lina, boby, loki, ayuba, yousef, faris,
martha, moni, hannah, rono, eliza, jagu, nores, narin, kakir, roger,
deba, laxi, hari, larry, niki, ila, jack, amy, polin, ronald, joy, kuku,
olip, dino, dak},{ayon, posto, chris, ethan, rezart, elus, walter, kelly,
jason, manab, megan, joe, sharon, polash, rajat, josh, henry, khil,
piu, roki, tip, gaye, pijus, justin, orko, faria, peter, alan, febo, diana,
harold, ruth, manat, andrea, kayle, jani, max, jose, debes, nathan,
soma, rikul, goni, joyce, daya, judith, scott, holin, laura, cleo, eric,
tusi, arus, raje, epic, tupu, jeet, tyler, lina, boby, loki, ayuba, yousef,
faris, martha, moni, hannah, rono, eliza, jagu, nores, narin, kakir,
roger, deba, laxi, hari, larry, niki, ila, jack, amy, polin, ronald, joy,
kuku, olip, dino, joan},{ayon, posto, chris, ethan, rezart, elus, walter,
kelly, jason, manab, megan, joe, sharon, polash, rajat, josh, henry,
khil, piu, roki, tip, gaye, pijus, justin, orko, faria, peter, alan, febo,
diana, harold, ruth, manat, andrea, kayle, jani, max, jose, debes,
nathan, soma, rikul, goni, joyce, daya, judith, scott, holin, laura,
cleo, eric, tusi, arus, raje, epic, tupu, jeet, tyler, lina, boby, loki,
ayuba, yousef, faris, martha, moni, hannah, rono, eliza, jagu, nores,
narin, kakir, roger, deba, laxi, hari, larry, niki, ila, jack, amy, polin,
ronald, joy, kuku, olip, dino, raju},{ayon, posto, chris, ethan, rezart,
elus, walter, kelly, jason, manab, megan, joe, sharon, polash, rajat,
josh, henry, khil, piu, roki, tip, gaye, pijus, justin, orko, faria, peter,
alan, febo, diana, harold, ruth, manat, andrea, kayle, jani, max, jose,
debes, nathan, soma, rikul, goni, joyce, daya, judith, scott, holin,
laura, cleo, eric, tusi, arus, raje, epic, tupu, jeet, tyler, lina, boby,
loki, ayuba, yousef, faris, martha, moni, hannah, rono, eliza, jagu,
nores, narin, kakir, roger, deba, laxi, hari, larry, niki, ila, jack, amy,
polin, ronald, joy, kuku, olip, dino, leo},

162 Experimental Results

{ayon, posto, chris, ethan, rezart, elus, walter, kelly, jason, manab,
megan, joe, sharon, polash, rajat, josh, henry, khil, piu, roki, tip,
gaye, pijus, justin, orko, faria, peter, alan, febo, diana, harold, ruth,
manat, andrea, kayle, jani, max, jose, debes, nathan, soma, rikul,
goni, joyce, daya, judith, scott, holin, laura, cleo, eric, tusi, arus,
raje, epic, tupu, jeet, tyler, lina, boby, loki, ayuba, yousef, faris,
martha, moni, hannah, rono, eliza, jagu, nores, narin, kakir, roger,
deba, laxi, hari, larry, niki, ila, jack, amy, polin, ronald, joy, kuku,
olip, dino, dipak},{ayon, posto, chris, ethan, rezart, elus, walter,
kelly, jason, manab, megan, joe, sharon, polash, rajat, josh, henry,
khil, piu, roki, tip, gaye, pijus, justin, orko, faria, peter, alan, febo,
diana, harold, ruth, manat, andrea, kayle, jani, max, jose, debes,
nathan, soma, rikul, goni, joyce, daya, judith, scott, holin, laura,
cleo, eric, tusi, arus, raje, epic, tupu, jeet, tyler, lina, boby, loki,
ayuba, yousef, faris, martha, moni, hannah, rono, eliza, jagu, nores,
narin, kakir, roger, deba, laxi, hari, larry, niki, ila, jack, amy, polin,
ronald, joy, kuku, olip, dino, ryan}

C.3 Clustering of a social network (100 people) 163

User interaction

Complimented form of a weight

Feedback for constructing a new cluster

Fig. C.28 Clustering based on f co on a 100-people network in conjunction.

164 Experimental Results

Feedback for removing a person from a cluster

Fig. C.29 Clustering based on f o,c on a 100-people network in conjunction.

C.3 Clustering of a social network (100 people) 165

Weights based on influence

Feedback for constructing a new cluster

Fig. C.30 Clustering based on f co on a 100-people network in conjunction.

166 Experimental Results

Feedback for removing a person from a cluster

Fig. C.31 Clustering based on f o,c on a 100-people network in conjunction.

C.3 Clustering of a social network (100 people) 167

C.3.2 CQQL query with disjunction (∨)

Clustering approaches

(a) Unweighted (b) k-medoids (k = 4) clustering

(c) Dendogram of Figure C.32d

(d) Hierarchical (k = 4) clustering (e) Non-TI

Fig. C.32 Clustering on a 100-people network in disjunction.

168 Experimental Results

Table C.8 Clusters after clustering on a 100-people network in disjunction

Methods Clusters
k-medoids (k=4) {ayon, diana, saiful, max, ronald, justin, sharon, nathan, megan,

keith, andrea, hannah, joy, hari, cleo, elus, piu, posto, ila, narin,
dino, dipak, niki, soma, holin, epic, moni, tupu}, {eliza, ayuba, deba,
kayle, rono, jason, eric, larry, amy, scott, henry, ethan, martha, orko,
raje, pijus, nores, febo, olip, goni, rikul, loki, polin}, {alan, joe,
rezart, yousef, polash, rajat, peter, ryan, jack, walter, harold, roger,
tip, manat, debes, faria, jagu, daya, kuku, roki, boby, gaye, kakir,
laxi, tusi, jani, manab}, {siam, lina, raju, chris, laura, samuel, ruth,
tyler, jose, joyce, kelly, joan, judith, leo, claus, faris, khil, dak, josh,
arus, jeet, akil}

Hierarchical
(Single-linkage
k=4)

{siam, ayon, joe, eliza, diana, lina, ayuba, deba, kayle, raju, rezart,
yousef, polash, rono, saiful, rajat, max, chris, ryan, jason, ronald,
eric, larry, amy, justin, sharon, scott, laura, samuel, ruth, jack, tyler,
jose, joyce, henry, nathan, kelly, ethan, joan, walter, megan, judith,
harold, keith, andrea, roger, hannah, martha, leo, joy, orko, tip, hari,
cleo, elus, piu, manat, raje, claus, faris, pijus, nores, posto, debes,
faria, narin, khil, dak, febo, jagu, olip, daya, dino, goni, kuku, roki,
boby, dipak, gaye, kakir, rikul, josh, arus, niki, loki, soma, jeet, akil,
holin, laxi, tusi, jani, epic, polin, moni, manab, tupu}, {ila}, {peter},
{alan}

Non-TI {piu, hari, joyce, nores, yousef, joy, andrea, tupu, kelly, laura, elus,
harold, deba, loki, holin, kuku, amy, rikul, jason, megan, goni, dak,
justin, ethan, josh, tip, peter, manat, polin, gaye, febo, ruth, dino,
debes, martha, jeet, daya, henry, polash, narin, ayon, max, walter,
faris, jani, scott, diana, jagu, moni, alan, khil, eric, ayuba, laxi, raju,
lina, manab, saiful, joe, roki, chris, hannah, olip, ronald, rezart,
keith, jose, boby, rono, sharon, rajat, kayle, niki, kakir, raje, larry,
orko, joan, cleo, dipak, soma, judith, nathan, epic, arus, ila, eliza,
leo, faria, jack, posto, pijus, roger, tyler, ryan, tusi, claus},

C.3 Clustering of a social network (100 people) 169

{piu, hari, joyce, nores, yousef, joy, andrea, tupu, kelly, laura, elus,
harold, deba, loki, holin, kuku, amy, rikul, jason, megan, goni, dak,
justin, ethan, josh, tip, peter, manat, polin, gaye, febo, ruth, dino,
debes, martha, jeet, daya, henry, polash, narin, ayon, max, walter,
faris, jani, scott, diana, jagu, moni, alan, khil, eric, ayuba, laxi, raju,
lina, manab, saiful, joe, roki, chris, hannah, olip, ronald, rezart,
keith, jose, boby, rono, sharon, rajat, kayle, niki, kakir, raje, larry,
orko, joan, cleo, dipak, soma, judith, nathan, epic, arus, ila, eliza,
leo, faria, jack, posto, pijus, roger, tyler, ryan, tusi, akil},{piu, hari,
joyce, nores, yousef, joy, andrea, tupu, kelly, laura, elus, harold,
deba, loki, holin, kuku, amy, rikul, jason, megan, goni, dak, justin,
ethan, josh, tip, peter, manat, polin, gaye, febo, ruth, dino, debes,
martha, jeet, daya, henry, polash, narin, ayon, max, walter, faris,
jani, scott, diana, jagu, moni, alan, khil, eric, ayuba, laxi, raju, lina,
manab, saiful, joe, roki, chris, hannah, olip, ronald, rezart, keith,
jose, boby, rono, sharon, rajat, kayle, niki, kakir, raje, larry, orko,
joan, cleo, dipak, soma, judith, nathan, epic, arus, ila, eliza, leo,
faria, jack, posto, pijus, roger, tyler, ryan, tusi, samuel}, {piu, hari,
joyce, nores, yousef, joy, andrea, tupu, kelly, laura, elus, harold,
deba, loki, holin, kuku, amy, rikul, jason, megan, goni, dak, justin,
ethan, josh, tip, peter, manat, polin, gaye, febo, ruth, dino, debes,
martha, jeet, daya, henry, polash, narin, ayon, max, walter, faris,
jani, scott, diana, jagu, moni, alan, khil, eric, ayuba, laxi, raju, lina,
manab, saiful, joe, roki, chris, hannah, olip, ronald, rezart, keith,
jose, boby, rono, sharon, rajat, kayle, niki, kakir, raje, larry, orko,
joan, cleo, dipak, soma, judith, nathan, epic, arus, ila, eliza, leo,
faria, jack, posto, pijus, roger, tyler, ryan, tusi, siam}

170 Experimental Results

User interaction

Complimented form of a weight

The logical transformation in Section 4.3.2 shows that connected weights in a conjunction
equals exactly connected weights in a disjunction. Therefore, the experimental procedure
and results will be equal for the same parameter settings as described in C.3.1.

C.3 Clustering of a social network (100 people) 171

Weights based on influence

Feedback for constructing a new cluster

Fig. C.33 Clustering based on f co on a 100-people network in disjunction.

172 Experimental Results

Feedback for removing a person from a cluster

Fig. C.34 Clustering based on f o,c on a 100-people network in disjunction.

Appendix D

List of Publications

This section presents a chronological arrangement of selected publications relevant to the
dissertation.

1. Sanjit Kumar Saha, Ingo Schmitt: A Relevance Feedback-Based Approach for
Non-TI Clustering. In: International Conference on Advanced Data Mining and
Applications (ADMA), Lecture Notes in Computer Science - Springer, 13088, pp.
381–393, Sydney, Australia, 2022.

2. Sanjit Kumar Saha, Ingo Schmitt: Quantitative Weighting Approach for Non-TI
Clustering. In: The International Workshop on Web Search and Data Mining (WSDM),
Procedia Computer Science, 184, pp. 966–971, Warsaw, Poland, 2021.

3. Sanjit Kumar Saha, Ingo Schmitt: Non-TI Clustering in the Context of Social
Networks. In: The International Workshop on Web Search and Data Mining (WSDM),
Procedia Computer Science, 170, pp. 1186–1191, Warsaw, Poland, 2020.

Bibliography

[1] Ahn, Y.-Y., Bagrow, J. P., and Jørgensen, S. L. (2010). Link communities reveal
multiscale complexity in networks. Nature, 466(7307):761–764.

[2] Amelio, A. and Pizzuti, C. (2014). Overlapping community discovery methods: A survey.
In Şule Gündüz-Öğüdücü and Şima Etaner-Uyar, A., editors, Social Networks: Analysis
and Case Studies, volume 25, page 105–125. Lecture Notes in Social Networks, Springer.

[3] Ash, R. B. (2008). Basic Probability Theory. Dover Publications, New York.

[4] Attar, R. and Fraenkel, A. S. (1977). Local feedback in full-text retrieval systems.
Journal of the ACM, 24(3):397–417.

[5] Bader, D. A., Meyerhenke, H., Sanders, P., Schulz, C., Kappes, A., and Wagner, D.
(2014). Benchmarking for graph clustering and partitioning. In Encyclopedia of Social
Network Analysis and Mining, pages 73–82. Springer New York, NY.

[6] Baeza-Yates, R. and Ribeiro-Neto, B. (2011). Modern Information Retrieval: The
Concepts and Technology behind Search. Harlow : Pearson Addison-Wesley [u.a.], second
edition.

[7] Beltrametti, E. G. and Fraassen, B. C. V. (1981). Current Issues in Quantum Logic.
Springer.

[8] Birkhoff, G. and Neumann, J. V. (1936). The logic of quantum mechanics. Annals of
Mathematics, 37:823–843.

[9] Blondel, V. D., Guillaume, J.-L., Lambiotte, R., and Lefebvre, E. (2008). Fast unfold-
ing of communities in large networks. Journal of Statistical Mechanics: Theory and
Experiment, 2008(10):P10008.

[10] Bondy, J. A. and Murty, U. S. R. (1976). Graph Theory with Applications. Elsevier,
New York.

[11] Bron, C. and Kerbosch, J. (1973). Algorithm 457: finding all cliques of an undirected
graph. Communications of the ACM, 16(9):575–577.

[12] Chen, J. and Yuan, B. (2006). Detecting functional modules in the yeast protein-protein
interaction network. Bioinformatics, 22:2283–2290.

[13] Danon, L., Díaz-Guilera, A., Duch, J., and Arenas, A. (2005). Comparing commu-
nity structure identification. Journal of Statistical Mechanics: Theory and Experiment,
2005(09):P09008.

176 Bibliography

[14] Dice, L. R. (1945). Measures of the amount of ecologic association between species.
Ecology, 26:297–302.

[15] Dieudonné, J. A. (1960). Foundations of Modern Analysis. Academic Press, first
edition.

[16] Dirac, P. (1958). The Principles of Quantum Mechanics. Oxford University Press.

[17] Dominich, S. (2008). The Modern Algebra of Information Retrieval. Berlin, Heidelberg
: Springer-Verlag Berlin Heidelberg.

[18] Eppstein, D., Löffler, M., and Strash, D. (2013). Listing all maximal cliques in large
sparse real-world graphs. ACM Journal of Experimental Algorithmics, 18.

[19] Ester, M., Kriegel, H. P., Sander, J., and Xu, X. (1996). A density-based algorithm for
discovering clusters in large spatial databases with noise. 2nd International Conference
on Knowledge Discovery and Data Mining, pages 226–231.

[20] Everitt, B. S. (1980). Cluster Analysis. Heineman Educational Books Ltd, London,
second edition.

[21] Fagin, R. and Wimmers, E. L. (2000). A formula for incorporating weights into scoring
rules. Theoretical Computer Science, 239(2):309–338.

[22] Falkowski, T., Barth, A., and Spiliopoulou, M. (2007). Dengraph: A density-based
community detection algorithm. In IEEE/WIC/ACM International Conference on Web
Intelligence (WI’07), pages 112–115.

[23] Fortunato, S. and Hric, D. (2016). Community detection in networks: A user guide.
Physics Reports, 659:1–44.

[24] Fowlkes, E. B. and Mallows, C. L. (1983). A method for comparing two hierarchical
clusterings. Journal of the American Statistical Association, 78(383):553–569.

[25] Fred, A. L. N. and Jain, A. K. (2003). Robust data clustering. Proceedings of IEEE
Computer Society Conference on Computer Vision and Pattern Recognition, 2:II–II.

[26] Fruchterman, T. M. J. and Reingold, E. M. (1991). Graph drawing by Force-Directed
placement. Software: Practice and Experience, 21(11):1129–1164.

[27] Goyal, S., van der Leij, M. J., and Moraga-Gonzalez, J. L. (2006). Economics: An
emerging small world. Journal of political economy, 114(10):403–412.

[28] Halkidi, M., Batistakis, Y., and Vazirgiannis, M. (2001). On clustering validation
techniques. Journal of Intelligent Information Systems, 17:107–145.

[29] Hao, F., Park, D.-S., Min, G., Jeong, Y.-S., and Park, J.-H. (2016). K-cliques mining
in dynamic social networks based on triadic formal concept analysis. Neurocomputing,
209(C):57–66.

[30] Hearst, M. A. (2009). Search User Interfaces. Cambridge University Press.

Bibliography 177

[31] Himmel, A.-S., Molter, H., Niedermeier, R., and Sorge, M. (2017). Adapting the
bron–kerbosch algorithm for enumerating maximal cliques in temporal graphs. Social
Network Analysis and Mining, 7(1):1–16.

[32] Hubert, L. and Arabie, P. (1985). Comparing partitions. Journal of Classification,
2:193–218.

[33] Jain, A. and Dubes, R. (1988). Algorithms for Clustering Data. Prentice-Hall, Engle-
wood Cliffs, NJ.

[34] Kaufman, L. and Rousseeuw, P. J. (1990). Finding Groups in Data: an Introduction to
Cluster Analysis. John Wiley & Sons.

[35] Kernighan, B. W. and Lin, S. (1970). An efficient heuristic procedure for partitioning
graphs. The Bell System Technical Journal, 49(2):291–307.

[36] Kloster, K. and Gleich, D. F. (2014). Heat kernel based community detection. In
Proceedings of the 20th ACM SIGKDD International Conference on Knowledge Discovery
and Data Mining, KDD ’14, page 1386–1395, New York, NY, USA. Association for
Computing Machinery.

[37] Kraft, D. (1988). A software package for sequential quadratic programming. Technical
report, Institut für Dynamik der Flugsysteme, Oberpfaffenhofen.

[38] Lee, J. H. (1994). Properties of extended boolean models in information retrieval. In
Proceedings of the 17th Annual International ACM SIGIR Conference on Research and
Development in Information Retrieval, SIGIR ’94, page 182–190, Berlin, Heidelberg.
Springer-Verlag.

[39] Lee, J. H., Kim, M. H., and Lee, Y. J. (1994). Ranking documents in thesaurus-based
boolean retrieval systems. Information Processing & Management, 30(1):79–91.

[40] Leskovec, J. and Mcauley, J. (2012). Learning to discover social circles in ego networks.
In Pereira, F., Burges, C. J. C., Bottou, L., and Weinberger, K. Q., editors, Advances in
Neural Information Processing Systems, volume 25, page 548–556. Curran Associates,
Inc.

[41] Liu, Y., Zhang, D., Lu, G., and Ma, W. Y. (2007). A survey of content-based image
retrieval with high-level semantics. Pattern Recognition, 40(1):262–282.

[42] Lock, P. F. and Hardegree, G. M. (1985a). Connections among quantum logics, part 1:
Quantum propositional logics. International Journal of Theoretical Physics, 24:43–53.

[43] Lock, P. F. and Hardegree, G. M. (1985b). “connections among quantum logics, part 2:
Quantum event logics. International Journal of Theoretical Physics, 24:55–61.

[44] Meilă, M. (2003). Comparing clusterings by the variation of information. In COLT.

[45] Meilă, M. and Heckerman, D. (2001). An experimental comparison of model-based
clustering methods. Machine Learning, 42:9–29.

[46] Mendenhall, W., Beaver, R. J., and Beaver, B. M. (2020). Introduction to Probability
and Statistics. Cengage Learning, fifteenth edition.

178 Bibliography

[47] Miller, I., Miller, M., and Beaver, B. M. (1999). John E. Freund’s Mathematical
Statistics. Prentice Hall, Upper Saddle River, New Jersey 07458, sixth edition.

[48] Mirghorbani, M. and Krokhmal, P. (2013). On finding k-cliques in k-partite graphs.
Optimization Letters, 7(6):1155–1165.

[49] Mirkin, B. (2001). Eleven ways to look at the chi-squared coefficient for contingency
tables. The American Statistician, 55(2):111–120.

[50] Neumann, J. V. (1932). Grundlagen der quantenmechanik. New York : Springer Verlag.

[51] Newman, M. E. J. and Girvan, M. (2004). Finding and evaluating community structure
in networks. Phys. Rev. E, 69:026113.

[52] Pearson, K. (1900). X. on the criterion that a given system of deviations from the
probable in the case of a correlated system of variables is such that it can be reasonably
supposed to have arisen from random sampling. The London, Edinburgh, and Dublin
Philosophical Magazine and Journal of Science, 50(302):157–175.

[53] Rand, W. M. (1971). Objective criteria for the evaluation of clustering methods. Journal
of the American Statistical Association, 66(336):846–850.

[54] Rocchio, J. (1971). Relevance feedback in information retrieval. The Smart retrieval
system-experiments in automatic document processing, pages 313–323.

[55] Rui, Y., Huang, T. S., Ortega, M., and Mehrotra, S. (1998). Relevance feedback: a
power tool for interactive content-based image retrievals. IEEE Transactions on Circuits
and Systems for Video Technology, 8(5):644–655.

[56] Ruthven, I. (2001). Abduction, explanation and relevance feedback. Unpublished
doctoral dissertation, University of Glasgow, Glasgow, UK.

[57] Saha, S. K. and Schmitt, I. (2020). Non-TI clustering in the context of social networks.
Procedia Computer Science, 170:1186–1191.

[58] Saha, S. K. and Schmitt, I. (2021). Quantitative weighting approach for Non-TI
clustering. Procedia Computer Science, 184:966–971.

[59] Saha, S. K. and Schmitt, I. (2022). A relevance feedback-based approach for non-ti
clustering. In Advanced Data Mining and Applications, pages 381–393, Cham. Springer
International Publishing.

[60] Schmitt, I. (2008). QQL: A DB&IR query language. VLDB J., 17(1):39–56.

[61] Schmitt, I. (2019). Incorporating Weights into a Quantum-Logic-Based Query Lan-
guage, pages 129–143. Springer International Publishing.

[62] Schmitt, I., Zellhofer, D., and Nurnberger, A. (2008). Towards quantum logic based
multimedia retrieval. In NAFIPS 2008 - 2008 Annual Meeting of the North American
Fuzzy Information Processing Society, pages 1–6.

[63] Schöning, U. (1989). Logik für Informatiker. Bibliographisches Institut, Mannheim.

Bibliography 179

[64] Siefkes, D. (1990). Formalisieren und Beweisen: Logik für Informatiker. Braunschweig:
Vieweg-Verlag.

[65] Strehl, A. and Ghosh, J. (2003). Cluster ensembles — a knowledge reuse framework
for combining multiple partitions. Journal of Machine Learning Research, 3:583–617.

[66] Theodoridis, S. and Koutroubas, K. (1999). Pattern recognition. Academic Press, New
York.

[67] Thurstone, L. L. (1927). A law of comparative judgement. Psychology Review,
34:278–286.

[68] Tomita, E., Tanaka, A., and Takahashi, H. (2006). The worst-case time complexity for
generating all maximal cliques and computational experiments. Theoretical Computer
Science, 363(1):28–42.

[69] van Rijsbergen, C. J. (2004). The Geometry of Information Retrieval. Cambridge
University Press.

[70] Wittgenstein, L. (2004). Tractatus logicophilosophicus: Logisch-philosophische Ab-
handlung. Frankfurt am Main : Suhrkamp.

[71] Xie, J., Kelley, S., and Szymanski, B. K. (2013). Overlapping community detection in
networks. ACM Computing Surveys, 45(4):1–35.

[72] Xu, J. and Croft, W. B. (1996). Query expansion using local and global document
analysis. In Proceedings of the 19th Annual International ACM SIGIR Conference on
Research and Development on Information Retrieval, pages 4–11.

[73] Zadeh, L. A. (1965). Fuzzy sets. Information and Control, 8:338–353.

[74] Zhu, X. S. and Huang, T. S. (2003). Relevance feedback in image retrieval: a compre-
hensive review. Multimedia System, 8(6):536–544.

[75] Ziegler, M. (2005). Quantum logic: Order structures in quantum mechanics. Technical
report, University Paderborn, Germany.

	Table of contents
	List of figures
	List of tables
	1 Introduction
	1.1 Motivation
	1.2 Contributions
	1.3 Structure of the Dissertation

	2 Fundamentals
	2.1 Logic
	2.2 Boolean Algebra
	2.3 Hilbert Space
	2.4 Dirac notation
	2.5 Notation

	3 Social Network Analysis
	3.1 Social Network
	3.2 Varieties of Social Networks
	3.3 Social-Network Graph Drawing
	3.4 Social-Network Graphs Clustering
	3.4.1 Measures for Social-Network Graphs
	3.4.2 Matrices that describe Graphs
	3.4.3 Clustering Methods

	3.5 Summary

	4 A Quantum Logic-based Model for Non-TI Clustering
	4.1 Theoretical Concept of Commuting Quantum Query Language
	4.2 Construction and Arithmetic Evaluation of CQQL
	4.3 Weighting of CQQL Conditions
	4.3.1 Weights based on the Influence of Objects
	4.3.2 Complimented Form of a Weight

	4.4 CQQL: A Logical Query Language with Multiple Modes
	4.5 Non-TI Clustering Approach
	4.6 Clustering Properties
	4.7 Summary

	5 Relevance Feedback-based Learning of Personalized CQQL Queries
	5.1 Relevance Feedback
	5.2 Types of Relevance Feedback
	5.2.1 Explicit Feedback
	5.2.2 Implicit Feedback
	5.2.3 Pseudo Feedback

	5.3 Relevance Feedback within the CQQL-based Non-TI Clustering
	5.4 Weight Learning
	5.5 Summary

	6 Comparing Clusterings for Non-TI Clustering
	6.1 Clustering Comparison Criteria
	6.2 Common Approaches in Comparing Clusterings
	6.2.1 Clustering Comparison by Counting Pairs
	6.2.2 Clustering Comparison by Set Matching
	6.2.3 Clustering Comparison based on Information Theoretic Approaches

	6.3 Clustering Comparison for Non-TI Clustering
	6.4 Summary

	7 Implementation and Evaluation
	7.1 Experimental Setup
	7.2 Datasets
	7.3 Experiments and Results
	7.3.1 Clustering of a social network
	7.3.2 CQQL query with conjunction ()
	7.3.3 CQQL query with disjunction ()

	7.4 Summary

	8 Conclusions
	8.1 Contributions and Research Findings
	8.2 Future Works

	Appendix A Mathematical Foundations
	A.1 Numbers, Sets, Relations and Functions
	A.2 Vectors and Matrices
	A.3 Graphs

	Appendix B Transformation of CQQL Queries
	Appendix C Experimental Results
	C.1 Clustering of a social network (20 people)
	C.1.1 CQQL query with conjunction ()
	C.1.2 CQQL query with disjunction ()

	C.2 Clustering of a social network (50 people)
	C.2.1 CQQL query with conjunction ()
	C.2.2 CQQL query with disjunction ()

	C.3 Clustering of a social network (100 people)
	C.3.1 CQQL query with conjunction ()
	C.3.2 CQQL query with disjunction ()

	Appendix D List of Publications
	Bibliography

