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Vorsitzender: Dr.-Ing. Marc Reichenbach

Gutachter: Prof. Dr. Peter Langendörfer

Gutachter: Prof. Dr.-Ing. Jörg Nolte

Gutachter: Prof. Dr. Zoran Prijić
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Zusammenfassung

Diese Promotion befasst sich mit Strategien zur Erzielung eines hohen Datendurchsatzes

in drahtlosen Sensornetzwerken, die ein Zeitmultiplexverfahren (TDMA) verwenden,

um den Medienzugriff zu regeln. Die Arbeit verwendet einen komplexen Ansatz, der sich

nicht nur mit dem Scheduling-Algorithmus, sondern auch mit der Netzwerkschicht und

dem Interferenzmodell befasst. Die Arbeit schlägt vier Lösungen vor, die den Daten-

durchsatz, die Fairness und die Latenz im betrachteten Szenario signifikant verbessern.

Die Promotion beginnt mit einem Überblick über aktuelle MAC-Protokolle (Medium

Access Control) mit Schwerpunkt auf TDMA. Basierend auf dieser Übersicht wird der

Schluss gezogen, dass im Bereich der Berechnungen durch Schedule Algorithmen nicht

viel Raum für Verbesserungen verbleibt. Viele solcher Algorithmen werden bis heute

vorgeschlagen, und sie können Schedule-Längen nahe dem theoretischen Minimum er-

reichen. Die Forschung zeigt jedoch auch einen Mangel an detaillierter Bewertung und

Vergleich dieser Algorithmen; dies macht die Auswahl des am besten geeigneten Algo-

rithmus für eine bestimmte Anwendung schwierig und die Leistungsschätzung ungenau.

Daher wurde eine umfassende Bewertung von TDMA-Protokollen nach dem Stand der

Technik unter Verwendung von Simulationen und über 200 zufällig generierten Net-

zwerken durchgeführt, um dieses Problem anzugehen. Die Ergebnisse ermöglichen die

Auswahl eines geeigneten Algorithmus und die Abschätzung der Leistung für jede spez-

ifische Anwendung.

Als nächstes wird das Problem mehrerer Paketübertragungen während eines einzel-

nen Zeitschlitzes analysiert. TDMA-Protokolle nach dem Stand der Technik gehen

davon aus, dass in jedem Schlitz ein Paket übertragen werden kann, und optimieren die

Anzahl von Schlitzen, die jeder Knoten unter dieser Annahme erhält. Wenn Knoten

jedoch mehr als ein Paket übertragen können, wird die Leistung eines solchen Zeitplans

beeinträchtigt. Um dies zu lösen, wird das M-TreeMAC-Protokoll vorgeschlagen. Dieses

Protokoll berücksichtigt die tatsächliche Anzahl der in einem Zeitschlitz übertragenen

Pakete und optimiert den Zeitplan entsprechend. Darüber hinaus wird beobachtet,

dass die Routing-Topologie die mit diesem Algorithmus erstellte Zeitplanlänge stark

beeinflusst. Ein Algorithmus, der die Topologie optimiert, um bei Verwendung von M-

TreeMAC den kürzesten Zeitplan zu erzielen, wird vorgeschlagen, wodurch die Vorteile

noch weiter gesteigert werden.

Schließlich wird die Genauigkeit des 2-Hop-Interferenzmodells, das üblicherweise

von modernen TDMA-Scheduling-Algorithmen verwendet wird, untersucht und unter

Verwendung eines realistischen Funkmodells basierend auf Messergebnissen simuliert.

Die Ergebnisse zeigen hohe Paketverlustquoten für Pakete, die eine große Anzahl von
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Sprüngen durchlaufen, um die Senke zu erreichen. Das adaptive Interferenzmodell

wird vorgeschlagen, um das 2-Hop-Interferenzmodell zu verbessern. Das vorgeschlagene

Modell kann den Durchsatz in Netzwerken mit zehn oder mehr Hops erheblich steigern.
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Abstract

This thesis deals with strategies for achieving high data throughput in wireless sensor

networks that use a time division multiple access (TDMA) scheme to resolve medium

access. The thesis uses a multi-sided approach that deals not only with the scheduling

algorithm but also with the network layer and the interference model. The thesis

proposes four solutions that significantly improve data throughput, fairness, and latency

in the considered scenario.

The thesis starts with an overview of state-of-the-art medium access control (MAC)

protocols, emphasizing TDMA. Based on this overview, it is concluded that not much

space for improvement is left in the field of schedule calculation algorithms; many such

algorithms are proposed up to date, and they can achieve schedule lengths close to the

theoretical minimum. However, the research also reveals a lack of in-detail evaluation

and comparison of these algorithms; this makes choosing the most suitable algorithm

for a particular application hard and performance estimation inaccurate. Therefore,

an extensive evaluation of state-of-the-art TDMA protocols using simulations and over

200 randomly generated networks was performed to tackle this issue. The results al-

low choosing an appropriate algorithm and estimating performance for each specific

application.

Next, the problem of multiple packet transmissions during a single time slot is

analyzed. State-of-the-art TDMA protocols assume that one packet can be transmitted

in each slot and optimize the number of slots each node gets under this assumption.

However, when nodes can transmit more than one packet, the performance of such a

schedule is impaired. To solve this, the M-TreeMAC protocol is proposed; this protocol

considers the actual number of packets transmitted in a time slot and optimizes the

schedule accordingly. Furthermore, it is observed that the routing topology heavily

impacts the schedule length created using this algorithm; an algorithm that optimizes

the topology to result in the shortest schedule when M-TreeMAC is used is proposed,

increasing benefits even further.

Finally, the accuracy of the 2-hop interference model, commonly used by state-of-

the-art TDMA scheduling algorithms, is studied and simulated using a realistic radio

model based on measurement results. The results show high packet loss ratios for

packets traveling a large number of hops to reach the sink. The adaptive interference

model is proposed to improve the 2-hop interference model. The proposed model can

increase throughput significantly in networks with a height of ten or more hops.
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1 Introduction

A Wireless sensor network (WSN) is a network of radio-enabled sensor nodes. Sensor

nodes gather data by measuring and monitoring one or more physical quantities in

their environment. The data collected by the sensors is then delivered to the destination

nodes. A destination node may be a node from which a user may use this data or a node

that can take action based on this data. In modern sensor networks, the destination

node is often a node connected to the internet, through which the data is transferred to

a server to be processed further; the connection to the internet is commonly achieved

wirelessly, using a GSM module.

With the increased technical development in recent years, the cost of radio modules

and microprocessors used to control the radio and sensors in a node has decreased.

At the same time, faster and more energy-efficient processors became available. These

developments increased the scope of wireless sensor network applications significantly.

Moreover, lower device cost has brought them to the fields for which they were too ex-

pensive in the past. Intelligent home systems are one example; they include sensor nodes

in various home appliances and furniture [1]. In addition, reduced costs also allowed

for having wireless sensor nodes in personal gadgets (smart watches, sleep monitoring

devices) and even on pets (tracing pet’s location, pulse, body temperature [2]).

Lower device cost also affects the usage of wireless sensor networks in the fields in

which they were present traditionally. Traffic monitoring systems used to rely mainly

on wired sensors in the past. However, wireless solutions are being applied in this field

more frequently. Furthermore, reduced cost allows for wireless sensor networks in less

critical applications in this field, such as traffic data gathering for research. Another

example is the use of agricultural monitoring networks, which are becoming available

to smallholdings.

Protocol development has been focused on high-performance protocols in recent

years. Unfortunately, such protocols require powerful and high-cost devices; at the

same time, the energy consumption increases. Examples of such high-cost protocols

are time slotted channel hopping protocols (TSCH) [3–5] or complex and extensive

industrial protocol standards (ISA 100.11a [6] and WirelessHART [7]). However, with

the increased application scope of WSNs, there is a rising requirement for effective

and fast communication protocols, which are, at the same time, simple enough to be

implemented on low-cost hardware.

This thesis studies the problem of achieving maximal possible throughput using

low-cost and energy-efficient hardware. The motivation arose while designing a wireless

sensor network for a traffic monitoring system using 16-bit MSP430 series microcon-
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trollers. The network was powered using solar cells, putting additional limits on power

consumption. As existing complex and energy-hungry solutions (like ZigBee [8], IEEE

802.15.4 [9], and Bluetooth low energy [10]) were not an option, in this case, the re-

search on what can be achieved with available limitations was conducted. The products

of this research are improvements, models, and protocols proposed in this thesis.

This thesis studies the problem of designing a protocol stack for a convergecast

wireless sensor network; the goal is to achieve the highest possible throughput using

low-cost devices. A convergecast sensor network has one sink node, which collects all

data produced by other sensor nodes. In modern sensor networks, data gathered is

commonly transferred to the user using a connection to the internet. Often only one

node will have internet access, reducing the costs. Therefore, all data will be collected

at that node, meaning that such a network is a convergecast network. Widespread

usage of such networks justifies the focus of this thesis on this kind of network.

The first step in solving this problem is an extensive study of state-of-the-art link-

and network-layer protocols. The most relevant protocols are revised in detail in sec-

tion 2.4 of this thesis. Based on this study, it is concluded that the link-layer protocol

is the crucial element in achieving high data throughput. More specifically, its medium

access controls (MAC) part. This part has the role of organizing the nodes to commu-

nicate without their packets interfering with each other. The maximal throughput that

can be achieved depends on how well the interference is avoided and how many nodes

can transmit simultaneously. This thesis studies these problems in detail and proposes

improvements in both fields.

The detailed study of state-of-the-art MAC protocols covers three types of such

protocols, each having a very different approach. The applicability of protocols of

each type in the studied problem is considered. However, the analysis identifies time

division multiple access protocols as the irreplaceable choice for the considered scenario.

Other options are low-duty cycle protocols, which heavily sacrifice throughput to benefit

energy consumption, and random access protocols, which experience throughput drop

at high packet generation rate values. Therefore, the TDMA is selected as the approach

of choice. Next, it is studied how to design and optimize a TDMA MAC algorithm to

maximize the throughput.

A TDMA MAC protocol avoids collisions by allocating one or more time windows

(called a time slot) to each node; a node may only transmit during one of the allocated

slots. A collection of time slots is called the schedule. To achieve the highest possible

throughput, the scheduling algorithm should find the shortest possible schedule that

assigns the appropriate number of time slots to each node. This problem is proven to

be NP-Complete [11]. Therefore, finding the optimal solution in a polynomial time is
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impossible. Hence, approximative methods should be used to solve this problem.

As this thesis aims to maximize the throughput, the first efforts were to improve

the existing scheduling algorithms. However, the literature analysis reveals this to be

a well-studied problem. Therefore, the focus of the research is put into maximizing

throughput while using the existing scheduling algorithms. The thesis proposes four

different improvements, allowing to achieve this. The first is a guideline for selecting the

most suitable scheduling algorithm based on the network properties. The second and

third improvements consider multiple packet transmissions during a single time slot, a

fairly common scenario in WSNs. Scheduling and network topology optimization algo-

rithms are proposed to improve performance under these conditions. The scheduling

algorithm is based on one of the existing approaches; it differs in how the number of slots

each node gets is calculated. This number is optimized for multiple packet transmis-

sions. The fourth improvement is a novel interference model, the adaptive interference

model. This model reduces interference, increasing throughput subsequently.

As mentioned before, many scheduling algorithms for optimizing throughput when

TDMA MAC protocols are used are proposed up to date. However, detailed com-

parison and evaluation of these protocols are lacking. Different schedule calculation

algorithms are characterized by the lowest bond of schedule length the algorithm can

achieve. These values are similar for many protocols. Furthermore, this value only gives

information about the best possible performance, but not on how often it is achieved

and how much actual performance will differ on average. Based on all this, the choices

approach is to define a guideline for selecting the most appropriate protocols for a given

application, rather than designing another algorithm similar to many existing ones.

Section 3.1 provides an overview of the most effective state-of-the-art schedule cal-

culation algorithms. To create a guideline for choosing one of them, they were imple-

mented in the OMNeT++ simulator. Their performance was simulated using more than

200 different randomly generated sensor networks. Based on these simulations, a guide-

line is provided to pick the protocols that deliver the best performance for the given

application. The results lead to the classification of these algorithms in two groups: the

trade-off group and the high-performance group. Protocols of the first group are simple

to implement and offer a very fast network setup. The trade-off is lower throughput

compared with the high-performance group; the offered throughput value is still con-

siderably high. Results show that in the case of narrow networks (where there are not

many parallel scheduling possibilities), trade-off protocols perform almost as well as

the high-performance ones. The results show that the protocol by Park et. all. [12] has

a slight advantage over the other high-performance protocols for larger networks and

that Lai’s [13] algorithms performed the best for networks with smaller sizes.
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Section 4 further research possibilities to increase throughput in convergecast sensor

networks. It considers multiple packet transmissions during a single time slot. Namely,

slot duration and packet transmission time can rarely be equal. Furthermore, time slot

duration is often a few larger than packet transmission time, allowing for a couple of

packets to be transmitted in a time slot. State-of-the-art schedule calculation algorithms

do not consider this, resulting in a schedule that is not optimized for the traffic and

impaired performance. This section proposes a scheduling algorithm that considers

multiple transmissions when calculating the schedule. Furthermore, it is shown that

the length of such a schedule strongly depends on the routing topology, and an algorithm

for optimizing this topology is proposed; the author published this algorithm in [14].

Multiple transmissions during a single time slot change the total number of slots

each node requires. Not considering this leads to not only an unnecessarily longer

schedule but also to a lower data delivery fairness in the network. This thesis proposes

a novel scheduling algorithm, M-TreeMAC, which solves this issue. The proposed algo-

rithm belongs to the group of trade-off algorithms; it is inspired by one algorithm from

this group, TreeMAC. The proposed algorithm significantly improves over TreeMAC,

as shown using extensive simulations presented in Section 4.2. In the case of linear net-

works, improvement is significant in terms of both throughput and latency. However,

in general networks, the improvement is only significant in reducing packet latency;

throughput remains similar due to complex traffic flow in such networks.

In Section 4.3 a topology optimization that further improves M-TreeMAC is pro-

posed. Namely, unlike TreeMAC, the schedule length of M-TreeMAC depends heavily

on the routing topology used. In this section, this dependency is explained, and an op-

timization criterion is formally defined. Based on this criterion, an algorithm that finds

the optimal topology is proposed. Finally, the proposed algorithm is implemented in

the OMNeT++ simulator and evaluated using an extensive set of randomly generated

networks. The results show that the proposed algorithm can reduce the schedule length

by as much as 30%.

Finally, in Section 5, the fourth strategy for increasing throughput is considered.

This time, the interference model is improved rather than the schedule calculation

algorithm. Namely, when a schedule is calculated, the scheduler tries to schedule as

many nodes as possible to share a slot. When this is done, an interference model is used

to determine whether two nodes can share a time slot. The most commonly used model

is the 2-hop interference model. This model is very simple, but it is not very accurate.

Therefore, its usage leads to some amount of packet loss due to collisions, even though

TDMA MAC is theoretically collisionless. Collisions can be completely avoided if more

complex physical models are used. However, their usage requires additional hardware
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modules and introduces additional complexity complexity as well as increased network

setup time.

Section 5 proposes the adaptive interference model. This model provides a compro-

mise between the 2-hop model and physical interference models. It offers significantly

improved accuracy over the 2-hop model. At the same time, it keeps the simplicity

of the 2-hop model, allowing its usage instead of the 2-hop model with no or little

modifications to the other protocol components and layers. The adaptive interference

model uses hop count to define interference range, the same way the 2-hop interference

model does. However, instead of this range being fixed to 2-hops, it is adapted for each

application scenario. The adaptation is performed using a simple algorithm, which

considers network configuration, radio properties, and radio environment. The author

previously published a simpler version of this algorithm in [15]; this thesis proposes an

improved version.
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2 Background and Related Work

This chapter introduces wireless sensor networks and the problems and challenges as-

sociated with their design and implementation. The emphasis is placed on the most

relevant issues for the topic of this thesis, maximizing data throughput. The decisive

factor in achieving high throughput is the physical layer; the radio’s bit rate defines

how long the transmission of each packet lasts. The physical layer is, however, not the

topic of this thesis. On the contrary, this thesis deals with selecting, designing, and

optimizing upper-layer protocols to achieve the highest possible throughput using the

provided physical layer.

The crucial element of the protocol stack (excluding the physical layer) for achieving

high throughput is Medium Access Control (MAC). The role of this layer is to ensure

packet transmission without collisions (a collision occurs when a radio receives two pack-

ets simultaneously). There are various approaches to achieve this. These approaches

can be divided into contention-based, contention-free, and low-duty cycle protocols.

The first goal is selecting the correct protocol type for the application. The second one

is optimizing it to suit the particular application’s requirements. Section 2.4 describes

these three protocol types and gives an overview of some state-of-the-art protocols from

each group. Based on this overview, a group of protocols suitable for high-throughput

applications is selected. Finally, the protocols of this group are simulated in Section 3.3,

and guidelines for choosing the most suitable one for each application are provided. The

metrics used for this evaluation are described in Section 2.3.

The second most important layer for high throughput is the network layer. This

layer finds and maintains paths (routes) that data packets take to reach their destination

node in the network. These routes can be chosen based on different criteria; one of them

can be throughput maximization. Section 2.6.2 describes how these paths are formed

in converge-cast sensor networks and which algorithms are commonly used in them.

Section 2.6.3 explains the relation between the routing topology and data throughput

in the network.

2.1 Wireless Sensor Networks

A wireless sensor network is a collection of sensor nodes capable of wireless communi-

cation. Each wireless sensor node consists of sensors, a microprocessor, a power source,

and a radio module. A block diagram of a generalized sensor node is depicted in Fig. 1.

The application running on the microcontroller controls the sensors and generates data

packets based on measurements. These packets are then transmitted until they reach

their destination node. The destination node is usually a node with a user interface or

6



connection to the internet, allowing a user or a data-gathering application to process

the data.

Wireless sensor nodes are often designed to operate autonomously, without con-

nection with a power source. They contain a battery and, optionally, a power source

for that purpose. This power source is usually an energy harvesting module. It may

be used to prolong battery life or allow indefinite battery life, making the sensor fully

autonomous. Common energy harvesting modules use solar, wind, or thermal energy.

radio

antena

μC

power
source

battery

sensors

sensor
probes

node board / housing

Figure 1: Block diagram of a wireless sensor node.

A wireless sensor network is comprised of multiple wireless sensor nodes. Each of

them might have a different role. Role definitions depend on the protocol used for

data transfer and the application. One common type of wireless sensor network is a

converge-cast sensor network. Converge-cast networks have one or more sink nodes,

which collect data from the whole network and transfer it to the user. The other

nodes are called sensor nodes, and they generate data by performing measurements.

Converge-cast sensor networks can be single-hop or multi-hop. In single-hop sensor

networks, all sensor nodes are within the radio range of the network sink; when they

have a data packet, nodes transmit it to the sink directly. In multi-hop sensor networks,

nodes must use other nodes to forward data packets to the sink. Such networks are

more elaborate and have a complex network layer.

More complex protocols, usually intended for multiple different applications and

deployment scenarios, define a larger number of roles the nodes can take. For exam-

ple, ISA 100.11A [6] standard defines the following roles: routing device, IO device,

portable device, backbone router, gateway, system manager, and security manager.

IEEE 802.15.4 [9] defines four different roles, Super PAN coordinator, PAN coordina-

tor, Full functioning device (FFD), Reduced function Device (RDF). In this case, this

is needed because of the unique network structure. The network using this protocol
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is divided into clusters, each having a star topology with a PAN coordinator in the

middle. Super PAN coordinator is predefined, and it initiates the network formation

by sending beacons, which other nodes use to join the network. Then, the super PAN

coordinator instructs some of the nodes to take to the role of the PAN coordinator and

add additional nodes to the network in that way.

One multi-hop converge-cast sensor network is depicted in Fig. 2. This network

has two sinks, seven sensor nodes (blue node with green sensor module), and two

routing nodes. Solid lines represent links used for routing the packets, while dashed

lines represent links between nodes that are not a part of the routing network. The

protocol running in each node discovers these links and selects routes. Besides that,

some other tasks of this protocol are to avoid collisions and ensure that packets have

reached their destination. Because a protocol must accomplish various very different

tasks, it is divided into layers. The collection of these layers is called a network stack.

This type of organization allows easier implementation and adaptation of the protocol

to a certain application. For example, this allows changing just one protocol layer while

keeping the others.

sensor modulesink node node

Figure 2: Example converge-cast multi-hop sensor network.

Wireless sensor networks have a wide range of applications. The design of the nodes

and communication protocols used by them vary heavily based on the application. For

example, a DC power supply is available in some applications, and sensors can be

powered using an external power source. Low energy consumption is not a priority in

such cases, and MAC protocol can be optimized for maximum throughput. A DC power

supply is readily available in many application scenarios. For example, sensor nodes

can be powered from the power line in sensor networks used for building management

systems [16]. Or, in some traffic monitoring systems, sensor nodes can be powered from

the network used for road lighting [17].

The main challenge in many other applications in energy efficiency since nodes are
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powered either from a pre-charged battery or using an energy harvester. One such ap-

plication example is medical body area networks [18–20]. These networks are used for

measuring vital parameters from one or more patients. Commonly measured parame-

ters are heart rate, temperature, blood oxygen saturation level, and electrocardiogram

(ECG) signals. To achieve that, sensors are attached to the patient’s body and con-

nected with the monitoring device using a suitable wireless communication protocol.

The number of sensors can be high; for example, precise EKG monitoring requires at

least six probes. Therefore, it is inconvenient to power all the sensors with a wire. For

these reasons, battery-powered sensors are used. This introduces the need to find a

trade-off between Quality of Service (QoS) and energy efficiency. Higher QoS comes

with incensed energy consumption, requiring a larger battery, which is heavier and more

expensive.

Some application scenarios require many nodes scattered on a vast and hard-to-

access space. For example, monitoring perma-frost requires positioning sensor nodes

at very isolated places and high altitudes in the mountains [21]. On the other hand,

forest fire monitoring networks require coverage of vast forest areas with a large amount

of nodes [22–24]. Locating and accessing nodes in such a network is very demanding

and less cost-efficient than deploying a new sensor network. Therefore, energy-efficient

protocols that sacrifice the quality of service are needed to meet these requirements.

This can be achieved using very low duty cycle protocols, allowing the nodes to keep

radios in sleep for most of the time, turning it on as infrequent as once in a few days

to transfer the accumulated data.

The advancements in energy harvesting in recent years allowed for its more common

application in the design of wireless sensor networks. Energy harvesting enables sensor

nodes to recharge their battery by using the energy available in the environment. A

typical energy source for harvesting is solar energy [25], which can be easily and cost-

efficiently harvested using solar cells. However, harvesting solar energy might be an

issue in an urban environment due to the lack of direct sunlight. One solution for this

problem is harvesting RF energy [26], which is becoming more available recently due

to technical development. Other energy sources include mechanical energy, harvested

using piezoelectric devices [27], and thermal energy [28].

Energy harvesting can be used in two ways in wireless sensor networks, to increase

battery life or to make self-powered sensor nodes. Due to the energy limitations that

can be harvested, the latter is only possible when low-power protocols and devices are

used. In sensor networks with higher throughput and performance, the benefits of en-

ergy harvesting remain limited to increased battery life. Special protocols are designed

for such networks to maximize the benefits of energy harvesting. These protocols take
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into consideration current energy availability and adjust protocol parameters accord-

ingly [29].

2.2 Communication Protocol Stack

Communication protocols used by the nodes in a wireless sensor network need to per-

form many tasks necessary for the network operation, such as: network discovery,

network joining, network re-discovery, collision-less data transfer, packet acknowledg-

ment, packet splitting, etc. These functions are separated into different protocol layers

to simplify the implementation process and allow interchangeability and re-usability.

Protocol layers are stacked on top of each other to create a protocol stack.

Protocol functions can be divided into layers in different ways. A few standards that

specify how this division is performed are available in the literature. The most known

such standard is the OSI reference model. This model divides protocol into seven

layers. The OSI model is often used in complex computer networks, where a large

amount of data needs to be transferred efficiently and where the protocol is interfaced

with computer software.

On the other hand, in wireless sensor networks, the application layer is implemented

on the same micro-controller as the other layers. Furthermore, cost reduction and

energy efficiency are among the most critical factors in wireless sensor networks, whereas

computer networks usually value reliability more. Therefore, wireless sensor network

stacks generally follow the OSI model but only define and implement the lower four

layers. Figure 3 shows the comparison between a wireless sensor network stack and a

network stack following the OSI model.

The lowest layer in the stack, the physical layer, has two main components; radio

hardware specification and radio interface. Radio hardware specification defines what

functionalities the used hardware must fulfill to be suitable for usage with the protocol

stack. For example, it specifies parameters like carrier frequency, modulation, mini-

mum packet length, etc. The radio interface defines a set of functions through which

the upper layers interact with the radio hardware. This allows using the same link layer

(the layer above the physical layer) with different hardware. Typical interface functions

a physical layer defines are functions for transmitting a packet, changing radio param-

eters, performing clear channel assessment, etc. In addition to functions, the physical

layer defines indications used to notify the link layer about events, such as a packet

reception or a finished transmission.

The role of the link layer is to provide a reliable transfer of data between two nodes

that are direct neighbors, i.e., can communicate directly using a radio link. It is divided

into two sub-layers, Medium Access Control (MAC) and Link Layer Control (LLC). The
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(a) WSN network stack
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(b) OSI reference network stack

Figure 3: Comparisson of common WSN network stack organization with OSI reference
model.

MAC layer has the task of transmitting packets without causing collisions with other

transmissions. On the other hand, the Link Layer Control sub-layer’s job is to ensure

that the transmitted packet was successfully received. In the case of unsuccessful trans-

mission, LLC initiates a retransmission of the packet. In addition, LLC is responsible

for monitoring and reporting link quality to the higher layers. When the reliable data

transfer is unnecessary, this part of the link layer can be omitted to lower the cost and

complexity and increase energy efficiency.

The network layer is responsible for finding a route between two nodes that are

not within each other’s radio range. Besides that, the network layer performs network

discovery and allows new nodes to join the network. However, unlike on the internet,

in WSNs, this layer does not have to provide routing between any of the two nodes.

Because low cost, complexity, and high energy efficiency are the most critical require-

ments for WSNs, this type of routing can be omitted. For example, in converge-cast

networks, it is sometimes enough to provide routing from data-gathering nodes to the

network sink.

The transport layer has a similar role as the LLC but on the network level. Its

job is to ensure that packets reach their destination nodes and initiate retransmission

otherwise. In addition, the transport layer allows for the transmission of packets whose

size is larger than the link layer’s limit. It achieves this by splitting large packets into

chunks and resembling them again at the destination node. Because many wireless
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sensor networks can tolerate some level of packet loss, it is not unusual to exclude the

transport layer to reduce cost and increase energy efficiency.

2.3 Performance Evaluation Metrics

Performance evaluation of a communication protocol for wireless sensor networks is not

a straightforward task because different protocols have different optimization goals.

For example, some protocols are designed to be power efficient; This is achieved by

sacrificing reliability and throughput to lower the power consumption. On the other

hand, other protocols are designed to have high throughput and reliability at the cost

of higher power consumption. Therefore, each protocol must be examined individually,

using appropriate performance metrics. Standard metrics are throughput reliability,

packet delay, energy consumption, and fairness.

Throughput is one of the most important parameters for evaluating network protocol

performance. It represents the amount of data that can be transferred in the unit of time

at a specific place in the network. It is expressed either in bit/s, or as a normalized value

ranging from zero to one, with one representing continuous packet transmission [30].

Throughput can be defined for a link, a path, or the whole network. Definition of

the network throughput depends on the network topology. For example, in a mesh

network, it is defined as traffic received on all destination nodes in a unit of time; in

converge-cast networks, it is defined as the amount of data received by the sink in the

unit of time [31].

When optimizing the network throughput is the goal, it is also essential to consider

whether the throughput is equally distributed among the nodes. The parameter that

quantifies equality of throughput distribution is called data delivery fairness or just

fairness. The most critical layer for data delivery fairness is the MAC layer. The MAC

layer regulates access to the radio medium, and it is its job to ensure that all nodes can

access the radio medium as often as needed. This is a challenging task, as some parts

of the network experience higher contention for the medium access than the others. As

a result, nodes in these areas might need to wait longer to access the radio medium.

This can lead to high throughput in some parts of the network and very low in others.

In total, network throughput might be high, even though fairness is low because nodes

in highly congested areas are getting very little medium access time.

Fairness is especially important in converge-cast networks. In converge-cast net-

works, the sink node gathers all data collected by the other sensor nodes. Some of

these nodes are multiple hops away from the sink. If all nodes have an equal chance to

access the medium, packets from such nodes will reach the sink less often, resulting in

low fairness. Therefore, protocols for converge-cast networks must ensure that packets
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originating from all nodes have a similar chance of reaching the sink.

Multiple metrics can be used to evaluate data delivery fairness in wireless sensor

networks. One of the most commonly used metrics is proposed in [32]. It is calculated

using the following equation,

ϕ =
(
∑︁N

i=1 ni)
2

N ·
∑︁N

i=1(ni)2
(1)

where N is the total number of sensor nodes excluding the sink in the network, and

ni is the number of packets received from the node with index i. Fairness defined in

this way ranges from 0 to 1. Fairness equal to one corresponds to a fair throughput

distribution, meaning that the sink will receive the same number of packets from all

sensor nodes in the network.

A common cause of reduced fairness in converge-cast networks is buffer congestion.

When data generation rates are high, buffers of some nodes get full. This causes the

packets from the nodes above to be discarded, while packets from the particular node

experiencing high traffic are delivered, as illustrated in fig 4. As seen in the example,

the blue node will always have a packet to transmit to the sink, and the throughput

observed at the sink will not be reduced. However, packets from the purple and green

nodes will often be dropped. Dropping packets from specific nodes and delivering one

from the other node instead causes low fairness, while the throughput remains the

same. If only throughput is used to evaluate performance, such a problem can remain

undetected. This is why throughput and fairness must be examined together to obtain

a relevant evaluation, especially when converge-cast sensor networks are evaluated.

buffer

(a) Initial state

buffer

tx

(b) State after one slot

buffertx

(c) State after two slots

buffer
tx

droped
buffer full

(d) State after three slots and packet
dropped in the third slot

Figure 4: Example of reduced network fairness due to buffer overflow.
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In some applications, like, for example, event detection or traffic monitoring, packet

delay can be of higher importance than throughput. Considerable packet delays at high

throughput values are common in multi-hop TDMA networks. In such networks, nodes

are in time sync whit each other, and they are allocated specific time windows (time

slots) in which they are allowed to transmit. Packets often travel over multiple hops to

reach the sink. Delays of such packets depend significantly on how slots of the nodes

on the path are aligned.

The worst-case slot alignment is illustrated in Fig 5. Each node in the path receives

a packet just after transmitting its own packet. At each hop, the packet stays in the

buffer during the whole cycle before it gets transmitted to the next node on the path.

This results in significant delay, especially when the number of hops is large.
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(a) network
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D
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cycle 4

(b) time schedule

Figure 5: Example increased packet delay due to slot misalignment on a routing path.

Some protocols achieve high throughput values at the cost of considerable latency

due to a lack of slot alignment. Therefore, besides throughput and fairness, packet

delivery latency should also be considered. Packet delivery latency can be evaluated

with various metrics. Common are average and maximum packet delay over all paths

in the network. Another helpful metric is the maximum average delay over a path. In

the case of converge-cast networks, each node communicates over one or more paths,

all having the sink as a destination. Therefore, the maximum average delay is usually

defined for each source node.

Another typical performance metric is the packet delivery ratio. It is defined as the
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percentage of successfully delivered out of a total number of attempted packet transmis-

sions by the network layer. Transmission of a single packet from sender to destination

node, including all forwarding on the way, counts as one attempted transmission. The

packet delivery ratio can be increased at the link and network layers. The network

layer can improve the delivery ratio, for example, by employing network-level acknowl-

edgments or by finding alternative routing paths. An alternative routing path can be

used when the main path is experiencing congestion, which can occur for various rea-

sons [33]. On the other hand, the link layer can improve the packet delivery ratio by

better management of contention or by using link-level packet acknowledgments.

Another important performance metric is energy consumption. For evaluation of

low-power communication protocol, this is the critical parameter. For example, energy

harvesting nodes can provide a very limited amount of energy. However, the protocol

used should be able to provide continuous operation using the available energy. An-

other example are battery-powered sensor networks. In this case, the network lifetime

depends on the power consumption of the implemented protocol. However, energy con-

sumption is of importance for all types of protocols. It is relevant even in the case of

grid-powered sensor nodes, as low-energy consumption requires a less complex power

supply, reducing the size and cost of the device.

2.4 Medium Access Control - MAC

The role of the MAC protocol is to coordinate transmissions of different sensor nodes

so that they do not interfere with each other. This seemingly simple task is connected

with many difficulties. There are three different classes of MAC protocols based on how

this problem is solved. These are contention-based, contention-free, and low-power.

When one transmission interferes with another in such a way that it causes it to fail,

it is said that a collision has occurred. Based on the nature of the interference, there

are two types of collisions, called type one and type two. A type one collision happens

when a transmission reaches the destination node while the node is transmitting Fig. 6a.

A type two collision occurs when another signal reaches the node that is receiving a

packet, causing the reception to fail Fig. 6b. The node whose transmission caused the

interference may be out of the transmission range, as the interference range is larger

than the transmission range Fig. 6b.

There are three groups of MAC protocols based on collision avoidance strategy:

contention-based, contention-free, and low-power. A contention-based protocol uses

carrier sensing procedures, allowing the node to detect whether the radio medium is

free or not. If it is busy, randomized delays are utilized to ensure that nodes competing

for medium access retry at different times. Contention-free protocols are more complex
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(a) Type one collision; node receives a packet while transmitting.

tx1tx2

transmission 
range

interference range

(b) type two collision; one transmission interferes with the other.

Figure 6: Type one and two collisions.

but more efficient as well. They arrange a way for radios to communicate in advance.

This is achieved by creating a schedule for each node, which specifies when and at which

channel the node may transmit. Contention-free protocols allow for higher throughput

and higher energy savings than contention-based protocols. However, this comes at

the cost of increased complexity. Namely, a lengthy and complex process involving

communication with neighbors or discovery of the whole network must be performed

to create a schedule. This makes various issues such as compatibility with other layers,

periodical network down-times, node solicitation, etc. On the other hand, low-power

protocols are designed for minimal power consumption and low traffic. These protocols

keep nodes in sleep mode as long as possible; Nodes wake up periodically to transmit

and receive data.

2.4.1 Contention-Based MAC Protocols

Contention-based protocols use acknowledgment packets (ACK) to detect if the trans-

mission was successful. When a node successfully receives a packet, it sends an ACK to

the sender. On the other hand, after transmitting, the sender waits for an ACK. If such

a packet is not received within a predefined time window, the sender concludes that

a collision has occurred. This means that other nodes have tried transmitting at the

same time and that their transmissions have probably failed as well. If transmissions

are repeated immediately, another collision will occur. Instead, the conflict is resolved

using a protocol-specific randomized back-off scheme, which schedules contesting nodes

to transmit at different times.

Most commonly used contention-based protocols are based on CSMA (Carrier Sense

Multiple Access) principles. These protocols combine random back-offs with a carrier

sense operation to estimate if the radio medium is busy at the moment. Carrier sense
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operation is based on estimating the signal-to-noise ratio on the radio channel. This

operation detects ongoing transmissions inside the receiver’s interference range, as il-

lustrated in Fig. 7a. In the figure, node n1 detects a transmission between nodes n3

and n4, and postpones transmission intended for node n2.

However, Carrier sense operation can not avoid all collisions. For example, if an

ongoing transmission is not in the transmitter’s range but is in the receiver’s range, it

will not be detected. The source of such a transmission is called the hidden terminal.

The hidden terminal problem is illustrated in Fig. 7b. In this example, node n3 is a

hidden terminal for node n1.
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Figure 7: Usage of Clear Channel Assessment to reduce the number of collisions in
CSMA and CSMA-CA.

There are many variants of the CSMA scheme. The main difference is in action

taken after the medium is assessed to be busy. The persistent CSMA continues to

sense the medium until it becomes free, in this case. Then, a randomized back-off is

performed to resolve contention between multiple nodes contending simultaneously. On

the other hand, the non-persistent variant performs the back-off immediately on a busy

medium.

CSMA-CA (Carrier Sense Multiple Access - Collision Avoidance) tries to avoid

initial collision and perform back-off even before the first transmission attempt. This

results in fewer collisions and better performance in high contention scenarios. However,

in the case of low contention, delays are increased and throughput reduced. The slotted

version of CSMA further improves the performance by introducing transmission slots.

When the medium is detected as free, a random time slot is chosen. If the medium is

still free in the selected slot, the packet is transmitted; otherwise, a random back-off is

performed.

Fig. 8 illustrates non-persistent slotted CSMA-CA, as defined in IEEE 802.15.4

standard. Nodes are synchronized and can compete for medium access during a con-
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tention access period (CAP). As illustrated in the figure, this period is divided into

slots when slotted CSMA is used. If a node has a packet to transmit, it performs a

random back-off at the beginning of the contention period. When the back-off expires,

the node performs a CCA operation on the slot boundary. If the channel is clear, it

starts the transmission, like node 1 in the figure. If not, it performs another back-off,

like node 2 in the figure.

CC
A 

- f
re

e

transmissionbackoff

backoff
CC

A 
- f

re
e

CC
A 

- b
us

y

transmissionbackoff

CAP - Contention Access Period

backoff time slot

no
de

 1
no

de
 2

Figure 8: Slotted nonpersistant CSMA in IEEE 802.15.4.

In IEEE 802.11 standards, the RTS/CTS handshake mechanism is introduced to

prevent collisions due to the hidden terminal and decrease power consumption. Before

transmitting a packet, a node sends an RTS (Ready To Send) packet. An RTS contains

the destination address and the length of the packet. Then, it waits for a CTS (Clear

To Send) packet as a response. If there is no response, transmission is aborted. An

RTS packet has two functions. The first one is to put neighbor nodes (except the

destination) in sleep mode and save energy; these nodes will not be able to transmit

or receive during the transmission announced by the RTS packet. The second role is

preventing a collision due to the hidden terminal. If there is an active transmitter

within the receiver’s range, which would act as a hidden terminal to the sender, the

receiver will be in sleep mode and won’t respond to the RTS.

The RTS/CTS handshake mechanism reduces the number of collisions, increases

maximal throughput, and reduces energy consumption. Nevertheless, the energy con-

sumption remains relatively high, as the nodes have to be active and waiting reception

whenever the radio medium around them is not busy. Therefore, this protocol is still

not suitable for energy-constrained sensor networks.

As stand-alone protocols, random access protocols are not suitable for wireless sen-

sor networks because of high energy consumption, both due to the possibly high number

of re-transmissions and the inability to achieve low power operation. However, they are

often used as a part of contention-free or low-power protocol. Even established protocol

standards, such as IEEE 802.11 [34] and IEEE 802.15.4 [9] use some variant of CSMA
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as a part of the more complex MAC protocol. In addition, most of the contention-free

protocols include a random access protocol as well. For example, many TDMA (Time

Division Multiple Access) protocols use CSMA at the beginning of each time slot. This

prevents packet loss due to external interference or due to unexpected interference. The

second may occur due to an imprecise interference range model (used to calculate the

schedule) or changes in the network (which may arise after calculating the schedule).

2.4.2 Low-Power MAC Protocols

The main goal of low power protocols is to reduce power consumption as much as possi-

ble. This is achieved at the expense of packet latency and network throughput. These

protocols keep nodes in sleep mode for prolonged periods to achieve low power con-

sumption. Communication is performed in short time windows when nodes wake up.

There are two classes of low-power MAC protocols, asynchronous and synchronous. In

asynchronous protocols, nodes do not have clocks synchronized; therefore, they do not

have information about the wake-up schedules of their neighbors. When a node wants

to communicate with a neighbor, it wakes up and waits for the neighbor to signalize its

wake up. Synchronous protocols eliminate this unnecessary waiting time by synchro-

nizing nodes and informing them about the wake-up schedules of their neighbors. This

comes at the price of additional overhead. The introduced overhead may benefit or

increase power consumption (consuming more than saved with reduced waiting times).

The basic concept of asynchronous low-power MAC protocols was introduced in

STEM (Sparse Topology and Energy Management). This protocol keeps nodes in low

power listening mode when they do not have data available for transmission. Nodes

wake up periodically and perform a low-power listening operation, which detects if a

preamble is transmitted. When data is available, the node wakes up and transmits a

preamble to indicate that it has data pending. The duration of the preamble is equal

to the wake-up period of the nodes. Hence, all neighbors detect the preamble. When

a node detects a preamble, it wakes up and waits for the transmission of the pending

packet. This concept is illustrated in Fig. 9.

After STEM emerged, many similar protocols were proposed, which utilize the same

idea while providing additional improvements. For example, the XMAX [35] introduces

an array of shorter preambles instead of a long one to save energy on the transmitter

side. The DPS-MAC [36] combines this approach with a low-power listening concept

to reduce energy consumption on the receiver side. TICER [37] uses a short wake-

up packet containing the destination address sent repeatedly instead of a preamble.

When the intended receiver receives the wake-up packet, it responds with a CTS. This

saves energy on the receiver side because shorter packets are transmitted instead of a
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Figure 9: Waking up a receiver along the neighbor nodes using a preamble to transmit
a packet in STEM.

long continuous preamble. Additionally, a CTS will be overheard by the neighboring

nodes that woke up to transmit, preventing collisions due to hidden terminal. Finally,

CMAC [38] introduces converge-cast routing to the low-power MAC protocols, and

WiseMAC [39] utilizes schedule learning to reduce energy consumption.

RICER [37] introduces a new concept; receiver-initiated wake-up, suitable for sce-

narios with high traffic and dense networks. When RICER is used, all nodes wake

up periodically and pull potential transmitters by sending beacons. If a node has a

pending packet for a neighbor, it waits for the neighbor to transmit a beacon. Then,

it competes with other potential transmitters to transmit the packet; the contention

is solved using a random delay. Further improvement is achieved in RI-MAC [40] by

utilizing a CSMA with a flexible contention window size. The contention window size

is announced in the wake-up beacon.

A somewhat unique protocol called RC-MAC [41] is designed especially for converge-

cast networks with a tree-shaped routing topology. It uses a similar approach as RICER

and RI-MAC. However, it solves the contention using the parent-children relations.

Additionally, it recognizes the different traffic requirements of each node based on its

position in the routing tree. Namely, nodes close to the sink have more traffic because

they forward packets from all nodes located above them. This is taken into consideration

when wake-up schedules are created and contention resolved.

Synchronous low-power protocols synchronize either neighboring or all nodes in the

network (local or global synchronization). Furthermore, during the synchronization

process, nodes learn the wake-up schedules of their neighbors. This allows the nodes

that want to transmit or receive to wake up when the desired node does and interact

with it. However, the synchronization increases overhead because it requires periodic

exchange of messages to keep the clocks synced. The benefit is that when a node wants

to transmit a packet, it does not have to wait for the destination node to wake up.

Instead, it remains in the low-power sleep state until the destination node wakes up

and wakes up at the same time. This saves power used in the waiting state on the one
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hand but uses more energy for transmitting packets necessary to keep nodes synched.

Whether this leads to power savings depends on the network traffic. If traffic is very

low, asynchronous protocols perform better. In most of the other cases, synchronous

have a clear advantage. In addition to potential power savings, node synchronization

allows more clever protocol design, increasing the maximal supported throughput.

Synchronous protocols divide time into cycles as illustrated on Fig. 10. Each cycle

consists of the active period and sleep period. At the beginning of the active period,

nodes wake up and exchange information about packet availability with neighbors. If

a node or neighbor wants to transmit a packet, it stays awake until packet exchange is

done. Otherwise, it goes back to the sleep state immediately. A typical active cycle of a

few nodes running asynchronous low-power MAC is illustrated in Fig. 10. In the figure,

node A announces a packet for node B. Node B stays awake to receive the packet, while

node C goes to the sleep state since there are no packets destined to it announced.

Node C

Node B sleep RX Pktwake B

Node A sleep wake B TX Pkt

sleep wake B sleep

sleep

sleep

Figure 10: Cycle of a low-power synchronous protocol.

One of the first synchronous low-power protocols was S-MAC [42]. It lowers the

cost of the synchronization process by clustering nodes and synchronizing nodes within

a cluster. Nodes located at the cluster border keep track of the timing of both clusters.

This allows fast and low-overhead synchronization of nodes in large networks. Nodes

running SMAC wake up periodically; on wake-up, they inform neighbors they wish to

communicate with to stay awake (as in Fig. 10). The main drawback of this approach is

that packets can propagate a maximum of one-hop each cycle. After a node transmits

a packet, the receiver can not forward it in the same cycle because the next hop will

be in the sleep mode.

Multiple protocols in the literature improve SMAC by allowing packets to traverse

more than one hop within a cycle. For example, the DW-MAC [43] protocols use an

SCH packet instead of CTS and RTS to keep the receiver’s neighbors awake; this allows

a packet to cover two hops per cycle. Another example is the T-MAC [44] that achieves

the same result with a bit different approach, which involves a packet called ”future

request to send.”

A synchronous low-power protocol must solve three problems to achieve high through-
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put and low power consumption. The first one is effective contention upon wake-up

since, in a high traffic scenario, more than one node will have a packet in this case.

The second is packet propagation over multiple hops per cycle. Finally, the third is the

transmission of more than one packet by the same node per cycle; this is not necessarily

solved by allowing the propagation over multiple hops per cycle.

A protocol called the SCP-MAC [45] solves all three problems. It introduces a

contention window for sending a wake-up tone at the beginning of each cycle. Nodes

that have a packet pending will compete to transmit. If they lose the contention, they

remain active and ready to receive. Nodes without a packet for transmission will listen

for a wake-up tone. If none is received, they immediately go back to sleep to preserve

power.

The SCP-MAC introduces the adaptive channel polling to allow a node to transmit

multiple packets in one slot and traversal over multiple hops per cycle; it is illustrated in

Fig. 11. The adaptive channel polling is performed using adaptive contention windows;

three such windows follow the main one at the beginning of each active cycle Fig. 11.

These additional contention windows are used to sense traffic in the network. If there

is a reception during at least one of them, the protocol concludes that the network is

experiencing increased traffic. As a result, additional contention windows are added

to accommodate increased traffic; they follow the adaptive ones Fig. 11. The dynamic

windows remain part of the cycle as long as there is a reception during one of the

adaptive windows.

The adaptive channel polling allows the transmission of multiple packets per cycle

and their propagation over multiple hops. For example, in Fig. 11, node A has three

packets to transmit to node B. The first one is transmitted in the regular contention

window and the second one during the adaptive period. Since node B received one

packet in the adaptive window, it introduces three dynamic contention windows. In

the first dynamic window, it receives the third packet from node A. Dynamic slots are

kept in all flowing cycles until traffic is reduced, and none of the dynamic or adaptive

slots are used. On the other hand, Node C does not receive any packets during the

adaptive period. It transmits one packet to node D (not in the figure) in the third

adaptive contention window. Then, it goes to sleep while nodes A and B continue to

communicate.

Asynchronous low-power MAC protocols are easy to implement and highly energy

efficient. However, they are suitable for applications with low to medium throughput

requirements. Additionally, they introduce high packet delivery delays because a node

has to wait at each hop for the receiver to wake up. Therefore, those protocols are

unsuitable for high throughput scenarios studied in this thesis. On the other hand,
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Figure 11: Dynamic pooling in SCP-MAC

synchronous low-power protocols can adapt to higher traffic loads and provide low

latency and high throughput. They are, therefore, the best choice when high throughput

needs to be combined with very high energy efficiency.

2.4.3 Contention-Free MAC Protocols

Contention-free MAC Protocols use network topology information to minimize or com-

pletely eliminate interference between parallel transmissions, allowing high and pre-

dictable data throughput. The first one allocates a specific time interval for transmit-

ting to each node or link, called a time slot. A node may transmit only during this

assigned interval. A few nodes that do not interfere with each other may share one time

slot. This approach is called time division multiplexing. On the other hand, frequency

division multiplexing assigns different radio channels to nodes instead of time slots.

This approach requires more complex implementation and hardware. Therefore, it is

mainly used as part of complex protocols designed for sensor nodes equipped with very

capable processors. This thesis focuses on less complex, low-cost solutions that can

quickly be developed and customized for a specific application. Therefore, the focus is

on protocols and algorithms that use the time division multiplexing approach.

Time division multiplexing protocols are significantly more complex than random

access and low-power protocols. These protocols operate in several phases. The main

phase is the contention-free phase, during which nodes exchange data based on the

schedule. The calculation of this schedule requires message exchange between nodes.

The calculation can be performed in two ways, by negotiation between nodes or based

on network topology. In the second case, network discovery is conducted to gather the

required information on the network topology. A random-access protocol is used to

collect data necessary for the schedule calculation in both cases.

TDMA protocols prevent collisions by assigning time slots to different transmissions.

Transmissions that do not interfere with each other may be given the same slot. The
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time slots can be assigned either to nodes or links. If a time slot is assigned to a node,

it can use it to communicate with any of its neighbors. The collection of slot numbers

and identifiers of nodes or links assigned in each time slot is called a time schedule.

The number of time slots in a time schedule is called schedule length. All slots in

a time schedule comprise a cycle. Cycles are repeated one after another during the

contention-free period.

Before the contention-free period is started, each node must obtain its schedule.

The time schedule can be calculated in a distributed or centralized manner. After the

schedule calculation and distribution, each node receives its part of the schedule; a

part of the schedule belonging to a specific node is called the node schedule. A node

schedule contains information about slots in which the node transmits, stays awake

to receive, and goes to sleep. Schedules of different nodes in a network are using an

example network, illustrated in Fig. 12. The example network has three nodes and one

sink. Node n1 is assigned three slots, one to transmit its packet and two for packets

from the other two nodes. Node n1 receives a packet in the first two time slots and

transmits it in the following three time slots. Node n2 transmits its packet in the first

time slot to node n1. Then, it goes to sleep for the rest of the cycle.

transmit

receive

sleep

s

n1

n2 n3

tx
n1

tx
n1

tx
n1

tx
n1

tx
n1rxrx

rx rx rx

Figure 12: Example showing schedules of nodes in a network.

The difference between node-based and link-based scheduling is illustrated using

two examples in Fig. 13. The figure shows two different networks and their schedules.

For the network in Fig. 13a, a node-based schedule is calculated, while the network in

Fig. 13b uses a link-based schedule. The benefit of link scheduling is a better adaptation

to traffic and a higher number of possible parallel transmissions. A higher number

of parallel transmissions is possible because each link is considered separately. For

example, on Fig. 13b, in the second slot, node n2 transmits a packet to node n1; in the

same slot, node n4 transmits to node n5. A node-based schedule could not schedule

these two transmissions simultaneously.

Link scheduling has a few significant drawbacks. The most critical ones are adapt-

ability to changes in traffic and long schedule calculation time. For example, if a node
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Figure 13: Examples of node and link scheduling.

does not have a packet for the scheduled link but has a packet for another, the slot

remains unused. Most importantly, link-scheduling does not provide benefits when used

for scheduling converge-cast networks. This is because most of the traffic flows in one

direction, towards the sink. On the other hand, link-based schedules can schedule two

links from one node in the same time slot if the other sides of the links are in different

directions (a parent and a child). Since converge cast networks have links only in one

direction, a link-based approach would not benefit such a network. Increasing through-

put in converge-cast wireless sensor networks is the main topic of this thesis; therefore,

the emphasis is put on algorithms that use node-based schedules.

TDMA protocols can calculate schedules locally or globally. When the local calcula-

tion approach is used, each node calculates its schedule by negotiating with surrounding

nodes. The main problem with this approach is determining cycle length. For a sched-

ule to work, each node must use the same cycle length. To do so, all nodes must agree

on the same schedule length. However, each node has information about its schedule

length and hose belonging to nodes in its neighborhood (it can be a one-hop or larger

neighborhood). This is illustrated on Fig. 14. Node N1 has a schedule length equal

to three and node N4 to four. Node N3 does not know the schedule length of node

N4, and if it starts repeating the schedule after the third slot, it will cause collisions.

This problem can be solved by presetting the cycle length to a specific value, line in

DRAND [46] or Z-MAC [47]. However, this always leaves some slots unused, resulting

in decreased throughput.

Another issue most local scheduling algorithms have is the lack of adaptation to

the traffic. This problem is partly solved by TRAMA [48]. To adapt schedules to the

traffic, TRAMA introduces moving time cycles. Each node announces cycle length and

the percentage of the cycle it uses to the neighbors. Thanks to this announcement, each
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Figure 14: Phases of a central scheduling TDMA MAC.

node has information about the slot usage of its neighbors. Then, a node calculates

priority for each slot using a hash function to determine which slots to use. For each slot,

a node calculates its priority and priorities of all nodes in the two-hop neighborhood.

The drawback with this approach is that the number of slots each node gets can not

be controlled precisely, allowing only a rough adaptation to the traffic. Namely, the

number of slots each node receives is pseudo-random. The range in which this random

number value lies is controlled by adjusting the active portion of each node’s cycle.

Local scheduling provides good performance while keeping the implementation cost

low. However, the number of slots assigned to each node can not be efficiently adapted

to the traffic requirements. Converge-cast networks, which are the main interest of

this thesis, use tree routing topology to deliver the gathered data to the sink. Traffic

requirements of different nodes in a tree-based network differ dramatically among the

nodes. For example, leaf nodes only need a few slots for their data. On the other hand,

nodes close to the sink will need many slots to forward the data from nodes above them.

Therefore, local scheduling TDMA protocols are not suitable for usage in converge-cast

networks.

Centralized scheduling algorithms are more complex to implement and have longer

network setup times; however, an exact number of slots can be assigned to each node,

allowing precise adaptation of protocol to the traffic requirements of each node. The

centralized approach also allows for better parallel transmission optimization, signif-

icantly reducing cycle length. Therefore, these protocols are the most suitable for

converge-cast networks with high data packet generation. The drawbacks are longer

network setup time and complex algorithms for adding new nodes to the network, which

require network discovery and the schedule calculation to be performed again. How-

ever, this is not an issue because nodes are fixed in most application scenarios. Such

applications are, among many others, traffic monitoring systems, industrial monitoring

systems, and medical body area networks.

Centralized scheduling algorithms are executed in three or four phases; network

26



discovery phase, schedule dissipation phase, scheduled access phase, and optionally

random access phase. There are a few reasons to include the random access phase.

For example, a node can discover new nodes or send protocol-specific packets during

this phase. Using the random phase for protocol control packets is beneficial because

time slots are optimized for data packets destined for the sink. Control packets may

experience high delays and packet loss in the contention-free phase.

Fig. 15 illustrated typical change of phases in a centralized TDMA MAC protocol.

When the protocol is started, it is in the network discovery phase. During this phase, the

network is discovered, and schedules are calculated. The schedules are then distributed

to the nodes during the schedule distribution phase. Then, data transfer is started,

and scheduled access and random access phases are cycled periodically. After some

time, data transfer is temporarily stooped to rediscover the network and calculate a

new schedule. A rediscovery is performed to account for changes in network topology,

radio medium, and traffic requirements of individual nodes.

network discovery

schedule distribution

scheduled access
random access

Figure 15: Phases of a central scheduling TDMA MAC.

The sink node discovers the network during the network discovery phase, using

protocol-specific packets. During this phase, the sink learns the topology of the whole

network. This includes a list of all nodes, neighbors of each node, and optionally,

link quality information. Based on this information, it represents the network with

a graph. Vertices of this graph are sensor nodes, and edges are links between nodes.

Additionally, the sink creates an interference graph to represent interference relations

in the network. This graph is created either based solely on the network graph or using

additional information gathered during the network construction phase. Vertices of the

interference graph are sensor nodes, and an edge between two vertices will exist if the

corresponding nodes can not transmit simultaneously.

The problem of finding a schedule with minimal length is equivalent to finding a

minimal graph coloring of the interference graph. However, such coloring will only

assign one color to each node, i.e., time slot. Therefore, additional adjustments are

needed to consider traffic flow and adapt the number of colors assigned to each node

based on its traffic requirement.

An interference model is used to construct an interference graph. This model allows

calculating which nodes interfere with each other. Most commonly used interference

model is the two-hop interference model [31, 49–52]. According to this model, an in-
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terference edge exists between two nodes if the distance between them in the network

graph is one or two hops. This is based on the assumption that the transmission and in-

terference ranges are equal. Using this model, an interference graph can be constructed

based only on the network graph, which is the main advantage of this model.

According to the two-hop interference model, there are two occasions in which a

node may not transmit, illustrated in Fig. 16. The first one is when its neighbor

is transmitting; if the node transmits in this case, it can not receive the neighbor’s

packet. In the figure, node n1 can not transmit when node n2 is transmitting. The

second occasion is when a two-hop neighbor transmits. In this case, a transmission

would cause a collision at the node between (one-hop neighbor). For example, if nodes

n3 and n2 in the example (Fig. 16) transmit at the same time, collisions occurs at the

node between them, node n1.

Besides the two-hop interference model, a node-based model, there are link-based

interference models based on the same assumptions. In the example (Fig. 16), the usage

of such a model would allow n3 to transmit to n4 at the same time when node n1 is

transmitting to node n2 (called back to back transmission). However, such benefits

will be only possible for transmission in the opposite directions in regards to the sink.

And since traffic in converge-cast networks flows towards the sink, such models are not

relevant for the problem studied in this thesis.
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(a) Type one collision, caused by immediate
neighbors
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 ->
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n3

n4
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 ->

 n
4

graph edge
interference graph edge

n5

(b) Type two collision, occurs when nodes
two hops apart transmit at the same time

Figure 16: Two types of collisions that can occur according to the two-hop interference
model.

The problem of finding a schedule with the minimal length for converge-cast sensor

networks is NP-complete, as proven by Choi et al. [11]. Many algorithms that find an

approximate solution have been proposed so far [31,50,51]. Some of them use standard

graph coloring algorithms. Others find different simplified solutions for solving this

problem. For example, TreeMAC [31] schedules one linear sub-network at a time. This

approach simplifies schedule calculation without reducing schedule length drastically.
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The result is a very efficient yet simple protocol with a very short network setup time

(in comparison with other protocols of this type).

Centralized TDMA scheduling protocols achieve high data throughput in converge-

cast sensor networks with data gathering tree topology while keeping complexity low.

More complex, multi-channel, or slotted channel hopping protocols allow even higher

throughput but at the cost of significantly increased complexity and hardware require-

ments. Using multiple channels requires complex node discovery and a network joining

process. Furthermore, nodes can always get out of synchronization and lose contact

with the rest of the network. To solve this problem, complex routines for checking for

such nodes and enabling them to rejoin the network are necessary. This all requires

strict standards and a long development time. Such protocols are not practical for

custom applications and simple hardware. Instead, they are suitable to be used as part

of standards like Wireless Hart or IEEE 18.15.4. These protocols use complex radios

with parts of the protocols implemented in hardware. These are predefined standards

and can not be wholly adapted to the custom application. Therefore, this thesis focuses

on single-channel protocols, which can provide easy and efficient customized solutions

with low cost and high energy efficiency thanks to the simpler hardware.

2.5 Challenges in Designing a TDMA MAC Protocol for Converge-

Cast Networks

For a TDMA MAC to perform well in a converge-cast network, it should create a suffi-

ciently short schedule, and, at the same time, adapt that schedule to the traffic. Some

protocols disregard schedule adaptation; the result is a short schedule that performs

poorly despite its length. A schedule should be adapted to two properties of the traffic.

The first one is the unsymmetric traffic requirement among the nodes; to adapt to this

property, a schedule allocates an adequate number of slots to each node. The second

one is the traffic flow. An adapted schedule considers at which point in the schedule a

node receives a packet and assigns it a slot for forwarding that packet afterward (not

before it received the packet).

Converge-cast networks use a tree-based routing topology. In a tree-based topology,

nodes at lower levels (close to the sink) are forwarding packets from nodes above them;

the number of such packets can be quite high. Therefore, traffic requirements vary

drastically among the nodes in such networks, especially if the number of nodes is

large. A TDMA protocol that does not consider this will perform poorly.

An example in Fig. 17 illustrates the importance of adapting the number of slots

assigned to a node to its traffic requirement, even in small networks. One time slot is

assigned to each node in the example, regardless of its position in the routing tree. The
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figure illustrates the traffic flow in the network. In the second cycle, four nodes (n3,

n4, n5, n6) do not use their time slot; they do not have a packet to transmit. At the

same time, node n2 has four packets in the second cycle, but it can transmit only one.

n6

s

n1

n2

n3 n5n4

(a) Initial packet distribution

n6

s

n1

n2

n3 n5n4

(b) Packet distribution after
the second slot

n6

s

n1

n2

n3 n5n4

(c) Packet distribution after
the third slot

Figure 17: Illustration of large number of unused slot in the case when equal number
of slots is allocated to each node in a converge-cast network.

After adapting the number of slots to the traffic requirement of each node, adapting

the schedule to the traffic flow is the second vital task of a scheduling algorithm. In

converge-cast networks, the traffic flow is predictable, as all data is directed in the

same direction, towards the sink. Therefore, a schedule can be adjusted to the traffic

flow based on the network topology. However, this property is commonly disregarded

by scheduling algorithms. As a result, packet latency increases because packets need

multiple cycles to reach the sink. Furthermore, packets can be accumulated at buffers

while waiting for a transmission slot, resulting in data loss.

An example in Fig. 18 illustrates the effects of a scheduling algorithm not considering

traffic flow. In the example, each node first transmits and then receives a packet from

its child. This results in high latency because packets traverse one hop in each cycle.

Furthermore, this reduces the chance that a node uses its transmission slot. Namely, in

reality, packets are not generated at all nodes simultaneously. Therefore, it can happen

that a node does not use its slot (due to the lack of packets) and then receives a packet

and generates its own. This can cause packet accumulation at buffers and potentially

their loss.

Another essential factor for good performance is eliminating interference between

the nodes transmitting in the same time slot. The commonly used two-hop interference

model is simple but does not remove interference completely. Some interference models

use the highest radio power to detect interference sources; this approach results in

precise interference graphs. However, when this model is used, the highest radio power
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Figure 18: Time slot synchronization where parent is scheduled ahead of its children.

can not be used for transmissions. As a consequence, the effective radio range is reduced.

Besides the obvious downsides of reduced radio range, throughput is lower because

packets need to travel over a larger number of hops to reach the sink. In this thesis,

an adaptive N-hop interference model is proposed, which keeps the simplicity of the

two-hop model while improving performance significantly.

2.6 Network Layer

Sensor networks usually cover an area larger than the radio range of individual nodes.

Many nodes in such networks are not within each other’s radio range. Nodes outside

radio range exchange packets using nodes between them to forward a packet. The task of

forwarding packets is performed by the network layer. The network layer uses protocol-

specific packets to discover leading to the desired destination node in the network. Each

node stores information about routes in a routing table. A routing table contains a list

of known reachable destination nodes; for each destination address, the table stores the

address of the next hop.

For each destination node, there may be different routes available. In converge-

cast networks, the destination is always the sink node. Nonetheless, there are often

multiple ways to reach the sink from each node. There are many different algorithms

for choosing and maintaining routing paths. Routing algorithms can select routes using

different optimization criteria. For example, if high throughput is desired, the shortest

possible routes are chosen. On the other hand, if nodes are energy constrained, routes

are chosen to spread data evenly among the nodes; this results in some packets taking
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longer routes to reach the sink.

TDMA MAC protocols for tree-based sensor networks create schedules based on

the routing topology. Therefore, there is a strong connection between the MAC and

the link layer. This chapter first describes the relationship between these two layers

in such protocols. Then, it gives an overview of state-of-the-art routing algorithms for

convergent networks. Finally, a connection between the routing topology and TDMA

performance is commented on in Section 1.6.3.

2.6.1 Network Layer Organization

Because schedules for converge-cast networks are calculated based on the network topol-

ogy, a schedule is unavailable when the protocols start. Instead, another protocol, usu-

ally a random access, is used initially. Information necessary to calculate the schedule

is gathered using that auxiliary protocol. Information gathering involves network dis-

covery in most cases; it can be performed in a centralized or distributed manner. If it

is centralized, the sink node acts as a master, discovers the whole network, and gathers

all the necessary information to calculate the schedule. Otherwise, individual nodes

communicate with other nodes in the network to exchange the necessary data. In both

cases, there is a need to communicate with nodes more than one hop away.

Schedule calculation needs to exchange messages with nodes in the network other

than immediate neighbors. However, the network layer, located above the link, is

responsible for that task. Furthermore, in most cases, schedule calculation involves

network discovery; the network layer does this to create the routing anyway. Due to all

this, the schedule calculation part of a TDMA MAC is usually implemented inside the

network layer. Otherwise, network discovery and routing would have to be implemented

two times.

The organization of the network and link layer of a TDMA protocol is illustrated

in Fig. 19. The schedule calculation is one sub-unit of the network layer. This part of

the TDMA calculates the schedule and sends them to the MAC layer in the form of

a protocol-specific message. Network discovery is implemented as a separate sub-unit.

At the network startup, network discovery discovers the network first; it does so using

the random access part of the MAC layer. During the network discovery, the routing

tables are created as well. Once the network is discovered, the schedule calculation

algorithm can use the information gathered to calculate the schedule. If necessary, the

schedule calculation algorithm can collect additional information beforehand by trans-

mitting protocol-specific packets; routing tables are available by this point, allowing

communication with other nodes.

32



schedule
calculation

network
discovery

routing
table

packet 
forwarding

Network Layer

random 
acces

time slotted 
protocol

MAC Layer

Figure 19: Organization of the network and MAC layer.

2.6.2 Network Discovery

The network layer is responsible for network discovery and creating and maintaining

routing tables. These two are interconnected because network discovery requires ex-

changing data with nodes more than one hop away. Similarly, route discovery includes

discovering new nodes and links. For these reasons, network discovery and route se-

lection are usually integrated when tree-based sensor networks are the case. Usually,

a neighbor discovery algorithm is run first, allowing each node to discover immediate

neighbors. Then, a tree formation algorithm is run. This algorithm assigns a level

to each node and a parent node to each node except the sink; the parent assignment

defines routing paths.

The majority of protocols use a shortest-path spanning tree for routing. In such a

tree, the distance from any node to the sink is equal to the shortest distance between

these two nodes in the graph. The difference between a spanning tree and a short-

est path spanning tree is illustrated in Fig. 20. Using a shortest-path tree for routing

ensures that each packet reaches the sink with the shortest possible number of trans-

missions. It also simplifies the application of the two-hop interference model. In such

a tree, the distance between two nodes is equal to the distance between the same two

nodes in the graph. Therefore, knowing a node’s two-hop environment is not necessary

to prevent collisions.

Protocols designed for energy-constrained nodes do not use shortest-path trees;

these protocols deliberately choose longer paths to distribute the traffic evenly among

the nodes. On the other hand, most high throughput use shortest-path spanning trees.

Only one exception is known to the author, the protocol by Lai. et. all. [13]. This

protocol starts with a shortest-path spanning tree. Then it changes some of the paths

to allow more slot sharing.

Algorithms for creating a shortest-path tree are well known and studied. Commonly
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Figure 20: Difference between spanning tree and shortest path spanning tree.

used approaches are the centralized Dijkstra’s algorithm and distributed update-based

algorithm. These algorithms require that each node has information about its neigh-

bors. Then, they assign a parent node to each node in the network, excluding last-level

nodes; this assignment is performed in a way that the path from any node to the sink

is a shortest path. These algorithms do not collect topology information. Therefore, if

they are used without modification, the sink node needs to run an additional algorithm

afterward to discover the network. This thesis used a modified Dijkstra’s algorithm;

it uses modified packets to provide topology information to the sink without increased

complexity. This chapter describes the original Dijkstra’s algorithm, and the modifica-

tion is described in Section 3.2.2.

Dijkstra’s algorithm performs path selection (equivalent to parent assignment) level

by level. Tree construction also discovers level, in the sense that nodes learn at which

level they are. Path selection at each level corresponds to one construction phase. The

sink initiates every phase p by broadcasting a startp message. At the beginning of

phase p, level p− 1 is discovered (from the previous phase); the last level discovered is

called the leaf level. When a node receives a startp message, it retransmits the message

unless the node is at level p− 1. As a result, a startp message is retransmitted until it

reaches level p− 1 (the leaf level).

When a leaf level node receives a startp, it transmits a joinp+1 message to its quiet

neighbors instead of forwarding it. Quiet neighbors are nodes that have not joined the

tree yet (did not get a parent assigned). When a node receives a joinp+1 message,

it responds with an ACK message. The node’s neighbors hear this ACK, and they

remove it from the list of quiet neighbors. After sending a joinp+1 message to all quiet

neighbors, the leaf level node sends an echo message to the sink. This message is used

to synchronize the construction process. A node waits for an echo message from all its

children before forwarding it to the sink. Therefore, the sink receives an echo message
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only when all leaf nodes finish the construction of the next level.

The message complexity of Dijkstra’s algorithm is O(m+ n · diam) and time com-

plexity is O(D2), where m is the number of edges, n the number of nodes and diam

is the graph diameter. It is an efficient and well-studied algorithm that is simple to

use and debug. It is also easy to modify to gather additional information, a property

often required in wireless sensor networks. Most protocols use this algorithm for these

reasons, even though the update-based algorithm offers improved performance.

The update-based algorithm is a distributed algorithm that improves over Dijkstra’s

in terms of time and message complexity. The message complexity achieved with this

algorithm is O(m · diam) and time complexity O(D). However, this algorithm does

not send acknowledgments to the sink. Acknowledgments are often used to provide the

sink with topology information necessary for some of the protocols it is running (for

example, TDMA schedule calculation). Therefore, the Dijkstra algorithm is used in

this thesis because it allows for more flexibility.

2.6.3 Routing Topology Optimization

The routing tree optimization algorithms available in the literature can be divided into

three groups. The algorithms of the first group aim to create load-balanced trees; this

can provide various benefits, including shorter TMDA schedules and more balanced

energy consumption. The second optimization is designed for data aggregation sensor

networks. These algorithms minimize the number of packets required to aggregate all

data. Finally, the last group is comprised of algorithms for prolonging the network

lifetime. They try to distribute the traffic as evenly as possible.

There are two types of load-balanced trees, a top load-balanced tree, and a fully load-

balanced tree. These two types are illustrated in Fig. 21. The term fully load-balanced

Tree was coined by P. Hsiao et. al. [53]. It refers to a tree in which all branches at all

nodes carry the same loads. For a tree to be fully-load-balanced when all nodes have one

packet (one load), every node must have the same number of children. Unfortunately,

such trees are almost impossible to construct in real-world sensor networks. Therefore,

a more practical type of load-balancing, top load-balancing, is introduced. In a top

load-balanced tree, all top subtrees carry the same load. A top subtree is a subtree

rotted at a direct neighbor of the sink.

One fully load-balanced tree is illustrated in Fig. 24a. The number of packets each

node receives from every child in that Tree is the same. For example, node n3 receives

one packet from both children. In the same way, the sink gets four packets from both

of its children. Fig. 21b shows a top load-balanced tree. It is easy to see that this

Tree is not fully load-balanced. For example, node n1 receives one packet from node
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Figure 21: Difference between spanning tree and shortest path spanning tree.

n4 and two packets from node n3. However, both sub-trees rooted at the sink receive

four packets from each child. Therefore, this Tree is top-load balanced but not fully

load-balanced.

There are many load-balancing algorithms in the literature. Some of them are

focused on prolonging network lifetime [54], [53]. They spread routing paths evenly

among the nodes to balance the energy consumption. The paths chosen are often

deliberately longer than necessary; this increases the total number of transmissions but

lessens the burden from the busies routing paths, prolonging the network lifetime. From

the perspective of this thesis, these algorithms are not beneficial as they are not aimed

at increasing data throughput.

Load-balancing algorithms that keep the shortest-path tree topology can lead to a

shorter TDMA schedule and increased network throughput. Two such protocols that

achive very good results are considered in this thesis. The first one is proposed by

O. D. Incel et. al. [50]. This algorithm assigns children to parents level by level. It uses

search sets when choosing a child for each parent. Search sets allow the algorithm to

choose a child that will leave more options open in the future (when assigning children to

upper levels). Another state-of-the-art algorithm considered here is Energy driven Tree

Construction (ETC) [55]. This algorithm tries to create a tree close to a fully load-

balanced tree. The algorithm calls such a tree a near-balanced tree. The algorithm

calculates the number of children each node would have in a fully load-balanced tree.

Then, the nodes negotiate with the neighbors and try to adjust the number of children

to be as close to that number as possible.

This thesis considers a problem that was not analyzed so far to the best of the

author’s knowledge; optimizing a TDMA schedule for multiple packet transmissions

during a single time slot. This thesis proposes a TDMA protocol that optimizes its

schedule for multiple packet transmissions in the same time slot, called M-TreeMAC.

As discussed in setion 4.1, a schedule optimized in such a way is heavily dependent on
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the routing topology. It is also observed that such a schedule is generally shorter when

the routing tree is load-balanced. An algorithm for optimizing the topology to produce

the shortest possible schedule when M-TreeMC is used is proposed in this thesis. As it

is the first algorithm of that kind, its performance is assessed by comparing it against

state-of-the-art load-balancing algorithms.

2.7 Conclusion

This chapter gives an overview of the state-of-the-art efforts to increase data throughput

in wireless sensor networks. In Section 2.1, the concept of sensor networks is introduced

and explained which parts of the protocol stack can be improved to increase throughput.

Because the MAC layer was identified as a critical point, and in detail overview of

state-of-the-art MAC protocols are given in Section 2.4. Based on this overview, it is

concluded that contention-free protocols are the most suitable choice. As the research in

this field is already developed, the proposed strategy is to choose the most appropriate

protocols for the application and introduce small modifications to adapt it even further.

Section 2.5 deals with challenges faced when designing a TDMA protocol for a specific

type of application. Finally, Section 2.6 is explaining the relationship between the MAC

layer and the network layer and how routing topology can affect data throughput.
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3 Selecting Schedule Calculation Algorithm

The problem of finding the optimal schedule for converge-cast networks is well studied.

This problem is NP-Complete, and the optimal solution can not be found in polynomial

time. Therefore, efforts have been put into developing algorithms that find a near-

optimal solution. A significant number of such algorithms have been proposed up to

date. Some of these algorithms use a graph coloring approach. They modify the existing

graph-coloring algorithms to assign time slots to nodes while taking care of the traffic

flow and the difference in the number of slots each node requires. Other algorithms

consider slot assignment as a separate problem and use more intuitive approaches to

solve it.

Even though multiple publications that propose different algorithms for solving this

problem exist, no comprehensive comparative evaluation of these algorithms has been

published up to date, to the best of the author’s knowledge. For example, authors of

TreeMAC [31] compare TreeMAC with CSMA-CA and Funneling-MAC. The first one

is a random-access protocol, while the second one is a hybrid design of low-power and

TDMA protocol. Park et. all. compare their protocol with two much simpler and less

efficient slot assignment algorithms, one by [50] and the other used in TRASA [56].

However, a comparison with complex and efficient algorithms does not exist. Further-

more, all existing performance evaluations are performed using either one single or only

a few different networks.

Due to this lack of data, choosing the most effective TDMA MAC protocol for a

specific high throughput application is not a straightforward task. The only information

available for most of the protocols is the theoretical lowest bond on the schedule length,

and this bond is similar for many protocols. There is no actual information on what

throughput ranges can a protocol achieve and under what circumstances (including

network density, topology, and traffic nature).

This thesis chapter provides a guideline for selecting a slot assignment algorithm.

This guideline is created based on an extensive evaluation of the state-of-the-art slot

assignment algorithms. The evaluation is performed using the OMNeT++ simulator

and over 200 networks of different sizes and topologies. An advanced randomized traffic

generation model was used to test the existing algorithms at different packet generation

rates. The results are analyzed, and the guideline for choosing a protocol based on the

network topology and size is proposed.

This chapter is organized as follows. Section 3.1 gives an in-detail overview of

the state-of-the-art slot assignment algorithms. Each of them is explained in detail,

together with design logic and expected weaknesses and strengths; this helps provide
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insights into which one is suitable for a specific application. Next, the evaluation of

the described algorithms is given in Section 3.3. First, the implementation details are

explained. This includes the implementation of protocols that use these algorithms in

OMNeT++ and random network generation algorithms used. Guidelines for choosing

an appropriate algorithm are provided in this section as well. Finally, the results and

findings from the whole chapter are summarized in Section 3.4.

3.1 State-of-the-Art Schedule Calculation Algorithms

3.1.1 TreeMAC

TreeMAC [31] is a simple yet very effective scheduling algorithm. It is based on the

observation that the bottleneck in every converge-cast network is located at the sink.

Due to this, parallel scheduling of different top sub-trees does not benefit performance

significantly because the roots of top subtrees have to be scheduled separately. When

scheduled in parallel, the packets can reach the roots of top subtrees, but they will accu-

mulate there. Based on these observations, TreeMAC authors propose to schedule one

linear sub-network at a time. They find a way to construct a schedule in a distributed

manner without the need to discover the whole network. This approach significantly

decreases the network construction time and reduces complexity; the cost is increased

schedule length. However, the increase in schedule length is minor in many cases; the

simulations performed in this thesis identify these cases.

TreeMAC uses the two-hop interference model. The algorithm calculates a schedule

without knowing the topology of the whole network; this is possible when the two-

hop interference model is combined with scheduling one linear subnetwork at a time.

Namely, in a linear network, whether two nodes interfere or not can be determined

based on their level solely. If the difference between their levels is one or two, they will

interfere; otherwise, they can transmit in parallel.

The example in Fig. 22 shows the schedule created by TreeMAC for a linear network.

In the first slot, nodes at levels one and four are scheduled. Then, nodes at distances

two and five in the second. Similarly, nodes at levels three and six in the third. In this

way, all nodes have been scheduled once within three time slots, and the schedule was

calculated based on the level of each node.

Implementation of such a schedule calculation is simple. Every node needs to know

its distance from the sink, which is normally obtained during the network construction

phase. Then, it can calculate its time slot using the expression slotno = (d − 1)mod3.

In this expression, d represents the distance from the sink in hops (equal to the node

level). Such a schedule assigns only one time slot to each node.
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transmission

Figure 22: Time schedule for a linear network created using two-hop interference model

To assign a number of slots proportional to the traffic demand, each node must know

the number of nodes above it and the cycle length. A node can obtain the first one in

the network construction phase (by minor modification of the construction algorithm).

But the cycle length is only known by the sink. However, the sink can distribute

it to all nodes after network construction without prolonging the construction time

considerably. A group of three time slots, which is being repeated, represent one frame.

The organization of a schedule created by TreeMAC is shown in Fig. 23. Tall slots

in the schedule comprise a cycle, and a cycle is composed of frames. Each frame has

three time slots, as explained earlier. Instead of assigning slots, treeMAC assigns frames

to nodes. Each node calculates which slot it may use within the assigned frame based

on its level. During one frame, each node passes one packet to its neighbor. In this

way, one packet reaches the sink during each frame. The total time frames required to

collect packets from all nodes is equal to the number of nodes in the network N , and

the total number of time slots is equal to 3N .

N

Figure 23: Cycle of TreeMAC composed of frames, each three slots in length.

The number of frames required for a branch to transmit all packets to its root

is equal to the number of nodes in the branch, excluding the root. This is used to

calculate the schedule in a distributed manner. The only information needed about

the topology is the number of nodes in each branch. This information is easy to

obtain during the tree construction process with little or no modification based on the

tree construction algorithm used. The sink then initiates schedule calculation. Sink

calculates cycle length in frames, equal to the total number of nodes in the network

and starting frame for each branch. Then, it passes this information to each of its

children. This information is then passed further. Each node assigns the starting frame
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to its children based on the number of nodes in that child’s sub-tree. This is illustrated

in Fig. 24. The sub-tree rooted at the node n1 contains tree nodes; therefore, it is

assigned frames from one to three. The sub-tree rooted at the node n2 has six nodes,

so it gets assigned the next six frames, four to nine. Similar is repeated at node n4,

which assigns frames four and five to one and six and seven to the other branch.

n1 n2

n3 n4

n5

s

n6 n8

n9

frame

slot 0

slot 1

slot 2

n7

(a) TreeMAC frame assignment

Figure 24: Example of schedule generated by TreeMAC with the illustration of frame
assignment performed starting from the sink.

Although many algorithms that produce shorter schedule lengths exist, TreeMAC

is still important because it offers a very good balance between complexity and perfor-

mance. It achieves satisfactory performance in terms of throughput while, at the same

time, implementation complexity and network setup time remain low. Simulations pre-

sented in Section 3.3 show that treeMAC performs almost as well as the more complex

algorithms in many scenarios.

3.1.2 Scheduling by Gandham et. al.

The protocol proposed by Gandham et. al. [51] is a more advanced and complex ver-

sion of TreeMAC. It is developed based on the same ideas, usage of two-hop interfer-

ence model and scheduling one linear sub-network at the same time. However, Gand-

ham et. al. introduce both more advanced scheduling for a linear network and schedul-

ing of different top-level sub-trees at the same time. The implementation remains

distributed, because nodes calculate their own schedule based on a few parameters

provided by the network sink.

Gandham et. al. first analyze scheduling problem of a linear network. They propose

a scheduling algorithm that achieves schedule length of 3N−3, whereN is the number of
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nodes excluding the sink. Then, they prove that this is the shortest possible schedule

for this problem. TreeMAC achieves schedule length of 3N in this case. Another

improvement compared with TreeMAC is the slot order. Gandham et. al. propose to

schedule each node after its parent has transmitted a packet, as opposed to scheduling

nodes before their parents in TreeMAC. This increases the chance that a node will have

a packet to transmit assigned slot, because if it does not have its own packet, it might

have a packet forwarded to it form its parent in the previous slot.

To calculate the schedule in a distributed manner, each node needs to know its

distance from the sink and total number of nodes in the network. Nodes then keep

track of their state. There are three possible states a node can be in, transmit(T ),

receive(R) and inactive(I). The initial state is calculated based on the distance from

the sink d. If dmod3 is equal to 1, it is set to T ; if it is equal to 2, it is set to R

and if it is equal to 0, it is set to I. The state is then changed at each time slot

transition, according to the state transition diagram on the Fig. 25. The nodes follow

this state machine for 3(N − 2) time slots. After that, only the two nodes closest to

the sink will have a packet to transmit. For the next three time slots, all nodes are in

state I and nodes with distance one and two from the sink are scheduled separately.

The resulting schedule for a network with six nodes can be seen on Fig. 26a and the

schedule TreeMAC would produce for this network on Fig. 26b. As it can be seen from

the figures, TreeMAC results in unused slots at the end of the schedule; Gandham et. al.

solves this problem by assigning the last three time slots differently.

T

I

R

Figure 25: State machine used to determine in which slot to transmit

Further improvements over TreeMAC are achieved when creating a schedule for a

tree structured network. Gandham et. al. observe that if there are three independent

top sub-trees, the schedule can be created in such a way that the sink receives one

packet in each time slot. This is achieved by scheduling sub-trees in parallel. In the

first time slot, the largest sub-tree is scheduled and it remains active all the time. Then

in the second time slot, the second largest sub-tree is scheduled, and set to be active for

the next three time slots. When the schedule is calculated, each node keeps track how

many packets in total sub-trees rooted at it have remaining. When a sub-tree is assigned

three time slots, all nodes in that sub-tree will transmit once and one packet will reach

the root. Because of this, the root only tracks total number of packets remaining in each
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(a) Linear network with six nodes and schedule created by Gandham et. al.
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(b) Scheduule created for the same network by TreeMAC

Figure 26: Scheduling using algorithm proposed by Gandham et. al..

sub-tree, without the need to track packets at each node. This allows the distributed

implementation of the algorithm. Details of this implementation are omitted here for

brevity; they can be found in the original paper [51]. Minimal schedule length that

can be achieved is max(3nk − 1, N), where nk is the number of nodes in the largest

top sub-tree, and N number of nodes in the network. Weather this minimum will be

reached or not, depends on the network topology.

The example schedule calculated using this algorithm is shown on Fig. 27. For

the sake of simplicity, this network has only three sub-trees, and there are no edges

between the nodes in different sub-trees. The algorithm schedules the sub-tree B1 in

the first time slot; the sub-tree B2 is then scheduled starting from the second time

slot and B3 from the third. Each sub-tree is considered to be active for three time

slots, even though it might finish transmitting earlier. For example, the sub-tree B2 is

considered active from slots five to seven, even though it only transmits in fifth time

slot. This approach results in unused time slots and slightly longer schedule length.

However, thanks to these simplifications, the complexity is significantly reduced and

the distributed implementations of the protocol is possible.

This protocol offers an improvement over TreeMAC without the need for a cen-

tralized implementation and significant increase of implementation complexity. How-

ever, when more complex algorithms are used, significantly better performance can be

achieved. The improvement achieved by this algorithm compared to TreeMAC is rel-

atively small. This is because this algorithm can only schedule whole sub-trees at the

same time, and not individual parts of these sub-trees. For this to be possible, there

must be no conflicts between any of the nodes from the two sub-trees. More advanced

algorithms schedule individual nodes from different sub-tree at the same time, allowing

higher number of parallel transmission. However, this requires knowledge of the topol-

ogy of the whole network and comes at the cost of significantly increased complexity.
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(b) Schedule created for the tree network

Figure 27: Scheduling non-conflicted sub-trees in parallel.

3.1.3 Scheduling by Ergen and Varaiya

The scheduling algorithm by Ergen and Varaiya [57] uses a graph coloring algorithm

to calculate the schedule. This approach requires a centralized implementation and

knowledge about the network topology. However, this allows the algorithm to create a

shorter schedule and consequently achieve better performance in terms of throughput

and packet delivery latency. Before the schedule is calculated, an approximate minimal

vertex coloring of the conflict graph is found; the schedule is then calculated based on

this coloring. Ergen and Varaiya propose two versions of the algorithms, a node-based

and level-based version. In the node-based version, colors are assigned to individual

nodes, while in the level-based, all nodes on the same level get the same color.

The node coloring version starts with finding an approximate minimal graph coloring

of the conflict graph; this is done using a heuristic graph coloring algorithm. Then, the

schedule is calculated based on this coloring. After coloring the conflict graph, a trivial

schedule can be calculated by associating each color with a time slot number. However,

such a schedule would assign one time slot to each node, i.e., it is not adjusted to the

traffic.

A schedule adapted to the traffic is created phase by phase. Every node that

currently has a packet to transmit gets one time slot in each phase. That time slot

is most commonly the one associated with the node’s color. However, a time slot

other than one associated with the node’s color may be assigned to it as well when the

algorithm detects that this will not cause a collision. Time slots assigned in one phase

comprise a superslot. To determine which nodes have a packet in which phase, it is

assumed that each node has one packet at the beginning. Then, the packets are followed

as time slots are assigned to nodes. Finally, phases are repeated until all packets reach

the sink.

The algorithm for creating superslot based on the conflict graph coloring is shown
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in Algorithm. 1. To create a superslot, the algorithm goes through all colors (line 3).

For each color, it creates a set of nodes that will get the time slot associated with that

color (denoted by T ). This set is comprised of nodes with current color that have a

packet and additional nodes that can transmit with these nodes. Additional eligible

nodes can exist when some nodes with the current color do not have a packet. This

allows for the nodes with another color to temporarily (only in one phase) transmit with

different colored nodes. The for loop in line 6 finds such nodes. This loop examines the

set of alternative transmitters. Each node from this set is examined, and it is checked

weather there is a conflict between that node and any of the nodes in T . If no conflict

is found, the node is added to T (line 8).

Algorithm 1 Scheduling nodes based on assigned colors

colors - set of colors assigned to nodes
slot = 0
for all c in colors do

T = set of nodes with color c and a packet to transmit
setalt = set of nodes with color! = c and a packet to transmit
for all ni in setalt do

if no interference edge between ni and nodes in T then
T = T ∪ {ni}

if T ̸= ∅ then
Assign slot slot to nodes in T
slot = slot+ 1

if All packets reached the sink then
break

The operation of the algorithm is illustrated using an example network displayed in

Fig. 28a. In the figure, solid lines represent routing paths, and dashed lines represent

links not used for routing (they are important for creating the interference graph).

For creating the interference graph, the 2-hop interference model is used; the resulting

conflict graph is shown in Fig. 28b. The results of coloring this graph using the heuristic

algorithm used by Ergen and Varaiya are shown in the same figure (Fig. 28b). In this

case, the nodes were colored using three colors.

The schedule produced by the algorithm based on this coloring is shown on Fig. 28c.

Finding an alternative transmitter that can transmit with different colored nodes (line 6)

can be illustrated using this example. For example, in slot five, nodes with green color

are considered first. The only such node with a packet is node n4. The algorithm

identifies node n7 (colored blue) as an alternative transmitter; it schedules it in slot

five with green-colored nodes. As it can be seen from the interference graph (Fig. 28b),

nodes n4 and n7 have no edges in between them. Therefore, they can transmit in slot
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five despite having different colors.
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Figure 28: Interference graph creation and color assignment.

The level-based algorithm first forms the level conflict graph and then calculates

the schedule based on the coloring of this graph. In the level conflict graph, each vertex

corresponds to all nodes at one network’s level. An edge between two vertexes in the

level conflict graph exists if there is an edge in the network conflict graph between any

two nodes at levels represented by these two vertexes. The schedule is calculated in

a similar way as in the node-based version. In each slot, levels corresponding to the

current color are scheduled. However, not all the nodes from the same level can be

scheduled simultaneously. Instead, the algorithm tries to schedule as many nodes from

the same level as possible. The exact algorithm is not given here; it can be found in

the original paper by Ergen and Varaiya [57].

The algorithm by Ergen and Varaiya offers improved performance compared to

distributed approaches at the cost of the increased complexity and longer network

construction time. The improvement in terms of performance is dependent on the

network topology and size. This dependency is analyzed in Section 3.3. In that section,

it is compared with other distributed approaches, and a guide for choosing the most

suitable algorithm based on the application is proposed.

3.1.4 Scheduling by Lai et. al.

The scheduler proposed by Lai et. al. [13] uses a graph coloring algorithm that colors

each node with an arbitrary number of colors; this number is set to be equal to the

number of slots required by the node. Multiple colors are assigned to a node by adding a

virtual node for each additional color; the resulting conflict graph is called the extended

conflict graph. After the extended conflict graph is colored, the schedule is formed by

associating each color with a time slot.
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The construction of an extended conflict graph is illustrated using an example net-

work (Fig. 29). To form this graph, first, additional (virtual nodes are added). For

example, node n1 needs three time slots; therefore, two virtual nodes corresponding to

it are added, nodes n11 and n12. Then, additional edges are added. Firstly, an edge

is added between every virtual node and the node it corresponds to and other virtual

nodes corresponding to the same node. In the example (Fig. 29), an edge is added

between virtual node n12 and the node it corresponds to, node n1. Additionally, an

edge is added between n12 and the other virtual node corresponding to node n1, node

n11.

After connecting virtual nodes with their corresponding node, edges are added be-

tween virtual nodes and other nodes. To do so, a list of neighbors of the corresponding

node is created. If these neighbors have virtual nodes, they are also added to the list.

Then, virtual nodes of the corresponding node are connected with all nodes from the

list. In the example (Fig. 29), node n1 is connected with nodes n2, n3 and n4; therefore,

an edge is added between virtual nodes corresponding to it (n11 and n12) and these

three nodes.

s

n2 n3

n1 n4

(a) Network

n2 n3

n1 n4

(b) Conflict graph

n2 n3

n1 n4n11n12

(c) Expanded conflict graph

Figure 29: Interference graph creation and color assignment.

Coloring the extended conflict graph is performed using a more complex algorithm

than the one used by Ergen and Varaiya. Instead of using a degree-based heuristic,

the coloring order is chosen in the following way. In the beginning, the node with the

lowest degree is selected and removed from the graph. Then, the degree of each node

in this newly formed graph is calculated. Again, the node with the lowest degree is

removed. This process is repeated until all nodes are removed. The coloring order is

reverse from the order in which the nodes were removed from the graph. This means

that the node removed the last will be assigned a color the first. This coloring method

colors a graph G using at most δ(G) + 1 colors. The value δ(G) + 1 is based on the

sub-graph of G, in which the minimum degree of any vertex is maximal. The value of

δ(G) + 1 is equal to the minimal degree any vertex has in that sub-graph. The time

complexity of this algorithm is O(|V |+ |E|).
An example schedule created by this algorithm is shown in Fig. 30. This sched-
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ule is calculated for the same sensor network used to illustrate the algorithm Er-

gen and Varaiya; this network is shown in Fig. 28a. The extended conflict graph and

its coloring calculated using the algorithm by Lai is shown in Fig. 30a. The illustration

of the conflict graph is simplified by grouping nodes with virtual nodes corresponding

to them. The schedule based on this coloring is shown in Fig. 30b. It is eight slots

long; the same length was obtained using the algorithm by Ergen and Varaiya.
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(b) Time schedule

Figure 30: Extended conflict graph and color assignment.

In the case of larger, more complex networks, this algorithm commonly results

in a shorter schedule length than the algorithm by Ergen and Varaiya. This can be

concluded from simulation results presented in Section 3.3. However, this algorithm

does not consider traffic flow; this can result in worse performance despite a shorter

schedule. A common problem when a schedule calculated by this algorithm is used is

buffer overflow. This can be illustrated using the example in Fig. 30. For example,

node n1 transmits three times in a row at the beginning of the cycle. Then, until the

next cycle, it collects all packets from above; in this case, that is only three packets, and

a buffer overflow is unlikely. However, in a larger network, a node might be scheduled

in the same way, requiring it to collect a larger number of packets than its buffer size

before transmitting them.

The algorithm by Lai et. al. uses a more advanced strategy for assigning multiple

time slots to nodes, resulting in shorter schedule lengths than the algorithm by Er-

gen and Varaiya. However, it does not consider the traffic flow, potentially resulting

in degraded performance. This can result in a very high packet delivery time or, even

worse, a low packet delivery ratio if the schedule unadjusted to the traffic flow causes

the buffer of some nodes to overflow. The lack of consideration of the traffic flow is

especially an issue in networks with a large height. Therefore, the application of this

algorithm should be limited to networks with a low height. In such networks, shorter

schedule results in better performance, despite the lack of traffic flow adjustment.
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3.1.5 Scheduling by Park et. al.

Park et. al. approach the scheduling problem directly, rather than transforming it into

the graph coloring problem [12]. This approach allows the algorithm to directly consider

the traffic flow and the required number of slots for individual nodes. Furthermore, they

prioritize the largest top sub-tree when assigning time slots. This priority maximizes

the benefits of parallel scheduling, as this sub-tree is the most critical.

The pseudocode describing this algorithm is shown as algorithm. 2. Unlike graph

coloring algorithms, where nodes are traversed and colors are assigned to them, this

algorithm goes through time slots and tries to schedule as many nodes as possible in

each slot. This is done using the while loop in line 2. For each time slot, the algorithm

examines all the nodes in the network and tries to assign them to transmit in that time

slot. The array CntData is used to track each node’s current number of packets. Each

element of this array corresponds to the node with the same index as the array element;

the sink corresponds to the first element of the array (index value of zero). Hence, the

while loop in line 2 is executed until all packets reach the sink.

Algorithm 2 Schedule calculation algorithm

slotno ← 0; CntData← {0, 1...1}
while CntData[0] < N do

IF = {0...0}
assignSlot(slotno, sink)
slotno ← slotno + 1

function assignSlot(slotno, vi)
if vi = sink then

vi ← neighbor with maximal number of descendants
assignSlot(slotno, v)

else
if IF [i] = 0 and CntData[i] > 0 then

assignSlotToNode(slotno, vi)
j ← Index(Par(v))
CntData[i]← CntData[i]− 1
CntData[j]← CntData[j] + 1
for all vj in TwoHop(v) do

IF [j] ← 1

if Cnt(C(v)) = 0 then return

for all v in C(vi) do
assignSlot(slotno, v)

Before trying to assign any node in a time slot, the algorithm first initializes array

IF to all zeros (line 3). This array tracks which nodes can still be scheduled in the
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current time slot without interfering with already scheduled nodes; value zero means

that the corresponding node can be scheduled (zero symbolizes no interference). After

this array is initialized, function assignSlot is called in line 4; this function schedules

as many nodes as possible in this time slot.

The function assignSlot is given in line 6 of the algorithm. The pseudocode is sim-

plified by representing a node with index i as vi. Similarly, a collection of node’s children

is represented as C(v) and node’s parent as Par(v). Nodes in list C(v) are sorted in

the descending order of the number of descendants. The number of descendants of a

node is equal to the number of nodes in the sub-tree rooted at that node.

Function assignSlot is called recursively to traverse the whole network. The func-

tion tries to schedule the node passed as the first argument first and then selects the

next node to be examined. When the sink is passed as the first argument, the sink

is not scheduled; instead, the sink’s children are ordered in the descending number of

descendants. Then, assignSlot function is called on each of them, starting from the

first one in the list. When the node passed as the first argument is not the sink, it is

checked if it can be scheduled in the current slot (line 11). If the node does not interfere

with scheduled nodes and has a packet, it is scheduled in the current slot. Afterward,

the next node to be traversed is selected, regardless of whether the node was scheduled

(line 20). The next node to be traversed is always the child node with the highest

number of descendants that was not covered yet. When the leaf node is reached, the

function returns (line 18). In this way, the network is traversed in a depth-first manner,

covering the larger sub-tree first at each branching.

After a node is scheduled in line 12, nodes in its two-hop neighborhood are marked as

not eligible to be scheduled in the current slot. This is done by setting the corresponding

element in the IF array to one. Then, the number of packets the current node has is

reduced (line 14), and the number its parent has increased (line 15).

The schedule created using this algorithm for the network from Fig. 28a is shown in

Fig. 31. As the algorithm first tries to schedule the largest sub-tree, node n1, the root

of the largest sub-tree is scheduled in the first time slot. The algorithm does not stop

at node n1. Instead, it goes through the whole network and tries to schedule additional

nodes in this slot. It succeeds in scheduling nodes n5 and n6 to share the first slot with

node n1. Next, slot two is examined. Node n1 is checked first again; however, it does

not have a packet to transmit at this point. Therefore, its child, node n2, is scheduled

together with node n7 in the second time slot. The rest of the schedule is calculated in

a similar way.

Compared to Ergen and Varaiya and the other similar algorithms, this algorithm

considers an additional network property, the sizes of top sub-trees. However, this
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Figure 31: Schedule created using algorithm by Park et. al.

comes at the cost of less efficient heuristics since graph coloring allows the usage of

some advanced and more efficient heuristics, like the one used by Lai et. all. [13].

Nevertheless, as the simulation results presented in Section 3.3 show, this trade-off is

justified, and this algorithm performs very well in most cases.

3.1.6 Scheduling by Tsai and Chen

The schedule creation algorithm proposed by Tsai and Chen [58] approaches the schedul-

ing problem directly, similar to the algorithm by Park et. al. Unline Park et. al., this

algorithm schedules nodes level by level, in contrast to prioritizing the nodes close to

the sink. The algorithm by Tsai and Chen starts with the schedule length of three slots.

Then it goes through all the nodes and tries to assign one of the three slots to them.

Afterward, the schedule is extended by three additional time slots, and the process is

repeated. In contrast, Park et. al. extend the schedule one slot at a time and schedule

as many nodes as possible in the newly added slot.

Tsai and Chen assing states to nodes to keep track of interference, rather than

using a conflict graph like most algorithms. These states and their meaning are shown

in Table 1. When a node is scheduled, the states of that node, receiver, and neighbors

are updated. Neighbors of the receiver are set to state r; this means they can not

be scheduled to transmit in the current time slot. They can, however, receive in the

current time slot if the transmitter is not in the first receiver’s range. Neighbors of

the transmitter, other than the receiver, are set to state t. This state allows them to

transmit, back to back, with the first transmitter.

Table 1: Node states and state descriptions

State Description

T Node is transmitting
R Node is receiving
t Node can only transmit
r Node can only receive
I Node can neither transmit nor receive
F Node can both transmit and receive
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This algorithm creates the schedule period by period. In the original paper, a period

of size three is considered. The algorithm initializes the schedule length to the length

of one period, which is three by default. Then, it goes through all levels, starting from

the first, and tries to schedule each node in one of the slots from the first period. After

examining all nodes, an additional period is added to the schedule, and the process is

repeated. The algorithm terminates when all packets have reached the sink.

Time schedule calculation using this algorithm is illustrated in Fig. 32. The figure

illustrates the schedule calculation for the first three time slots, i.e., the first period.

The calculation was performed for the same sensor network used to demonstrate other

algorithms; this network is displayed in Fig. 32. The algorithm traverses the network

graph level by level and tries to schedule each node in one of the three time slots.

Node n1 is traversed the first and scheduled in the first slot. The remaining nodes at

level one, nodes n4 and n6, are examined next and scheduled in slots two and three,

respectively. The schedule and node states after processing the first level are shown in

Fig. 32a.

sslot n1 n2 n3 n4 n5 n6 n7 n8

R T t I r1
2
3
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(a) Slots allocation after processing first
level
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(b) Allocation after processing second level
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(c) Slots allocation after processing third level

Figure 32: Slot allocation using the algorithm by Tsai and Chen. Blank space means
that node is in the state F .

Then, the algorithm moves to the second level and starts by scheduling node n2.

To illustrate how the states are used to prevent collisions, selecting a time slot for this

node is explained in detail. Firstly, the algorithm checks if node n2 can transmit in the

first slot; this is not possible because its receiver, node n1 is in state T . Therefore, the

algorithm moves to the next slot. As node n2 can not be scheduled in the second slot

because node n1 is in state I, the algorithm finally cheks if node n2 can transmit in

the third slot. Here, node n1 is in state r, meaning it can receive the packet, and node

n2 is scheduled to transmit.

The remaining nodes are processed in a similar way. Fig. 32c shows the schedule
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and the states of nodes after the scheduling of the first period is completed. In this case,

every node from the network was scheduled to transmit once during the first period.

The complete schedule is shown in Fig. 33b. For this example network, this algorithm

achieves the optimal schedule length of eight.

n1 n4
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n5

n6

n7

n8

s

(a) Network graph

slot: 1 2 3 4 5 6 7 8
n1
n7

n8

n3
n4

n2
n5

n1 n4 n2 n1 n6
n7 n6

n6

(b) Time schedule

Figure 33: Network graph and time schedule calculated using algorithm by
Tsai and Chen.

The algorithm by Tsai and Chen is similar to the algorithm by Park er. al.. Like

other centralized schedule calculation algorithms, it is complex to implement and re-

quires the sink to gather information about network topology, resulting in a long net-

work set-up time. Theoretically, the shortest schedule length this and other centralized

algorithms can achieve are similar.

3.2 Implementation of TDMA Protocols in INET Framework for OM-

NeT++

The INET framework for OMNeT++ provides the structure and libraries necessary

to implement and simulate complexly wired and wireless protocols. This framework

organizes the network stack in the same way the internet network stack is organized.

Therefore, all implementations in this framework must fit into that frame. In this

framework, each layer is represented with a module; each model is composed of different

sub-modules, each performing a different, predefined function.

TDMA MAC protocols use a schedule calculated based on the network topology.

Therefore, implementing such a protocol within a network stack that separates the

network and link layer is not straightforward. The approach chosen here is to implement

schedule calculation in the network layer and slot tracking in the MAC layer. Such a

division allows the implementation of a universal TDMA MAC protocol; the universal

MAC waits for the schedule calculated by the network layer before starting the slotted

operation phase. The universal MAC also contains a simplified CSMA-CA random

access protocol used before the slotted operation is started. When the network layer

performs network discovery and schedule dissipation, the universal TDMA MAC is in
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random-access mode and uses this CSMA-CA implementation to transmit packets.

The protocols described in Section 3.1 are composed of centralized and distributed

protocols. Each of them requires different information about network topology to com-

pute the schedule. Some of them need to construct the complete network graph at the

sink. Others do not gather topology information at the sink; instead, they calculate the

schedule in a distributed manner, using the information gathered during the network

construction phase. Nevertheless, all of them can be implemented in a fully centralized

manner. In such an implementation, the sink gathers information about the network

topology, calculates the schedule, and distributes it to all nodes. This results in a longer

network set-up time and greater message complexity; however, protocol performance

remains unchanged during the slotted operation phase.

This comparative evaluation of state-of-the-art TDMA protocols aims to compare

their performance during the slotted access phase, i.e., to compare throughput, packet

latency, and packet delivery fairness each protocol can achieve in this phase. Hence, a

centralized implementation approach will not affect simulation and comparison results.

On the other hand, a centralized approach allows using of the same network discovery

and schedule dissipation protocol for simulating all schedule calculation algorithms

described in Section 3.1. This simplifies both the implementation and simulations,

shortens the time required for development, and allows to quickly update the results

if a new schedule calculation algorithm appears. Therefore, considering all mentioned

advantages, the centralized approach is chosen.

3.2.1 INET Framework Overview

INET Framework provides an extensive library of protocols, physical medium and radio

models, and many modules, which can be used to simulate wireless sensor networks in

the OMNeT++ simulator. INET contains an implementation of the internet stack

protocols, such as TCP, IDP, IPv4, and IPv6, and many standard MAC protocols,

such as Ethernet, IEEE 802.11, and CSMA-CA. However, it lacks more complex MAC

protocols often used in wireless sensor networks, such as TDMA protocols.

The INET framework divides protocols into layers; each layer is represented by a

module. Modules may contain different sub-modules. The organization of the network

stack in INET is shown in Fig. 34. The lowest module represents the wireless interface;

it contains a radio module, a MAC protocol, and a link-layer control protocol. The

radio module contains antenna, modulation, and signal propagation models. The net-

work layer is located above the wireless interface; it contains a routing table, a route

calculation protocol, and an address resolution protocol, which are all implemented

as separate modules. Finally, a transport protocol and applications are located above
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the network layer. INET supports multiple applications running simultaneously, each

implemented as a separate module.

radio

MAC

LLC

routing 
tablearpprotocol

app app

transport protocol

wireless interface

network protocol

Figure 34: The organization of the network stack in INET framework for OMNeT++.

There are two ways modules can communicate in INET; using packets and mes-

sages. Packets represent data that should be transmitted using radios. On the other

hand, messages are used for sending commands from one module to the other. Since

modules in INET represent protocols, protocols located at different layers in the stack

communicate with each other using messages.

The library of the INET framework provides multiple radio signal models. The

simplest model available is the unit disc model. This model represents radio transmis-

sion with two parameters: the transmission and interference range. All radios within

the transmission range will hear the transmission; if there is no interference, they can

receive the transmitted packet successfully. On the other hand, a transmission will in-

terfere with receptions at all radios within the transmitter’s interference range. Though

simple, this model offers sufficient accuracy in many cases.

More complex models take path-loss and radio modulation into consideration to

provide results closer to real-world performance, especially in terms of interference.

One such model, the scalar radio model, models a radio signal with a scalar value

representing its strength. At each receiver, signal to noise ratio is calculated based on

received signal strength, the strength of all interfering transmissions, and background

noise value. Once the signal-to-noise ratio is calculated, the packet loss ratio is obtained

based on its dependence on the signal-to-noise ratio; this dependence is a property of

the used modulation scheme and exists within the framework. The most complex model

provided, the dimensional radio model, extends this model by considering the signal

shape. It calculates SNR at the receiver based on the shapes of the receiving and all

interfering signals.
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3.2.2 Network Discovery

A modified Dijkstra’s algorithm is used for network discovery and routing tree construc-

tion. The standard version of Dijkstra’s algorithm assumes that nodes have discovered

neighbors before running the algorithm. Therefore, a neighbor discovery must be per-

formed before starting the tree construction. The modified version used in this thesis

unifies neighborhood discovery with tree construction. Furthermore, Dijkstra’s algo-

rithm does not deliver topology information to the sink, which some simulated protocols

need. Therefore, the version used modifies protocol-specific packets to include topology

information and deliver it to the sink.

The tree construction is performed level by level. The construction of each except

the first level is initiated by the sink broadcasting a Startp packet, where p signifies

the level. To discover and construct the first level, the sink broadcasts the Query1

packet. When neighbors of the sink receive this packet, they set their level to 1 and

sink as their parent. Then, they respond by sending a QueryResponce packet to the

sink. Sink receives such a packet from each neighbor, saves the address, and creates a

list containing the address of all neighbors.

Next, the sink initiates the discovery of the second level by broadcasting a Start2

packet. When neighbors of the sink receive this packet, they broadcast a Query2 packet

as the response. The role of this packet is twofold; nodes at the first level use it to

discover nodes at the second level and create a list of their same-level neighbors. Nodes

that receive a Query2 packet respond with a QueryResponce; this packet contains

a SameLevelNode flag. A Query2 packet is always transmitted by nodes at the first

level. When a node at level one receives this packet, it responds with a QueryResponce

packet with the SameLevelNode flag set, as it is located at the same level as the sender;

nodes at level two will leave this flag cleared in their response.

A node located at the second level will receive a Query2 packet from all its neighbors

located at the first level. When a node at the second level receives the first Query2

packet, it sets its parent to be the transmitter of the packet. Then it responds with

a QueryResponce packet; this packet has another flag, flag Child, to indicate if the

responding node has chosen the transmitter as the parent. In this case, the node

sets this flag in its response. When the node responds to Query2 packets from other

neighbors at the first level, it leaves this flag cleared. At the same time, this flag is

used by Query2 transmitters to create the list of their children.

The construction of the second level is illustrated in Fig. 35a. The construction of

this level was initiated by the sink transmitting Start2 packet, which was received by

nodes n1 and n2. After receiving this packet, these nodes compete for medium access to

transmit a Query2 packet. The figure assumes that node n1 won the competition and
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transmitted a Query2 packet the first. The figure only shows QueryResponce packets

received by nodes n1 and n2 as resonances to transmitting Query2 packets. The name

of this packet was shortened to QRes on the figure, and flags SameLevelNode and

Child are shortened to SL and C, respectively.
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(a) Level two construction
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(b) Level three construction

Figure 35: Query response packets transmitted during construction and discovery of
the second and the third tree level. These packets have two data fields, SL (same level
node) and C (number of children nodes).

Node n1 is the first one to transmit Query2 packet. As a response, it receives two

QueryResponce packets. The first one is from node n3, located at the same level as

node n1. This is the first Query2 packet received by node n3; therefore, its response to

node n1 has the Child flag set. The second QueryResponce node n1 receives is from

node n2. Node n2 is located at level one, same level as the node n1; therefore, this

QueryResponce has the SameLevelNode falg set and the Child flag cleared. Ather

the node n1, node n2 transmits its Query2 packet, and gets a QueryResponce from

nodes n1, n3, and n4. It is assumed that node n3 received a Query2 from node n1

first. Therefore, the QueryResponce packet node n3 sends to node n2 has the Child

flag cleared.

After collecting allQueryResponce packets, a node sends a StartResponce packet to

the sink. This packet replaces the echo packet in the standard Dijkstra’s algorithm, used

to notify the sink that the current level has been processed. To deliver network topology

information to the sink, this packet includes an array containing children and an array

containing neighbors nodes. After receiving StartResponce packets from all nodes on

the second level, the sink broadcasts a Start3 packet to initiate the construction of the

third level.

The third level is discovered in the same way. First, the Start3 packet, broadcast

by the sink, is received by nodes at the first level. Then, they forward it to the nodes

at the second level, which, in turn, broadcast a Query3 packet. Afterward, nodes at

the second level collect and process QueryResponce packets. Finally, after collecting
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all responses, they send a StartResponce packet to the sink; these packets are shown

in Fig. 35b.

The higher levels are discovered in the same way. In general, when a node at level

a receives Startb packet it will forward it to children if b < a − 1 or send Queryb if

b = a−1. After collecting StartResponce packets, StartResponce packet is sent to the

sink. StartResponce packets contain the list of sender node neighbors located at the

next level. The algorithms terminate when no new nodes are discovered at a certain

level (detected by examining lists of neighbor nodes in StartResponce packets).

3.2.3 Packet Routing

The modified Djikstra’s algorithm used for network construction broadcasts packets

(Startb packets) until they reach a certain level. This eliminates the need for upstream

(from sink to nodes) routing during this phase. For downstream routing, used to

send DisoveryResponce packets to the sink, parent-children assignment is used. Even

though not needed for tree construction, upstream routing is needed for dissipating

schedules from the sink to the nodes and for more advanced routing algorithms, studied

later in Section 4. Therefore, the tree construction algorithm is modified to provide up-

stream routing. The modification only creates routing tables for routing packets from

the sink to nodes or from a node to nodes in its sub-tree. This is, however, sufficient

for most of the applications for convergecast sensor networks.

StartResponce packets are used for creating and updating routing tables; these

packets contain the list of the sender’s children. When a node receives a StartResponce

packet, it marks that the children in this list can be reached through the node that

forwarded the StartResponce packet. Therefore, when new nodes are discovered,

they become children of the node that discovered them. Then, that node sends a

StartResponce packet to the sink, notifying all nodes on the path to the sink that they

can reach these nodes through it.

An example showing how a StartResponce packet modifies routing tables on its

path is shown in Fig. 36. In the example, node n3 discovers node n4 and n5 and sends

a StartRespnce packet to the sink, containing these two nodes as its children. When

node n2 receives this packet, it adds an entry for these two destination nodes and sets

n3 as the next hop for reaching them. Similarly, node n1 adds these two nodes; however,

it sets node n2 as the next hop, as node n2 forwarded the StartRespnce packet to it.
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(b) Adding routing table entries using a
StartResponce packet.

Figure 36: An example routing table and the usage of a StartResponce packet to add
new entries.

3.2.4 Schedule Dissipation and Start of the Slotted Access Phase

Once the network discovery is completed, the sink has gathered network topology in-

formation and constructed the network graph based on it; the sink can calculate the

schedule based on this information. At the same time, routing tables for upstream

routing are created at all nodes in the network, allowing the sink to send packets to

sensor nodes. The network is now ready to switch to the slotted operation mode.

When switching to the slotted operation mode, the first step is delivering the sched-

ule to nodes. The sink does this by sending a TdmaConfigPkt to each node. A

TdmaConfigPkt packet contains transmission slots of the target node and cycle length;

this information is sufficient to configure the TDMA MAC layer. When a node receives

this packet, it configures its universal TDMA MAC by sending a TdmaConfigCmd

message to it. The definition of this command is given in Fig. 37. The command

contains the cycle length and an array with transmission slots numbers (txSlost), in-

dicating the slots in which the target node may transmit. Other than that, it contains

flag sink, informing the MAC if the network layer has the role of the sink, and a few

parameters for configuring acknowledgment mode.

Figure 37: Implementation of TdmaConfigCmd command in INET.
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A TdmaConfigCmd delivers schedule information to the MAC layer and configures

all parameters necessary to start the slotted operation mode. However, it leaves the

node in the random access mode. To start the slotted operation mode, the network

layer must first configure the MAC module for this mode and then start it using a

TdmaStartCmd. The sink initiates the transition from the random access to the slotted

operation mode. It first sends TdmaStart command to its own MAC layer, switching

it to the slotted operation mode. Then it sends TdmaStart packet to its neighbors.

When a neighbor node receives this packet, it first switches its own MAC layer to the

slotted operation mode. Then, it responds with a TdmaStartAck packet, as illustrated

in Fig. 38.

radioMACnet

TdmaConfigCmd
TdmaStartCmd
TdmaStartPkt

netMACradio

TdmaStartPkt

sink node

TdmaConfigPkt
TdmaConfigPkt TdmaConfigPkt TdmaConfigPkt TdmaConfigPkt

TdmaConfigCmd

TdmaStartPkt TdmaStartPkt TdmaStartPkt
TdmaStartCmd
TdmaStartAck

TdmaStartAckTdmaStartAckTdmaStartAckTdmaStartAck

Figure 38: Commands and packets exchanged when starting slotted operation mode.

3.2.5 Random Network Generation

The efficiency of a schedule calculation algorithm is strongly dependent on the network

topology. To provide a comparative evaluation of the described schedule calculation

algorithms, the algorithm should be tested using an extensive set of networks with

different sizes, densities, and deployment area shapes. An application for generating

random sensor networks is developed to create such a set of networks. Three deployment

area shapes are used; circular, narrow rectangular, and broad rectangular. In the

cases of the circular shape, two sink positions were used, in the network center and on

edge. For each deployment area, networks containing a different number of nodes are

generated.

Before nodes are placed randomly onto the deployment area, anchor nodes are added

at the deployment area boundary. The purpose of the anchor nodes is to spread across

all parts of the deployment area. The algorithm aims to generate a network consisting

of a defined number of nodes. The number of nodes in the network will be referred

to as network size. Since nodes are placed randomly, not all placed nodes will be part
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of the network. Some of the nodes will be isolated, ie., they will be no other nodes

in their radio range, or no possibility to forward packets to the sink. Such nodes are

called unconnected nodes and they are removed after generating the network.

As the number of generated nodes is increased, the size of the network does not

increase linearly. Instead, it might remain unchanged, when the newly added node is

isolated, or increase for a value larger than one, when the newly added node connects

multiple previously isolated nodes with the rest of the network. Therefore, generating a

network of desired size is not straightforward. To achieve the desired size, the following

algorithm is used. After placing anchor nodes, nodes are placed at random coordinates

until the network size reaches value greater or equal to the desired network size. If

the network sizes is equal to the desired size at this point, the algorithm terminates.

Otherwise, all added nodes are removed, and process is repeated without resting the

random number generator.

As a part of protocol evaluation, dependence of average maximum throughput and

schedule length is calculated. To reduce random noise from this dependence, networks

of larger sizes are generated by starting from a smaller network and adding new nodes

randomly to increase the size. This is illustrated on Fig. 39. The figure shows five

circular networks, with sink located in the middle. Four anchor nodes were used. The

first one has the size of 20 nodes. The second one, consisting of 30 nodes, is generated

by adding an additional 10 nodes to the first network. This is repeated with the step of

ten, ending at 60 nodes. The dots on the figure represent nodes. Red dot represents the

sink, black dots other nodes. Dashed lines connect nodes that are within each others

radio range. The radius of this network is 280m and radio range is 100m.

The algorithm evaluation requires the usage of many random networks with the

same parameters (size, shape, sink location). The set used in this thesis contains ten

random networks for each set of parameters. Since networks of larger sizes are created

based on those with a smaller size, the process of increasing network size is repeated.

In the case of the circular deployment area, 50 random networks are generated in this

way (10 for each number of nodes). Fig. 40 shows nine out of ten networks of size 40

used. The same was repeated for topology with the circular deployment area and sink

located at the edge of the network.

Networks with two different rectangular deployment areas are generated. The first

one has a width of 250m and a length of 500 meters (referred to as wide rectangular).

The second deployment area has a smaller width, equal to 100m, and a length of 800m

(refereed to as narrow rectangular). The radio range value used is 100 meters, the same

as in the case of circular networks. Fig. 41 shows two of the generated rectangular

networks. The one in Fig. 41a is a wide rectangular, while Fig. 41b shows one of the
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(a) 20 nodes (b) 30 nodes (c) 40 nodes

(d) 50 nodes (e) 60 nodes

Figure 39: Circular networks of different sizes with sink in the middle.

narrow rectangular networks.

3.3 Simulations and Results

Randomly generated networks described in Section 3.2.5 are used to evaluate and com-

pare schedule calculation algorithms described in Section 3.1. In total, 210 different

networks are used, with four different topologies. The simulations are performed in

OMNeT++. The simulations start with the sink performing discovery of the network.

Then, it calculates the schedule and distributes it to the node. After this, the TDMA

operation is started. Traffic generation is paused during the discovery and start phases;

it begins once the network switches to the slotted operation mode.

For the simulation results to be relevant, data traffic must be random and resemble

traffic that can be expected in a real-world application. This is especially important

because scheduling algorithms take care of the traffic flow in the network and the traffic

flow is dependent on the availability and number of packets at different nodes. For this

purpose, an event-based traffic generation algorithm is used. This model schedules

traffic by generating events at a random time and place. Each event has a radius;

when the event is triggered, a packet is generated in each node within the radius. The

simulations used the event radius value of 100m.
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Figure 40: Nine different circular networks comprised of 40 nodes and one sink in the
middle.

(a) Wide network (b) Narrow network

Figure 41: One of ten wide and narrow rectangular networks with size 20 used for
simulation.
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The simulation results are first analyzed and explained using a single circular net-

work that consists of 30 nodes. The radius of this network is 280m, and the sink node

is positioned in the center of the network. The network and child allocation are shown

in Fig. 42a. Full lines ending with arrows on the figure connect parent nodes with their

children. Dashed lines connect nodes that are within each other’s radio range but are

not connected in the routing tree. To evaluate the performance of different schedule

calculation algorithms, the packet generation rate is varied in the range from 20 to 400

packets per second (equivalent to 1 to 20 packets per second per node).

(a) Network (b) Throughput

Figure 42: Example circular network comprised of 30 nodes and simulation results.

The dependence of the throughput at the network sink on packet generation rate,

when different schedule calculation algorithms are used, is shown in Fig. 42b. When

packet generation rate is low, throughput increases linearly with packet generation rate.

However, when the packet generation rate is further increased, the throughput increase

slows down, and the dependence stops being linear. At one point, the throughput

reaches a threshold value. After this point, the throughput value remains constant

when the packet generation rate is further increased.

This dependence is significantly different than in the case of random access proto-

cols. When random access protocols are used, the throughput will start dropping with

an increased packet generation rate at one point. This happens due to an increased

number of collisions. However, when TDMA protocols are used, slotted access prevents

collisions. Hence the different behavior at high throughput values. When TDMA MAC

is used, the throughput increases until the number of incoming packets allow the usage

of all slots. At this point, the maximum throughput value is reached. When the packet

generation rate increases beyond this point, the throughput does not drop. However,

the network will not be able to transmit all packets, causing their accumulation in
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buffers. Eventually, buffers will overflow, and packets will be lost.

Since the traffic is random, some packets will be dropped even at values of packet

generation rate lower than the maximum one supported by the network. The chance

of a packet being dropped increases with the number of hops they need to travel to

reach the sink. Because of this, even when the network packet loss ratio is very low,

packets from some nodes may exhibit a significant packet loss. Fig. 43a illustrates how

big the difference in the packet loss ratio for packets originating from different nodes

can be. The figure shows the dependence of packet delivery ratio on packet generation

rate for nodes N [0], one hop from the sink, and N [18], five hops from the sink. These

two nodes are marked in Fig. 42a.

(a) Packet delivery ratio (b) Fairness

Figure 43: Simulation results.

The throughput dependence from Fig. 42b shows that all centralized algorithms

achieve similar maximal throughput values in this case. Based on this figure, it appears

that maximal throughput could be a good metric for comparing different schedule

calculation algorithms. However, as illustrated in the previous example, even though

total throughput is high, the packet loss rate for the packet originating from certain

nodes might be high. Therefore, traffic fairness, as a metric of difference between

packet loss ratio among nodes in the network, should also be considered. Fig. 43b

shows this network’s dependence on fairness from packet generation rate. The figure

shows that a higher maximal throughput does not mean better fairness in the network.

For example, the algorithm from Lai et. all. achieves higher maximal throughput than

the algorithm by Ergen and Varaiya (Fig. 42b); however, it achieves considerably lower

fairness (Fig. 43b).

Based on these observations, the maximal packet generation rate a network can

support is defined as a packet generation rate value at which traffic fairness drops to
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95%. In this case, fairness is calculated using the metric proposed in [32]; this metric

was previously explained in Section 2.3. Form Figs 43a and 43b, it can be observed

that when the packet generation rate reaches a value of 150 packets per second, the

delivery ratio for node N[18] starts dropping rapidly; at the same time, traffic fairness

drops down to around 95%. This justifies the choice of this metric. The comparison

of different algorithms, performed using network from Fig. 42a, using this metric, is

shown in table 2.

Table 2: Performance comparison

Algorithm Cycle Length Max Packet
Generation Rate

[1/s]

Max Throughput
[kb/s]

TreeMAC 88 99.6 11.9
Gandham et. all. 76 114.6 13.7
Ergen and Varaiya 53 164.9 20.6
Lai 48 150.42 19.56
Park et. all. 49 179.4 21.1
Tsai and Chen 50 175.3 20.7

Besides the maximal packet generation rate, defined in the described way, the table

lists two additional performance parameters: cycle length and maximal throughput.

Maximal throughput is defined based on the maximal packet generation rate; it is

defined as the throughput value at the maximal packet generation rate. As expected,

TreeMAC produces somewhat longer schedules, and the maximum packet generation

rate it can support is consequently lower. However, the reduced packet generation rate

comes with the benefit of lowered implementation cost and shorted network construction

time (as explained in Section 3.1.1. Lai’s algorithm achieves the shortest schedule

length. However, despite such a short schedule, the maximum packet generation ratio

is lower than for all other distributed algorithms (Ergen and Varaiya, Park et. all.,

Tsai and Chen). The reason for the worse performance of Lai’s algorithm is the lack of

traffic flow adaptation.

Another performance parameter where the algorithm by Lai performs worse is

packet latency. This is especially pronounced at lower packet generation rate values.

Fig. 44 shows the dependence of average packet delay on packet generation rate for all

algorithms under consideration. The dependence of average packet delay versus packet

generation rate is shown in Fig. 44a. At first glance, the algorithm by Lai does not

perform worse than the other algorithms. However, examining the lower part of the

range, plotted separately at Fig. 44b, reveals significantly higher latency. Larger de-

lays when Lai’s algorithm is used are an effect of a schedule not adapted to the traffic

66



flow. Namely, in such a schedule, a packet might traverse as little as one hop per cycle,

resulting in a considerable delay.

(a) Average packet delay at whole packet
generation range

(b) Average packet delay at low packet gen-
eration values

Figure 44: Dependence of average packet delay from packet generation rate.

The simulation results obtained using one network are not very relevant for a com-

parative evaluation since protocol performance depends on the network size. They are

displayed here to illustrate differences between the algorithms used and explain the

choice of metrics used for comparison. A relevant comparison is obtained based on the

results of many simulations performed on all networks from the network set described

in Section 3.2.5.

The first topology considered is the circular deployment area and the sink positioned

in the middle. In the case of this topology, the networks from the set have sizes in the

range of 20 to 60 nodes, with a step of 10 nodes. There are ten random networks

with each size, meaning there are 50 networks in total. For each network, the packet

generation rate is varied to obtain dependencies of fairness and throughput on it. Then

based on these dependencies, the maximal packet generation rate is calculated.

For each network size, there are ten different networks. First, the maximal packet

generation rate and the schedule length are calculated for each of these networks. Then,

the values are averaged to obtain the average value for that size. The dependencies of

these two parameters on the network size are obtained by repeating this for every

network size. These dependencies are shown in Fig. 45.

According to the results, schedule calculation algorithms can be divided into two

groups. The first group is the Trade-off group, comprised of protocols that achieve

a good trade-off between complexity and network construction time on one side and

throughput on the other. TreeMAC and algorithm by Gandham et. all. belong to
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(a) Dependence of schedule length from num-
ber of nodes

(b) Dependence of maximal throughput from
number of nodes

Figure 45: Performance of various algorithms vs different network sizes, in the case of
circular deployment area with the sink in the middle.

this group. The second group is the high-performance group. Protocols in this group

achieve outstanding performance but at the cost of increased complexity and network

construction time. Algorithms that belong to this group are algorithms by Park, Tsai,

and Ergen and Varaiya. Lai’s does not belong to any group since it fails to achieve

good performance, despite having high complexity. The reason for this is the lack of

consideration of the traffic flow, which becomes evident when the network size increases.

The second network topology used for simulations is the circular network with the

sink located at the network’s edge. The network set contains networks with the same

size ranges as in the case of a centrally positioned sink; this range is 20 to 60 nodes.

Two networks from this set are displayed in Fig. 46; the first is comprised of 20 and

the second of 60 nodes. These are just two out of 50 such networks in total.

(a) 20 nodes (b) 60 nodes

Figure 46: Two of 50 circular networks with sink at the edge used for simulations.

The dependencies of the maximal packet generation rate and schedule length on the
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network size are obtained in the same way as in the case of a centrally located sink; they

are shown in Fig. 47. In this case, there are two differences, revealing some important

properties of the algorithms by Park et. all. and Gandham et. all.. The first one is

that the algorithm by Park et. all. performs better than the other algorithms from

the high-performance group. This makes this algorithm the best choice for a general

network if a high packet generation rate is the priority.

The second difference is that algorithm by Gandham et. all. does not provide such

a significant improvement compared to TreeMAC as in the case of the network with a

centrally located sink node. The explanation is that, in this case, the sink has a lower

number of neighbor nodes (due to its position). Consequently, there will be fewer top

sub-trees, and they will be closer to each other. This drastically reduces the chance of

two sub-trees having no interference edges between them. Therefore, the algorithm by

Gandham et. all. will rarely be able to schedule two sub-trees in parallel, explaining

the lower maximum packet generation rate values.
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(a) Dependence of schedule length from num-
ber of nodes

(b) Dependence of maximal throughput from
number of nodes

Figure 47: Performance of various algorithms vs different network sizes, in the case of
circular deployment area with the sink located at the edge.

The third network type has a rectangular network deployment area; the width of

this area is 250m and the length 500m. The sink node is positioned in the middle of

the shorter rectangle edge. The set of networks used for evaluation contains networks

with this topology with sizes ranging from 20 to 70 nodes. The step size is ten nodes,

and there are ten networks of each size, resulting in 60 networks in total. Fig. 48 shows

two networks with this deployment area; one with 20 and one with 70 nodes.

Same simulations as in the previous two cases are performed for these networks. The

simulations are used to extract dependencies of the maximal packet generation rate and

the schedule length on the network size. The results are shown in Fig. 49. The results
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(a) 20 nodes (b) 60 nodes

Figure 48: Two wide rectangular networks.

for this case show higher dependence on the network size than in previous cases. For

a low number of nodes, the centralized algorithms achieve almost no improvement (20

nodes) or not a considerable one. Therefore, the benefits of a more complex centralized

protocol should be carefully weighed in these cases. On the other side, when the number

of nodes is higher, complex protocols achieve even larger improvement than in the case

when circular networks were considered.

[s
lo
ts
]

(a) Dependence of schedule length from num-
ber of nodes

(b) Dependence of maximal throughput from
number of nodes

Figure 49: Performance of various algorithms vs different network sizes, in the case of
wide rectangular deployment area.

Finally, the evaluation is performed on a group of narrow rectangular networks; the

width of the deployment area for the networks in this group is only 100 meters, which

is equal to the radio range. In this case, the number of nodes is varied from 20 to

60 nodes with a step of 10 nodes, resulting in 50 networks (there are ten networks for

each size). Fig. 50 shows two networks from this group, with sizes 10 and 60. This

case is substantially different from the previous three cases because these networks are

linear, and all sub-trees are very close. This means that it is impossible to schedule the

whole sub-trees simultaneously, but only their different parts. Furthermore, parallel

scheduling in total is more challenging in such a network, and the number of parallel
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transmissions that can be achieved is lower.

(a) 20 nodes (b) 60 nodes

Figure 50: Two narrow rectangular networks.

The simulations are performed in the same way as in the previous three cases.

Furthermore, the same dependencies are used to compare different algorithms; these

are dependencies of the cycle length and the maximal packet generation ratio on the

network size. These results are shown in Fig. 51. As expected, parallel scheduling

of different sub-trees does not result in a significant benefit in this case. As a result,

complex centralized algorithms provide little improvement over the algorithm by Gand-

ham et. all.. This makes high-performance algorithms unsuitable for such applications,

as their drawbacks outweigh the minor packet generation improvement they offer in

this case.
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(a) Dependence of schedule length from num-
ber of nodes

(b) Dependence of maximal throughput from
number of nodes

Figure 51: Performance of various algorithms vs different network sizes, in the case of
narrow rectangular deployment area.

On the other hand, TreeMAC performs very well in this case. Even though the

algorithm by Gandham et. all. improves over TreeMAC, the improvement still might

not outweigh the benefits of TreeMAC’s simplicity and very fast network construction.

Therefore, the choice between these two protocols must be made for each specific ap-

plication by carefully examining the requirements and performance parameters both

protocols can achieve. It is also worth noting that the algorithm by Gandham et. all.

does not improve over TreeMAC through parallel scheduling of sub-trees in this case.

Instead, the improvement comes from the advanced linear network scheduling algorithm
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alone.

3.4 Conclusion

Multiple TDMA protocols for convergecast networks are proposed up to date; these

protocols use various approaches to design scheduling algorithms to create the shortest

possible schedule that considers traffic flow. They can be divided into two groups: the

high-performance group and the trade-off group. Protocols from the high-performance

group achieve similar performance in theory; therefore, it is not clear which one of them

will perform the best in which case. This chapter provides an in-detail comparative

analysis of these protocols and their evaluation using simulations and an extensive set

of random networks. The most appropriate protocol can be selected for each application

based on these results. Furthermore, expected protocol parameters, such as throughput,

fairness, and latency, can be estimated using the results provided in this chapter.
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4 Optimizing Scheduling Algorithms to Consider Multi-

ple Packet Transmissions in a Time Slot

Time schedule calculation algorithms assign one packet to each node and then calculate

the schedule so that all those packets reach the network sink during one cycle. It is

assumed that a node may transmit only one data packet during each time slot. The-

oretically, such slot length would result in the best performance. However, it is rarely

possible to adjust the time slot duration to be exactly as long as a packet transmission

duration. In these cases, the TDMA performance can be increased by considering these

multiple transmissions when the schedule is calculated.

Adjusting the time slot duration to equal the packet transmission time may not

be possible for various reasons. In most cases, the reason is traffic comprising different

packet sizes. However, even when all packets have equal size, equal transmission and slot

time may be impossible due to other reasons. For example, one may be MAC protocol

limitations, which define minimal slot duration time. That time is often longer than

the packet transmission time. Another common reason is long synchronization delays.

In that case, it is possible to equalize transmission and slot time, but it would result

in poor performance. The reason is that the synchronization delay might be longer

than the slot duration. For example, ISA.100.11A defines a default synchronization

delay of around 2ms. In comparison, packet transmissions times lasting a few hundred

microseconds are not uncommon in wireless sensor networks.

The example in Fig. 52 illustrates how ignoring multiple packet transmission has a

negative effect on performance. In this example, it is possible to transmit three packets

in one time slot. This was not considered when the seven slots long schedule displayed

in Fig. 52 was calculated.

s

n4 n1

n2

n3

n4 n3 n2 n1 n2 n1

p4 p3 p2p3 p1p2p3

n1
slot: 0 1 2 3 4 5 6

Figure 52: Example of unused time slots due to transmission of multiple packets in one
time slot.

In the example (Fig. 52), three time slots are allocated to node n1. One to transmit
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its own data and two to forward data packets received from nodes n2 and n3. However,

the second two time slots, intended for forwarding data, are not used; that can be seen

in Fig. 52. In the figure, transmissions are represented by arrows. In the fourth time

slot, node n1 transmits three packets to the sink: its own packet p1, and packets p2

and p3, from nodes n2 and n3. All three packets are transmitted during the same time

slot, intended for transmitting only packet p1 by the algorithm. Therefore, slots five

and six, intended for transmitting packets p2 and p3, remain unused.

Since equalizing time slot duration with packet transmission time is not feasible,

optimizing the time schedule to account for multiple packet transmissions is an approach

that can provide benefits in many cases. In this thesis, a TDMA MAC protocol, which

considers this, is proposed. Because it is inspired by TreeMAC and takes multiple

transmissions into account, it is called M-TreeMAC.

4.1 M-TreeMAC

M-TreeMAC is based on TreeMAC, but the number of frames required by each node

is calculated to take multiple packet transmissions during a single time slot into con-

sideration. The number of frames each node gets is called active frames count. It is

dependent on the maximal packet count, which is equal to the number of packets that

can be transmitted during a time slot. Maximal packet count is a protocol parameter,

and it should be set by the user. The value of this parameter should be chosen consid-

ering time slot duration and expected traffic in the network. It must be selected by the

user for each particular application.

An M-TreeMAC schedule is divided into frames, in the same way as in the case of

TreeMAC. Each frame consists of three slots. To each node, an appropriate number of

frames is assigned (not time slots like in many TDMA protocols). Based on its level in

the network, a node in which time slot of the assigned frame it may transmit. Compared

to TreeMAC, slot order within a frame is reversed in M-TreeMAC. This means that

children are scheduled first, and then their parents, opposite from TreeMAC. Such

scheduling order increases the chance that a node will have more than one packet to

transmit.

The implementation of M-TreeMAC remains distributed and low-cost while signif-

icantly reducing packet latency. The calculation of active frames count is done during

the network construction phase, using a modified network discovery algorithm. The

modification does not introduce any new packet types. Instead, it adds one additional

parameter to the existing packet type, dscResp packet. As a result, the complexity

and execution time remains almost the same. The only difference is a slight increase in

the size of dscResp packets. However, the effect of the increased size of this packet is
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insignificant and has a negligible impact on protocol performance.

4.1.1 Active Frames Count Calculation

In TreeMAC, the value of a node’s active frames count parameter is equal to the size

of the sub-tree rooted at that node. In the case of M-TreeMAC, the active frames

count of each node depends on the whole topology of the sub-tree rooted at that node;

therefore, it can not be calculated based on the sub-tree size only. This dependence

exists because of the way M-TreeMAC calculates the schedule. When M-TreeMAC

schedule is calculated, one packet is assigned to each node. Then, nodes are scheduled,

one linear sub-network at a time. Packets are followed, and whenever one part of the

linear sub-network has transmitted all of its packets, another linear sub-network is

scheduled. Therefore, the number of frames one sub-tree requires to transmit all of its

packets depends on how well these packets can be grouped and transmitted together in

the same time slot.

The order of time slots during a frame in M-TreeMAC is reversed compared to

TreeMAC. This means that, for example, the sink’s neighbor transmits after its child

node has forwarded the packet to it and not before (like it would in TreeMAC). Addi-

tionally, that child node transmits after receiving a packet from its child as well. In this

way, three packets are grouped and transmitted to the sink in the same time slot. This

is illustrated using an example, shown in Fig. 53. The example shows a liner network

and M-TreeMAC schedule calculated for it. In this case, the maximal packet count,

denoted by k, is three. Each node calculates its slot within a frame using equation

slot = 2− level mod 3.

s n1 n2 n3 n4 n5

(a) Network and packet distribution before the first frame.

s n1 n2 n3 n4 n5

(b) Network and packet distribution after the first frame.

n3 n2 n1n3 n2 n1

n5 n4

frame:
slot: 0 1 2 0 1 2

1 2

(c) Time schedule.

Figure 53: M-TreeMAC schedule for a linear network, and packet grouping.

As the example shows (Fig. 53), packets originating from certain nodes will be
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grouped on their way to the sink. Nodes whose packets will be grouped belong to

the same group. Groups are marked with dashed lines on the figure. Based on this

example, it can be concluded that the number of frames required to schedule a linear

network is equal to the number of groups in the network. In this case, two frames are

needed. Additional frames would have been required if the maximal packet count were

less than three.

The dependence of the active frames count of a node on the topology of the sub-tree

rooted at that node is illustrated in Fig. 54. The figure shows two different sub-trees of

the same size and different topologies. The root of these sub-trees is node nr. The first

sub-tree shown in Fig. 54a needs two frames to transmit all of its packets to the parent

node. The schedule of this sub-tree is shown in the same figure. The second sub-tree,

showed at Fig. 54b, needs one frame more, because of the additional branching at node

n2.

nr

s

n1

n3

n2

n4

n3 n1 nr n4 n2 nr

(a) Network

nr

s

n1 n2

n3 n4

n1 nr n3 n2 nr n4 n2 nr

(b) TreeMAC schedule

Figure 54: Dependence of active frames count on sub-tree topology.

4.1.2 Protocol Definition

The schedule calculation of M-TreeMAC is performed in a similar way as in the case

of TreeMAC. Each node calculates its own schedule based on the values of four param-

eters. These are active frames count, level in the tree, starting frame, and schedule

length. Each node determines active frames count and level values during the network

construction phase; this is achieved using modified dscResp packet. After the network

construction, two parameters remain undetermined, schedule length and starting frame.

Each node gets values of these two parameters from its parent in a protocol-specific

packet called Sch. After the tree construction is finished, the sink calculates these two

parameters based on the information collected. Then, it starts the dissipation process

by transmitting a Sch packet to its children nodes.

Network discovery is performed in the same way as for TreeMAC. It was previously
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described in detail Section 3.2.2. The packet type of importance is dscResp packet.

Each node sends this packet to the sink after discovering its neighbors. This packet

contains the list of the sender’s neighbors located at the next level. M-TreeMAC uses

this packet to calculate the active frame count for each node in the network. To perform

the calculation, one additional parameter is added to this packet; this is my frames

count, denoted by mf .

The active frame count value is determined during the network construction phase

for each node in the network; this value is denoted by f , symbolizing frames. In

addition to its value of f , each node learns this value for its children. Besides network

topology, the active frame count depends on maximal packet count, k (maximal number

of transmissions in a time slot). Each time a node receives a dscResp packet originating

from a leaf node, it updates the value of f . Whether a dscResp is originating from a

leaf node or not is determined by examining the list of neighbors in this packet; leaf

nodes have no neighbors at the next level.

Each time a node receives a leaf-dscResp packet, it reads the value of mf . That

value corresponds to the current active frame count of the child node sending the packet.

Then it adds the value of mf to f , because it has to be active when its child is active. If

the node is the last in its group, it also increases f for one. This is because the last node

in a group can not merge its packet with the packet from its child. The reason is that

it receives that packet after transmitting its own. After these actions are performed,

the node checks if it has received the dscResp packet from all children. If that is true,

the node checks if it can transmit its packets during the number of frames allocated;

the number of packets it can transmit is calculated as f · k. If necessary, it increases

the value of f to a number that can accommodate all its packets. Finally, the node can

forward the dscResp packet to its parent. Before this is done, the node sets the mf

value in the dscResp packet to the value of its newly calculated f .
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(a) DscResp from n7
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Figure 55: Active frames count calculation using dscResp packets originating from leaf
nodes.
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Calculation of active frames cont and propagation of dscResp packet is illustrated

using an example network, as displayed in Fig. 55. The path of the dscResp packet

originating from node n7 is illustrated on Fig. 55a. Before node n6 receives this packet,

its value of f is zero. Then it is increased two times, once for the value of mf in the

packet and once because node n6 is the last in its group. As a result, the value of f at

node n6 is set to two. Subsequently, the value of mf in the dscResp packet is set to

the same value. On its way to the sink, this packet sets f to two in all further nodes

on its way (n3 and n1).

The path of dscResp packet sent by node n4 is illustrated in Fig. 55b. Node n1

receives this packet after previously receving dscResp from node n7. Therefore, when

node n1 receives dscResp from node n4, it increases f from two to three. Afhtherwards,

it forwards the packet to the sink, setting mf to three previously.

Once the network formation phase is completed, all nodes have the value of active

frames count parameter set and they have obtained and saved values of active frames

count parameter of their children nodes. The only remaining values needed by every

node to calculate its own time schedule are starting frame and schedule length. The

value of theses parameters will be obtained from Sch packet, which each node receives

from its parent. The sink node initializes the schedule calculation by calculating total

schedule length and starting frames of its children nodes, and sending them a Sch

packet, which contains these values. When a node receives this packet and obtains its

starting frame, it can calculate starting frames for its own children and send them a

Sch packet. The usage of Sch packets to calculate and propagate information about

staring frames is illustrated using an example on Fig. 56.

The example (Fig. 56) uses the same network used to illustrate the propagation of

Sch packets. The sink of this network has two children, nodes n1 and n2. During the

tree construction phase, the sink received information that node n1 has an active frame

count of three and node n2 of one. Therefore it first calculates the cycle length to be

four frames. Then, it assigns the first frame to the starting frame of the branch rooted

at node n1. Since that branch needs three frames, the next free frame, frame four,

is assigned to the branch at node n2. Finally, it sends a Sch to its children. This is

repeated at each node until all nodes learn their starting frames and the cycle length.

Complete schedule is shown in Fig 56b. To calculate their slot within an active frame,

nodes use the equation slotNo = level mod 3.

4.1.3 M-TreeMAC Performance

M-TreeMAC reduces time schedule length significantly, reducing packet delivery la-

tency. However, the throughput and maximal generation rate remain the same in a
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Figure 56: Calculation of stating frames and total schedule length dissemination using
Sch packets.

general case. The lack of improvement in terms of throughput is explained using an

example shown in Fig.57. In the example, the schedule created using M-TreeMAC is

compared with a modified TreeMAC schedule. The modified TreeMAC schedule uses

reverse slot assignment within a time frame, as M-TreeMAC does. This means that

nodes at higher levels are scheduled before nodes at lower levels. Nonetheless, the

results and conclusions remain even without this modification because the pipe-lining

effect would result in packet grouping and multiple transmissions in the case of the

unmodified TreeMAC schedule.
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Figure 57: Interference graph creation and color assignment.

As it can be seen in Fig. 57, M-TreeMAC produces significantly shorter schedules.

This is because additional time slots assigned to nodes by TreeMAC for forwarding
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packets from upper layers (forwarding slots) are now no longer needed. Instead, nodes

can forward the upper layer packets with their own packet in the same time slot. As seen

in Fig.57c, under low-traffic conditions, these forwarding slots are not used. However,

when the traffic is sufficiently high, all nodes will have a few packets in their buffer, and

forwarding time slots will be used to transmit these packets. That is why the maximal

packet generation rate remains the same even though the schedule length is significantly

reduced. The benefit of M-TreeMAC compared to TreeMAC is, nonetheless, significant,

as packet latency will be substantially reduced.

4.2 M-TreeMAC Evaluation

Since M-TreeMAC is an improvement of TreeMAC, to evaluate its performance, it

is compared with TreeMAC. The comparison is made with the same set of networks

previously used to compare schedule calculation algorithms. The set contains networks

with four different deployment area shapes. For each shape, the set includes networks

with a different number of nodes. Furthermore, for each shape-size pair, there are

ten different networks. Additionally, several randomly generated linear networks are

simulated for this evaluation. Linear networks are introduced because M-TreeMAC is

especially effective for them.

As explained before, M-TreeMAC reduces schedule length significantly, but maximal

throughput remains the same. What changes is how packet delivery fairness varies with

increasing traffic in the network and packet latency. In theory, fairness should be higher

for the case of M-TreeMAC because the number of time slots assigned to each node

considers multiple transmissions in the same time slots. However, in reality, the traffic is

random. This means that the number of packets that can be grouped is not predictable

and that the actual traffic flow is different than the one M-TreeMAC optimized the

schedule for.

In the case of linear networks, the benefits of M-TreeMAC are more significant.

Apart from reduced delay, fairness is increased. This means that maximal throughput,

defined in relation to network fairness, also increases. In the cases of more complex

networks with circular or rectangular deployments areas, the fairness achieved is similar

to TreeMAC. The packet latency is, however, significantly lower. For these reasons, the

two cases are analyzed separately.

4.2.1 Linear Network

To evaluate the performance of M-TreeMAC, six linear networks containing different

numbers of nodes are used. The number of nodes is varied in the range from 8 to 33.
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The radio range is 100 meters, while the spacing between nodes is 40m. This means

that the sink node will have two child nodes; therefore, there will be two top-subtrees

in each network. For each network, the packet generation rate is varied. As the packet

generation rate increases, values of throughput, fairness, and average packet latency

are calculated and saved. This is repeated for both TreeMAC and M-TreeMAC.

Two separate cases are analyzed before analyzing the dependence of network perfor-

mance on the number of nodes in the network. These are the smallest network from the

set, containing eight nodes, and the largest, with 33 nodes. The dependence of fairness

on packet generation rate for these two networks is plotted in Fig. 58. In both of these

networks, M-TreeMAC achieves a significant improvement compared to TreeMAC. In

the first case, the improvement is especially significant for the network with eight sensor

nodes. The maximum packet generation rate, calculated at a fairness value of 95%, is

250 packets per second when M-TreeMAC is used, compared to 180 when TreeMAC is

used. This significant improvement is achieved without increasing the implementation

cost, complexity, or network construction time.

(a) Network with 8 nodes (b) Network with 33 nodes

Figure 58: Dependence of traffic fairness on packet generation rate.

The improvement is considerably smaller for the larger network, with 33 sensor

nodes. This is because M-TreeMAC calculates the active frame count by assigning one

packet to each node and following it. However, in real-world applications, the data

traffic is irregular; due to this, not all nodes will have a packet simultaneously. As the

network size increases, the effect of irregular traffic becomes more pronounced. Due

to this, the M-TreeMAC schedule becomes less optimal, resulting in a less pronounced

improvement.

Fig. 59 shows the dependencies of average delay on packet generation rate for the

same two networks. Unlike maximal throughput increase, which becomes less pro-

nounced, packet delivery latency improvement remains consistent over different net-
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work sizes. The reason is that the delay is less affected by the traffic flow mismatch.

The figure shows a reduced average delay for all usable values of packet generation

rates. The improvement is especially significant at lower generation rates, where the

delay is reduced to around 50%. This makes M-TreeMAC especially suitable for usage

in networks with low traffic and requirement for low packet delivery latency.

(a) Network with 8 nodes (b) Network with 33 nodes

Figure 59: Dependence of average packet delay on packet generation rate.

The dependence of average delay on network size is shown in Fig. 60. Average

delay at 80% of the maximal packet generation rate was used as a reference average

delay value of each network. The maximal packet generation rate was calculated as the

theoretically maximal packet generation rate for TreeMAC. This value is always within

the region with reasonably high fairness and, at the same time, with a considerable

amount of data traffic. Therefore, it provides a relevant average delay value for evalu-

ating the improvement archived by M-TreeMAC. The results (Fig. 60) show significant

improvement for all network sizes.

4.2.2 Randomly Generated Networks

Multiple randomly generated networks with two different deployment areas are used

to evaluate M-TreeMAC performance in the case of more complex networks. The first

deployment area is circular, with the sink node positioned in its center. The radio

range is 100m, and the radius of the deployment area is 280m. The number of nodes

is varied from 20 to 60, and ten different networks are generated for each number of

nodes. The second deployment area used is rectangular, with a length of 500m and

a width of 250mm. Again, the number of nodes is varied in the same range, and ten

different networks of each size are generated in this case as well.

First, simulation results for a circular network containing 20 nodes are analyzed.
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(a) Schedule length (b) Average delay

Figure 60: Dependence of schedule length and average delay on network size.

Dependencies of fairness and average delay for the case of this network are shown in

Fig. 61. The improvement in terms of fairness is minimal in this case. The fairness

is almost identical for both TreeMAC and M-TreeMAC under low packet generation

rate conditions, Fig. 63a. When the packet generation rate is increased, M-TreeMAC

achieves slightly better fairness. However, this only occurs when fairness drops below

90%. Since sensor networks are usually not operating in this region, this can not

be considered an improvement. However, the improvement in terms of average delay

remains significant for all packet generation rate values. The improvement is especially

substantial at lower traffic generation rates, more than 100% in some cases.

(a) Fairness (b) Average delay

Figure 61: Dependence of fairness and average delay on packet generation rate.

The dependence of schedule length and average delay on network size is shown in

Fig. 62. Average delay at 80% of maximal packet generation rate is used to describe the

average delay of each network. The theoretical maximal generation rate of TreeMAC is
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used to calculate this value. The results show significant delay reduction for all network

sizes.
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(a) Schedule length (b) Average delay

Figure 62: Dependence of schedule length and average delay on network size for circular
deployment area.

The same procedure was repeated for the rectangular network deployment area. The

number of nodes was varied in the same range, and both protocols performance was

simulated to obtain a comparison. The results are plotted on Fig. 63. The improvement

achieved by M-TreeMAC is significant in this case across all network sizes.
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(a) Schedule length (b) Average delay

Figure 63: Dependence of schedule length and average delay on network size for rect-
angular deployment area.

4.3 Routing Topology Optimization

Unlike a time schedule calculated using TreeMAC, whose length depends on the network

size only, the length of a schedule calculated using M-TreeMAC is dependent on the
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topology of the routing network. The dependence on topology exists because the active

frames count of a node depends on the topology of the subtree rooted at that node, as

explained in the previous section. Therefore, the performance of M-Tree MAC can be

additionally increased by optimizing the network topology. This chapter of the thesis

proposes an algorithm that finds the optimal topology. It is based on the idea previously

published by the author of this thesis in [14]. The proposed algorithm is evaluated in

a simulator, using many randomly generated sensor networks with different sizes and

deployment area shapes.

4.3.1 Optimization Criterion

TreeMAC uses breadth-first search (BFS) algorithm for creating the shortest-path span-

ning tree. This algorithm goes through the network level by level. The algorithm goes

through nodes of one level in the order of their discovery. When the algorithm exam-

ines a node, it assigns all available eligible nodes to be children of that node. A node

is eligible if it is located one level above and does not yet have a parent. Due to the

greedy nature of the algorithm, some nodes will have a large number of children and

some none. Thus, the resulting routing tree will be unbalanced, which means that some

top-sub trees can be significantly larger than the others.

Fig. 64a shows a shortest-path tree constructed using BFS algorithm. The con-

structed routing tree has two top sub-trees, one of size five and one of size one. A top-

load balanced routing tree, created for the same sensor network, is shown in Fig. 64b.

Here, the size of both sub-trees is equal.

s

n1 n2

n3 n4

n5 n6

(a) BFS shortest path tree

s

n1 n2

n3 n4

n5 n6

(b) Balanced shortest path tree

Figure 64: An example of two different routing trees constructed for the same network.

Fig. 65 shows schedules created using M-TreeMAC for two networks form Fig. 64.

In the case of the routing tree created using BFS algorithm, the schedule is seven frames

long. When a top-load balanced tree is used for routing packets in the same network,

the schedule length produced by M-TreeMAC is reduced to three frames. This example

illustrates how can M-TreeMAC schedule length be reduced by optimizing the routing
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tree. A top-load balanced tree was used to illustrate that. However, a top-load balanced

tree is not optimal in the general case.

n1n3n5 n1n3 n1n6 n4 n2

(a) Schedule in the case of BSF Tree

n1n3n5 n2n4n6

(b) Schedule in the case of top-load balanced tree

Figure 65: M-TreeMAC schedules for the two different routing trees.

To define the criteria for the optimal routing tree for M-TreeMAC, the DscResp

packets originating from leaf nodes are observed. The number of frames required by

each node is calculated based on these packets. As a DscResp packet is being forwarded

towards the sink, the value of parameter f , representing the number of frames required,

is increased by the value of parameter mf in the packet. Therefore, to construct the

optimal tree, DscResp packets should be routed in the direction that results in a

minimum increment of active frames count.

The proposed criteria for optimizing routing topology is to minimize the number of

leaf nodes in the network. If the number of leaf nodes is minimal, the length of time

schedule produced by M-TreeMAC will be minimal. This is because each leaf node

results in an additional DscResp packet. The additional packet, in turn, increases the

values of active frame count parameters in all nodes on its way to the sink.

To justify the proposed criterion, network section from Fig. 66 is considered. As-

signment of children to nodes n1 and n2 is considered. It is assumed that node n3 is

assigned to node n1 and effects of assigning node n4 to node n1 or n2 are analyzed. If

node n1 is chosen as the parent of node n4, node n2 is left without possibility to be

assigned a child node. Therefore, this choice introduces an additional leaf node to the

network, node n2. The effect of both of these assignments on schedule length are ana-

lyzed. The flowing notation is used for the analysis. Any dscResp packet received by

node n4 from its parent is denoted by DscResp4. Let the value of parameter mf in any

dscResp packet sent by node n4 to its parent be mf4. Values of parameter f at nodes

n1 and n2 are denoted as fn1 and fn2 respectively. Let their values before receiving

DscResp4 packet be f1 and f2. The two cases are analyzed under the assumption that

there is only one DscResp4 packet. Additionally, it is assumed that nodes n1 and n2

are not the last nodes in the group. Nevertheless, the conclusions remain unchanged in

the general case.

In the first case, node n1 is chosen as a parent of node n4. In this case, node n1

receives DscResp4 packet. After receiving this packet, node n4 increases value of its

active frame count parameter to fn1 = f1 +mf4. In this case, node n2 is a leaf node.
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Figure 66: Dependence of number of required frames on parent children assignment.

Therefore, it transmits an additional DscResp packet. Due to this, the active frames

count value at node n2 is increased to fn2 = f2+1. The total number of frames required

by nodes n1 and n2 is f1 +mf4 + 1.

In the second case, node n2 is chosen as a parent of node n4. In this case, DscResp4

packet is received by node n2. When node n2 receives this packet, it increases its value

active frames count to fn2 = f2+mf4. The value of fn1 remains unchanged. The total

number of frames required by nodes n1 and n2 in this case is f1 + mf4. This is one

frame less than in the previous case. Thus, it can be concluded that an additional leaf

node results in an increased length of time schedule for at least one frame.

4.3.2 Maximum Matching Optimization Algorithm

The number of leaf nodes should be minimized to find the optimal shortest-path span-

ning tree. Since all nodes at the last level must be leaf nodes, the number of leaf nodes

at all other levels (low-level leaf nodes) should be minimized. A low-level leaf node is

created whenever one of the nodes on the current level does not get any children nodes

assigned to it. The number of low-level leaf nodes at one level is independent of their

number on other levels. Therefore, children assignment can be optimized separately

for each level. In this way, the topology optimization problem is divided into multiple

sub-problems, minimizing low-level leaf nodes at every level in the network. Finding

a child-parent assignment that results in a minimal number of low-level leaf nodes is

called the children assignment problem.

The children assignment problem for one level of a simple example network is il-

lustrated in Fig. 67. The considered level contains three parent nodes; this level is

called parent level. Nodes from one level above the parent level, called children level,

can be assigned to these three nodes. In this case, there are four nodes on the children

level. An optimal assignment leaves the lowest possible number of parent nodes without

children. In this case, any assignment that assigns at least one node to each parent

is optimal. For example, assigning c1 to p1, c3 to p2 and c4 to p3 will result in no

low-level leaf nodes.
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(a) Children assignment problem
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(b) One non optimal children assign-
ment problem solution

Figure 67: An example illustrating children assignment problem.

However, even in this example (Fig. 67), children assignment problem is not trivial.

One non-optimal solution is shown in Fig. 67b. This sloution creates one low-level leaf

node. Here, node c3 was assigned to node p1, leaving nodes p2 and p3 to compete for

one child node, node c4. As the result, node p3 becomes a low-level leaf node.

Topology optimization problem was divided into multiple children assignment prob-

lems, one for each level of the network. Then, the same strategy is applied to children

assignment problem. It is divided into two sub-problems; assignment of exactly one

child to as many parent nodes as possible and assigning parents to the remaining nodes

on the children level. The second sub-problem does not affect the number of low-level

leaf nodes; therefore, it can be solved to satisfy some other requirement. However, the

first sub-problem is critical for finding the optimal topology. It is called parent-children

matching problem.

Parent-children matching problem is equivalent to bipartite graph maximum match-

ing problem. The nodes at two levels correspond to two sets of nodes in the bipartite

graph, while possible connections between them represent the edges of this graph. A

matching of such a graph is comprised of node pairs, where each node in a pair is from

a different set. A matching is equivalent to a child-parent assignment. A maximum

matching is a matching containing the largest number of pairs. Finding a bipartite

graph maximum matching is a well-known and studied problem. Therefore, it can be

solved using one of the state-of-the-art algorithms.

The proposed algorithm for solving children assignment problem is shown on Algo-

rithm 3. It is called maximum matching children assignment algorithm, and a routing

tree created using this algorithm is called maximum matching tree. The input of the

algorithm is a bipartite graph G. A bipartite graph is comprised of two sets of nodes:

a set of all nodes at the parent level, U , and a set of all nodes at the children level, V .

The set of all edges between nodes at the two levels, excluding edges between the nodes

located at the same level, is E. A bipartite graph is usually denoted by G = (U, V,E).

The first part of the problem is finding a maximum matching of the bipartite graph

provided as the algorithm’s input. Ford Fulkerson’s algorithm is used to find this
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matching, line 2. In the algorithm, an inputted bipartite graph is G; based on it, the

algorithm computes a maximum matching, M . This matching is then used to perform

children assignment, in line 3. As a result, one children node is assigned to some or all

nodes at the parent level. After this step, some of the nodes from the children level

may not have a parent node.

The second part of the problem is the assignment of parents to nodes from the

children level that did not match with any parent node. Even though this assignment

does not affect the M-TreeMAC schedule length, a more balanced number of children

among parent nodes is favorable. Therefore, the proposed algorithm balances each

parent’s number of children nodes. It goes through nodes at the parent level and

examines their neighbors located one level above, line 6. Here, a parent node is labeled

np, and the set of its neighbors at one level above, Neigh(np). The first such neighbor

without a parent is assigned to node np. Then, the algorithm moves over to the next

node from the parent level. This is repeated until all nodes on the children level get a

parent, line 5.

Algorithm 3 Maximum matching children assignment

G = (U,V,E) - bipartite graph
M = FordFulkerson(G)
for all (np, nc) in M do

assign nc as child of np

while there is a child node without a parent do
for all np in U do

for all nc in Neigh(np) do
if not hasParent(nc)) then

assign nc as child of np

break

4.3.3 Evaluation

Maximum matching children assignment algorithm is implemented in the OMNeT++

simulator to evaluate its efficiency. The same set of networks used to compare M-

TreeMAC and TreeMAC was used to evaluate this algorithm. This set comprises net-

works with sizes varying from 20 to 60 nodes with the step of 10 nodes. Furthermore,

networks from this set have two different deployment areas, circular and rectangular.

The proposed algorithm is the only algorithm for solving this optimization prob-

lem to the best of the author’s knowledge. However, load balancing algorithms result

in more optimized network topology and reduced TreeMAC schedule length. There-

fore, comparing the proposed algorithm with state-of-the-art load balancing algorithms
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makes sense. Two such load balancing algorithms were used. Additionally, the most

commonly used BFS search algorithm was simulated to provide a notion of how much

topology optimization can influence TDMA MAC performance.

The first load balancing algorithm used is proposed by Ö.D. Incel et. all. [50].

This approximation algorithm tries to create a top-load balanced routing tree. When

assigning a child node to a parent, the algorithm forms a search set for each possible

child node. When this set is being formed for a node, all its neighbors located one

and two levels above are considered. It is observed what happens with these nodes if

the current node is chosen as the child. If this choice leaves a node from the search

set without a choice for joining more than one top sub-tree, that node is added to the

search set. Children with the smallest search set size are favored during the assignment.

The second load-balancing algorithm simulated is ETC (Energy Driven Tree Con-

struction), proposed in [55]. This algorithm aims to create a tree as close to the fully

load-balanced tree as possible. Such a tree is called a near-balanced tree. For that

purpose, the ideal branching factor is defined as k =
√
hN , where h is tree depth, and

N is the number of nodes. In a fully load-balanced tree, each node has the number

of children equal to the value of k. To balance the tree, the algorithm instructs all

nodes with more than k children to change the parent. This is achieved through the

negotiation process, which uses protocol-specific packets.

All four algorithms are implemented in the OMNeT++ simulator. To evaluate the

algorithms, M-TreeMAC is run on the routing tree created by them. The schedule

length is used as the performance metric of each algorithm. Simulations are performed

for each network from the set, which contains networks with two different deployment

area shapes, rectangular and circular. In addition, the set includes networks with a

different number of nodes, for both shapes. Furthermore, there are different random

networks in the set for each shape and number of nodes.

Fig. 68 shows two different routing trees constructed on the same rectangular net-

work with 40 nodes. The first one is created using BFS algorithm and the second using

maximum matching algorithm. Maximum matching algorithm reduces the number of

low-level leaf nodes from 18 to 12. Six nodes, marked n1 to n6 on the figure, that leaf

nodes when BFS tree construction algorithm is used, are successfully assigned a child

when the proposed algorithm is used.

As the network size increases, the number of child assignment options increases.

Therefore, it is expected that the proposed algorithms will reduce the schedule length

more significantly as the network size increases. The dependency of schedule length on

the network size is obtained by averaging the schedule length over networks with the

same size and network deployment area shape (ten networks for each size-shape pair).
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Figure 68: Routing trees constructed using BFS and maximum matching algorithms.

The results for both deployment area shapes are plotted in Fig.69. In the figure, the

results for BFS algorithm are denoted by BFS. The algorithm by Ö.D. Incel et. all.,

which utilizes search sets, is denoted by ScSt. Finally, ETC algorithm is marked by its

name, and MM denotes maximum matching algorithm.
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(b) Rectangular deployment area

Figure 69: Dependency of schedule length on network size for different tree construction
algorithms.

The results show that the proposed algorithm outperforms all the other algorithms

in most cases considered. There is no improvement only when the number of nodes

in the network is low. In the simulations performed, that occurred in all networks

with 20 nodes. In these networks, all algorithms resulted in the same schedule length.

The reason is that there are not enough alternative children nodes for assignment due

to low network density. for the first larger network size considered, 30 nodes, the

proposed algorithm results in reduced schedule length. In this case, the schedule length

reduction is not very large, but it is still significant. However, as the number of nodes

in the network increases further, the proposed algorithm results in a more substantial

reduction in the schedule length.
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4.4 Conclusion

State-of-the-art TDMA mac protocols for tree-based convergecast networks use many

advanced techniques to reduce schedule length and adapt the schedule to the traffic

flow in the network. However, most of them assume that one packet can be transmitted

during each time slot. Unfortunately, that is often not the case, and multiple packet

transmissions occur during a time slot. This leads to unused time slots and longer

schedule lengths than necessary. This chapter proposes a TDMA protocol that considers

multiple packet transmissions, named M-TreeMAC. The proposed protocol increases

maximum throughput and reduces latency in linear networks significantly. For networks

with a topology other than linear, throughput is slightly increased, but latency remains

decreased considerably. Furthermore, it is observed that the length of an M-TreeMAC

schedule depends on the routing tree. An algorithm that finds an optimal routing tree

is proposed, increasing the performance of M-TreeMAC even further.
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5 Adaptive Interference Model

TDMA protocols schedule many nodes in parallel, in order to reduce the schedule length

and increase the throughput. To determine which nodes may transmit at the same time,

an interference model is used. An interference model predicts the interference range

of each transmission. If two nodes are within each other’s interference range, they

may not be scheduled in parallel. Otherwise, a collision occurs and the packet being

transmitted is lost. A large number of state-of-the-art TDMA protocols rely on 2-hop

interference model. According to this model, nodes that are two or fewer hops away

from each other may not transmit at the same time. This model is used very often

due to its simplicity; however, it is has low accuracy. Despite its lack of accuracy,

resulting in high packet loss rates, it is still used because it can significantly reduce the

implementation cost and complexity. Thanks to this model, protocols like TreeMAC

are able to achieve significant throughput while keeping implementation costs low and

network construction time short.

Alternatives for 2-hop interference model are protocol and physical interference

models. Though these models have higher accuracy, they are significantly more complex

to implement. The usage of these models results not only in higher network construction

time and complexity, but also arises the need for installing additional hardware. For

example, the protocol interference model uses the physical distance between nodes to

calculate the interference range [59]. This requires either usage of a GPS module or

some kind of metering module to measure distances between all nodes in the network.

Moreover, when one of these two models is used, the network construction time increases

drastically as the number of nodes in the network increases.

The physical interference model calculates the interference range based on signal

strength measurements. For each receiver-transmitter pair, the transmitter is instructed

to transmit a test signal and the receiver to measure the strength of the received signal.

Based on this measurement, the signal-to-noise ratio (SNR) at all receivers is calculated.

If this ratio is higher than a threshold value, set according to the properties of the

physical layer, the parallel transmission under consideration may take place. There

are two major drawbacks of this model. Firstly, the signal detection threshold of many

radios is higher than the intensity of the signal which can cause interference. Therefore,

it is not possible for the radios to detect all interference sources. One solution for this

problem is proposed in [57]. The authors propose to use the highest possible radio

power for detecting interference sources and lower ratio powers for data transfer. The

obvious flaw is that the data transfer is limited to the second-highest transmission

power, reducing the effective radio range. Secondly, usage of this model results in a
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long network construction time. This is especially a problem in large networks because

network construction is increased with the square of network size.

When designing a TDMA protocol, there are two choices. Either usage of 2-hop

interference model or of more complex models. Usage of 2-hop interference model allows

fast network construction and distributed implementation. This, however, comes at the

cost of increased interference in the network and, consequently, a higher packet loss rate.

On the other hand, protocol and physical interference models offer efficient interference

reduction. However, this comes at the cost of long network construction time and

increased complexity. Additionally, either radio range needs to be sacrificed [57] or

additional hardware needs to be included.

As a compromise between the two options, an adaptive interference model is pro-

posed in this thesis. This model is based on 2-hop interference model. The proposed

model increases the interference range in hops from two to a higher value. The interfer-

ence range in hops is chosen using an algorithm, which takes the physical layer, network

geometry, and deployment environment into consideration. The proposed model keeps

the simplicity of 2-hop interference model, allowing distributed implementation and

fast network construction. At the same time, it significantly reduces the packet loss

rate in comparison with 2-hop interference model.

5.1 Path-Loss and Radio Modeling

The adaptive interference model defines the interference range of each node in number of

hops. To choose the interference range, the worst-case scenario, in regards to positions

of the transmitter, the receiver, and the interfering node is identified. Then, the signal-

to-noise ratio is estimated and the interference range adjusted so that the value of

the signal-to-noise ratio remains under the maximal allowed threshold value. This

maximal threshold value is denoted by SNRthr. To estimate the signal-to-noise ratio

value, two dependencies must be approximated using an appropriate model. These are

the dependency of signal strength on distance from the signal origin (defined by the

path-loss model) and bit error rate from signal to noise ratio (defined by the radio

model). To achieve good performance, these two models must be chosen and adjusted

to achieve a good match with real-world values.

The path-loss and the radio model should be chosen and adjusted for every appli-

cation separately. To achieve the best results, the dependencies calculated using these

models should be compared and fitted with measurement results. If this is not possible,

the adaptive interference model can still be used, but it might not be as effective. If the

application allows for that, the interference range may always be adjusted on-site, by

observing the protocol performance. Namely, the interference range is always an integer
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value (number of hops). Therefore, if the interference range estimated is higher or lower

than the optimal one, detected by observing performance drop, it can be increased or

decreased manually.

In the general case, when precise adjustment of the path-loss model is not possible,

two-ray ground-reflection model can be used. In this thesis, all algorithms and guide-

lines use this model. It is shown, using a real-world example, that this model performs

well in the case of networks deployed in outdoor areas. For networks deployed indoors,

this model can be fitted, by adjusting the model parameters.

Two-ray ground-reflection model calculates path loss L using the equation:

L = GtGr
h2th

2
r

dk
. (2)

In this equation, Gt and Gr are gains of transmitter and receiver respectively. Values

ht and hr are the heights of transmitter and receiver. Term d is the distance between

receiver and transmitter and k is a coefficient dependent on the environment geometry.

In the case of the outdoor networks, k is equal to two. In the case of networks located

indoors, the value of this parameter varies between two and four, based on the building

geometry.

The dependency of bit error rate on the signal-to-noise ratio is defined primarily by

the modulation scheme used for wireless communication. Models for many modulation

schemes exist in WSN simulators like OMNeT++. These dependencies can also be

adjusted based on measurement results if needed. For the application of the adaptive

interference model, this is less critical, since deviations are usually lower than for path-

loss.

To show that these models can be used to accurately represent real-world sensor

networks, measurement results published in [60] were used. The measurements were

performed using RC1780HP radio modules. To estimate the range and expected packet

loss in a sensor network comprised of these modules, they were placed alongside a

highway section. To perform the measurements, one main node (called gateway because

it has access to the internet) transmits packets to every other node. The other nodes

are placed at different locations, to obtain dependencies on the node distance. The

gateway was configured to send seven packets to each node, every six and half hours.

The system was running for almost three months. For calculation of the interference

range, and later for the evaluation of the proposed interference range model, two-ray

ground reflection models and QPSK modulation model from OMNeT++ were used.

A comparison of the results obtained using these two models with the measurement

results is shown in Fig. 70. The graphs in the figure show a very close match between
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the simulated and measured radio performance. This justifies the suitability of the

proposed approach for estimating interference due to parallel transmissions.

(a) Received signal strength (b) Packet loss ratio

Figure 70: Comparison of measured and simulated signal strength and packet loss rate
values.

5.2 Selecting the Interference Range

The first step in the interference range selection is the choice and adjustment of path-

loss and radio models, as explained in Section 5.1. Afterward, the maximum allowed

signal-to-noise ratio SNRthr should be chosen based on the maximal permitted packet

loss rate in the network and the radio model (dependence of bit error rate on signal-to-

noise ratio). In a general case, the signal-to-noise ratio at the receiver is expressed as

the ratio of powers of the useful signal (signal originating from the transmitter) and all

other signals (radio noise). The radio noise includes background noise and signals from

all interfering transmissions. To simplify calculations, adaptable interference model

assumes that the power of background noise is negligible. Furthermore, only the closest

interference source, the node located at the number of hops equal to the interference

range, is considered. Under these assumptions, signal to noise ratio is given by:

SNR =
Ptx

Ptxi

. (3)

In this equation, Ptx denotes the power of signal coming from the transmitter, while

Ptxi denotes signal power coming from the closest interfering transmitter. If both of

these radio modules are identical, i.e., have identical antenna gains and are located

at the same height, the signal-to-noise ratio can be expressed in terms of distances

between the receiver and the transmitter. Distance between the transmitter and the

receiver is denoted by dtx and between the transmitter and the interference source by
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dtxi . Using equation 2 and expressing signal to noise ratio in a more commonly used

unit, decibel-milliwatts, SNR at the receiver can be defined as:

SNRdBm = k · 10 log10
dtxi

dtx
. (4)

As this equation shows, signal to noise ratio is dependent on these two distances; the

distance between the receiver and the transmitter and the receiver and the interfering

node.

After the SNRthr is defined, the interference range in hops should be selected

so that the signal-to-noise ratio, given by equation 4, is lower than SNRthr. The

distance between the receiver and the transmitter is always fixed for the given receiver-

transmitter pair. To reduce the signal-to-noise ratio, the distance to the interfering

node should be increased by increasing the interference range in hops. Therefore, it

makes sense to consider the ratio of these two distances. This ratio is called interference

ratio and can be calculated as: m =
dtxi
dtx

. Based on equation 3, the value of interference

ratio m should satisfy the following condition:

m ≥ 10
SNRthr

dBm
10k . (5)

To select the interference range, the value of the interference ratio should be ex-

pressed in terms of the interference range. To do so, the node placement that results

in the lowest possible signal-to-noise ratio should be identified. The worst-case node

placement in the general case is already published in [15] by the author of the the-

sis. However, such a worst-case is extremely unlikely in real-world sensor networks,

resulting in an unnecessarily high interference range. In real-world applications, two

nodes are rarely very close to each other. Instead, in many cases, minimal and maximal

distances between two nodes in a network can be approximated. In this thesis, a more

generalized adaptive interference model compared to the one in [15] is proposed.

Let ∆min and ∆max be minimal and maximal distances between two nodes and R

the maximal radio range. The worst-case scenario can be identified for each interference

range value in hops, and the interference ratio expressed in terms of ∆min and ∆max.

When the interference range equal to two hops is considered, there are multiple cases,

depending on the ratio between ∆min and radio range R. Two of these cases are

illustrated in Fig.71.

In the first case, the value of radio range satisfies the relation R < 2∆min. The worst-

case node placement for this value is shown on Fig. 71a. In this case, the interferer,

node i, is at the distance equal to 2∆min from the receveir, node r. The transmitter,
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R
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(b) The second case, 2·∆min ≥ R < 3·∆min

Figure 71: Worst case scenarios when interference range of 2 hops is used.

node t, is located at the highest possible distance, equal to ∆max. The interference ratio

is given by m = R
2∆min

. In the second case, Fig. 71b, relation 2∆min ≥ R < 3∆min

holds. In this case, the interference factor is given by m = R
3∆min

.

To define an algorithm for selecting the interference range, it is necessary to de-

termine the interference ratio m in the general case. The distance between two nodes

that are two hops away from each other can be expressed in the general case as an

integral multiple of ∆min. Let n be the result integer division of radio range and

∆min, n = R/mod∆min. Then, the minimal distance between two nodes two hops

away from each other can be expressed as n∆min + ∆min. As the interference range

in hops increases, the distance between the receiver and the interfering node increases.

If the interference range in hops is denoted by rint, then the interference ratio can be

expressed as:

m =
n(rint − 1)∆min +∆min

∆max
. (6)

Based on this equation, an algorithm for selecting interference range, algorithm 4

is designed. At the beginning, line 1, values of parameters dependent on network

properties, SNRthr and k , are chosen. The value of SNRthr is set based on radio

properties and desired maximal acceptable packet loss value. Path-loss coefficient k is

chosen based on the network deployment environment. Values ∆min and ∆max are set

based (line 2) on the estimation of distances between nodes in the network. Next, the

value of n is calculated, and the interference range is initialed to two. Then, value of

m is initialized using equation 6. Finally, interference range is incremented in while a

loop, line 6, until the value of ratio m satisfies the relation given by equation 5. The

value of the interference range after the termination of the while loop is the selected

interference range value.

5.3 Evaluation

The effectiveness of the adaptive interference model is strongly dependent on the relative

positions of the transmitter, receiver, and all interfering nodes. Hence, the interference

range value, which performs well in one particular case, might perform poorly in the
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Algorithm 4 Interference range selection

Select SNRthr and k
Estimate ∆min and ∆max

n← R mod ∆min

rint ← 2
m = n(rint−1)∆min+∆min

∆max

while m < 10
SNRthr

dBm
10k do

rint = rint + 1
m = n(rint−1)∆min+∆min

∆max

second. The adaptive interference model selects a range value that performs well in

all networks that satisfy predefined topology constraints. Therefore, for the evaluation

to be relevant, it must use a large number of randomly generated networks. As this

can only be achieved using a simulator, OMNeT++ was used to evaluate the adaptive

interference model.

Previous chapters analyzed the effects of schedule length and slot order on packet

propagation in the network. Therefore, interference between parallel transmissions was

not of primary concern, and the ideal radio model usage was appropriate. However,

an accurate physical layer model is crucial for evaluating interference models using

a simulator. For these reasons, the scalar radio model from OMNeT++ is selected.

Furthermore, this model was fitted using measurement results to ensure realistic results.

The scalar radio model calculates the average signal-to-noise ratio during each re-

ception. To do so, the scalar radio model averages values of all detectable signals

during a reception. Then, the bit error and packet loss ratios are calculated based on

the modulation scheme used. Finally, a random number generator is used to decide if

the packet reception is successful or not, based on the number drawn and the packet

loss rate calculated.

The adaptive interference model considers many parameters, including deployment

environment, radio properties, and network topology. In this thesis, the evaluation is

performed in two different cases. The availability of the measurement results influenced

this choice. In both cases, an outdoor network consisting of nodes equipped with

RC1780HP radio modules is considered.

The evaluation is performed using a large number of randomly generated linear net-

works. Linear topology is chosen because the primary source of packet loss in each linear

sub-network is the transmitter-receiver with the lowest signal-to-noise ratio. Namely,

for each receiver, the closest interfering transmitter is always located at the number of

hops equal to the interference range. The packet loss ratio caused by this interfering
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node depends on the interference ratio m, which depends on the node placement. The

receiver-transmitter pair with the lowest value of interference ratio is the bottleneck for

the sub-network it is located in. Such a pair can cause the loss of many packets, which

previously traversed multiple hops.

As the network height increases, the chance of an unfavorable node placement, which

would cause a high packet-loss ratio, increases significantly. Therefore, it is concluded

that network heigh rather than size, makes the network more sensitive to interferences.

For the evaluation, two cases are considered. The difference between the two cases

is the size of the data packet transmitted by the nodes; it is 20 in the first and 100

bytes in the second case. The larger the packet size, the larger the signal-to-noise ratio

required for achieving an acceptable packet loss value. In the first case, SNR value of

8 dBm is sufficient, while in the second case, it must be increased to 10 dBm. This

results in the interference range increasing from three to four. In both cases, network

size is varied from 8 to 32 nodes. For each network size, ten different random networks

are generated. Networks are generated so that ∆min is 500m and ∆max is 1500m. The

radio range is 2000m, according to the radio model (Fig. 70b).

5.3.1 Small Packet Case (20 Bytes)

In the first case considered, all data packets generated by sensor nodes have equal

size; they are 20 bytes large. By analyzing bit error ratio vs. signal-to-noise ratio

dependency, it is concluded that a signal-to-noise ratio of 8 dBm (SNRthr) or higher will

result in a sufficient packet delivery ratio. Based on equation 5, the minimal interference

ratio required to achieve this value of SNRthr can be calculated. By substituting all

values into equation 5, including k = 2 for outdoor scenario, the minimal interference

ratio is m ≥ 10
8
20 = 2.5. The next step is to select the interference range that will

guarantee an interference ratio greater or equal to this value. The algorithm starts

with an interference range of two hops, rint = 2, and increases it until the condition is

met. In the first step, when rint = 2, the interference ratio is equal to 1.6 (6). This is

lower than the minimum acceptable value; therefore, the interference range is increased

to three. For this interference range value, the minimal interference ratio is m = 3.

As this satisfies the condition, the interference range of three hops is chosen, and the

algorithm terminates.

To evaluate the proposed interference range selection algorithm and, at the same

time, compare the adaptive interference model with the 2-hop interference model, the

interference range is varied from two to four. This is repeated for all ten random

networks of each size. One isolated case is considered before summarizing results and

giving dependencies on network size. This is the case of one network comprised of

100



20 nodes and the network sink. Dependencies of network throughput and fairness on

packet generation rate, in the case of all three interference range values, are shown in

Fig.72.

(a) Throughput. (b) Fairness.

Figure 72: Dependencies of throughput and fairness on packet generation rate in the
case of a network with 20 nodes.

The results show that the interference range selected by the proposed algorithm,

three hops, results in the best performance. Compared with the interference range of

four hops, the chosen value results in higher throughput and fairness for all packet

generation rates. On the other hand, the usage of the 2-hop interference range results

in poor data delivery fairness, as the graph in Fig. 72b clearly shows. In this case,

the throughput changes with the increased packet generation rate differently. In the

beginning, it increases slower; however, it keeps rising after the throughput for the other

interference range enters saturation. Eventually, it reaches values larger than when the

three-hop interference range is selected. This happens when the packet generation rate

reaches 200 packets per second; the value at which fairness drops below 50%. Therefore,

the performance is not better, but most of the packets from the upper levels are lost

due to interference. This allows nodes close to the sink to pass many packets to the

sink, resulting in high throughput and low fairness.

The evaluation of the small packet case included 70 different networks of seven

different sizes. The maximal generation rate is calculated for each network and inter-

ference range to summarize these results and represent them graphically. The maximal

generation rate is defined as the generation rate at which the packet delivery fairness

reaches the value of 90%. The results are then averaged for each network size. This

gives the dependency of the maximal throughput on network size for different inter-

ference range values. The results are plotted in Fig. 73. The results show that the

proposed interference range value, three hops, achieves the highest throughput for all

101



network sizes. Additionally, the results show that the proposed adaptive interference

model significantly improves over the 2-hop interference model for all network sizes.

Figure 73: Maximal packet generation rate versus network size when 20 bytes long
packets are used.

5.3.2 Large Packet Case (100 Bytes)

In this case, all data packets have the size of 100 bytes. Due to the larger packet size,

the same bit error ratio will result in a higher packet error ratio than the first case

(packet size of 20 bytes). Therefore, a lower bit error rate is targeted to meet the

same performance requirements. Based on radio properties, a threshold signal-to-noise

ratio value of 10 dBm is chosen in this case. By substituting this signal-to-noise ratio

value into (5), a minimal interference ratio value of 3.2 is obtained. Therefore, the

interference range must be increased to four to meet this demand.

The same set of simulations as for the small packet size is repeated to evaluate

the adaptive interference model. Then, maximal throughput is calculated for each

network and interference range. Finally, results are averaged over all networks with

the same size to obtain dependency on network size. The results are shown in Fig .74.

In this case, the interference range selected by the algorithm performs worse than the

three-hop interference range when the network size is smaller than 20 nodes. The

explanation is that the adaptive interference model chooses the interference range that

would perform well in the worst-case node placement. However, when the network size

is small, the chance of an unfavorable node placement is small, and a lower interference

range performs better in most of the simulated networks. This results in a higher

throughput on average. On the other hand, as network size increases, the chance of an

unfavorable node placement gets higher, and the selected interference range performs

better in most of the networks considered.
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Figure 74: Maximal packet generation rate versus network size when 100 bytes long
packets are used.

5.4 Conclusion

State-of-the-art TDMA protocols use either the two-hop interference model or a real-

istic interference model to determine which nodes may transmit in parallel (share a

time slot). Two-hop interference model allows for distributed implementation and fast

network construction times; however, it lacks accuracy, resulting in a higher packet loss

ratio due to interference. On the other hand, realistic interference models effectively

reduce interference and lower network packet loss rate. However, they are complex to

implement, result in a long network construction time and require the usage of addi-

tional hardware modules. Adaptive interference model proposed in this chapter achieves

a compromise between these two options. It can be used instead of the two-hop interfer-

ence model with no modifications, keeping all the benefits the two-hop model offers. At

the same time, it reduces interference and, subsequently, packet loss ratio significantly.

The improved performance is confirmed through extensive simulations, which employ

realistic radio and path-loss models.
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6 Conclusion

Technological advances are leading to more widespread use of wireless sensor networks

and their penetration into new fields and application scenarios. In some of these areas,

device cost is a limiting factor, either due to the need for extensive networks (meaning a

vast number of nodes) or for commercial reasons. Using complex standardized protocols

is not an option in these applications due to costs and energy efficiency. When such

networks require high throughput, custom TDMA protocols are the most common

choice to achieve that using low-cost and energy-efficient hardware. This thesis studies

this problem and provides guidelines for achieving the best results when designing a

network stack for such a network.

The first contribution of the thesis is a comparative evaluation of state-of-the-art

TDMA scheduling algorithms. No such study was previously done, to the best of the

author’s knowledge. Instead, very limited data was available about the performance

of the existing scheduling algorithms; this made an algorithm selection for a particular

application a guessing game. This thesis tested the six most advanced state-of-the-art

scheduling algorithms using simulations performed on over 200 randomly generated

networks. The results allow selecting the most appropriate algorithm for a particular

application and estimating the throughput it can achieve.

The second contribution is M-TreeMAC, a TDMA protocol that improves perfor-

mance when slot duration is longer than the transmission time of the data packets.

State-of-the-art TDMA protocols are not considering multiple packet transmissions in

a single time slot that occur in this case, leading to reduced fairness and increased

packet delay. The proposed M-TreeMAC calculates the number of slots required by

each node, taking into consideration multiple packet transmissions within the same

slot. Its scheduling algorithm is a modification of the scheduling algorithms used by

TreeMAC, hence the name. The proposed approach reduces average packet delay by

up to 30%. Furthermore, a topology optimization algorithm is proposed. When this

algorithm is combined with M-TreeMAC, delay can be reduced even more, up to 50%

in comparison with TreeMAC.

The final contribution of this thesis is an adaptive interference model. Most TDMA

protocols use the 2-hop interference model for scheduling parallel transmissions. This

model allows centralized implementation and fast network construction. However, this

model lacks accuracy, resulting in interference and an increased packet loss ratio; the

impact of this effect becomes more pronounced as the network depth increases. The

proposed adaptive interference model offers increased accuracy compared to the 2-hop

interference model while keeping its simplicity; it can be used instead of the 2-hop
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model without extensive modification, keeping centralized implementation and short

network construction times. The evaluation of this model shows that its usage benefits

networks with ten or more levels. Furthermore, if the network height is 15 hops or

larger, the maximal throughput can be increased by over 80%.

This thesis proposes multiple solutions for increasing data throughput in the con-

sidered scenario. Nonetheless, there are still possibilities for future research. The most

important topic to be researched is experimental evaluation of the adaptive interference

model. This interference model was developed using a realistic radio model based on

measurement results. Even though such model offers high precision, it is redoubtable

that it deviates from real-world measurement to a some extent. Thus, the adaptive

interference model can be further improved by adjusting it based on experimental re-

sults.

Besides that, there are two other possible directions for further research. The first

one considers the recommendation for selecting the most appropriate schedule calcula-

tion protocols. This could be extended further and defined in a more formal manner.

However, this would require a huge number of simulation. This thesis conducted simu-

lations on 200 different networks. And for a more formal definition, around four times

that number should be required, according to the author’s estimation. The second

topic for a further research is extending M-TreeMAC to advanced schedule calculation

algorithms, like Park’s algorithm. This would improve these algorithms even further,

in scenarios where multiple packet transmissions in a single time slot are common.

105



References

[1] S. Zhang and H. Zhang, “A review of wireless sensor networks and its applications,”

in 2012 IEEE International Conference on Automation and Logistics, pp. 386–389,

2012.

[2] S. R. Jino Ramson and D. J. Moni, “Applications of wireless sensor networks — a

survey,” in 2017 International Conference on Innovations in Electrical, Electronics,

Instrumentation and Media Technology (ICEEIMT), pp. 325–329, 2017.

[3] S. Duquennoy, B. Al Nahas, O. Landsiedel, and T. Watteyne, “Orchestra: Robust

mesh networks through autonomously scheduled tsch,” in Proceedings of the 13th

ACM Conference on Embedded Networked Sensor Systems, SenSys ’15, (New York,

NY, USA), p. 337–350, Association for Computing Machinery, 2015.

[4] K.-H. Phung, T. T. Huong, D. Khanh Dung, V. X. Tuong, T. Pham, T. Nguyen,

and K. Steenhaut, “A scheduler for time slotted channel hopping networks sup-

porting QoS differentiated services,” in 2018 International Conference on Advanced

Technologies for Communications (ATC), pp. 232–236, 2018.

[5] R. Tavakoli, M. Nabi, T. Basten, and K. Goossens, “Enhanced time-slotted channel

hopping in WSNs using non-intrusive channel-quality estimation,” in 2015 IEEE

12th International Conference on Mobile Ad Hoc and Sensor Systems, pp. 217–225,

2015.

[6] “ISA-100.11a-2009,” An ISA Standard, Wireless systems for industrial automa-

tion: Processcontrol and related applications., 2009.

[7] J. Song, S. Han, A. Mok, D. Chen, M. Lucas, M. Nixon, and W. Pratt, “Wire-

lesshart: Applying wireless technology in real-time industrial process control,” in

2008 IEEE Real-Time and Embedded Technology and Applications Symposium,

pp. 377–386, 2008.

[8] D. Gislason, Zigbee Wireless Networking. USA: Newnes, pap/onl ed., 2008.

[9] “IEEE standard for low-rate wireless networks,” IEEE Std 802.15.4-2015 (Revision

of IEEE Std 802.15.4-2015), 2020.

[10] N. Mirza and A. N. Khan, “Bluetooth low energy based communication framework

for intra vehicle wireless sensor networks,” in 2017 International Conference on

Frontiers of Information Technology (FIT), pp. 29–34, 2017.

106



[11] H. Choi, J. Wang, and E. Hughes, “Scheduling for information gathering on sensor

network,” Wireless Netw., vol. 15, pp. 127–140, Aug. 2007.

[12] J. Park, S. Lee, and S. Yoo, “Time slot assignment for convergecast in wireless

sensor networks,” Journal of Parallel and Distributed Computing, vol. 83, pp. 70–

82, 2015.

[13] N.-L. Lai, C.-T. King, and C.-H. Lin, “On maximizing the throughput of converge-

cast in wireless sensor networks,” in Advances in Grid and Pervasive Computing,

pp. 396–408, 2008.
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[26] M. Piñuela, P. D. Mitcheson, and S. Lucyszyn, “Ambient rf energy harvesting in

urban and semi-urban environments,” IEEE Transactions on Microwave Theory

and Techniques, vol. 61, no. 7, pp. 2715–2726, 2013.

[27] K. S. Adu-Manu, N. Adam, C. Tapparello, H. Ayatollahi, and W. Heinzelman,

“Energy-harvesting wireless sensor networks (EH-WSNs): A review,” ACM Trans.

Sen. Netw., vol. 14, apr 2018.
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