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Abstract

In this thesis we consider a residential heating system equipped with several heat production and
consumption units and investigate the stochastic optimal control problem for its cost-optimal
management. As a special feature the manager has access to a geothermal storage which allows
for inter-temporal transfer of heat energy by storing leftover solar thermal energy generated in
summer for satisfying demand later. It is charged and discharged via heat exchanger pipes filled
with a moving fluid. Further, the manager of that system faces uncertainties about the future
fuel price and heat demand.

The main goal is to minimize the expected aggregated cost for generating heat and running
the system. This leads to a challenging mathematical optimization problem. The optimiza-
tion problem is formulated first as a non-standard continuous-time stochastic optimal control
problem for a controlled state process whose dynamics is described by a system of ordinary
differential equations (ODEs), stochastic differential equations (SDEs) and a partial differential
equation (PDE).

In order to convert the problem into an optimization problem for a controlled diffusion
process in standard form, the PDE (heat equation), which describes the temperature distribution
in the geothermal energy storage, is first converted into a high-dimensional system of ODEs
by semi-discretizing the space variables and its stability is investigated. The subsequent time-
discretization and the associated stability analysis for the finite difference scheme used makes
it possible to numerically simulate the spatio-temporal temperature distribution in the storage.
This also makes it possible to compute some aggregated characteristics which are useful for the
operation of the geothermal energy storage embedded in the residential heating system. They
describe the input-output behavior of the geothermal storage and the associated energy flows as
well as its response to charging and discharging processes.

Since knowledge of these aggregated characteristics is sufficient for the cost-optimal man-
agement of the heating system, model order reduction (MOR) method is used in a second step
to the solution of the associated optimal control problem. This replaces the high-dimensional
system of ODEs obtained by the semi-discretization of the heat equation by a suitable low-
dimensional system that approximates the input-output behaviour of the dynamics of the geother-
mal energy storage sufficiently accurate. First, the linear time-varying system of ODEs is
approximated by a suitable linear time-invariant system. This allows the Lyapunov balanced
truncation MOR method to be applied.

Finally, we investigate the solution of the resulting standard optimal control problem for a
controlled multi-dimensional diffusion process using dynamic programming methods and de-
rive the corresponding Hamilton-Jacobi-Bellman (HJB) equation. However, no analytical solu-
tion of the HJB equation can be expected for the control problem under investigation. Therefore,
we transform the continuous-time optimal control problem into a discrete-time control problem
for a controlled Markov chain with finitely many states by discretizing both the time and the
states. After determining the transition probabilities, the problem is solved using methods from
the theory of Markovian decision processes.

The thesis presents results of extensive numerical experiments carried out with the devel-
oped methods. Results of a first group of experiments show the dependence of the input-output
behaviour of the geothermal energy storage on the topology and arrangement of the heat ex-
changers pipes and on the timing sequence of the charging and discharging processes. A second
group of experiments illustrates the efficiency of the applied MOR methods. Finally, numeri-
cal results are presented which reveal typical properties of the value function and the optimal
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strategy of the optimization problem.
We end this thesis by describing some alternative methods to overcome the curse of di-

mensionality. These methods include Least Square Monte Carlo and Approximate Dynamic
Programming.
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Kurzfassung

In dieser Arbeit betrachten wir ein mit mehreren Wärmeerzeugungs- und -verbrauchseinheiten
ausgestattetes Gebäudeheizungssystem und untersuchen ein stochastisches Optimalsteuerungs-
problem für dessen kostenoptimale Bewirtschaftung. Als Besonderheit steht dem Manager des
Heizungssystems ein Erdwärmespeicher zur Verfügung, der eine zeitliche Übertragung von
Wärmeenergie ermöglicht, indem die Überproduktion von Solarwärme z.B. im Sommer für
die spätere Deckung des Wärmebedarfs gespeichert wird. Die Be- und Entladung erfolgt über
Wärmetauscherrohre, in denen eine Flüssigkeit zirkuliert. Der Manager dieses Systems muss
seine Entscheidungen unter Unsicherheiten über die Brennstoffpreise und den zu deckenden
Wärmebedarf in der Zukunft treffen.

Das Hauptziel ist es, die zu erwartenden Gesamtkosten für die Wärmeerzeugung und den
Betrieb des Systems zu minimieren. Dies führt zu einem anspruchsvollen mathematischen Op-
timierungsproblem. Das Optimierungsproblem wird zunächst als ein zeitstetiges stochastisches
Optimalsteuerungsproblem in Nichtstandardform formuliert, bei dem die Dynamik des ges-
teuerten Zustandsprozesses durch ein System gewöhnlicher Differentialgleichungen (ODEs),
stochastischer Differentialgleichungen (SDEs) und einer partiellen Differentialgleichung (PDE)
gegeben ist.

Um das Problem in ein Optimierungsproblem für einen gesteuerten Diffusionsprozess in
Standardform zu überführen, wird zunächst die PDE (Wärmeleitgleichung), welche die Tempe-
raturverteilung im Erdwärmespeicher beschreibt, durch Semidiskretisierung der Raumvariablen
in ein hochdimensionales System von ODEs überführt und es wird dessen Stabilität gezeigt. Die
anschließende Zeitdiskretisierung und die zugehörige Stabilitätsanalyse für das verwendete Dif-
ferenzenverfahrens ermöglicht die numerische Simulation der räumlichen und zeitlichen Tem-
peraturverteilung im Speicher. Damit gelingt es auch, wichtige Kenngrößen für den Betrieb
des Erdwärmespeichers innerhalb eines Heizungssystems zu berechnen. Diese beschreiben das
Input-Output-Verhalten des Speichers und die damit verbundenen Energieflüsse sowie dessen
Antwort auf Lade- und Entladevorgänge.

Da die Kenntnis dieser Kenngrößen ausreichend für die kostenoptimale Bewirtschaftung
des Heizungssystems ist, werden zur Lösung des zugehörigen Optimalsteuerungsproblem in
einem zweiten Schritt Modellreduktionsverfahren eingesetzt. Diese ersetzen das durch die
Semidiskretiseierung der Wärmeleitgleichung entstandene hochdimensionale System von ODEs
durch ein geeignetes niedrigdimensionales System, welches das Input-Output-Verhalten des
Erdwärmespeichers hinreichend genau approximiert. Dabei wird zunächst das lineare zeitvari-
able System von ODEs durch ein geeignetes lineares zeitinvariantes System approximiert. Dies
erlaubt es dann die Lyapunov-Balanced-Truncation-Methode für die Modellreduktion einzuset-
zen.

Schließlich untersuchen wir die Lösung des resultierenden Standard-Optimalsteuerungs-
problems für einen gesteuerten mehrdimensionalen Diffusionsprozess unter Verwendung von
Methoden des Dynamic Programming und leiten die zugehörige Hamilton-Jacobi-Bellman-
Gleichung (HJB) her. Für das untersuchte Steuerungsproblem kann jedoch keine analytische
Lösung der HJB-Gleichung erwartet werden. Daher überführen wir das zeitstetige Optimal-
steuerungsproblem durch Diskretisierung sowohl der Zeit als auch der Zustände in ein zeit-
diskretes Kontrollproblem für eine gesteuerte Markovkette mit endlich vielen Zuständen. Nach
der Bestimmung der Übergangswahrscheinlichkeiten wird das Problem mit Methoden der The-
orie der Markovschen Entscheidungsprozesse gelöst.

Die Arbeit präsentiert Ergebnisse umfangreicher numerischer Experimente, die mit den
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entwickelten Methoden durchgeführt wurden. Ergebnisse einer ersten Gruppe von Experi-
menten zeigen die Abhängigkeit des Input-Output-Verhaltens des Erdwärmespeichers von der
Topologie und Anordnung der Wärmetauscher und von der zeitlichen Abfolge der Lade- und
Entladevorgänge. Eine zweite Gruppe von Experimenten illustriert die Effizienz der ange-
wandten Modellreduktionsmethoden. Schließlich werden numerische Ergebnisse präsentiert,
welche typische Eigenschaften der Wertfunktion und der optimalen Steuerung des Optimals-
teuerungsproblems sichtbar machen.

Die Arbeit schließt mit der Beschreibung einiger alternativer Methoden zur Lösung der
Kontrollprobleme, mit denen der „Fluch der Dimension“ überwunden werden kann. Zu diesen
Methoden gehören die Least-Squares-Monte-Carlo-Methode und Approximative Dynamic Pro-
gramming.
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CHAPTER 1

Introduction

1.1 Motivation
Climate change and energy dependency require urgent measures for the improvement of energy
efficiency in all areas. District heating and cooling systems play an important role for increasing
energy efficiency in buildings and for including renewable energy sources. Besides of numerous
technical issues also economic issues such as the cost-optimal control and management of such
heating systems play a central role. The latter leads to challenging mathematical optimization
problems which require advanced and sophisticated solution techniques. One of these problems
arising in the optimal management of a residential heating system with access to an additional
geothermal energy storage will be addressed in this thesis.
We consider a residential heating system equipped with a local renewable production unit
such as a solar thermal collector, a non-renewable production unit using fossil fuels such as
oil,gas,coal or power grid, an internal storage (IS) which is a water tank with small capacity, a
geothermal storage (GS) with large capacity, and several consumption units in the house. The
local thermal energy produced by the solar thermal collector is used to satisfy the demand of
the building and the unsatisfied demand must always be satisfied by taking heat from the IS. In
case of overproduction the left over thermal energy is transferred into the IS. A heating system
consisting of the IS and the solar collector is not sufficient because the IS is a small water tank
and cannot store heat for several weeks or months and in winter the demand of thermal energy
is high and the production of the solar collector is low. Hence, one needs to add another heat
production unit into the model. The natural choice will be to fire fuel or use electricity to gen-
erate heat in times of high demand. This option may not be efficient because it does not favor a
manager who wants to minimize the expected aggregated costs for producing heat and running
the system. Therefore, this motivates us to include the GS into our model. As a special feature,
the GS has large capacity which allows for inter-temporal transfer of heat energy by storing
leftover solar thermal energy generated in summer for satisfying demand in autumn and winter.
Further, such thermal storages may help to mitigate peaks in the electricity grid by converting
electrical energy into heat energy.

The manager wants to choose at any time the decision called policy, that will optimize the
performance of the system over some finite time horizon. The decision consists of charging the

1



CHAPTER 1. INTRODUCTION

IS by discharging the GS or discharging the IS to charge the GS, charging the IS by firing fuel,
and do nothing, i.e. waiting. In our model we assume that we can always satisfy the demand.

On the one hand, the production of renewable energies and the heat consumption is affected
by the uncertainties resulting from weather and environmental conditions. On the other hand,
time fluctuations of the market prices for fuel or electricity cannot be predicted or can only be
predicted imperfectly. Therefore, the controller of the heating system has to make decisions
always under uncertainties about the future dynamics of several factors such as the electricity
or fuel prices, and the uncertainty about the future residual demand resulting from the superpo-
sition of the demand for thermal energy in the building and supply of thermal energy of solar
collector.

We have to impose some constraints on the state, meaning that the average temperature in
the IS and GS must always be within certain comfort zone. This leads to a challenging math-
ematical optimization problem. That optimization problem is treated first as a continuous-time
stochastic optimal control problem for a multidimensional controlled state process whose dy-
namics is described by a system of random ordinary differential equations (ODEs), stochastic
differential equations (SDEs) and partial differential equation (PDE). Second, the control prob-
lem is transformed into a Markov decision process (MDP) for a controlled finite state Markov
chain characterized by the associated transition probabilities.

Main objectives. The main goals of this thesis are to:

1) investigate the mathematical modeling and the analysis of the GS and to perform numerical
simulations of its short-term behavior. These simulations support the design and the choice
of the topological structure of the heat exchanger pipes (PHXs) in the GS,

2) embed the GS into a residential heating system and formulate the stochastic optimal control
problem for the cost-optimal management of such heating systems,

3) apply suitable model reduction techniques to reduce the dimension of the state of the GS.
This dimension reduction helps to reduce the complexity of the associated optimal control
problem and to make its numerical solution tractable and more efficient,

4) solve numerically the stochastic optimal control problem to determine the optimal charg-
ing and discharging decisions of the controller of the heating system over a finite decision
making horizon.

Now we give more detailed explanation of our main goals.

Geothermal energy storage. In this thesis we are going to pay special attention to the thermal
storage facilities which help to mitigate and to manage temporal fluctuations of heat supply
and demand for heating and cooling systems of single buildings as well as for district heating
systems. They allow heat to be stored in form of thermal energy and be used hours, days, weeks
or months later. This is attractive for space heating, domestic or process hot water production,
or generating electricity. Note that thermal energy may also be stored in the way of cold.

The first goal of this thesis is the modeling and the analysis of the GSs as depicted in
Fig. 1.1. Such storages gain more and more importance and are quite attractive for residential
heating systems since construction and maintenance are relatively inexpensive. Furthermore,
they can be integrated both in new buildings and in renovations. We consider a 2D-model of
a geothermal thermal energy storage, see Fig. 1.2, where a defined volume under or aside of a

2



1.1. MOTIVATION

Figure 1.1: Geothermal storage: in the new building, under a building (left) and in the renova-
tion, aside of the building (right), see www.ezeit-ingenieure.eu, www.geo-ec.de.

building is filled with soil and insulated to the surrounding ground. Thermal energy is stored
by raising the temperature of the soil inside the storage. It is charged and discharged via pipe
heat exchangers (PHX) filled with some fluid (e.g. water). These PHXs can be connected to a
short-term storage such as a water tank or directly to a solar collector and (heat) pumps move
the fluid carrying the thermal energy. A special feature of the storage in this work is that it is not
insulated at the bottom such that thermal energy can also flow into deeper layers as it can be seen
in Fig. 1.2. This can be considered as a natural extension of the storage capacity since this heat
can to some extent be retrieved if the storage is sufficiently discharged (cooled) and a heat flux
back to storage is induced. Of course, there are unavoidable diffusive losses to the environment
but due to the open architecture, the GS can benefit from higher temperatures in deeper layers
of the ground and serve as a production unit similar to a downhole heat exchanger. Note that in
many regions in Europe the temperature in a depth of only 10 meter is almost constant around
10 ◦C over the year.
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Geothermal storage

Figure 1.2: 2D-model of a GS insulated at the top and the sides while open at the bottom and
spatial temperature distribution.

Geothermal energy storages enable an extremely efficient operation of heating and cool-
ing systems in buildings. Further, they can be used to mitigate peaks in the electricity grid by
converting electrical energy into heat energy (power to heat). Pooling several GSs within the
framework of a virtual power plant gives the necessary capacity which allows to participate in
the balancing energy market. This type of GS was first studied by Bähr et al. [9, 8]. In this
thesis, we extends and complements the results in Bähr et al. [9, 8] where the authors focus on
the numerical simulation of the long-term behavior over weeks and months of the spatial tem-
perature distribution in a GS and the interaction between a GS and its surrounding domain. For
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simplicity charging and discharging was described by a simple source term but not by PHXs.
Here, we focus on the computation of the short-term behavior of the spatial temperature distri-
bution. This is needed for storages embedded into residential heating systems and the study of
the storage’s response to charging and discharging operations on time scales from a few minutes
to a few days. We extend the setting in [8, 9] and include PHXs for a more realistic model of
the storage’s charging and discharging process. However, for the sake of simplicity we do not
consider the surrounding medium but reduce the computational domain to the storage depicted
in Fig. 2.3 by a solid black rectangle. Instead, we set appropriate boundary conditions to mimic
the interaction between storage and environment. For the management and control of a storage
which is embedded into a residential system one needs to know the amount of available thermal
energy that can be stored in or extracted from the storage in a given short period of time. Such
questions can only be answered if one knows the spatial temperature distribution, in particular
around the PHXs. Charging and discharging is not efficient or even impossible if there are only
small differences between the temperatures inside and in the vicinity of the PHXs. Long periods
of (dis)charging may lead to saturation in the vicinity of the PHXs. As a consequence charging
or discharging is no longer efficient and should be stopped since propagation of heat to regions
away from the PHXs takes time.

Aggregated characteristics. For the operation of a GS within a residential system, the con-
troller or manager of that system needs to know certain aggregated characteristics of the spatio-
temporal temperature distribution in the storage, their dynamics and response to charging and
discharging decisions. Note that the latter means to decide whether the fluid is pumped through
the PHXs to the storage or whether it is at rest and pumps are off. Further, if pumps are on,
one has to decide on an appropriate temperature of the fluid. An example of such an aggregated
characteristic is the average temperature in the storage medium from which one can derive the
amount of available thermal energy that can be stored in or extracted from the storage. An-
other example is the average temperature at the outlet which allows to determine the amount
of energy injected to or withdrawn from the storage. Further, the average temperature at the
bottom of the storage allows to quantify the heat transfer to and from the ground via the open
bottom boundary. The above aggregated characteristics can be computed by post-processing
the spatio-temporal temperature distribution in the storage. On the other hand, to derive the
charging and discharging decisions, the manager of the heating system does not need to know
the complete spatio-temporal temperature distribution. It is enough to know a rough approxi-
mation of the dynamics described by a few aggregate quantities such as the average temperature
in the storage and the temperature at the outlet of the heat exchanger pipes. The latter allows
by comparison with the (controllable) inlet temperature to determine the amount of heat energy
that can be charged or discharged in next period of time. Further, during charging that tempera-
ture difference indicates whether the storage is saturated and charging is not no longer efficient
while during discharging the manager can learn if the storage is still ready to deliver energy.

Stochastic optimal control. The second focus of this thesis is the incorporation of a GS into a
residential heating system and its implication to the optimal control problem of the cost-optimal
management of the system. From a mathematical point of view this leads to an interesting and
challenging stochastic optimization problem for a controlled stochastic process whose dynamics
is governed by SDEs, ODEs and a parabolic PDE (heat equation with convection and appro-
priate boundary and interface conditions). The fact that the dynamics of the GS is described
by a PDE is a non-standard feature of the optimal control problem and does not fit to the stan-
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dard framework for stochastic optimal control problems where the state is a multi-dimensional
stochastic process described by a system of SDEs (and ODEs). Further, this non-standard fea-
ture makes the optimal control problem much more difficult and challenging. However, we
replace the PDE describing the dynamics of the temperature in the GS by a system of ODEs
resulting from the semi-discretization w.r.t. spatial variables. Following this approach the com-
plete space-time dynamics of the temperature in the GS is available with any given precision.
Therefore, the state of the optimal control problem becomes a high-dimensional vector. Even
though the optimal control problem is now in standard form, we do not expect to have an ex-
plicit or analytical solution. Also numerically solving will not be tractable and efficient. Since,
we are facing the so-called curse of dimensionality. This leads us to the problem of MOR which
we pay a special attention in this thesis.

Model order reduction. The aim of the MOR is to find an approximation of the dynamics
of the aggregated characteristics describing the storage response to the manager’s charging and
discharging decisions by an appropriate low-dimensional system of ODEs. This will allow for
a dimension reduction of the state process of the optimal control problem. The time-dependent
velocity considered in the dynamics of the GS makes the MOR more demanding and more chal-
lenging. Therefore, we restrict to the case of a piece-wise constant velocity of the fluid in the
PHXs. This is often observed in real-world systems which operate with constant velocity during
charging and discharging if pumps are on, while the velocity is zero if pumps are off. Then the
high-dimensional system of ODEs constitutes a system of linear non-autonomous ODEs since
the system and the input matrices depend on time through the fluid velocity. The latter varies
over time and is only piece-wise constant. Thus, the obtained linear system is not linear time-
invariant (LTI). The latter is a crucial assumption for many of MOR methods. We circumvent
this problem by approximating the model for the GS by a so-called analogous model which is
LTI. The key idea for the construction of such an analogue is to mimic the original model by
a LTI system, where pumps are always on such that the fluid velocity is constant all the time.
During the waiting periods we use at the inlet and outlet boundary the same type of boundary
conditions as during charging and discharging. However, we choose the inlet temperature to be
equal to the average temperature in the PHX. Numerical examples presented in Chapter 3 show
that the analogous system approximates the original system quite well. To the derived linear
LTI system, we apply the Lyapunov balanced truncation model order reduction method which
is well suited for our purposes.

Solving the stochastic optimal control problem using MDP theory. Finally, the resulting
continuous-time stochastic optimal control problem obtained by replacing the dynamics of the
GS by the reduced-order system is now in a standard form and can be solved using well-known
tools in stochastic optimal control. We first explore the solution of the continuous-time stochas-
tic optimal control problem using dynamic programming methods. Applying dynamic pro-
gramming to the continuous-time stochastic optimal control problem enables us to derive the
associated Hamilton-Jacobi-Bellman (HJB) equation. The latter is a nonlinear degenerated PDE
for which an analytical solution is not expected and due the curse of dimensionality, a numerical
solution cannot be expected. Therefore, we discretized the optimal control problem in time to
obtain a continuous-state Markov decision processes (MDPs) with finite time horizon and finite
action space. The optimal policies are found using discrete-time dynamic programming.
MDPs are a class of stochastic sequential decision processes in which the set of feasible actions,
the rewards and the transition kernel depend only on the current state and action and not on past
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states and actions. In the MDP setting a decision rule specifies the action to be chosen at a par-
ticular time. In the problem considered in this thesis the decision rule depends not only on time
but also on the current state. A policy or strategy is a sequence of decision rules which provides
the storage manager a prescription for choosing his actions in any possible future state.

The discrete-time settings require the manager of the heating system to choose his actions
taking into account future consequences because the action chosen at present time affects the
future evolution of the system. Another requirement for the discrete-time setting is that the de-
cisions can only be made at every fix time point, i.e, once an action is taken at current time, the
manager cannot change it before the next time point in contrast to the continuous-time model
where the action can be changed at any time. Further, the dimension of the system must be such
that the computation of the optimal policies is feasible with dynamics programming. Therefore,
special attention is paid to the state and control constraint sets.

Numerical solution of the MDP. For small size systems, the dynamic programming appears to
be tractable approach to find the optimal policies. This fits to our problem when we consider
a low-dimensional reduced-order system of the GS. The application of the dynamic program-
ming leads the so called dynamic programming equation, from which the optimal policies is
computed by solving the associated pointwise optimization problem. In a stochastic setting
finding the optimal policies are challenging due to the complicated nature of the computation of
the conditional expectation appearing in the dynamic programming equation. Further, in many
practical problems no closed-form expressions of this expectation are available and when the
dimension of the system is high it becomes computationally non-tractable. One focus of this
thesis is to find a method of computing this conditional expectation in a very fast and efficient
manner.

Since the actions are state-dependent and the state constraints require the average temper-
ature in the IS and GS to be in some intervals called comfort zones. First, we transform the
continuous state MDP into a MDP for a controlled finite-state Markov chain and express the
conditional expectation in terms of the transition probabilities of the states of the Markov chain.
Second, we transform the reduced order system into a basis where average temperature is up
to a scaling constant the last reduced order state of the GS. This transformation helps in state
discretization since we can allow to use a fine grid only for the last coordinate and use coarse
grid for other coordinates of the reduced order state.

Finally, we construct the transition probabilities such that the numerical computations will
be efficient and very fast. However, when the dimension of the state space is very high, solving
the control problem using the MDP approach may not be efficient. In this case, we have to
resort to an approximate solution using some numerical methods such as least-square Monte
Carlo and approximate dynamic programming. The focus of the last chapter is to describe
some of these methods necessary to overcome the cure of dimensionality.

1.2 Literature Review

Alternative energy systems. District heating and cooling systems comprise a network of pipes
connecting the buildings in a neighborhood, town district or whole city, so that they can be
served from centralized plants or a number of distributed heat producing units. This approach
allows any available source of heat to be used. The inclusion of district heating in future sus-
tainable cities allows for the wide use of combined heat and power (CHP) together with the
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utilization of heat from waste-to-energy and various industrial surplus heat sources as well as
the inclusion of geothermal and solar thermal heat.

The development of future district heating systems and technologies involves energy effi-
ciency and conservation measures as an important part of the technology, see Chen et al. [29].
The design and perspective of low-energy buildings have been intensively analyzed and de-
scribed in Tommerup et al. [114, 115], including concepts like energy efficient buildings, see
Heiselberg [58], zero emission buildings, and plus energy houses, see Abel [1], Neilsen and
Möller [79]. However, such papers mostly deal with future buildings and not with the exist-
ing building stock which, due to the long lifetime of buildings, is expected to constitute the
major part of the heat demand for many decades to come. Furthermore, the "near zero energy
buildings" requirement cannot be achieved by high energy performance buildings alone. The
new buildings have to be fitted with new technologies to produce energy from local renewable
energy sources. These buildings will be both heat consumers and heat producers at the same
time. According to Saeb-Gilani et al. [94], if in some periods more heat is produced than it
is consumed, then energy efficiency requires to transfer the excess heat to storages or to other
buildings, reducing the share of fossil fuels in the energy mix of the network.

Renewable energy sources such as solar thermal collectors and geothermal energy as well
as heat pumps can be integrated in the district heating systems. This will lead to multiple dis-
tributed energy sources of different temperature levels being present in the network at the same
time. Also, instead of having energy sources on the one hand, and heat consumers, on the other
hand, some of the consumers will feed energy into the network at the same time.

Thermal energy storages. Thermal energy storages can significantly increase both the flexibil-
ity and the performance of district energy systems and enhancing the integration of intermittent
renewable energy sources into thermal networks (see Guelpa and Verda [50], Kitapbayev et
al. [65]). Since heat production is still mainly based on burning fossil fuels (gas, oil, coal) these
are important contributions for the reduction of carbon emissions and an increasing energy in-
dependence of societies. Thermal energy storages have attracted the interest of several authors
over the last decades. In Zalba et al. [128] a review has been carried out for the history of
thermal energy storages with solid–liquid phase change and focused in three aspects: materi-
als, heat transfer and applications. An overview of the European and in particular the Spanish
thermal energy storage potential is presented in Arce et al. [7]. The authors show that thermal
energy storages make an important contribution to the reduction of CO2-emissions. In Soltani
et al. [103] the authors provide a comprehensive review on the evolution of geothermal energy
production from its beginnings to the present time by reporting production data from individual
countries and collective data of worldwide production.

The efficient operation of thermal storages requires a thorough design and planning because
of the considerable investment cost. For that purpose mathematical models and numerical sim-
ulations are widely used. We refer to Dahash et al. [32] and the references therein. In that paper
the authors investigate large-scale seasonal thermal energy storages allowing for buffering inter-
mittent renewable heat production in district heating systems. Numerical simulations are based
on a multi-physics model of the thermal energy storage which was calibrated to measured data
for a pit thermal energy storage in Dronninglund (Denmark). Another contribution is Major et
al. [73] which considers heat storage capabilities of deep sedimentary reservoirs. The govern-
ing heat and flow equations are solved using finite element methods. Further, Regnier et al. [92]
study the numerical simulation of aquifer thermal energy storages and focus on dynamic mesh
optimisation for the finite element solution of the heat and flow equations. For an overview on
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thermal energy storages we refer to Dincer and Rosen [38] and for further contributions on the
numerical simulation of such storages to [13, 38, 56, 70, 103, 127].

Lyapunov balanced truncation MOR. The balanced truncation method was first introduced
by Mullis and Roberts [78] and later in the linear systems and control literature by Moore
[77]. The idea of this method is first to transform the system into an appropriate coordinate
system for the state-space in which the states that are difficult to reach, i.e., require a large
input energy to be reached. They are simultaneously difficult to observe, i.e., produce a small
observation output energy. Then, the reduced model is obtained by truncating the states which
are simultaneously difficult to reach and to observe. Among the various model order reduction
methods balanced truncation is characterized by the preservation of several system properties
like stability and passivity, see Pernebo and Silverman [84]. Further, it provides error bounds
that permit an appropriate choice of the dimension of the reduced-order model depending on
the desired accuracy of the approximation, see Enns [41].

Besides the Lyapunov balancing method, there exist other types of balancing techniques
such as stochastic balancing, bounded real balancing, positive real balancing and frequency
weighted balancing, see Gugercin and Antoulas [51]. The Lyapunov balanced truncation model
reduction method applied in this paper was first introduced by Mullis and Roberts [78] and
later in the systems and control literature by Moore [77]. The idea of the balanced truncation
model reduction is first to transform the system into an appropriate coordinate system for the
state-space in which the states that are difficult to reach, that is, require a large input energy to
be reached are simultaneously difficult to observe, i.e., produce a small observation output en-
ergy. This is achieved by simultaneously diagonalizing the controllability and the observability
Gramians, which are solutions to the controllability and the observability Lyapunov equations.
Then, the reduced model is obtained by truncating the states which are simultaneously difficult
to reach and to observe [77]. In the book of Benner et al. [22], an efficient implementation of
MOR methods such as modal truncation, balanced truncation, and other balancing-related trun-
cation techniques is presented. In this book, the authors discussed various aspects of balancing-
related techniques for large-scale systems, structured systems, and descriptor systems. The
results presented in [22] also cover the MOR techniques for time-varying as well as the model
reduction for second- and higher-order systems, which can be considered as one of the major
research directions in dimension reduction for linear systems. In addition, surveys on system
approximation and MOR can be found in [3, 5, 21, 26, 46, 51, 62, 67, 76, 91, 123] and the
references therein.

Optimal control of energy storages. Energy storage is one of the key underpinnings of the vi-
sion of the smart grid which aims to support sustainable energy provisioning across the world.
As shown in Urgaonkar et al.[117], and Vytelingum et al.[124], incorporating storage technol-
ogy into the electricity grid design can significantly improve energy management and result in
huge cost saving in electricity delivery. In fact, the role of storage technology is even more
pronounced when a portion of injected electricity to the grid is obtained from renewable source
(e.g., wind power or solar energy). This is due to uncertain and hardly predictable fluctuations
of renewable energy production due to weather conditions. Energy storage units allow to save
the current excess energy and use it whenever there is energy shortage in the grid, they increase
flexibility in the energy management. Likewise, consumers seeking reduced electricity costs
by shifting electricity purchases away from times of peak tariffs, together with a desire for in-
creased energy self-sufficiency, are beginning to consider an energy storage as a viable option.
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With economically feasible residential storage on the horizon, in recent years researchers have
moved from the analysis of relatively rudimentary and largely uncoordinated battery energy
storage systems to systems of increasing scale and sophistication as well, see Huq et al. [63],
and Levron et al. [69].

It is well-known that energy storages can be used to create profit by trading in the energy
market and taking advantage of the fluctuating energy price by applying an active storage man-
agement, see Bäuerle and Riess [12], Chen and Forsyth [30, 31], Ware [125], Shardin and
Wunderlich[99]. The basic principle is minimize to the intermediate storage and operating
costs, and unavoidable dissipative losses. Note that the energy prices as well as the residual
demand typically do not only vary in time, but are also unpredictable. Therefore, the control
decisions must be made in the face of uncertainty about future energy prices and the future
residual demand. In district energy systems powered by CHP plants, thermal storage can sig-
nificantly increase CHP flexibility to respond to real time market signals and therefore improve
the business case of such demand response schemes in a smart grid environment, see Kitap-
bayev [65]. However, one of the main challenges is to determine the optimal control of the
inter-temporal storage operation in the presence of uncertain market prices. In view of the cur-
rent development of the CHP including exchange of energy between consumers and producers
also the control of smart thermal grids has to be investigated. Here, households or consumers
in the grid are equipped with a solar collector and thermal storage facilities.

Dynamic programming techniques. The dynamic programming can be considered as col-
lection of mathematical tools used to analyze sequential decision processes. The concept of
dynamic programming was first introduced by Bellman in the early 1950s and was extensively
developed and applied in his numerous papers [15, 16, 18, 19] and in his book [17]. These
methods are applied by several authors in different domains of sciences to approach various
problems where inter-temporal relationships are important or the problems where the impact of
the current decisions on future decisions are considered. Here we pay attention to finance and in
particular to energy management sector which fit to the problem that we consider in this thesis.
Edwin et al. [40] used these tools in finance to solve the problem of bond refinancing decision.
There, the use of the dynamic programming methods was motivated by the fact the bonds can
be refunded over time which create a recursive relationship. In Henning and Gregor [112], the
dynamic programming methods are applied to determine the optimal management strategy of a
smart home, which is equipped with a fuel cell, photovoltaic system, an electric car, a battery
and a storage unit for thermal energy. In this paper the fuel cell is used to co-generate heat and
power which are stored in the thermal energy storage unit and battery, respectively. Further,
many other recent applications of the dynamic programming methods in the computation of the
optimal management decision of the energy system are given in [42, 59, 72, 104, 126, 130],
whereas for other applications in finance we refer to [28, 105] and the references therein.

MDP methods. Several authors used the MDP approach to solve problems in different domains
of science. For example Puterman [90] applied the MDP approach to solve many problems in
different domains, among which maintenance and engine replacement problems, and inventory
management problem. Another important contribution in this domain is the book by Bäuerle
and Rieder [11]. In this book the authors described the MDP methods for finite, random, and
infinite time horizon and applied them to solve many problems in finance and insurance. For
further contributions and applications of MDP, see [4, 35, 43, 89] and references therein. How-
ever, in many practical problems, the dimension of the state space is very high and solving the

9



CHAPTER 1. INTRODUCTION

control problem using the MDP approach may not be efficient. In this case, we have to resort
to an approximate solution using some numerical methods such as Least-Squares Monte Carlo
[10, 52, 71, 81] and Approximate Dynamic Programming [2, 88, 101] and references therein.

1.3 Main Contributions
As mentioned above, the main goal is to find a tractable mathematical model of residential
heating systems, in particular, the dynamics of the geothermal energy storage and to determine
the manager’s optimal charging and discharging decisions that minimize the cost for generating
heat and running the system equipped with several storages and heat production units. The heat
can be generated by the local renewable heat source such as solar thermal collector or by firing
fuel. We also mentioned above that the manager of this system is exposed to uncertainties about
future fuel price and future residual demand. The thesis provides the following contributions.

• We build up the mathematical model of the GS and we incorporate it into the stochastic
optimal control problem of the cost-optimal management of a residential heating system.
To the best of our knowledge a GS has only been considered in Bähr et al [8], where the
authors investigated the long-term simulation of the heat equation. Further, the optimal
control problems considered in this thesis have not been considered yet in the literature.
The optimization problem is not in standard form because one variable of the state process
is described by a PDE.

• We introduce the concept of analogous system. This helps to transform the linear time-
varying system into a linear time-invariant system, suitable for balanced truncation model
order reduction that we apply to reduce the dimension of the state of the GS.

• We solve that PDE describing the dynamics of the GS using finite difference schemes. In
a first step we study the semi-discretization with respect to spatial variables leading to a
system of linear ODEs. In a second step, we consider full space-time discretization and
derive implicit finite-difference schemes.

• We prove that the chosen semi-discretization ensures a system of linear ODEs with a
stable system matrix.

• We provide a detailed stability analysis for the implicit finite-difference schemes of the
fully discretized PDE and establish a stability condition.

• We perform extensive numerical experiments for the GS. In a first group of experiments,
to study its short-term behaviour, where simulations results for the temporal behavior of
the spatial temperature distribution are used to determine how much energy can be stored
in or taken from the storage within a given period of time. Special focus is laid on the
dependence of these quantities on the arrangement of the PHXs within the storage.

• In the second group of experiments, we apply model reduction techniques known from
control theory such as balanced truncation to derive low-dimensional approximations of
aggregated characteristics of the temporal behavior of the spatial temperature distribu-
tion. There, extensive numerical experiments are carried out which show the efficiency
and the accuracy of the method. Simulations show that only a few suitable chosen ODEs
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are sufficient to produce good approximations of the input-output behaviour of the stor-
age. The latter is crucial if the GS is embedded into a residential heating system and the
cost-optimal management of such systems is studied mathematically in terms of optimal
control problems.

• Non-standard optimal control problem is transformed first into a continuous-time optimal
control problem for a controlled degenerated diffusion process. Second, we apply time
discretization to transform the resulting standard continuous-time control problem into a
continuous-state MDP with no discretization error. Finally, we transform the continuous-
state MDP into a MDP for a controlled finite-state Markov chain, where we derive asso-
ciated transition probabilities.

• We construct the transition probabilities of the controlled Markov chain in such away that
the numerical computations of the conditional expectation will be efficient and very fast.

• We solve the MDP for a low-dimensional state numerically and compute the optimal
policies and optimal value function. By means of numerical experiments we investigate
the properties of the value function and the optimal control. This will be helpful for
future solution approaches for MDPs with a higher dimensional state using approximate
solution techniques which are introduced in Chapter 7.

1.4 Outline
We conclude this chapter with an overview of the different chapters of this dissertation. The
thesis consists of 8 chapters and an appendix. The first chapter is devoted to the introduction.

In Chapter 2, a mathematical model for the residential heating system is developed and
based on it a stochastic optimal control problem for the cost-optimal management of this heating
system is formulated.

Chapter 3 describes the semi-discretization with respect to spatial variables of the initial
boundary value problem describing the dynamics of the GS. For the resulting system of linear
ODEs we show that the system matrix is stable and the full space-time discretization is studied
where we derive implicit finite-difference schemes and provide the associated stability analysis.
We also explain numerical approximation of the aggregated characteristics and derive an LTI
analogous model of the GS that mimics the most important features of the original non-LTI
model of the GS. We end the chapter with results of extensive numerical experiments where
we determine how much energy can be stored in or taken from the storage within a given short
period of time.

The formulation of the general model reduction problem is discussed in Chapter 4, where
we present the Lyapunov balanced truncation method which is based on the computation of the
observability and controllability Gramians as solutions of two algebraic Lyapunov equations.
In this chapter, we demonstrate the efficiency of Lyapunov balanced truncation by numerical
experiments for various settings of the output variables describing the aggregated characteristics
of the temperature distribution in the GS.

In Chapter 5, we first reconsider the stochastic optimal control problem that we formu-
lated in Chapter 2, where we replace the PDE describing the dynamics of the GS by a low-
dimensional system of ODEs obtained by applying Lyapunov balanced truncation model order
reduction to a high-dimensional semi-discretized system. Then, we explore its solution using
dynamic programming and derive the associated Hamilton-Jacobi-Bellman (HJB) equation.
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It turns out that the solution of the HJB equation suffers from the curse of dimensional-
ity. Therefore, we discretize in Chapter 6 the problem in time to obtain a MDP and solve it
numerically using backward recursion method. We first discretize the time interval [0,T ] into
finite number of time points and solve the ODEs and SDEs describing the dynamics of the state
variables within a short time interval defined by two arbitrary consecutive time points. Then we
investigate the marginal distribution of individual state variables and the joint distribution of the
correlated variables and formulate the discrete-time stochastic optimal control problem. Fur-
ther, using state-discretization, we approximate the control problem by a MDP for a controlled
finite state Markov chain and investigate the associated transition probabilities. This chapter
ends with intensive numerical experiments where we study the behaviour of the value function
and the optimal strategy with respect to time and different states.

In Chapter 7 we briefly introduce some alternative approximation methods to overcome
the curse of dimensionality in the computation of the value function and the optimal strategy.
These methods include Least Square Monte Carlo and Approximate Dynamic Programming for
solving the discrete-time optimal control problem.

The dissertation ends with a summary of the results and an outlook on some possible future
works in Chapter 8.
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CHAPTER 2

Problem Formulation

Introduction
In this chapter, we consider a mathematical model of a residential heating system equipped
with a GS, see Figure 2.1 and formulate the stochastic optimal problem for the cost-optimal
management that heating system. In this model, we do not describe all the technical details
of heat transfer to and from the consumption units of the building and the contribution of the
solar collector. Instead, we only consider the aggregated residual demand resulting from the
superposition of intermittent demand for thermal energy in the building and supply of thermal
energy of solar collector. The main goal of this chapter is to embed the GS into a residential
heating system equipped with a buffer storage and the renewable heat production unit such as
the solar thermal collector and to formulate the associated cost-optimal management problem.

This chapter is organized as follows. We begin with a brief description of the residential
heating system in Sec. 2.1 and in Sec. 2.2 we describe the control variables. Sec. 2.3 is devoted
to the problem setup in which we describe various state processes of the residential heating
system in continuous-time. In Sec. 2.4 we formulate the stochastic optimal control problem

2.1 Residential Heating System
In this section we briefly sketch the technical functionality of the residential heating system
considered in this work.

This system is designed to provide thermal energy for heating and hot water supply of a
building. Here the notion building is used for single family homes, office buildings, small
companies or even small districts with a couple of buildings sharing a common heat and water
supply. The building is equipped with some local production units for thermal energy such
as solar collectors or other units using renewable energies. The supply of theses units usually
does not meet exactly the demand of thermal energy due to the immanent temporal fluctuations
and seasonality effects in both supply and demand. That imbalance is modeled by a stochastic
process R = (R(t)t∈[0,T ] where R(t) is the residual demand at time t. Details will be given below
in Subsec. 2.3.1

13
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Figure 2.1: Simplified model of a residential heating system

If the demand exceeds the supply from local production then the excess demand R(t)> 0 is
satisfied by an internal buffer storage. It also stores overproduction of thermal energy which is
not needed to satisfy the demand. In that case R(t) is negative. That internal storage is designed
to balance supply and demand on shorter time scales of some hours or only few days. However,
the capacity is not sufficient to serve as buffer for seasonal fluctuations on time scales of weeks
and months.

As often observed in reality, we assume the internal storage to be a stratified hot water
storage tank. The warmest storage layer is at the top and below there are colder layers through
natural layering. For simplicity we assume that the storage can keep a constant temperature p
at the top and also a constant temperature p < p at the bottom. We do not model the vertical
temperature profile in the storage but consider only the storage’s average temperature which is
denoted by P(t) for time t ∈ [0,T ]. Note that P(t)− p is proportional to stored thermal energy
at time t available for extracting whereas p− p and p−P(t) are proportional to the total storage
capacity and the remaining storage capacity for future charging processes, respectively. The
factor of proportionality is the mass times the specific heat capacity of the water in the tank.

Due to its limited capacity the internal storage cannot provide the necessary heat supply for a
permanent or very strong unsatisfied demand of the building. Therefore the system is equipped
with another production unit which is able to generate enough heat also on short time scales
and to prevent the internal storage to become completely empty. That unit may fire fossil fuels
(gas, oil, coal), convert electricity to heat using an immersion heater or obtain additional heat
from a district heating system. In our work we address that unit as a fuel fired boiler but have
the other options in mind. In all cases that heat production comes with additional costs arising
from the consumption of fuel (or electricity or other respective heat sources). We denote the
fuel price at time t by F(t). Uncertainties about the future prices will be captured by modeling
F as a stochastic process. More details will be given below in Subsec. 2.3.1

In periods of permanent or strong overproduction the internal storage may reach its capacity
limits and can no longer accommodate more leftover heat from the local production. In order

14



2.1. RESIDENTIAL HEATING SYSTEM

to enable a later usage of that leftover heat, the heating system is equipped with an additional
external thermal storage which in this work is a geothermal storage. Compared to the internal
storage its capacity is much larger but it is also characterized by a lower temperature level.
Therefore, heat pumps are required for transferring heat from the geothermal to the internal
storage. Further, the transfer of thermal energy to and from the external storage depends on
the often slow operation of heat exchangers. The geothermal storage is characterized by a non-
homogeneous spatial and temporal temperature distribution describes the temperature Q(t,x,y)
of the storage medium at time t and position (x,y). The storage medium is assumed to be dry
soil.

If the internal storage is already (almost) fully charged and there is still overproduction of
thermal energy in the building then heat can be transferred from the internal to the external stor-
age. This is obtained by sending a fluid of high temperature from the internal storage through
the heat exchanger pipes of the geothermal storage. The fluid arrives at the (possibly multiple)
inlets of the heat exchangers with the inlet temperature denoted by QI(t). After passing the
geothermal storage the fluid will leave the heat exchangers with a lower temperature. The aver-
age temperature at the (possibly multiple) outlets is denoted by QO(t) (for details see Subsection
2.3.3). This is also the temperature at which the fluid returns to the internal storage. Since the
efficiency of charging the geothermal storage is improved by increasing the inlet temperature
QI(t), we assume in this work that during charging that temperature is equal to the maximum
available temperature provided by the system which we denote by the constant QI

C.

On the other hand, if the internal storage is (almost) empty and there is still unsatisfied
demand in the building then instead of producing heat from firing fuel, thermal energy can be
also be transferred from the geothermal storage to the internal storage. For that process the
system uses a heat pump for raising the temperature of the fluid arriving from the outlet of the
geothermal storage to a higher level Pin > p. Here Pin is a pre-specified temperature at which
the fluid coming from the heat pump arrives at the internal storage. For simplicity we assume
that Pin is constant. Without such a heat pump the heat transfer would be impossible due to the
lower temperature level in the geothermal storage. The outlet temperature QO usually does not
exceed p, i.e., it will be not high enough to inject heat into the internal storage.

The heat pump connects two cycles in which moving fluids carry heat. A first cycle is
connected to the geothermal storage. The fluid arrives from the storage’s outlet at the inlet of
the heat pump with temperature QO. Due to the operation of the heat pump it leaves the pump
with the temperature QI

D < QO and returns to the inlet of the geothermal storage. The thermal
energy extracted from the fluid of the first cycle is transferred to the fluid in the second cycle.
The latter connects the heat pump with the internal storage. At the pump’s inlet arrives cold
water of temperature Pout which is raised using the extracted heat in the first cycle and additional
electrical energy to the temperature Pin > Pout at which the fluid returns to the internal storage.
In this work we assume for simplicity that the heat pump’s operation is such that in the first
cycle the outlet temperature QI

D is a constant. A modification to the case QI
D(t) = QO(t)−∆

with some fixed temperature spread ∆ is straightforward.

We recall that the geothermal storage is in some sense a hybrid storage since it may also
serve as a production unit due to its open bottom boundary. This allows to use the thermal
energy available in layers of the ground below the storage if the temperature in the storage falls
below the temperature under the storage.

15
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2.2 Control Process
In this section we describe the control variables. We use the notation introduced in the Sec. 2.1.

The GS is charged and discharged via the PHXs connected to the IS and filled with some
fluid. Charging the GS is always by discharging the IS and vice-versa. When we charge the
GS the fluid arrives at the inlet of the GS with a constant temperature of QI

C. This fluid goes
though the GS and the heat propagates to the surrounding medium, leaves the GS and returns
into the IS with a temperature QO < QI

C. When we discharge the GS the fluid arrives at the
inlet of the PHXs with a constant temperature QI

D < QI
C and leaves the GS with some output

temperature QO > QI
D which constitutes the inlet temperature of the heat pump. The heat pump

uses additional electrical to raises the temperature to some constant Pin > p.
We may also charge the IS by firing fuel or using electricity. When the IS is full, we

switch off the pumps and the fuel fired-boiler (we wait or do noting). We assume that charg-
ing/discharging the GS is always at the maximum rate. Further, we assume that discharging or
charging the GS and firing fuel simultaneously is never optimal (does not generate minimum
cost). Therefore, the control u(t) at time t ∈ [0,T ] is determine by the set of labels

{uC,uD,uF ,uW},

with the following meaning.

• The control uC is for charging the IS at the maximum rate by discharging the GS with
fuel fired-boiler off.

• The control uD means discharging the IS at the maximum rate to charge the GS with fuel
fired-boiler off.

• The control uF for heat-production using fuel/electricity at a maximum rate to charge the
IS with pumps off.

• The control uW for pumps off and no heat-production using fuel/electricity.

Now we emphasize on the control uW (pumps and fuel fired-boiler off) for the case of strong
negative residual demand. When the control uW is applied, the change in the temperature of the
IS is only due to the residual demand and the ambient temperature through the Newton’s law of
cooling. This control means do nothing (fuel boiler off, heat pump and conventional pump off).

However, the control uW cannot be applied if we have a strong negative exogenous residual
demand (overproduction of heat by the solar collector that must be stored in the IS) and the
IS and the GS are simultaneously full (charging and discharging not possible). To handle such
cases we introduce another control called over-spilling denoted by uO which is similar to do
nothing or waiting (with zero cost). We assume that during over-spilling the change in the
temperature of the IS is only due to loss to the environment at ambient temperature Pamb by the
Newton’s law of cooling. Hence, the control u(t) at any time t takes values in the set of labels

U = {uO,uD,uW ,uC,uF}.

2.3 Dynamics of the State Variables
In this section we formulate the mathematical model for a residential heating system which
consists of production and consumption units, an internal and an external storage. The various
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2.3. DYNAMICS OF THE STATE VARIABLES

components are connected by pumps among them are heat pumps as well as ordinary pumps.
The pumps control the flow rate between the IS and external storage. The model of the heating
system is depicted in Fig. 2.1. We focus on the interplay of the IS and the GS. The IS allows for
fast operation but has only a small capacity. The capacity of the GS is much higher, but opera-
tion is slow. In order to keep the exposition readable and understandable we restrict our study
to a simple model which captures some physical aspects, but does not take all the engineering
details into account. We setup the model for continuous-time t ∈ [0,T ] where T > 0 is a finite
time horizon.

The state of the control system at t ∈ [0,T ] is given by the following quantities
P(t) average temperature in the IS [◦C]
Q(t) = Q(t,x,y) temperature in the geothermal storage [◦C]
R(t) residual demand [kW]
F(t) energy price [EUR/kWh]

We define the state process by X = (R,F,P,Q)⊤ taking values in some space X .

Uncertainties. The uncertainties are modeled by a 2-dimensional standard Wiener process
W = (WR,WF)

⊤ on [0,T ] defined on a filtered probability space (Ω,G,G,P). The filtration G
is assumed to be generated by (W (t))t∈[0,T ], i.e., G=GW = (GW (t))t∈[0,T ] and G = GW (T ). In
the following, we introduce each component of the state process X .

2.3.1 Residual Demand and Fuel Price

We denote by R(t) the residual demand measured in kW which is the difference of the demand
for thermal energy in the building and supply of thermal energy of solar collector at time t ∈
[0,T ]. Further, we assume that R(t) ∈ R ⊆ R and can be positive or negative. The residual
demand is positive (R(t) > 0) when the demand exceeds supply and negative (R(t) < 0) when
supply exceeds demand (overproduction). The dynamics of the residual demand R(t) is given
by

dR(t) = βR(µR(t)−R(t))dt +σR(t)dWR(t), R(0) = r0 ∈R ⊆ R, (2.1)

with the mean-reversion level is given by

µR(t) = µ̃R(t)+
1

βR

˙̃µR(t). (2.2)

Here, µ̃R(t) : [0,T ]→R is a bounded deterministic differentiable function describing the resid-
ual demand’s seasonality which we describe more detailed below in (2.3). The main idea of the
shift is to have E[R(t)]− µ̃R(t)→ 0, as t → ∞ and E[R(t) | R(0) = µ̃R(0)] = µ̃R(t). For constant
µ̃R the latter holds true but for time dependent function µ̃R(t) the latter only holds true when we
apply the shift (2.2).

Lemma 2.3.1 Under the transformation (2.2), the residual remand given by (2.1) satisfies the
following properties:
E[R(t)]− µ̃R(t)→ 0, as t → ∞ and E[R(t) | R(0) = µ̃R(0)] = µ̃R(t).
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Proof. Using the Itô formula and the integration by part, the closed form solution of the SDE
(2.1) is given by

R(t) = r0e−βRt +
∫ t

0
e−βR(t−s)

βRµR(s)ds+
∫ t

0
e−βR(t−s)

σR(s)dWR(s)

= r0e−βRt +
∫ t

0
e−βR(t−s)

βR

(
µ̃R(s)+

1
βR

˙̃µR(s)
)

ds+
∫ t

0
e−βR(t−s)

σR(s)dWR(s)

= r0e−βRt +
∫ t

0
e−βR(t−s)

βRµ̃R(s)ds+
∫ t

0
e−βR(t−s) ˙̃µR(s)ds+

∫ t

0
e−βR(t−s)

σR(s)dWR(s)

= r0e−βRt +
∫ t

0
e−βR(t−s)

βRµ̃R(s)ds+
[

e−βR(t−s)
µ̃R(s)

]t

0
−
∫ t

0
βRe−βR(t−s)

µ̃R(s)ds

+
∫ t

0
e−βR(t−s)

σR(s)dWR(s)

= r0e−βRt + µ̃R(t)− µ̃R(0)e−βRt +
∫ t

0
e−βR(t−s)

σR(s)dWR(s).

Therefore, E[R(t)]− µ̃R(t)→ 0, as t → ∞. Further, E[R(t) | R(0) = µ̃R(0)] = µ̃R(t).
□
The parameter βR is a constant mean-reversion speed and σR : [0,T ] → R is the deterministic
and positive bounded volatility. For the seasonality functions mentioned above we work with
functions of the form

µ̃R(t) = kR
0 +

M

∑
i=1

kR
i cos

2π(t − tR
i )

δ R
i

, (2.3)

where kR
0 > 0 and kR

i ≥ 0, i = 1, . . . ,M, are constants with kR
0 the long-term mean, kR

i the ampli-
tude of the seasonality, δ R

i the length of the seasonal period and tR
i some time shift parameter

for the i-th seasonality component (representing the time of the seasonal peak of the residual
demand) and M is the number of components. The quantity

1
βR

˙̃µR(t) =−
M

∑
i=1

kR
i

2π

βRδ R
i

sin
2π(t − tR

i )

δ R
i

represents the shift in the seasonality function. A typical choice is M = 2 and δ R
1 = 1 year,

δ R
2 = 1 day, and the reference time tR

1 = tR
2 = 0.

Fuel/Electricity price. The fuel or electricity price F is a stochastic mean reverting process
(with the same structure like (2.1)) given by

dF(t) = βF(µF(t)−F(t))dt +σF(t)dWF(t), F(0) = f0 ∈ F = R, (2.4)

with seasonality µF(t) having the same structure like (2.2). For further simplification, we can
assume that fuel or electricity price is constant or a deterministic function of time. In this case
the dimension of the state process is reduced by one variable.

Assumption 2.3.2 We assume that σR(t) ≥ σR > 0 and σF(t) ≥ σF > 0, for some constants
σR and σR.
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Figure 2.2: Residual demand over a period of one year (left) and a one week zoom in at the
beginning of February (right) with parameters β = 0.5, µR(0) = 47.26, σR = 13.95, kR

0 = 0.56
kR

1 = 55.6, kR
2 = 13.9, δ R

1 = 365, and δ R
2 = 365×24.

Red solid line for the yearly seasonality component, blue solid line for the residual demand,
green solid line for the mean reversion level, magenta solid line for the seasonality function,
and black dotted line for the long-term mean level.

2.3.2 Spatial Temperature Distribution in the Geothermal Storage
In this section we describe the dynamics of the spatial temperature distribution in a GS. In
contrast to the other state variables the temperature in the GS, denoted by Q=Q(t,x,y) depends
not only on time but also on the location in space. Compared to the IS which is a water tank
(buffer storage) the capacity of the GS is much larger but it is also characterized by a lower
temperature level. Therefore, heat pumps are required for transferring heat from the geothermal
to the internal storage. Charging and discharging is not efficient or even impossible if there are
only small differences between the temperatures inside and in the vicinity of the pipes. Long
periods of (dis)charging may lead to saturation in the vicinity of the pipes such that (dis)charging
is no longer efficient and should be stopped since propagation of heat to regions away from
the PHXs takes time. Mathematically, the dynamics of the spatial temperature distribution in
a GS is described by a linear heat equation with convection term and appropriate boundary
and interface conditions. In this model we focus only on the storage without the surrounding
region (see black solid rectangle in Fig. 2.3). These physical effects imply that the cost-optimal
management of a heating system equipped with a GS depends on the space-time dynamics of
the temperature of the storage. The control has to be forward-looking and account for the slow
response of the storage. Therefore, we now study a mathematical model of the evolution of the
spatial temperature distribution inside the storage.

2D-Model

We assume that the domain of the GS is a cuboid and consider a two-dimensional rectangular
cross-section. We denote by Q = Q(t,x,y) the temperature at time t ∈ [0,T ] at the point (x,y) ∈
D = (0, lx)× (0, ly) with lx, ly denoting the width and height of the storage. The domain D and
its boundary ∂D are depicted in Fig. 2.4. D is divided into three parts. The first is DM and is
filled with a homogeneous medium (soil) characterized by constant material parameters ρM,κM

and cM
p denoting mass density, thermal conductivity and specific heat capacity, respectively.

The second is DF , it represents the PHXs filled with a fluid (water) with constant material
parameters ρF ,κF and cF

p . The fluid moves with time-dependent velocity v0(t) along the pipe.
For the sake of simplicity, we restrict to the case, often observed in applications, where the
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Geothermal storage

Figure 2.3: 2D-model of a GS insulated at the top and the sides while open at the bottom and
spatial temperature distribution

pumps moving the fluid are either on or off. Thus the velocity v0(t) is piece-wise constant
taking values v0 > 0 and zero, only. Finally, the third part is the interface DJ between DM and
DF . That interface is split into upper and lower interfaces DJ and DJ , respectively. Observe
that we neglect modeling the wall of the pipe and suppose perfect contact between the pipe and
the soil. Details are given below in (2.11) and (2.12). Summarizing we make the following

Figure 2.4: 2D-model of the GS: decomposition of the domain D and the boundary ∂D.

Assumption 2.3.3

1. Material parameters of the medium ρM,κM,cM
p in the domain DM and of the fluid ρF ,κF ,cF

p
in the domain DF are constants.

2. Fluid velocity is piecewise constant, i.e. v0(t) =

{
v0 > 0, pump on,
0, pump off.
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3. Perfect contact at the interface between fluid and medium.

4. There are nP ∈ N straight horizontal pipes, the fluid moves in positive x-direction.

Heat equation. The temperature Q = Q(t,x,y) in the external storage is governed by the linear
heat equation with convection term

ρcp
∂Q
∂ t

= ∇ · (κ∇Q)−ρv ·∇(cpQ), (t,x,y) ∈ (0,T ]×D\DJ, (2.5)

where the first term on the right hand side describes diffusion, while the second represents
convection of the moving fluid in the pipes. Further, v = v(t,x,y) = v0(t)(vx(x,y),vy(x,y))⊤

denotes the velocity vector with (vx,vy)⊤ being the normalized directional vector of the flow.
According to Assumption 2.3.3 the material parameters ρ,κ,cp depend on the position (x,y)
and take the values ρM,κM,cM

p for points in DM (medium) and ρF ,κF ,cF
p in DF (fluid).

Note that there are no sources or sinks inside the storage and therefore the above heat equa-
tion appears without forcing term. Based on this assumption, the heat equation (2.5) can be
written as

∂Q
∂ t

= a∆Q− v ·∇Q, (t,x,y) ∈ (0,T ]×D\DJ, (2.6)

where ∆ = ∂ 2

∂x2 +
∂ 2

∂y2 is the Laplace operator, ∇ =
(

∂

∂x ,
∂

∂y

)
the gradient operator, and a = a(x,y)

is the thermal diffusivity which is piecewise constant with values aM = κM

ρMcM
p

for (x,y) ∈ DM

and aF = κF

ρF cF
p

for (x,y) ∈DF . The initial condition Q(0,x,y) = Q0(x,y) is given by the initial
temperature distribution Q0 of the storage.

Remark 2.3.4 In real-world GSs heat exchanger pipes are often designed in a snake form lo-
cated in the storage domain at multiple horizontal layers as it is sketched in Fig. 1.2. Typically
there is only a single inlet and outlet. We will mimic that design by a computationally more
tractable design characterized by multiple horizontal straight pipes. On the one hand, this al-
lows to control the different pipes separately. On the other hand, an approximation of the widely
used snake-shaped pipe design can be derived by connecting the outlet of one pipe with the inlet
of the next.

Boundary and interface conditions

For the description of the boundary conditions we decompose the boundary ∂D into several
subsets as depicted in Fig. 2.4 representing the insulation at the top and the side, the open
bottom, the inlet and outlet of the pipes. Further, we have to specify conditions at the interface
between pipes and soil. The inlet, outlet and the interface conditions model the heating and
cooling of the storage via PHXs. We distinguish between the two regimes ’pump on’ and
’pump off’ where for simplicity we assume perfect insulation at inlet and outlet if the pump is
off. This leads to the following boundary conditions.

• Homogeneous Neumann condition describing perfect insulation at the top and the side

∂Q
∂n

= 0, (x,y) ∈ ∂DT ∪∂DL ∪∂DR, (2.7)
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where ∂DL = {0}× [0, ly]\∂DI , ∂DR = {lx}× [0, ly]\∂DO and ∂DT = [0, lx]×{ly}.

• Robin condition describing heat transfer at the bottom

−κ
M ∂Q

∂n
= λ

G(Q−QG(t)), (x,y) ∈ ∂DB, (2.8)

with ∂DB = [0, lx]×{0}, where λG > 0 denotes the heat transfer coefficient and QG(t)
the underground temperature. For more interpretation we refer to Remark 2.3.6.

• Dirichlet condition at the inlet if the pump is on (v0(t) > 0), i.e. the fluid arrives at the
storage with a given temperature QI(t). If pump is off (v0(t) = 0), we set a homogeneous
Neumann condition describing perfect insulation.{

Q = QI(t), pump on,
∂Q
∂n = 0, pump off,

(x,y) ∈ ∂DI. (2.9)

• Do Nothing condition at the outlet in the following sense. If the pump is on (v0(t) > 0)
then the total heat flux directed outwards can be decomposed into a diffusive heat flux
given by kF ∂Q

∂n and a convective heat flux given by v0(t)ρFcF
p Q. Since in real-world

applications the latter is much larger than the first we neglect the diffusive heat flux. This
leads to a homogeneous Neumann condition

∂Q
∂n

= 0, (x,y) ∈ ∂DO. (2.10)

If the pump is off then we assume (as already for the inlet) perfect insulation which is
also described by the above condition.

• Smooth heat flux at interface DJ between fluid and soil leading to a coupling condition

κ
F ∂QF

∂n
= κ

M ∂QM

∂n
, (x,y) ∈DJ. (2.11)

Here, QF ,QM denote the temperature of the fluid inside the pipe and of the soil outside
the pipe, respectively. Moreover, we assume that the contact between the pipe and the
medium is perfect which leads to a smooth transition of a temperature, i.e., we have

QF = QM, (x,y) ∈DJ. (2.12)

Remark 2.3.5 If the contact between the pipe and the medium is not perfect (e.g., in case of
contact resistance) then the transition of the temperature at the interface DJ will not be smooth,
that is, QF ̸= QM. This leads to a temperature jump between the pipe and the medium. That
phenomenon occurs in the heat transfer between the medium and an insulation as shown in [9].

Remark 2.3.6 Imposing the Robin condition (2.8) at the bottom boundary is indeed only an
attempt to mimic the thermal behavior at the bottom boundary. A more realistic description
requires embedding the storage domain D into a larger computational domain including the
surrounding regions as in Fig. 1.2. This allows for warming and cooling in the vicinity of the
storage resulting from the outflow and inflow of the storage heat. Contrary to that, condition
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(2.8) assumes an exogenously given underground temperature QG independent of the tempera-
ture in the storage.

The heat transfer coefficient λG describes the resistance to the heat flux at the boundary.
For the limiting case λG → 0 we get a homogeneous Neumann condition, i.e., perfect insula-
tion, while in the limit for λG → ∞ condition (2.8) is the Dirichlet condition Q = QG(t). The
underground temperature in general shows seasonal fluctuations which can be described by
QG(t) = kG

1 cos
(2πt

Ta

)
+kG

2 , where kG
1 is the intensity of the fluctuation, kG

2 is the average ground
temperature and Ta the number of time units per year. Since our focus is on the short-term
behavior, we assume in the sequel that the underground temperature is constant over time, i.e.
kG

1 = 0.

2.3.3 Aggregated Characteristics
The PDE (2.5) allows to describe the spatio-temporal temperature distribution in the GS. In
many applications it is not necessary to know the complete information about that distribution.
An example is the optimal management of a residential heating system equipped with such
storage that we will consider in Chapter 5. Here it is sufficient to know only a few aggregated
characteristics of the temperature distribution which can be computed via post-processing after
solving the PDE. In this section we introduce some of these aggregated characteristics.

Aggregated characteristics related to the amount of stored energy. We start with aggregated
characteristics given by the average temperature in some given subdomain of the storage which
are related to the amount of stored energy in that domain.

Let B ⊂ D be a generic subset of the 2D computational domain. We denote by |B| =∫∫
B dxdy the area of B. Then WB(t) = lz

∫∫
B ρcpQ(t,x,y)dxdy represents the thermal energy

contained in the 3D spatial domain B× [0, lz] at time t ∈ [0,T ] for lz > 0. Then for 0≤ t0 < t1 ≤ T
the difference GB(t0, t1) = WB(t1)−WB(t0) is the gain of thermal energy during the period
[t0, t1]. While positive values correspond to warming of B, negative values indicate cooling and
−GB(t0, t1) represents the magnitude of the loss of thermal energy.

For B = D†, where † = M,F , we can use that the material parameters on D† equal to the
constants ρ = ρ†,cp = c†

p. Thus, for the corresponding gain of thermal energy we obtain

G† = G†(t0, t1) := GD†(t0, t1) = ρ
†c†

p|D†|lz (Q†(t1)−Q†(t0)),

where Q†(t) =
1

|D†|

∫∫
D†

Q(t,x,y)dxdy, † = M,F, (2.13)

denotes the average temperature in the medium († = M) and the fluid († = F), respectively. We
denote by QS the average temperature in the whole storage. It can be obtained from QM and QF

by

QS(t) =
1
|D|
(
QM(t) |DM|+QF(t) |DF |

)
.

Further, the total gain in the storage denoted by GS is obtained by

GS = GS(t0, t1) = GM(t0, t1)+GF(t0, t1).

Aggregated characteristics related to the heat flux at the boundary. Now we consider the
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convective heat flux at the inlet and outlet boundary and the diffusive heat flux at the bottom
boundary. Let C ⊂ ∂D be a generic curve on the boundary, then we denote by |C| =

∫
C ds the

curve length.
The rate at which the energy is injected or withdrawn via the pipe is given by

RP(t) = ρ
†c†

pv0(t)
[∫

DI
Q(t,x,y)ds−

∫
DO

Q(t,x,y)ds
]

= ρ
†c†

pv0(t)|∂DO|[QI(t)−QO(t)], (2.14)

where QO(t) =
1

|∂DO|

∫
∂DO

Q(t,x,y)ds

is the average temperature at the outlet boundary. Here, we have used that in our model we have
horizontal pipes such that |∂DI| = |∂DO| and a uniformly distributed inlet temperature at the
inlet boundary ∂DI . Note that the fluid moves at time t with velocity v0(t) and arrives at the
inlet with temperature QI(t) while it leaves at the outlet with the average temperature QO(t).
For a given interval of time [t0, t1] the quantity

GP = GP(t0, t1) = lz
∫ t1

t0
RP(t)dt

describes the amount of heat injected (GP > 0) to or withdrawn (GP < 0) from the storage due
to convection of the fluid.

Next we look at the diffusive heat transfer via the bottom boundary and define the rate

RB(t) =
∫
DB

κ
M ∂Q

∂n
ds =

∫
DB

λ
G(QG(t)−Q(t,x,y))ds

= λ
G|∂DB|(QG(t)−QB(t)), (2.15)

where QB(t) =
1

|∂DB|

∫
∂DB

Q(t,x,y)ds

is the average temperature at the bottom boundary. Note that the second equation in the first
line follows from the Robin boundary condition. The quantity

GB = GB(t0, t1) = lz
∫ t1

t0
RB(t)dt

describes the amount of heat transferred via the bottom boundary of the storage.

Energy balance. In our model we assume perfect thermal insulation at all boundaries except
the inlet, outlet and the bottom boundary. At the outlet we impose a homogeneous Neumann
condition describing zero diffusive heat transfer. At the inlet we also have a zero diffusive heat
transfer under the reasonable assumption that the temperature in the supply pipe is constant and
equals QI(t), thus the normal derivative ∂Q

∂n is zero. This implies that gains and losses of thermal
energy in the storage are caused either by injections or withdrawals via the heat exchanger pipes
or by heat transfer via the open bottom boundary. Thus, we can decompose the total gain GS to
obtain the following energy balance

GS = GM +GF = GP +GB.
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2.3.4 Analogous Model

Note that in the dynamics of the GS described by equation (2.5), the velocity v0 = v0(t) is
time-dependent. Further, it is assumed that the fluid velocity is constant v0 during (dis)charging
when the pump is on, and zero during waiting when the pump is off. Thus, the dynamics of
the GS has two regimes, say, pump on and pump off. In order to apply MOR that we consider
later in Chapter 4, the PDE (2.5) together with the boundary condition at the inlet of the pipe
(2.9) need to be slightly modified to obtain a model with only one regime, pump on. The latter
is a crucial assumption for most of model reduction methods such as the Lyapunov balanced
truncation technique. We circumvent this problem by replacing the model for the GS by a
so-called analogous model

The key idea for the construction of such an analogue is based on the observation that under
the assumption 2.3.3, the “original model” has a differential operator with piece-wise time-
invariant coefficients. This is due to our assumption that the fluid velocity is constant v0 during
(dis)charging when the pump is on, and zero during waiting when the pump is off. This leads
to the following approximation of the original by an analogous model.

For the analogous model we assume that contrary to the original model the fluid is also
moving with constant velocity v0 during pump-off periods. During these waiting periods in the
original model the fluid is at rest and only subject to the diffusive propagation of heat. In order
to mimic that behavior of the resting fluid by a moving fluid we assume that the temperature QI

at the pipe’s inlet is equal to the average temperature of the fluid in the pipe QF . From a physical
point of view we will preserve the average temperature of the fluid but a potential temperature
gradient along the pipe is not preserved and replaced by an almost flat temperature distribution.
It can be expected that the error induced by this “mixing” of the fluid temperature in the pipe is
small after sufficiently long (dis)charging periods leading to saturation with an almost constant
temperature along the pipe.

In the mathematical description by an initial boundary value problem for the heat equation
(2.6), the above approximation leads to a modified boundary condition at the inlet. During
waiting the homogeneous Neumann boundary condition in (2.9) is replaced by a non-local
coupling condition such that the inlet boundary condition reads as

Q(t) =

{
QI(t), pump on,
QF(t), pump off,

(x,y) ∈ ∂DI. (2.16)

That condition is termed ’non-local’ since the inlet temperature is not only specified by a condi-
tion to the local temperature distribution at the inlet boundary ∂DI but it depends on the whole
spatial temperature distribution in the fluid domain DF .

2.3.5 Internal Storage

The IS is assumed to be a non-stratified water tank. For the ease of exposition we assume that
the technical implementation is such that there is a constant and known bottom temperature p
and top temperature p > p. Further, we assume that the average temperature P(t), considered
as state variable satisfies the state constraint P(t) ∈ [p, p].
We assume that charging the GS by discharging the IS is such that a (conventional) pump sends
fluid with an inlet temperature QI

C from the IS to the GS and the fluid returns to the IS with a
temperature QO(t). Charging the IS by discharging the GS is such that heat pump raises the
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temperature of the fluid from Pout , to a given constant and known temperature Pin with Pin > p.
More details about charging and discharging cycles are given in Sec. 2.1

Figure 2.5: Changes of thermal energy in the IS

Further, we assume that changes of thermal energy in the IS are due to inflow of energy
from overproduction, from the GS, by firing fuel. Further, there may be outflow of energy to
satisfy the positive residual demand, to the GS, due to the loss to environment as depicted in
Fig. 2.5. The environment is assumed to be at a constant temperature Pamb < p. The dynamics
of the IS is then given by

dP(t) = (ψp(R(t),F(t),QO(t),u(t))− γ(P(t)−Pamb))dt, P(0) = p0 ∈ P ⊂ R (2.17)

where R is the residual demand given by equation (2.1), F the fuel price, and QO is the average
outlet temperature of the PHX . The quantity −γ(P(t)−Pamb)) is the heat loss to the environ-
ment at given time t, where γ = κhAh

mPcF
P

is a constant with mP the mass of the water in the IS,

cF
P the specific heat capacity of the water, κh the overall heat transfer coefficient, Ah the total

surface of the IS and Pamb the ambient temperature. The function ψp is given by

ψP(r, f ,QO,ν) =



−kPr+κF ν = uF ,

−kPr+κC(Pin −Pout) ν = uC,

−kPr ν = uW ,

−kPr−κD(QI
C −QO) ν = uD,

0 ν = uO.

(2.18)

where kP = 1
mPcF

P
, κD = kD

mPcF
P

, κC = kC
mPcF

P
and κF = kF

mPcF
P

are positive constants. The increment

of the total thermal energy in the IS at time t is given by mPcF
PdP(t). In the dynamics of the IS

we assume that Pin ≥ Pout and QI
C ≥ QO for all t ∈ [0,T ]. The residual demand appears in the

dynamics of P with negative sign because a positive residual demand decreases the temperature
in the IS and a negative residual demand increases temperature in the IS. In the next section
we will setup a continuous-time optimal control problem for the cost-optimal management of
the residential heating system equipped with a buffer storage (water tank), a GS and a local
renewable heat production unit.
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2.4 Continuous-Time Stochastic Optimal Control Problem

2.4.1 Controlled State

In this section we formulate the optimal control problem for the residential heating system with
GS in continuous-time. We focus on the embedding of the GS into a residential heating system
and derive the associated optimal control problem. Let (Ω,G,G,P) be the filtered probability
space introduced in Sec. 2.3 and carrying two Brownian motions WR and WF . Then, the state
process X = (R,F,P,Q)⊤ is adapted to the filtration G.

State dynamics. Let X = R×F ×P ×Q be a suitable chosen state space, with R×F ×
P ⊂ R3 and Q a function space defined by Q = C1,2((0,T ]×D\DJ)∩ C((0,T ]×D ∪ ∂D).
The infinite dimensional state process X = (R,F,P,Q)⊤, X ∈ X is governed by the following
equations

dR(t) = βR(µR(t)−R(t))dt +σR(t)dWR(t), R(0) = r0,

dF(t) = βF(µF(t)−F(t))dt +σF(t)dWF(t), F(0) = f0,

dP(t) = (ψp(R(t),F(t),QO(t),u(t))− γ(P(t)−Pamb))dt, P(0) = p0,

∂Q(t,x,y)
∂ t

= a(x,y)∆Q(t,x,y)− v(t,x,y) ·∇Q(t,x,y), (t,x,y) ∈ (0,T ]×D\DJ, Q(0,x,y) = Q0,

+boundary and interface conditions given in (2.7) through (2.12).

The state can be decomposed into two parts: Xu = (X̂(t),Xu
(t))⊤ where X̂ ∈ R×F ⊂ R2 is

an exogenous state variable and Xu ∈ P×Q is an endogenous state variable. The uncontrolled
state X̂ = (R,F)⊤ ∈R×Fsatisfies the SDE

d X̂(t) = µ̂(t, X̂(t))dt + σ̂(t)dŴ (t), X̂(0) = x̂0 = (r0, f0)
⊤ ∈R×F ,

where the uncertainty Ŵ = (WR,WF)
⊤, the drift coefficient µ̂ : [0,T ]×R×F → R2 and the

volatility matrix σ̂ : [0,T ]×R×F → R2×2 are defined for x̂ = (r, f ) as

µ̂(t, x̂) =
(

βR(µR(t)− r)
βF(µF(t)− f )

)
∈ R2, σ̂(t) =

(
σR(t) 0

0 σF(t)

)
∈ R2×2. (2.19)

For deterministic known fuel price F , the exogenous state variable X̂ =R∈R given by equation
(2.1) and µ̂(t,r) = βR(µR(t)− r), σ̂(t) = σR(t) ∈ R.
The controlled state Xu

= (P,Q)⊤ satisfies the a system of ODE and a PDE given by

dP(t) = (ψp(R(t),F(t),QO(t),u(t))− γ(P(t)−Pamb))dt, P(0) = p0,

∂Q(t,x,y)
∂ t

= a(x,y)∆Q(t,x,y)− v(t,x,y) ·∇Q(t,x,y), (t,x,y) ∈ (0,T ]×D\DJ, Q(0,x,y) = Q0,

+boundary and interface conditions given in (2.7) through (2.12).
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2.4.2 Control and State Constraints
Due to some environmental regulations fixed by the authorities, we require that the state process
X always satisfied the state constraint

X(t) ∈K =
{

x ∈ X , p ∈ [p, p], QM(t) ∈ [q,q]
}
,

where QM is the average temperature in the GS (pipes not included), given by (2.13). For the
storage rate process u = (u(t))t∈[0,T ], we require that at any time t

u(t) ∈ U = {uO,uD,uW ,uC,uF}.

In addition to that constraints the controller will face further operational constraints leading to
time- and state-dependent control constraints and a restriction of the set U to the set of (actually)
feasible controls of the form U(t,x) where U is a set-valued function mapping (t,x)∈ [0,T ]×X
to subsets of U . At each time t ∈ [0,T ] we require that the Markovian control ũ(t,x) is such
that the control ũ(t,x) lies in that set, i.e, ũ(t,x) ∈ U(t,x), for some measurable function ũ.
Examples of state-dependent constraints are

• no charging for a full storage but discharging is allowed

• no discharging for an empty storage but charging is allowed.

We say that the GS is empty if QM ≤ q and the GS is full if QM ≥ q. The IS is empty if p ≤ p
and the IS is full if p ≥ p. Then, the set-valued mapping U :[0,T ]×X → U can formally be
described for all t ∈ [0,T ] as

U(t,X(t)) =



{uO} P(t)≥ p and QM ≥ q
{uD,uW} P(t)≥ p and QM ∈ [q,q)
{uD,uW ,uF} P(t) ∈ (p, p) and QM ≤ q
{uC,uW ,uF} P(t) ∈ (p, p) and QM ≥ q
{uC,uF} P(t)≤ p and QM ∈ (q,q]
{uF} P(t)≤ p and QM ≤ q
{uD,uW ,uC,uF} else.

(2.20)

Interpretation.

• If the IS is full (P(t) ≥ p) we have many cases depending on the state of the GS and the
sign of the residual demand.

– If the current residual demand is negative (R(t) < 0) and the GS not full, then the
over-production will drive the temperature in the IS above the maximum level p if
we do nothing. In this case we have to discharge the IS to charge the GS as long as
the latter is not full (QM(t)< q). However, if GS full (QM(t)≥ q), then discharging
the IS is not possible and the overproduction will drive the temperature in the IS
above the maximum level p if we do nothing. In this critical case, we have to apply
the so-called over-spilling and the set of feasible controls taking into account the
sign of the residual is restricted to U = {uO}.
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– If the residual demand is positive (R(t)> 0) and the GS not full (QM(t)< q), we can
just wait so that the unsatisfied demand drives the temperature in the IS below the
maximum level with no cost. During this operation, no additional heat production
using fuel is needed, e.g the set of feasible control is restricted to U = {uD,uW}.

• If P(t) ∈ (p, p) we have again various cases depending on the state of the GS and the sign
of the residual demand.

– If the residual demand is negative (R(t)< 0), then the overproduction will increase
the temperature in the internal with no cost. However, if the residual demand is
positive (R(t) > 0), then the unsatisfied demand will decreases the temperature in
the IS. In this case, we can just have to wait as long as the average temperature in
the IS remains in the comfort zone.

– If the GS is empty (QM(t) ≤ q), we can no longer charge the IS by discharging
the geothermal storage. In this case, the set of feasible control is restricted to U =
{uD,uW ,uF}.

– If the GS is full (QM(t)≥ q), we can no longer discharge the IS to charge the GS. In
this case, discharging the IS is not possible and the set of feasible control is restricted
to U = {uC,uW ,uF}.

• If the IS is empty, P(t) ≤ p, then we have again various cases depending on the state of
the GS and the sign of the residual demand. The most critical cases occur when there is
unsatisfied demand.

– If the GS is not empty (QM(t) ∈ (q,q]) and there is unsatisfied demand (R(t) > 0),
then the unsatisfied demand will drive the temperature below the minimum level
if we do nothing. In this case, we have to charge the IS by discharging the GS as
long as the latter is not empty or we fire fuel. Discharging the IS or waiting are not
possible and the set of feasible controls is restricted to U = {uC,uF}.

– If the GS is empty (QM(t) ≤ q) and there is unsatisfied demand, we have to charge
the IS by firing fuel. In this case, charging the IS by discharging the GS or waiting
are not possible and the set of feasible control is restricted to U = {uF}.

2.4.3 Performance Criterion
To define the running cost, we introduce notation of heat pump which is used during discharg-
ing of the GS to raise the temperature to a pre-specified temperature Pin.

Heat pump. A heat pump is a device that transfers heat from a colder area to a warmer area
using external energy, such as electricity. Heat energy naturally transfers from warmer to colder
spaces. However, a heat pump can reverse this process, by absorbing heat from a cold space
and releasing it to a warmer one. This process requires some amount of external energy, such as
electricity. It uses external power to accomplish the work of transferring energy from the heat
source to the heat sink. Heat pumps are also increasingly used to heat domestic hot water, the
hot water used for kitchens, bathrooms, clothes washers, etc. The coefficient of performance
(COP) is a measure of a heat pump’s efficiency. It is determined by dividing the energy output
of the heat pump by the electrical energy needed to run the heat pump, at a specific temperature.
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Figure 2.6: Set of feasible controls U(t,X(t))

The higher the COP, the more efficient the heat pump. In electrically-powered heat pumps, the
heat transferred can be three or four times larger than the electrical power consumed, giving
the system a COP of 3 or 4, as opposed to a COP of 1 for a conventional electrical resistance
heater, in which all heat is produced from input electrical energy. Reversible heat pumps work
in either direction to provide heating or cooling to the internal space. In our model we use heat
pump only to charge the IS by discharging the GS.

Running cost. Let x = (r, f , p,q), where r, f , p and q are the residual demand, the fuel price,
the average temperature in the IS and GS, respectively. The running cost contains the

• cost for charging the IS by firing fuel

ψF(x,ν) =

{
kF f ν = uF ,

0 else;

• cost ψD for charging the GS by discharging the IS

ψD(x,ν) =

{
ζD ν = uD,

0 else;

• cost ψC for charging the IS by the discharging the GS

ψC(x,ν) =

{
kC(Pin −QO)+ζD ν = uC,

0 else,
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where ζD [EUR/h] is the cost rate for the power consumption of the ordinary pump,
kF [EUR/kWh] is the cost rate for fuel consumption, and kC [EUR/hK] is the cost rate
for the power consumption of the heat pumps to raise the temperature from QO to Pin.
They are all positive constants.

The running reward describing the cost for generating heat and managing such a storage is
given for ν ∈ U by

Ψ(x,ν) = ψF(x,ν)+ψD(x,ν)+ψC(x,ν). (2.21)

Assumption 2.4.1 We assume that charging the IS by firing fuel is more expensive that dis-
charging the GS (using heat pump) which is more expensive than discharging the IS( using
ordinary pump), i.e.,

ψF > ψC > ψD.

Remark 2.4.2 To relax the strict constraint to P and QM which is the starting point for simpli-
fication, we may also assume for ν ∈ U

• a penalty ψ
+
P (x,ν) if the average temperature in the IS at time t exceeds the maximum

level p > p, with ψ
+
P (x,ν) = 0 for p < p.

• A penalty ψ
−
P (x,ν) if the average temperature in the IS at time t exceeds the minimum

level p < p, with ψ
−
P (x,ν) = 0 for p > p.

• A penalty ψ
+
Q (x,ν), if the average temperature in the GS at time t exceeds the maximum

level QM > q, with ψ
+
Q (x,ν) = 0 for QM < q.

• A penalty ψ
−
Q (x,ν) if the average temperature in the GS at time t exceeds the minimum

level QM < q, with ψ
−
Q (x,ν) = 0 for QM > q.

where ψ
+
P (x,ν), ψ

−
P (x,ν), ψ

+
Q (x,ν), ψ

−
Q (x,ν) are some increasing convex functions.

The running reward describing the cost for generating heat and managing such a storage is then
given by

Ψ̃(x,ν) = Ψ(x,ν)+Ψpen(x,ν),

where Ψ is described in equation (2.21) and Ψpen by

Ψpen(x,ν) = ψ
−
P (x,ν)+ψ

+
P (x,ν)+ψ

−
Q (x,ν)+ψ

+
Q (x,ν).

Terminal cost. We also consider a terminal cost depending on the state X(T ) at time T given by
the function φ(X(T )). This function depends on the storage contract and may include penalties
for failing to leave the storage with a pre-specified temperature. Typical examples include:

• Zero cost φ(X(T )) = 0, no penalty and no reward at the terminal time.

• Penalty if at the terminal time the GS or the IS is not filled appropriately, i.e. if the average
temperature of the GS QM(T ) is smaller than some pre-specified temperature qpen (usu-
ally the initial average temperature in the GS qpen = QM(0)) or if the average temperature
of the IS P(T ) is smaller than some pre-specified temperature ppen (usually the initial
average temperature in the IS storage ppen = P(0)). Then a penalty price ζ

Q
pen is charged
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for every quantity mQcM
p (qpen −QM(T )) of energy needed to raise the temperature from

QM(T ) to qpen and there is no reward for the surplus. A penalty price ζ P
pen is charged for

every quantity of energy mPcF
P(ppen−P(T )) and there is no reward for the surplus. Then

the terminal cost Φ is of the form

φ(X(T )) = ζ
Q
penmQcM

p (qpen −QM(T ))++ζ
P
penmPcF

P(ppen −P(T ))+ (2.22)

where x+ = max(x,0).

• Non-negative pay-off (liquidation of the storage) obtained by selling all the leftover heat
in the GS at some fixed price ζ

Q
liq. Then the sales profit is of the form

φ(X(T )) = ζ
Q
liqmQcM

p (Q
M(T )−qre f ),

where mQcM
p (Qav(T )− qre f ) is the quantity of the leftover heat in the GS. Here, QM is

the average temperature in the GS at the terminal time T and qre f is a reference or pre-
specified temperature of the GS. For example, qre f = q.

Let the control process u = (u(t))t∈[0,T ], u(t) ∈ U(t,x) be given. The function J : [0,T ]×K×
U → R defined by

J(t,x;u) = Et,x

[∫ T

t
Ψ(X(t),u(t))dt +φ(X(T ))

]
is the expected aggregated costs over the time interval [t,T ], where Et,x[·] = E[· | X(t) = x] is
the conditional expectation given that at time t the state X(t) = x = (r, f , p,q)⊤ ∈ K, Ψ is the
the running cost and φ is the terminal cost.

2.4.4 Optimal Control Problem

Admissible control. We denote by A(x) the class of admissible controls, consisting of Marko-
vian control processes u being progressively measurable w.r.t. the filtration G, satisfying certain
integrability conditions and control constraints (described above) such that the controlled state
Xu takes at any time t values in the prescribed state space K, i.e.,

A(x) =
{
(u(t))t∈[0,T ] | u is G-progressively measurable,u(t) = ũ(t,X(t)) for all t ∈ [0,T ],

ũ(t,x) ∈ U(t,x) for all (t,x) ∈ [0,T ]×X , X(t) ∈K, t ∈ [0,T ],

and Et,x

[∫ T

t
|Ψ(t,X(t),u(t))|dt + |φ(X(T ))|

]
< ∞

}
.

The objective is to minimize the performance criterion (2.4.3) over all admissible controls
(2.4.4). We define the value function for all x ∈ X by

V (x) = inf
u∈A(x)

J(t,x;u).

A control u∗ ∈A(x) is called optimal control if V (x) = J(t,x;u∗).
Note the dynamics of all states of the control system except the temperature Q = Q(t,x,y) are
described by ODEs or SDEs, while Q satisfies the heat equation (2.5) which is a PDE. This is
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a non-standard feature and does not fit to the standard framework for stochastic optimal control
problems where the state is a multi-dimensional stochastic process described by a system of
SDEs (and ODEs). The fact that the state Q follows a PDE makes the optimal control problem
much more difficult and challenging. The main idea is to replace PDE (2.5) by a system of
ODEs resulting from the semi-discretization w.r.t. spatial variables. However, the discretization
approach for solving the heat equation described in Chapter 3 leads to a high-dimensional sys-
tem of ODEs describing the dynamics of the temperature in the GS. After the discretization we
have to further reduce the dimension of the system to make the problem tractable.

In the next chapter we are going to discuss the semi-discretization of the PDE and present
some numerical results.
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CHAPTER 3

Numerical Analysis of the Dynamics of a Geothermal Storage

Introduction
This chapter aims to investigate the numerical analysis and the simulation of the GS. Such
simulations are needed for the optimal control and management of residential heating systems
equipped with an underground thermal storage. We work with a 2D-model of a geothermal
thermal energy storage, see Fig. 1.2, where a defined volume under or aside of a building is
filled with soil and insulated to the surrounding ground. Thermal energy is stored by raising the
temperature of the soil inside the storage. It is charged and discharged via heat exchanger pipes
filled with some fluid (e.g. water).

In this chapter we focus on the computation of the short-term behavior of the spatial temper-
ature distribution and choose the computational domain to be the storage depicted in Fig. 2.3 by
a solid black rectangle. For the sake of simplicity we do not consider the surrounding medium
but set appropriate boundary conditions to mimic the interaction between storage and environ-
ment. However, we extend the setting in [8, 9] and include heat exchanger pipes for a more
realistic model of the storage’s charging and discharging process.

We discretize that PDE using finite difference schemes, see Duffy [39]. In a first step
we study the semi-discretization with respect to spatial variables leading to a system of lin-
ear ODEs. In a second step, we consider full space-time discretization and derive implicit
finite-difference schemes.

This chapter provides the following theoretical contributions. First, we prove that the cho-
sen semi-discretization ensures a system of linear ODEs with a stable system matrix. Second,
we provide a detailed stability analysis for the implicit finite-difference schemes of the fully
discretized PDE and establish a stability condition.
Afterward, we perform extensive numerical experiments, where simulation results for the tem-
poral behavior of the spatial temperature distribution are used to determine how much energy
can be stored in or taken from the storage within a given short period of time. Special focus
is laid on the dependence of these quantities on the arrangement of the heat exchanger pipes
within the storage.
This chapter is organized as follows. In Sec. 3.1 we present the semi-discretization with respect
to spatial variables of the initial boundary value problem for that heat equation. For the resulting

35



CHAPTER 3. ANALYSIS OF THE DYNAMICS OF A GEOTHERMAL STORAGE

system of linear ODEs we show that the system matrix is stable. The full space-time discretiza-
tion is studied in Sec. 3.2 where we derive implicit finite-difference schemes and provide the
associated stability analysis. We end this section by explaining numerical approximation of the
aggregated characteristics and by deriving an LTI analogous model of the GS that mimics the
most important features of the original non-LTI model of the GS. In Sec. 3.5 we present results
of extensive numerical experiments where we use simulations results for the temporal behavior
of the spatial temperature distribution to determine how much energy can be stored in or taken
from the storage within a given short period of time for the case of horizontal straight pipes.
Some technical details of the finite difference scheme which were removed from the main text
are provided in Appendix A.

3.1 Semi-Discretization of the Dynamics of a Geothermal Stor-
age

We focus in this section on the spatial discretization of the dynamics of the GS. We recall that
the spatial-temporal distribution of the temperature in the GS is described by equation (2.5)
together with the boundary and initial conditions and given by

ρcp
∂Q
∂ t

= ∇ · (κ∇Q)−ρv ·∇(cpQ), (t,x,y) ∈ (0,T ]×D\DJ.

For the sake of simplification and tractability of our analysis we restrict ourselves to the fol-
lowing assumption on the arrangement of pipes and impose conditions on the location of grid
points along the pipes.

x

y

(i, j)

(i, j+1)

(i, j−1)

(i+1, j)(i−1, j)

lx = Nxhx

ly = Nyhy
(Nx,Ny)

(0,0)

(0,Ny)

(Nx,0)

Figure 3.1: Computational grid.

Assumption 3.1.1

1. The interior of pipes contains grid points.
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2. Each interface between medium and fluid contains grid points.

3.1.1 Semi-Discretization of the Heat Equation

Let Nx and Ny be the grid size in x-direction and y-direction, respectively, and hx = lx/Nx and
hy = ly/Ny the mesh sizes in x-direction and y-direction, respectively. The spatial domain is
discretized by means of a mesh with grid points (xi,y j) as in Fig. 3.1 where

xi = ihx, y j = jhy, i = 0, ...,Nx, j = 0, ...,Ny.

We denote by Qi j(t)≃ Q(t,xi,y j) the semi-discrete approximation of the temperature Q and
by v0(t)(vx

i j,v
y
i j)

⊤ = v0(t)(vx(xi,y j),vy(xi,y j))
⊤ = v(t,xi,y j) the velocity vector at time t at the

grid point (xi,y j). Further, we introduce the following set on indices

Nx = {1, ...,Nx −1}, Ny = {1, ...,Ny −1},
NM = {(i, j) : (i, j) ∈Nx ×Ny with (xi,y j) ∈DM},
N F = {(i, j) : (i, j) ∈Nx ×Ny with (xi,y j) ∈DF},
N J = {(i, j) : (i, j) ∈Nx ×Ny with (xi,y j) ∈DJ},
N C = {(i, j) : (i, j) ∈ {0, ...,Nx}×{0, ...,Ny} with (xi,y j) ∈ ∂D},

which we identify with the corresponding sets of grid points. We denote by N S = N F ∪NM

the set of grid points in the inner domain DS =DF ∪DM, N J =N J
L ∪N J

U the set of grid points
on the interface DJ = DJ ∪DJ between the fluid and medium. Here, DJ and DJ denote the
lower and upper interface, respectively, see Fig. 2.4. Further, we decompose the set N C of grid
points on the boundary domain ∂D according to the decomposition of ∂D given in Fig. 2.4 into
N C =N C

I ∪N C
O ∪N C

L ∪N C
R ∪N C

T ∪N C
B . The derivatives in the PDE (2.5) are approximated

by linear combinations of values of Q at the grid points (xi,y j) in D f m at time t. We use central
second-order finite difference for the diffusion term:

∂ 2Q(t,xi,y j)

∂x2 =
Qi+1, j(t)−2Qi j(t)+Qi−1, j(t)

h2
x

+O(h2
x),

∂ 2Q(t,xi,y j)

∂y2 =
Qi, j+1(t)−2Qi j(t)+Qi, j−1(t)

h2
y

+O(h2
y).

For the convection term we use the upwind discretization to get

vx(xi,y j)
∂Q(t,xi,y j)

∂x
= vx

i j1{vx
i j>0}

Qi j(t)−Qi−1, j(t)
hx

+ vx
i j1{vx

i j<0}
Qi+1, j(t)−Qi j(t)

hx
+O(hx),

vy(xi,y j)
∂Q(t,xi,y j)

∂y
= vy

i j1{vy
i j>0}

Qi j(t)−Qi, j−1(t)
hy

+ vy
i j1{vy

i j<0}
Qi, j+1(t)−Qi j(t)

hy
+O(hy).

We have to point out that above upwind approximations of the convection terms need to be
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applied only to the set of grid points N F in the fluid domain DF , since there is no convection
outside the fluid and we can set vx

i j = vy
i j = 0.

Then for grid points in the domain DS the semi-discrete scheme is given by

dQi j(t)
dt

= α
+
i j (t)Qi+1, j(t)+α

−
i j (t)Qi−1, j(t)+β

+
i j (t)Qi, j+1(t)+β

−
i j (t)Qi, j−1(t)

+ γi j(t)Qi j(t). (3.1)

For grid points (i, j) ∈N F in the fluid domain D f the coefficients are given by

α
+
i j (t) = αF+ = aF

h2
x
, α

−
i j (t) = αF−(t) = aF

h2
x
+ v0(t)

hx
, β

±
i j (t) = β F = aF

h2
y
,

γi j(t) = γF(t) =−2aF
(

1
h2

x
+ 1

h2
y

)
− v0(t)

hx
, aF = κF

ρF cF
p
.

(3.2)

In the medium domain Dm the convection terms disappear and the coefficients of the scheme
(3.1) become time-independent and are given for (i, j) ∈NM, by

α
±
i j (t) = α

M =
aM

h2
x
, β

±
i j (t) = β

M =
aM

h2
y
, γi j(t) = γ

M =−2aM
(

1
h2

x
+

1
h2

y

)
, (3.3)

and aM = κM

ρMcM
p

. Note that for the neighboring grid points to the interfaces we have to slightly
modify the above scheme (3.1) due to the extra contribution from the interfaces, see equations
(3.8) and (3.9) below.

3.1.2 Semi-Discretization of the Boundary and Interface Conditions

Semi-discretization of the boundary conditions

In this paragraph we consider the discretization of boundary conditions. We start with the ho-
mogeneous Neumann conditions (2.7) and (2.10) for the top, left, right and the outlet boundary,
where the normal vector n is equal to (0,1)⊤,(−1,0)⊤, (1,0)⊤ and (1,0)⊤, respectively. Using
first-order differences for the normal derivative we obtain for all t ∈ [0,T ]


QiNy(t) = QiNy−1(t) for (i,Ny) ∈N C

T ,

Q0 j(t) = Q1 j(t) for l(0, j) ∈N C
L ,

QNx j(t) = QNx−1 j(t) for (Nx, j) ∈N C
R ∪N C

O .

(3.4)

Next we discretize the Robin condition (2.8) at the bottom boundary ∂DB. We have n =
(0,−1)⊤ such that for all grid points (i,0) ∈N C

B , we have for all t ∈ [0,T ]

Qi0(t) =
κM

κM +λGhy
Qi1(t)+

λGhy

κM +λGhy
QG(t). (3.5)

On the inlet boundary ∂DI we have according to (2.9) a Dirichlet boundary condition during
pumping and a Neumann condition if the pump is off. Then for all grid points (0, j) ∈N C

I , we
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3.1. SEMI-DISCRETIZATION OF THE DYNAMICS OF A GEOTHERMAL STORAGE

have n = (−1,0)⊤ which implies for all t ∈ [0,T ]{
Q0 j(t) = QI(t) if pump on,
Q0 j(t) = Q1 j(t) if pump off.

(3.6)

The relations (3.4) through (3.6) represent linear algebraic equations which allow to express the
grid values Qi j(t) in the boundary grid points (i, j) ∈N B in terms of the corresponding values
in the neighbouring points in the interior of the domain and the input data to the boundary
conditions. Thus, in the finite difference scheme these values Qi j(t) can be removed from the
set of unknowns.

Semi-discretization of interface condition

Now we consider grid points on the interface DJ between fluid and medium which are by
Assumption 2.3.3 straight lines in x-direction. That interface can be decomposed as DJ =
DJ ∪DJ , with DJ and DJ representing the lower and upper interface, respectively, see Fig. 3.2.
We define the outer normal by n = (0,1)⊤ on the upper interface and by n = (0,−1)⊤ for lower

DJ Lower interface

DJ Upper interface
(i, j+1)•

(i, j)
•

(i, j−1)•

(i, j−1)•
(i, j)•
(i, j+1)•Soil κM

Soil κM

Fluid κF

Figure 3.2: Interface between the fluid and soil.

interface. Note that we have nP pipes and each pipe has two interfaces. Then, we have in total
2nP interface subdomains.

For a grid point (xi,y j) on the interface DJ the perfect contact condition (2.12) implies that
at a given time t the temperature of the fluid Q f (t,xi,y j) is equal to the temperature QM(t,xi,y j)
of the medium at that point. As usual, Qi j(t) denotes the semi-discrete approximation of that
temperature. Then discretization of the interface condition (2.11) leads to

κ
F Qi j(t)−Qi, j+1(t)

hy
= κ

M Qi, j−1(t)−Qi j(t)
hy

for lower interface

κ
M Qi, j+1(t)−Qi j(t)

hy
= κ

F Qi j(t)−Qi, j−1(t)
hy

for upper interface.

We obtain the following coupling between the grid values in an interface grid point (i, j) ∈N J

and its neighbours in vertical direction a time t ∈ [0,T ],

Qi j(t) = ψ
FQi, j+1(t)+ψ

MQi, j−1(t), (i, j) ∈N J
L ,

Qi j(t) = ψ
FQi, j−1(t)+ψ

MQi, j+1(t), (i, j) ∈N J
U , (3.7)

where ψ
F =

κF

κF +κM and ψ
M = 1−ψ

F .
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The above relations show that the grid values Qi j(t) in the interface grid points (i, j) ∈ N J

can be expressed as linear combinations of the grid values in the two vertical neighbouring
points in the fluid and medium. Thus, in the finite difference scheme these values Qi j(t) can
be removed from the set of unknowns. Now, let (i, j) ∈N J

L be an interface point on the lower
interface. Then substituting the above expressions for Qi j(t) into the finite differences scheme
(3.1) applied to the lower neighbour (i, j−1) ∈NM in the medium leads to

d
dt

Qi, j−1(t) = α
MQi+1, j−1(t)+α

MQi−1, j−1(t)+β
MQi, j−2(t)+β

M
I Qi, j+1(t)+ γ

M
I Qi, j−1(t)

with β
M
I = ψ

F
β

M and γ
M
I = γ +ψ

M
β

M, (3.8)

whereas for the upper neighbour (i, j+1) ∈N F in the fluid it holds

d
dt

Qi, j+1(t)= α
F+Qi+1, j+1(t)+α

F−Qi−1, j+1(t)+β
FQi, j+2(t)+β

F
I Qi, j−1(t)+ γ

F
I Qi, j+1(t)

with β
F
I = ψ

M
β

F and γ
F
I = γ +ψ

F
β

F . (3.9)

Similar expressions can be derived for points (i, j) ∈N J
U on the upper interface. We obtain for

the neighbour (i, j−1) ∈N F in the fluid

d
dt

Qi, j−1(t) = α
F+Qi+1, j−1(t)+α

F−Qi−1, j−1(t)+β
FQi, j−2(t)+β

F
I Qi, j+1(t)+ γ

F
I Qi, j−1(t)

with β
F
I = ψ

M
β

F and γ
F
I = γ +ψ

F
β

F ,

whereas for the upper neighbour (i, j+1) ∈NM in the medium it holds

d
dt

Qi, j+1(t) = α
MQi+1, j+1(t)+α

MQi−1, j+1(t)+β
MQi, j+2(t)+β

M
I Qi, j−1(t)+ γ

M
I Qi, j+1(t)

with β
M
I = ψ

F
β

M and γ
M
I = γ +ψ

M
β

M,

3.1.3 Matrix Form of the Semi-Discrete Scheme
We are now in a position to establish a semi-discretized version of the heat equation (2.6) in
terms of a system of ODEs by summarizing relations (3.1), (3.8) and (3.9). To this end we
recall that the temperature at the boundary grid points can be obtained by the linear algebraic
equations (3.4) through (3.6) derived from the boundary conditions. Further, the values at the
interface points are obtained by the interpolation formulas in (3.7) derived from the perfect
contact condition. Thus, we can exclude these grid points from the subsequent considerations
where we collect the semi-discrete approximations of the temperature Q(t,xi,y j) at the remain-
ing points of the grid in the vector function Y (t) = (Y1(t),Y2(t), . . . ,Yn(t))T . The enumeration
of the entries of Y is such that we start with the first inner grid point (1,1) next to the lower left
corner of the domain. Then we number grid points consecutively in vertical direction where we
exclude the 2nP points of the interfaces of the nP pipes such that we have

q = Ny −2nP −1

points in each “column” of the grid. Thus, Y(i−1)q+1 corresponds to grid point (i,1) for i =
1, . . . ,Nx − 1, and the last entry Yn to the inner grid point (Nx − 1,Ny − 1) next to the domain’s
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upper right corner. The dimension of Y is

n = (Nx −1)q = (Nx −1)(Ny −2nP −1).

The enumeration described above can be expressed formally by a mapping K : N S →{1, . . . ,n}
with (i, j) 7→ l =K(i, j) which maps pairs of indices (i, j) of grid point (xi,y j)∈D to the single
index l of the corresponding entry in the vector Y .

Using the above notations we can rewrite relations (3.1), (3.8) and (3.9) as the following
system of ODEs for the vector function Y representing the semi-discretized heat equation (2.6)
together with the given boundary and interface conditions.

dY (t)
dt

= A(t)Y (t)+B(t)g(t), t ∈ (0,T ], (3.10)

with the initial condition Y (0) = y0. Here, the vector y0 ∈ Rn contains the initial tempera-
tures Q(0, ., .) at the corresponding grid points. The system matrix A results from the spa-
tial discretization of the convection and diffusion term in the heat equation (2.6) together with
the Robin and linear heat flux boundary conditions. It has tridiagonal structure consisting of
(Nx −1)× (Nx −1) block matrices of dimension q given by

A =



AL D+ 0
D− AM D+

D− AM D+

. . . . . . . . .
D− AM D+

0 D− AR


. (3.11)

The inner block matrices AM, i = 2, . . .Nx −2 of dimension q have tridiagonal structure and are
sketched for the case of one pipe in Table 3.1. The matrix entries β F ,γF are given in (3.2),
β M,γM in (3.3), β M

I ,γM
I in (3.8) and β F

I ,γF
I in (3.9). The first and last diagonal entries read as

γM
D = γM + κM

κM+λGhy
β M, γM

U = γM +β M, respectively. They are obtained if the discretized top
and bottom boundary conditions (3.4) and (3.5) are substituted into (3.1).

For the matrices AL and AR containing entries resulting from the discretization of boundary
conditions at the left and right boundary we refer to [110] which is also given in Appendix A.1.
The lower and upper block matrices D± ∈ Rq×q, i = 1, . . . ,Nx −1, are diagonal matrices of the
form

D± = D±(t) = diag(αM, . . . ,αM|αF±(t), . . . ,αF±(t)|αM, . . . ,αM), (3.12)

where αM is given in (3.3) and αF± in (3.2). Here, we denote by | the location of the in-
terfaces where we only sketched the case of one pipe. For the convenience of the reader we
provide a comprehensive list of all entries of matrix A showing the dependence on model and
discretization parameters in Appendix 3.1.4.

The n×2 input matrix B is a result from the discretization of the inlet and Robin boundary
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AM =



γM
D β M Lower Boundary

β M γM β M

. . . . . . . . . 0 Medium
β M γM β M

β M γM
I β M

I Lower interface

β F
I γF

I β F

β F γF β F

. . . . . . . . . Fluid
β F γF β F

Upper interface β F γF
I β F

I

β m
I γM

I β M

β M γM β M

Medium 0 . . . . . . . . .
β M γM β M

Uppper Boundary β M γM
U



.

Table 3.1: Sketch of inner block matrices AM, i = 2, . . . ,Nx −2 for the case of one pipe

conditions, its entries Blr, l = 1, . . . ,n, r = 1,2, are derived in Appendix A.1 and are given by

Bl1 = Bl1(t) =

{
aF

h2
x
+ v0

hx
, pump on,

0, pump off,
l =K(1, j),(0, j) ∈N C

I ,

Bl2 =
λGhy

κM+λGhy
β M, l =K(i,1),(i,0) ∈N C

B .

(3.13)

The entries for other l are zero. The input function g : [0,T ]→ R2 is defined by

g(t) =

{
(QI(t), QG(t))⊤, pump on,

(0, QG(t))⊤, pump off.
(3.14)

Recall that QI is the inlet temperature of the pipe during pumping and QG is the underground
temperature.

Remark 3.1.2 Eq. (3.10) represents a system of n linear non-autonomous ODEs. Since some of
the coefficients in the matrices A,B resulting from the discretization of convection terms in the
heat equation (2.6) depend on the velocity v0(t), it follows that A,B are time-dependent. With
some abuse of notation we will write A=A(t) =A(v0(t)) and B=B(t) =B(v0(t)). In Ass. 2.3.3
we assume that v0(t) is piecewise constant with v0(t) = v0 during charging and discharging
when the pump is on whereas v0(t) = 0 during waiting periods when the pump is off. Therefore,
the matrices A,B share this property. They take only the two values AP = A(v0),BP = B(v0)
during pumping and AN = A(0),BN = B(0) if the pump is off.

3.1.4 Matrix Stability Analysis
Auxiliary results from matrix analysis

In this subsection we collect some results from matrix analysis taken from the literature. They
will be used in the proofs of Theorem 3.1.13 and Lemma 3.2.2. Let M ∈Cn×n be some generic
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matrix. For i = 1, . . . ,n we introduce the notations

Ri(M) = ∑
j ̸=i

|Mi j|, Ji(M) = |Mii|−Ri(M), Si(M) = |Mii|+Ri(M) = ∑
j
|Mi j|. (3.15)

Note that the maximum norm of M is given by ∥M∥∞ = maxi Si(M). The quantities Ri(M) ap-
pear as radii of Gershgorin’s circles of M and the Ji(M) are used to describe diagonal dominance
of M.

Lemma 3.1.3 (Gershgorin’s Circle Theorem, Varga [120]) Let M ∈Cn×n and for i= 1, . . . ,n
let Di = {z ∈ C : |z−Mii| ≤ Ri} be the closed discs in the complex plane centred at Mii with
radius Ri = Ri(M) given in (3.15). Then all the eigenvalues of M lie in the union of the discs
D1, . . . ,Dn.

Definition 3.1.4 (Diagonal Dominance) Row i ∈ {1, . . . ,n} of a matrix M ∈ Cn×n is called
strictly diagonal dominant if Ji(M)> 0,
weakly diagonal dominant if Ji(M)≥ 0,

The matrix M is called strictly (weakly) diagonal dominant if all of its rows are strictly (weakly)
diagonal dominant.

The following result says that strictly diagonal dominant matrices are invertible and provides a
upper bound for the maximum norm of the inverse.

Lemma 3.1.5 (Varah [118], Theorem 1) Let M ∈Cn×n strictly diagonal dominant matrix. Then
M is invertible and ∥∥M−1∥∥

∞
≤ 1

J(M)
, where J(M) = min

1≤i≤n
Ji(M).

Matrices which are weakly but not strictly diagonal dominant can be singular. A criterion for
non-singularity is based on the following property of a matrix and the subsequent lemma. This
property was used in Horn and Johnson [61, Definition 6.2.7] and termed property SC. In the
literature it is also known as strongly connected.

Definition 3.1.6 (Strongly Connected Matrix) A matrix M ∈ Cn×n is called strongly con-
nected (or of property SC) if for each pair of distinct integers p,q ∈ {1, . . . ,n} there is a se-
quence of distinct integers k1 = p,k2, ...,km = q such that each entry Mk1k2 ,Mk2k3 , . . . ,Mkm−1km

is non-zero.

For strongly connected matrices Horn and Johnson [61, Corollary 6.2.9] give the following
criterion for non-singularity.

Lemma 3.1.7 (Better’s Corollary) Suppose that the matrix M ∈ Cn×n is strongly connected,
weakly diagonally dominant and there exists one strictly diagonal dominant row. Then M is
non-singular.

Properties of the system matrix A

We recall that the time-dependence of A(t) is a result of the discretization of convection terms
in the heat equation (2.6). The latter depend on the time-dependent velocity v0(t) for which
we assume in Ass. 2.3.3 that v0(t) is piecewise constant with v0(t) = v0 during charging and
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discharging when the pump is on whereas v0(t) = 0 if the pump is off. Therefore, A(t) is also
piecewise constant taking only the two values AP and AN introduced in Remark 3.1.2. Thus, for
studying properties of A(t) on [0,T ] or of Ak = A(kτ) for k = 0, . . . ,Nτ it is sufficient to look at
the properties of AP and AN .

We want to have a closer look to the entries of the block matrices AM,AL,AR given in Tables
3.1, A.1 and of D± given in (3.12), forming the system matrix A. It turns out that for the
diagonal entries and the row characteristics Ri,Ji,Si given in (3.15) one has to distinguish 14
different cases. Instead of n rows it is sufficient to consider only 14 representative rows whose
indices we denote by il, l = 1, . . . ,14. Table A.2 provides a list of diagonal entries Ail il and
the row characteristics Ril(A),Jil(A),Sil(A) in terms of the model and discretization parameters.
For the convenience of the reader we give below that information also for the individual non-
diagonal entries of A.

β
M =

aM

h2
y
, β

F =
aF

h2
y
, β

F
I =

κF

κF +κM β
M, β

F
I =

κM

κF +κM β
F ,

α
M =

aM

h2
x
, α

F+ =
aF

h2
x
, α

F− =
aF

h2
x
+

v0

hx
.

Lemma 3.1.8 The matrix A = A(t) is weakly diagonal dominant for all t ∈ [0,T ].

Proof. Inspecting the quantities Jil(A) and Table A.2 it can be seen that it holds Jil(A) ≥ 0,
hence by Definition 3.1.4 the matrix is diagonal dominant. □
Note that A is weakly but not strictly diagonal dominant since not all of its rows are strictly
diagonal dominant.

Lemma 3.1.9 The Gershgorin circles of the matrix A = A(t) are subsets of C− ∪{0} for all
t ∈ [0,T ]. Here, C− denotes the set of complex numbers with negative real part.

Proof. Let us examine the Gershgorin’s circles of A for the 14 different representative rows
denoted by Dil = Dil(Cil ,Ril) with centres Cil = Ail il and the radii Ril(A), l = 1, . . . ,14, given in
Table A.2. Since all entries of A are real, the centres Cil = Ail il < 0 of the discs are on the nega-
tive real axis. Lemma 3.1.8 shows that A is diagonal dominant, i.e., Jil(A) = |Cil |−Ril(A)≥ 0.
Hence, the radii Ril(A) of the Gershgorin circles never exceed |Cil | and it holds Dil ⊂C−∪{0}.
□

Lemma 3.1.10 The matrix A = A(t) is strongly connected for all t ∈ [0,T ].

Proof. Let (p,q) be a pair of distinct integers with p,q ∈ {1, . . . ,n}. Then we can choose the
sequence of distinct integers k1,k2, . . . ,km, such that m = |p− q|+ 1 and k j = p+ j − 1 (for
p < q) and k j = p− j+1 (for p > q). It holds Ak jk j+1 ̸= 0 since these entries are located on the
upper and lower subdiagonal of A for which we have

Ak jk j+1 =

{
β F/M, for (k j,k j+1) ∈N FM \N J

n ,

β
F/M
I , for (k j,k j+1) ∈N J

n ,

where N FM is the set of grid points in the fluid and medium DF ∪DM and N J
n the set of neigh-

bouring grid points to the interface. Since β F/M given in (3.2), (3.3) and β
F/M
I given in (3.8),
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(3.9) are positive, we have Ak jk j+1 ̸= 0, j = 1,2, . . . ,m. Thus, the matrix A is strongly connected.
□

Lemma 3.1.11 The matrix A = A(t) is non-singular for all t ∈ [0,T ].

Proof. From Lemma 3.1.8 and 3.1.10 it is known that A(t) is weakly diagonal dominant and
strongly connected for all t ∈ [0,T ]. Table A.2 shows that there exist strictly diagonal dominant
rows. Hence, Better’s Corollary (see Lemma 3.1.7) implies that A(t) is nonsingular. □

Lemma 3.1.12 For maximum norm of the matrix A = A(t) it holds

max
t∈[0,T ]

∥A(t)∥∞ = max
{∥∥AP∥∥

∞
,
∥∥AN∥∥

∞

}
≤ 4max{aF ,aM}

( 1
h2

x
+

1
h2

y

)
+

2v0

hx
.

Proof. A(t) is piecewise constant taking only the two values AP and AN . From the last column
of Table A.2 showing the 14 different row sums Si(AP/N) of the two matrices it can be easily
seen that ∥AP/N∥∞ ≤ max{Si6(A

P/N),Si7(A
P/N)} yielding the estimate in the lemma. □

Stability of the system matrix

The finite difference semi-discretization of the heat equation (2.6) given by the system of ODEs
(3.10) is expected to preserve the dissipativity of the PDE. This property is related to the stability
of the system matrix A = A(t) in the sense that all eigenvalues of A lie in left open complex
half plane. This property will play a crucial role in Chapter 4, where we study model reduction
techniques for (3.10) based on balanced truncation. The next theorem confirms the expectations
on the stability of A.

Theorem 3.1.13 (Stability of Matrix A)
Under Assumption 2.3.3 on the model and Assumption 3.1.1 on the discretization, the matrix
A = A(t) given in (3.11) is stable for all t ∈ [0,T ], i.e., all eigenvalues λ (A) of A lie in the open
left half plane.

Proof. Lemma 3.1.9 in subsection 3.1.4 shows using Gershgorin’s circle theorem, that the
eigenvalues are either located in left open complex half plane or zero. Further, Lemma 3.1.11
(also in subsection 3.1.4) shows that A(t) is non-singular for all t ∈ [0,T ] and thus excludes the
case λ (A) = 0. Thus, for all eigenvalues it holds λ (A) ∈ C− and A is stable. □

3.2 Full Discretization of the Model

After discretizing the heat equation (2.6) w.r.t. spatial variables, we are going to discretize
the temporal derivative and derive a family of implicit finite difference schemes for which we
perform a stability analysis.
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3.2.1 Implicit Finite Difference Scheme

We introduce the notation Nτ for the mesh size in the t-direction, τ = T/Nτ the time step and
tk = kτ, k ∈ Nτ = {0, ...,Nτ}. Let Ak,Bk,gk,vk

0 be the values of A(t),B(t),g(t),v0(t) at time
t = tk. Further, we denote by Y k = (Y k

1 , . . . ,Y
k
n )

⊤ the discrete-time approximation of the vector
function Y (t) at time t = tk. Recall that Y contains the temperatures Q = Q(t,x,y) at the points
of the grid excluding points on the boundary and interface. Discretizing the temporal derivative
in (3.10) with the forward difference gives

dY (tk)
dt

=
Y k+1 −Y k

τ
+O(τ). (3.16)

Substituting (3.16) into (3.10) and replacing the r.h.s. of (3.10) by a linear combination of the
values at time tk and tk+1 with the weight θ ∈ [0,1] gives the following general θ -implicit finite
difference scheme

Y k+1 −Y k

τ
= θ [A(tk+1)Y k+1 +B(tk+1)gk+1]+ (1−θ)[A(tk)Y k +B(tk)gk]

from which we derive for k = 0, . . . ,Nτ −1 the recursion

Gk+1Y k+1 = HkY k + τFk where (3.17)

Gk = In − τθAk, Hk = In + τ(1−θ)Ak, and Fk = θBk+1gk+1 +(1−θ)Bkgk,

with the initial value Y 0 = Y (0) and the notation In for the n×n identity matrix.
The above general θ -implicit scheme leads for θ = 0,1/2 and 1 to special cases which are

known in the literature as forward Euler or fully explicit scheme for θ = 0, Crank-Nicolson
scheme for θ = 1/2 and backward Euler or fully implicit scheme for θ = 1. For our numerical
experiments in Sec. 3.5 we use an explicit scheme which is obtained for θ = 0 and given by the
recursion as

Y k+1 = (In + τAk)Y k + τBkgk, k = 0, . . . ,Nτ −1, (3.18)

The advantage of an explicit scheme is that it avoids the time-consuming solution of systems
of linear equations but on has to take care of the appropriate choice of the time step to ensure
stability of the scheme.

3.2.2 Stability Analysis of the Finite Difference Scheme

In this subsection we investigate the stability of the finite difference scheme (3.17) in the maxi-
mum norm and present in Theorem 3.2.3 below a stability condition to the time discretization.
The use of such stability results is twofold. First it ensures “robustness” w.r.t. round-off er-
rors of the problems’s input data, which are the initial condition and the inlet and underground
temperature, in the sense that we can run the recursion for an arbitrarily long time without a
total loss of accuracy. Second, stability of the scheme is a key ingredient in every analysis of
convergence of the solution of the finite difference scheme to the solution of the given initial
boundary value problem for the PDE for an infinite refinement of space and time discretization.

Note that a complete convergence analysis is beyond the scope of this paper. In particular,
we do not investigate consistency issues. Consistency roughly says that the finite differences
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scheme approximates correctly the PDE. The proof of consistency is straightforward and based
on Taylor series expansions. We refer to the Lax-Richtmyer Equivalence Theorem, see Sanz-
Serna and Palencia [96], Thomas [111, Theorem 2.5.3], stating that a consistent finite difference
scheme for a well-posed linear initial boundary value problem, is convergent if and only if it is
stable. Hence, for a consistent scheme, convergence is synonymous with stability.

Our stability result is given in terms of maximum norms which are defined for a vector

X ∈ Rn by ∥X∥∞ = max
1≤i≤n

|Xi| and for a square matrix M ∈ Cn×n by ∥M∥∞ = max
1≤i≤n

n

∑
j=1

|Mi j|.

Definition 3.2.1 (Stability of difference scheme in the maximum norm) The finite difference
scheme (3.17) is stable in the maximum norm if there exist constants C0, Cg > 0 such that

∥Y k∥∞ ≤C0∥Y 0∥∞ +Cg max
0≤ j≤k

∥g j∥∞ for k = 1,2, . . . ,Nτ . (3.19)

We state the following lemma, proved in Appendix A.2, which is useful for the proof of stability
theorem.

Lemma 3.2.2 Under Assumption 2.3.3 on the model and Assumption 3.1.1 on the discretiza-
tion it holds for all k = 0, . . . ,Nτ −1 and θ ∈ [0,1] that

1. the matrices Gk+1 given in (3.17) are invertible and ∥(Gk+1)−1∥∞ ≤ 1 with equality for
θ = 0;

2. the matrices Hk given in (3.17) satisfy ∥Hk∥∞ ≤ 1 for all τ > 0 if θ = 1;
and for τ ≤ 1

(1−θ)η if θ ∈ [0,1), where η is given in (3.20);

3. the vectors Fk given in (3.17) satisfy ∥Fk∥∞ ≤CB max
0≤ j≤k+1

∥∥g j∥∥
∞

where CB given in (3.21).

Theorem 3.2.3 (Stability of θ -implicit scheme) Under Assumption 2.3.3 on the model and
Assumption 3.1.1 on the discretization it holds

1. For θ ∈ [0,1), the semi-implicit finite difference scheme (3.17) is stable if the time step τ

satisfies the condition

τ ≤ 1
(1−θ)η

, where η = 2max{aF ,aM}
( 1

h2
x
+

1
h2

y

)
+

v0

hx
. (3.20)

2. For θ = 1, the fully implicit finite difference scheme (3.17) is unconditionally stable, i.e,
stable for all τ > 0.

The constants C0,Cg in (3.19) can be chosen as

C0 = 1 and Cg =CBT where CB = max
{∥∥BP∥∥

∞
,
∥∥BN∥∥

∞

}
. (3.21)

Proof. of Theorem 3.2.3. From the invertibility of Gk (see Lemma 3.2.2,1.) and the
iteration of the recursion (3.17) we obtain for k = 1, . . . ,Nτ the explicit representation

Y k = (Gk)−1Hk−1Y k−1 + τ(Gk)−1Fk−1

= (Gk)−1Hk−1(Gk−1)−1Hk−2Y k−2 + τ(Gk)−1Hk−1(Gk−1)−1Fk−2 + τ(Gk)−1Fk−1
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= . . .=
( k

∏
j=1

(Gk− j+1)−1Hk− j
)

Y 0 + τ

k−1

∑
j=0

( j

∏
i=1

(Gk−i+1)−1Hk−i
)
(Gk− j)−1Fk− j−1,

where we define
0

∏
j=1

(·) = In. Taking the maximum norm on both sides and applying the trian-

gular and Cauchy-Schwarz inequality gives

∥∥Y k∥∥
∞
≤
( k

∏
j=1

∥∥(Gk− j+1)−1∥∥
∞

∥∥Hk− j∥∥
∞

)∥∥Y 0∥∥
∞

+ τ

k−1

∑
j=0

( j

∏
i=1

∥∥(Gk−i+1)−1∥∥
∞

∥∥Hk−i∥∥
∞

)∥∥(Gk− j)−1∥∥
∞

∥∥Fk− j−1∥∥
∞
.

Substituting the estimates for ∥(Gk)−1∥∞,∥Hk∥∞ and ∥Fk∥∞ given in Lemma 3.2.2 into the
above inequality yields∥∥Y k∥∥

∞
≤
∥∥Y 0∥∥

∞
+ τkCB max

0≤ j≤k

∥∥g j∥∥
∞
≤
∥∥Y 0∥∥

∞
+CBT max

0≤ j≤k

∥∥g j∥∥
∞
,

where we used τk ≤ τNτ = T. According to the second assertion of Lemma 3.2.2 the above
estimate holds for all τ > 0 if θ = 1 and for τ ≤ 1

(1−θ)η if θ ∈ [0,1). □

This theorem tells us that the global scheme is only conditionally stable, i.e. the stability
is conditioned by the choice of the time step τ = τ(hx,hy,v0). Note that as the velocity v0(t)
increases the time step decreases.

Example 3.2.4 Consider the following parameters given in Table 3.2. Mesh sizes hx = 10−1 m
and hy = 10−2 m, the thermal diffusivity aM = 9.9375×10−7 m2/s, aF = 1.4558×10−7 m2/s
and the velocity v0 = 10−2 m/s (v = 0 for pure diffusion case). Then

η
−1 =

[
2×9.94643×10−7

(
1

10−2 +
1

10−4+

)
+

10−2

10−1

]−1

= 8.395 (η−1 = 52.307, v0 = 0)

and the time step can be chosen for θ ∈ [0,1) as follows

0 ≤ τ ≤ 8.395
(1−θ)

, v0 ̸= 0 or 0 ≤ τ ≤ 52.307
(1−θ)

, v0 = 0, .

This result can be interpreted as follows. Given the above data, for θ = 0 (fully explicit scheme),
the choice τ > 8.395 s (rep. τ > 52.307 s, for v0 = 0 ) of the time step will make the explicit
difference scheme unstable. Note that for θ → 1, τ ≥ 0. Therefore, there is no restriction for
the time step, hence, the fully implicit scheme is unconditionally stable.

3.3 Numerical Computation of the Aggregated Characteris-
tics

In this subsection we consider the approximate computation of aggregated characteristics intro-
duced in the previous subsections by using finite difference approximations of the temperature
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Q = Q(t,x,y). The approximations are given in terms of the entries of the vector function Y (t)
satisfying the system of ODEs (3.10) and containing the semi-discrete finite difference approx-
imations of the temperature in the inner grid points of the computational domain D. Recall that
the temperatures on boundary and interface grid points can be determined by linear combina-
tions from the entries of Y (t). The extension to approximations based of the solution of the fully
discretized PDE (3.18) is straightforward using the relation Y (tk) = Y (kτ)≈ Y k,k = 0, . . . ,Nτ .

Let us start with the average temperatures QM and QF , where the temperature Q(t,x,y) is
averaged over unions of disjoint rectangular subsets of the computational domain D. Assume
that B ⊂ D is a generic rectangular subset with corners defined by the grid points (xi,y j) with
indices (i, j),(i, j),(i, j),(i, j), where 0 ≤ i < i ≤ Nx and 0 ≤ j < j ≤ Ny. We assume further that
the domain B contains at least one layer of horizontal and vertical inner grid points, respectively.
Thus we require i+2 ≤ i and j+2 ≤ j. We denote by QB = QB(t) = 1

|B|
∫∫

B Q(t,x,y)dxdy the
average temperature in B. Rewriting the double integral as two iterated single integrals and ap-
plying trapezoidal rule to the single integrals the average temperature QB can be approximated
by (for details see Appendix A.3)

QB =
1
|B|

∫∫
B

Q(t,x,y)dxdy ≈ ∑
(i, j)∈NB

µi j Qi j, (3.22)

where NB = {(i, j) : i = i, . . . , i, j = j, . . . , j} and the coefficients di j of the above quadrature
formula are given by

µi j =
1

(i− i)( j− j)


1, for i < i < i, j < j < j, (inner points)
1
2 , for i = i, i, j < j < j,

j = j, j, i < i < i,
(boundary points, except corners)

1
4 , for i = i, i, j = j, j (corner points).

(3.23)

Next we want to rewrite approximation (3.22) in terms of the vector Y =Y (t). Recall that Y
contains the finite difference approximations of the temperature in the inner grid points of the
computational domain D. Let us introduce the vector Y of dimension n = (Nx +1)(Ny +1)−n
containing the temperature approximations at the remaining grid points located on the boundary
∂D and the interface DJ . These values can be determined by the discretized boundary and
interface conditions and expressed as linear combinations of the entries of Y . This allows for a
representation Y =CY with some n×n−matrix C.

Now, let N 0
B ⊂ NB and N 0

B = NB \N 0
B be the subsets (of index pairs (i, j) ∈ NB of grid

points) for which the finite difference approximation Qi j is contained in the vector Y and the
vector Y , respectively. Further, let K : N 0

B → {1, . . . ,n} and K : N 0
B → {1, . . . ,n} denote the

mappings (i, j) 7→ l = K(i, j) and (i, j) 7→ l = K(i, j) of pairs of indices (i, j) to the single
indices l and l of the corresponding entries in the vectors Y and Y , respectively. Then it holds

Qi j =

{
YK(i, j), (i, j) ∈N 0

B,

YK(i, j), (i, j) ∈N 0
B,
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and we can rewrite approximation (3.22) as

QB ≈ ∑

(i, j)∈N 0
B

µi j Qi j + ∑

(i, j)∈N 0
B

µi j Qi j

= ∑

l=K(i, j):(i, j)∈N 0
B

dl Yl + ∑

l=K(i, j):(i, j)∈N 0
B

dl Y l

= DY + DY ,

(3.24)

with an 1× n−matrix D and an 1× n−matrix D, whose entries are given for l = 1, . . . ,n, l =
1, . . . ,n by

dl =

{
µi j, l =K(i, j), (i, j) ∈N 0

B,

0 else,
and dl =

{
µi j, l =K(i, j), (i, j) ∈N 0

B,

0 else,
(3.25)

respectively. Finally, substituting Y = CY into (3.24) yields a representation of the average
temperature QB as a linear combination of entries of the vector Y which reads as

QB ≈CBY with CB = D+DC. (3.26)

Based on the above representation we can derive similar approximations for the average tem-
peratures QM and QF in the medium and the fluid, respectively. Our model assumptions im-
ply that for a storage with nP pipes the domain DF splits into nP disjoint rectangular subsets
DF

j , j = 1, . . . ,nP (pipes), whereas DM consists of nP+1 of such subsets between the pipes and
the top and bottom boundary of D which we denote by DM

j , j = 0, . . . ,nP. Then we can apply
(3.22) to derive the approximation

QF =
1

|DF |

nP

∑
j=1

|DF
j |Q

DF
j ≈CF Y where CF =

1
|DF |

nP

∑
j=1

|DF
j |C

DF
j . (3.27)

An approximation of the form QM ≈CM Y can be obtained analogously. In the next subsection
we derive approximations QO ≈COY and QB ≈CBY for the average temperatures at the outlet
and the bottom boundary, respectively. Here, the line integrals in the definitions (2.14) and
(2.15) of these two characteristics are approximated by trapezoidal rule.

Numerical approximation of QO and QB

Now we consider the average temperatures QO and QB where the temperature Q(t,x,y) is aver-
aged over one-dimensional curves at the boundary ∂D. Assume that C ⊂ ∂D is a generic curve
on one of the four outer boundaries. For the ease of exposition we restrict C to be a line be-
tween the grid points (xi,y0) and (xi,y0) at the bottom boundary, where 0 ≤ i, i+2 ≤ i ≤ Nx. We
denote by QC = QC(t) = 1

|C|
∫
C Q(t,x,y)ds the average temperature in C. Applying trapezoidal

rule to the line integral we obtain (suppressing the time variable t)

∫
C

Q(x,y)ds =
∫ xi

xi

Q(x,y0)dx ≈ hx

(
1
2

Q(xi,y0)+
i−1

∑
i=i+1

Q(xi,y0)+
1
2

Q(xi,y0)

)
.
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Since the length of the curve C is given by (i− i)hx the average temperature QC can be approx-
imated by

QC =
1
|C|

∫
C

Q(t,x,y)ds ≈ ∑
(i, j)∈NC

µi j Qi j, (3.28)

where NC = {(i, j) : i = i, . . . , i, j = 0} and the coefficients µi j of the above quadrature formula
are given by

µi j =
1

(i− i)

{
1, for i < i < i, j = 0, (inner points)
1
2 , for i = i, i, (end points).

Using the same notation and approach as above we can rewrite approximation (3.28) as

QC ≈ ∑
(i, j)∈N 0

C

µi j Qi j + ∑
(i, j)∈NC

0

µi j Qi j = DY +DY , (3.29)

where the matrices D and D are defined as in (3.25) with N 0
B and N 0

B replaced by N 0
C and NC

0
,

respectively. Note that in our finite difference scheme the grid values of boundary points are not
contained in Y . Thus, we have N 0

C =∅ and D = 01×n. Finally, substituting Y =CY into (3.29)
yields a representation of the average temperature QC as a linear combination of entries of the
vector Y which reads as

QC ≈CCY with CC = D+DC. (3.30)

For C = ∂DB, i.e., i = 0, i = Nx the above representation directly gives the approximation of
QB =C∂DB

Y . For the average temperature QO at the outlet of a storage with nP pipes the outlet
boundary DO splits into nP disjoint curves DO

j , j = 1, . . . ,nP. Then we can apply (3.30) to
derive the approximation

QO =
1

|∂DO|

nP

∑
j=1

|∂DO
j |Q

∂DO
j ≈COY where CO =

1
|∂DO|

nP

∑
j=1

|∂DO
j |C

DO
j .

3.4 Analogous Linear Time-Invariant System
The topic considered this subsection is the starting point of the next chapter in which we aim
to approximate the dynamics of certain aggregated characteristics for the infinite dimensional
spatial distribution of the temperature Q = Q(t,x,y) by a low-dimensional system of ODEs.
The key idea of the analogous model has already been presented in Subsec.2.3.2. Here we
provide further details and specify the average temperature in the PHX in terms of the vector
function Y containing the temperatures in the grid points. Recall that the dynamics of the
spatial distribution of Q is governed by the heat equation (2.6). We semi-discretize the PDE to
obtained a finite-dimensional approximation (3.10) which reads as dY (t)

dt = A(t)Y (t)+B(t)g(t)
and constitutes a high-dimensional system of ODEs for the vector function Y containing the
temperatures in the grid points. In Chapter 4 that system of ODEs is the starting point for the
application of model reduction techniques to find a suitable low-dimensional system of ODEs
from which the aggregated characteristics can be obtained with a reasonable degree of accuracy.
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Eq.(3.10) represents a system of n linear non-autonomous ODEs. Since some of the co-
efficients in the matrices A,B resulting from the discretization of convection terms in the heat
equation (2.6) depend on the velocity v0(t), it follows that A,B are time-dependent. Thus, (3.10)
does not constitute a linear time-invariant (LTI) system. The latter is a crucial assumption for
most of model reduction methods such as the Lyapunov balanced truncation technique that is
considered in Chapter 4. We circumvent this problem by replacing the model for the GS by
a so-called analogous model which is LTI. Following key idea presented in Subsc. 2.3.2, we
obtain the following approximation of the original by an analogous model which is performed
in two steps.
Approximation Step 1. We assume that contrary to the original model the fluid is also moving
with constant velocity v0 during pump-off periods. During these waiting periods we assume
that the temperature QI at the pipe’s inlet is equal to the average temperature of the fluid in
the pipe QF . This approximation leads to a modified boundary condition at the inlet given by
(2.16). Semi-discretization of the boundary condition (2.16) using approximation (3.27) of the
average fluid temperature QF(t) =CF Y (t) leads to a modification of the input term g(t) of the
system of ODEs (3.10) given in (3.14). That input term now reads as

g(t) =

{
(QI(t), QG(t))⊤, pump on,
(CF Y (t), QG(t))⊤, pump off.

(3.31)

Further, the non-zero entries Bl1 of the input matrix B given in (3.13) are modified. They are
now no longer time-dependent but given by the constant Bl1 =

aF

h2
x
+ v0

hx
which was already used

during pump-on periods.
Approximation Step 2. From (3.31) it can be seen that the input term g during pumping de-
pends on the state vector Y via CF Y and can no longer considered as exogenous. This has to be
corrected and leads to an additional contribution to the system matrix A given by B•1CF where
B•1 denotes the first column of B. Thus, the system matrix again would be time-dependent and
the system not LTI. In order to obtain a LTI system we therefore perform a second approxima-
tion step and treat QF as an exogenously given quantity (such as QI

C,Q
I
D,QG). This leads to a

tractable approach for model reduction by the Lyapunov balanced truncation technique applied
in the next chapter to generates low-dimensional systems depending only on the system ma-
trices A,B but not on the input term g. Further, from an algorithmic or implementation point
of view this is not a problem since given the solution Y of (3.10) at time t, the average fluid
temperature QF(t) can be computed as a linear combination of the entries of Y (t).

3.5 Numerical Results
In this section we present results of numerical experiments based on the finite difference dis-
cretization (3.18) of the heat equation (2.6) and determine the spatio-temporal temperature dis-
tribution in the storage. Further, we study the impact of the heat exchanger pipe topology and
vary the number and arrangement of the pipes. In Subsecs. 3.5.1, 3.5.2 and 3.5.3 we present
results for a storage with one, two, and three pipes, respectively. For these experiments we also
compute and compare certain aggregated characteristics which are introduced in Sec. 2.3.3 and
computed via post processing of the temperature distribution.

Note that we provide additional video material showing animations of the temporal evolu-
tion of the spatial temperature distribution for which in the following we can present snapshots
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only.
The videos are available at www.b-tu.de/owncloud/s/D68fmqXRcgbesKj .

Parameters Values Units
Geometry
width lx 10 m
height ly 1 m
depth lz 10 m
diameter of pipe dP 0.02 m
number of pipes nP 1,2,3
Material
medium (dry soil)

mass density ρM 2000 kg/m3

specific heat capacity cm
p 800 J/kgK

thermal conductivity κM 1.59 W/mK
thermal diffusivity κM(ρMcm

p )
−1 aM 9.9375×10−7 m2/s

fluid (water)
mass density ρF 997 kg/m3

specific heat capacity cF
p 4182 J/kgK

thermal conductivity κF 0.607 W/mK
thermal diffusivity κF(ρFcF

p )
−1 aF 1.4558×10−7 m2/s

velocity during pumping v0 10−2 m/s
heat transfer coeff. to underground λG 10 W/(m2 K)
initial temperature Q0 10 and 35 °C
inlet temperature: charging QI

C 40 °C
discharging QI

D 5 °C
underground temperature QG 15 °C
Discretization
mesh size hx 0.1 m
mesh size hy 0.01 m
time step τ 1 s
time horizon T 36 and 72 h

Table 3.2: Model and discretization parameters

Experimental settings

The model and discretization parameters are given in Table 3.2. We run the experiments for
θ = 0 (fully explicit scheme). The storage is charged and discharged via heat exchanger pipes
filled with a moving fluid and thermal energy is stored by raising the temperature of the storage
medium. We recall the open architecture of the storage which is only insulated at the top and the
side but not at the bottom. This leads to an additional heat transfer to the underground for which
we assume a constant temperature of QG(t) = 15 °C. In the simulations the fluid is assumed
to be water while the storage medium is dry soil. During charging a pump moves the fluid
with constant velocity v0 arriving with constant temperature QI(t) = QI

C = 40 °C at the inlet.
If this temperature is higher than in the vicinity of the pipes, then a heat flux into the storage
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medium is induced. During discharging the inlet temperature is QI(t) = QI
D = 5 °C leading to

a cooling of the storage. At the outlet we impose a vanishing diffusive heat flux, i.e. during
pumping there is only a convective heat flux. In some experiments we also consider waiting
periods where the pump is off. This helps to mitigate saturation effects in the vicinity of the
pipes reducing the injection and extraction efficiency. During that waiting periods the injected
heat (cold) can propagate to other regions of the storage. Since pumps are off we have only
diffusive propagation of heat in the storage and the transfer over the bottom boundary.

3.5.1 Storage With one Horizontal Straight PHX

Figure 3.3: Spatial distribution of the temperature in the storage with one horizontal PHX at
vertical position p after of 36 hours of charging (left) and discharging (right).
Top: p = 90 cm. Middle: p = 50 cm. Bottom: p = 10 cm.

In this experiment we run simulations with one horizontal pipe located at different vertical
positions p between the bottom (p = 0 cm) and the top (p = ly = 100 cm) of the storage. We
compare the spatial temperature distributions as well as aggregated characteristics such as the
average temperature Q(t), the average outlet temperature QO(t), and the gain or loss of energy
G(0,T ) in the storage during a period of T = 36 hours. Charging is realized by sending fluid
through the pipe for 36 hours. It arrives at the inlet with constant temperature QI

C(t) = 40 °C.
We start with a homogeneous initial temperature distribution with Q(0,x,y) = 10 °C, uniformly
distributed in the storage. In the experiment with discharging we start with a homogeneous
initial temperature distribution with 35 °C. For 36 hours the storage is cooled by the moving
fluid arriving at the storage inlet with constant temperature QI

D(t) = 5 °C.
Fig. 3.3 shows the spatial distribution of the temperature in the storage after 36 hours of

charging (left) and discharging (right) where we used three different vertical positions p of the
pipe. In the top panels the pipe is located close to the insulated top boundary (p = 90 cm). The
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Figure 3.4: Average temperature in the storage QS and average outlet temperature QO after
36 hours for a storage with one horizontal PHX at different vertical positions. Left: Charg-
ing. Right: Discharging.

panels in the middle show the results for a pipe in the center (p = 50 cm) while in the bottom
panels the pipe is close to the bottom boundary (p = 10 cm). Recall that the bottom is open and
allows for heat transfer to the underground with constant temperature QG(t) = 15 °C. Fig. 3.4
plots the corresponding average temperatures in the storage and at the outlet against time. In
Fig. 3.3 it can be seen that warming and cooling mainly takes places in a vicinity of the pipe
and after 36 hours the temperature in more distant storage domains is only slightly changed.
Due to the direction of the moving fluid from left to right, warming and cooling in the left part
of the storage is slightly stronger than in the right part. A closer inspection of the results shows
that except in the experiment with the pipe close to the bottom boundary (p = 10 cm), after 36
hours of charging the temperatures in the vicinity of that boundary are below the underground
temperature QG = 15 °C. Thus in addition to the injection of heat via the pipe we also have
an inflow of thermal energy from the warmer underground into the storage. This results in a
“boundary layer” which is slightly warmer than in the inner storage region. The reverse effect
can be observed during discharging where close to the bottom boundary the temperature is
always above QG = 15 °C. This induces a heat flux from the storage to the colder underground
which contributes together with the extraction of heat via the pipe to the total loss of thermal
energy in the storage.

In Fig. 3.5 we plot in the upper panels the gain GS (respectively loss −GS) of thermal
energy during 36 hours of charging (respectively discharging) against time for vertical positions
p = 10, 20, . . . ,90 cm. The lower panel shows the gain and the loss at the end of the 36 hours
charging and discharging period, respectively, depending on the vertical pipe position p. In the
first 4 hours of charging there are almost no visible deviations in the gains and losses, but after
36 hours we can see a clear dependence of the pipe’s vertical position p. Further, for all p we
observe a decaying slope of the curves in the upper plots. This can be explained by the “thermal
saturation” in the vicinity of the pipe and the slow diffusive propagation of the heat to the more
distant regions of the storage. It shows that (dis)charging the storage becomes less efficient after
longer periods of operation. Injecting (extracting) a certain amount of energy takes longer and
needs more electricity consumed by the pumps. This effect suggests to interrupt (dis)charging
and include waiting periods in which the heat (cold) in the vicinity of the pipes can propagate to
other regions of the storage. The impact of such waiting periods will be studied in more detail
in Subsec. 3.5.2.
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Figure 3.5: Gain and loss of stored energy for a storage with one horizontal PHX at different
vertical positions.
Top left: Gain of stored energy GS during charging. Top right: Loss of stored energy −GS

during discharging.
Bottom: Gain GS and loss −GS of stored energy after 36 hours of charging and discharging,
respectively, depending on vertical PHX position p.

The results for p = 40, . . . ,70 cm are quite similar. However, for pipe locations close to
the open bottom boundary (p = 10, 20 cm) and the insulated top boundary (p = 90 cm) we
observe remarkable deviations. Here charging and discharging is considerably slower and gains
and losses of thermal energy are smaller. For a pipe close to the top this can be explained by
the saturation of the storage domain in the vicinity of the pipe. During charging (discharging)
the boundary and its insulation prevent the propagation of heat into (from) the inner storage
regions. On the bottom boundary that effect is combined with heat transfer to the underground.
During charging a part of the injected heat is lost to the underground while during discharging
the vicinity of the pipe is also cooled by the colder underground. Thus as expected, for an
efficient operation of the storage the pipe should be located in the central region of the storage.

3.5.2 Storage With Two Horizontal Straight PHXs

In this experiment we run the simulations with two horizontal pipes located symmetrically to
the vertical mid level of p = 50 cm and separated by a distance d varying between 10 cm and
90 cm. Recall that placing a single pipe at p = 50 cm showed quite good performance in the
last subsection. First we study the spatial temperature distribution and some aggregated char-
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acteristics during (dis)charging for T = 36 hours. Then we introduce waiting periods allowing
the injected heat (cold) to spread within the storage.

Figure 3.6: Spatial distribution of the temperature in the storage with two horizontal PHXs of
vertical distance d after 36 hours of charging (left) and discharging (right).
Top: d = 10 cm. Middle: d = 40 cm. Bottom: d = 90 cm.

Figure 3.7: Average temperature in the storage QS during 36 hours for a storage with two
horizontal PHXs of different vertical distances. Left: Charging. Right: Discharging.

Charging and discharging without waiting periods

Fig. 3.6 shows for three different distances d of the two pipes the spatial distribution of the
temperature in the storage after 36 h of charging (left) and discharging (right). In the top panels
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Figure 3.8: Gain and loss of stored energy for a storage with two horizontal PHXs of different
distance d. to 90 cm.
Top left: Gain GS of stored energy during charging. Top right: Loss −GS of stored energy
during discharging.
Bottom: Gain GS and loss −GS of stored energy after 36 hours of charging and discharging,
respectively, depending on distance d.

the pipes are very close (d = 10 cm). The panels in the middle show the results for two pipes at
a distance d = 40 cm and in the bottom panels one pipe is located close to the top and the other
close to the bottom boundary (d = 90 cm). As in the experiment with only one pipe it can be seen
that warming and cooling in the left part of the storage is slightly stronger than in the right part.
It mainly takes places in a vicinity of the pipe whereas after 36 h temperatures in more distant
regions are only slightly changed. Thus, the spatial temperature distributions differ considerably
for the three arrangements of two pipes. For a small distance (d = 10 cm), we observe a strong
saturation at a level close to the inlet temperature in the small region between the pipes while
the region at the top is almost at the initial temperature and the region at the bottom is only
slightly warmed (cooled) by the underground. For the pipes at distance d = 90 cm, we observe
an extreme saturation in the small layer between the upper pipe and the top boundary while the
lower pipe is also warming (cooling) the underground.

Next we will have a look at aggregated characteristics. In Fig. 3.7 the average temperatures
are plotted against time for distances of the pipes d = 10,20, . . . ,90 cm. Fig. 3.8 presents
the gain and loss of thermal energy in the storage at the end of the charging and discharging
period, respectively. The figures reveal that apart from the first 4 hours there is a strong impact
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of the pipe distance. The most efficient mode of operation is obtained for the pipes distance of
d = 40 cm. Here, the gain (loss) of thermal energy during charging (discharging) is at maximum.
These quantities strongly decay for smaller and larger distances because of the saturation effect
which becomes stronger if pipes are arranged closer to each other or closer to the top and bottom
boundary of the storage.

Charging and discharging with waiting periods

Figure 3.9: Charging and discharging during 36 hours with several waiting periods for a storage
with two horizontal PHXs at distance d = 10 cm, d = 40, and d = 90 cm.
Top: Aggregated characteristics QS and QO. Bottom: Gain GS / loss −GS of stored energy.
Left: Charging. Right: Discharging.

The above experiments have shown how saturation effects can be mitigated by choosing an
appropriate vertical distance of the two pipes. This option is only available in the design of the
storage architecture and not during the operation of an already existing storage. Therefore, we
now want to examine another option, which is the interruption of (dis)charging cycles allowing
the heat injected to (extracted from) the vicinity of the pipes to propagate to the other storage
regions. The idea is that after a sufficiently long waiting period the saturation in the vicinity of
the pipe is considerably reduced such that (dis)charging can resumed with higher efficiency. Al-
though, the introduction of such waiting period will increase the time needed to inject (extract)
a given amount of thermal energy it reduces the saturation effect and helps to save operational
costs for electricity used for running the pumps.
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In our experiments we divide the time interval [0,T ] into three sub-intervals of length
8,12,16 hours. In each sub-interval (dis)charging is followed by a waiting period of the same
length as it can be seen in Fig. 3.9 where charging, waiting and discharging periods are repre-
sented by red, green and blue background color. The top panels show the average temperatures
in the storage Q and at the outlet QO, respectively, during charging and discharging. We com-
pare a storage with two pipes of distance d = 40 cm and a storage with more close-by pipes
d = 10 cm and two pipes at distance d = 90 cm. Recall that in the previous subsection we
have seen that d = 40 cm allows for much more efficient operation than for d = 10, 90 cm.
As expected, during the waiting periods the average temperatures at the outlet and in the pipe
decay after charging and rise after discharging. This is due to the diffusion of heat in the stor-
age, in particular the heat flux induced by the different temperatures inside and outside the pipe.
During waiting the average temperature in the storage Q is almost constant since injection or
extraction of heat is stopped. However, the heat transfer to and from the underground at the
bottom boundary continues also during waiting but it does not produce a visible change of Q.
In the two lower panels of Fig. 3.9 we compare the storage operation with and without waiting
periods. We plot the gain (loss) of thermal energy in the storage during charging (discharging)
over time. Note that for operation with waiting (dis)charging takes place only 50% of the time.
However, for the “optimal” pipe distance d = 40 cm the resulting gain (loss) reaches more than
80% of the values for uninterrupted operation. For the less efficient cases of pipes at distance
d = 10 cm and pipes at distance d = 90 cm that cause strong saturation effects the differences
are smaller and the gaps are quickly reduced to almost zero after resuming (dis)charging.

3.5.3 Storage With Three Horizontal Straight PHXs

In this example we add a third pipe to the storage architecture and study two different pipe
arrangements. We proceed with the experimental design including the same waiting periods
considered in the previous subsection but now we “glue” together the two periods of charging
and discharging each of length 36 h. The result is a total period of length T = 72 h starting
with a storage at temperature Q(0,x,y) = 10 °C. Within the the first 36 hours the storage is
charged by the moving fluid arriving at the pipe inlet with temperature QI

C(t) = 40 °C and then
discharged using the inlet temperature QI

D(t) = 5 °C. The charging, waiting and discharging
periods can be seen in Fig. 3.11. Contrary to the above experiments, discharging now starts not
with a temperature 35 °C but with a non-uniformly temperature distribution which is obtained
after 36h of charging (and waiting). In this more realistic setting, temperatures typically are
higher in the vicinity of the pipes and lower in other regions.

Fig. 3.10 shows snapshots of the spatial temperature distribution during the last charging
period (at t = 27h), during the subsequent waiting period (at t = 35h) and during of the last
discharging period (at t = 63h), respectively. We compare two storage architectures with three
pipes. In the first, the pipes are located symmetrically w.r.t. the vertical mid level. For the
second, the central pipe was moved upwards such that we get a non-symmetric arrangement
with two quite close-by pipes in the upper region. The snapshots show a strong saturation
between the two upper pipes of the non-symmetric pipe arrangement while for symmetric pipes
the temperature distribution is much more uniform, in particular during the waiting period as it
can be seen in the middle panel for time t = 35 h.

In Fig. 3.11 we present aggregated characteristics which are plotted over time and observe
similar patterns as in the experiment with a two-pipe storage considered in the previous subsec-
tion. During the waiting periods after charging the average outlet and pipe temperatures decay
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Figure 3.10: Spatial distribution of the temperature in the storage with three horizontal PHXs
during charging (top), waiting (middle) and discharging (bottom) period.
Left: Non-symmetric PHXs, Right: Symmetric PHXs

at a faster rate for symmetric pipes than for non-symmetric pipes and vice versa for waiting
periods after discharging. This is a consequence of the stronger saturation for non-symmetric
pipes which prohibits a faster cooling (warming) of the pipe during waiting. For symmetric
pipes the average storage temperature during charging increases faster and during discharging
decreases faster than for non-symmetric pipes. This explains the similar patterns for the gain
of stored energy which are plotted in the right panel. It shows that the storage with symmetric
pipes (dis)charges faster than the storage with non-symmetric pipes.

3.5.4 Numerical Results for Analogous LTI System

In Figs. 3.12 and 3.13 we present some numerical results where we compare the spatio-temporal
temperature distribution and its aggregated characteristics of the original and the associated
analogous model. These results are based on the experimental design in the Subsec. 3.5.3 for
a storage architecture with three symmetric pipes and waiting periods. Fig. 3.12 compares
snapshots of the spatial temperature distribution in the storage for the original and analogous
model. One snapshot is taken during charging and the other at the end of the last waiting period
after preceding discharging periods. At first glance there are no visible differences. A look at
the aggregated characteristics in Fig. 3.13 shows negligible approximation errors for the average
temperature in the storage and the fluid. However, the approximation of the average outlet
temperature suffers slightly from the replacement of a resting fluid by a moving fluid during
the waiting period. The resulting “mixing of the temperature profile” inside the pipe adjusts
the outlet to the average temperature in the pipe. This can be seen in the right panel where
the relative error for the outlet temperature dominates the errors for the two average storage
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Figure 3.11: Storage with three horizontal PHXs during 72 hours with charging, waiting and
discharging periods. Left: Aggregated characteristics QS,QF ,QO. Right: Gain of stored
energy GS.

and fluid temperature. The experiment indicates that apart from some noticeable approximation
errors in the pipe during waiting periods, in particular at the outlet, the other deviations are
negligible. Finally, it can be nicely seen that during the (dis)charging periods the errors decrease
and vanish almost completely, i.e., in the long run there is no accumulation of errors.

Figure 3.12: Spatial distribution of the temperature in the storage with three horizontal sym-
metric PHXs during charging (left) and waiting (right).
Top: Original system. Bottom: Analogous system.

Remark 3.5.1 The poor precision of the outlet temperature approximation by the analogous
model during waiting periods is of no relevance for the management and operation of the GS
within a residential heating system. Here, the outlet temperature is required only during charg-
ing and discharging but not during the waiting periods. The interesting quantity for which a
good approximation precision is required is the average temperature in the storage and this is
provided by the analogous model.
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Figure 3.13: Original and analogous system of a storage with three horizontal non-symmetric
PHXs during 72 h of charging, waiting and discharging. Left: Comparison of aggregated char-
acteristics QS,QF ,QO. Right: Relative error of approximation by analogous system
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CHAPTER 4

Model Order Reduction of the Dynamics of a Geothermal Storage

Introduction
The aim of this chapter is to reduce the dimension of system (3.10) to facilitate the computation
of the charging and discharging decisions of the storage manager. This technique is known
as MOR. Balanced truncation model reduction method adopted for this purpose is one of the
most common model reduction techniques for standard state space systems. System (3.10)
that we aim to reduce the dimension is linear time-varying with time-dependent system matrix
caused by the fluid velocity v0(t). Indeed, the velocity v0(t) = v0, v0 is constant during charg-
ing/discharging periods (when the pump is on) and v0(t) = 0 during waiting period (when the
pump is off). This system could be considered as linear switched system since the velocity
of the fluid changes from one mode to another and leads to different systems matrices when
switching from one mode to another. Balanced truncation for such a linear switched system
exists, but it requires too much computational effort. In fact, one has to compute pairs of con-
trollability and observability Gramians corresponding to each active mode by solving systems
of coupled Lyapunov equations, see Gosea et al. [49]. To remedy this, we consider the analo-
gous model presented in in Sec. 3.4 which mimics the original model by a linear time-invariant
system where the pump is always on and the fluid velocity v(t) = v0 is constant on the entire
interval ∈ [0,T ]. The idea of the analogous model is that we use at the inlet and outlet boundary
also during the waiting period the same type of boundary conditions as during charging and
discharging. However, we choose the inlet temperature to be equal to the average temperature
in the pipe. Numerical examples presented in Subsec. 3.5.4 show that the analogous system
approximates the original system quite well.

In this chapter the goal is to use Lyapunov balanced truncation MOR to reduce the dimen-
sion of the linear time-invariant system (analogous system) resulting from the semi-discretization
of the heat equation describing the dynamics of the geothermal energy storage. The latter has
many advantages such as preservation of several system properties like stability and passivity,
see Pernabo and Silverman [83] and guarantees the existence of a priori error bound, see Enns
[41] for the difference between the outputs of the full and the reduced model. This a priori error
bound permits an appropriate choice of the order of the reduced-order model depending on how
accurate the approximation is needed.
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The rest of the chapter is organized as follows. Sec. 4.1 we start with the formulation
of the general MOR problem. Then we present the Lyapunov balanced truncation method
which is based on the computation of the observability and controllability Gramians as solutions
of two algebraic Lyapunov equations in Sec. 4.2. In Sec. 4.3 we demonstrate the efficiency
of Lyapunov balanced truncation by numerical experiments for various settings of the output
variables describing the aggregated characteristics of the temperature distribution in the GS.

4.1 Model Order Reduction

4.1.1 Problem Setup

In the previous sections we have seen that the spatio-temporal temperature distribution describ-
ing the input-output behavior of the GS can be approximately computed by solving the system
of ODEs (3.10) for the n-dimensional function Y resulting from semi-discretization of the heat
equation (2.6). Aggregated characteristics can be obtained by linear combinations of the entries
of Y in a post-processing step, see Sec. 2.3.3. In the following we work with the approximation
using an analogous system introduced in Sec. 3.4. Then the input-output behavior of the GS can
be described by a LTI system, i.e., its response to any arbitrary input signal does not depend on
absolute time. We consider in the sequel a pair of a linear autonomous differential and a linear
algebraic equation which is well-known from linear system and control theory and of the form

Ẏ (t) = AY (t)+Bg(t),
Z(t) =CY (t). (4.1)

Here, A ∈ Rn×n,B ∈ Rn×m,C ∈ Rno×n for n,m,no ∈ N are called system, input, output matrix,
respectively. Further, g : [0,T ] → Rm is the input (or control), Y : [0,T ] → Rn the state and
Z : [0,T ]→Rno is the output. Given some initial value Y (0) = y0 the input-output behavior, i.e.,
the mapping of the input g to the output Z is fully described by the triple of matrices (A,B,C)
which is called realization of the above system.

For the analogous system, A and B are constant matrices which are given in (3.11) and (3.13)
for the case of constant velocity v0(t) = v0, i.e., the pump is on. From Theorem 3.1.13 we know
that A is stable. The input dimension is m = 2 while the dimension n of the state depends on
the discretization of the spatial domain D. The two entries of the input g are the temperatures
at the inlet and of the underground at the bottom boundary. The output Z contains the desired
aggregated characteristics such as the average temperatures Q†, † = M,F,O,B, of the medium,
the fluid, at the outlet or the bottom boundary. Thus, g is piecewise continuous and bounded.
The associated row matrices C† of the approximation Q† =C†Y (t) given in (3.26) form the no
rows of the output matrix C. The output dimension no is the number of characteristics included
in the problem and typically small while the state dimension n will be very large in order to
obtain a reasonable accuracy for the semi-discretized solution of the heat equation.

For the above systems with high-dimensional state the simulation of the input-output behav-
ior and the solution of optimal control problems suffer from the curse of dimensionality because
of the computational complexity and memory requirements. This motivates us to apply model
order reduction (MOR).

The general goal of MOR is to approximate the high-dimensional linear time-invariant sys-
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tem (4.1) given by the realization (A,B,C) by a low-dimensional reduced-order system

˙̃Y (t) = ÃỸ (t)+ B̃g(t), Ỹ (0) = ỹ0

Z̃(t) = C̃Ỹ (t),
(4.2)

i.e., a realization (Ã, B̃,C̃) where Ã ∈ Rℓ×ℓ, B̃ ∈ Rℓ×m, C̃ ∈ Rno×ℓ, Ỹ ,Ỹ (0) ∈ Rℓ, Z̃ ∈ Rno and
ℓ ≪ n denotes the dimension of the reduced-order state. The reduced order initial condition
Ỹ (0) is obtained by projection of y0 onto a low ℓ-dimensional subspace. We notice that the
input variable g is the same for systems (4.1) and (4.2). Next we introduce the concept of
transfer function of a LTI system.

Transfer function. Consider the Laplace transform of a function f (t), t ∈ R, defined by

f(s) =
∫

∞

0
e−st f (t)dt,

where s a complex variable called frequency. Then, taking the Laplace transform in (4.1) gives

Y(s) = (sIn −A)−1Bg(s)+(sIn −A)−1Y (0), (4.3)

Z(s) =C(sIn −A)−1Bg(s)+C(sIn −A)−1Y (0), (4.4)

where Y(s), Z(s) and g(s) are the Laplace transforms of Y (t), Z(t) and g(t) respectively. In-
deed, taking the Laplace transform in (4.1) and using the integration by part, we obtain∫

∞

0
e−stẎ (t)dt =

∫
∞

0
e−stAY (t)dt +

∫
∞

0
e−stBg(t)dt

e−stY (t)
∣∣∣∣∞
0
+ s
∫

∞

0
e−stY (t)dt = A

∫
∞

0
e−st Y (t)dt +B

∫
∞

0
e−st g(t)dt

sY(s)−Y (0) = AY(s)+Bg(s),

from which we derive relation (4.3). Since Z(s) =C Y(s), we immediately have relation (4.4).
Define the rational matrix-valued function called transfer function of the continuous-time LTI
system (4.1) by

G(s) =C(sIn −A)−1B

We can observe that if initial state Y (0) = 0, then (4.4) implies that Z(s) = G(s)g(s). Hence, the
transfer function G(s) gives the relation between the Laplace transforms of the input g(t) and
the output Z(t). Therefore, the transfer function of G(s) describes the input-output behaviour of
the LTI system (4.1) in the frequency domain under the assumption that the initial state is zero.
If for any rational matrix-valued function G(s) there exist matrices A, B and C such that G(s) =
C(sIn −A)−1B, Then the (A, B, C) is called a realization of G(s).

Remark 4.1.1 Note that the realization of G(s) is not unique, see Stykel [107]. If the assump-
tion on the initial state does not hold, i.e., Y (0) ̸= 0, the above description of the input-output
behaviour is not applicable. In addition, the transfer function representation does not reveal the
behaviour inside the system such as unobservable unstable modes if the initial state is nonzero.
This is due to the fact that observable modes can be excited due to a nonzero initial state but may
not appear in the transfer function due to pole-zero cancellation, see De Almeida et al. [36].
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Therefore, the transfer function matrix cannot always be used to study the stability properties
of an LTI system.

Requirements of the MOR. The reduced-order system should capture the most dominant dy-
namics of the original system, in particular preserve the main physical system properties, e.g.,
stability. Further, it should provide a reasonable approximation of the original output Z by Z̃ to
given input g where the output error ∥Z − Z̃∥L2([0,T )) satisfies the desired error tolerance

∥Z̃ −Z∥L2([0,T )) ≤ εz · ∥g∥L2([0,T ))

for every input g, where εz is some fixed tolerance and the function space L2 is the space of all
square integrable functions and the L2-norm of a function f ∈ L2([0,T )) is defined by

∥ f∥L2([0,T ]) =

(∫ T

0
∥ f (t)∥2

2dt
)1/2

,

where ∥.∥2 is a Euclidean norm on the n-dimensional Euclidean space. For the limiting case
T → ∞, we simply write L2.
Equivalently, the transfer function G̃(s) = C̃(sIℓ− Ã)−1B̃ of the reduced order system should
approximate the transfer function G(s) = C(sIn −A)−1B of the original system with a small
error satisfying the desired error tolerance

∥G(.)− G̃(.)∥H∞ ≤ εz,

where H∞ is the Hardy space (a vector space of bounded holomorphic functions on the disk)
with the ∥.∥H∞ a norm associated to a system characterized by a transfer function G(s) defined
as in Stykel and Reis [108] by

∥G∥H∞ = sup
ω∈R

∥G(iω)∥2.

In addition, the computation of the reduced order system should be numerically stable and
efficient. For g ̸= 0 we have from the definition of H∞ norm the following equivalent relation
for the error measure,

∥Z̃ −Z∥L2 ≤ ∥G− G̃∥H∞∥g∥L2 .

MOR techniques can be broadly classified in truncation/projection based methods and mo-
ment matching methods. These methods are singular value decomposition (SVD) based meth-
ods and Krylov based methods, respectively. Further, SVD can also be subdivided into two
classes depending on the structure of the problem. The first class of methods among which the
POD and the Gramian based approximations are suitable for nonlinear systems. The second
class among which Balanced truncation and Hankel approximation methods are suitable for
linear system. For a general overview see Antoulas et al. [5, 6] and Schilders et al. [97].
Below we will describe the general truncation/projection based model reduction procedure fol-
lowing by the detailed description of a specific truncation based method known as Truncated
Balanced Realization method or balanced truncation. This method is well studied and known
to produce reduced-order models that preserve properties of the original model and guarantee
stable error bound. The basic idea of the truncation/projection based method is to truncate the
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dynamical system studied at some point or in an appropriate basis. The latter is illustrated in
Subsec.4.1.2. Although the balanced truncation method is not the fastest MOR method, our
choice is motivated by the fact that it produces a very low-dimensional reduced-order system
that suits our optimal control problem.

4.1.2 Projection-Based Methods
The underlying idea of projection-based methods is that the state dynamics can be well ap-
proximated by the dynamics of a projection of the n-dimensional state Y onto a suitable low-
dimensional subspace of Rn of dimension ℓ < n. Then the aim is to describe the dynamics of the
projection by a ℓ-dimensional system of ODEs. Prominent examples are the modal truncation
and balanced truncation method, see Antoulas [5, Secs. 7, 9.2]. Here, the projection is found
by applying a suitable linear state transformation Y = T Y with some non-singular n×n-matrix
T which allows to define the projection by truncation of Y .
Transformation. The above mentioned transformation allows to derive the following alterna-
tive equivalent realization of the system (4.1). which is proven in [109, Appendix B.1].

Lemma 4.1.2 Let T be a n×n constant non-singular transformation matrix. If we define the
transformation Y = T Y , then the state and output equation in (4.1) become

Ẏ (t) = A Y (t)+Bg(t),

Z(t) =C Y (t).
(4.5)

The realization of the system is given by (A,B,C) with

A = T AT −1, B = T B and C =CT −1.

The following shows that the transfer is invariant under the above mentioned transformation.

Lemma 4.1.3 Let (A,B,C) be the realization of the transfer function G(s) of the LTI system
(4.1) and (A,B,C) the realization of the transfer function G(s) of the LTI system (4.5).
Then G(s) = G(s).

Proof.

G(s) =C(sIn −A)−1B. (4.6)

Substituting the the transformed matrices in equation (4.6) yields

G(s) = (CT −1)(sIn −T AT −1)−1(T B) =C[(sIn −T AT −1)T ]−1(T B)

=C[T −1(sIn −T AT −1)T ]−1B =C(sIn −A)−1B = G(s).

□
Truncation. After transforming the system we proceed to the truncation step. It is assumed
that the transformation T is such that the first ℓ entries of the transformed state Y forming the
ℓ-dimensional vector Y 1 represent the most dominant states while the remaining n− ℓ entries
which are collected in the n− ℓ-dimensional vector Y 2 comprise the less dominant and negligi-
ble states. Based on this decomposition of Y into Y 1 and Y 2 the following partition of system
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(4.5) into blocks is obtained(
Ẏ 1

Ẏ 2

)
=

(
A11 A12
A21 A22

)(
Y 1
Y 2

)
+

(
B1
B2

)
g(t), Z =

(
C1 C2

)(Y 1
Y 2

)
.

The above block partition of the equivalent realization (4.5) is used to define the reduced-
order system by assuming that the truncation of Y to the first ℓ entries defines the desired pro-
jection. Then truncating the less dominant states Y 2 and keeping only the first ℓ dominant states
Y 1 leads to the reduced system

Ẏ 1 = A11Y 1 +B1g(t), Z =C1Y 1. (4.7)

Thus is the desired reduced-order system (4.2) is given by the realization (Ã, B̃,C̃)= (A11,B1,C1)
and approximates the output Z of the original system (4.1) by Z̃ = Z.

4.2 Lyapunov Balanced Truncation

Setting. The crucial question for the above introduced projection-based MOR methods is the
choice of a suitable transformation matrix T which was left out and will be addressed in this
subsection. The transformation should be such that the first entries of the transformed state Y
provide the largest contribution to the input-output behaviour of the system. They carry the
essential information for approximating the system output Z to a given input g with sufficiently
high accuracy. On the other hand the last entries should deliver the smallest contribution to the
input-output behaviour and thus can be neglected.

Lyapunov balanced truncation uses ideas from control theory, in particular the notion of
controllability and observability which we sketch below. The basic idea is to define a transfor-
mation T that “balances” the state in a way that the first ℓ entries of Y are the states which are
the easiest to observe and to reach. Then states which are simultaneously difficult to reach and
to observe can be neglected and are truncated.

This method appears to be well-suited for the present problem of approximation input-
output behavior of the GS. Balanced truncation MOR was first presented by Moore [77] who
exploited results of Mullis and Roberts [78]. The preservation of stability was addressed by
Pernebo and Silverman [84], error bounds derived by Enns [41] and Glover [48]

In the following we always assume that the linear system (4.1) is stable, i.e., the system
matrix A is stable. From Theorem 3.1.13 it is known that this is the case in the problem un-
der consideration. This allows that the system dynamics is not only considered on finite time
intervals [0,T ] but also on [0,∞).

Given the initial state Y (0) = y0 and the control g, there exists a unique solution to the
continuous-time dynamical system (4.1) given by

Y (t) = ψ(t,y0,g) := eAty0 +
∫ t

0
eA(t−s)Bg(s)ds, (4.8)

Z(t) =CY (t) =CeAty0 +
∫ t

0
CeA(t−s)Bg(s)ds.

Note that the first term in the above state equation ψ(t,y0,0) representing the response to an
initial condition y0 and a zero input, while the second term is ψ(t,0,g) and represents the
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response to a zero initial state and input g.

4.2.1 Controllability and Observability
We now introduce some concepts from linear system theory which play a crucial role in the
derivation of the balanced truncation method. Let us denote by L2([t1, t2]) the space of square
integrable functions on [t1, t2]. We write L2(0,∞) for functions on [0,∞).

Definition 4.2.1 (Controllability)

1. Let the linear system (4.1) be given. A state y∈Rn is said to be controllable or reachable
from zero initial state y0 = 0 if there exist a finite time t∗ and an input g ∈L2([0, t∗]) such
that the solution given in (4.8) satisfies Y (t∗) = ψ(t∗,0,g) = y.

2. The controllable or reachable subspace YC is the set of states that can be obtained from
zero initial state and a given input g ∈ L2([0, t∗]).

3. The linear system (4.1) is said to be (completely) controllable if YC = Rn.

We note that for LTI systems the controllable subspace YC is invariant w.r.t. the choice of the
initial state y0. This allows the above restriction to controllability from zero initial state.

Remark 4.2.2 For linear systems the notions of controllability and reachability are equivalent.
The latter is not true for nonlinear systems.

Definition 4.2.3 (Observability)

1. Let the linear system (4.1) be given and let g = 0. A state y ∈ Rn is said to be unobserv-
able if the output Z(t) = Cψ(t,y,0) = 0 for all t ≥ 0, i.e., for all t ≥ 0 the output Z(t)
of the system to initial state Y (0) = y is indistinguishable from the output to zero initial
state. Otherwise the state y is called observable.

2. The observable subspace YO is the set all observable states.

3. System (4.1) is said to be (completely) observable if y = 0 is the only unobservable state.

Equivalently, the system is said controllable if the following controllability matrix has full
rank

Cn(A,B) = [B AB A2B . . . An−1B],

and it is said to be observable if the following observability matrix has full rank

On(C,A) = [C CA CA2 . . . CAn−1]⊤.

A realization (A,B,C) is said to be minimal if it is controllable and observable [36]. Minimal
state-space realizations play a crucial role in balanced truncation in the sense that since it guar-
antees to obtain a reduced order state-space model which is minimal given a high dimensional
system. Since minimal realization is both controllable and observable, it is a good basis for
designing an observer to estimate the states of the system from measurements of the outputs.
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The reduced order realization obtain from balanced truncation may not be minimal if the orig-
inal state-space realization is not minimal. Nevertheless, different techniques exist to reduce
non-minimal realizations to minimal realization. In [36] the authors presented a procedure to
reduce non-minimal realizations to minimal realization in just two steps. In fact, this procedure
is similar to the standard algorithm for reducing matrices to echelon from [75] but with small
modification.

Remark 4.2.4 Let Y1,Y2 and Z1,Z2 denote state and output of system (4.1) to initial states y1,y2
and the same input g. If system (4.1) is observable then the equality of outputs Z1(t) = Z2(t)
for all t ≥ 0 implies that y1 = y2. Otherwise it holds y1 ̸= y2. This can easily be seen from the
consideration for Y = Y1 −Y2 and Z = Z1 −Z2 which are the state and the output to initial state
y = 0 and input g = 0.

The input-output behavior of system (4.1) can be quantified by the following measures of the
“degree of controllability and observability”. They are based on the (squared) L2-norms of the
input and output functions which in the literature are often called “input and output energy”.

Definition 4.2.5 (Controllability and Observability Function) The controllability func-
tion EC : YC → [0, t∗), t∗ > 0 is given for y ∈ YC by

EC(y) = min
g∈L2(0,∞)

Y (0)=0,Y (∞)=y

∥g∥2
L2(0,∞) = inf

t∗>0
min

g∈L2([0,t∗))
Y (0)=0, Y (t∗)=y

∫ t∗

0
∥g(t)∥2

2dt.

and the observability function EO : YO → [0,∞) is given for y ∈ YO by

EO(y) = ∥Z∥2
L2(0,∞) =

∫
∞

0
∥Z(t)∥2

2dt, Y (0) = y, g(t) = 0 for all t ≥ 0. (4.9)

The controllability function EC(y) is the smallest input energy required to reach the state y ∈YC
from zero initial state in infinite time (t∗ → ∞). In view of the definition of a controllable state
y given in Def. 4.2.1 the minimization is w.r.t. both the input function and the terminal time t∗.
For more details see Antoulas [5, Lemma 4.29]. The observability function EO(y) is obtained as

the limit of the output energy
∫ t∗

0
∥Z(t)∥2

2dt on a finite time interval [0, t∗) for t∗ → ∞. Since the

output energy increases in t∗ we can consider EO(y) as the maximum output energy produced
by the system when it is released from initial state y for zero input.

The above quantities allow the following interpretation. States which are difficult to reach
are characterized by large values of the controllability function EC(y). They require large input
energy to reach them. On the other hand, for large values of the observability function EO(y)
the state y is easy to observe whereas small values of EO(y) indicate that state y is difficult to
observe since it produces only small output energy. Note, that unobservable states do not pro-
duce output energy at all, and it holds EO(y) = 0 for y ̸∈ YO.

Gramians. Below we see that the controllability and observability function can be expressed
in terms of the matrices called Gramians.
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Definition 4.2.6 (Controllability and Observability Gramian)
Consider a stable LTI system (4.1). The matrices defined by

GC =
∫

∞

0
eAtBB⊤eA⊤tdt,

GO =
∫

∞

0
eA⊤tC⊤CeAtdt

are called (infinite) controllability and observability Gramians, respectively.

Note that the above Gramians are well-defined if and only if the LTI system (4.1) is stable.
They have the following properties.

Lemma 4.2.7 The Gramians GC and GO are symmetric, positive semi-definite matrices.
If the linear system (4.1) is stable, controllable and observable then the Gramians are strictly
positive definite.

Proof. The first two properties follow directly from the definition of the Gramians. The third
property is proven in Theorems 2.2 and 3.2 of Davis et al. [34]. □
The following establishes the relation between the controllability and observability functions
and the Gramians.

Theorem 4.2.8 Let the linear system (4.1) be stable, controllable and observable. Then the
maximum output energy EO(y) that can be obtained by observing the system with initial state
Y (0) and zero input can be written in terms of the observability Gramian GO as follows

EO(y) = y⊤GO y for y ∈ Rn, (4.10)

and the minimal input energy EC(y) required to steer the system to a fixed state Y (t∗) from the
zero state can be written in terms of the controllability Gramian GC as follows.

EC(y) = y⊤G−1
C y for y ∈ YC, (4.11)

Proof. For zero input g = 0 and initial state Y (0) = y the state equation of system (4.1) has a
unique solution Y (t) = eAty and the output is given by Z(t) =CY =CeAty for t ≥ 0. Hence

y⊤GOy =
∫

∞

0
y⊤eA⊤tC⊤CeAtydt =

∫
∞

0
(yeAt

C)⊤CeAtydt =
∫

∞

0

∣∣∣CeAty
∣∣∣2
2

dt =
∫

∞

0
|Z(t)|22 dt.

this prove relation (4.10). The proof of (4.11) can be derived from the results established in
[107, Sec. 7.4]. □
The above relations show that states y in the span of the eigenvectors corresponding to small
(large) eigenvalues of GC lead to large (small) values of EC(y). Thus such states require a high
(small) input energy and are difficult (easy) to reach. On the other hand, states y in the span of
the eigenvectors corresponding to small (large) eigenvalues of GO produce only small (large)
output energy EO(y) and are difficult (easy) to observe.
The Gramians are therefore efficient tool to quantify the degree of controllability and observ-
ability of a given state. Further the eigenvectors of GC and GO span the controllable and observ-
able subspace, respectively.

Balanced truncation model order reduction strategy consists of eliminating the states of the
system that are simultaneously difficult to reach (require a large input energy to be reached) and
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difficult to observe (produce a small observation output energy). Next we are going to show
that the Gramians can be computed by solving some linear matrix equations.

Lyapunov equations. The major task of the balanced truncation is based on the computation
of the Gramians in order to transform the system in its balanced form. The computation of the
Gramians according to the relations (4.2.6) is time consuming but for the control problem con-
sider in this thesis, the Grampians are computed once ans saved for future uses. This reduces
the computational time for solving the control problem. A computationally feasible method is
based on the fact that the Gramians satisfy some linear matrix equations.

Theorem 4.2.9 Let the LTI system (4.1) be stable. Then the controllability Gramian GC and
observability Gramian GO satisfy the algebraic Lyapunov equations

AGC +GCA⊤ =−BB⊤,

GOA+A⊤GO =−C⊤C.

The proof can be found in [109, Appendix B.3] but for the convenience of the reader, it is also
provided in Appendix B.1 .

Remark 4.2.10 For solving to the above Lyapunov matrix equations usually numerical meth-
ods have to be applied. Such methods have been addressed in a large range of literature. For
a low-dimensional and dense matrix A, the Lyapunov equations can be solved using Hammar-
ling method [55, 60], for medium- to large-scale Lyapunov equations, a sign function method
[20, 27] can be used, in the case of a large and sparse matrix A, projection-type methods such
as H-matrices based methods [53], Krylov subspace methods [64, 93, 102] and alternating
direction implicit method [23, 24, 82] are more appropriate techniques for solving Lyapunov
equations.

4.2.2 Balancing
We now come back to the construction of a suitable transformation matrix T which should be
such that the first entries of the transformed state Y = T Y provide the largest contribution to
the input-output behaviour of the system. The idea of Lyapunov balanced truncation is to use a
transformation T that balances the state such that the first entries of Y are simultaneously easy
to reach and easy to observe. This allows to truncate the remaining states which are difficult to
reach and difficult to observe.

We recall the interpretation of the Gramians according to Theorem 4.2.8. States that are easy
to reach, i.e., those that require a small amount of input energy to reach, are found in the span of
the eigenvectors of the controllability Gramian GC corresponding to large eigenvalues. Further,
states that are easy to observe, i.e., those that produce large amounts of output energy, lie in
the span of eigenvectors of the observability Gramian GO corresponding to large eigenvalues
as well. However, in an arbitrary coordinate system, a state y that is easy to reach might be
difficult to observe. On the other hand, there might exist a different state y′ that is difficult to
reach but easy to observe. consequently, it is hard to decide which of the two states y and y′ is
more important for the input-output behavior of the system.

This observation suggests to transform the coordinate system of the state space using a
suitable transformation matrix T in which easy reachable states are simultaneously easy to
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observe and vice versa. This is the case if the transformed Gramians coincide. Below we give a
transformation for which the two Gramians are even diagonal.

We recall Lemma 4.1.2 which describes the transformation of the realization (A,B,C) of
system (4.1) to the realization (A,B,C) of the transformed system (4.5). The following lemma
describes the transformation of the corresponding Gramians.

Lemma 4.2.11 Let T be a n×n non-singular transformation matrix defining the transformed
system (4.5) for the transformed state Y = T Y .
For the transformed Gramians GC and GO of that system it holds

GC = T GCT ⊤, GO = T −⊤GOT −1 and GCGO = T GCGOT −1.

The proof of Lemma 4.2.11 can be found in [109, Appendix B.4] and is also provided in Ap-
pendix B.2.
The last relation of the above lemma shows that the product GCGO results from a similarity
transformation of the product GCGO. Thus the eigenvalues of the product of the two Gramians
are preserved under transformations of the coordinate system and can be considered as system
invariants. They can be expressed as squares of the Hankel singular values of the system.

Definition 4.2.12 (Hankel Singular Values) The Hankel singular values are the square roots
of the eigenvalues of the product of the controllability and observability Gramian

σi =
√

λi(GCGO), i = 1, . . . ,n.

Here λi(G) denotes the i-th eigenvalue of the matrix G, ordered as λ1 ≥ λ2 ≥ . . .λn ≥ 0.

For linear systems (4.1) which are controllable, observable and stable it is known that the Hankel
singular values are strictly positive, see Antoulas [5, Lemma 5.8].

The next proposition presents the main result of Lyapunov balanced truncation and gives
the transformation matrix T that balances the system such that the two Gramians are equal and
diagonal.

Theorem 4.2.13 (Balancing transformation)
Let the linear system (4.1) be stable, controllable and observable. Further, let

GC =UU⊤ be the Cholesky decomposition of the controllability Gramian,
U⊤GOU = KΣ2K⊤ be the eigenvalue decomposition of U⊤GOU such that

Σ = diag(σ1, . . . ,σn) is the diagonal matrix of Hankel singular values from (4.2.12).
Then for the transformation matrix

T = Σ
1
2 K⊤U−1 (4.12)

the transformed system (4.5) is balanced and the controllability GC and observability GO Grami-
ans are given by

GC = GO = Σ =

σ1 0
. . .

0 σn


i.e., they are diagonal and equal to a diagonal matrix containing the Hankel singular values as
diagonal entries.
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The proof of Theorem 4.2.13 can be found in [109, Appendix B.5] and is also provided in
Appendix B.3.

Remark 4.2.14 The above approach can be numerically inefficient and ill-conditioned. The
reason is that for large-scale systems the Gramians GC,GO often have a numerically low rank
compared to the dimension n. This is due to the fast decay of the eigenvalues of the Gramians
and also of the Hankel singular values. Then the computation of inverse matrix such as U−1

should be avoided from a numerical point of view. In the literature there are several sugges-
tions of alternative approaches which are identical in theory but yield algorithms with different
numerical properties, see [5, 21, 119]. One of them is given below.

Theorem 4.2.15 (Square Root Algorithm, Antoulas [5], Sec. 7.4) Let the assumptions of The-
orem 4.2.13 be fulfilled. Further, let

GC =UU⊤ be the Cholesky decomposition of the controllability Gramian,
GO = LL⊤ be the Cholesky decomposition of the observability Gramian,

where U and L are lower triangular matrices,
U⊤L =WΣV⊤ be the singular value decomposition of U⊤L with the

orthogonal matrices W and V .
Then the transformation matrix T given in (4.12) and its inverse can be represented as

T = Σ
−1/2V⊤L⊤ and T −1 =UWΣ

−1/2. (4.13)

Note that the computation of T according to (4.13) does not require the inversion of the full
matrix U as in (4.12).

Truncation. The final step of the Lyapunov balanced truncation MOR is the truncation of the
balanced system as it is explained in Subsec. 4.1.2. Then the truncated balanced system as in
(4.7) is the desired reduced-order system (4.2). Antoulas [5] shows in Theorem 7.9 that for
σℓ > σℓ+1 the reduced-order system is again stable, controllable and observable.

Lyapunov balanced truncation algorithm. Given a minimal realization (A,B,C) of the stable
high-dimensional LTI system (4.1). Then, the balanced truncation procedure can be summa-
rized in the following algorithm.
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Algorithm 1: Balanced truncation algorithm

Result: Given a minimal realization (A,B,C) find the reduced realization (Ã, B̃,C̃)
1. Compute the Gramians GC and GO by solving the Lyapunov equations

AGC +GCA⊤ =−BB⊤ and GOA+A⊤GO =−C⊤C.

2. Compute the Cholesky decomposition of the Gramians GC =UU⊤ and GO = LL⊤.

3. Compute the singular value decomposition U⊤L =WΣV⊤ with Σ = diag(σ1, . . . ,σn)
and σ1 ≥ σ2 ≥ . . .≥ σℓ > σℓ+1 ≥ . . .≥ σn ≥ 0.

4. Construct the transformation matrices T = Σ
− 1

2V⊤L⊤ and T −1 =UWΣ
− 1

2 .

5. Transforming the state to Y = T Y leads to the balanced system defined by the matrices

(A,B,C) = (T AT −1,T B,CT −1) =

((
A11 A12
A21 A22

)
,

(
B1
B2

)
,
(
C1 C2

))
.

6. Truncate the transformed state Y = T Y keeping the first ℓ entries and choose

(Ã, B̃,C̃) = (A11,A1,C1), Ã ∈ Rℓ×ℓ, B̃ ∈ Rℓ×m, C̃ ∈ Rno×ℓ.

Remark 4.2.16

1. From an implementation point of view in the above algorithm the truncation in step 6 can
be moved to step 4 which allows the construction of the reduced order system without
forming the high-dimensional balanced system in step 5 and no full SVD is necessary.
This leads to the following modification of Algorithm 1.

4∗) Construct new transformation matrices with the ℓ×n matrix T + = Σ
−1/2
ℓ V⊤

ℓ L⊤ and
the n× ℓ matrix T − =UWℓΣ

−1/2
ℓ .

Note that T +T − = Iℓ is the identity matrix of dimension ℓ.

5∗) Omitted.

6∗) The reduced-order system is obtained directly by

(Ã, B̃,C̃) = (T +AT −,T +B,CT −).

This modification is also interesting from an computational point of view since it requires
not the full but only a partial singular value decomposition of U⊤L in step 3.

2. The above modification is also useful for linear systems which are not (fully) observable
or controllable as it is often the case if system (4.1) results from the semi-discretization
of PDEs. We also observe this for the system derived above in (3.10). Then the Gramians
GC,GO and also the product GCGO might be singular and there are zero Hankel singular
values such that we have σ1 ≥ . . .≥ σn0 > 0 = σn0+1 = . . .= σn for some n0 < n. In this
case the transformation matrix T and its inverse T −1 are not defined and the above algo-
rithm breaks down. However, T + and T − are well-defined for any ℓ ≤ n0 and formally
the above described modification works well.
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A theoretical justification of that approach is given in Tombs and Postlethwaite [113,
Theorem. 2.2]. The authors show that for ℓ= n0 the reduced-order system is stable, fully
controllable and observable and has the same transfer function as the original system,
i.e. there is no change of the input-output behavior. This allows to fit a stable but not
necessarily fully observable and controllable system into the above framework from the
beginning of this section. In a pre-processing step balanced truncation is formally ap-
plied to obtain a reduced-order system of dimension ℓ = n0. The latter system is stable,
controllable and observable and can be further reduced applying the standard methods to
obtain an approximation of the input-output behavior.

4.2.3 Error Bounds
One of the advantages of Lyapunov balanced truncation is that there exist error estimates which
can be given in terms of the discarded Hankel singular values. They allow to select the dimen-
sion ℓ of the reduced-order system such that a prescribed accuracy of the output approximation
is guaranteed. In the literature these error estimates are given for the transfer functions of the
original and the reduced-order system in the H∞-norm in terms of the Hankel singular values
that are truncated as

∥G− G̃∥H∞ = sup
ω∈R

∥G(iω)− G̃(iω)∥2 ≤ 2
n

∑
i=ℓ+1

σi,

where n is the total number of singular values. From which one can derive the estimates given
below for the error measured in the L2(0, t)-norm. The following theorem is proven in Enns
[41] and Glover [48].

Theorem 4.2.17 Let the linear system (4.1) be a stable, controllable and observable with zero
initial value, i.e. Y (0) = 0. Further, let Hankel singular values be pairwise distinct with σ1 >
.. . > σn > 0. Then it holds for all t ≥ 0

∥Z − Z̃∥L2(0,t) ≤ 2
n

∑
i=ℓ+1

σi ∥g∥L2(0,t). (4.14)

The error bound given in (4.14) depends on the reduced order ℓ only via the sum of discarded
Hankel singular values for which we have

n

∑
i=ℓ+1

σi = tr(Σ2) = tr(Σ)− tr(Σ1),

where Σ1 = diag(σ1, . . . ,σℓ) and Σ2 = diag(σℓ+1, . . . ,σn). According to proposition 4.2.13 we
have that GC = GO = Σ, i.e., the controllability and observability Gramians of the balanced
system are equal to the diagonal matrix Σ. Further, the two Gramians of the reduced-order
system are also equal and given by the diagonal matrix Σ1. Relations (4.9) and (4.10) state
that the output energy contained in the output Z when the system is released from initial state y
for zero input is given by EO(y) = ∥Z∥2

L2(0,∞)
= y⊤GO y. Given the balanced realization of the

original system (4.1) the output energy related to the initial state Y (0) = 1n, i.e., the vector with
all entries equal one, is EO(1n) = 1⊤n Σ1n = tr(Σ). Analogously, for the reduced-order system
the output energy related to the initial state Ỹ (0) = 1ℓ obtained by truncation of 1n to the first ℓ
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entries is given by EO(1ℓ) = ∥Z̃∥2
L2(0,∞)

= tr(Σ1). Thus the sum of discarded Hankel singular
values which is tr(Σ)− tr(Σ1) can be interpreted as the loss of output energy due to truncation
if the balanced system starts with an initial excitation where all (balanced) states are equal one
and no forcing is applied, i.e., the input g is zero.

Obviously, the above sum is decreasing in ℓ and becomes zero for ℓ= n. This motivates the
introduction of the following relative selection criterion

S(ℓ) = tr(Σ1)

tr(Σ)
, for ℓ= 1, . . . ,n,

with values in (0,1]. It is increasing in ℓ with S(ℓ) = 1 for ℓ= n. S(ℓ) can be used as a measure
of the proportion of the output energy which can be captured by a reduced-order system of
dimension ℓ. The selection of an appropriate dimension ℓ can be based on a prescribed threshold
level α ∈ (0,1] for that proportion for which the minimal reduced order reaching that level is
defined by

ℓα = min{ℓ : S(ℓ)≥ α}. (4.15)

Remark 4.2.18

1. Since the Hankel singular values only depend on the original model (4.1) the error bound
in (4.14) can be computed a priori. Given the input g this allows to control the approxi-
mation error by the selection of the reduced order ℓ.

2. The error bound can be generalized to systems with Hankel singular values with multi-
plicity larger than one. In this case they only need to be counted once, leading to tighter
bounds, see Glover [48].

3. The assumption of a zero initial state is quite restrictive and usually not fulfilled in appli-
cations. We refer to Beattie et al. [14], Daraghmeh at al. [33], Heinkenschloss et al. [57]
and Schröder and Voigt [98] where the authors study the general case of linear systems
with non-zero initial conditions and derive error bounds with extra terms accounting for
the initial condition.

4. The linear systems considered in the present paper are obtained by semi-discretization of
the heat equation (2.6) with the associated boundary and initial conditions. The initial
value Y (0) = y0 ∈ Rn represents the initial temperatures Q(0, ·, ·) at the corresponding
grid points. In general we have y0 ̸= 0n. However, for the case of a homogeneous initial
temperature distribution with Q(0,x,y) = Q0 for all (x,y) ∈D and some constant Q0 one
can derive an equivalent linear system with zero initial value. That case is considered in
our numerical experiments in Sec. 4.3.

The idea is to shift the temperature scale by Q0 and describe the temperature distribution
by Q̂(t,x,y) = Q(t,x,y)−Q0. Then the initial condition reads as Q̂(0,x,y) = 0. Thanks
to linearity of the heat equation (2.6) and the boundary conditions, Q̂ also satisfies the
heat equation together with the boundary conditions if the inlet and ground temperature
appearing in the Dirichlet and Robin condition are shifted accordingly, i.e., QI and QG

are replaced by QI −Q0 and QG −Q0. Semi-discretization of the modified heat equation
generates a linear system (4.1) with zero initial condition Y (0) = 0n for which we can
apply the error estimate given in (4.14). The aggregated characteristics of the temperature
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distribution corresponding to the model with constant but non-zero initial temperature Q0
and forming the system output Z can easily be derived from the output of the modified
system. In a post-processing step the inverse shift of the temperature scale is applied
where Q0 is added to all temperatures.

4.3 Numerical Results
In this section we present results of numerical experiments on model order reduction for the sys-
tem of ODEs (3.10) resulting from semi-discretization of the heat equation (2.6) which models
the spatio-temporal temperature distribution of a GS. For describing the input-output behav-
ior of that storage we use the aggregated characteristics of the spatial temperature distribution
introduced in Sec. 2.3.3. Further we work with the approximation of (3.10) by an analogous
system as explained in Sec. 3.4.

The experiments are based on Algorithm 1 and are performed for the cases of one and three
PHXs . While a model with three PHXs is more realistic and shows more structure of the spatial
temperature distribution in the storage the case of only one PHX is an interesting benchmark
model allowing for reduced-order systems of very low dimension since the spatial temperature
distribution is less heterogeneous.

After explaining the experimental settings in Subsec. 4.3 we start in Subsec. 4.3.1 with an
experiment where the system output consists of only one variable which is the average temper-
ature QM in the storage medium. For that case we restrict ourselves to charging and discharging
the storage without intermediate waiting periods. Note that the analogous system requires dur-
ing the waiting periods the knowledge of the average PHX temperature which is not included
in the output variables.

In Subsec. 4.3.2 we add a second output variable which is the average PHX temperature QF .
This now allows to work with waiting periods. Then we add a third output variable which is
in Subsec. 4.3.3 the average temperature at the outlet QO whereas in Subsec. 4.3.4 the average
temperature at the bottom QB of the storage is used as third output variable. The outlet temper-
ature QO is interesting for the management of heating systems equipped with a GS while QB

allows to quantify the transfer of thermal energy to the environment at the bottom boundary of
the GS. Finally, Subsec. 4.3.5 presents results for a model where the output contains all of the
four above mentioned quantities.

Experimental settings

For our numerical examples we use the model and discretization parameters given in Sec. 3.5,
Table 3.2 but we restrict to the case of 1 PHX and 3 PHXs. The storage is charged and dis-
charged either by a single PHX or by three PHXs filled with a moving fluid, see Fig. 4.1.
Thermal energy is stored by raising the temperature of the storage medium. We recall the open
architecture of the storage which is only insulated at the top and the side but not at the bottom.
This leads to an additional heat transfer to the underground for which we assume a constant tem-
perature of QG(t) = 15 °C. In the simulations the fluid is assumed to be water while the storage
medium is dry soil. During charging a pump moves the fluid with constant velocity v0 arriving
with constant temperature QI(t) = QI

C = 40 °C at the inlet. This temperature is higher than in
the vicinity of the PHXs, thus induces a heat flux into the storage medium. During discharging
the inlet temperature is QI(t) = QI

D = 5 °C leading to a cooling of the storage. At the outlet
we impose a vanishing diffusive heat flux, i.e. during pumping there is only a convective heat
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Figure 4.1: Computational domain with horizontal straight PHXs. Left: one PHX . Right: three
PHXs.

flux. We also consider waiting periods where the pump is off. This helps to mitigate saturation
effects in the vicinity of the PHXs which reduce the injection and extraction efficiency. During
that waiting periods the injected heat (cold) can propagate to other regions of the storage. Since
pumps are off we have only diffusive propagation of heat in the storage and the transfer over
the bottom boundary.

For the chosen discretization parameters the dimension of the state equation (4.1) resulting
from the space-discretization of the heat equation is n = 10201. Instead of the non-autonomous
linear system of ODEs (4.1) we work with the LTI system obtained by approximating (4.1) by
an analogous system as explained in Sec. 3.4. Recall, that here it is assumed that the pump
is always on and during the waiting periods the inlet temperature QI is set to be the average
temperature QF in the PHX ( in the fluid). The output matrix C depends on the number of
output variables and changes in the various experiments.

4.3.1 One Aggregated Characteristic: QM

In this example we consider a model with only a single output variable Z1 = QM, the aver-
age temperature of the medium. Then the system output does not contain the average fluid
temperature QF which serves in the analogous system as inlet temperature during waiting
periods. Therefore, we consider only charging and discharging periods without intermediate
waiting periods. For time horizon T = 72 hours we divide the interval [0,T ] into a charging
period IC = [0,T/2] followed by a discharging period is ID = (T/2,T ]. The input function
g : [0,T ]→ R2 is defined as

g(t) = (QI(t),QG(t))⊤ with QI(t) =

{
QI

C = 40 °C for t ∈ IC (charging),
QI

D = 5 °C for t ∈ ID (discharging),

with the piece-wise constant inlet temperature QI(t) and the constant underground temperature
QG(t) = 15 °C. The output matrix in this case is given by C =CM which is given in Subsec. 3.3

In Fig. 4.2, the left panel shows first 50 largest Hankel singular values associated to the most
observable and most reachable states, whereas in the right panel we plot the selection criterion
against the reduced order ℓ (red for 1 PHX and blue for 3 PHXs ). For the first 50 singular
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Figure 4.2: Model with one output Z = QM:
Left: first 50 largest Hankel singular values, Right: selection criterion

values, we observe for both models a fast decrease by 12 orders of magnitude. The first 20
singular values decrease faster for the model with 1 PHX than for the 3 PHX model.

Output
∣∣∣ α 90% 95% 99%

Z = QM 2/2 3/3 4/5

Z = (QM,QF)⊤ 4/4 5/6 11/11

Z = (QM,QF ,QB)⊤ 5/6 7/8 12/13

Z = (QM,QF ,QO)⊤ 8/8 10/9 15/14

Z = (QM,QF ,QO,QB)⊤ 9/9 11/11 17/16

Table 4.1: Minimal reduced orders ℓα = min{ℓ : S(ℓ)≥ α}, 1 PHX / 3 PHXs

We recall that the selection criterion S(l) provides an estimate of the proportion of output
energy of the original system that can be captured by the reduced-order system of dimension
ℓ. In the right panel of Fig. 4.2 we draw vertical red dashed (one PHX) and blue dotted lines
(three PHX) to indicate the reduced orders ℓ for which the selection criterion S(l) exceeds the
threshold values α = {90%,95%,99%} for the first time, respectively. This allows to determine
graphically the associated minimal reduced orders ℓα = min{ℓ : S(ℓ)≥ α} which already have
been introduced in (4.15). The resulting values are also given in Table 4.1. It can be seen that
already with ℓ0.9 = 2 states the reduced-order system can capture more than 90% of the output
energy while with ℓ0.99 = 4 states the level 99% is exceeded for the one PHX model whereas
the three PHX model is only slightly below that level and requires ℓ0.99 = 5 states.

Fig. 4.3 allows to evaluate the actual quality of the output approximation. It plots the average
temperature in the medium Z(t) = QM(t) against time and compares that system output of the
original system (solid blue line) with the approximation Z̃(t) from the reduced-order model
(brown, orange, red lines) for ℓ = {1,2,4}. The figures also show the inlet temperature QI(t)
(black dotted line) which are constant and equal to QI

C = 40 °C during charging (light red region)
and QI

D = 5 °C during discharging (light blue region), respectively. The figure shows that both
for one and three PHXs , the reduced-order system captures well the input-output behaviour
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Figure 4.3: Model with one output Z = QM: Approximation of the output for ℓ= {1,2,4}.
Left: one PHX , Right: three PHXs.

Figure 4.4: Model with one output Z = QM: L2-error and error bound for ℓ= {1,2,4}.
Left: one PHX , Right three PHXs.

of the original high-dimensional system already for ℓ ≥ 2. For ℓ = 1 the approximation is less
good as expected in view of the low value of the selection criterion (see Fig. 4.2).

Finally, Fig. 4.4 plots the L2-error ∥Z− Z̃∥L2[0,t] against time t and compares with the asso-
ciated error bound given in (4.14) for ℓ = 1,2,4. Note that both quantities are non-decreasing
in t. The error bounds grow less during discharging since here the growth of the L2-norm of
the input g is smaller due to the smaller inlet temperature QI , see (4.14). As expected from this
selection criterion, the error bounds decrease with ℓ and this is also the case for the actual error.

The next examples show that the number of states needed to capture well the input-output
behavior of the system may increase considerably if we add more aggregated characteristics to
the system output.

4.3.2 Two Aggregated Characteristics: QM,QF

In this example we add to the system output the average temperature of the PHX fluid leading
to the two-dimensional output Z = (QM,QF)⊤. Since in the analogous system QF is used as
inlet temperature, we now can include also waiting periods between periods of charging and
discharging allowing the storage to mitigate saturation effects. For time horizon T = 72 hours
we divide the simulation time interval [0,T ] into charging, discharging and waiting periods with
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Figure 4.5: Model with two outputs Z = (QM,QF)⊤:
Left: first 50 largest Hankel singular values, Right: selection criterion

IC = [0,4] ∪ [8,14]∪ [20,28], charging,
ID = [36,40]∪ [44,50]∪ [56,64], discharging,
IW = [0,72]\ (IC ∪ ID), waiting.

which are also depicted in Fig. 4.6. The two-dimensional input function g is defined as

g(t) = (QI(t),QG(t))⊤ with QI(t) =


QI

C = 40 °C for t ∈ IC (charging),
QI

D = 5 °C for t ∈ ID (discharging),
QF(t) for t ∈ IW (waiting).

(4.16)

Here, the inlet temperature QI(t) is piece-wise constant during charging and discharging but
time-dependent and equal to QF(t) during waiting periods. The two rows of the 2× n output
matrix C are CM and CF which are given in Subsec. 3.3.

Figure 4.6: Model with two outputs Z = (QM,QF)⊤: Approximation of the output for ℓ =
{4,5,11}.
Left: one PHX , Right: three PHXs.

Fig. 4.5 depicts in the left panel the first 50 largest Hankel singular values, whereas the right
panel shows the selection criteria (red for 1 PHX and blue for 3 PHXs). For the first 50 singular
values we observe for both models a decrease by 9 orders of magnitude. As in the example with
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a single output the first 20 singular values decrease faster for the model with one PHX than for
the 3 PHX model. The selection criterion for the model with 1 PHX is for all ℓ≥ 2 larger than
for 3 PHXs. From Fig. 4.5 and also from the minimal reduced orders reported in Table 4.1 it
can be seen that a reduced-order system with ℓ0.9 = 4 states can capture more than 90% of the
output energy of the original system. For the level threshold 95% the 1 PHX model requires
ℓ0.95 = 5 states, while for the 3 PHX model ℓ0.95 = 6 states are needed. In both cases the level
of 99% is exceeded for the first time for ℓ0.99 = 11. Hence, for dimension ℓ ≥ 11 an almost
perfect approximation of the input-output behavior can be expected.

Figure 4.7: Model with two outputs Z = (QM,QF)⊤: L2-error and error bound for ℓ =
4,5,11. Left: one PHX , Right: three PHXs.

For the evaluation of the actual quality of the output approximation we plot in Fig. 4.6 the
output variables of the original and reduced-order system against time. The average tempera-
tures Z1(t)=QM(t) and Z2(t)=QF(t) in the medium and fluid are drawn as solid blue and green
lines, respectively, and its approximations as brown, orange and red lines for ℓ= {4,5,11}. Fur-
ther, the inlet temperature QI(t) during the charging and discharging periods is shown as black
dotted line. The figures show that the approximation of QM is better than for QF . A possible
explanation is that QM is an average of the spatial temperature distribution over the quite large
subdomain DM (medium) while for QF the temperature is averaged only over the much smaller
subdomain DF of the PHX fluid. Further, the temporal variations of QF are much larger than
those of QM due to the impact of the changing inlet temperature during charging, discharging
and waiting. Errors are more pronounced during waiting periods than during charging and dis-
charging. For the three PHXs model the pointwise errors are slightly larger. As noted above, for
ℓ= 11 the selection criterion exceeds 99% and the approximation errors are almost negligible.
This was also observed for ℓ > 11.

Fig. 4.7 plots for the reduced orders ℓ considered above the L2-error ∥Z − Z̃∥L2[0,t] against
time t together with the error bounds from (4.14). This allows an alternative evaluation of the
approximation quality. As expected, the error bounds and also the actual errors decrease with ℓ.
While the error bounds increase more during the charging periods due to the larger norm of the
input g caused by the higher inlet temperature, the actual error increase more during the waiting
periods. This corresponds to the above observed larger errors in the output approximation
during these periods.
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4.3.3 Three Aggregated Characteristics I: QM,QF ,QO

This example extends the example considered in Sec. 4.3.2 by adding a third variable to the
system output which is the average temperature at the PHX outlet, i.e., we consider the three-
dimensional output Z = (QM,QF ,QO)⊤. The outlet temperature is needed if the GS is embed-
ded into a residential system. Then the management of the heating system and the interaction
between the geothermal and the internal buffer storage rely on the knowledge of QO. Further,
the difference QI(t)−QO(t) between inlet and outlet temperature is the key quantity for the
quantification of the amount of heat injected to or withdrawn from the storage due to convec-
tion of the fluid in the PHX, we refer to Eq. (2.14) and the explanations in Sec. 2.3.3.

Figure 4.8: Model with three outputs Z = (QM,QF ,QO)⊤:
Left: first 50 largest Hankel singular values, Right: selection criterion

The setting is analogous to Subsec. 4.3.2. The input function g is given in (4.16) and the
3×n output matrix C is formed by the three rows CM,CF ,CO which are given in Subsec. 3.3.

Fig. 4.8 shows, as in the previous experiments, in the left panel the first 50 largest Hankel
singular values, whereas the right panel shows the selection criteria. For the first 50 singular
values we observe for both models a decrease by 8 orders of magnitude which is slightly less
than for the case of only two outputs. As in the examples with one and two outputs the first
20 singular values decrease faster for the model with 1 PHX than for the 3 PHX model. The
selection criterion for the model with 1 PHX is for ℓ ≤ 6 larger than for 3 PHXs and for ℓ ≥ 7
slightly smaller. Table 4.1 shows that for reaching threshold levels of α = {90%,95%,99%}
in the one PHX case ℓα = {8,10,15} states are required while for three PHXs one needs ℓα =
{8,9,14} states, respectively. Thus, for dimension ℓ ≥ 15 an almost perfect approximation
of the input-output behavior can be expected. Note that in the previous experiment with two
outputs (without outlet temperature) reaching the above thresholds requires about 4 to 5 states
less.

In Fig. 4.9 we plot the output variables of the original and reduced-order system against
time. The top panels show the average temperatures Z1(t) = QM(t) and Z2(t) = QF(t) in the
medium and fluid which are drawn as solid blue and green lines, respectively. The bottom
panels depict the average temperature at the outlet Z3(t) = QO(t) by a solid green line. The
reduced-order approximations as drawn for ℓ = {8,10,15}. As in the previous experiments
with two outputs it can be observed that the approximation of QM is better than for QF . The
approximation errors for the outlet temperature QO are quite similar to the errors for the fluid
temperature. Note that the outlet temperature represents an average of the spatial temperature
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Figure 4.9: Model with three outputs Z = (QM,QF ,QO)⊤: Approximation of the output for
ℓ= 8,10,15. Top: Average temperatures in the medium QM and the fluid QF ,
Bottom: Average temperature at the outlet QO,
Left: one PHX , Right: three PHXs .

distribution over the quite small subdomain DO on the boundary which is still smaller than
the subdomain DF over which the average is taken for the fluid temperature QF . Both, the
fluid and the outlet temperature show much larger temporal variations than the temperature in
medium QM. Again, errors are more pronounced during waiting periods than during charging
and discharging, and for the 3 PHX model the pointwise errors are larger than for the 1 PHX
model. For ℓ≥ 15 states the selection criterion is above 99% and the approximation errors are
almost negligible.

Fig. 4.9 also shows that the average temperatures of the fluid and at the outlet pipe, QM

and QO, exhibit almost the same pattern during the charging, discharging and waiting periods.
Hence, knowing the average fluid temperature one can simply predict the outlet temperature
and remove QO from the output variables. Then we are back in the setting of the two output
experiment in Subsec. 4.3.2 and need 4 to 5 states less to capture the input-output behaviour with
the same approximation quality. Below in Subsec. 4.3.4 we consider a model where instead of
removing QO from the output this quantity is replaced by the average bottom temperature QB

leading again to a model with three outputs.

An alternative evaluation of the approximation quality can be derived from Fig. 4.10 which
plots for the reduced orders ℓ considered above the L2-error ∥Z − Z̃∥L2[0,t] against time t to-
gether with the error bounds from (4.14). The results are similar to Fig. 4.7 and we refer for the
interpretation to the end of the previous subsection.
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Figure 4.10: Model with three outputs Z = (QM,QF ,QO)⊤: L2-error and error bound for ℓ =
{8,10,15}. Left: one PHX , Right: three PHXs.

4.3.4 Three Aggregated Characteristics II: QM,QF ,QB

As already announced above in this experiment, we again consider a model with three out-
puts but instead of the outlet temperature QO now the third output is the average temperature
at the bottom boundary QB. Hence, the output is Z = (QM,QF ,QB)⊤. We recall that the bot-
tom boundary is open and not insulated and the temperature QB is of crucial importance for
the quantification of gains and losses of thermal energy resulting from the heat transfer to the
underground from the GS. We refer to Eq. (2.15) and the explanations in Subsec. 2.3.3 and the
Robin boundary condition (2.8) modeling that heat transfer from the storage to the underground.

Figure 4.11: Model with three outputs Z = (QM,QF ,QB)⊤:
Left: first 50 largest Hankel singular values, Right: selection criterion.

The setting is analogous to Subsec. 4.3.2. The input function g is given in (4.16) and the
3×n output matrix C is formed by the four rows CM,CF ,CB which are given in Subsec. 3.3

Fig. 4.11 shows in the left panel the first 50 largest Hankel singular values, whereas the right
panel shows the selection criteria. For both PHX models the first 50 singular values decrease
by more than 8 orders of magnitude which is only slightly less than for the case of two outputs.
As in the previous experiments the first 20 singular values decrease faster for the model with
1 PHX than for the 3 PHX model. The selection criterion for the model with one PHX is for
ℓ ≤ 3 smaller than for 3 PHXs and for ℓ ≥ 4 slightly larger. From the figure and also from
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Table 4.1 it can be seen that for reaching threshold levels of α = {90%,95%,99%} in the 1
PHX case ℓα = {5,7,12} states are required while for 3 PHXs one needs ℓα = {6,8,13} states,
respectively. Thus, for dimension ℓ ≥ 13 an almost perfect approximation of the input-output
behavior can be expected.

A comparison with the two-output model in Subsec. 4.3.2 with output Z =(QM,QF)⊤ shows
that the additional third output variable QB requires only one or two more state variables to
ensure the same approximation quality. However, the three-output model considered above in
Subsec. 4.3.3 where the third output is the average outlet temperature QO requires two or three
states more in the reduced-order system to ensure the same approximation quality. This shows
that QB is much easier to reconstruct by a reduced order model than QO. This can be explained
by the strong dependence of the average outlet temperature QO on the average temperature QF

in the PHX. Further, for QO the spatial temperature distribution is averaged over the subdomain
DO which is much smaller than the corresponding domain DB over which the average is taken
for QB.

Figure 4.12: Model with three outputs Z = (QM,QF ,QB)⊤: Approximation of the output for
ℓ= {6,8,12}. Top: Average temperatures in the medium QM and the fluid QF ,
Bottom: Average bottom temperature QB,
Left: one PHX , Right: three PHXs .

Fig. 4.12 shows the output variables of the original and reduced-order system which are
plotted against time. In the top panels the average temperatures Z1(t) = QM(t) and Z2(t) =
QF(t) in the medium and fluid are drawn as solid blue and green lines, respectively. The bottom
panel depicts the average temperature at the bottom boundary QB by a blue solid line. The
reduced-order approximations as drawn for ℓ = {6,8,12}. As in the previous experiments the
approximation of QM is much better than for QF . The approximation of the third output variable
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QB is quite good although it represents an average of the spatial temperature distribution over
the rather small subdomain DB at the bottom boundary. Possible explanations are the relatively
small temporal fluctuations of that quantity and the large distance of the bottom boundary to the
PHXs, where the charging and discharging generates large temporal and spatial fluctuations.

In Fig. 4.13 we show for the reduced orders ℓ considered above the L2-error ∥Z − Z̃∥L2[0,t]
which plotted against time t together with the error bounds from (4.14). The results are similar
to Fig. 4.7 and we refer for the interpretation to the end of Subsec. 4.3.2, Fig. 4.13.

Figure 4.13: Model with three outputs Z = (QM,QF ,QB)⊤: L2-error and error bound for ℓ =
{6,8,12}. Left: one PHX , Right three PHXs.

4.3.5 Four Aggregated Characteristics: QM,QF ,QO,QB

In this last experiment we consider a model with the four-dimensional output Z = (QM,QF ,
QO,QB)⊤ which contains all of aggregated characteristics appearing in the above experiments.

The setting is analogous to Subsec. 4.3.2. The input function g is given in (4.16) and the
4×n output matrix C is formed by the four rows CM,CF ,CO,CB which are given in Subsec. 3.3.

Figure 4.14: Model with four outputs Z = (QM,QF ,QO,QB)⊤:
Left: first 50 largest Hankel singular values, Right: selection criterion

Fig. 4.14 shows in the left panel the first 50 largest Hankel singular values, whereas the right
panel shows the selection criteria. For both PHX models the first 50 singular values decrease by
almost 8 orders of magnitude which is only slightly less than for the case of three outputs. As in
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the previous experiments the first 20 singular values decrease faster for the model with one PHX
than for the 3 PHX model. The selection criterion for the model with one PHX is for ℓ ≤ 10
larger than for 3 PHXs and for ℓ ≥ 11 slightly smaller. From the figure and also from Table
4.1 it can be seen that for reaching threshold levels of α = {90%,95%,99%} in the one PHX
case ℓα = {9,11,17} states are required while for three PHXs one needs ℓα = {9,11,16} states,
respectively. Thus, for dimension ℓ ≥ 17 an almost perfect approximation of the input-output
behavior can be expected. A comparison with the three output model in Subsec. 4.3.3 with
output Z = (QM,QF ,QO)⊤ shows that the additional fourth output variable QB requires only
one or two more state variables to ensure the same approximation quality. This corresponds
to our previous observations for the augmentation of the output Z = (QM,QF)⊤ of the model
considered in Subsec. 4.3.2 by adding as third output the average bottom temperature QB, see
Subsec. 4.3.4. There the minimal reduced orders ℓα also increase only by 1 ore 2.

Figure 4.15: Model with four outputs Z = (QM,QF ,QO,QB)⊤: Approximation of the output for
ℓ= {9,11,16}. Top: Average temperatures in the medium QM and the fluid QF ,
Bottom: Average temperatures at the outlet QO and the bottom boundary QB,
Left: one PHX , Right: three PHXs .

Fig. 4.15 depicts the output variables of the original and reduced-order system which are
plotted against time. In the top panels the average temperatures Z1(t) = QM(t) and Z2(t) =
QF(t) in the medium and fluid are drawn as solid blue and green lines, respectively. The bottom
panel shows the average temperatures at the outlet Z3(t) = QO(t) and at the bottom boundary
QB by a blue and green line, respectively. The reduced-order approximations are drawn for
ℓ= {9,11,16}. The results for the first three outputs QM,QF ,QO are similar to the experiment
with those three outputs considered in Subsec. 4.3.3. The approximation of the fourth output
variable QB is quite good and comparable to the results in Subsec. 4.3.4. For the model with 3
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PHXs we notice some visible errors for the smallest order ℓ= 9.
Finally, Fig. 4.10 shows for the reduced orders ℓ considered above the L2-error ∥Z −

Z̃∥L2[0,t] which plotted against time t together with the error bounds from (4.14). The results
are similar to Fig. 4.7 and we refer for the interpretation to the end of Subsec. 4.3.2.

Figure 4.16: Model with four outputs Z = (QM,QF ,QO,QB)⊤:
L2-error and error bound for ℓ= {9,11,16}. Left: one PHX , Right: three PHXs.
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CHAPTER 5

Continuous-Time Stochastic Optimal Control Problem

Introduction

In this chapter we want to reconsider the optimization problem formulated in Subsec.2.4 arising
in the cost-optimal management of the residential heating system equipped with a geothermal
energy storage. Since one of the state components, the temperature Q = Q(t,x,y) in the GS,
depends not only on time t but also on spatial variables and its dynamics is governed by a PDE,
the optimal control problem formulated in Subsec.2.4 appears as a non-standard (some compo-
nents of the state process satisfy PDEs) stochastic optimal control problem with a state process
X = X(t) taking values in an infinite-dimensional space. However, using the results of Chapter
4 on model reduction in a first step we can replace Q by its finite-dimensional approximation
given by the temperatures Y1, . . . ,Yn in the grid points of the mesh used in the finite difference
discretization. Then, the state X of the control problem becomes a high-dimensional vector and
all components satisfy SDEs and ODEs. This is now a control problem in standard form, while
we are facing the curse of dimensionality.
A detailed inspection of the mathematical description of the control system and the associated
performance criterion shows that we do not need the temperatures Q in every individual grid
point but only some aggregated quantities such as the average temperature in the storage, in the
PHX and at the outlet boundary of the PHX . Chapter 4 on model reduction has shown that
we can find quite accurate approximations of these aggregated quantities from the output of a
suitable chosen reduced-order model with a state variable Ỹ = (Ỹ1, . . . ,Ỹℓ)⊤ of dimension ℓ≪ n.
Therefore, in a second step we setup a stochastic optimal control problem where instead of the
infinite-dimensional original state component Q = Q(t,x,y), we use the ℓ components of Ỹ as
state variables. This chapter is organized as follows. In Sec. 5.1 we reconsider the state process
in which we replace the PDE describing the dynamics of GS by a low-dimensional reduced-
order system of ODEs. In Sec. 5.2 we reformulate the control problem for a controlled diffusion
process describing in Sec.5.1 and derive the associated Hamilton-Jacobi-Bellman equation in
Sec. 5.3.
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5.1 Dynamics of the Controlled Diffusion Process

In this section we reconsider the stochastic optimal control problem considered in Chapter 2 in
which we replace the state Q by ℓ components of Ỹ whose dynamics is described by a linear
system of ODE of dimension ℓ. Note that this modification does not affect the uncontrolled
state variables R and F but it modifies the dynamics of the IS which is connected to the GS.

Approximate dynamics of the geothermal storage. The temperature Q in the GS is described
by a heat equation. After applying semi-discretization to that PDE we obtained a large n-
dimensional system of ODEs. Then, balanced truncation model order reduction applied to the
resulting large n-dimensional system of ODEs enables us to reduce its dimension to ℓ≪ n. For
u(t) ∈ U , the approximate dynamics of the GS becomes

dỸ (t) = ψY (t,Ỹ (t),u(t))dt, Ỹ (0) = y0 ∈ Y ⊂ Rℓ,

Z(t) =CỸ (t) (5.1)

with

ψY (t,y,ν) = Ã(ν)y+ B̃(ν)g(t,ν), (5.2)

where y = (y1,y2, . . . ,yℓ)⊤ ∈ Y ⊂ Rℓ is the reduced-order state and y0 is a given reduced-order
state of the GS at time t = 0. Equation (5.1) is an algebraic equation called output equation in
which C is some no × ℓ-matrix described in Subsec. 3.3, whose entries depend on the type of
information the manager wishes to get from the system and Z ∈ Rno is a vector of aggregated
characteristics. We recall that in the analogous model described in Sec. 3.4 the input func-
tion g(t,ν) = (CF y,QG(t))⊤ during the waiting period (ν = uW ). Then the control-dependent
reduced-order system matrix Ã(ν) and input matrix B̃(ν) are such that

Ã(ν) =

{
Ãℓ ν ∈ {uC,uD},
Ãℓ+ B̃1

ℓC
F otherwise,

B̃(ν) =

{
B̃ℓ ν ∈ {uC,uD},
B̃2
ℓ otherwise,

(5.3)

with Ã(ν) ∈ Rℓ×ℓ, B̃ℓ = (B̃1
ℓ , B̃

2
ℓ) ∈ Rℓ×2 the constant system and input matrices, respectively.

Indeed, the matrices Ã(ν) and B̃(ν) depend on time through the control ν which changes with
time. The input function g is given by

g(t,ν) =

{
g1(t,ν) ν = uC,uD,

QG(t) otherwise,
(5.4)

where g1(t,ν) = (QI
ν(t),QG(t))⊤ ∈R2. Here QG(t) is the underground temperature and QI

ν(t)
the inlet temperature of the GS given by

QI
ν(t) =

{
QI

C ν = uD (charge GS),
QI

D ν = uC (discharge GS).

Typically, QI
C > QI

D. The manager or controller of such a storage has to make sure that
the temperature in the GS is always in some interval called comfort zone. Let the vector
of the aggregated characteristics be given by Z = (Z1,Z2, . . . ,Zno)

⊤ ∈ Rno , where for all i =
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1, . . . ,no, Zi(t) = C†Ỹ (t) is the average temperature in given domain in the GS. For example
Z(t) = (Z1(t),Z2(t),Z3(t),Z4(t))⊤ = CỸ , with C = (CM,CF ,CO,CB)⊤ ∈ R4×l if we are in-
terested in 4 aggregated characteristics such as the average temperature in the medium (soil
without the pipe), in the pipe, at the outlet of the pipe and at the bottom of the storage. Here
Z1(t) = QM(t) = CMỸ (t) is the average temperature in the medium, Z2(t) = QF(t) = CFỸ (t)
the average temperature in the pipe, Z3(t) = QO(t) =COỸ (t) the average temperature at the out-
let boundary of the pipe, and Z4(t) = QB(t) =CBỸ (t) is the average temperature at the bottom
boundary of the storage. The quantity Z3 is used to calculate how much energy we can extract
from the storage through the pipe and Z4 is used to calculate the amount of energy we gain or
loose through the open bottom boundary. In order to keep the temperature in the comfort zone,
we have to impose constraints on the reduced state variable Ỹ (t) or on the aggregated charac-
teristics. It turns out that it is enough to impose the constraints on the average temperature in
the GS since a non-homogeneous spatial temperature will be averaged after a while due to the
diffusion. The storage manager has to ensure that the average temperature in the GS is always
in the comfort zone, say QM =CMỸ (t) ∈Q = [q,q].

State dynamics. With some abuse of notation we denote again by X the finite-dimensional state
space and by X the state process of the new (approximate reduced-order) control problem, where
we want to emphasize the dependence on the control u by writing X = Xu. The state Xu can be
decomposed into two groups of state variables. The first group consists of controlled processes
with deterministic dynamics described by ODEs. These are the temperature in the IS, together
with the state variables of the reduced-order system. We denote this (1+ ℓ)-dimensional state
component by

Xu
= (P,Ỹ 1,Ỹ 2, . . . ,Ỹ ℓ)⊤.

The second group contains variables which do not depend on the control and also not on the
variables of the first group. Their dynamics is subject to exogenously given seasonality and
uncertainties and described by SDEs. In our model these are the fuel/electricity price F and
the residual demand R. We denote this 2-dimensional second state component of uncontrolled
variables by

X̂ = (R,F)⊤.

The state process is now X =

(
X̂
Xu

)
= (R,F,P,Ỹ 1,Ỹ 2, . . . ,Ỹ ℓ)⊤ ∈ X ⊂ Rl+3, where

X =R×F ×P ×Y = {(r, f , p,y) | r ∈R, f ∈ F , p ∈ P , y ∈ Y},

with the dynamics given by a stochastic differential equation

dX(t) = µ(t,X(t),u(t))dt +σ(t)dW (t), X(0) = x0 = (r0, f0, p0,y⊤0 )
⊤ ∈ X . (5.5)

where the drift coefficient µ : [0,T ]×X ×U → R3+l and the diffusion coefficient σ : [0,T ]→
R(3+l)×2 are giving by

µ(t,x,ν) =


βR(µR(t)− r)
βF(µF(t)− f )
ψ̃P(r, f , p,y,ν)

ψY (t,y,ν)

 , σ(t) =

 σR(t) 0
0 σF(t)

0(l+1)×1 0(l+1)×1

 ∈ R(3+l)×2,
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W (t) = (WR(t),WF(t))⊤, t ∈ [0,T ] is a two-dimensional standard Brownian motion, and the
initial state x0 at time t = 0 is given. Here, ψ̃P(r, f , p,y,ν) = ψp(r, f ,y,ν)− γ(p−Pamb), where
a function ψp is given by (2.18), and ψY is given by equation (5.2). We require that for all t ∈
[0,T ], σR(t)>σR > 0 and σF(t)>σF > 0. The state dynamics (5.5) can be written component-
wise as follows

dR(t) = βR(µR(t)−R(t))dt +σR(t)dWR(t), R(0) = r0,

dF(t) = βF(µF(t)−F(t))dt +σF(t)dWF(t), F(0) = f0,

dP(t) = (ψp(R(t),F(t),Ỹ (t),u(t))− γ(P(t)−Pamb))dt, P(0) = p0,

dỸ (t) = ψY (t,Ỹ (t),u(t))dt, Ỹ (0) = y0.

As defined in Subsec. 2.4.1 the state can be decomposed into two parts: Xu = (X̂(t),Xu
(t))⊤

where X̂ ∈R×F ⊂R2 is an exogenous state variable and Xu ∈P×Y ⊂R1+l is an endogenous
state variable. The uncontrolled state X̂ = (R,F)⊤ ∈R×Fsatisfies the SDE

d X̂(t) = µ̂(t, X̂(t))dt + σ̂(t)dŴ (t), X̂(0) = x̂0 = (r0, f0)
⊤ ∈R×F ,

where the uncertainty Ŵ = (WR,WF)
⊤, the drift coefficient µ̂ : [0,T ]×R×F → R2 and the

volatility matrix σ̂ : [0,T ]×R×F → R2×2 are defined for x̂ = (r, f ) as

µ̂(t, x̂) =
(

βR(µR(t)− r)
βF(µF(t)− f )

)
∈ R2, σ̂(t) =

(
σR(t) 0

0 σF(t)

)
∈ R2×2. (5.6)

For deterministic known fuel price F , the exogenous state variable is X̂ = R ∈R and given by
Equation (2.1) and µ̂(t,r) = βR(µR(t)− r), σ̂(t) = σR(t) ∈ R.
The controlled state Xu

= (Pu,Ỹ 1,Ỹ 2, . . . ,Ỹ ℓ)⊤ satisfies the system of ODEs

d Xu
(t) = µ(t, X̂(t),Xu

(t),u(t))dt, Xu
(0) = x0 = (p0,y⊤0 )

⊤ ∈ P ×Y

where

µ(t, x̂,x,ν) =
(

ψP(x̂,x,ν)
ψY (t,y1,y2, . . . ,yℓ,ν)

)
∈ R1+ℓ.

Note that the drift coefficient µ of the controlled variables depends on the control as well as
of the second state component X̂ . The latter represents the coupling of the controlled with the
uncontrolled states. The drift coefficient µ̂ and diffusion coefficient σ̂ in the SDE for X̂ depend
neither on the controlled variables nor on the control u.

Assumption 5.1.1 We assume that the control is of Markov type, i.e, it can be written in the
form u(t) = ũ(t,Xu(t)), t ∈ [0,T ], where ũ : [0,T ]×X → Rq is a (Borel) measurable function.

This property states that the control at any time t depends only on the current time and also on
the current state Xu(t) but does not depend on past history. In addition, it is assumed that the
control takes values in some subset U ⊂Rq, called the set of feasible controls defined by (2.20).
The subset U is often assumed to be compact and convex, but in most practical cases the set U
is non-convex. The latter fits to the control problem we consider in this thesis. Indeed, the set
U ⊂N only takes finite number of elements. Next we state under which condition the SDE (5.5)
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is well-posed and if it has a unique solution. A solution of (5.5) with initial data Xu(0) = x0 can
be interpreted as a solution of the stochastic integral equation

Xu(t) = x0 +
∫ t

0
µ(s,Xu(s),us)ds+

∫ t

0
σ(s)dWs, 0 ≤ s ≤ t ≤ T. (5.7)

Definition 5.1.2 (Strong solution) A stochastic process (Xu(t))t∈[0,T ] is called a strong solu-
tion to the SDE (5.5) if it is continuous, G−adapted and satisfies equation (5.7) almost surely
(i.e., with probability 1). A solution is said to be local if it exists up to a stopping time.
A solution (Xu(t))t∈[0,T ] is said to be unique if any other solution (X̃u(t))t∈[0,T ] is indistinguish-
able from (Xu(t))t∈[0,T ], i.e., P{Xu(t) = X̃u(t), ∀t ∈ [0,T ]}= 1.

Remark 5.1.3 In the dynamics of the diffusion process (Xu(t))t∈[0,T ], given by equation (5.5),
the drift coefficient depends explicitly on time and on the control. However, the diffusion co-
efficient does not depend on the control but depends only on time. In general the diffusion
coefficient may also depend on state and on the control (σ = σ(t,Xu,u)) but such cases are
not considered in this thesis, we assume that we can only control the drift and the diffusion
is uncontrolled. The case involving time-dependent coefficients is only suitable for finite time
horizon problems since the typical requirement for infinite time horizon problems is that the
coefficients should not be explicitly time-dependent.

In order to quote the well known result about the existence and the uniqueness of the solution
of the SDE, we have to make some assumptions on the coefficients µ and σ where we consider
the general case with σ = σ(t,x).

Assumption 5.1.4 Let µ : [0,T ]×Rd ×U →Rd and σ : [0,T ]×Rd →Rd×m be to measurable
functions for which the following apply:

• For all t ∈ [0,T ], and x ∈ Rd the function µ(t,x,ν) is continuous in U .

• For all t ∈ [0,T ] and ν ∈ U there exists a constant M1 > 0 such that

|µ(t,0,ν)|+∥σ(t,0)∥ ≤ M1.

• Growth condition: for all x ∈Rd,ν ∈ U and t ∈ [0,T ], there exists a constant M2 > 0 such
that

|µ(t,x,ν)|+∥σ(t,x)∥ ≤ M2(1+ |x|).

• Lipschitz condition: for all x,y ∈Rd , t ∈ [0,T ] and ν ∈ U , there exists a constant M3 > 0,
such that

|µ(t,x,ν)−µ(t,y,ν)|+∥σ(t,x)−σ(t,y)∥ ≤ M3|x− y|.

where |.| is the Euclidean norm in Rd and ∥.∥ is the Frobenius norm, i.e.,

∥σ̃∥=

√√√√ d

∑
i=1

m

∑
j=1

|σ̃i j|2.
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The following lemma gives the well-known existence and uniqueness result for SDEs, which is
proven in Mao [74, Sec.2.3].

Lemma 5.1.5 (Classical solution) Assume that the drift µ and the diffusion coefficient σ sat-
isfy the assumption (5.1.4) with σ is non-degenerated. Then, there exist a unique strong solution
to the Itô stochastic differential equation (5.7).

In most practical problems the conditions in assumption 5.1.4 are not fulfilled, i.e., the drift may
be discontinuous, non-Lipschitz and may also be unbounded; the diffusion coefficient may also
be non-Lipschitz, degenerated and unbounded. In such extreme cases ensuring the existence of
the solution is more demanding and not straightforward. If Assumption 5.1.4 fails, we can still
get a unique solution. Such cases are given in the following remark.

Remark 5.1.6

1) If the drift µ is measurable and bounded but not Lipschitz, then there exists a unique
strong solution to (5.5) if the diffusion coefficient σ is bounded and Lipschitz and the in-
finitesimal generator of the SDE (5.5) is uniformly elliptic, i.e., ∃c > 0 such that ∀x ∈Rd

and ∀ζ ∈ Rd , we have ζ⊤σσ⊤ζ ≥ c|ζ |2, see the work by Zvonkin [132] for one dimen-
sional case and Veretenikov [122] for multidimensional case. Furthermore, if the drift
coefficient is partially Lipschitz, i.e., Lipschitz in some components and non-Lipschitz
in others, then there exists a strong solution when the diffusion coefficient is uniformly
elliptic only in the components in which the drift is non-Lipschitz, we refer to the result
by Veretenikov [121].

2) If the drift is only locally integrable and the diffusion σ non-degenerated, then there exists
a strong solution to (5.5), see Zhang [131].

3) If the drift coefficient is discontinuous but increasing in each variable and the diffusion
coefficient σ a Lipschitz continuous, then the existence of continuous strong solution is
ensure by the work or Halidias and Kloeden [54].

4) If the drift coefficient µ is discontinuous, non-Lipschitz (may also be unbounded and
decreasing in each variable), the diffusion coefficient σ singular and the infinitesimal
generator is not uniformly elliptic, then under some conditions the existence of the unique
maximal local solution to equation (5.5) can be ensured by the work by Leobacher et al.
[68].

5) Let the drift coefficient µ be non-Lipschitz but measurable and bounded, the diffusion
coefficient σ degenerated but Lipschitz with respect to the non-degenerated components.
Further, assume that µ and σ are twice continuously differentiable functions with bounded
derivatives with respect to the degenerated components. Then, without considering any
regularization in the degenerated components, there exists a unique strong solution to
equation (5.5), see Zvonkin [132].

Note that for our problem, the state variable P is a piece-wise linear continuous function and
the set of feasible controls U ⊂ N. Then, the drift µ maybe discontinuous in P and Ỹ , and
even non-Lipschitz with respect to some components. In addition, the diffusion coefficient is
degenerated but locally Lipschitz with respect to the non-degenerated components. In this case
the existence of the solution to SDE (5.5) can be guaranteed by items 4) and 5) in the above
remark 5.1.6.
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5.2 Stochastic Optimal Control Problem

5.2.1 Performance Criterion

Let the control process u = (u(t))t∈[0,T ], u(t) ∈ U(t,x) be given, the initial residual demand
R(t) = r, the initial fuel price F(t) = f , the initial temperature in the IS P(t) = p, and the initial
temperature in the GS generated by the reduced-order state Ỹ (t) = y a time t ∈ [0,T ]. The cost
function at time t, J : [0,T ]×X ×U →R is the expected aggregated cost over the time interval
[0,T ] given by

J(t,x;u) = Et,x

[∫ T

t
Ψ(s,Xu(s),u(s))ds+φ(Xu(T ))

]
(5.8)

for Xu = (R,P,Ỹ 1,Ỹ 2, . . . ,Ỹ ℓ)⊤ ∈ X ⊂ Rl+3. Here, Et,x[·] is the conditional expectation given
that at time t the state Xu(t) = x = (r, f , p,y⊤)⊤ ∈X , Ψ is the running cost and φ is the terminal
cost described in Subsec. 2.4. Note that the terminal cost only applies to finite time horizon
problems. For infinite time horizon problems, the terminal cost does not apply but we have
to take into account some discounting factor for the running costs. We make the following
assumptions on the functions Ψ and φ .

Assumption 5.2.1 Let Ψ : [0,T ]×X ×U → R and φ : X → R be two measurable functions
for which the following apply

• Growth condition: for all x ∈ X , t ∈ [0,T ] and ν ∈ U , there exists a constant M4,M5 > 0
such that

sup
ν∈U

|Ψ(t,x,ν)| ≤ M4(1+ |x|), |φ(x)| ≤ M5(1+ |x|)

• Lipschitz condition: for all x,y∈X , t ∈ [0,T ] and ν ∈U , there exists a constant M6,M7 >
0, such that

sup
ν∈U

|Ψ(t,x,ν)−Ψ(t,y,ν)| ≤ M6|x− y|, |φ(x)−φ(y)| ≤ M7|x− y|.

The running cost and φ is the terminal cost described in Subsec. 2.4.3 satisfy Assumption. 5.2.1.

Admissible control. We denote by A(x) the class of admissible controls, consisting of Marko-
vian control processes u being progressively measurable w.r.t. the filtration G, satisfying certain
integrability conditions and control constraints (described above) such that the controlled state
Xu takes at any time t values in the prescribed state space X , i.e.,

A(x) =
{
(u(t))t∈[0,T ] | u is G-progressively measurable,ut = ũ(t,Xu(t)) for all

t ∈ [0,T ],ut ∈ U(t,x) for all (t,x) ∈ [0,T ]×X , Xu(t) ∈ X , t ∈ [0,T ],

and Et,x

[∫ T

t
|Ψ(s,Xu(s),u(s))|ds+ |φ(Xu(T ))|

]
< ∞

}
.

(5.9)
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5.2.2 Optimal Control Problem
The objective is to minimize the performance criterion (5.8) over all admissible controls (5.9).
We define the value function for all (t,x) ∈ [0,T ]×X by

V (t,x) = inf
u∈A(x)

J(t,x;u). (5.10)

A control u∗ ∈A(x) is called optimal control if V (t,x) = J(t,x;u∗).
Note that very often one is interested in the value function at the initial time t = 0. However,

solving the optimization problem (5.9) with dynamic programming techniques requires embed-
ding it into a family of optimization problems and solve for each pair [0,T ]×X .
Next we consider the solution of the control problem using the dynamic programming and de-
rive the associated Hamilton-Jacobi-Bellman equation.

5.3 Hamilton-Jacobi-Bellman Equation
In this subsection we use the dynamic programming principle (DPP) initiated by Bellman in
the 1950s to solve the control problem. It is a fundamental principle in the theory of stochastic
control which states that an optimal policy has the property that whatever the initial state and
initial decision are, the remaining decisions must constitute an optimal policy with regard to the
state resulting from the first decision, see Bellman [15].
We recall that our goal is to minimize the performance criterion over all admissible controls.
To obtain an optimal control on the whole time interval [t,T ] the basic idea is to split the opti-
mization problem into two parts. First, search for an optimal control from time τh ∈ [t,T ] given
the state value Xu(τh), i.e., compute the value function V (τh,Xu(τh)). Second, minimize over
all admissible controls on [t,τh] the quantity

Et,x

[∫
τh

t
Ψ(s,Xu(s),u(s))ds+V (τh,Xu(τh))

]
.

This principle is called the dynamic programming principle and is formulated as follows:

Theorem 5.3.1 (Dynamic programming principle) Let (t,x) ∈ [0,T ]×X as Tt,T the set of
stopping times valued in [t,T ]. Then, it holds

V (t,x) = inf
u∈A(x)

sup
τh∈Tt,T

Et,x

[∫
τh

t
Ψ(s,Xu(s),u(s))ds+V (τh,Xu(τh))

]
= inf

u∈A(x)
inf

τh∈Tt,T
Et,x

[∫
τh

t
Ψ(s,Xu(s),u(s))ds+V (τh,Xu(τh))

]
.

The proof of this theorem can be found in Pham [87, Chapter 3, Theorem 3.3.1], Fleming and
Soner [45, Chapter 4], Fleming and Rishel [44, Chapter 4], Oksendal [80, Chapter 11], Touzi
[116, Chapter 1].
A stronger version of this DPP is given as

V (t,x) = inf
u∈A(x)

Et,x

[∫
τh

t
Ψ(s,Xu(s),u(s))ds+V (τh,Xu(τh))

]
, (5.11)

100



5.3. HAMILTON-JACOBI-BELLMAN EQUATION

for any stopping time valued in [t,T ]. From the DPP, we formally derive the dynamic program-
ming equation, which is also called the Hamilton-Jacobi-Bellman (HJB) equation, by sending
the stopping time τh to t. Therefore, the HJB equation is the infinitesimal version of the DPP
describing the local behavior of the value function.
Hamilton-Jacobi-Bellman equation. After reformulating the optimal control problem ob-
tained by replacing the PDE describing the spatial distribution of the temperature in the GS
with a low-dimensional system of ODE resulting from model reduction as described in Chap-
ter 4, we now consider its solution using dynamic programming techniques. The basic idea of
this approach is to embed the control problem into a family of control problems by varying the
initial state values of the controlled diffusion process which leads to a nonlinear partial differ-
ential equation (PDE) of second order called the Hamilton-Jacobi-Bellman (HJB) equation that
we present below. We begin with the generator of the state process Xν for a constant strategy
u(t) = ν . The generator of the state process reads as

Lν = Lν
+ L̂, (5.12)

where for G ∈C2(X ), x = (x̂,x)

Lν
G = µ

⊤(t,x,ν)Dx G = ψP(t,x,ν)
∂G
∂ p

+
ℓ

∑
i=1

ψ
i
Y (t,x,ν)

∂G
∂yi

L̂ G = µ̂
⊤(t, x̂)Dx̂ G+

1
2

tr[(σ̂ σ̂
⊤)(t)D2

x̂ G]

= µ̂R(t, x̂)
∂G
∂ r

+
1
2
(σ̂R(t))2 ∂ 2G

∂ r2 + µ̂F(t, x̂)
∂G
∂ f

+
1
2
(σ̂F(t))2 ∂ 2G

∂ f 2

= L̂R G+ L̂F G.

Applying the dynamic programming principle given in Theorem 5.3.1 yields the following.

Theorem 5.3.2 (HJB equation) The value function (2.4.4) satisfies the Hamilton-Jacobi-Bellman
equation given by

∂

∂ t
V + L̂ V + inf

ν∈U(t,x)

{
Lν

V +Ψ(t,x,ν)
}
= 0, (t,x) ∈ [0,T )×X (5.13)

V (t,x) = φ(x).

For a proof see Appendix C.1.
A candidate for the optimal decision rule ũ⋆ control is obtained from the solution of the point-
wise optimization problem in the above HJB equation and reads as

ũ⋆(t,x) = argmin
ν∈U(t,x)

{
Lν

V (t,x)+Ψ(t,x,ν)
}
.

Now we are going to discuss under which condition equation (5.13) has a unique solution
and in which case the solution coincides with the solution of the optimal control problem. With
enough regularity on V , the so-called verification theorem guarantees that the solution of the
HJB equation coincides with the solution of the optimal control problem.
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Theorem 5.3.3 (Verification theorem) Let w be a function in C1,2([0,T ]×X )∩C([0,T ]×X ),
satisfying the quadratic growth condition

|w(t,x)| ≤ M7(1+ |x|2), ∀ (t,x) ∈ [0,T ]×X ,

for some constant M7. Assume that w is a solution to the HJB equation

∂

∂ t
w+ L̂ w+ inf

ν∈U(t,x)

{
Lν

w+Ψ(t,x,ν)
}
= 0, (t,x) ∈ [0,T )×X

w(T,x) = φ(x), x ∈ X .

Further, assume that there exists a measurable function ũ : [0,T ]×X → U such that the SDE

dX(s) = µ(s,X(s), ũ(s,X(s)))ds+σ(s)dW (s), X(t) = x ∈ X , s ∈ [t,T ],

admits a unique solution X̃ , the process (ũ(t))s∈[t,T ] lies in Ã(x) and the following holds

ũ(t,x) = argmin
ν∈U(t,x)

{
Lν

w(t,x)+Ψ(t,x,ν)
}
.

Then, w coincides with the value function, i.e., w(t,x) = V (t,x) on [0,T ]×X and ũ is the
optimal control.

For a proof see Pham [87, Chapter 3, Theorem 3.5.2].

Remarks on the solution to the HJB equation

To derive the manager’s charging and discharging decision, the optimal control problem (5.10)
had to be solved. Due to the complexity of the problem, the corresponding HJB equation (5.13)
must be solved for the value function and the corresponding optimal strategy. To ensure that
a smooth solution to the HJB equation coincides with the value function and the candidate for
the optimal decision rule (5.3) is indeed the optimal control, the classical method is to use the
so-called verification theorem. When there is a sufficiently regular (classical) solution to the
HJB equation with appropriate terminal condition, then a verification theorems states that the
solution of the HJB equation is the value function of the stochastic optimal control problem and
the optimal control as Markov control in the feedback form can be chosen. For the application
of verification theorems from the literature (see for example Fleming and Soner [45, Chapter 4],
Fleming and Rishel [44, Chapter 6, Sec. 4], Pham [87, Chapter 3] or Touzi [116, Chapter 1]) it is
required that the solution to the HJB equation is regular, i.e., twice continuously differentiable
with respect to the space component and once continuous and differentiable with respect to
time, with bounded derivatives.

In general, the HJB equation does not have a sufficiently smooth solution, in particular,
when the generator of the SDE is not uniformly elliptic, i.e., when there is no constant λ > 0
such that ∀x ∈ X and ∀ζ ∈ X , we have ζ⊤σσ⊤ζ ≥ λ |ζ |2. In such cases one must resort to
solutions which hold in some weaker sense, in particular, viscosity solutions. Possible refer-
ences for more comprehensive details on the topic of viscosity solution are Pham [87, Chapter
4], Fleming and Soner [45, Chapter 5] or Touzi [116, Chapter 2].

Note that the generator a = σσ⊤ of the SDE (5.5) is singular (not of full rank) since the
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noise does not enter certain components of the system, specially the controlled components.
Then, uniform ellipticity of the differential operator cannot be guaranteed and the dynamic pro-
gramming equation (5.13) is degenerated or non parabolic. As a consequence, we no longer
know that a regular solution exists as required in the verification theorem. Therefore, the ex-
istence of the classical solution of the HJB equation (5.13) cannot be guaranteed. Instead, the
concept of the viscosity solutions can be used here to investigate the existence of the weak
solution to the HJB equation (5.13). However, the concept of the viscosity solutions does not
provide an explicit form of the optimal strategy and should therefore not be pursued further
here. In addition, the feasible control set is not convex and the optimal strategy u⋆ is taking
only discrete values in a finite set. Thus, the state Xu⋆ associated with optimal control u⋆ may
be continuous but not differentiable as the drift coefficient µ in the SDE (5.5) is discontinuous.
Furthermore, the diffusion coefficient σ is degenerate. This leads to a delicate mathematical
problem which consists in checking the admissibility of the optimal control process u⋆ and its
solution.

We have already mentioned above that the differential operator of the HJB equation is not
elliptic and that the existence of the classical solution cannot be guaranteed. In addition, we
have also mentioned that one way to overcome this problem is to use the viscosity solution
concept to ensure the existence of the weak solution to the HJB equation (5.13). Another way
to overcome this problem is use the regularization techniques. Several authors have resorted to
this technique to guarantee the solution of the HJB equation (see, i.e., Frey et al. [47], Krylov
[66, Chapter 4, Sec. 6] and Fleming and Soner [45, Sec. IV.6], Fleming and Rishel [44, Chapter
6, Sec. 8]). The main idea of this technique is to modify the diffusion coefficient by adding some
small ε > 0 so that the resulting SDE is non-singular. For example, with small perturbation ε ,
the SDE (5.5) can be written as

dXε(t) = µ(t,X(t),u(t))dt +σ
ε(t,X(t))dW ε(t), Xε(0) = xε

0 ∈ X ε

X ε =R×F ×Pε ×Yε = {(r, f , pε ,yε) | r ∈R, f ∈ F , pε ∈ Pε , yε ∈ Yε}, (5.14)

where W ε =(Ŵ ,W̃ )∈Rℓ+3, with W̃ =(WP,WỸ1
, . . . ,WỸℓ

) an (ℓ+1)-dimensional wiener process

independent of Ŵ = (WR,WF) and

σ
ε(t,xε) =

(
σ̂(t, x̂(t)) 02×(l+1)
0(l+1)×2

√
2εI(ℓ+1)

)
∈ R(l+3)×(l+3)

with σ̂ ∈R2×2 given in (5.6) and I(ℓ+1) is and (ℓ+1)× (ℓ+1)− identity matrix. The generator
associated with these perturbed dynamics has an additional term

ε

(
∂ 2V
∂ p2 +

∂ 2V
∂y2

1
+ . . .+

∂ 2V
∂y2

ℓ

)
.

Therefore, it is uniformly elliptic. Hence, the existence of a classical solution V ε to the per-
turbed HJB equation can be obtained by applying the above mentioned results to the perturbed
SDE ((5.14)). Moreover, it can be shown (see, [47], [99]) that for sufficiently small ε the value
function V ε of the perturbed problem converges to the value function V of the original (unper-
turbed) problem. In addition, for ε sufficiently small, the optimal strategy for the perturbed
problem is approximately the optimal strategy of the original problem.

Remark 5.3.4 Note that in many cases the HJB equation (5.13) has no closed-form solution

103



CHAPTER 5. CONTINUOUS-TIME STOCHASTIC OPTIMAL CONTROL PROBLEM

due to its non-linear structure. Therefore, the HJB equation has to be solved numerically but
when the dimension of the state process is high many numerical methods based on finite differ-
ence schemes such as Semi-Lagrangian techniques and splitting method become intractable due
to the curse of dimensionality. However, an alternative approach is to approximate the above
continuous-time optimal control problem to a discrete-time problem based on Markov deci-
sion processes (MDP) and solve by using the backward recursion method or the approximate
dynamic programming (ADP) which is considered below.
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CHAPTER 6

Discrete-Time Stochastic Optimal Control Problem

The aim of this chapter is to find an alternative method to overcome the curse of dimensional-
ity. We recall that the dimension of the state space d = ℓ+ 3, where ℓ is the dimension of the
reduced-order states which can be high. Due to this, the HJB equation (5.13) associated to the
continuous-time optimal control problem cannot be handled using well known numerical tech-
niques. Instead, we are going to consider the time discretization of the control problem which
leads to a Markov decision process with a finite time horizon and action spaces. Further, we
derive the associated dynamic programming equation or Bellman equation and solve it using
the backward recursion method. A reader who is interested in the theory of Markov Decision
Process can consult the book by Bäuerle and Rieder [11] and some references given in the in-
troduction. This chapter is organized as follows. In Sec. 6.1 we present the discrete-time MDP
resulting from the time discretization of the continuous-time model and study the transition ker-
nel. The novelty here is that, we manage to solve the SDEs and system of ODEs in closed form
in Subsec. 6.1.1 in order to obtain a discrete-time model with no discretization error. Contrary
to the continuous-time model, where the control can be changed an anytime, in discrete-time
the action can only be changed at the discrete time points. This motivates us to reformulate the
state-dependent control constraints for the discrete-time model in Subsec. 6.1.3. In Sec. 6.2 we
apply state-discretization to transform the MDP into a finite actions and finite states Markov
chain and construct associated the transition probabilities. Finally, we discuss the numerical
solution of the discrete-time optimal control problem in Sec. 6.3 and carry out intensive numer-
ical experiments to determine the behaviour of the value function and the optimal strategy. In
addition, we investigate the sensitivity analysis of the behaviour of the value function and the
optimal control with respect some selected parameters.

6.1 Discrete-time Markov Decision Processes

We recall that the dimension of the state space d = ℓ+ 3, where ℓ is the dimension of the
reduced-order states. Let tn = n∆N , n = 0,1, . . . ,N, be the discrete time points with N the
number of time steps and ∆N = T/N = tn+1 − tn the step size. We sample the state process
X(t), t ∈ [0,T ] at discrete time points t0, . . . , tN . Let Xn = X(tn) be the short-hand notation of the
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sampling of the state process at time n, un = u(tn) the sampling of the decision rule at time tn,

where we assume u(t) =
N

∑
n=1

un1[tn,tn+1)(t).

Control. The control process or strategy is defined by

u = (u0,u1,u2, . . . ,uN−1),

where for n = 0,1, . . . ,N −1,un = ũ(n,Xu
n ), with the mapping

ũ : {0,1, . . . ,N −1}×X → U

is the decision rule at time n and for all x ∈ X and n ∈ {0,1, . . . ,N −1},

un(x) ∈ U = {uO,uC,uW ,uD,uF}

is the action taken in state x at time n.
In the following, we are going to first write down closed-form solutions to the state equations
(SDEs and ODEs) on the time interval [tn, tn+1). Second, based on these expressions we show
that the conditional distribution of X(tn+1) given X(tn) = x is a (degenerated) multivariate Gaus-
sian. Finally, we derive the recursion defining the transition operator

Xn+1 = Tn(Xn,un,En+1), X0 = X(0) = x0 n = 0,1, . . .N −1,

where (E1, . . . ,EN) is a sequence of standard normally distributed random variables that we will
specify later.

6.1.1 Time-Discretization of the State Variables

This subsection is devoted to the time-discretization of the dynamics of the state process.
The state process X = (Xn)n=0,1,...,N is taking values in X ⊂ Rd , i.e, Xn = (Rn,Fn,Pn,Ỹn) =

(Rn,Fn,Pn,Ỹ 1
n ,Ỹ

2
n , . . . ,Ỹ

ℓ
n ) ∈ X . We begin with the following assumption on the parameters

which it crucial for this chapter.

Assumption 6.1.1 We assume that µR(t), µF(t), σR(t) and σF(t) are piece-wise constant, i.e,
for † = R,F ,

µ†(t) =
N−1

∑
n=0

µ†,n1[tn,tn+1)(t), µ†(T ) = µ†,N , and σ†(t) =
N−1

∑
n=0

σ†,n1[tn,tn+1)(t), σ†(T ) = σ†,N .

with some constants µ†,n,σ†,n, n = 0, . . . ,N. An example can be µ†,n = µ†(tn) and σ†,n =
σ†(tn).

To avoid time-discretization error, instead of apply Euler scheme, we rather solve the state equa-
tions in closed-form on the time interval [tn, tn+1), n = 0,1, . . . ,N −1.

Discrete-time dynamics of the geothermal storage. We recall that the continuous-time dy-
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namics of the GS given in equation (5.2) can be written as

dỸ (t) = (Ã Ỹ (t)+ B̃g(t,u(t))dt, Ỹ (0) = y0 ∈ Y ⊂ Rℓ, (6.1)

where Ã and B̃ are constant system and input matrices given in (5.3) and the input function
g(t,ν) is given by relation (5.4). We make the following assumption on the input function g.

Assumption 6.1.2 We assume that for a fixed control un = ν the input function g(t,ν) = gν
n is

constant on the time interval [tn, tn+1).

The following lemma gives the the closed-form solution of the ODE (6.1).

Lemma 6.1.3 Let t ∈ [tn, tn+1). Under Assumption 6.1.2, the closed-form solution of the ODE
(6.1) on the time interval [tn, tn+1), with initial value Ỹ (tn) = Ỹn, is given as

Ỹ (t) = eÃ(t−tn)Ỹn +(eÃ(t−tn)− Iℓ)Ã−1B̃gν
n , (6.2)

In particular, when t → tn+1, the a above closed-form solution yields the recursion

Ỹn+1 = eÃ∆NỸn +(eÃ∆N − Iℓ)Ã−1B̃gν
n . (6.3)

where Iℓ is an ℓ× ℓ identity matrix.

The proof of this lemma can be found in Appendix C.2.1.

For sufficiently small ∆N , the first Taylor expansion of the solution Ỹn+1 given in (6.3), is given
by

Ỹn+1 = Ỹ (tn+1) = (Iℓ+ Ã∆N)Ỹn + ÃÃ−1B̃gν
n ∆N +O(∆N)

= (Iℓ+ Ã∆N)Ỹn + B̃gν
n ∆N +O(∆N).

This correspond to the Euler discretization of the ODE (6.1) which is a good approximation
only for sufficiently small ∆N .

Discrete-time dynamics of the residual demand. Recall that the continuous-time residual
demand is defined by

dR(t) = βR(µR(t)−R(t))dt +σR(t)dWR(t). (6.4)

Let Rn = R(tn) be the sampling of R(t) a time tn. The closed-form solution of the SDE (6.4) is
given my the following:

Lemma 6.1.4 Let t ∈ [tn, tn+1). Then, under Assumption 6.1.1 the closed-form solution of the
SDE (2.1) on the time interval [tn, tn+1), with initial value R(tn) = Rn is given by

R(t) = Rne−βR(t−tn)+µR,n(1− e−βR(t−tn))+σR,n

∫ t

tn
e−βR(t−s)dWR(s). (6.5)
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The proof of this lemma can be found in Appendix C.2.2.

Discrete-time dynamics of the fuel price. We assume that the fuel price is stochastic and fol-
lows the OU-process with piece-wise µF(t) and piece-wise σF(t), and constant mean reversion
speed βF . Using de same procedure presented above for the case of residual demand we obtain
the closed-form solution of the SDE (2.4) given in the following lemma:

Lemma 6.1.5 Under Assumption 6.1.1, the closed-form solution of the SDE (2.4) on the time
interval [tn, tn+1), with initial value F(tn) = Fn is given by

F(t) = Fne−βF (t−tn)+µF,n(1− e−βF (t−tn))+σF,n

∫ t

tn
e−βF (t−s)dWF(s). (6.6)

The proof of this lemma is similar to the proof of Lemma 6.1.4.

Discrete-time dynamics of the internal storage . We recall that the continuous-time dynamics
of the temperature in the IS given by equation (2.17) can be written for u(t) ∈ U as

dP(t) = (ψp(R(t),Ỹ (t),u(t)))− γ(P(t)−Pamb)dt, P(0) = p0, (6.7)

where γ = κhAh
mPcF

P
is a constant, R(t) is the residual demand given by equation (6.5), and Ỹ (t)

is the reduced order state of the GS given by (6.2). The function ψp is given by (2.18). The
following lemma provides the closed-form solution to equation (2.17).

Lemma 6.1.6 Assume that at time tn the average temperature in the IS P(tn) = Pn. Under
Assumptions 6.1.1 and 6.1.2, for n ∈ {0,1, . . . ,N − 1}, the closed-form solution to equation
(6.7) on the time interval [tn, tn+1) is given by

1) For un = uO

P(t) = e−γ(t−tn)Pn +Pamb(1− e−γ(t−tn)). (6.8)

2) For un ̸= uO

P(t) = e−γ(t−tn)Pn +ϒn(un,Ỹn)− kPσR,n

∫ t

tn
e−γ(t−s)

(∫ s

tn
e−βR(s−u)dWR(u)

)
ds, (6.9)

where the function ϒn is given by

ϒn(ν ,y) = ηn +



(
Pamb +

κF

γ

)
(1− e−γ(t−tn)), ν = uF(

Pamb +
κC(pin−Pout)

γ

)
(1− e−γ(t−tn)), ν = uD

Pamb(1− e−γ(t−tn)), ν = uW(
Pamb −

κDQI
C

γ

)
(1− e−γ(t−tn))+ e−γ(t−tn)ψn(y), ν = uD

(6.10)

with ψn given for gD
n = g(tn,uD) by

ψn(y) = κDCO
{
(e(γIℓ+Ã)(t−tn)− Iℓ)(γIℓ+ Ã)−1y+
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[
(e(γIℓ+Ã)(t−tn)− Iℓ)(γIℓ+ Ã)−1 − 1

γ
(eγ(t−tn)−1)Iℓ

]
Ã−1B̃gD

n

}
,

Iℓ is an ℓ× ℓ identity matrix, and

ηn =
kP

βR − γ
(µR,n −Rn)

(
e−γ(t−tn)− e−βR(t−tn)

)
−

kPµR,n

γ
(1− e−γ(t−tn)).

The proof of this lemma is given in Appendix C.2.3.

Now, let Rn+1 = R(tn+1), Fn+1 = F(tn+1), and Pn+1 = P(tn+1) be the sampling of the resid-
ual demand, the fuel or electricity price, and the average temperature in the IS at time tn+1,
respectively. Next, we are going to determine based on the above closed-form solutions, the
(marginal and) joint conditional distribution of (Rn+1,Fn+1,Pn+1) given (Rn,Fn,Pn) = (r, f , p)
and the action un = ν .

6.1.2 Marginal and Joint Conditional Distributions of the State Variables
We first note that, the last term in equations (6.5) and (6.6) are integral functionals of Wiener
processes with deterministic integrand. Further, the last term of equations (6.9) is an integrated
process which is also integral functional of the Wiener process with deterministic integrand.
Therefore, for t ∈ [tn, tn+1), R(t), F(t), and P(t) given by (6.5), (6.6), and (6.9), respectively,
are normally distributed. In particular, when t → tn+1, the processes Rn+1, Fn+1, and Pn+1 are
Gaussian random variables. In addition, the last term in equations (6.5) and (6.9) are integral
functional of the same Wiener process. Therefore, when t → tn+1, the Gaussian processes Rn+1
and Pn+1 are dependent random variables. We denote by mR,n = mR,n(r) = E[Rn+1 | Rn = r],
mF,n = mF,n( f ) = E[Fn+1 | Fn = f ], mν

P,n = mν
P,n(p) = E[Pn+1 | (Rn,Fn,Pn,Ỹn) = (r, f , p,y),un =

ν ], and mν
Y,n =E[Ỹn+1 | Ỹn = y,un = ν ] the conditional means of Rn+1,Fn+1, Pn+1, and Ỹn+1 given

Xn = x = (r, f , p,y) and un = ν , respectively. We also denote by Σ2
R,n = Var(Rn+1 | Rn = r),

Σ2
F,n = Var(Fn+1 | Fn = f ), and Σ2

P,n = Var(Pn+1 | Xn = x,un = ν) the conditional variances of
Rn+1,Fn+1, and Pn+1, respectively.
Since Rn+1 and Pn+1 are dependent random variables, we denote by Σ

2,ν
RP,n = Cov(Rn+1,Pn+n |

Xn = x,un = ν) their conditional covariance and by ρν
RP,n their correlation coefficient. In the

following we will derive explicit formulas for each parameter stated below in equation (6.17).
Through out this chapter we consider that Assumption 6.1.1 is fulfilled. We use for simplicity
the short-hand notations mP,n = mν

P,n and mY,n = mν
Y,n for the conditional means of Pn+n and

Ỹn+1, respectively. We use the short-hand notations Σ2
RP,n = Σ

2,ν
RP,n and ρRP,n = ρν

RP,n for the con-
ditional covariance and the conditional correlation coefficient of (Rn+1,Pn+1). We begin with
the marginal distribution of Rn+1.

Conditional distribution of Rn+1 given Rn = r. We recall that the discrete-time process Rn+1
is a Gaussian process. Then, the following proposition provides its mean and its variance.

Proposition 6.1.7 (Conditional mean and variance of Rn+1) Under Assumption 6.1.1, the resid-
ual demand Rn+1 is a normally distributed random variable with a conditional mean given by

mR,n = re−βR∆N +µR,n(1− e−βR∆N ),
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and a conditional variance given by

Σ
2
R,n =

σ2
R,n

2βR
(1− e−2βR∆N ). (6.11)

The proof is given in Appendix C.2.4.

Conditional distribution of Fn+1 given Fn = f. Similarly, the discrete-time process Fn+1 given
by the recursion (6.6) is a Gaussian process and the following proposition provides its mean and
its variance.

Proposition 6.1.8 (Conditional mean and variance of Fn+1) Under Assumption 6.1.1, the Fuel
price Fn+1 is a standard normally distributed random variable with a conditional mean given by

mF,n = f e−βF ∆N +µF,n(1− e−βF ∆N ),

and a conditional variance given by

Σ
2
F,n =

σ2
F,n

2βF
(1− e−2βF ∆N ).

The proof this proposition is similar the proof of proposition 6.1.7 given in Appendix C.2.4.

Conditional distribution of Pn+1 given Xn = x = (r, f,p,y) and un = ν . We recall that for
all feasible control un ∈ U\{uO} the discrete-time process Pn+1 given in (6.9) is a normally
distributed random variable. The following theorem provides its conditional mean and variance
given Xn = x and un = ν .

Theorem 6.1.9 (Condition distribution of Pn+1) Let Assumption 6.1.1 be fulfilled and the
rate of heat loss to the environment γ ̸= 0. Then, for all feasible control ν ∈ U\{uO} the
conditional distribution of the process Pn+1 given Xn = x = (r, f , p,y) and un = ν is Gaussian
with the following parameters:

1. The conditional mean is given by

mP,n = e−γ∆N p+ϒn(ν ,y),

where ϒn is given by (6.10).

2. The conditional variance is given by

Σ
2
P,n =

k2
Pσ2

R,n

2βR(βR − γ)2(βR + γ)

{
γ +4βRe−(βR+γ)∆N − (βR + γ)e−2βR∆N

−βR

(
2+ e−2γ∆N

)
+

β 2
R

γ

(
1− e−2γ∆N

)}
. (6.12)

The proof of this theorem is given in Appendix C.2.5.
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Next, we want to derive ρRP,n based on the joint conditional distribution of Rn+1 and Pn+1
given Xn = x and un = ν .

Joint conditional distribution of Rn+1 and Pn+1. Recall that when t → tn+1 the residual
demand Rn+1 and the temperature in the IS Pn+1 given by the recursions (6.1.4) and (6.9),
respectively, are correlated normally distributed random variables. Therefore, the conditional
distribution of the pair (Rn+1,Pn+1) is a bivariate normal distribution. We denote by Σ2

RP,n =
cov(Rn+1,Pn+1 | Xn = x,un = ν) the conditional covariance of Rn+1 and Pn+1 given Xn = x and
un = ν . In the following theorem we derive their covariance and their correlation coefficient.

Theorem 6.1.10 (Conditional correlation between Rn+1 and Pn+1) For t → tn+1, Rn+1 and
Pn+1 given by (6.5) and (6.9), respectively, are negatively correlated with the conditional corre-
lation coefficient ρRP,n ∈ [−1,0) given by

ρRP,n =
Σ2

RP,n

ΣR,nΣP,n
. (6.13)

Here, ΣP,n and ΣR,n are given by (6.12) and (6.11), respectively, and Σ2
RP,n is the conditional

covariance of Rn+1 and Pn+1 given by

Σ
2
RP,n =−

kPσ2
R,n

2βR(β 2
R − γ2)

(
βR − γ −2βRe−(βR+γ)∆N +(βR + γ)e−2βR∆N

)
(6.14)

For the proof see Appendix C.3.1.

Joint conditional density function of Pn+1 and Rn+1. We recall that giving the current state
Xn = x and the current control un = ν ∈ U\{uO}, the random variables Rn+1 and Pn+1 are
normally distributed and correlated, i.e., Pn+1 ∼ N (mP,n,Σ

2
P,n) and Rn+1 ∼ N (mR,n,Σ

2
P,n). In

addition, the pair (Rn+1,Pn+1) is jointly normal with parameters mP,n, Σ2
P,n, mR,n, Σ2

R,n and ρRP,n.
Now we want to investigate their joint distribution. We first introduce some useful notations
for the remaining section. Let ZP =

Pn+1−mP,n
ΣP,n

∼N (0,1) and ZR =
Rn+1−mR,n

ΣR,n
∼N (0,1) be two

standard normal variables.

Proposition 6.1.11 The random variable

ZRP =−
ρRP,n√

1−ρ2
RP,n

(
Rn+1 −mR,n

ΣR,n

)
+

1√
1−ρ2

RP,n

(
Pn+1 −mP,n

ΣP,n

)
=

ZP −ρRP,nZR√
1−ρ2

RP,n

is standard normally distributed, i.e., ZRP ∼N (0,1).

The proof is given in Appendix C.3.2.

Let Z ∼N (µZ,σ
2
Z). Then the probability density function of a normal random variable Z is

given by

ϕZ(z) =
1

σZ
√

2π
e−

1
2

(
z−µZ

σZ

)2

,
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and the cumulative distribution of a standard normal random variable Z is define by

ΦZ(z) =
1√
2π

∫ z

−∞

e−
s2
2 ds.

Definition 6.1.12 The joint conditional density function of the random variables Rn+1 and Pn+1
given Xn = x and un = ν ∈ U\{uO} is defined by

ϕRP(r, p) =
1

2πΣR,nΣP,n

√
1−ρ2

RP,n

×

exp

{
− 1

2(1−ρ2
RP,n)

[(
p−mP,n

ΣP,n

)2

−2ρRP,n
(r−mR,n)(p−mP,n)

ΣR,nΣP,n
+

(
r−mR,n

ΣR,n

)2
]}

.

Now, let the function ζz be defined by ζz(Rn+1,Pn+1) = ZRP with

ζz(r, p) =−
ρRP,n√

1−ρ2
RP,n

zr +
1√

1−ρ2
RP,n

zp, (6.15)

where zr =
r−mR,n

ΣR,n
and zp =

p−mP,n
ΣP,n

.
In the following proposition we express the joint conditional density function φRP in terms of
the function ζz.

Proposition 6.1.13 The joint conditional density function of the random variables Rn+1 and
Pn+1 given Xn = x and un = ν ∈ U\{uO} can be written as

ϕRP(r, p) = ϕR(r)
1

ΣP,n
√

2π

√
1−ρ2

RP,n

e−
1
2 ζ 2

z (r,p),

where ϕR(r) is the probability density function of a normal random variable Rn+1 and ζz(r, p)
is a function given by (6.15).

The proof can be found in Appendix C.3.3.

Now, we are in the position to define the joint cumulative distribution function of Rn+1 and
Pn+1 in terms of ϕR and Φ(ζz).
Let us first recall the definition of the joint cumulative function of two random variables. Let X
and Y be two random variables. Then, the joint cumulative distribution function of X and Y is
defined as

FXY (x1,y1) = P(X ≤ x1, Y ≤ y1) =
∫ x1

−∞

∫ y1

−∞

fXY (x,y)dxdy,

where fXY (x,y) is a joint density function of X and Y .

Proposition 6.1.14 Let p2,r2 ∈ R. The joint cumulative distribution function of the random
variables Rn+1 and Pn+1 can be expressed in terms of ϕR and Φ(ζz) as follows:

FRP(r2, p2) = P(Pn+1 ≤ p2, Rn+1 ≤ r2) =
∫ r2

−∞

ϕR(r)Φ(ζz(r, p2))dr.
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For proof see Appendix C.3.4.

This transformation helps to reduce the computational time for the computation of the tran-
sition probabilities for the Markov chain that we will study later in this chapter. The following
corollary gives some properties of the joint cumulative distribution function defined above.

Corollary 6.1.15 Let r1,r2, p1, p2 ∈ R. Then, Proposition 6.1.14 can be extended as follows:

1. P(Pn+1 ≤ p2, r1 ≤ Rn+1 ≤ r2) =
∫ r2

r1

ϕR(r)Φ(ζz(r, p2))dr.

2. P(Pn+1 ≥ p2, r1 ≤ Rn+1 ≤ r2) =
∫ r2

r1

ϕR(r)(1−Φ(ζz(r, p2)dr.

3. P(p1 ≤ Pn+1 ≤ p2, r1 ≤ Rn+1 ≤ r2) =
∫ r2

r1

ϕR(r)(Φ(ζz(r, p2))−Φ(ζz(r, p1))dr.

Statements 1,2, and 3 of Corollary 6.1.15 also hold true for r1 →−∞ and r2 →+∞. The proof
of this corollary is analogous to the proof of Proposition 6.1.14.

Transition operator. A time-discretization leads to a Markov Decision Process (MDP) with
a finite time horizon N, with state space X ⊂ Rℓ+3 and finite action space U . Based on the
above closed-form expressions and the (marginal and) joint distribution of state variables we
can derive the recursions defining the linear transition operator associated to the MDP, Tn :
X ×U ×Z → X given by

Xn+1 = Tn(Xn,un,En+1), n = 0,1, . . .N −1, (6.16)

where Xn+1 = (Rn+1,Fn+1,Pn+1,Ỹn+1) with individual states given for Xn = x, by

Rn+1 = mR,n +ΣR,nER
n+1,

Fn+1 = mF,n +ΣF,nEF
n+1,

Pn+1 = mP,n +ΣP,n

(√
1−ρ2

RP,nE
P
n+1 +ρRP,nER

n+1

)
,

Ỹn+1 = mY,n,

where m†,n and Σ2
†,n, † = R,F,P are the mean and the variance of the processes Rn+1,Fn+1, and

Pn+1, respectively and mY,n is the mean of the process Ỹn+1 given by

mY,n = yeÃ∆N +(eÃ∆N − Iℓ)Ã−1B̃gν
n .

In the above transition operator (E1, . . . ,EN) with En = (ER
n ,EF

n ,EP
n )

⊤ ∈ Z ⊂ R3, for n =
1,2, . . .N, is a sequence of multivariate standard normally distributed random variables.
Next, we will investigate the conditional distribution of X(tn+1) given X(tn) = x and un = ν

based on the marginal distribution of the independents variables and the joint distribution of the
dependent variables.
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Transition Kernel. In this paragraph we use the results of the marginal and joint distributions
of the discrete-time state variables Rn+1, Fn+1, Pn+1, and Ỹn+1 to derive the conditional distribu-
tion of X(tn+1) given X(tn) = x and un = ν . We recall that under Assumption 6.1.1 there is no
discretization error in the discrete-time approximation of the continuous-time process. There-
fore, the law of the discrete-time process (X0,X1, . . . ,XN) and the law of the continuous-time
process (X(t0),X(t1), . . . ,X(tN)) sampled at t0, t1, . . . , tN coincide. We have shown based on
the closed-form expressions (6.5), (6.6), (6.9), and (6.3) that, for un ∈ U\{uO}, the discrete-
time state variables Rn+1, Fn+1 and Pn+1 are normally distributed random variables and the
discrete-time state variable Ỹn+1 is degenerated (Dirac). However, for un = uO the closed-form
expression (6.8) shows that Pn+1 is degenerated (Dirac). Then, given the state Xn = x and action
un = ν ∈U at time tn the conditional distribution of the process Xn+1 =X(tn+1) is a (degenerate)
multivariate Gaussian with the mean mX ,n and the covariance matrix ΣX ,n represented as

mX ,n =


mR,n
mF,n
mP,n
mY,n

 , ΣX ,n =


Σ2

R,n 0 Σ2
RP,n 0

0 Σ2
F,n 0 0

Σ2
RP,n 0 Σ2

P,n 0
0 0 0 0

 , Σ
2
RP,n = ρRP,nΣR,nΣP,n. (6.17)

Uncertainty. We model the uncertainty by a sequence E = (En)n=1,...,N of independent identi-
cally distributed random variables with values in Z , i.e, for n = 1, . . . ,N, En = (ER

n ,EF
n ,EP

n )
⊤ ∈

Z , where E†
n ∼N (0,1), † = R,F,P.

Filtration. We consider the filtration F = (Fn)n=0,1,...,N with Fn = σ({E1, . . . ,En}) is the
sigma-algebra generated by the first n independent random variables E1,E2, . . . ,En and F0 =
{ /0,Ω} is the trivial sigma-algebra.

6.1.3 State-Dependent Control Constraints for MDP

For Markov decision processes in each time step n ∈ {0,1, . . . ,N − 1} a set of feasible actions
depending on the current state is required. The latter should be defined such that within the next
period the internal and GS are not full or empty. We denote by

U(n,x) = {ν ∈ U | Xν
n+1 satisfies the state constraint, given Xn = x},

where U is the set of feasible actions. We allow that U = U(n,x) depends on the current time n
and the current state.

The state-dependent control constraints result from the constraints to the state which are box
constraints to the average temperature in the IS, Pn ∈ [p, p] and to the average temperature in the
medium of GS, QM

n =CMỸn ∈ [q,q], for all n = 0,1, . . . ,N. We note that the Gaussian nature of
the process Pn+1 does not allow it to satisfy the box constraint to P with certainty. Instead we
have to allow over- and undershooting, i.e. Pn+1 > p and Pn < p, but constrain the probabilities
for the events by very small tolerance value ε ≪ 1.
In the view of the state discretization such an approach appears to be acceptable since the grid
points on the boundaries of the truncated state space, in particular the points on Pn+1 = p and
Pn+1 = p will represent all points in the state space with Pn+1 ≤ p and Pn+1 ≥ p, respectively.
Since we have to satisfy two state constraints by an appropriate set of feasible actions, we first
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define the sets

UP(n,x) =
{

ν ∈ U | Pν
n+1 satisfies the state constraint to P,

i.e. P
(
Pν

n+1 ∈ [p, p]
)
≥ 1−2ε, given Xn = x

}
UY (n,x) =

{
ν ∈ U | Ỹ ν

n+1 satisfies the state constraint to Ỹ ,

i.e. CMỸ ν
n+1 ∈ [q,q], given Xn = x

}
. (6.18)

Then the desired set of feasible actions is given by

U(n,x) = UP(n,x)∩UY (n,x).

Next, we describe the UP(n,x) and UP(n,x) separately.

Set of feasible actions UY (n,x) related to the state constraint to Ỹ . In our continuous-time
control problem we impose constraints to the state Ỹ of the form

QM(t) =CMỸ (t) ∈ [q,q], t ∈ [0,T ],

i.e. box constraints to the average temperature in the storage medium which is a linear combina-
tion of the entries of Ỹ . This constraint implies state-dependent control constraints saying that
an empty GS (QM(t) = q) can no longer be discharged (u(t) ̸= uC) and a full GS (QM(t) = q) can
no longer be charged (u(t) ̸= uD). However, in the discrete-time setting the control u(t) can no
longer be changed at any time t but only at the discrete-time points t0, t1, . . . , tN−1. Hence, charg-
ing or discharging the GS must be stopped already for average temperatures QM(tn) slightly
below q or slightly above q. This leads to a change of the feasible set of control depending on
the current state if one changes from continuous to discrete-time setting.
The set UY (n,x) can be subdivided into 3 subsets, see Fig 6.1, corresponding to YC,YD,YW ,
given by

YC = {y ∈ Y : CMT y
n (y,u

D)> q},
YD = {y ∈ Y : CMT y

n (y,u
C)< q},

YW = Y\(YC ∪YD),

where for all n = 0,1, . . . ,N −1, T y
n is the transition operator for (Ỹn)n given by

T y
n (y,ν) = yeÃ∆N +(eÃ∆N − Iℓ)Ã−1B̃gν

n .

This partitioning of the set UY (n,x) can also be seen in first row of Fig 6.4, where we compute
all elements of the intersection UP(n,x)∩UY (n,x).

Note that for extreme charging and discharging rates, there might be an empty YW region
and an overlap of the two other regions YC and YD.
The most critical situation occurs when there is a possibility that the average temperature in the
GS exceeds the maximum at the next time step, QM

n+1 ≥ q, given the current average temperature
QM

n . In this case, charging the GS is no longer possible and the set of feasible actions becomes
UY (n,x) = U\uD. Moreover, when it is possible that, given the current average temperature, the
average temperature in the GS at the next time step is lower than the minimum, QM

n+1 ≤ q. Then
discharging GS is no longer possible and in this case, the set of feasible actions is the given by
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y1

y2

q

q

Gethermal storage empty

No constraint

{uO
,uW

,uC
,uF}

{uD,uW,uF}

Gethermal storage full

{uD,uW ,uC,uF}

C MỸn = q

CMỸn = q

Charging GS not possible

Discharging GS not possible

YC

YD

YW

Figure 6.1: Characterization of the set of feasible control UY (n,x) for ℓ= 2

UY (n,x) = {uD,uW ,uF}.

Remark 6.1.16 It is just the matter of taste if for the box constraint (6.18) related to the state Ỹ
we use the average temperature in the complete GS, QS =CSỸ ν

n+1 or only in the medium (soil),
CMỸ ν

n+1. We motivate the restriction of just a single constraint to some average temperature
and allow for local temperatures outside [q,q] by the fact that the diffusion will average out
fluctuations in the local temperature. Fast varying local temperature fluctuations can be found
in the fluid of the pipe and starting charging or discharging changes the temperature of the fluid
withing a very short period of time. Therefore, imposing constraints to the average temperature
QM in the medium only, seems to be more appropriate.

Set of feasible actions UP(n,x) related to the state constraint to P. Let 0 < ε ≪ 1 be a small
probability (tolerance level) which we accept for the violation of the strict constraint Pn ∈ [p, p],
n ∈ {0, . . .N}. We define the conditional probabilities

π
ν = π

ν(n,x) = P(Pν
n+1 > p | Xn = x,un = ν),

π
ν = π

ν(n,x) = P(Pν
n+1 < p | Xn = x,un = ν).

Remark 6.1.17 The above conditional probabilities depend only on Pn = p and Rn = r but not
on Ỹn = y except for ν = uD (discharging IS to charge the geothermal). For ν = uD there is a
dependence of P on the outlet temperature of the PHX which is a function of y.

Assumption 6.1.18 We assume that the following hold

1) For Xn = x

Pν=uF

n+1 > Pν=uC

n+1 > Pν=uW

n+1 > Pν=uD

n+1 a.s.
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2) A full internal or GS cannot be driven empty (or almost empty) within one period of length
∆N . Similarly, charging the internal or GS must be such that an empty internal or GS is not
full (or almost full) at the end of one period of length ∆N .

Under Assumption 6.1.18, the following monotonicity properties of πν and π
ν hold

π
F > π

C > π
W > π

D and π
F < π

C < π
W < π

D.

Further, we define the subsets of the state space X ⊂ Rℓ+3 by

X ν

P(n) = {x ∈ X | π
ν(n,x)≤ ε} and X ν

P(n) = {x ∈ X | π
ν(n,x)≤ ε}.

For a given state Xn = x at time t = tn, an action is feasible with respect to the constraint to P if
x ∈ X ν

P(n)∩X ν
P(n). Thus the set of feasible controls with respect to P can be written as

UP(n,x) =
⋃

ν : x∈X ν

P(n)∩X ν
P(n)

{ν},

and contains those actions ν for which x is in the above mentioned intersection. In view of our
model setting and the dynamics of the state process it can be deduced that the projection of the
above subsets onto the sub-state spaces

X ν
RP = {(r, p) | x = (r, f , p,y) ∈ X },

have the following form

X ν

RP(n) = {(r, p) | p ≤ h
ν

n (r,y)}, X ν
RP(n) = {(r, p) | p ≥ hν

n (r,y)},

for some functions h
ν

n ,h
ν
n : R×Y → R, see Fig. 6.2.

Note that for ν = uO, uW , uC, uF there is no dependence of the functions h
ν

n ,h
ν
n on the variable

y since in that case the dynamics of the process P does not depend on the state of the GS.
However, for ν = uD the state process P depends on the outlet temperature in the GS, i.e., there
is a dependence of the functions h

ν

n , hν
n on the variable y.

The characterization of the set of feasible control related to P considered below requires to
truncate the space for the residual demand into some bounded interval R = [r,r], where r and
r are the minimum and the maximum residual demand, respectively, which are determine using
the so called 3-sigma rule. Indeed, the residual demand is modeled using Ornstein–Uhlenbeck
(OU) process. Its range R = R can be replaced by a closed interval R = [r,r], in which the
values of the random process R lie with high probability. With regard to the stationary distri-
bution of the OU-process with parameters µR(t) ∈ [µ

R
,µR] and βR ∈ R, the 3-σ rule motivates

the following choice of the limits for r and r

R = [r,r] =
[

µ
R
−3

σR√
2βR

,µR +3
σR√
2βR

]
.

Characterization of the set UP(n,x). The set UP(n,x) can be subdivided into 7 or 8 subsets,
see Fig 6.3. This partitioning of the set UP(n,x) can also be seen in the first column of Fig 6.4,
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p

p

p

r

ν is feasible

X ν

RP(n)

X ν
RP(n)

hν
n(r,y)

h
ν

n(r,y)

Figure 6.2: Projection of X ν
P(n) and X ν

P(n) onto XRP

where we compute all elements of the intersection UP(n,x)∩UY (n,x). The critical situation
occurs when the IS is full, Pn ≥ p and there is maximal overproduction, Rn = r < 0. In this case,
we can only discharge the IS if the GS is not full, QM

n =CMỸn < q or apply over-spilling if the
latter is full and the set of feasible actions is given by UP(n,x) = {uO,uD}. Now when the IS is
empty, Pn ≤ p and there is unsatisfied demand, Rn > 0 the right action to be taken is to charge
the IS by firing fuel if the GS is empty or by discharging the GS if it is not empty. In this case,
the set of feasible actions is given by UP(n,x) = {uC,uF}. However the truncated parameters r
and r for the residual demand R and the rate of charging/discharging should be chosen such that

• when the IS is empty and there is maximal unsatisfied demand, (Rn,Pn) = (r, p) firing
fuel is enough to keep the temperature Pn+1 above p (with probability 1−ε , i.e. πF < ε),

• when the IS is full and there is maximal overproduction, (Rn,Pn) = (r, p) discharging the
IS with not completely full GS is enough to keep the temperature Pn+1 below p (with
probability 1− ε , i.e. π

D < ε).

Remark 6.1.19 The above requirements for (Rn,Pn) = (r, p) can be modified such that we
include only over-spilling for Rn = r and Pn ∈ [p−δ , p], for some small δ > 0. This corresponds
to a down-shift of h

D
n in Fig. 6.3.

Finally the state dependent control constraints given by the intersection of the sets UP(n,x) and
UY (n,x) is then given in Fig. 6.4 which contain only 12 potential different subsets. Further, this
can be reduced to 10 subsets by changing and merging subsets for UP(n,x). For example {uF}
and {uC,uF} can be merged to {uF}, and {uD,uW} and {uO,uD} can be merged to {uO,uD}.
This leads to a slight modification of the set of feasible controls related to P from 7 subsets to 5
and consequently reduce the set of feasible control UP(n,x) from 12 subset to 10.
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p

p

p

r0 rr
Fuel not sufficient

Fuel only
Fuel or charge ISFuel or charge IS or wait

Discharge IS or wait
Only Discharge IS or overspilling

Only overspilling

Discharge IS or wait or charge IS (no fuel)

No constaint

{uD ,uW ,uC ,uF }

{uD ,uW }

{uO ,uD}

{uO}

{uW ,uC ,uF }

{uC ,uF }
{uF }

{uD ,uW ,uC}

h
D
n

h
W
n

h
C
n

h
F
n

hD
n

hW
n

hC
n

hF
n

Figure 6.3: Characterization of the set of feasible control UP(n,x)

Figure 6.4: Set of feasible controls U(n,x) = UP(n,x)∩UY (n,x)
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6.1.4 Discrete-Time Optimal Control Problem

In this subsection we consider a Markov Decision Processes with a finite time horizon T and
finite action spaces U(n,x) and the state X described above. We show that the associated op-
timization problem can be solved by a backward recursion algorithm. We refer to [11] and
references therein for more details in the theory of Markov decision processes with general
state and action spaces.

Admissible control. We denote by A the class of admissible controls, consisting of Markovian
control processes u being adapted w.r.t. the filtration G, satisfying the control constraints (de-
scribed above) such that the controlled state Xu takes at any time tn values in the state space X ,
i.e.,

A =

{
u = (u0, . . . ,uN−1)| u is U(n,x)-adapted,un = ũ(n,Xu

n ) for all n = 0,1, . . . ,N −1,

ũ(n,x) ∈ U(n,x) for all (n,x) ∈ {0,1, . . . ,N −1}×X
}
.

Performance criterion. Given a control process
u = (u0,u1,u2, . . . ,uN−1) the performance criterion J : {0,1, . . . ,N}×X ×U → R is the ex-
pected aggregated cost over the time n = 0,1, . . . ,N given by

J(n,x;u) = En,x

[
N−1

∑
k=n

Ψ(k,Xu
k ,uk)+φ(Xu

N)

]

for Xu
n ∈ X ⊂ Rl+3. Here, Ψ is the the running cost given in (2.21), φ is the terminal cost given

in (2.22) and En,x[.] denotes the conditional expectation given that at time n the state Xu
n = x.

Optimal control problem. The objective is to minimize the performance criterion J given
above over all admissible controls u ∈ A. We define the value function for all x ∈ X and
n = 0,1, . . . ,N by

V (n,x) = inf
u∈A

J(n,x;u).

A control u∗ = (u∗0,u
∗
1, . . . ,u

∗
N−1) ∈A is called optimal control if V (n,x) = J(n,x;u∗).

Dynamic programming equation. The Bellman principle presented in Bäuerle and Rieder
[11] leads to the following necessary optimality condition called Bellman equation or dynamic
programming equation (DPE).

Theorem 6.1.20 (Bellman equation) The value function satisfies the Bellman equation

V (N,x) = φ(x), x ∈ X ,

V (n,x) = inf
a∈U(n,x)

{
Ψ(n,x,a)+En,x

[
V (n+1,Xu

n+1)
]}

, x ∈ X , n = 0,1, . . . ,N −1.

(6.19)
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For all n = 0,1, . . . ,N − 1, the candidate for the optimal control is u∗n = ũ∗(n,Xu∗
n ), with the

optimal decision rule given by

ũ∗(n,x) = argmin
a∈U(n,x)

{
Ψ(n,x,a)+En,x

[
V (n+1,Xu

n+1)
]}

.

The dynamic programming equation (6.19) can be solved using the following backward recur-
sion algorithm starting at the terminal time N.

Algorithm 2: Backward recursion algorithm
Result: Find the value function V and the optimal strategy u∗

Step 1 Compute for all x ∈ X
V (N,x) = φ(x)

Step 2 For n := N −1, . . . ,1,0 compute for all x ∈ X

V (n,x) = inf
a∈U(n,x)

{
Ψ(n,x,a)+En,x

[
V (n+1,Xu

n+1)
]}

.

Compute the minimizer u∗n of Vn+1 given by

ũ∗(n,x) = argmin
a∈U(n,x)

{
Ψ(n,x,a)+En,x

[
V (n+1,Xu

n+1)
]}

.

The challenge of the implementation of the backward recursion algorithm is that it becomes
computationally intractable if the the dimension of the state space is high or if no closed-form
expressions of the expectation En,x

[
V (n+ 1,Xu

n+1)
]

are available. In the next section we dis-
cretize the state space to form the MDP for controlled finite-state Markov chain. Then we can
express the conditional expectation En,x

[
V (n+1,Xu

n+1)
]

in terms of the transition probabilities
of the state of the Markov chain.

6.2 Numerical Solution of the Markov Decision Process

In this section we approximate the continuous-state MDP by a MDP for controlled finite-state
Markov chain and compute the associated transition probabilities. For the sake of simplicity we
restrict to a model with deterministic fuel price F(t) = F,F > 0 and remove F from the state
process. The case of random fuel price F can be treated analogously to R. The state space of
the MDP is given by

X =R×P ×Y1 ×Y2 × . . .×Y ℓ ⊂ Rℓ+2.

Since the state constraint for the GS involve only the average temperature, we first want to
construct a suitable basis for the state space Y in which the average can be given by only one
component of the reduced order states.
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Suitable basis vectors for the state space Y . Recall that balanced truncation model order
reduction yields a ℓ-dimensional subspace Y ⊂ Rℓ for the state component Ỹ . The optimal
control problem imposes state constraints to Ỹ of the form q ≤CMỸ ≤ q. For the approximation
of the continuous-state MDP into a MDP for finite-states Markov chain one has to keep in mind
that the hyperplane defined by the above state constraint to Ỹ may not always be parallel to the
axis and such that these hyperplanes contain grid points. The state discretization requires the
truncation of Rℓ to a bounded subset (see below in Subsec. 6.2.1) in which a finite subset of
grid points is chosen. Typically the bounded subset is an ℓ-dimensional rectangle and the grid
points are placed on lines parallel to the axis, see Fig. 6.5. To keep the approximate solution of

y1

y2

New coordinate system

y1

CMy = q

y2

CMy = q

Constraint set

•

•
•

•

•

••• ••

••• ••
••• ••

••• ••

••• ••

Figure 6.5: Change of coordinate system for the reduced order system

the control problem computation tractable, the number of grid points in the domain Y should
be as small as possible. Thus it is important to find a appropriate

• truncation to a bounded subset of Rℓ

• location of the grid points within this bounded subset

In the view of the geometry of the constraint set with respect to the reduced order state Ỹ which
is a subset of Y between the two hyperplanes defined by

CMy = q and CMy = q,

it is advisable to place the grid points on the hyperplanes parallel to the above two hyperplanes.
This can be simplified by choosing new coordinates in Y such that the new basis vectors are
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y3

CMy = cHyperplane

y1 y2

y3

v2
v2

v3

e3

e1 e2

y1 y2

Old orthogonal basis vectors

(e1,e2,e3)

y = (y1,y2,y3)

Reduced order state

in the old coordinate system

New basis vectors

(v1,v2,v3)

Reduced order state

y = (y1,y2,y3)

in the new coordinate system

Figure 6.6: Basis vectors

either contained in the hyperplanes or orthogonal to the hyperplanes.

Construction of the new basis. To find the new basis we can proceed as follows

1. choose ℓ−1 linear independent vectors v1,v2, . . . ,vℓ−1 on the hyperplane

2. find the vector vℓ such that ⟨vℓ,vk⟩ = 0 for k = 1, . . . , ℓ− 1, i.e. vℓ is orthogonal to the
first ℓ− 1 vectors, see Fig. 6.6. The orthogonal vector vℓ obtained using Gram-Schmidt
orthonalization method.

Details on how new basis vectors can be practically chosen are given in Appendix C.4.1. For
simplicity we denote again by v1,v2, . . . ,vℓ the orthogonal new basis vectors. The following
lemma gives the average temperature and the output matrix in the transformed coordinates
system.

Lemma 6.2.1 Let v1,v2, . . . ,vℓ be the orthogonal new basis vectors. Then, in the new basis the

1. hyperplanes CMY = c for a constant c are parallel to v1,v2, . . . ,vℓ−1 and orthogonal to vℓ,

2. last coordinate of Y denoted by Y ℓ is up to a scaling constant equal to the average tem-
perature in the GS,i.e. QM =CM,ℓY ℓ,

3. Row matrix CM is given by

CM
= (0, . . . ,0,CM,ℓ

) with CM,ℓ
=CMvℓ.

The proof of this lemma can be found in Appendix C.4.2.
It is helpful to work with a non-equidistant discretization in the Y ℓ-direction and to place more
grid points close to CM,ℓY ℓ

= q, q. This allows a more sensitive response to the state constraint.
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• •• • •

• •• • •

• •• • •
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•
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New coordinate system
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state space
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Geothermal storage empty

CM,2y2 = q

CM,2y2 = q

v1

v2

Figure 6.7: New basis vectors for the truncated state space (ℓ= 2)

6.2.1 State Discretization

In this subsection we approximate the above continuous-state MDP by a MDP for finite-states
Markov chain.
Let Nr and Np be the number of grid points in r and p-directions, respectively and let Nyk ,
k = 1, . . . , ℓ be the number of grid points in yk-direction. Let r0 < r1 < .. . < rNr and p0 <
p1 < .. . < pNp be finitely many grid points in r and p-directions, respectively. Let y1

0 < y1
2 <

.. . < y1
Ny1

, y2
0 < y2

2 < .. . < y2
Ny2

,. . ., yℓ0 < yℓ2 < .. . < yℓNyℓ
be finitely many grid points in y1,

y2, . . . ,yℓ-directions, respectively. Let hri , i = 0,1, . . . ,Nr −1, hp j , j = 0,1, . . . ,Np−1, and hyi
ki

,

ki = 0, . . . ,Nyi −1, i= 1, . . . , ℓ be non equidistant step sizes in r, p and yi-directions, respectively,
with

hri = ri+1 − ri, hp j = p j+1 − p j,

hy1
k1
= y1

k1+1 − y1
k1
, hy2

k2
= y2

k2+1 − y2
k2
, . . . , hyℓk

= yℓk2+1 − yℓk2
. (6.20)

Then, the (ℓ+2)-dimensional discretized state space is given by

X̃ = R̃× P̃ × Ỹ = {r0, . . . ,rNr}×{p0, . . . , pNp}×{y1
0, . . . ,y

1
Ny1

}× . . .×{yℓ0, . . . ,y
ℓ
Nyℓ

}

Let now denote

Nr = {0,1, ...,Nr}, Np = {0,1, ...,Np}, and Nyk = {0,1, ...,Nyk}, k = 1,2 . . . , ℓ,

the set of indices for R,P and Ỹ k, k = 1, . . . , ℓ, respectively and let Ñ be the set of (ℓ+2)-tuples
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of multi-indices defined by

Ñ =Nr ×Np ×Ny1 × . . .×Nyℓ

= {(i, j,k1,k2, . . . ,kℓ), i ∈Nr, j ∈Np, k1 ∈Ny1 , . . . , kℓ ∈Nyℓ}.

A point xm ∈ X̃ , with m = (i, j,k1,k2, . . . ,kℓ) ∈ Ñ is defined by

xm = (ri, p j,y1
k1
,y2

k2
, . . . ,yℓkℓ), with ri ∈ R̃, p j ∈ P̃ , y1

k1
∈ Ỹ1, . . . ,yℓkℓ ∈ Ỹ ℓ.

This discretization converts the given MDP with state space X into a MDP for controlled finite-
state Markov chain with state space X̃ . Note that the discrete-state approximation is a Markov
process. This property is inherited from the continuous-state process X .
Let us denote by Nn = {0, ...,N} the set of time indices for discrete time points t0, . . . , tN . For
(n,xm) ∈Nn× X̃ , we define the approximate value function and decision rule on the grid point
xm = (ri, p j,y1

k1
,y2

k2
, . . . ,yℓkℓ) ∈ X̃ at time n ∈Nn by

V D(n,xm) =V (tn,ri, p j,y1
k1
,y2

k2
, . . . ,yℓkℓ) and un = un(xm) = u(tn,ri, p j,y1

k1
,y2

k2
, . . . ,yℓkℓ),

respectively.
We recall that Xu

n = (Rn,Pn,Ỹ 1
n , . . . ,Ỹ

ℓ
n ) ∈ X is the continuous-state process at discrete time n

and Xu
n+1 = (Rn+1,Pn+1,Ỹ 1

n+1, . . . ,Ỹ
ℓ
n+1) ∈ X is the continuous-state process at discrete time

n+1.
We denote by Xu,D

n = (RD
n ,P

D
n ,Ỹ 1,D

n , . . . ,Ỹ ℓ,D
n ) ∈ X̃ the discrete-state process at discrete time n

and by Xu,D
n+1 = (RD

n+1, PD
n+1,Ỹ

1,D
n+1, . . . ,Ỹ

ℓ,D
n+1)∈ X̃ the discrete-state process at discrete time n+1.

Assume that at time n ∈Nn the state is on the grid point xm1 ∈ X̃ and the action ν ∈ U is taken.
Then, the state moves to a grid point xm2 ∈ X̃ at time n+1 with some probability Pν

xm1 ,xm2
. This

probability is the so-called transition probability which is the probability that the state moves
from xm1 at time n to xm2 at time n+1 under the action ν and it is defined by

Pν
xm1 ,xm2

= Pν(Xu,D
n+1 = xm2 | Xu,D

n = xm1 , un = ν).

These probabilities are required for the above algorithm for the computation of the conditional
expectation of the value function at time n+ 1 given that at time n the state Xu

n = xm1 ∈ X̃ . It
holds

E
[
V D(n+1,Xu,D

n+1) | Xu,D
n = xm1

]
= ∑

xm2∈X̃
Pν(Xu,D

n+1 = xm2 | Xu,D
n = xm1 , un = ν)V D(n+1,xm2)

= ∑
xm2∈X̃

Pν
xm1 ,xm2

V D(n+1,xm2).

The following relations between the discrete-state process and the continuous-state process hold
true

RD
n = ri ⇐⇒ Rn ∈

(
ri −

1
2

hri−1 ,ri +
1
2

hri

]
, i = 1, . . . ,Nr −1
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PD
n = p j ⇐⇒ Pn ∈

(
p j −

1
2

hp j−1 , p j +
1
2

hp j

]
, j = 1, . . . ,Np −1

Ỹ 1,D
n = y1

k1
⇐⇒ Ỹ 1,D

n ∈
(

y1
k1
− 1

2
hy1

k1−1
,y1

k1
+

1
2

hy1
k1

]
, k1 = 1, . . . ,Ny1

...

Ỹ ℓ,D
n = yℓkℓ ⇐⇒ Ỹ ℓ,D

n ∈
(

yℓkℓ −
1
2

hyℓkℓ−1
,yℓkℓ +

1
2

hyℓkℓ

]
, kℓ = 1, . . . ,Nyℓ ,

where, hri , i = 0,1, . . . ,Nr −1, hp j , j = 0,1, . . . ,Np−1, and hyi
ki

, ki = 0, . . . ,Nyi −1, i = 1, . . . , ℓ

are non equidistant step sizes given by (6.20).
The next subsection will be devoted to the computation of the transition probabilities.

6.2.2 Computation of the Transition Probabilities

In this subsection we are going describe how the transition probabilities introduced above can
be computed practically. We recall that given the state Xn and the decision rule un a time n,
the state of the residual demand Rn+1 and the state of the temperature in the storage Pn+1 (for
un ̸= uO) at time n+ 1 are Gaussian random variables and the pair (Rn+1,Pn+1) is bivariate
Gaussian. Further, the reduced order states Ỹ 1

n+1,Ỹ
2
n+1, . . . ,Ỹ

ℓ
n+1 of the GS at time n+ 1 are

degenerated (Dirac). Then, Ỹ 1
n+1,Ỹ

2
n+1, . . . ,Ỹ

ℓ
n+1 are mutually independent and independent of

Rn+1 and Pn+1. Therefore, Ỹ 1
n+1,Ỹ

2
n+1, . . . ,Ỹ

ℓ
n+1 are independent of the pair (Rn+1,Pn+1).

For fixed y1,y2, . . . ,yℓ the computational grid in (r, p)-plane is sketched in Fig. 6.8. For the
computation of the transition probabilities one has to distinguish the inner and boundary points
(including the corners). Let ri ∈ R̃, i ∈Nr and p j ∈ P̃ , j ∈Np. Then, in (r, p)-plane the inner
points are (ri, p j) ∈ R̃× P̃ with i = 1,2, . . . ,Nr −1, and j = 1,2, . . . ,Np −1, and the boundary
points are (ri, p j) ∈ R̃× P̃ with i ∈Nr and j = 0, Np or j ∈Np and i = 0, Nr.

• For inner grid points we denote by

Bri =

(
ri −

1
2

hri−1 ,ri +
1
2

hri

]
=

(
1
2
(ri + ri−1),

1
2
(ri + ri+1)

]
, i = 1,2, . . . ,Nr −1,

Bp j =

(
p j −

1
2

hp j−1 , p j +
1
2

hp j

]
=

(
1
2
(p j + p j−1),

1
2
(p j + p j+1)

]
, j = 1,2, . . . ,Np −1,

the neighborhoods of ri andp j, respectively.

• For the boundary grid points we denote by

Br0 =

(
−∞,r0 +

1
2

hr0

]
=

(
−∞,

1
2
(r0 + r1)

]
,

BrNr
=

(
rNr −

1
2

hrNr−1 , +∞

)
=

(
1
2
(rNr + rNr−1),+∞

)
,

Bp0 =

(
−∞, p0 +

1
2

hp0

]
=

(
−∞,

1
2
(p0 + p1)

]
,
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BpNp
=

(
pNp −

1
2

hpNp−1 , +∞

)
=

(
1
2
(pNp + pNp−1),+∞

)
,

the neighborhoods of r0, rNr , p0, and pNp , respectively.

In this setting the joint probability that at time n+ 1 the pair (RD
n+1,P

D
n+1) is at the grid point

(ri, p j),(i, j) ∈Nr ×Np is set to be the probability that (Rn+1,Pn+1) is located in the neighbor-
hood Bi j = Bri ×Bp j of (ri, p j), i ∈Nr and j ∈Np (including the boundary grid points).

Similarly, for i = 1, . . . , ℓ, we define the neighborhoods of yi
ki
∈ Ỹ i, ki ∈Nyi by

Byi
ki
=

(
yi

ki
− 1

2
hyi

ki−1
,yi

ki
+

1
2

hyi
ki

]
=

(
1
2
(yi

ki
+ yi

ki−1),
1
2
(yi

ki
+ yi

ki+1)

]
, ki = 1, . . . ,Nyi −1

Byi
0 =

(
−∞,yi

0 +
1
2

hyi
0

]
=

(
−∞,

1
2
(yi

0 + yi
1)

]
,

ByNyi =

(
yNyi −

1
2

hNyi , +∞

)
=

(
1
2
(yNyi + yNyi−1),+∞

)
.

In this setting the probability that at time n+1 the discrete reduced-order state Ỹ i,D
n+1 is at the grid

point yi
ki
∈ Ỹ i, ki ∈Nyi , i= 1, . . . , ℓ, is set to be the probability that the continuous reduced-order

state Ỹ i
n+1 is located in the neighborhood Byi

ki
of yi

ki
, ki ∈Nyi , i = 1, . . . , ℓ.

Figure 6.8: Computational grid in (r, p)-plane for fixed y1,y2, . . . ,yℓ

Given two points xm1 = (ri1 , p j1 ,y
1
k1

1
, . . . ,yℓk1

ℓ
) ∈ X̃ and xm2 = (ri2 , p j2 ,y

1
k2

1
, . . . ,yℓk2

ℓ
) ∈ X̃ , the

transition probability that the state moves from xm1 at time n to xm2 at time n+1 under the action
un = ν ̸= uO is computed as follows

Pν
xm1 ,xm2

= Pν(Xu,D
n+1 = xm2 | Xu,D

n = xm1 , un = ν)

= Pν(Xu,D
n+1 = (ri2 , p j2 ,y

1
k2

1
, . . . ,yℓk2

ℓ
) | Xu,D

n = (ri1 , p j1 ,y
1
k1

1
, . . . ,yℓk1

ℓ
), un = ν)
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= Pν((RD
n+1,P

D
n+1) = (ri2 , p j2) | Xu,D

n = (ri1 , p j1 ,y
1
k1

1
, . . . ,yℓk1

ℓ
), un = ν)

×Π
ℓ
i=1P

ν(Ỹ i,D
n+1 = yi

k2
i
| Ỹ i,D

n = yi
k1

i
,un = ν)

= Pν((Rn+1,Pn+1) ∈ Bri2
×Bp j2

| Xu
n = (ri1 , p j1 ,y

1
k1

1
, . . . ,yℓk1

ℓ
), un = ν)

×Π
ℓ
i=1P

ν(Ỹ i
n+1 ∈ Byi

k2
i
| Ỹ i

n = yi
k1

i
,un = ν)

= Pν((Rn+1,Pn+1) ∈ Bi2 j2 | Xu
n = xm1 , un = ν)

×Π
ℓ
i=1P

ν(Ỹ i
n+1 ∈ Byi

k2
i
| Ỹ i

n = yi
k1

i
,un = ν).

For i = 1, . . . , ℓ, the probability that at time n+ 1 the state Ỹ i
n+1 is located in the neighborhood

Byi
k2

i
of yi

k2
i

given that at time n, Y i
n = yi

k1
i

and the action un = ν is taken, is given by

Pν(Ỹ i
n+1 ∈ Byi

k2
i
| Ỹ i

n = yi
k1

i
,un = ν) =

{
1 if Ỹ i

n+1 ∈ Byi
k2

i

0 else

Therefore, the product of the probabilities of the independent state variables is given by

Π
ℓ
i=1P

ν(Ỹ i
n+1 ∈ Byi

k2
i
| Ỹ i

n = yi
k1

i
,un = ν) =

{
1 if Ỹ 1

n+1 ∈ By1
k2

1
, . . . ,Ỹ ℓ

n+1 ∈ Byℓk2
ℓ

0 otherwise.

Next, we want to compute the conditional probability that at time tn+1 the pair (Rn+1,Pn+1) ∈
Bri2

×Bp j2
given that the state process Xu

n = (ri1 , p j1 ,y
1
k1

1
, . . . ,yℓk1

ℓ
), i.e.

Pν((Rn+1,Pn+1) ∈ Bri2
×Bp j2

| Xu
n = (ri1 , p j1 ,y

1
k1

1
, . . . ,yℓk1

ℓ
), un = ν).

For the inner grid points (ri2 , p j2) with i2 = 1, . . . ,Nr −1 and j2 = 1, . . . ,Np −1, we have

Pν((Rn+1,Pn+1) ∈ Bri2
×Bp j2

| Xu
n = (ri1 , p j1 ,y

1
k1

1
, . . . ,yℓk1

ℓ
), un = ν)

= Pν

(
(Rn+1,Pn+1) ∈

(
1
2
(ri2 + ri2−1),

1
2
(ri2 + ri2+1)

]
×
(

1
2
(p j2 + p j2−1),

1
2
(p j2 + p j2+1)

]
| Xu

n = xm1 , un = ν

)
=
∫ 1

2 (ri2+ri2+1)

1
2 (ri2+ri2−1)

ϕR(r)
(
Φ(ζz(r,δp j2+1))−Φ(ζz(r,δp j2−1))

)
dr,

where δp j2−1 =
1
2(p j2 + p j2+1) and δp j2+1 =

1
2(p j2 + p j2+1), ϕR is the probability density func-

tion of a normal random variable Rn+1, ζz(r, p) is a function given by (6.15), and Φ is the
cumulative distribution function of a normal random variable ζz.
For the boundary grid points (ri2 , p0) with i2 = 1,2, . . . ,Nr −1, we have

Pν((Rn+1,Pn+1) ∈ Bri2
×Bp0 | Xu

n = (ri1 , p j1 ,y
1
k1

1
, . . . ,yℓk1

ℓ
), un = ν)

= Pν

(
(Rn+1,Pn+1) ∈

(
1
2
(ri2 + ri2−1),

1
2
(ri2 + ri2+1)

]
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×
(
−∞,

1
2
(p0 + p1)

]
| Xu

n = xm1 , un = ν

)
=
∫ 1

2 (ri2+ri2+1)

1
2 (ri2+ri2−1)

ϕR(r)Φ(ζz(r,δp1))dr,

where δp1 =
1
2(p0 + p1).
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Similar reasoning can be adopted for the computations of the transition probabilities for the
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n+1 ∈ Byℓk2
ℓ

0 otherwise.

=

{
Φ
(1

2(ri2 + ri2−1)
)
−Φ

(1
2(ri2 + ri2+1)

)
if Pn+1 ∈ Bp j2

, Ỹ 1
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| Ỹ i

n = yi
k1

i
,un = ν)

=

{
Φ
(1

2(r0 + r1
)

if Pn+1 ∈ Bp j2
, Ỹ 1
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n+1 ∈ Byℓk2
ℓ

0 otherwise.

In the next section we present the numerical results of the stochastic optimal control problem.
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6.3 Numerical Results
This section is devoted to the numerical experiments of the optimal control problem. The in-
tentions of the numerical experiments are to first explore the capabilities but also the limits of
the solution of MDP described above by backward recursion. We consider the state space of
small dimension but already meaningful for practical purposes and the curse of dimensionality
is still under control. Second, to gain inside to properties of the value function and the optimal
decision rules. Such properties are helpful for approximate solutions based on ansatz functions
using least squares Monte Carlo or approximate dynamic programming.

The control problem is obtained by replacing the state Q of the GS by a low-dimensional
state Ỹ of the reduced order system. This reduced order state results from applying model order
reduction (presented in Chapter 4) to a system of ODEs (3.10) resulting from semi-discretization
of the heat equation (2.6) which models the spatio-temporal temperature distribution of a GS
presented in Chapter 7.
For describing the input-output behavior of that storage we use the aggregated characteristics
of the spatial temperature distribution introduced in Sec. 2.3.3. Further we work with the ap-
proximation of (3.10) by an analogous system as explained in Sec. 3.4 and the output matrix is
C = (CM,CF)⊤. This choice is motivated by the fact that the control constraint related to the
reduced-order state Ỹ is restricted to the average temperature in the storage medium of the GS
but the average temperature in the fluid is needed for the analogous model. Recall, in the analo-
gous model presented in Sec 3.4 it is assumed that the pump is always on and during the waiting
periods the inlet temperature QI is set to be the average temperature QF =CFỸ in the PHX fluid.
With this choice of the output matrix, the numerical results presented in Subsec. 4.3.2 show that
with 3 states, the reduced-order system can capture almost 90% of the output energy of the
analogous high-dimensional system. This motivates us to choose for all numerical experiments
the dimension of the reduced-order state ℓ = 3. Thus, the discretized state space is then given
by X̃ = R̃× P̃ × Ỹ1 × Ỹ2 × Ỹ3.

Numerical experiments are based on the backward recursion in Algorithm 2 and are per-
formed for the cases of one PHX with diameter 2 cm and take into account several waiting
periods. Numerical results presented in Chapter 4 showed that the model with one PHX can
capture well the output energy of the high-dimensional system with only 3 states. The numer-
ical experiments are based on the time and state discretization of the resulting optimal control
problem presented in Sec. 6. The simulations aim to determine the value function and the opti-
mal charging and discharging decisions of the storage’s manager at any discrete time points and
at any grid point in the discretized state-space X̃ . For these experiments we also compute and
plot some optimally controlled paths of the temperature in the internal and GS.

After explaining the experimental settings in Subsec. 6.3.1 we start in Subsec. 6.3.2 with
the experiments where we compute and plot the value function and the optimal strategy a time
t = 0,T − 2,T − 1,T , and study the sensitivity analysis with respect to the individual state
variable. We end this chapter by showing some optimally controlled paths of the temperatures
in both storages, presented in Subsec. 6.3.3.

6.3.1 Experimental Setting

For the numerical results presented below we use for the GS the discretization parameters given
in Table 3.2 and for the solution of the discrete-time optimal control problem via backward
recursion we use the parameters given in Table 6.1. Thermal energy is stored by raising the
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temperature of the storage medium. The fluid is assumed to be water while the storage medium
is dry soil. During charging a pump moves the fluid with constant velocity v0 arriving with
constant temperature QI(t) = QI

C = 40 °C at the inlet. This temperature is higher than in the
vicinity of the PHXs, thus induces a heat flux into the storage medium. During discharging
the inlet temperature is QI(t) = QI

D = 5 °C which corresponds to the temperature of the fluid
returning from the heat pump and leading to a cooling of the GS. At the outlet we impose a
vanishing diffusive heat flux, i.e. during pumping there is only a convective heat flux. We also
consider waiting periods where the pump should be off but in that analogous model we consider
here the pump is always on and we choose the inlet temperature of the PHX to be the average
temperature of the pipe (QF = CFỸ ). We assume a fixed and constant fuel price or F = 1.6
EUR/kWh and we assume that when the fuel-fired boiler is on, it produces kF = 92.97 kW of
energy in one hour. This corresponds to a fuel cost of ψF = kFF = 150 EUR/h. This raises the
temperature in the IS by 40 °C in one hour. When we discharge the IS to charge the GS we use
the classical pump which costs ψD = 5 EUR/h. However, to charge the IS by discharging the
GS we use the heat pump with the inlet temperature QO(t) =COỸ (t) to raise the temperature to
Pin = 35 °C. This operation costs ψC(t,x) = 3.157(Pin −COy)+5 EUR/h. We also consider
the terminal cost including the penalty if the internal and the GSs are not properly filled at the
terminal time T = 72 h given for X(T ) = x = (r, p,y), y = (y1,y2,y3) by

Φ(x) = 20(qpen −CMy)++30(ppen − p)+ EUR.

We choose the finite action set U = {uO,uD,uW ,uC,uF}= {−2,−1,0,+1,+2}, where uF =+2
stands for charging the IS by firing fuel at maximum rate (classical pumps and heat pump
off), uC = +1 for charging the IS by discharging the GS at maximum rate (classical pump
and fuel-fired boiler off), uW = 0 for wait or do nothing (pumps and fuel-fired boiler off),
uD = −1 for charging the GS by discharging the IS at maximum rate (heat pump and fuel-
fired boiler off) and uO = −2 when none of the above control can keep the temperature in
the IS below the maximum. We assume that charging the IS by discharging the GS is such
that within one hour the temperature in the IS increases by 20 °C and charging the GS by
discharging the IS is such that in one hour the temperature in the IS decreases by 20 °C.
We choose the minimum and maximum temperature in the IS p = 30 °C and p = 90 °C,
respectively. We choose the minimum and maximum temperature in the GS q = 10 °C and
q = 30 °C, respectively. We choose using the 3-sigma rule the minimum and the maximum
residual demand r = −16.7× 107 J/h = −46.38 kW and r = 13.4× 107 J/h = 37.22 kW,
respectively. For the reduced-order system we choose ℓ = 3 and choose the bounds [y1,y1] =
[4500,13750], [y2,y2] = [200,800], and [y3,y3] = [4084.5,12255] for the reduced-order states
Ỹ 1, Ỹ 2 and Ỹ 3, respectively. We assume that the mass of the IS is mP = 2000 kg. Then we have
p− p = 60 K and the maximum amount of energy that can be stored in the IS is mPcF

P(p− p) =
2000×4182×60 = 501.84 MJ ≃ 139.4 kWh. We also assume the volume of the GS without
the pipes is V Q = 100 m3 and its mass is mQ = ρMV Q = 2000 × 100 = 2 × 105 kg. Then
we have q− q = 20 K and the maximum amount of energy that can be stored in the GS is
mQCM(q−q) = 200000×800×20 = 3200 MJ ≃ 888.88 kWh≃ 0.89 MWh. For simplicity,
in all figures write the value of the residual demand given in joule per hour (J/h) without the
factor 107 and we label the axis of the residual demand without this factor but we keep in mind
that this factor multiplies all values of the residual demand in this section. We choose Pout = p.

132



6.3. NUMERICAL RESULTS

Parameters Values Units
Discretization

dimension of the reduced order state Ỹ ℓ 3
time horizon T 72 h
time step ∆N 1 h
number of grid points in r- direction Nr 8
number of grid points in p- direction Np 11
number of grid points in y1- direction Ny1 5
number of grid points in y2- direction Ny2 5
number of grid points in y3- direction Ny3 11

Material
diffusion coefficient of R σR 13.95 kW/

√
h

drift coefficient of R µR −4.64 kW
mean reversion speed of R βR 0.5 1/h
total surface area of the IS Ah 9.096 m2

overall heat transfer coefficient κh 12 W/m2K
specific heat capacity of the IS medium cF

P 4184 J/kgK
specific heat capacity of the GS medium cM

P 800 J/kgK
mass of the IS mP 2000 kg
mass of the GS mQ 200000 kg
rate of heat loss to the environment γ = κhAh

mPcF
P

0.0118 1/h

penalty threshold temperature of the IS at time T Ppen 60 °C
penalty threshold temperature of the GS at time T qpen 20 °C
ambient temperature around the IS Pamb 20 °C
maximum temperature in the GS q 30 °C
minimum temperature in the GS q 10 °C
maximum temperature in the IS p 90 °C
minimum temperature in the IS p 30 °C
rate of energy produced by firing fuel kF 92.97 kW
increase in the temperature in the IS by firing fuel κF 40 K/h

Constants
energy conversion rate κP = 1

mPcF
P

0.4302 K/kWh

rate of energy produced by discharging the GS kC 1.67 kW/K
rate of energy loss by discharging the IS kD 1.38 kW/K
related to the inflow of energy to the IS κC = kCκP 0.7184 1/h
outflow of energy to the GS κD = kDκP 0.5937 1/h
conversion factor ζ P

penmPcF
P 30 EUR/K

conversion factor ζ
Q
penmQcM

p 20 EUR/K
efficiency of the heat pump ηQ 95%
tolerance ε 5%

Table 6.1: Constants and Material parameters for MDP
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6.3.2 Optimal Strategy and Value Function
Terminal value function

The left panel of Fig. 6.9 gives the value function at terminal time T = 72 for an empty and full
GS, and the right panel of shows the terminal value function for a GS at the penalty thresh-
old (QM ≥ qpen). This figure shows that when the average temperature in the IS is above

Figure 6.9: Terminal value function. Left: empty (upper graph) and full (lower graph) GS.
Right: GS above the penalty threshold level (QM ≥ qpen = 20 °C).

the threshold (P(T ) ≥ ppen = 60 °C), the terminal value function is constant (positive for
QM =CMy < qpen and zero for QM ≥ qpen) and when the average temperature in the IS is below
the threshold (P(T )<= ppen) the terminal value function increases as the average temperature
in the IS moves away from the threshold ppen.

Value function and optimal strategy at time t = T −1 = 71 h

In this this paragraph we study the behaviour of the value function and the optimal strategy with
respect to individual state variables. We begin with the case of an empty GS.

Geothermal storage is empty. Fig. 6.10 gives the value function and optimal strategy at time
t = 71 h for an empty GS (CMy = q = 10 °C) as a function of (r, p). Fig. 6.11 shows a compar-
ison of value functions (left) and optimal strategies (right) at time t = 71 h as a function of p for
three fixed values of the residual demand. Fig. 6.12 plots a comparison of value functions (left)
and optimal strategies (right) as a function of the residual demand r for three fixed values of the
average temperature in the IS. The left panel of Fig. 6.11 shows that the value function decreases
as the average temperature in the IS increases whereas the left panel of Fig. 6.12 shows that the
value function increases as the residual demand increases. The right panels of Fig. 6.11 shows
that when the IS and the GS are empty one hour before the terminal time, we must fire fuel
(even if there is overproduction) to increase the temperature in order to avoid high penalty at
the terminal time. However, if the temperature in the IS is above certain level (p > 40 °C), we
are required to fire fuel only in case of unsatisfied demand and when p > 70 °C it is sufficient to
wait and only discharge the IS in case of overproduction. Similarly, the right panel of Fig. 6.12
shows that we must fire fuel as long the IS remain empty (including the case of overproduction)
and when the IS is full we must wait and only discharge it when there is overproduction. This
justifies the large gap in the value functions (see the left panel of Fig. 6.12) when the state of
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Figure 6.10: Value function (left) and optimal strategy (right) at time t = 71 h as a function of (r, p) for an empty
GS (QM = q = 10 °C).

Figure 6.11: Comparison of value functions (left) and optimal strategies (right) at time t = 71 h as a function of
the average temperature in the IS p for different values of the residual demand and an empty GS.
Blue dotted line for strong overproduction (r = r = −16.7), green dashed line for very small unsatisfied demand
(r = 0.5) and red dotted line for strong unsatisfied demand (r = r = 13.4).

Figure 6.12: Comparison of value functions (left) and optimal strategies (right) at time t = 71 h as a function of
the residual demand r for different values of the temperature in the IS and an empty GS.
Blue dotted line for IS full (p = p = 90 °C), green dashed line for IS at the penalty threshold (p = ppen = 60 °C),
and red dotted line for IS empty (p = p = 30 °C).

the IS changes from p = 30 °C to p = 90 °C. The right panel shows that when the temperature
in the IS is at the penalty threshold level (p = ppen = 60 °C), it is optimal to wait and only fire
fuel in case of strong unsatisfied demand. This justifies the increase in the value function as r
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approaches the maximum value r.

Geothermal storage at intermediate filling level. Fig. 6.13 shows the value function and opti-
mal strategy at time t = 71 h when the GS is at the penalty threshold level (QM = ppen = 20 °C)
as a function of (r, p). The right panel of this figure shows that when the average temperature in
the IS p is above the penalty threshold level (p > ppen = 60 °C) it is optimal to wait and only
discharge the IS to charge the GS if the latter is full and there is strong overproduction. However,
when the average temperature in the IS p is below the penalty threshold level (p< ppen = 60 °C)
we have to discharge the GS to charge the IS and only fire fuel when the IS is empty and there
is strong unsatisfied demand. This justifies the fact that, when there is overproduction, the
value function increases as the average temperature in the IS P approaches the minimum level
(p = p = 30 °C) and increases slowly as p approaches the maximum level (p = p = 90 °C).
Further, when there is unsatisfied demand the value function strongly increases as the p de-
creases. Similarly, the value function increases strongly as the residual demand increases when
the IS is empty. It increases slowly as the residual demand decreases when the IS is full.

Figure 6.13: Value function (left) and optimal strategy (right) at time t = 71 h as a function of (r, p) for GS at
the penalty threshold level (QM = qpen = 20 °C).

Fig. 6.14 shows comparison of the value function and optimal strategy at time t = 71 h as a
function the average temperature of the GS QM for different values of the temperature in the IS.
Further, in Fig. 6.14, we consider two cases: strong overproduction in the top panels and strong
unsatisfied demand in the bottom panels. Note that in the transformed coordinates system the
average temperature in the GS is proportional to the last reduced order state of the GS y3 and
the value function is varies slowly with respect to the first two coordinates. Therefore, we are
going to study the value function with respect to the last reduced order states y3 or with respect
to the average temperature in the GS.
The left panels of Fig. 6.14 show that at time t = 71 h, the value function decreases as the
average temperature in the GS increases and it becomes constant when the average temperature
in the GS exceeds the penalty threshold level (QM = qpen = 20 °C). The right panels of Fig. 6.14
show that when the IS is full it is optimal to wait when there is strong unsatisfied demand
(bottom panel). In case of strong overproduction we charge the GS by discharging the IS (as
long as the geothermal is not full). Contrary, when the IS is empty we must stop firing fuel
as soon as the GS in no longer empty and there is strong overproduction but in case of strong
unsatisfied demand we must fire fuel as long as the IS is empty, no matter the state of the GS.
This justifies the large gap in the value function when the state of the IS changes from p= 30 °C
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Figure 6.14: Comparison of value function (left) and optimal strategy (right) at time t = 71 h as a function of the
average temperature in the GS QM for a strong overproduction (top panels) and strong unsatisfied demand (bottom
panels) and different values of the temperature in the IS.
Blue dotted line for IS full (p = p = 90 °C), green dashed line for IS at the penalty threshold (p = ppen = 60 °C),
and red dotted line for IS empty (p = p = 30 °C).

to p = 90 °C, see the dotted red and blue lines in the left panel of Fig. 6.14. The right panel
shows that when the temperature in the IS is at the penalty threshold level (p = ppen = 60 °C),
it is optimal to wait and only fire fuel if there is strong unsatisfied demand and the GS is empty.
This justifies the strong decay in the value function as QM approaches the minimum value
q = 10 °C.

Figure 6.15: Value function (left) and optimal strategy (right) at time t = 71 h as a function of (r, p) for a full
GS (QM = q = 30 °C).

Geothermal storage is full. Fig. 6.15 depicts the value function and optimal strategy at time
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Figure 6.16: Comparison of value function (left) and optimal strategy (right) at time t = 71 h as a function of p
for different values of the residual demand and a full GS (QM = q = 30 °C).
Blue dotted line for strong overproduction (r = r = −16.7), green dashed line for very small unsatisfied demand
(r = 0.5) and red dotted line for strong unsatisfied demand (r = r = 13.4).

Figure 6.17: Comparison of value functions (left) and optimal strategies (right) at time t = 71 h as a function of
the residual demand r for different values of the average temperature in the IS and a full GS (QM = q = 30 °C).
Blue dotted line for IS full (p = p = 90 °C), green dashed line for IS at the penalty threshold (p = ppen = 60 °C),
and red dotted line for IS empty (p = p = 30 °C).

t = 71 h for a full GS (QM = q = 30 °C) as a function of (r, p). Fig. 6.16 plots a comparison
of value functions (left) and optimal strategies (right) at time t = 71 h as a function of p for
three fixed values of the residual demand and Fig. 6.17 shows a comparison of value functions
(left) and optimal strategies (right) at time t = 71 h as a function of the residual demand r
for three fixed values of the average temperature in the IS. The left panel of Fig. 6.16 shows
that the value function decreases as the average temperature in the IS increases and converges
to zero as p approaches p. The left panels of Fig. 6.15 and Fig. 6.17 show that the value
function is constant zero when the temperature in the IS exceeds the penalty threshold level
(p > 60 °C) and increases as the residual demand increases and the temperature in the IS is
below the penalty threshold level (p ≤ 60 °C). The right panel of Fig. 6.16 shows that when
the GS is full one hour before the terminal time, we only fire fuel or discharge the GS if the
temperature in the IS is below the penalty threshold level (p ≤ 60 °C) and if p > 60 °C we
wait when there is a small unsatisfied demand or apply spill-over when there is overproduction.
Similarly, the right panels of Fig. 6.15 and Fig. 6.17 show that when the temperature in the IS is
above the penalty threshold level (p > 60 °C) we have to wait or apply spill-over (this justifies
the fact that the value function is zero) and only discharge the GS when p = 60 °C and we have
unsatisfied demand (this justifies the small increase in the value function when p = 60 °C). The
latter shows that we must fire fuel as long the IS is empty and there is unsatisfied demand, this
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justifies the strong increase in the value function as when the the IS is empty.

Value function and optimal strategy at time t = T −2 = 70 h

In this paragraph we study the behaviour of the value function and the optimal strategy 2 hours
before the terminal time as the average temperature in the GS increases from q = 10 °C to
q = 30 °C.

Figure 6.18: Value function (left) and optimal strategy (right) at time t = 70 h as a function of (r, p) for an empty
GS (QM = q = 10 °C).

Figure 6.19: Value function (left) and optimal strategy (right) at time t = 70 h as a function of (r, p) for a GS at
the penalty threshold level (QM = qpen = 20 °C).

In particular, we consider three fixed values of the average temperature in the GS. Fig. 6.18,6.19,
and 6.20 show the value function (left) and optimal strategy (right) at time t = 70 h for an empty
GS (QM = q = 10 °C), the storage at the penalty threshold level (QM = qpen = 20 °C) and
a full storage (QM = q = 30 °C) as a function of (r, p), respectively. The left panels of these
figures show that the value function decreases as the average temperature in the internal or GS
increases and it increases as the residual demand increases. The right panels of these figures
show that we only fire fuel if the GS is empty and there is strong unsatisfied demand but we
stop firing fuel as soon as the GS is no longer empty.
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Figure 6.20: Value function (left) and optimal strategy (right) at time t = 70 h as a function of (r, p) for a full
GS (Qm = q = 30 °C).

Value function and optimal strategy at initial time t = 0

In this paragraph we study the behaviour of the value function and the optimal charging or
discharging decision of the storage at the initial time with respect to individual state variables.
Further, we compare the results with t = 70 h and t = 71 h. As in the case of times t = 71 h and
t = 70 h we begin with case of an empty GS (QM = q = 10 °C).

Geothermal storage is empty. Fig. 6.21 shows the value function and optimal strategy at the
initial time t = 0 h for an empty GS as a function of (r, p). Fig. 6.22 shows a comparison of
value functions and optimal strategies at time t = 0 h as a function of p for three fixed values of
the residual demand. Fig. 6.23 shows a comparison of value functions and optimal strategies at
time t = 0 h as a function of the residual demand r for three fixed values of the temperature in
the IS. The left panel of Fig. 6.22 shows that the value functions strongly decrease as the average
temperature in the IS increases and there is unsatisfied demand (green dashed and red dotted
lines). Further, we observe a slow increase in the value function when there is overproduction
and the average temperature approaches the maximum (blue dotted line). This observation is

Figure 6.21: Value function (left) and optimal strategy (right) at the initial time t = 0 h as a function of (r, p) for
an empty GS (QM = q = 10 °C).

due to the fact that we fire fuel when there is a strong unsatisfied demand and the IS is empty,
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Figure 6.22: Comparison of value functions (left) and optimal strategies (right) at time t = 0 h as a function of
p for three fixed values of the residual demand and an empty GS (QM = q = 10 °C).
Blue dotted line for strong overproduction (r = r = −16.7), green dashed line for very small unsatisfied demand
(r = 0.5) and red dotted line for strong unsatisfied demand (r = r = 13.4).

Figure 6.23: Comparison of value functions (left) and optimal strategies (right) at time t = 0 h as a function of
the residual demand r for three fixed values of the average temperature in the IS and an empty GS.
Blue dotted line for IS full (p = p = 90 °C), green dashed line for IS at the penalty threshold (p = ppen = 60 °C),
and red dotted line for IS empty (p = p = 30 °C).

and we discharge the internal to charge the GS when there is overproduction and the IS is full,
see the right panel of Fig. 6.22.

The left panel of Fig. 6.23 shows that when the residual demand increases, the value func-
tion strongly increases if the IS is empty and slowly increases when the average temperature
in the IS is at the penalty threshold level (p = ppen = 60 °C). This is due the fact that we
have to fire fuel when the IS is empty and there is unsatisfied demand, and when the average
temperature in the IS is at the penalty threshold level (p = ppen = 60 °C) we only have to wait,
see the green dashed and dotted red lines in right panel of Fig. 6.23. However, the right panel
of Fig. 6.23 shows that when the IS is full, we discharge the IS to charge the GS if there is
overproduction and we wait when there is unsatisfied demand. This justifies the slow decrease
of the value function when there is overproduction and slow increase in the value function when
there is unsatisfied demand, see the blue dotted line in the left panel of Fig. 6.23. We observe
that the value function is much larger for t = 0 h than t = 70 h or t = 71 h, even for p > 60 °C.
This can be justified by the fact that from t = 70 h there are two periods and from t = 71 h there
is only one period ahead to the terminal time but from t = 0 h there are many periods ahead
until the terminal time T .

Geothermal storage at intermediate filling level. Fig. 6.24 shows the value function and
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optimal strategy at time t = 0 h when GS is at the penalty threshold level (QM = ppen = 20 °C)
as a function of (r, p). The result depicted in the right panel of this figure shows that when the
IS is full and there is strong overproduction, we have to discharge the IS to charge the GS and
when there is unsatisfied demand we only have to wait. However, when the IS is empty we
have to wait and only charge it by discharging the GS when there is strong unsatisfied demand.
This justifies the fact that, when there is overproduction, value function remains constant as
long as the average temperature in the IS p is below the penalty threshold level, p < ppen = 60
and only increases slowly as p approaches the maximum level, p = p = 90 °C. Further, when
there is unsatisfied demand it remains constant as long as p is above the penalty threshold level,
p > ppen = 60 °C. It only increases slowly as p approaches the minimum level, p = p =
30 °C. Similarly, the value function increases as the residual demand increases, when the IS is
empty and decreases as the residual demand increases, when the IS is full, and remains constant
otherwise.

Figure 6.24: Value function (left) and optimal strategy (right) at the initial time t = 0 h as a function of (r, p) for
an average temperature in the GS at the threshold (QM = qpen = 20 °C).

Fig. 6.25 shows a comparison of the value functions (left) and the optimal strategies (right)
at time t = 0 h as a function the average temperature in the GS QM for three fixed values of the
temperature in the IS. As in Figure 6.14, here we consider the case of strong overproduction
in the top panels and strong unsatisfied demand in the bottom panels. We recall that the value
function is almost constant with respect to the first two reduced-order states. Therefore, we
want to study the value function with respect to the average temperature in the GS which is
proportional to the last reduced-order state y3. The left panels of Fig. 6.14 shows that, the value
function decreases as the average temperature in the GS increases. The right panels of Fig. 6.25
shows that when the IS is full we have to wait if there is strong unsatisfied demand (blue dotted
line in the bottom right panel). In case of strong overproduction we discharge the IS as long as
the GS is not full, see the blue dotted line in the top right panel. However, this figure shows
that when the IS is empty and there strong overproduction it is optimal to wait but when there
is strong unsatisfied demand we discharge the GS as long as the latter is not empty and we only
fire fuel when it is empty. The right panel of Fig. 6.25 shows that when the temperature in the
IS is at the penalty threshold level (p = ppen = 60 °C), it is optimal to wait independent of the
state of the residual demand.

Geothermal storage is full. Fig. 6.26 shows the value function and optimal strategy at time
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Figure 6.25: Comparison of value function (left) and optimal strategy (right) at time t = 0 h as a function average
temperature of the GS QM for a strong overproduction (top panel) and a strong unsatisfied demand (bottom panel)
and for three fixed values of the average temperature in the IS.
Blue dotted line for IS full (p = p = 90 °C), green dashed line for IS at the penalty threshold (p = ppen = 60 °C),
and red dotted line for IS empty (p = p = 30 °C).

Figure 6.26: Value function (left) and optimal strategy (right) at the initial time t = 0 h as a function of (r, p) for
a full GS (QM = q = 30 °C).

t = 0 h for a full GS (QM = q = 30 °C) as a function of (r, p). Fig. 6.27 shows a comparison
of value functions and optimal strategies at time t = 0 h as a function of p for three different
values of the residual demand. Fig. 6.28 shows a comparison of value functions and optimal
strategies at time t = 0 h as a function of the residual demand r for three fixed values of the
average temperature in the IS. The right panel of Fig. 6.27 shows that when there is a small
unsatisfied demand (green dashed line) or strong overproduction (blue dotted line), it is optimal
to only wait or apply spill-over if the IS is full whereas when there strong unsatisfied demand,
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we have to discharge the GS to charge the IS if the latter is empty and only wait as soon as it
is no longer empty. This results to a strong decay (red dotted line in the left panel) and a slow
decay (blue dotted line in the left panel) in the value function as the average temperature in the
IS increases.

Similarly, the right panels of Fig. 6.26 and Fig. 6.28 show that when the average temperature
in the IS is above the penalty threshold level (p > 60 °C) it is optimal to wait or apply spill-
over whereas when the average temperature in the IS is below the penalty threshold level (p ≤
60 °C), it is optimal to wait and only discharge the GS to charge the IS in case of strong
unsatisfied demand. This results to a strong increase in (red dotted line in the left panel) and
a slow increase (blue dotted line in the left panel) in the value function as the residual demand
increases.

Figure 6.27: Comparison of value functions (left) and optimal strategies (right) at time t = 0 h as a function of
p for three different values of the residual demand and a full GS (QM = q = 30 °C).
Blue dotted line for strong overproduction (r = r = −16.7), green dashed line for very small unsatisfied demand
(r = 0.5) and red dotted line for strong unsatisfied demand (r = r = 13.4).

Figure 6.28: Comparison of value functions (left) and optimal strategies (right) at time t = 0 h as a function of
the residual demand r for three fixed values of the average temperature in the IS and a full GS (QM = q = 30 °C).
Blue dotted line for IS full (p = p = 90 °C), green dashed line for IS at the penalty threshold (p = ppen = 60 °C),
and red dotted line for IS empty (p = p = 30 °C).

6.3.3 Optimal Paths of the State Process
In this subsection we present optimal paths of individual state variables. We aggregate the states
of the reduced-order system to form the average temperature of the GS. In all figures the red,
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blue, and black solid lines represent the average temperature in the IS and GS, and the residual
demand, respectively. The values of the average temperature in the IS and GS are depicted on
the left red y-axis and right blue y-axis, respectively. In all figures the black dotted lines (at
30 and 90) represent the minimum and the maximum values of the average temperature of the
internal and GSs. The red marker at 60 (left axis ) and the blue marker at 20 (right axis) are
penalty level indicators for internal and GS, respectively. We also add the black solid line to
show the residual demand relative to the zero level shown as a black dashed line. When the
residual demand is above zero there is unsatisfied demand and when it is below there is over-
production. In the background of these figures the red color represents the action of charging
the IS by firing fuel at the maximum rate, orange represents charging the IS by discharging the
GS at the maximum rate, green represents waiting periods (pumps and fuel fired-boiler off),
light blue represents charging the GS by discharging the IS at the maximum rate and dark blue
indicates over-spilling. We consider 5 cases in which we vary the initial temperatures in the IS
and GS at time t = 0.

Start with full IS and empty GS. Fig. 6.29 shows optimal paths of the average temperatures in
the IS and GS together with the residual demand when we start with a full IS and an empty GS.
We observe that when the IS is full and the GS empty, it is more likely that we discharge the IS
to charge the GS when there is overproduction. When the IS is empty and there is unsatisfied
demand we charge it by discharging the GS and do not fire fuel as long as the GS is not empty.
When t approaches the terminal time we have to do everything to avoid high penalty a the
terminal time.

Figure 6.29: Optimal paths of the average temperature in the IS (red solid line), GS (blue solid line) for a full
initial IS (P(0) = p = 90 °C) and an empty initial GS (QM(0) = q = 10 °C), path of the residual demand (black
solid line).

Start with empty IS and full GS. Fig. 6.30 shows the results when we start with an empty IS
and a full GS. We observe that the states are controlled such that the state constraints are not
violated and to avoid penalty at the terminal time. In this case it is more likely that we discharge
the GS to charge the IS and never fire fuel to save cost. This also shows that the residual demand
ans the average temperature in the IS are negatively correlated.
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Figure 6.30: Optimal paths of the average temperature in the IS (red solid line), GS (blue solid line) for an empty
initial IS (P(0) = p = 30 °C) and a full initial GS (QM(0) = q = 30 °C), path of the residual demand (black solid
line).

Start with empty IS and empty GS. Fig. 6.31 shows the results when we start with both IS
and GS empty. As in the Figures 6.30 and 6.29, the states are controlled such that the state
constraints are not violated and to avoid high penalty at the terminal time. When both storages
are empty and there is unsatisfied demand we have to fire fuel. When the IS is full and and
there is overproduction we discharge the IS to charge the GS but we make sure that the average
temperature in the IS is above the penalty threshold 60 °C at the terminal time.

Figure 6.31: Optimal paths of the average temperature in the IS (red solid line), GS (blue solid line) for an empty
initial IS (P(0) = p = 30 °C) and an empty initial GS (QM(0) = q = 10 °C), path of the residual demand (black
solid line).

Start with full IS and full GS. Fig. 6.32 shows the results when we start with both IS and GS
full, and a small residual demand. As in the Figures 6.29, 6.30, and 6.31 the states are controlled
such that the state constraints are not violated and to avoid penalty at the terminal time. When
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both storages are full and there is overproduction (R < 0) we have to apply over-spilling and
when the IS is empty we charge it by discharging the GS an never fire fuel to save cost.

we have to

Figure 6.32: Optimal paths of the average temperature in the IS (red solid line), GS (blue solid line) for a full
initial IS (P(0) = p = 90 °C) and a full initial GS (QM(0) = q = 30 °C), path of the residual demand (black solid
line).

Start with IS and GS at penalty thresholds. Fig. 6.33 shows the results when we start with

Figure 6.33: Optimal paths of the average temperature in the IS (red solid line), GS (blue solid line) for initial IS
at the penalty threshold (P(0) = ppen = 60 °C) and initial GS at the penalty threshold (QM(0) = qpen = 20 °C),
path of the residual demand (black solid line).

initial IS and initial GS at the penalty thresholds, and a small residual demand. The states must
be controlled such that the state constraints are not violated and to avoid high penalty at the
terminal time. We observe in this case that, it is more likely to wait or do nothing but when
the IS is full we discharge it to charge the GS. When the IS is empty we charge it only by
discharging the GS and never fire fuel to save cost.
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CHAPTER 7

Approximate Solution of the Markov Decision Processes

Introduction
This chapter aims to approximate the value function of the discrete-time optimal control prob-
lem and to derive the approximate optimal control using numerical methods. We recall the value
function of the MPD satisfies the Bellman (6.19) which contains the conditional expectation
En,x

[
V (n+ 1,Xu

n+1)
]
. We have mentioned in Chapter 5 that the challenge of many numerical

methods such as backward recursion method is that it becomes computationally intractable if
the dimension of the state space is high or if no closed-form expressions of the conditional ex-
pectation are available. This leads to the so-called curse of dimensionality and the goal of this
chapter is to introduce some methods to overcome this curse of dimensionality. Note that in the
optimal control problem for a residential heating system considered in this thesis the dimension
of the state process increases when the dimension of the reduced-order system of the geothermal
ℓ increases. When the dimension of the reduced-order system ℓ is high, the control problem can-
not be solved using direct methods such as backward recursion. In this case, we have to resort
to an approximate solution using some numerical methods such as least-squares Monte Carlo
[10, 52, 71, 81], approximate dynamic programming [2, 88, 101], Q-learning, neural network,
and deep learning methods. In this chapter we are going to briefly describe the first two methods
and show that they can be used to efficiently approximate the value function. This is based on a
large number of simulated paths, where conditional expectations are replaced with least-squares
regression approximations. The least-squares Monte Carlo techniques help to generate samples
from the distribution of the random perturbations E1, . . . ,EN , and to approximate the expecta-
tion En,x

[
V (n+1,Xu

n+1)
]

under this distribution. On the other hand, the approximate dynamic
programming uses parametric and non-parametric approaches to approximate the so-called post
decision value function which solves an equivalent dynamic programming equation. The idea
of the approximate dynamics programming is to first split the transition operator (6.16) into
two parts called post- and pre-decision operators, then derive the equivalent Bellman equation
called post-decision dynamic programming equation and solve it using iterative methods. The
details in the theory and the application of approximate dynamics programming can be found
in Powell [88].

The rest of this chapter is organized as follows. In Sec. 7.1we briefly introduce the Least
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Square Monte Carlo methods for solving the Bellman equation and in Sec. 7.2 we introduce the
concepts of post-decision state, the post-decision value function, and present some methods for
solving the associated post-decision dynamic programming equation.

7.1 Least-Squares Monte Carlo Methods

Solving the dynamic programming equation (6.19) using backward recursion requires the com-
putation of the value function and the optimal decision rule for all points (n,x) in the time-state
space {0,1, . . . ,N}×X . This makes the computational time very large and the computation
becomes impossible when the dimension gets higher. Now, assume that for a given optimal
control problem, we already know some properties of the value function and of the optimal de-
cision rule. For example, for the stochastic optimal control problem considered in this thesis we
know based on the numerical results presented in Sec. 6.3 some properties of the value function
and the decision rule. We know that the value function decreases as the last reduced-order state
of the GS increases and it is almost constant with respect to the first ℓ−1 reduced-order states
of the GS. Further, it increases as the residual demand increases and decreases as the average
temperature in the internal storage increases. In addition, the properties and the form of the
value function at the terminal time N is known. Therefore, it is possible to guess a reasonable
regression ansatz for the value function of the form

V (n,x)≃V (n,x) =
L

∑
i=0

Θi(n)Γi(x), (7.1)

where Θi(n) are unknown coefficients and Γi(x) are known ansatz functions which can be some
suitable polynomials. The regression ansatz function (7.1) can be considered as an abstract
Fourier series or Galerkin ansatz for the value function V (n,x),x ∈ X . We may also consider
the optimal decision to be given in such a form, i.e.,

ũ⋆(n,x) =
L

∑
i=0

Θi(n)Γi(x),

where Θi(n) are unknown coefficients and Γi(x) are known ansatz functions.
For example, for x ∈ X ⊂ R, the regression ansatz can be chosen as quadratic polynomial

V (n,x) = Θ̃0(n)+ Θ̃1(n)x+ Θ̃2(n)x2,

where the unknown coefficients Θ̃0(n),Θ̃1(n),Θ̃2(n) ∈ R, or as transcendental functions of the
form

V (n,x) = Θ0(n)+Θ1(n)cosh(x), or V (n,x) = Θ2(n)+Θ3(n)arctan(x),

with unknown coefficients Θ0(n),Θ1(n),Θ2(n),Θ3(n) ∈ R.
For the multidimensional case, x = (x1,x2, . . . ,xd) ∈ Rd,d ∈ N, the ansatz function can be cho-
sen as a multivariate polynomial of the form

V (n,x) = Θ0(n)+Θ1(n)⊤x+ x⊤Θ2(n)x, (7.2)
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where, Θ0(n) ∈ R, Θ1(n) ∈ Rd , and Θ2(n) ∈ Rd×d . Based on the dimension of the state pro-
cess x = (r, f , p,Ỹ 1,Ỹ 2, . . . ,Ỹ ℓ) ∈ X ⊂ R3+ℓ and the above mentioned properties of the value
function, a suitable regression ansatz for the value function can be a multivariate polynomial of
degree 2 of the form (7.2).
The main idea of least-squares Monte Carlo (LSM) is to consider (7.1) as a regression ansatz
for the value function with known ansatz functions Γi(x) and unknown regression coefficients
Θi(n). Instead of computing the value function V (n,x) for all (n,x) ∈ {0,1, . . . ,N − 1}×X
we only compute the L+1 unknown coefficients Θ0(n), Θ1(n), . . . ,ΘL(n), in each time step by
backward recursion.
The starting point of the LSM algorithm is the terminal time N where we already know the
value function

V (N,x) = ψ(x)≃
L

∑
i=0

Θi(N)Γi(x).

We choose M ∈ N representative points z1,z2, . . . ,zM, in the state space X which serve as sam-
ples of the independent variable x of the regression problem. Then we compute the responses
y j = ψ(x j), j = 1, . . . ,M, to get the associated sample of the dependent variable y. Then, we
compute the regression coefficients Θ(N) = (Θ0(N), . . . ,ΘL(N))⊤ as least-square estimators of
the regression problem

Θ̂(N) = argmin
Θ(N)∈RL+1

{ M

∑
j=1

(
ψ(z j)−

L

∑
i=0

Θi(N)Γi(z j)

)2}
.

We are now in the position to start the backward recursion. For n = N −1,N −2, . . . ,1,0, given
the already known coefficients Θ0(n+ 1), . . . ,ΘL(n+ 1), we derive the unknown coefficients
Θ1(n), . . . ,ΘL(n) using the dynamic programming equation (6.19) given as follow:

V (n,x) = inf
a∈U(n,x)

{
Ψ(n,x,a)+En,x

[
V (n+1,Xa

n+1)
]}

.

Substituting V (n+ 1,Xa
n+1) by the known regression ansatz V (n+ 1,Xa

n+1) and using the tran-
sition operator Xa

n+1 = Tn(x,a,En+1) given in (6.16), the above equation becomes

V (n,x) = inf
a∈U(n,x)

{
Ψ(n,x,a)+En,x

[
V (n+1,Xa

n+1)
]}

≃ inf
a∈U(n,x)

{
Ψ(n,x,a)+En,x

[
V (n+1,Xa

n+1)
]}

= inf
a∈U(n,x)

{
Ψ(n,x,a)+

L

∑
i=0

Θi(n+1)En,x
[
Γi(Xa

n+1)
]}

= inf
a∈U(n,x)

{
Ψ(n,x,a)+

L

∑
i=0

Θi(n+1)En,x
[
Γi(Tn(x,a,En+1))

]}
,

where Tn is the transition operator given in (6.16). Note that given x and a the conditional
expectation En,x

[
Γi(Tn(x,a,En+1))

]
is the unconditional expectation with respect to the ran-

dom variable En+1. Then, using Monte Carlo method, we can generate K ≥ 1 realizations
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En+1(ω1), . . . ,En+1(ωK) from the distribution of the random perturbations En+1 to approximate
the expectation, we get

En,x
[
Γi(Tn(x,a,En+1))

]
≃ 1

K

K

∑
k=1

Γi(Tn(x,a,En+1(ωk))) =: Ĝi(n,x,a).

Hence, we get the approximation

V (n,x)≃ inf
a∈U(n,x)

{
Ψ(n,x,a)+

L

∑
i=0

Θi(n+1)Ĝi(n,x,a)
}

= inf
a∈U(n,x)

{
Ψ(n,x,a)+g(n,x,a)

}
=: V̂ (n,x),

where g(n,x,a) =
L

∑
i=0

Θi(n+1)Ĝi(n,x,a). Then, we are left with above deterministic pointwise

optimization problem with respect to a ∈ U(n,x). Now, assume that this problem can be solved
by standard methods. We choose again M ∈ N representative points z1,z2, . . . ,zM, in the state
space X which serve as samples of the independent variable x, repeat the above steps, and
compute the Monte Carlo approximations

y j = V̂ (n,z j)≃V (n,z j), j = 1, . . . ,M.

Then, we compute the unknown coefficients Θ(n) = (Θ0(n), . . . ,ΘL(n))⊤ as least-squares esti-
mators of the regression problem

Θ̂(n) = argmin
Θ∈RL+1

{ M

∑
j=1

(
V̂ (n,z j)−

L

∑
i=0

Θi(n)Γi(z j)

)2}
.

We summarize the LSM method in the following algorithm. We refer to [10, 37, 106, 129] for
the convergence of the LSM method.
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Algorithm 3: Least-squares Monte Carlo method
Result: Approximation of the value function V and the decision rule ũ⋆

Step 1 At time N:
• Choose the ansatz functions Γ0(x), . . . ,ΓL(x);

• Choose M representative points z1,z2, . . . ,zM, in X as samples for the variable x;

• Compute the responses y j = ψ(z j), j = 1, . . . ,M, for the associated samples of the
dependent variable y;

• Compute the regression coefficients Θ(N) = (Θ0(N), . . . ,ΘL(N))⊤ as least-squares
estimators of the regression problem

Θ̂(N) = argmin
Θ(N)∈RL+1

{ M

∑
j=1

(
ψ(z j)−

L

∑
i=0

Θi(N)Γi(z j)

)2}
.

Step 2 for n=N-1 to 0 do

a. Generate K realizations En+1(ω1), . . . ,En+1(ωK), from the distribution of the
random perturbation En+1 and compute

En,x
[
Γi(Tn(x,a,En+1))

]
≃ Ĝi(n,x,a) = 1

K

K

∑
k=1

Γi(Tn(x,a,En+1(ωk)));

b. Find En,x
[
V (n+1,Xn+1)

]
≃ g(n,x,a) =

L

∑
i=0

Θi(n+1)Ĝi(n,x,a), the Monte Carlo

approximation of the condtional expection;

c. Find V̂ (n,x)≃V (n,x), the approximation of V (n,x) and û⋆(n,x)≃ ũ⋆(n,x), the
approximation of ũ⋆(n,x) at time n by solving

V̂ (n,x) = inf
a∈U(n,x)

{
Ψ(n,x,a)+g(n,x,a)

}
,

û⋆(n,x) = argmin
a∈U(n,x)

{
Ψ(n,x,a)+g(n,x,a)

}
;

d. Use the same representative points z1,z2, . . . ,zM, as samples of the independent variable
x generated above for n = N to compute the Monte Carlo approximations

y j = V̂ (n,z j)≃V (n,z j), j = 1, . . . ,M;

c. Compute the coefficients Θ(n) = (Θ0(n), . . . ,ΘL(n))⊤ as least-squares estimators
of the regression problem

Θ̂(n) = argmin
Θ∈RL+1

{ M

∑
j=1

(
V̂ (n,z j)−

L

∑
i=0

Θi(n)Γi(z j)

)2}
.

end
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7.2 Approximate Dynamic Programming Methods

In this section we briefly describe the approximate dynamic programming method for solving
the optimal control problem as prospective method to overcome the curse of dimensionality.
This method is based on the transition operator associated to the MDP, Tn : X ×U ×Z → X
given in (6.16), which for the convenience of the reader is also given below

Xn+1 = Tn(Xn,un,En+1), n = 0,1, . . .N −1,

where Xn+1 = (Rn+1,Fn+1,Pn+1,Ỹn+1) with individual states given by the recursion

Rn+1 = Rne−βR∆N +µR,n(1− e−βR∆N )+ΣR,nζ
R
n+1,

Fn+1 = Fne−βF ∆N +µF,n(1− e−βF ∆N ) +ΣF,nζ
F
n+1,

Pn+1 = Pne−γ∆N +ϒn(un,Ỹn) +ΣP,n

(√
1−ρ2

RP,nE
P
n+1 +ρRP,nER

n+1

)
,

Ỹn+1 = ỸneÃ∆N +(eÃ∆N − Iℓ)Ã−1B̃gν
n ,

where X ∈ R3+ℓ and ϒn is given by (6.10). In the transition operator (E1, . . . ,EN) is a sequence
of i.i.d multivariate standard normally distributed random variables.
The main idea is to decompose the above transition operator into post- and pre-decision op-
erator and to derive the dynamic programming equation (DPE) associated to the post-decision
state called post-decision dynamic programming equation (PDPE). Then, find the approximate
solution the PDPE using the parametric or non-parametric method.

Post-Decision state. The above transition operator Tn : X ×U ×Z → X is decomposed into
two parts:

Tn = T (2)
n ◦T (1)

n

where T (1)
n : X ×U → X is a post-decision operator defined by

T (1)
n (x,a) = Tn(x,a,0),

and T (2)
n : X ×Z → X is a pre-decision operator defined by

T (2)
n (x,ε) = Tn(x,0,ε).

Then

Tn(x,a,ε) = T (2)
n (T (1)

n (x,a),ε).

The XP
n = Xu,P

n = T (1)
n (Xu

n ,un) associated with the post-decision operator T (1) is called post-
decision state of Xu

n and it holds that Xu
n+1 = T (2)

n (Xu,P
n ,En+1). The post decision state is the

state immediately after the action is taken but before the uncertainty given by the exogenous
perturbation is realized. The post decision state only captures the deterministic part of the ac-
tion un. However, This decomposition is helpful since the transition operator Tn consists of a
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deterministic and a stochastic part. In this setting, we separate the effect of the decision and the
incoming stochastic perturbation. The state associated with the pre-decision operator is called
pre-decision state. It is the state of the system after the uncertainty is realized. Next, we show
that this formulation can be used to simplify the complexity of the optimal control problem.
Throughout this section, we will use z as a placeholder for post-decision state.

Post-decision Value Function. The post-decision value function is defined by

V P(n,z) = E
[
V (n+1,Xu

n+1)
∣∣Xu,P

n = z
]
, n = 0,1, . . . ,N −1. (7.3)

This can be interpreted as the minimum expected cost that the controller can achieve imme-
diately after the action un has been taken at time n and the post-decision state is z. Since the
post-decision state Xu,P

n is Fn-measurable and the stochastic perturbation En+1 is independent
of Fn, it holds

V P(n,z) = E
[
V (n+1,T (2)

n (Xu,P
n ,En+1))

∣∣Xu,P
n = z

]
= E

[
V (n+1,T (2)

n (z,En+1))
]
.

Now, since the state Xn and the control un = a at time n are Fn-measurable we have

E
[
V (n+1,Xu

n+1)
∣∣Xu

n = x
]
= E

[
V (n+1,Xu

n+1)
∣∣Xu,P

n = T (1)
n (x,a)

]
= E

[
V (n+1,T (2)

n (T (1)
n (x,a),En+1))

]
=V P(n,T (1)

n (x,a)).

Substituting into the dynamic programming equation (6.19), we get

V (n,x) = inf
a∈U(x)

{
Ψ(n,x,a)+V P(n,T (1)

n (x,a))
}
, x ∈ X , n = 0,1, . . . ,N −1. (7.4)

Therefore, once the exact or approximate post-decision value function V P(n,z) is known for all
(n,z) ∈ {0,1, . . . ,N −1}×X , the value function V (n,x) and the optimal decision rule ũ∗(n,x)
can be found by solving the pointwise deterministic optimization problem in (7.4), instead of
the pointwise deterministic optimization problem in (6.19). Hence, solving the optimal control
problem is reduced to computing the post-decision value function V P. In Equation (7.4), V is
the minimal value of the function f (a) = Ψ(n,x,a)+V P(n,T (1)

n (x,a)) and ũ∗ is the minimizer.

Remark 7.2.1 If we only need the value function V (n,x) and the optimal decision rule ũ∗(n,x)
for the points (n,Xu∗

n ) along the path of the optimal state process Xu∗
, then we only need to

know the post-decision value function V P for all (n,x) whereas the pre-decision value function
V has to be determined only along the path of Xu∗

.

7.2.1 Post-Decision Dynamic Programming Equation

In this part we derive the dynamic programming equation for the post-decision value function
V P. The following theorem gives the recursion for the post-decision value function called post-
decision dynamic programming equation (PDPE).
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Theorem 7.2.2 (Post-decision DPE) The value function satisfies the so-called post-decision
dynamic programming equation or post-decision Bellman equation given for n = 0,2, . . . ,N, by

V P(n,z) = E
[

inf
a∈U(T (2)

n (z,En+1))

{
Ψ(n+1,T (2)

n (z,En+1),a)+V P(n+1,T (1)
n+1(T

(2)
n (z,En+1),a))

}]
.

(7.5)

Proof. From the definition of the post-decision value function V P given in (7.3), we have

V P(n,z) = E
[
V (n+1,Xu

n+1)
∣∣Xu,P

n = z
]
= E

[
V (n+1,T (2)

n (z,En+1))
]
.

(7.6)

Then, relation (7.4) for the dynamic programming equation implies for n = 0,1, . . . ,N −1

V (n+1,Xu
n+1) = inf

a∈U(Xu
n+1)

{
Ψ(n+1,Xu

n+1,a)+V P(n+1,T (1)
n+1(X

u
n+1,a))

}
. (7.7)

Substituting (7.7) into (7.6) yields

V P(n,z) = E
[

inf
a∈U(Xu

n+1)

{
Ψ(n+1,Xu

n+1,a)+V P(n+1,T (1)
n+1(X

u
n+1,a))

}∣∣∣∣Xu,P
n = z

]
= E

[
inf

a∈U(T (2)
n (z,En+1))

{
Ψ(n+1,T (2)

n (z,En+1),a)+V P(n+1,T (1)
n+1(T

(2)
n (z,En+1),a))

}]
.

□
Note that the unconditional expectation in equation (7.5) is taken with respect to the random
variable En. Now, we recall the dynamic programming equation also called pre-decision DPE
given by

V (n,x) = inf
a∈U(x)

{
Ψ(n,x,a)+E

[
V (n+1,T (2)

n (T (1)
n (x,a),En+1))

]}
. (7.8)

We observe that in the post-decision DPE the minimization (inf) is inside the expectation, see
equation (7.5). However, in the pre-decision DPE the minimization is over the expectation, see
equation (7.8). The latter is a more involved optimization problem than the one in the PDPE. In
the PDPE, we have a deterministic minimization problem for a fixed realization of the stochastic
perturbation En.
The main advantage of the post-decision DPE over the pre-decision or classical DPE is that the
repeated computation of the expectation within the optimization can be avoided. Instead the
PDPE requires the computation of a single expectation after solving the pointwise optimization
problems. This is advantageous because in most cases the computation of the expectation is
very difficult or impossible (for example, when the transition probabilities are unknown or
complicated).

156



7.2. APPROXIMATE DYNAMICS PROGRAMMING

7.2.2 Non-Parametric Approximation of the Post-Decision Value Func-
tion

In this section we are going to describe the iterative procedure for the approximation of the
post decision value function V P = V P(n,z), n = 0,1, . . . ,N − 1, z ∈ X . The starting point of
the method is initial guess V 0

(n,z) of the post-decision value function V P for all (n,z). Such a
guess can be derived by exploiting the structural properties of the control problem and its post-
decision value function such as monotonicity, convexity, non-negativity, asymptotic behavior,
etc. If no prior information is available, one can choose V 0

(n,z) = 0.

Remark 7.2.3 Note that as in every iterative method, the required number of iterations for
obtaining a prescribed level of approximation accuracy depends critically on the initial guess.
Further, we note that the pre-decision value function V (n,x) is already known at the termi-
nal time (n = N). Therefore, the post-decision value function has to be determined only for
n = 0,1, . . . ,N −1.

Before describing the method we note that the updates or the improvements of the post-decision
value function V k are typically generated only at finite visited states z1, . . . ,zk. For a state space
X , with |X |= d (d very large or d =∞), this will need some interpolation or smoothing between
the visited states. This can be done using a non-parametric smoothing with kernel functions or
with a parametric smoothing using regression ansatz functions. We will describe these two
methods below. Now we describe the iterative procedure, adopted from the one established in
Powell [88] and Dimitri [25], based on a value iteration approach and the post-decision DPE
for the post-decision value function V P.
In Algorithm 4, we consider a non-parametric procedure in which we include smoothing of of
update in the neighborhood of the sample points zk

n. For each time n we assume that we already
know the previous approximation V k−1

(n,zk
n) of the post-decision value function from the first

k−1 iterations. Then, we generate in the iteration k a new observation of V called V̂ k
n and update

the approximation by V k
(n,zk

n) = (1− γk)V k−1
(n,zk

n)+ γkV̂ k
n , with the learning rate γ ∈ (0,1).

The updating given in step 2b represents a weighted mean of the previous approximation V k−1

and the new approximation V̂ k.
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Algorithm 4: Non-parametric method for the approximation of the post-decision
value function

Result: Approximation of the post-decision value function V P

Step 0 initialization:
• Choose V 0

(n,z), (n,z) ∈ {0,1, . . . ,N −1}×X ;

• Choose the maximal number of iteration K ∈ N;

• Choose the tolerance εz > 0 ;

• Set the counter k = 1;

Step 1 Initial value for the state process X

• Generate N realizations εk
1 ,ε

k
2 , . . . ,ε

k
N , of the stochastic perturbation;

• Generate the initial value zk
0 of the post-decision state;

Step 2 for n=0 to N-1 do

a. Find the next pre-decision state x = T (2)
n (zk

n,ε
k
n+1);

b. Compute the new approximation V̂ k
n of the post-decision value function V P(n,z) at

z = zk
n by solving

V̂ k
n = inf

a∈U(x)

{
Ψ(n+1,x,a)+V k−1

(n+1,T (1)
n+1(x,a))

}
;

ak
n = argmin

a∈U(x)

{
Ψ(n+1,x,a)+V k−1

(n+1,T (1)
n+1(x,a))

}
;

Update the previous approximation V k−1 using V̂ k
n and the weighting factor/learning rate

γk ∈ (0,1), V k
(n,zk

n) = (1− γk)V k−1
+ γkV̂ k

n ;

c. Compute the next post-decision state zk
n+1 = T (1)

n+1(x,a
k
n);

end
Step 3 Check convergence criterion;

if
∣∣V k −V k−1∣∣< εz or k = K then

Stop and return V P =V k ;
else

Increment k. Go to step 1.
end

Ideas for improving the update

We recall the update formula from step 2b of the algorithm 4: V k
(n,zk

n) = (1−γk)V k−1
(n,zk

n)+
γkV̂ k

n , with the learning rate γk ∈ (0,1). It turns out that in each iteration k and for each time n
the new approximation V k differs from the previous approximation V k−1 only in a single point
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(z = zk
n) in state space.

This seems to be not efficient if the state state space X is continuous or of high cardinality
and if we expect a slowly varying value function. In this case it is reasonable to share the new
information about the post-decision value function learned by V̂ k

n to some vicinity of the point
z = zk

n. This can be achieved by choosing a learning rate that depends on the state z. We replace
γk by

γ
k(z) = γ

k
ζ (z− zk

n),

where ζ is some kernel function controlling the information sharing with ζ : Rd → [0,1] having
the following properties:

• ζ (0) = 1,

• ζ (|x|) is decreasing,

• ζ (x)→ 0 for |x| → ∞,

One example could be the Gaussian kernel ζ (x) = e
−( x

δb
)2

, where δb is the kernel bandwidth.
The kernel bandwidth δb > 0 controls how fast the learning rate γ

k(z) decays to zero if the
distance from z to zk

n becomes larger. It is reasonable to assume that γ
k decreases in |z− zk

n| and
tends to zero for |z− zk

n| → ∞. The update formula in Algorithm 4 step 2b then reads for all z as

V k
(n,z) = (1− γ

k(z))V k−1
(n,z)+ γ

k(z)V̂ k
n .

Figure 7.1 shows the example of update with some information sharing by a Gaussian kernel in
the vicinity of the point zk

n = 1 with the learning rate γk = 0.4 and kernel bandwidths δb = 1/2
(left) and δb = 1/10 (right).

Figure 7.1: Update with sharing of information in the vicinity of zk
n = 1 , with γk = 0.4.

Left: bandwidth δb = 0.5. Right: bandwidth δb = 0.1.

Remark 7.2.4 In computer implementation the new update V k in the Algorithm 4 is only stored
for finitely many grid points z(1), . . . ,z(M) of the state space. A simple approximate solution of

V̂ k
n = inf

a∈U(x)

{
Ψ(n+1,x,a)+V k−1

(n+1,T (1)
n+1(x,a))

}
can be done as follows:
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• sample the set U n+1(x) of feasible actions by sufficiently many trial points a(1), . . . ,a(K),

• compute for all trial points a(i), i = 1, . . . ,K, the objective function

f (a(i)) = Ψ(n+1,x,a(i))+V k−1
(n+1,T (1)

n+1(x,a
(i)))

and find the minimum of these K values.

This requires the values of V k−1
(n+ 1,T (1)

n+1(x,a
(i))), i = 1, . . . ,K, at the points T (1)

n+1(x,a
(i))

which are in general no grid points z(1), . . . ,z(M). Hence, an interpolation procedure must be
performed to efficiently compute the values V k−1 at the points T (1)

n+1(x,a
(i)) given the grid values

V k−1
(n+1,z( j)), j = 1, . . . ,M, at the grid points z( j)), j = 1, . . . ,M.

7.2.3 Parametric Approximation of the Post-Decision Value Function

In this subsection, we extend and combine the non-parametric approach with a regression ap-
proach. This will lead us to an approximation which does not suffer from the curse of dimen-
sionality. We will not need any grid for the state space as in the previous approaches.
The basic idea is to work with a regression ansatz for the post-decision value function of the
form

V P(n,z) =
L

∑
i=0

Θi(n)Γi(z),

with known ansatz functions Γi(z) and unknown regression coefficients Θi(n) to be approxi-
mated. Starting with an initial guess Θ

0
i (n), i = 0, . . . ,L,n = 0, . . . ,N − 1, for the coefficients,

i.e., the initial guess for the post-decision value function is

V P(n,z)≃V 0
(n,z) =

L

∑
i=0

Θ
0
i (n)Γi(z),

we will iteratively find new approximations for the regression coefficients Θ
k
i (n) and the post-

decision value function

V k
(n,z) =

L

∑
i=0

Θ
k
i (n)Γi(z),

for k = 1,2, . . . ,K. This is achieved by generating n j ∈ N sample points (z j
n,V

j
n), j = 1, . . . ,n j,

for each n = 0, . . . ,N − 1, which we fit to the regression ansatz to determine the new approxi-
mations of Θ

k
i .

Note that generating the above sample points follows the non-parametric approach considered
in Subsec. 7.2.2 but without information sharing to neighboring points (no sharing during sam-
pling) and using the same previous approximation of V k−1 for all sample points.
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Algorithm 5: Parametric method to approximate the post-decision value function
Result: Approximation of the post-decision value function V P

Step 0 initialization:
• Choose the ansatz functions Γ0(z), . . . ,ΓL(z);

• Choose an initial guess for the regression coefficients Θ
0
i (n), i = 0, . . . ,L,

n = 0, . . . ,N −1;

• Set V 0
(n,z) =

L

∑
i=0

Θ
0
i (n)Γi(z), n = 0, . . . ,N −1 ;

• Choose the maximum number of iterations K, set the counter k = 1;

• Choose the sample size n j for the learning step;

• Choose the tolerance threshold εz and set the iteration counter k = 1;

Step 1 Generate sample for the regression:
for j = 1 to n j do

• Generate realizations ε
j

1 ,ε
j

2 , . . . ,ε
j

N , of random perturbations;

• Generate the initial value z j
0 of the post-decision state;

for n=0 to N-1 do

a. Find the next pre-decision state x = T (2)
n (z j

n,ε
j

n+1);

b. Compute the new approximation V̂ j
n of the post-decision value function V P(n,z) at

z = z j
n by solving

V̂ j
n = inf

a∈U(x)

{
Ψ(n+1,x,a)+V k−1

(n+1,T (1)
n+1(x,a))

}
;

a j
n = argmin

a∈U(x)

{
Ψ(n+1,x,a)+V k−1

(n+1,T (1)
n+1(x,a))

}
;

Update the previous approximation V k−1 using V̂ j
n and the weighting factor or learning

rate γk ∈ (0,1), V j
n = (1− γk)V k−1

(n,z j
n)+ γkV̂ j

n ;

c. Compute the next post-decision state z j
n+1 = T (1)

n+1(x,a
j
n);

end
end
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Step 2 Regression:
for n = 0 to N −1 do

• Compute new approximations of the regression coefficients Θ
k
i (n), i = 0, . . . ,L, from the

sample poits (z j
n,V

j
n), j = 1, . . . ,n j;

• Set V k
(n,z) =

L

∑
i=0

Θ
k
i (n)Γi(z)

Step 3 Check convergence criterion;

if
∣∣V k −V k−1∣∣< εz or k = K then

Stop and return V P =V k; Θi = Θ
k
i , i = 0, . . . ,L ;

else
Increment k. Go to step 1.

To ensure the convergence of the Algorithms 4 and 5 the learning rate must be nonnegative
and should satisfy the following properties.

∞

∑
k=0

γ
k = ∞,

∞

∑
k=0

(γk)2 < ∞.

The proof of the convergence of the Algorithms 4 and 5 can be adapted from the proof of
convergence of the iterative methods given in Dimitri [25, Chapter 4]
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CHAPTER 8

Summary and Outlook

8.1 Summary
In this thesis, we have investigated the stochastic optimal control problem for the cost-optimal
management of the residential heating equipped with several production and consumption units.
As a special feature, the manager of the heating system has access to an external GS allowing
for storing local overproduction over longer periods and providing heat in times of high demand
to save cost of heat production using fuel or electricity. The main focus was to minimize the
expected aggregated costs of generating thermal energy and to running the system. This led to
a challenging optimization problem whose one state variable was described by a PDE. This is
a non-standard feature and does not fit to the standard framework for stochastic optimal control
problems where the state is a multi-dimensional stochastic process described by a system of
SDEs (and ODEs). The main idea is to transform the problem into standard form by replacing
the PDE describing the dynamics of the GS by a system of ODEs resulting from the semi-
discretization w.r.t. spatial variables. However, the semi-discretization approach described in
Chapter 3 led to a high-dimensional system of ODEs which makes the control problem non
tractable. Therefore, one focus of this thesis was to reduce this high-dimensional system to
low-dimensional system of ODEs in order make the control problem tractable. This led to a
problem of model order reduction which we discussed in Chapter 4.

In order to formulate the model reduction problem, the underlying initial boundary value
problem for the heat equation with a convection term has been discretized using finite difference
schemes. In a first step we studied the semi-discretization with respect to spatial variables. For
the resulting system of linear ODEs we proved that the system matrix is stable. In a second step
the full space-time discretization has been considered. Here we derived explicit and implicit
finite-difference schemes and investigated associated stability problems. In a large number of
numerical experiments we have shown how these simulations can support the design and oper-
ation of a GS. Examples are the dependence of the charging and discharging efficiency on the
topology and arrangement of heat exchanger PHXs and on the length of charging, discharging
and waiting periods. In the third step we have considered the approximate description of the
input-output behavior of a GS by a low-dimensional system of linear ODEs. Starting point
was the semi-discretization of that PDE w.r.t. spatial variables which led to a high-dimensional
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system of non-autonomous ODEs. The latter was approximated by an analogous LTI system.
Reduced-order models in which the state dynamics is described by a low-dimensional system of
linear ODEs were derived by the Lyapunov balanced truncation method. In our numerical ex-
periments we considered aggregated characteristics describing the input-output behavior of the
storage which are required for the operation of the GS within a residential heating system. The
results showed that it is possible to obtain quite accurate approximations from reduced-order
systems with only a few state variables. This allowed to treat the cost-optimal management of
residential heating systems as a decision making problem under uncertainty which mathemati-
cally can be formulated as a tractable stochastic optimal control problem.

Another focus of this thesis was to investigate numerical solutions of this stochastic optimal
control problem. We have considered the solution using dynamic programming and derived
the associated HJB equation. However, the analytical solution of the HJB equation was not ex-
pected and due to the curse of dimensionality a numerical solution was not tractable. Therefore,
the continuous-state MDP resulting from the discrete-time approximation of the continuous-
time problem was considered and its solution has been investigated. Further, the MDP was
transformed into a MDP for a controlled finite-states Markov chains and the associated tran-
sition probabilities have been investigated. The value function and the optimal strategy are
determined by numerically solving the MDP using backward recursion. Based on Matlab im-
plementation, extensive numerical experiments are carried out. The results showed some prop-
erties of the value function necessary to select the ansatz functions required in the alternative
approximation methods to overcome the curse of dimensionality presented in Chapter 7.
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8.2 Outlook
Based on the investigations in this thesis, the following extensions appear to be promising for
future work.

Geothermal storage. One of the main goal of this thesis was to incorporate the geothermal into
a residential heating system and study the interplay between the IS and GS. For the analysis and
simulation purposes some restrictions have been made which should be relaxed to be closer to
reality.
-Model. In this work we assume that the dynamics of the GS follows a 2D heat equation. This
restriction provides more inside in the model and reduces the complexity of the stochastic op-
timal control problem when the interplay between the internal and GS is considered. The 2D
model can be considered as cross section of a 3D model which represents the real world GS.
A 3D model of a geothermal has already been considered by Bähr et al. [8] where the storage
charging and discharging process was modeled by a simple source term and long-term simula-
tion has been investigated. The results in [8] showed that the 3D model does not provide more
significant information than 2D, specially for pure diffusion problem when charging is modeled
by a source term. In our model we assume charging and discharging the geothermal by using
heat exchanger pipes. We believe that a 3D model with heat exchanger pipes will provide more
information in comparison to 2D model. However, this extension will be mathematically more
involved and will require more work.
-Topology of heat exchanger pipes. In this thesis we considered a storage with several straight
pipes. However, this restriction to straight pipes is only for simulation purpose since in the real
world storage pipes are usually U-shaped or snake shaped. For more realistic setting, one can
consider 2D or 3D models with snake pipes and study its short- or long-term behaviour. In this
setting the finite difference scheme can no longer be used as a discretization method because
of the bending of the pipes which cannot be captured appropriately. Therefore, to capture the
behaviour at bending of the snake pipes a semi-discretization of the PDE has to done by other
numerical schemes such as finite element methods.
-Interfaces between the pipes and storage. In the 2D model considered in this thesis we assume
that the interfaces were straight lines. This consideration is already complicated enough and
helps to gain more inside in this 2D model. However, in a more realistic 3D setting the pipes
have cylindrical form and the interfaces which are the contact surfaces between the pipes and
the storage medium are no longer straight lines. Therefore, the 2D interface condition does not
capture the true 3D reality.

Residential heating system. We considered the heating system consisting of several heat pro-
duction and consumption units in which we use one heat pump to connect the internal and GS
for charging the IS. As we mentioned in the introduction one possible extension of the model
will be to connect the IS to a district heating network. In this case, instead of firing fuel or
using electricity to generate heat in times of high demand one takes thermal energy from the
district heating system using the heat pump. One can also connect the GS to the solar collector
directly to store overproduction directly in the GS without going through the IS. This will lead
to another challenging mathematical control problem.

Model reduction. Balanced truncation model reduction method has been considered in this
thesis to reduce the dimension of the dynamics of the GS. We have transformed the linear time-
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varying system into an analogous LTI system since balanced truncation methods are known to
perform well for LTI systems. However, some balanced truncation approaches for linear time-
varying systems are available in the literature, see Sandberg and Rantzer [95] or Shokoohi et
al. [100]. Since the system is linear time-varying through the time-dependent velocity which
takes values in a finite set, we could consider a system as a linear switching system and apply
balanced truncation for switching systems, see Gosea et al. [49], and Petreczky et al. [86, 85].
We noticed that the HJB equation associated to the control problem suffers from the curse of
dimensionality. Assume that we are interested only on "good" (which may not be the best)
controls u and the associated values of the performance criterion J(t,x;u). Then to given and
fixed control u we have to solve a high-dimensional linear PDE which is the HJB but without
the pointwise optimization problem (inf ) creating the non-linearity. We believe that it will be
possible to apply the model order reduction techniques to reduce the dimension of the JHB
without any further discretization.

Stochastic optimal control problem. The continuous-time optimal control problem has been
transformed into a discrete-time problem with no discretization error by solving explicitly the
SDEs and ODEs describing the state variables and the numerical solution has been investigated
using backward recursion. However, this was possible only under Assumption 6.1.1 on the drift
and diffusion coefficients of the exogenous state variables. This assumption can be relaxed and
the the state equation can still be solved explicitly but this will be more involved and will require
more effort.
The backward recursion used to numerically solving the discrete-time optimal control problem
is suitable for problems whose state process has small dimension since the computation of
the conditional expectation requires state discretization. We have been able to solve it in our
computer implementation with state process of dimension 5, i.e. with reduced-order system
of dimension 3. However, for more accuracy or if we are interested in more output quantities
the dimension of the reduced-order system will be higher and the problem can no longer be
handled using backward recursion. Therefore, one should resort to the approximation methods
presented in Chapter 7.
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APPENDIX A

Semi-Discretization Details

A.1 Block Matrices AL and AR

AL/R =



γM
DB β M Lower Boundary

β M γM
B β M

. . . . . . . . . 0 Medium

β M γM
B β M

β M γM
IB β M

I Lower interface

β F
I γF

IL/R β F

β F γF
L/R β F

. . . . . . . . . Fluid

β F γF
L/R β F

Upper interface β F γF
IL/R β F

I

β M
I γM

IB β M

β M γM
B β M

Medium 0 . . . . . . . . .
β M γM

B β M

Uppper Boundary β M γM
UB



.

Table A.1: Sketch of the matrices AL and AR for the case of one pipe

This appendix gives the first and the last diagonal block matrices AL and AR ∈ Rq×q of the
matrix A given in (3.11). Its entries result from the discretization of boundary conditions at the
left and right boundary. Both block matrices are tridiagonal and sketched for the case of only
one pipe in Table A.1. The entries in the first and last row are related to the inner grid points
next to the four corners of the domain and obtained by substituting homogeneous Neumann
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condition (3.4) and Robin condition (3.5) into (3.1). For the grid points next to the lower left
we obtain

d
dt

Q11(t) = α
MQ21(t)+α

MQ01(t)+β
MQ12(t)+β

MQ10(t)+ γ
MQ11(t)

= α
MQ21(t)+β

MQ12(t)+
(

α
M +

κM

κM +λGhy
β

M + γ
M
)

Q11(t)+
λGhy

κM +λGhy
β

MQG(t)

= α
MQ21(t)+β

MQ12(t)+ γ
M
DBQ11(t)+

λGhy

κM +λGhy
β

MQG(t),

where γM
DB = αM + κM

κM+λGhy
β M + γM. Recall, that αM,β M,γM are given (3.3).

Analogously, we derive for the lower right corner

d
dt

QNx−1,1(t) = α
MQNx−2,1(t)+β

MQNx,2(t)+ γ
M
DBQNx,1(t)+

λGhy

κM +λGhy
β

MQG(t).

Note that the last terms on the r.h.s. of the above equations are contributions to the input term
B(t)g(t) given in (3.13) and (3.14). For the grid points next to the upper left and right corner
we have to apply the homogeneous Neumann conditions (3.4) and obtain from (3.1)

d
dt

Q1,Ny−1(t) = α
MQ2,Ny−1(t)+α

MQ0,Ny−1(t)+β
MQ1,Ny(t)+β

MQ1,Ny−2(t)+ γ
MQ1,Ny−1(t)

= α
MQ2,Ny−1(t)+β

MQ1,Ny−2(t)+(αM +β
M + γ

M)Q1,Ny−1(t)

= α
MQ2,Ny−1(t)+β

MQ1,Ny−2(t)+ γ
M
UBQ1,Ny−1(t),

where γM
UB = αM +β M + γM. Analogously, we derive for the upper right corner

d
dt

QNx−1,Ny−1(t) = α
MQNx−2,Ny−1(t)+β

MQNx−1,Ny−2(t)+ γ
M
UBQNx−1,Ny−1(t).

For “inner” grid points located next to insulated left and right boundary but not next to the upper
and lower boundary or the interface we have to combine (3.1) with the homogeneous Neumann
condition (3.4). This leads to the coefficient γM

B = γM +αM on the main diagonal.

For the grid points next to the inlet boundary we apply Dirichlet condition during pumping
and homogeneous Neumann condition if the pump is off, see (3.6). For j with (0, j) ∈ N C

I it
holds

d
dt

Q1 j(t) = α
F+Q2 j(t)+α

F−Q0 j(t)+β
FQ1, j+1(t)+β

FQ1, j−1(t)+ γ
FQ1 j(t)

= α
F+Q2 j(t)+β

FQ1 j+1(t)+β
FQ1, j−1(t)+

{
γFQ1 j(t)+αF−QI(t) pump on

(γF +αF−)Q1 j(t) pump off

= α
F+Q2 j(t)+β

FQ1, j+1(t)+β
FQ1, j−1(t)+ γ

F
L Q1 j(t)+bk1QI(t),

where γF
L = γF

L (t) =

{
γF pump on,
γF + aF

h2
x

pump off,
and Bl1 = Bl1(t) =

{
aF

h2
x
+ v0

hx
pump on,

0 pump off,
with l =K(1, j). We note that αF±,β F ,γF are given in (3.2) and point out that the term bk1QI(t)
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contributes to the input term B(t)g(t).
At the outlet boundary we have homogeneous Neumann condition and for the grid points

next to the outlet we obtain from the discretized boundary condition (3.4) for j with (Nx, j) ∈
N C

O it holds

d
dt

QNx−1, j(t) = α
F+QNx, j(t)+α

F−QNx−2, j(t)+β
FQNx−1, j+1(t)+β

FQNx−1, j−1(t)+ γ
FQNx−1, j(t)

= α
F−QNx−2, j(t)+β

FQNx−1, j+1(t)+β
FQNx−1, j−1(t)+ γ

F
R QNx−1, j(t),

where γF
R = γF +αF+ and αF±,β F ,γF are given in (3.2).

Finally, for the grid points next to the interface we obtain by an analogous procedure as
described in Subsec. 3.1.2 the coefficients

γ
M
IB = γ

M
B +ψ

M
β

M, γ
F
IL = γ

F
IL(t) = γ

F
L (t)+ψ

F
β

F , γ
F
IR = γ

F
R +ψ

F
β

F ,

where ψM and ψF are given (3.7). Recall that the off-diagonal coefficients β M
I ,β F

I are given in
(3.8), (3.9).

A.2 Proof of Lemma 3.2.2

Proof. First assertion. Table A.2 shows that the diagonal entries of the matrices Ak, k =

1, . . . ,Nτ are all negative. Thus, we have for all i = 1, . . . ,n

Ji(Gk) = |Gk
ii|− ∑

j=1, j ̸=i
|Gk

i j|= 1+ τθ(|Ak
ii|− ∑

j=1, j ̸=i
|Ak

i j|) = 1+ τθJi(Ak)≥ 1,

since by Lemma 3.1.8 the matrices Ak are diagonal dominant and it holds Ji(Ak) ≥ 0. There-
fore, the matrices Gk = In − τθAk, k = 1, . . . ,Nτ are strictly diagonal dominant. Lemma 3.1.5
implies that Gk is invertible and ∥(Gk)−1∥∞ ≤ 1/J(Gk)≤ 1. For θ = 0 it holds Gk = In, hence
∥(Gk)−1∥∞ = ∥In∥∞ = 1 and the above inequality holds with equality.

Second assertion. We recall the definition of Hk given in (3.17) which reads as Hk = In +
τ(1−θ)Ak. For θ = 1, we have Hk = In, thus for all τ > 0 it holds

∥∥Hk
∥∥

∞
= 1 which proves

the claim for θ = 1.
Now, let θ ∈ [0,1)]. We recall that Ak = A(kτ) takes only the values AP and AN . Thus it

is sufficient to show that the claim holds for HP and HN where HP/N = In + τ(1−θ)AP/N . It
holds∥∥HP∥∥

∞
= max

1≤i≤n

{
Si(HP)

}
, with Si(HP) = |1+ τ(1−θ)AP

ii|+ τ(1−θ)
n

∑
j=1, j ̸=i

|AP
i j|.

Using the fact that all diagonal entries of the matrix AP are negative, we have for τP
i = 1

(1−θ)|AP
ii |

,
i = 1, . . . ,n,

|1+ τ(1−θ)AP
ii|=

{
1− τ(1−θ)|AP

ii|, for τ ≤ τP
i

τ(1−θ)|AP
ii|−1, for τ > τP

i .
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This implies that for i = 1, . . . ,n, we have

Si(HP) =


1− τ(1−θ)

[
|AP

ii|−
n

∑
j=1, j ̸=i

|AP
i j|
]
= 1− τ(1−θ)Ri(AP), for τ ≤ τP

i ,

τ(1−θ)
[
|AP

ii|+
n

∑
j=1, j ̸=i

|AP
i j|
]
−1 =−1+ τ(1−θ)Si(AP), for τ > τ

p
i .

Since AP is weakly diagonal dominant, we distinguish the two cases Ji(AP)> 0 and Ji(AP) = 0.
For Ji(AP)> 0, the sum Si(HP) is strictly decreasing in τ on [0,τP

i ] and strictly increasing in τ

on (τP
i ,+∞) and it holds

Si(HP)≤ 1 for τ ≤ τ
P
i :=

2
(1−θ)Si(AP)

and Si(HP)> 1 for τ > τ
P
i .

For Ji(AP) = 0, we have Si(AP) = 2|AP
ii|. It holds Si(HP) = 1 for τ ∈ [0,τP

i ] while Si(HP) is
strictly increasing in τ on (τP

i ,+∞), hence Si(HP)> 1 for τ > τ
P
i .

Summarizing we obtain∥∥HP∥∥
∞
= max

1≤i≤n
Si(HP) = 1 for τ ≤ τ

P = min
1≤i≤n

τ
P
i =

2
(1−θ) max

1≤i≤n
Si(AP)

=
2

(1−θ)∥AP∥∞

,

and ∥HP
∥∥

∞
> 1 for τ > τ

P. For A = AN the proof is analogous. Thus, we have

∥∥Hk∥∥
∞
≤ 1 for τ ≤ min{τ

P,τN}= 2
(1−θ)max

{∥∥AP
∥∥

∞
,
∥∥AN

∥∥
∞

} .
Finally, Lemma 3.1.12 shows that max

{∥∥AP
∥∥

∞
,
∥∥AN

∥∥
∞

}
= 4max{aF ,aM}

(
1
h2

x
+ 1

h2
y

)
+ 2v0

hx
=

2η which proves the claim.

Third assertion. From the definition of Fk given in (3.17) it follows that for k = 0, . . . ,Nτ −1∥∥Fk∥∥
∞
=
∥∥θBk+1gk+1 +(1−θ)Bkgk∥∥

∞
≤ θ

∥∥Bk+1∥∥
∞

∥∥gk+1∥∥
∞
+(1−θ)

∥∥Bk∥∥
∞

∥∥gk∥∥
∞

≤ (θ +1−θ)CB max
j=k,k+1

∥∥g j∥∥
∞
≤CB max

0≤ j≤k+1

∥∥g j∥∥
∞
.

where we have used that Bk = B(kτ) takes only the values BP and BN . □
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ci
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D

iff
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s
R

ow
su

m
s

l
C

i l
=

A
i l

i l
(d

ia
go

na
le

nt
ri

es
)

R
i l
(A
)
=

n ∑
j=

1,
j̸=

i l

|A
i l
,j
|

J i
l(

A
)
=

|A
i l

i l
|−

n ∑
j=

1,
j̸=

i l

|A
i l
,j
|

S i
l(

A
)
=

n ∑ j=
1
|A

i l
,j
|

1
γ

m D
B

−
aM
( 1 h2 x

+
1 h2 y

) −(
λ

G
h y

κ
M
+

λ
G

h y

) aM h2 y
aM
( 1 h2 x

+
1 h2 y

)
( λG

h y
κ

M
+

λ
G

h y

) aM h2 y
2a

M
( 1 h2 x

+
1 h2 y

) +(
λ

G
h y

κ
M
+

λ
G

h y

) aM h2 y

2
γ

m U
B

−
aM
( 1 h2 x

+
1 h2 y

)
aM
( 1 h2 x

+
1 h2 y

)
0

2a
M
( 1 h2 x

+
1 h2 y

)
3

γ
m D

−
aM
( 2 h2 x

+
1 h2 y

) −(
λ

G
h y

κ
M
+

λ
G

h y

) aM h2 y
aM
( 2 h2 x

+
1 h2 y

)
( λG

h y
κ

M
+

λ
G

h y

) aM h2 y
2a

M
( 2 h2 x

+
1 h2 y

) +(
λ

G
h y

κ
M
+

λ
G

h y

) aM h2 y

4
γ

m U
−

aM
( 2 h2 x

+
1 h2 y

)
aM
( 2 h2 x

+
1 h2 y

)
0

2a
M
( 2 h2 x

+
1 h2 y

)
5

γ
m B

−
aM
( 1 h2 x

+
2 h2 y

)
aM
( 1 h2 x

+
2 h2 y

)
0

2a
M
( 1 h2 x

+
2 h2 y

)
6

γ
M

−
2a

M
( 1 h2 x

+
1 h2 y

)
2a

M
( 1 h2 x

+
1 h2 y

)
0

4a
M
( 1 h2 x

+
1 h2 y

)
7

γ
F

−
2a

F
( 1 h2 x

+
1 h2 y

) −v 0
(t
)

h x
2a

F
( 1 h2 x

+
1 h2 y

) +v 0
(t
)

h x
0

4a
F
( 1 h2 x

+
1 h2 y

) +2v
0(

t)
h x

8
γ

f L

  −
2a

F
( 1 h2 x

+
1 h2 y

) −v 0 h x
,

A
=

A
P

−
aF
( 1 h2 x

+
2 h2 y

) ,
A
=

A
N

aF
( 1 h2 x

+
2 h2 y

)
{ aF h2 x

+
v 0 h x
,

A
=

A
P

0,
A
=

A
N

  aF
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+
4 h2 y

) +v 0 h x
,
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=

A
P

2a
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+
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) ,
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=

A
N

9
γ

f R
−
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h x
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h x
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γ

M I
−
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+
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κ
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κ
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+

κ
F

) aM h2 y

2a
M
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( 1

+
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κ
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+

κ
F
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2a
M
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+
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κ
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+

κ
F
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γ
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−
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+
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κ
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+

κ
F
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κ
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+

κ
F
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2a
M
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+
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+
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γ
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−

aF
( 2 h2 x

+
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+
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−
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−
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A.3 Derivation of Quadrature Formula
Rewriting the double integral as two iterated single integrals and applying trapezoidal rule to
the outer integral we obtain (suppressing the time variable t)

J =
∫∫

B
Q(x,y)dxdy =

∫ xi

xi

(∫ y j

y j

Q(x,y)dy
)

dx

≈
∫ xi

xi

hy

(
1
2

Q(x,y j)+
j−1

∑
j= j+1

Q(x,y j)+
1
2

Q(x,y j)

)
dx.

Approximating the inner integrals again by trapezoidal rule we get

∫ xi

xi

Q(x,y j)dx ≈ hx

(
1
2

Q(xi,y j)+
i−1

∑
i=i+1

Q(xi,y j)+
1
2

Q(xi,y j)

)
, j = j, . . . , j.

Substituting into the above expression for J yields

J ≈ hxhy

(
1
4
[
Q(xi,y j)+Q(xi,y j)+Q(xi,y j)+Q(xi,y j)

]
+

1
2

[ i−1

∑
i=i+1

[
Q(xi,y j)+Q(xi,y j)

]
+

j−1

∑
j= j+1

[
Q(xi,y j)+Q(xi,y j)

]]
+

i−1

∑
i=i+1

j−1

∑
j= j+1

Q(xi,y j)

)
= hxhy

(
1
4
[
Qi j(t)+Qi j(t)+Qi j(t)+Qi j(t)

]
+

1
2

[ i−1

∑
i=i+1

[
Qi j +Qi j

]
+

j−1

∑
j= j+1

[
Qi j +Qi j

]]
+

i−1

∑
i=i+1

j−1

∑
j= j+1

Qi j

)
.

Since the area of the rectangle B is given by (i− i)( j− j)hxhy the average temperature QB can
be approximated by

QB =
1
|B|

∫∫
B

Q(t,x,y)dxdy ≈ ∑
(i, j)∈NB

µi j Qi j

with the coefficients µi j given in (3.23).
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Model Reduction Details

B.1 Proof of Theorem 4.2.9

Proof. Following the results in Antouslas [5, Proposition 4.27], we can derive the following.
Assume that a system matrix A is stable, then we have:

AGC +GCA⊤ =
∫

∞

0

(
AeAtBB⊤eA⊤t + eAtBB⊤eA⊤tA⊤

)
dt =

∫
∞

0

d
dt

(
eAtBB⊤eA⊤t

)
dt

= lim
T→∞

eAtBB⊤eA⊤t
∣∣∣∣T
0
= lim

T→∞
eAT BB⊤eA⊤T −BB⊤ =−BB⊤.

GOA+A⊤GO =
∫

∞

0

(
eA⊤tC⊤CeAtA+A⊤eA⊤tC⊤CeAt

)
dt =

∫
∞

0

d
dt

(
eA⊤tC⊤CeAt

)
dt

= lim
T→∞

eA⊤tC⊤CeAt
∣∣∣∣T
0
= lim

T→∞
eA⊤TC⊤CeAT −C⊤C =−C⊤C.

□

B.2 Proof of Lemma 4.2.11

Proof. let GC and GO be the controllability and observability Gramians of the transformed
system, respectively. Then GC satisfies the following Lyapunov equation:

0 = A GC +GCA⊤
+B B⊤

= T AT −1GC +GC(T AT −1)⊤+T B(T B)⊤.

Multiplying by T −1 from left and by T −⊤ from right gives

0 = A(T −1GCT −⊤)+(T −1GCT −⊤)A⊤+BB⊤.
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Comparing with the Lyapunov equation for the Gramian GC of the original system which reads
as 0 = AGC +GCA⊤+BB⊤ gives GC = T −1GCT −⊤ and finally GC = T GCT ⊤. Similar rea-
soning gives GO = T −⊤GOT −1.
Substituting into the product of the transformed Gramians yields GCGO = T GCGOT −1. □

B.3 Proof of Theorem 4.2.13
Proof. We have to prove that the system is balanced under the transformation T = Σ

1
2 K⊤U−1.

For the Gramians of the transformed system, we obtain

GC = T GCT ⊤ = Σ
1
2 K⊤U−1GCU−⊤KΣ

1
2 = Σ

1
2 K⊤U−1UU⊤U−⊤KΣ

1
2

= Σ
1
2 K⊤KΣ

1
2 = Σ

1
2 Σ

1
2 = Σ.

GO = T −⊤GOT −1 = Σ
− 1

2 K⊤U⊤GOUKΣ
− 1

2 = Σ
− 1

2 K⊤KΣ
2K⊤KΣ

− 1
2

= Σ
− 1

2 Σ
2
Σ
− 1

2 = Σ.

We used GC =UU⊤, U⊤U−⊤ = In =U−1U , U⊤GOU = KΣ2K⊤ and K⊤K = In. □
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Optimal Control Details

C.1 Proof of Theorem 5.3.2

Proof. Let τh = t + h and a constant control u(s) = ν , for some arbitrary ν in U(t,x). The
dynamic programming principle yields

V (t,x)≤ Et,x

[∫ t+h

t
Ψ(s,Xu(s),ν)ds+V (t +h,Xu(t +h))

]
. (C.1)

Assuming that V is smooth enough, applying the Itô’s formula on V (t +h,Xu(t +h)) between t
and t +h and substituting into (C.1) yields

0 ≤ Et,x

[∫ t+h

t
Ψ(s,Xu(s),ν)+

(
∂

∂ t
V +LνV

)
(s,Xu(s))ds

]
,

where Lν is the generator associated to the diffusion process for the constant control ν and
given by equation (5.12).
Dividing by h and sending h to 0, this yields by the mean-value theorem

0 ≤ Ψ(t,x,ν)+
∂

∂ t
V (t,x)+Lν

V (t,x)+ L̂V (s,x).

Since the control ν in U(t,x) was chosen arbitrary, we obtain the inequality

∂

∂ t
V (t,x)+ L̂ V (t,x)+ inf

ν∈U(t,x)

{
Lν

V (t,x)+Ψ(t,x,ν)
}
≥ 0. (C.2)

On the other hand, assume that u⋆ is an optimal control and X⋆ = Xu⋆ the associated solution to
the SDE (5.5) starting from x a time t. Then, the stronger version of the DPP (5.11) yields

V (t,x) = Et,x

[∫
τh

t
Ψ(s,X⋆(s),u⋆(s))ds+V (τh,X⋆(τh))

]
,
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Using similar argument as above, we obtain

∂

∂ t
V (t,x)+ L̂ V (t,x)+Lu⋆

V (t,x)+Ψ(t,x,u⋆(s)) = 0. (C.3)

Combining (C.2) and (C.3), gives

∂

∂ t
V (t,x)+ L̂ V (t,x)+ inf

ν∈U(t,x)

{
Lν

V (t,x)+Ψ(t,x,ν)
}
= 0, (t,x) ∈ [0,T )×X ,

if the above infimum in ν is finite. From the definition of the reward function (5.8) considered
at the time horizon T , we immediately obtain the terminal condition associated to this PDE, i.e.

V (t,x) = ψ(x).

□

C.2 Time-Discretization Details

C.2.1 Proof of Lemma 6.1.3
The flowing remark plays a crucial role for the poof of the above Lemma 6.1.3 given below.

Remark C.2.1 Let A be a diagonalizable matrix, then there exists a diagonal matrix D =
diag(λ1, . . . ,λl) and a regular matrix V such that A = V DV−1 is the eigenvalue decomposition
of A. Then it holds

Am = (V DV−1)(V DV−1) . . .(V DV−1) =V DmV−1.

and

eAt =
∞

∑
m=0

1
m!

Amtm =V

(
∞

∑
m=0

1
m!

Dmtm

)
V−1 =VeDtV−1

∫
eAsds =V

∫
eDsdsV−1 =V D−1eDsV−1 + c = (V D−1V−1)(VeDsV−1)+ c

= A−1eAs + c = eAsA−1 + c.

Note that the matrices A−1 and eAs commute in the product sense since D−1eDs = eDsD−1.

Proof. Let t ∈ [tn, tn+1). Under Assumption 6.1.2, the closed-form solution of the ODE (6.1)
on the time interval [tn, tn+1) given Ỹ (tn) = Ỹn is given as

Ỹ (t) = eÃ(t−tn)
(

Ỹn +
∫ t

tn
e−Ã(s−tn)B̃gν

n ds
)
= eÃ(t−tn)Ỹn + fn,

where

fn = eÃ(t−tn)
∫ t

tn
e−Ã(s−tn)dsB̃gν

n = eÃ(t−tn)
[
−e−Ã(s−tn)

]t

tn
Ã−1B̃gν

n ,
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= eÃ(t−tn)(−e−Ã(t−tn)+ Iℓ)Ã−1B̃gν
n = (eÃ(t−tn)− Iℓ)Ã−1B̃gν

n .

For Ỹn+1 = Ỹ (tn+1), we immediately have the discrete-time dynamics of the GS (6.3). □

C.2.2 Proof of Lemma 6.1.4

Proof. For all t ∈ [tn, tn+1) we apply the Itô formula to the function f (r, t) = reβRt . We have
ft = βRreβRt , fr = eβRt , frr = 0. Then,

d f (R(t), t) = ft(R(t), t)dt + fr(R(t), t)dR(t)+
1
2

frr(R(t), t)(dR(t))2,∫ t

tn
d f (R(s),s) =

∫ t

tn
βRR(s)eβRsds+

∫ t

tn
eβRsdR(s),

R(t)eβRt −RneβRtn =
∫ t

tn
βRR(s)eβRsds+

∫ t

tn
eβRs

βR(µR,n −R(s))ds+
∫ t

tn
eβRs

σR,ndWR(s).

This implies that

R(t) = e−βRt(RneβRtn +µR,n(eβRt − eβRtn)
)
+ e−βRt

∫ t

tn
eβRs

σR,ndWR(s)

= Rne−βR(t−tn)+µR,n(1− e−βR(t−tn))+σR,n

∫ t

tn
e−β (t−s)dWR(s). (C.4)

□

C.2.3 Proof of Lemma 6.1.6

We recall that the continuous time dynamics of the temperature in the IS can be written for
u(t) ∈ U as

dP(t) = (ψp(R(t),Ỹ (t),u(t)))− γ(P(t)−Pamb)dt, P(0) = p0, (C.5)

where γ = κhAh
mPcF

P
is a constant and R(t) is the residual demand given by equation (6.5). The

function ψp if given by

ψP(r,y,ν) =



−kPr+κF ν = uF

−kPr+κC(Pin −Pout) ν = uC

−kPr ν = uW

−kPr−κD(QI
C −COy) ν = uD

0 ν = uO

where, kP = 1
mPcF

P
, κD = kD

mPcF
P

, κC = kC
mPcF

P
and κF = kF

mPcF
P

.
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Proof. Let t ∈ [tn, tn+1). For un = uO, and P(tn) = Pn, a closed form solution of the ODE
(C.5) on the interval [tn, tn+1), is given by

P(t) = e−γ(t−tn)(p+Pamb(eγ(t−tn)−1)).

For un ̸= uO and P(tn) = Pn, a closed form solution of the equation (C.5) is given by

P(t) = e−γ(t−tn)
{

P(tn)+
∫ t

tn
eγ(s−tn)ζ (Ỹ (s),un)ds− kP

∫ t

tn
eγ(s−tn)R(s)ds

}
= e−γ(t−tn)

{
Pn +

∫ t

tn
eγ(s−tn)ζ (Ỹ (s),un)ds

}
− kP

∫ t

tn
e−γ(t−s)R(s)ds

= e−γ(t−tn)Pn + f (un,Ỹ (t))− kP

∫ t

tn
e−γ(t−s)R(s)ds (C.6)

where

f (un,Ỹ (t)) =
∫ t

tn
e−γ(t−s)

ζ (un,Ỹ (s))ds

and

ζ (ν ,y) =


γPamb +κF ν = uF ,

γPamb +κC(Pin −Pout) ν = uC,

γPamb ν = uW ,

γPamb −κD(QI
C −COy) ν = uD.

The process P(t) given in (C.6) is an integrated process since it is the integral functional of
a Gaussian process R(t) given by (C.4). Under Assumption 6.1.1, substituting R(s) given by
(C.4) in (C.6) gives

P(t) = e−γ(t−tn)Pn + f (un)

− kP

∫ t

tn
e−γ(t−s)

[
re−β (s−tn)+µR,n(1− e−β (s−tn))+

∫ s

tn
σR,ne−β (s−u)dWR(u)

]
ds
}

= e−γ(t−tn)Pn −
kPµR,n

γ
(1− e−γ(t−tn))+

kP

βR − γ
(µR,n −Rn)

(
e−γ(t−tn)− e−βR(t−tn)

)
+ f (un)− kpσR,n

∫ t

tn
e−γ(t−s)

(∫ s

tn
e−β (s−u)dWR(u)

)
ds

= e−γ(t−tn)Pn +ϒn(un,Ỹn)+M(t), (C.7)

where M(t), t ∈ [tn, tn+1) is a martingale given by

M(t) =−kpσR,n

∫ t

tn
e−γ(t−s)

(∫ s

tn
e−β (s−u)dWR(u)

)
ds (C.8)

and the function ϒn is given by

ϒn(ν ,y) = f (ν ,y)+ηn

178



C.2. TIME-DISCRETIZATION DETAILS

with

ηn =
kP

βR − γ
(µR,n −Rn)

(
e−γ(t−tn)− e−βR(t−tn)

)
−

kPµR,n

γ
(1− e−γ(t−tn)).

The function f is given by

f (ν ,y) =



∫ t

tn
(γPamb +κ

F)e−γ(t−s)ds, ν = uF∫ t

tn

[
γPamb +κC(Pin −Pout)

]
e−γ(t−s)ds, ν = uC∫ t

tn
γPambe−γ(t−s)ds, ν = uW∫ t

tn
e−γ(t−s)(γPamb −κDQI

C)ds+ e−γ(t−tn)
∫ t

tn
eγ(s−tn)κDCOỸ (s))ds, ν = uD

=



(
Pamb +

κF

γ

)
(1− e−γ(t−tn)), ν = uF(

Pamb +
κC(Pin−Pout)

γ

)
(1− e−γ(t−tn)), ν = uC

Pamb(1− e−γ(t−tn)), ν = uW(
Pamb −

κDQI
C

γ

)
(1− e−γ(t−tn))+ e−γ(t−tn)ψn(y), ν = uD

with ψn given by

ψn(y) =
∫ t

tn
eγ(s−tn)κDCOỸ (s))ds

Plugging the closed-form solution of the ODE (5.1) given in equation 6.2 in this integral and
using the Assumption 6.1.2, for gD

n = guD

n and Ỹn(t) = y gives

ψn(y) = κDCO
∫ t

tn
eγ(s−tn)

(
eÃ(s−tn)Ỹ (tn)+(eÃ(s−tn)− Iℓ)Ã−1B̃gD

n

)
ds

= κDCO
{∫ t

tn
e(γIℓ+Ã)(s−tn)Ỹ (tn)ds+

∫ t

tn

(
e(γIℓ+Ã)(s−tn)− eγ(s−tn)Iℓ

)
dsÃ−1B̃gD

n

}
.

= κDCO
{
(e(γIℓ+Ã)(t−tn)− Iℓ)(γIℓ+ Ã)−1y+[

(e(γIℓ+Ã)(t−tn)− Iℓ)(γIℓ+ Ã)−1 − 1
γ
(eγ(t−tn)−1)Iℓ

]
Ã−1B̃gD

n

}
.

□

C.2.4 Proof of Proposition 6.1.7

The following intermediate result is required for the proof of second statement of Proposition
6.1.7 presented below and for the proof of Theorem 6.1.9 presented in Appendix C.2.5.

Intermediate result.
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Lemma C.2.2 Let s, t ∈ [tn, tn+1). Under Assumption 6.1.1, the conditional covariance of R(t)
and R(s) given R(tn) = r, is given by

cov(R(t),R(s) | R(tn) = r) =
σ2

R,n

2βR
(e−βR|t−s|− e−βR(t+s)+2βRtn). (C.9)

Proof. Under Assumption 6.1.1, applying Itô isometry property, the closed-form expression
(C.4) yields

cov(R(t),R(s) |R(tn) = r) = E[(R(t)−E[R(t) | R(tn) = r])(R(s)−E[R(s) | R(tn) = r]) | R(tn) = r]

= E
[(∫ t

tn
σR,ne−βR(t−u)dWR(u)

)(∫ s

tn
σR,ne−βR(s−v)dWR(v)

) ∣∣∣∣R(tn) = r
]

= σ
2
R,ne−βR(t+s)E

[(∫ t

tn
eβRudWR(u)

)(∫ s

tn
eβRvdWR(v)

) ∣∣∣∣R(tn) = r
]

= σ
2
R,ne−βR(t+s)E

[(∫ min(t,s)

tn
eβRudWR(u)

)2 ∣∣∣∣R(tn) = r

]

= σ
2
R,ne−βR(t+s)E

[∫ min(t,s)

tn
e2βRudu

∣∣∣∣R(tn) = r
]

=
σ2

R,n

2βR
e−βR(t+s)(e2βR min(t,s)− e2βRtn)

=
σ2

R,n

2βR
(e−βR|t−s|− e−βR(t+s)+2βRtn).

□

Proof of Proposition 6.1.7.

Proof. Let Rn+1 = R(tn+1) be the sampling of the residual demand at time tn+1. Taking
the conditional expectation on both sides of the expression of the closed-form solution of the

SDE given by equation (C.4), and using the fact that, for t ∈ [tn, tn+1),
∫ t

tn
e−β (t−s)dWR(s) is a

martingale, yields

mR,n = E[Rn+1 | Rn = r]

= E[Rne−βR(tn+1−tn)+µR,n(1− e−βR(tn+1−tn))+σR,n

∫ tn+1

tn
e−β (tn+1−s)dWR(s) | Rn = r]

= re−βR∆N +µR,n(1− e−βR∆N )+σR,nE
[∫ tn+1

tn
e−β (tn+1−s)dWR(s) | Rn = r

]
= re−βR∆N +µR,n(1− e−βR∆N ).

For t = tn+1, using the definition of the conditional variance, equation (C.9) yields

Σ
2
R,n =Var[Rn+1 | Rn = r] = cov(R(tn+1),R(tn+1) | Rn = r) =

σ2
R,n

2βR
(1− e−βR∆N ).

180



C.2. TIME-DISCRETIZATION DETAILS

□

C.2.5 Proof of Theorem 6.1.9
To prove the proof of second statement of Theorem 6.1.9 the following intermediate result is
required.

Conditional Covariance of P(t) and P(s) Given Xn = x and un = ν

Let ν ∈ U\{uO}. We want to find the covariance function and derive the variance. We use the
short-hand notations covr(R(t),R(s)) = cov(R(t),R(s) | Rn = r) for the conditional covariance
of R(t) and R(s)given R(tn) = Rn and covp(P(t),P(s)) = cov(P(t),P(s) | Xn = x,un = ν) for
the conditional covariance of P(t) and P(s) given Xn = x and un = ν .

Lemma C.2.3 Let s, t ∈ [tn, tn+1). Under Assumption 6.1.1, the conditional covariance of P(t)
and P(s) given X(tn) = x and un = ν is given by

covp(P(t),P(s)) =
k2

Pσ2
R,n

2βR(βR − γ)2(βR + γ)

{
2βRe−βR(s−tn)−γ(t−tn)+2βRe−βR(t−tn)−γ(s−tn)

− (βR − γ)e−βR|t−s|+

(
β 2

R
γ

−βR

)
e−γ|t−s|− (βR + γ)e−βR(t+s)+2βRtn

−
(

β 2
R

γ
+βR

)
e−γ(t+s)+2γtn

}
. (C.10)

Proof. We first recall the following properties of the conditional covariance of a random
variables X and Y given a filtration G. For a,b,c,d ∈ R, we have

cov(a+bX ,c+dY | G) = cov(bX ,dY | G) = bdcov(X ,Y | G).

Under assumption 6.1.1, using the the expression of P(t) given in (C.6) and the property of the
covariance given above, we obtain

covp(P(t),P(s)) = cov
(

e−γ(t−tn)Pn + f (un)− kP

∫ t

tn
e−γ(t−u)R(u)du,e−γ(s−tn)Pn

+ f (un)− kP

∫ s

tn
e−γ(s−v)R(v)dv

∣∣∣∣ Xn = x,un = ν

)
= cov

(
− kP

∫ t

tn
e−γ(t−u)R(u)du,kP

∫ s

tn
e−γ(s−v)R(v)dv

∣∣∣∣ Xn = x,un = ν

)
= k2

pe−γ(t+s)
∫ t

tn

∫ s

tn
eγ(u+v)cov(R(u),R(v) | Rn = r)dudv

Plugging the cov(R(u),R(v) | Rn = r) given in (C.9) in the above expression yields

covp(P(t),P(s)) =
k2

Pσ2
R,n

2βR
e−γ(t+s)

∫ t

tn

∫ s

tn
eγ(u+v)

(
e−β |u−v|− e−β (u+v)+2βRtn

)
dudv

=
k2

Pσ2
R,n

2βR

(
e−γ(t+s)J1(s, t)− e−γ(t+s)+2βRtnJ2(s, t)

)
, (C.11)
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where

J1(s, t) =
∫ ∫

∆

eγ(u+v)−β |u−v|dudv and J2(s, t) =
∫ ∫

∆

e−(βR−γ)(u+v)dudv.

Figure C.1: Domain of integration for t > s

Without loss of generality, we assume that s ≤ t. Then the domain of integration reads as
∆ = {(u,v) ∈ [tn,s]× [tn, t], tn ≤ s ≤ t ≤ tn+1}. For the integrand with absolute value the domain
of integration ∆ can be divided into 3 subdomains ∆1,∆2 and ∆3, see Figure C.1 below where

∆1 = {(u,v) ∈ ∆, tn ≤ u ≤ s, tn ≤ v ≤ u}
∆2 = {(u,v) ∈ ∆, tn ≤ u ≤ s,u ≤ v ≤ s}
∆3 = {(u,v) ∈ ∆, tn ≤ u ≤ s,s ≤ v ≤ t}.

Then, the integral J1(s, t) can be split as follows:

J1(s, t) =
∫ ∫

∆

eγ(u+v)−β |u−v|dudv

=
∫ ∫

∆1

e−(βR−γ)u+(βR+γ)vdvdu+
∫ ∫

∆2

e−(βR−γ)v+(βR+γ)udvdu

+
∫ ∫

∆3

e−(βR−γ)v+(βR+γ)ududv

= J∆1(s, t)+ J∆2(s, t)+ J∆3(s, t)

where

J∆1(s, t) =
∫ ∫

∆1

e−(βR−γ)u+(βR+γ)vdvdu
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=
1

βR + γ

∫ s

tn

(
e2γu − e−(βR−γ)u+(βR+γ)tn

)
du

=
1

2(βR + γ)γ

(
e2γs − e2γtn

)
+

1
β 2

R − γ2

(
e−βR(s−tn)+γ(s+tn)− e2γtn

)
,

J∆2(s, t) =
∫ ∫

∆2

e−(βR−γ)v+(βR+γ)udvdu

=
1

βR − γ

∫ s

tn

(
e2γu − e−(βR−γ)s+(βR+γ)u

)
du

=
1

2(βR − γ)γ

(
e2γs − e2γtn

)
+

1
(β 2

R − γ2)

(
e−βR(s−tn)+γ(s+tn)− e2γs

)
,

and

J∆3(s, t) =
∫ ∫

∆3

e−(βR−γ)v+(βR+γ)ududv

=
1

βR + γ

∫ t

s

(
e−(βR−γ)v+(βR+γ)s − e−(βR−γ)v+(βR+γ)tn

)
dv

=
1

β 2
R − γ2

{
e−βR(t−tn)+γ(t+tn)− e−βR(t−s)+γ(t+s)− e−βR(s−tn)+γ(s+tn)+ e2γs

}
.

Combining J∆1 ,J∆2 and J∆3 , and using the identity 1
2(βR+γ)γ +

1
2(βR−γ)γ = βR

γ(β 2
R−γ2)

, we obtain

J1(s, t) =
1

β 2
R − γ2

{
e−βR(s−tn)+γ(s+tn)+ e−βR(t−tn)+γ(t+tn)− e−βR(t−s)+γ(t+s)

βR

γ

(
e2γs − e2γtn

)
− e2γtn

}
.

This implies that

J1(s, t) = e−γ(t+s)J1(s, t)

=
1

β 2
R − γ2

{
e−βR(s−tn)−γ(t−tn)+ e−βR(t−tn)−γ(s−tn)− e−βR(t−s)+

βR

γ
e−γ(t−s)

−
(

βR

γ
+1
)

e−γ(t+s)+2γtn
}
.

The integral J2(s, t) is given by

J2(s, t) =
∫ ∫

∆

e−(βR−γ)(u+v)dudv

=
1

(βR − γ)2

{
e−(βR−γ)(t+s)− e−(βR−γ)(t+tn)− e−(βR−γ)(s+tn)+ e−2(βR−γ)tn

}
.

This implies that

J2(s, t) = e−γ(t+s)+2βRtnJ2(s, t)
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=
1

(βR − γ)2

{
e−βR(t+s)+2βRtn − e−βR(t−tn)−γ(s−tn)− e−βR(s−tn)−γ(t−tn)+ e−γ(t+s)+2γtn

}
.

Substituting J1(s, t) and J2(s, t) in (C.11) and using the identities 1
(βR−γ)2 +

1
β 2

R−γ2 =
2β

(βR−γ)2(βR+γ)

and 1
(βR−γ)2 − 1

β 2
R−γ2 =

2γ

(βR−γ)2(βR+γ)
we obtain for s ≤ t:

cov(P(t),P(s)) =
k2

Pσ2
R,n

2βR(βR − γ)2(βR + γ)

{
2βRe−βR(s−tn)−γ(t−tn)+2βRe−βR(t−tn)−γ(s−tn)

− (βR − γ)e−βR(t−s)+

(
β 2

R
γ

−βR

)
e−γ(t−s)− (βR + γ)e−βR(t+s)+2βRtn

−
(

β 2
R

γ
+βR

)
e−γ(t+s)+2γtn

}
.

Interchanging t and s, we obtain (C.10) for all t and s. □

Proof of Theorem 6.1.9

Proof. Let ν ∈ U\{uO}. To prove the first statement we use the fact that for s ∈ [tn, tn+1) the

process
∫ s

tn
e−β (s−u)dW R(u) is a martingale, i.e., E

[∫ s

tn
e−β (s−u)dW R(u)

]
= 0.

Taking the expectation in (C.8) and applying Fubini’s theorem yields

E
[
M(t) | Xn = x,un = ν

]
= E

[
−kpσR

∫ t

tn
e−γ(t−s)

(∫ s

tn
e−β (s−u)dW R(u)

)
ds
]

=−kpσR

∫ t

tn
e−γ(t−s)E

[∫ s

tn
e−β (s−u)dW R(u)

]
= 0

Then, for x = (r, f , p,y) and t = tn+1 the closed-form solution (C.7) yields

mP,n = E[Pn+1 | Xn = x,un = ν ] = E[e−γ∆N p+ϒn(ν ,y)+M(tn+1) | Xn = x,un = ν ]

= e−γ∆N p+ϒn(ν ,y)+E[M(tn+1) | Xn = x,un = ν ] = e−γ∆N p+ϒn(ν ,y).

Given that the conditional variance is given by

Σ
2
P,n = cov(P(t),P(t) | Xn = x, un = ν),

for t = tn+1, we immediately have the conditional variance (6.12). □

Limiting case, γ = 0. Assume that the IS is perfectly insulated (no heat loss to the environment).
Then, the following corollary can be derived from Theorem 6.1.9 as a limiting case for γ = 0.

Corollary C.2.4 (Perfectly insulated IS) Assume that Assumption 6.1.1 is fulfilled and the
rate of heat loss to the environment γ = 0. Then, the parameters of the Gaussian process Pn+1
given in Theorem 6.1.9 become:
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1. The conditional mean is given by

mP0,n = p− kPµR,n∆N +
kP

βR
(µR,n − r)

(
1− e−βR∆N

)
+ϒ

0
n (ν ,y),

where ϒ 0
n is given by

ϒ
0

n (ν ,y) =



κF∆N , ν = uF

κC(Pin −Pout)∆N , ν = uC

0, ν = uW

κDQI
C∆N +ψ0

n (y), ν = uD

(C.12)

with ψ0
n given for gD

n = g(tn,uD) by

ψ
0
n (y) = κDCO

{
(eA∆N − Iℓ)A−1(y+A−1BgD

n )−∆NA−1BgD
n

}
,

where Iℓ is an ℓ× ℓ identity matrix.

2. The conditional variance is given by

Σ
2
P0,n =

k2
Pσ2

R,n

2β 3
R

{
2βR∆N +4e−βR∆N − e−2βR∆N −3

}
. (C.13)

The proof this corollary is given below

Proof. For γ = 0 and t,s ∈ [tn, tn+1), we have the following limits

lim
γ→0

β 2
R

γ
(e−γ|t−s|− e−γ(t+s)+2γtn) = 2β

2
R(min(s, t)− tn),

lim
γ→0

β 2
R

γ

(
1− e−2γ∆N

)
= 2β

2
R∆N , lim

γ→0

1
γ

(
1− eγ∆N

)
=−∆N .

Then, plugging the above approximations into relation (C.7) and yields equation (C.12). Plug-
ging the above approximations into relation (C.10) reduces the conditional covariance to

covp(P(t),P(s)) =
k2

Pσ2
R,n

2β 3
R

{
2βR(min(s, t)− tn)+2e−βR(s−tn)+2e−βR(t−tn)

− e−βR|t−s|− e−βR(t+s)+2βRtn −2
}
,

and for t = s = tn+1 the conditional variance (C.13) follows. □
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C.3 Details on Joint Conditional Distribution

C.3.1 Proof of Theorem 6.1.10
Proof. We want to show that Equation (6.14) holds true. We denote by covrp(P(t),R(t)) =
cov(P(t),R(t) | Xn = x, un = ν), t ∈ [tn, tn+1) the conditional covariance of (R(t),P(t)) given
that at time tn, Xn = x and un = ν . Using the expression of P(t), t ∈ [tn, tn+1) given in equation
(C.6) and the property of the conditional covariance given in Appendix C.2.5, we have

covrp(P(t),R(t)) = cov
(

e−γ(t−tn)Pn + f (un)− kP

∫ t

tn
e−γ(t−s)R(s)ds,R(t)

∣∣ Xn = x, un = ν

)
= cov

(
− kP

∫ t

tn
e−γ(t−u)R(s)ds,R(t)

∣∣ Xn = x, un = ν

)
=−kp

∫ t

tn
eγ(t−s)cov(R(s),R(t) | Rn = r)ds

=−
kPσ2

R,n

2βR

∫ t

tn
e−γ(t−u)

(
e−βR|t−s|− e−βR(t+s)+2βRtn

)
ds

=−
kPσ2

R,n

2βR

∫ t

tn

(
e−(βR+γ)(t−s)− e−(βR−γ)s−(βR+γ)t+2βRtn

)
ds

=−
kPσ2

R,n

2βR

{
1

βR + γ

(
1− e−(βR+γ)(t−tn)

)
+

1
βR − γ

(
e−2βR(t−tn)− e−(βR+γ)(t−tn)

)}
Using the identity 1

βR+γ
+ 1

βR−γ
= 2βR

β 2
R−γ2 , for t = tn+1, we immediately have (6.14). Now, Let

ER
n+1 and EP

n+1 be two independent normally distributed random variables. Since Pn+1 and Rn+1
are correlated Gaussian processes, from the closed-form expression (6.9) and (6.1.4), we can
derive the following recursions.

Rn+1 = mR,n +ΣR,nER
n+1,

Pn+1 = mP,n +ΣP,n

(√
1−ρ2

RP,nE
P
n+1 +ρRP,nER

n+1

)
.

Σ
2
RP,n = cov(Rn+1,Pn+1 | Xn = x, un = ν)

= cov
(

mR,n +ΣR,nER
n+1,mP,n +ΣP,n

(√
1−ρ2

RP,nE
P
n+1 +ρRP,nER

n+1

) ∣∣ Xn = x, un = ν

)
= cov

(
ΣR,nζ

R
n+1,ΣP,n

(√
1−ρ2

RP,nζ
P
n+1 +ρRP,nζ

R
n+1
) ∣∣ Xn = x, un = ν

)
= ΣR,nΣP,n

[√
1−ρ2

RP,ncov(ζ R
n+1,ζ

P
n+1

∣∣ Xn = x, un = ν)+ρRP,ncov(ζ R
n+1,ζ

R
n+1

∣∣ Rn = r)
]

= ρRP,nΣR,nΣP,ncov(ζ R
n+1,ζ

R
n+1

∣∣ Rn = r)
= ρRP,nΣR,nΣP,n,

from which we derive relation (6.13). □
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Corollary C.3.1 (Perfectly insulated IS, γ = 0) For perfectly insulated IS, the conditional co-
variance of Rn+1 and Pn+1 given by (6.14) reads as

ΣRP,n =−
kPσ2

R,n

2β 2
R

(
1−2e−βR∆N + e−2βR∆N

)
.

This corollary shows that Pn+1 and Rn+1 are negatively correlated also when γ = 0 since

1−2e−βR∆N + e−2βR∆N =
(

1− e−βR∆N
)2

> 0.

C.3.2 Proof of Proposition 6.1.11
Proof. ZRP is a normally distributed as a linear combination of two jointly normally distributed
random variables, we have

E[ZRP | Xn = x,un = ν ] = E

ZP −ρRP,nZR√
1−ρ2

RP,n

∣∣ Xn = x,un = ν


=

1√
1−ρ2

RP,n

E[ZP −ρRP,nZR
∣∣ Xn = x,un = ν ]

=
1√

1−ρ2
RP,n

(E[ZP
∣∣ Xn = x,un = ν ]−ρRP,nE[ZR

∣∣ Rn = r]) = 0.

Var[ZRP
∣∣ Xn = x,un = ν ] =Var

ZP −ρRP,nZR√
1−ρ2

RP,n

∣∣∣∣ Xn = x,un = ν


=

1
1−ρ2

RP,n
Var[ZP −ρRP,nZR

∣∣∣∣ Xn = x,un = ν ]

=
1

1−ρ2
RP,n

(
Var[ZP

∣∣ Xn = x,un = ν ]+ρ
2
RP,nVar[ZR

∣∣ Rn = r]

−2ρRP,ncov(ZP,ZR
∣∣ Xn = x,un = ν)

)
=

1
1−ρ2

RP,n
(1+ρ

2
RP,n −2ρ

2
RP,n) =

1−ρ2
RP,n

1−ρ2
RP,n

= 1.

□

C.3.3 Proof of Proposition 6.1.13
Proof. Using the variables zr and zp defined above, we obtain

ϕRP(r, p) =
1

2πΣR,nΣP,n

√
1−ρ2

RP,n

exp
{
− 1

2(1−ρ2
RP,n)

(
z2

p −2ρRP,nzPzr + z2
r
)}
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=
1

2πΣR,nΣP,n

√
1−ρ2

RP,n

exp
{
− 1

2(1−ρ2
RP,n)

(
(zp −ρRP,nzr)

2 +(1−ρ
2
RP,n)z

2
r

)}

=
1

√
2π

√
2πΣP,nΣP,n

√
1−ρ2

RP,n

exp
{
− 1

2

(
zp −ρRP,nzr√

1−ρ2
RP,n

)2

− z2
r
2

}

=
1

ΣP,n
√

2π

√
1−ρ2

RP,n

exp
{
− z2

RP
2

}
1

ΣR,n
√

2π
exp
{
− 1

2

(
r−mR,n

ΣR,n

)2}

= ϕR(r)
1

ΣP,n
√

2π

√
1−ρ2

RP,n

e−
1
2 ζ 2

z (r,p).

□

C.3.4 Proof of Proposition 6.1.14
Proof. Let p2,r2 ∈ R. Relation (6.1.2) implies that

P(Pn+1 ≤ p2, Rn+1 ≤ r2) =
∫ r2

−∞

∫ p2

−∞

ϕPR(r, p)d pdr

=
∫ r2

−∞

∫ p2

−∞

ϕR(r)
1

ΣP,n
√

2π

√
1−ρ2

RP,n

e−
1
2 ζ 2

z (r,p)d pdr

=
∫ r2

−∞

∫
ζz(r,p2)

−∞

ϕR(r)
1√
2π

e−
z2
2 dzdr

=
∫ r2

−∞

ϕR(r)
∫

ζz(r,p2)

−∞

1√
2π

e−
z2
2 dzdr

=
∫ r2

−∞

ϕR(r)Φ(ζz(r, p2))dr.

□

C.4 Construction of New Basis for Reduced Order System

C.4.1 Practical Construction of New Basis Vectors
In this subsection we give details on how we can practically choose the new basis vectors.
Choose c ̸= 0. Then the hyperplane CMỸ = c does not contain the origin 0, there are intersection
points A1,A2, . . . ,Aℓ, with the axes with coordinates a1,a2, . . . ,aℓ. Let us assume that there is
an intersection with the axis ℓ with coordinate aℓ. For k = 1,2, . . . , ℓ− 1, define the vectors
v1,v2, . . . ,vℓ−1, by

vk =

{−−→
AℓAk = (0, . . . ,0,ak,0, . . . ,0,−aℓ)⊤ if there is intersection with axis k
ek = (0, . . . ,0,1,0, . . . ,0)⊤ else
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Then, the vectors v1,v2, . . . ,vℓ−1, are linearly independent.
Now we choose the vector vℓ such that ⟨vℓ,vk⟩= 0, for k = 1, . . . , ℓ−1. Therefore, the vec-

tors v1,v2, . . . ,vℓ, form a sequence of linear independent vectors in Rℓ. Let vℓ = (b1,b2, . . . ,bℓ)
be the unknown coordinates of vℓ. Then, ⟨vℓ,vk⟩= 0, is a homogeneous system of equations

v1
1 v2

1 . . . vℓ1
v1

2 v2
2 . . . vℓ2

...
...

v1
ℓ−1 v2

ℓ−1 . . . vℓℓ−1




b1

b2

...
bℓ

=


0
0
...
0

 .

The coefficient matrix of the above system has rank ℓ−1 and there are infinitely many solutions
of the system containing one free parameter. Finally, the linear independent vectors v1,v2, . . . ,vℓ
can be transformed by Gram-Schmidt orthogonalization into ℓ orthogonal vectors.

C.4.2 Proof of Lemma 6.2.1
Proof.

1. Assume that the output matrix CM ̸= 0. Let

Yc = {Y ∈ Rℓ : CMY = c} ⊂ Rℓ

be a subset of Rℓ containing all points with constant average temperature QM = c. Since
QM =CMỸ , the subset Yc defines an hyperplane in Rℓ and for c = 0 we have

Y0 = {Y ∈ Rℓ : CMY = 0}

is an (ℓ− 1)-dimensional subspace of Rℓ containing the origin 0 and all points with
average temperature QM = 0. By construction, the new basis vectors v1,v2, . . . ,vℓ, are
such that v1,v2, . . ., vℓ−1, span the subspace Y0 while the last vector vℓ is orthogonal to
Y0. Thus all linear combination of v1,v2, . . . ,vℓ−1, have the same average temperature
QM = 0. Therefore, the hyperplanes CMY = c are parallel to v1,v2, . . . ,vℓ−1, and orthog-
onal to vℓ.

2. The average temperature QM = CMỸ can be written in terms of the new coordinates
as QM = CMV Y = CMY where v = (v1,v2, . . . ,vℓ) and CM

= CMv ∈ R1×ℓ. For Y p =

(Y 1
, . . . ,Y ℓ−1

,0)⊤ and Y q = (0, . . . ,0,Y l
), the decomposition of Y = Y p +Y q into the

projection of Y onto span{v1,v2, . . . ,vℓ−1} and vℓ gives

QM =CMY =CMY p +CMY q =CM,ℓY ℓ
.

Since Y p is a linear combination of the first ℓ−1 basis vectors, it belongs to the subspace
Y0 with CMY p = 0. Hence, in the new coordinate it holds QM = CM,ℓY ℓ, i.e. the last
coordinate Y ℓ is up to a scaling constant the average temperature.

3. Finally, the relation 0=CMY p =
ℓ−1

∑
k=1

CM,kY k
= 0 holds for all Y p ∈Rℓ−1. This implies that

all the first ℓ−1 entries of the row matrix CM must vanish, i.e. CM,1
= . . .=CM,ℓ−1

= 0.
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Using QM =CM,ℓY ℓ the row matrix CM reads as

CM
= (0, . . . ,0,CM,ℓ

).

Since CM
=CMV the last entry CM,ℓ is given by

CM,ℓ
=CMVℓ.

□
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Nomenclature

List of Abbreviations

PHX pipe heat exchanger
ADP Approximate dynamic programming
BT Balanced truncation
MOR Model order reduction
MDP Markov decision process
IS Internal storage
GS Geothermal storage
ODE Ordinary differential equation
PDE Partial differential equation
HJB Hamilton-Jacobi-Bellman
SDE Stochastic differential equation
COP Coefficient of performance of the heat pump
LTI Linear time-invariant
DPE Dynamic programming equation
PDPE Post-decision dynamic programming equation
LMS Least square Monte Carlo
CHP Combined heat and power
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List of Symbols

Q = Q(t,x,y) temperature in the GS
T finite time horizon
lx, ly, lz width, height and depth of the storage
D = (0, lx)× (0, ly) domain of the GS
DF , DM domain inside and outside the pipes
DJ =DJ ∪DJ interface between the pipes and the medium
∂D boundary of the domain
∂DI , ∂DO inlet and outlet boundaries of the pipe
∂DL,∂DR,∂DT , ∂DB left, right, top and bottom boundaries of the domain
N ∗

∗ subsets of index pairs for grid points
K,K mappings (i, j) 7→ l of index pairs to single indices
v = v0(t)(vx,vy)⊤ time-dependent velocity vector
v0 constant velocity during pumping
cF

p , cM
p specific heat capacity of the fluid and medium

ρF , ρM mass density of the fluid and medium
κF , κM thermal conductivity of the fluid and medium
aF , aM thermal diffusivity of the fluid and medium
λG heat transfer coefficient between storage and underground
Q0 initial temperature distribution of the GS
QG underground temperature
QI,QI

C,Q
I
D inlet temperature of the pipe, during charging and discharging

QM,QF average temperature in the storage medium and fluid
QO,QB average temperature at the outlet and bottom boundary
G∗ gain of thermal energy in a certain subdomain
IC, IW , ID time interval for charging, waiting, discharging periods
∇, ∆ = ∇ ·∇ gradient, Laplace operator
Nx, Ny, number of grid points in x,y-direction
hx,hy mesh size in x and y-direction
nP number of pipes
n outward normal to the boundary ∂D
n dimension of state vector Y
ℓ dimension of the reduced-order system
In n×n identity matrix
A,B,C n×n system matrix, n×m input matrix, n0 ×n output matrix of

original system
A, B, C n×n system matrix, n×m input matrix, n0 ×n output matrix of

transformed original system
Ã, B̃, C̃ ℓ× ℓ system matrix, ℓ×m input matrix, n0 × ℓ output matrix of

the reduced-order system
D±, AL, AM, AR block matrices of matrix A
Y , Y n-dimensional state of original and transformed original system
Ỹ ℓ-dimensional state of reduced-order system
Z no-dimensional output of original system
Z̃ no-dimensional output of reduced-order system
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g input variable of the system
GC, GO controllability and observability Gramians
GC, GO transformed controllability and observability Gramians
T transformation matrix
σi > 0 Hankel singular values
Σ diagonal matrix of Hankel singular values
U,L upper/ lower triangular matrix from Cholesky decomp. of GC/GO
K orthogonal matrix from the eigenvalue decomposition of

U⊤GOU
W, V unitary matrices from the singular value decomposition
S(ℓ) selection criterion
L2(0, t) set of square integrable functions on [0, t]
1X(.) indicator function of X
IC, IW and ID time interval for charging, waiting and discharging periods
P(t) = P(x, t) average temperature in the IS
γ rate of heat loss to the environment
p, p minimum and maximum temperature in the IS
q,q minimum and maximum temperature in the GS
R,F residual demand and fuel price
uD(t) maximum discharging rate of the IS
uC(t) maximum charging rate of the IS
uF maximum rate of firing fuel
uW ,uO waiting and over-spilling control
u = (u(t))t∈[0;T ] control process
ũ(t,x) Markov decision rule
u∗ optimal control
U = {uO,uD,0,uC,uF} set of feasible controls
U(t,x)⊂ U continuous time control constraint
A set of admissible controls
K(X) state constraint set
Ω sample space
WR,WF Wiener processes
Gt sigma-algebra generated by {(WR(s),WF(s)), s ∈ [0, t]}
G filtration generated by the Wiener process

{(WR(t),WF(t)), t ∈ [0,T ]}
P probability measure on a measurable space (Ω,GT )

X̂ = (R,F) generic variable for uncontrolled states
X = (P,Q) = (P,Ỹ ) generic variable for controlled states
X = (X̂ ,X) = (R,F,P,Ỹ ) state variable
Et,x[·] = E[.|X(t) = x] conditional expectation given that at time t the state X(t) = x
µR/F mean reversion level for residual demand/ fuel
βR/F mean-reversion speed for residual demand/ fuel
µ̂, σ̂ drift and volatility of the uncontrolled state process X̂
δ i

R/F length of the seasonal period for the i-th seasonality component
for R/ F

t i
R/F reference time for the i-th seasonality component for R/ F
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Ki
R/F amplitude of the i-th seasonality component for R/ F

J(t,x;u), V (t,x) performance criterion and value function at time t
Ψ, φ running and terminal cost
V (x) terminal value function
Ah area of the IS
Pamb constant ambient temperature around the IS
F , R continuous state space of the fuel price and the residual demand
P continuous state space of the temperature in the IS
Y continuous reduced-order state space of the GS
X =R×F ×P ×Y continuous state space of the generic state variable
F = [ f , f ], R = [r,r] truncated continuous state space of the fuel price and the residual

demand
P = [p, p] truncated continuous state space of the average temperature in

the IS
Y = [y1,y1]× . . .× [y

ℓ
,yℓ] truncated reduced order state space of the GS

X =R×F ×P ×Y truncated state space of the generic state variable
F̃ , R̃ discrete state space of the fuel price and the residual demand
P̃ discrete state space of the average temperature in the IS
Ỹ discrete state space of the GS
X̃ = R̃× F̃ × P̃ × Ỹ discrete state space of the generic state variable
Tt,T set of stopping times valued in [t,T ]
Lν = Lν

+ L̂ generator of the state process
Xε perturbed generic state variable
X ε =R×F ×Pε ×Yε perturbed state space of the generic state variable
σ ε ∈ R(l+3)×(l+3) perturbed non-singular volatility matrix
tn = n∆N ,n = 0,1, . . . ,N discrete time points with N the number of time steps
∆N = T/N = tn+1 − tn step size
un = u(tn) approximation of the decision rule at discrete time n
E = (En)n=1,...,N sequence of i.i.d random variables with values in R3

Fn = σ({E1, . . . ,En}) sigma-algebra generated by E1,E2, . . . ,En
F= (Fn)n=0,1,...,N discrete-time filtration with F0 = { /0,Ω} the trivial sigma-algebra
Rn = R(tn) ∈R residual demand at discrete time n
Fn = F(tn) ∈ F fuel price at discrete time n
Pn = P(tn) ∈ P average temperature in the IS at discrete time n
Ỹn = Ỹ (tn) ∈ Y reduced-order state of the GS discrete time n
Xn = (Rn,Fn,Pn,Ỹn) ∈ X generic state process at discrete time n
RD

n ∈ R̃ approximation of the residual demand at discrete time n
FD

n ∈ F̃ approximation of the fuel price at discrete time n
PD

n ∈ P̃ approximation average temperature in IS at discrete time n
Ỹ D

n ∈ Ỹ approximation of the reduced-order state of the GS at discrete
time n

XD
n = (RD

n ,F
D
n ,PD

n ,Ỹ D
n ) approximation of the generic state process at discrete time n

N (0,1) standard normal random variable
(ζ †

1 , . . . ,ζ
†
N), i.i.d sequence of standard normal random variables with † =

R,F,P
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m†,n, Σ2
†,n conditional mean and variance of the random variable †n+1, with

† = R,F,P,Ỹ
Xn+1 = Tn(Xn,un,En+1) transition operator with Tn : X ×U ×R3 →K
ρRP,n conditional correlation between Rn+1 and Pn+1
Σ2

RP,n conditional covariance of Rn+1 and Pn+1
ϕR, Φ density and cumulative distribution function
ϕRP joint conditional density function of Rn+1 and Pn+1
UP(n,x) set of feasible actions related to the state constraint to P
UY (n,x) set of feasible actions related to the state constraint to Ỹ
UP(n,x)∩UY (n,x) state-dependent control constraints for MDP
⟨,⟩ scalar product
v1,v2, . . . ,vℓ−1 basis vectors for the state space Y
N† = {0,1, ...,N†} set of indices for R,P and Ỹ k, with † = r, p,y1, . . . ,yℓ
Nr ×Np ×Ny1 × . . .×Nyℓ generic index set the in (ℓ+2)-dimensional discretized apace
xm = (ri, p j,y1

k1
,y2

k2
, . . . ,yℓkℓ) a point in the (ℓ+2)-dimensional discretized apace X̃

V (n,xm), un = un(xm) approximate value function and decision rule in the grid point
xm = (ri, p j,y1

k1
,y2

k2
, . . . ,yℓkℓ) ∈ X̃ at time n

Pν
xm1 ,xm2

probability that the state moves from xm1 at time n to xm2 at time
n+1 under the action un = ν

B†i δ† neighborhood of †i, i = 0,2, . . . ,N† with † = r, p
Bi j = Bri ×Bp j neighborhood of (ri, p j), i ∈Nr and j ∈Np
Byi

ki
neighborhood of yi

ki
, ki ∈Nyi
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