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“Success is a science; if you have the conditions, you get the result.”
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Abstract

The incompressible temporally developing turbulent boundary layer (TBL) and
spatially developing turbulent boundary layer (SBL) with and without blow-
ing is analyzed using the map-based stochastic one-dimensional turbulence
(ODT) model. An understanding of these idealized flows is of fundamental rel-
evance for boundary layer-type problems, which are frequently encountered
in several applications, from atmospheric sciences to engineering. In the ODT
model, the flow variables are resolved on all scales along a wall-normal, 1-D
domain. These variables are evolved by a deterministic process represent-
ing molecular diffusion and by a stochastic process modeling the effect of
turbulent advection and pressure fluctuations. Due to the reduction in dimen-
sionality, the model is particularly appropriate for high Reynolds number flow.
It is shown that the ODT model is able to capture salient features of the turbu-
lent boundary layer-type flows by comparing the results with various available
reference direct numerical simulation (DNS), large eddy simulation (LES) and
experimental results. The comparison is presented for the mean velocity pro-
files, turbulent velocity fluctuation profiles (up to fourth order), the skin friction
coefficient and shape factor for different bulk (Reb) and momentum Reynolds
numbers (Reθ) using fixed model parameters. The influence of the model pa-
rameters is also discussed for various momentumReynolds numbers for each
investigated flow configuration. The results discussed in this thesis suggest
that the ODT model is an economical and reasonably accurate approach for
the simulation of turbulent boundary layer flows.





Kurzfassung

Die inkompressible sich zeitlich entwickelnde turbulente Grenzschicht (TBL)
und die sich räumlich entwickelnde turbulente Grenzschicht (SBL) ohne Aus-
blasen undmit gleichmäßigemAusblasen werdenmit dem abbildungsbasiert-
en stochastischen eindimensionalen Turbulenzmodell (ODT) analysiert. Das
Verständnis dieser idealisierten Strömung ist von grundlegender Bedeutung
für turbulente Grenzschichtströmungen, die in verschiedenen Anwendungen,
von den Atmosphärenwissenschaften bis hin zu den Ingenieurwissenschaften,
häufig anzutreffen sind. Die Strömungsvariablen werden in den vorliegen-
den ODT-Simulationen auf allen Skalen entlang eines wandnormalen 1-D-
Rechengebietes aufgelöst. Diese Variablen werden durch einen determinis-
tischen Prozess, der die molekulare Diffusion repräsentiert, und einen stocha-
stischen Prozess entwickelt, der die Wirkung von turbulenten Advektions-
und Druckschwankungen modelliert. Das Modell eignet sich aufgrund der
reduzierten Dimensionalität besonders für hohe Reynoldszahlen. Es wird
gezeigt, dass das ODT-Modell in der Lage ist, die wesentlichen Merkmale
der turbulenten Grenzschichtströmungen zu erfassen, indem es die mittleren
Geschwindigkeitsprofile, die turbulenten Geschwindigkeitsschwankungspro-
file (bis zur vierten Ordnung), denMantelreibungskoeffizienten und den Form-
faktor mit verschiedenen verfügbaren direkten numerischen Referenzsimula-
tionen (DNS) und Grobstruktursimulationen (LES) vergleicht, die Ergebnisse
für verschiedene Bulk- (Reb) und Momentum-Reynoldszahlen (Reθ) unter Ver-
wendung fester Modellparameter. Der Einfluss der Modellparameter wird
ebenfalls für die betrachteten Momentum-Reynoldszahlen und für die unter-
suchten Strömungskonfigurationen diskutiert. Die in dieser Arbeit gezeigten
Ergebnisse deuten darauf hin, dass das ODT-Modell ein wirtschaftlicher und
akkurater Ansatz für die Simulation von turbulenten Grenzschichtströmungen
ist.
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Chapter 1

General Introduction

The main focus of this chapter is to describe the problem of turbulent flows
along with some of the examples. The Navier-Stokes equations, which rep-
resents the set of governing equations will also be discussed along with the
different simulation and modeling approaches, for example, DNS, LES and
RANS with their merits and demerits. Next, the theory related to the boundary
layer (BL) and various important parameters are summarized. The chapter is
closed with the state of the art and organisation of the thesis.

1.1 Introduction to Turbulent Flow

We are surrounded by numerous examples to observe the turbulent flows in
our everyday life and some of these include smoke from a chimney, water in a
river or waterfall, or the buffeting of a strong wind [1]. These examples demon-
strates that the flow is unsteady, irregular, seemingly random and chaotic, and
surely the motion of every eddy or droplet is unpredictable. Also, the turbu-
lent motions of many scales can be observed in such flows. These features
mentioned above are common to all turbulent flows. Careful observations
and more details can be analyzed in laboratory experiments. For a detailed
explanation, the reader is referred to [2, 3, 4, 5, 6].

Turbulent flows are prevalent in engineering applications, as in the pro-
cessing of liquids or gases with pipe lines, pumps, compressors, etc. and
also the flows around vehicles - e.g., airplanes, automobiles, ships, and sub-
marines.

The above discussion implies that an essential feature of turbulent flows is
the fluid velocity field which varies significantly and irregularly in both position
and time. The velocity field (which is used in the upcoming chapters of the
thesis) is denoted by u(x, t) where x is the position, t is the time and u (or
u1), v (or u2) and w (or u3) are the components of u in x, y and z direction,
respectively. (Note that all the bold symbols are used to represent the vector
quantities.)

The turbulent flow shows the ability to transport and mix fluid much more
effectively as compared to the laminar flow. This is an important characteristic
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of turbulence and was demonstrated by an experiment first reported by Os-
borne Reynolds in 1883 where a dye was steadily injected on the centerline of
a long pipe in which water was flowing. Later, in 1894, Reynolds established
that the flow can be characterized by a single non-dimensional parameter
which is known as the Reynolds number Re, defined as the ratio of Inertial
force to Viscous force (Reynolds number is discussed in much more detail in
upcoming sections of this chapter). It is defined as Re = UL/ν, where U is
the characteristic velocity, L is the length scales and ν is the kinematic viscos-
ity of the fluid. In this experiment, when Re < 2, 300, the flow is laminar and
for Re > 4, 000, the flow is turbulent. In between the laminar and turbulent
region, the flow is in transition.

1.2 The Governing Equations

Due to the highly non-linear nature of the turbulent flow, their research is a
challenge for theoretical and computational analysis. During the 19th cen-
tury, several non-successful attempts were made in order to find analytical
solutions to the Navier-Stokes equations. The Navier-Stokes equations rep-
resents the set of equations for conservation of mass, momentum and energy
in the fluid flow. Originally, the postulates for mass, momentum and energy
conservation were stated for point systems in classical mechanics however,
with the arrival of the concept of fields to physics, the Lagrangian perspective
of a point system tracked in space and time had an Eulerian counterpart for
the change of the field in time. The Euler equations (named after Leonhard
Euler) were among the first partial differential equations which appeared in
1757 [7] representing a set of quasilinear hyperbolic equations governing adi-
abatic and inviscid flow. For more details, the reader is referred to [8, 9, 10].
The Navier-Stokes equations in Lagrangian as well as Eulerian framework
(same notations have been used as in [11]) are obtained by the application of
the Reynolds Transport Theorem (RTT) [8] and are given below.

The RTT in its integral form may be written for an intensive property ψ
moving with velocity vψ as,

d
dt

∫
νψ(t)

ρψdV =
∫

V(t)

∂ρψ

∂t
dV +

∫
S(t)

ρψvψ · ndS, (1.1)

where S is the surface enclosing the control volume V which may change in
time, i.e., V(t) and S(t). νψ(t) is a control volume with corresponding surface
Sψ(t) which is defined such that it moves with the local velocity of the property
ψ, vψ. n is the unit normal vector [11].

If we want to use the same volume ν(t) for all ψ then it needs to be ac-
counted that ν(t) may not define a closed system for Ψ [11]. ν(t) is defined
for convenience as a Lagrangian control volume that moves with the local
mass-averaged velocity, v. With this, the Lagrangian volume associated with
νψ(t) can be related to the one associated with the mass averaged velocity,
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ν(t). The Lagrangian conservation equation for ψ using a Lagrangian control
volume moving at v is,

d
dt

∫
ν(t)

ρψdV = −
∫

S(t)

Φψ · ndS +
∫

ν(t)

σψdV, (1.2)

here Φψ is the flux of ψ apart from the flux associated with the mass-averaged
velocity, σψ is the net rate of production of ρψ.

Using RTT, the Eulerian conservation equation for ψ is written as,∫
V(t)

∂ρψ

∂t
dV +

∫
S(t)

ρψv · ndS = −
∫

S(t)

Φψ · ndS +
∫

V(t)

σψdV, (1.3)

here ρψv is the net rate of production of ρψ.
Using Gauss’ integral theorem, the differential forms of equations 1.2 and

1.3 in the Lagrangian and Eulerian frames, respectively can be written as,

ρ
dψ

dt
= −∇ ·Φψ + σψ, (1.4)

∂ρψ

∂t
+∇ · ρψv = −∇ ·Φψ + σψ. (1.5)

The details of the definition of ψ, Φψ and σψ for various governing equa-
tions are discussed in the following subsections.

1.2.1 Continuity Equation

For the continuity equation, ψ = ∂Ψ/∂m = 1, vψ=1 = v (the velocity advecting
the density is the mass-averaged velocity) which leads to νψ=1(t) = ν(t).
Since the mass is conserved for a closed system, we get,

d
dt

∫
ν(t)

ρdV = 0, (1.6)

∫
V(t)

∂ρ

∂t
dV +

∫
S(t)

ρv · ndS = 0. (1.7)

When the above equations are compared with equations 1.2 and 1.3, we
get,

Φψ=1 = 0, (1.8)

σψ=1 = 0. (1.9)
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1.2.2 Momentum Equation

For the momentum equation, ψ = v, Ψ = mvψ=v = mvv (vv = v, i.e.,
the mass-averaged velocity is the one that advects momentum in a closed
system). So equation 1.1 becomes,

d
dt

∫
ν(t)

ρvdV =
∫

V(t)

∂ρv
∂t

dV +
∫

S(t)

ρv⊗ v · ndS, (1.10)

with ⊗ as the tensor product. Further, using Newton’s second law of motion
we get,

d
dt

∫
ν(t)

ρvdV =
∫

S(t)

(pI+ τ) · ndS +
∫

ν(t)

ρgdV, (1.11)

where p is the pressure, I is the unit tensor, τ is the stress tensor, and g is the
gravitational acceleration vector. Using equation 1.2, we get,

Φv = pI+ τ, (1.12)

σv = ρg. (1.13)

As discussed above, the symbols, ψ, Φψ and σψ are 1, 0, 0, respectively
for the continuity equation and v, pI+ τ and ρg for the momentum equation.

1.3 Modeling and Simulation

As discussed in the previous section, for fluid flows, either laminar or turbulent,
the conservation laws are embodied in the Navier-Stokes equations. Taking
into account the diversity and complexity of fluid flows, it is pretty phenomenal
that the Navier-Stokes equations describe them accurately and in complete
detail. In the context of turbulent flows, the equations describe the turbulent
velocity field starting from the largest to the smallest length as well as the time
scales.

A complete description for the various numerical methods to solve the
Navier-Stokes equations is omitted, instead only an overview is given here.
The growing need of numerical simulations to study the behaviour of systems
whose mathematical models are too complex to provide analytical solutions,
as in most nonlinear systems, leads to the direct numerical simulation (DNS).
DNS in computational fluid dynamics (CFD) is the direct approach of solving
the Navier-Stokes equations (without any assumption) for turbulent flows. In
DNS, the Navier-Stokes equations are solved by resolving all the scales of
motion (i.e., the whole range of spatial and temporal scales) with initial and
boundary conditions appropriate to the flow problem (shown in Figure 1.1
and in Figure 1.2 in spectral space). However, DNS is intractable for the high
Reynolds number flows of practical interest in engineering applications, it is
nonetheless a powerful research tool for investigating turbulent flows at low
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to moderate Reynolds numbers. A detailed description of DNS is given in
[12, 13], among others.

For a DNS, the required resolution can be estimated from the turbulent
Reynolds number Ret = utLν−1 ≈ (Lη−1)4/3, where ut is the turbulent fluc-
tuation velocity, L is a characteristic large length scale or integral scale, η
represents the Kolmogorov scale and ν is the kinematic viscosity. The re-
quirement for this resolution for industrial flows can possibly reach up to 1015

or more grid cells. Hence, the memory storage requirement grows with the
Reynolds number and is very large. Therefore, DNS is currently restricted to
simulation problems at small to moderate Reynolds numbers. For practical
high Reynolds number calculations, other simulation or modeling techniques
are required.

As the high Reynolds number flows are prevalent in numerous applica-
tions, the alternative is to pursue a filtering approach where the turbulent flow
is described in terms of statistics, the simplest being the mean velocity field
u instead of the velocity u(x, t). A tractable set of equations can be deduced
from amodel based on such statistics. The statistical model, large eddy simu-
lations (LES), is explained next which can be used to calculate the properties
of turbulent flows [1].

In LES, the effects of the smaller scale motions are modeled and the dy-
namics of the larger 3-D unsteady turbulent motions are represented explicitly
[1]. Here, a spatial low-pass filter is applied to the equations and the veloc-
ity is decomposed into the sum of a filtered or resolved component and a
residual/ subgrid-scale component. The momentum equations contain the
residual stress tensor (which are modeled to obtain the closure) arising from
the residual motions and the equations for the evolution of the filtered velocity
field (solved numerically) are derived from the Navier-Stokes equations.

LES was initially proposed in 1963, detailed in [14], and later explored in
[15]. Currently, this method is applied to a wide variety of engineering prob-
lems [16, 17, 18]. The computational cost in LES is reduced as compared
to the DNS by modeling the smallest length scales. However, in some prob-
lems, for example, [19, 20, 21], the small-scales plays an important role. In
that sense, LES is more accurate and reliable where large-scale unsteadiness
is significant as the large-scale unsteady motions are represented explicitly.
A detailed description of LES is provided in [22].

Next, the Reynolds-averaged Navier–Stokes (RANS) equations played an
important role. The RANS equations are time-averaged equations of motion
for fluid flow and the idea behind RANS is based on the separation of the flow
field into a mean value and fluctuations (Reynolds decomposition) [23], for
example, the K − ε model (see Appendix A). The RANS equations can be
used with approximations to provide approximate time-averaged solutions to
the Navier-Stokes equations, however, these equations were primarily used
to describe the turbulent flows [1]. As discussed in [24, 25], information is lost
in case of RANS simulations due to averaging on the integral scale.

A schematic for comparison between different prediction methods dis-
cussed above is given in Figure 1.1 (depicting various scales) indicating that
in case of DNS, the full range of length scale is resolved and no modeling
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FIGURE 1.1: A schematic for comparison between different pre-
diction methods [26].

tool is required, whereas, for LES and RANS, the complete range of length
scale is not resolved. Some modeling methods are needed in LES as well
as RANS. LES is a compromise between DNS and RANS. It is capable of
providing more information than RANS at a lesser cost than DNS. A corre-
sponding schematic in spectral space for DNS, LES and RANS is presented
in Figure 1.2.

To summarize, industrial applications typically exhibit extremely large val-
ues of the dimensionless parameters, such as, the Reynolds number (Re)
which leads to a very broad range of scales in the turbulence field. A very
high spatial resolution is required to resolve the full range of scales. There-
fore, the DNS of a high-Reynolds-number turbulent flow or turbulent boundary
layer quickly becomes prohibitively expensive. To compensate for this, small
scales may be modeled, as it is done in RANS and LES, which bear the prob-
lem that the spatio-temporal development of the turbulent flows cannot be
captured very well. To overcome such limitations, a lower-order, stochastic
turbulence model, such as the one-dimensional turbulence (ODT) [28, 29],
can be useful since in ODT the flow variables are resolved only on a statisti-
cally representative, one-dimensional flow domain.

The main idea behind ODT is to model the effects of Navier–Stokes turbu-
lence on a 1-D computational domain (i.e., the ODT line) which is essential to
make the resolution of small-scale processes feasible. In the ODT model, to
mimic the 3-D nature of turbulence in one spatial dimension, a stochastic pro-
cess is adopted whereby motions accelerating mixing are modeled through
a series of stochastic rearrangement events interpreted as the model ana-
logue of individual turbulent eddies [28, 29]. The deterministic part is given
by diffusion equation. The stochastic part is formulated with the aid of discrete
mappings, so-called eddy events, and these events displace fluid parcels in-
stantaneously on a given length scale and, thus, model the effects of an eddy
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turnover. A stochastic sequence of eddy events aims to capture the statistical
properties of the turbulent flow by encompassing a range of scales.

In this thesis, ODT is used as a stand-alone tool for the simulation of the full
range of scales found in the different simulation configurations for turbulent
boundary layer. Since it is difficult to capture all the aspects of a full 3-D DNS
with a lower-order model, this requires some compromises for the results to be
obtained using the ODT model. Nevertheless, it is of fundamental interest to
see how far one can get with the simplest possible set-up used in the study. As
theODTmodel is utilized to investigate turbulent boundary layer, the boundary
layer theory is discussed next before moving to the formulation of the model.

1.4 Boundary Layer Theory

Boundary layer theory and its applications are discussed in this section and
for detailed discussion, the reader is referred to [30]. The important objectives
are external flows, laminar and turbulent boundary layer and the BL over a flat
plate.

The boundary layer is one of the most important subjects in fluid mechan-
ics. The flow can be classified into external flows and internal flows. Most of
the times, the fluid is passing through a pipe or duct (internal flows) or it is
moving over a plate (external flows). In both the cases, the fluid is in contact
with at least one solid boundary.

Consider a car moving and passing through air. If the flow passing over
the car is analyzed, the different phenomenon occur, such as initially creation
of a boundary layer and the transformation of the flow from laminar/transition
to turbulent. Another example can be considered the fluid passing over an
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’Boundary Layer’. u∞ is the free stream velocity, δ is the bound-

ary layer thickness and θ is the momentum thickness [31].

immersed circular cylinder or a sphere which is at rest. Assuming that at a
solid boundary, the fluid will have zero velocity relative to the boundary or
termed as no slip condition due to the viscous forces. Along with these ex-
ternal flows, other examples can be a bird flying surrounded by the fluid, the
fluid flow surrounding an airplane or a space shuttle or submarine, flow past
vehicles, buildings, etc. In these cases the solid or the body is surrounded by
the fluid.

Like this, there is always a boundary layer created in most of the external
flow problems. When the fluid flow is analyzed, it is required to deal with
this layer and the remaining fluid flow. Sometimes, the flow is considered as
a potential or ideal which is outside the BL. (For the internal flows as well,
the velocity change takes place and there is also a boundary layer created.
However, here our prime focus is on external flows.) This boundary layer is
the major area which needs to be studied in detail. For example, how the
boundary layer is behaving, whether it is laminar or turbulent and how the
velocity changes, how the pressure and other parameters change. First, the
concept of BL is discussed followed by some of the equations related to it.

If the flow is considered viscous, there is a no slip condition at the boundary
where the fluid has a velocity same as that of the boundary. Hence, due to
this condition and the viscous effect, a thin layer near to the boundary layer
is generated and this is called the ‘boundary layer’ (shown in Figure 1.3 for a
flat plate).

Whenever the viscous flows are dealt, this boundary layer generated due
to the no slip condition needs to be considered and hence, the theory of the
boundary layer forms the backbone of the modern fluid dynamics. Due to
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its importance, the boundary layer theory was proposed in 1904 by Ludwig
Prandtl [32] and then many related theories were developed.

Prandtl considered the boundary layer as a surface dividing between the
rotational (within the boundary layer) and irrotational (beyond the boundary
layer) flow (as in the case of a flow over a flat plate discussed below and
shown in Figure 1.3). He also tried to establish certain relationship (discussed
below), so that, various parameters like velocity and the pressure can be cal-
culated, with respect to the boundary layer.

Figure 1.3 shows that a free stream flow with velocity u∞, is coming and
depicts the boundary layer growth over a flat plate. The difference in velocity of
the fluid particles between the object and the fluid surface is confined to a layer
(boundary layer). In this region, the shear stresses are dominant. Depending
upon the case, remaining fluid flow can be considered as a potential or ideal
fluid flow, simplifying the problem by considering the boundary layer and the
flow beyond the boundary layer.

In Figure 1.3, x is equal to zero and the length of the flat plate is l. u∞ is
the free stream velocity coming and touching the flat plate placed. The flat
plate is not moving and due to the no slip condition, the velocity of the fluid
touching the surface of the flat plate should be zero. Initially it is the laminar
boundary layer tending towards the turbulent region through a transition zone.
Due to the shear stresses, flow in the boundary layer is rotational and flow
outside boundary layer is irrotational and also the boundary layer thickness is
increasing as the fluid passes over the flat plate.

The velocity profile for the laminar boundary layer and the turbulent bound-
ary layer is shown in Figure 1.4. Initially for some distance (say up to xc in
streamwise direction x as shown in Figure 1.3), the flow in the boundary layer
is totally laminar in nature and after sometime, a mixing starts and transition
takes place, finally, the flow becomes turbulent after a certain distance.

In the case of laminar boundary layer, within the boundary layer, the flow
takes place in layers with each layer gliding over the adjacent layer as shown
in Figure 1.4. Here, the exchange of mass or momentum takes place only
between the adjacent layers and the dynamic viscosity of co-efficient is used
to predict the shear stress within the layer. It is found only where the flow
is taking place with a small Reynolds number (Rex = u∞x

ν where Rex is the
Reynolds number at a particular location x). As the distance from the leading
edge increases, the Reynolds number goes on increasing. Initially, in some
region, up to xc, the Reynolds number will be low and the flow will be laminar.
As the Reynolds number increases, say above Rexc (critical Reynolds number
which is 5× 105 for flat plate) the flow becomes turbulent in nature with erratic
motion of fluid particles with a violent transverse interchange of momentum.

Now going back to Figure 1.3, again in the turbulent boundary layer, if the
boundary or the wall is very smooth, the turbulent boundary layer has a very
narrow zone (shown in the figure), very close to the boundary in which the flow
is still laminar, this narrow region is known as laminar or viscous sublayer.

The various regions formed in the turbulent boundary layer are shown in
Figure 1.5 depicting the logarithmic law of the wall first publish in 1930 by
Theodore Von Kármán [34]. The logarithmic law of the wall is a self similar
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FIGURE 1.4: The velocity profile for laminar and turbulent
boundary layers. Velocity is zero at the surface, i.e., no-slip con-

dition [33].

solution for the mean velocity parallel to the wall and is valid for flows at high
Reynolds numbers. Figure 1.5 represents the variation of u+ with y+, where
y+ is the wall normal coordinate dimensionlized with the friction velocity uτ

and kinematic viscosity ν as y+ = yuτ

ν and u+ is the dimensionless velocity
as u+ = u

uτ
, where uτ =

√
τw
ρ . In the viscous sublayer region, i.e., y+ < 5,

the velocity varies linearly with the wall normal coordinate as u+ = y+. In the
buffer region, i.e., 5 < y+ < 30, the variation is u+ 6= y+ and u+ 6= 1

k ln y+ +

C+ and in the turbulent region, i.e., 30 < y+ < 300, u+ = 1
k ln y+ + C+. Here,

k is the Von Kármán constant, C+ is a constant and τw is the wall shear stress.
The Prandtl’s boundary layer equations are presented next. Prandtl showed

that Navier-Stokes equations can be simplified to get approximate solution of
boundary layer. According to Prandtl, flow can be divided into two regions,
i.e., (i) region of boundary layer which lies in immediate neighborhood of solid
boundary and within which about 99% of the velocity changes takes place
and velocity gradient normal to the solid boundary is very large and in this re-
gion Navier-Stokes equations are valid and (ii) region outside boundary layer
which constitutes the main body of flowing fluid with velocities of the order of
free stream velocity, u∞ and the flow in this zone is governed by potential flow
(ideal fluid) theory.

For the analysis of the flow in the boundary layer, we present the boundary
layer equation only, i.e., in region (i). Using scale analysis (or an order of
magnitude analysis), it can be shown that the Navier-Stokes equations inside
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FIGURE 1.5: The normalized mean velocity profile in a turbu-
lent boundary layer in semi-log coordinates which illustrates

the various layers that make up the boundary layer [35].

a boundary layer reduce to,

∂u
∂t

+ u
∂u
∂x

+ v
∂u
∂y

= −1
ρ

∂p
∂x

+ ν
∂2u
∂y2 , (1.14)

∂p
∂y

= 0. (1.15)

The continuity equation in 2-D steady flow is,

∂u
∂x

+
∂v
∂y

= 0. (1.16)

The above equations are known as Prandtl’s Boundary Layer equations.
In 1908, H. Blasius derived simplified solution by considering 2-D steady in-
compressible flow over a flat plate at zero angle of incidence with uniform
flow u∞. According to Blasius, since the plate is flat and has negligible thick-
ness and is uniform, ∂p/∂x must vanish. Hence, Prandtl’s boundary layer
equations becomes,

u
∂u
∂x

+ v
∂u
∂y

= ν
∂2u
∂y2 , (1.17)

along with equation 1.16.
Further, the boundary layer flow analysis based on momentum equation

was derived by Von Kármán [36] by integrating the Prandtl’s boundary layer
equations. The momentum equation can be derived from the equation of
motion by integration over the boundary layer thickness known as ’Momentum
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Integral Equation’ for boundary flow or ’Von Kármán Integral Equation’. The
reader is referred to [1, 30, 36, 37] for more details.

Based on the boundary layer theory developed by Prandtl, various funda-
mental definitions related to the boundary layer are discussed below such as,
the boundary layer thickness, displacement thickness, momentum thickness
and the energy thickness.

The boundary layer thickness, δ is defined as the small distance from the
boundary where velocity achieves a value which is very close (≈ 99%) to the
free stream velocity, u∞ (This differentiates whether the fluid flow is within the
boundary layer or it is beyond the boundary layer). δ depends upon Reynolds
number (boundary layer thickness is much smaller for very high Reynolds
numbers). The boundary layer thickness is sometimes called the velocity
thickness or the velocity boundary layer thickness as it is defined depending
upon the velocity distribution.

Blasius has given an expression for boundary layer thickness (δ) for lami-
nar flow case, for incompressible fluid flow over flat plate (see Figure 1.3) as
[30],

δ

x
=

5.0√
Rex

, (1.18)

The next important definition in boundary layer is called ‘displacement
thickness’ as δ∗. The displacement thickness is defined as a distance mea-
sured perpendicular to the boundary by which the free stream is displaced
to yield the same flow rate outside the boundary layer as the boundary layer
equations yield and the expression for the displacement thickness is,

δ∗ =
∫ δ

0

(
1− u

u∞

)
dy. (1.19)

This expression connects the free stream velocity and the velocity in the
boundary layer and the displacement thickness. When a fluid flow is consid-
ered, there is a need to deal with the momentum and the energy. There will
also be a change in momentum due to the formation of the boundary layer
and the expression called momentum thickness (θ) is defined as,

θ =
∫ δ

0

u
u∞

(
1− u

u∞

)
dy. (1.20)

The momentum thickness can be defined as the distance from actual
boundary such that momentum flux through that distance at a velocity is same
as the momentum deficit due to boundary layer formation. Experimentally, the
boundary layer thickness (δ) is approximately three times the displacement
thickness (δ∗) which is equal to 7.5 times the momentum thickness (θ) [30] for
a flow past flat plate,

δ ≈ 3δ∗ ≈ 7.5θ. (1.21)

The term called ‘energy thickness’ (δe) is defined as the thickness of a layer
of fluid moving with velocity u∞ that represent the loss of energy transport rate



15

as,

δe =
∫ δ

0

u
u∞

(
1− u2

u2
∞

)
dy. (1.22)

Another important quantity in case of boundary layer is called shape factor
(H) which is define as the ratio of the displacement thickness to the momen-
tum thickness,

H =
δ∗

θ
, (1.23)

and the skin friction coefficient, C f , is calculated as the ratio of the wall shear
stress to the dynamic pressure,

C f =
τw

1
2 ρu2

. (1.24)

1.5 State of the Art

Over the last decades, the role of turbulent boundary layers in numerous appli-
cations in the fields of atmospheric sciences, engineering and industry, have
attracted the interest of researchers. Two fundamental approaches, spatial
and temporal, have been used to analyze the incompressible as well as the
compressible boundary layers. The spatially developing boundary layer (SBL)
is characterized by inhomogeneity in the streamwise and wall-normal direc-
tions. This results in large computational requirements (e.g. [38, 39, 40, 41,
42, 43]), particularly in the case of three-dimensional direct numerical simula-
tions (3-D DNS), where the full information of the flow is required. The spatial
approach has been further considered in [40, 41, 44] to evaluate zero pres-
sure gradient (ZPG) turbulent boundary layers from moderate Reynolds num-
bers up to computationally high Reynolds numbers. Under the presence of
scalars, such as temperature, water vapor or chemical species, the resource
requirements increase dramatically (e.g. [45]). Nevertheless, DNS seems to
be inevitable whenever one is interested in details of the dynamics and very
accurate global measures, like the skin-friction drag (e.g. [46]).

The simulations of the turbulent boundary layers at various discrete Reyno-
lds numbers were carried out in [38] using a special coordinate transforma-
tion of the governing equations. Later, some studies were conducted in [47]
using a temporal approach. This temporal approach has been used to in-
vestigate the compressible turbulent boundary layer in [48] revealing that for
quasi-steady flows, the streamwise periodic boundary conditions were valid.
DNS of the incompressible temporally developing turbulent boundary layer
using no-slip and impermeable boundary conditions has been described in
[49] and [50]. Their study demonstrate that the temporally and spatially de-
veloping boundary layers are similar in many aspects.

[51] modified the method given in [38] for generating the inflow data for
3-D simulation of the complex spatially developing boundary layers. Their
approach was to extract instantaneous planes of the velocity data from an
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auxiliary simulation of a zero pressure gradient boundary layer for a large
eddy simulation (LES). The approach was further exhibited and used in [52]
for producing inflow conditions for DNS. The authors introduced a set of addi-
tional steps that involved imposing at the inlet plane an appropriate spectrum
for the turbulent kinetic energy and a condition for insuring that the statisti-
cal correction retains a non-vanishing magnitude. [42] presented the effects
of the outer intermittent region of the boundary layer on the structures of the
large scales of the flow by considering a long domain for their simulations.
Microbubble-laden spatially developing turbulent boundary layers have been
studied in [46]. In their study, bubble concentration gradient creates local
positive velocity divergence which displaces the vertical structure to study the
effect of Reynolds number on drag reduction. Temporal boundary layer have
also been investigated using spatial approach in [43].

All these points make simulations of the spatially developing turbulent
boundary layer both dynamically complex and numerically costly. Hence,
to cut computational costs without simplifying the dynamics too much, the
temporally developing boundary layer (TBL) has been suggested in several
studies, like [47, 48, 49, 50, 53], where the streamwise inhomogeneity is re-
moved by imposing periodic boundary conditions in both lateral directions (x
and z). For DNS, the 3-D computational domain comprises a ’tower’, i.e., the
streamwise and spanwise extents are comparable to the maximum attainable
boundary layer thickness. The 3-D temporal simulations have been proved
to be cost effective and provide a reasonably accurate simplification of the
spatially developing flow [49, 50, 53]. The temporal approach has been fur-
ther used to analyze the incompressible turbulent boundary layer in [50] and
the compressible turbulent boundary layer in [48]. The crucial aspect is the
generation of the initial conditions (e.g. [51, 52, 44]).

Spatially developing turbulent boundary layers have been studied in [40]
for the Reynolds number up to Reθ = 2500 based onmomentum thickness and
free-shear velocity presenting the statistics for the skin friction, mean velocity
and turbulent fluctuations. Around the same time, [39] triggered the transition
by intermittent localized disturbance arising from patches of isotropic turbu-
lence introduced periodically from the free stream and investigated incom-
pressible boundary layers with ZPG over a flat plate. Organization of hairpin
vortex in the outer region of the turbulent boundary layer has been studied
in [54]. Since these hairpin vortices can auto-generate and populate a sig-
nificant fraction of the boundary layer, a detailed description of their transport
mechanism is presented in the study. [55] have discussed an idealized as-
sessment of Townsend’s outer-layer similarity hypothesis for wall turbulence
by performing DNS of turbulent channel flow to compare the effects of no-slip
and shear-stress boundary condition. The simulations of fully turbulent chan-
nel with passive scalars has been done in [56] and [57, 58] provides velocity
statistics in turbulent channel flow for high Reynolds numbers. [59] have car-
ried out DNS of fully developed turbulent and oscillatory pipe flows. DNS for
turbulent boundary layers under ZPG have been done in [41]. On comparing
their results with experiments, they found that there was a large difference in
skin friction coefficients, shape factor, mean profiles and fluctuation profiles
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far into the sublayer and further analyzed tripping effects in their later study
[44].

DNS of unbounded and unsteady turbulent convection for free convection
over a smooth and heated plate have been done in [53]. The author has per-
formed simulations for four different boundary conditions for temporally evolv-
ing free convection and reported interesting results. [45] studied the statistical
behavior of the scalars in the outer region of the boundary layer by solving
the governing equations using a fully spectral method. They also focused on
DNS of spatially developing boundary layer over a flat plate under ZPG and
computed the evolution of the passive scalars. Simulation performed using
DNS to capture evolution inside a vertical plane was presented in [60] and the
smoke cloud simulated using LES in [61].

Another important application is to control the flow for turbulent wall-bound-
ed flows. This is done by the mechanism of adding or removing mass through
a porous surface, and has led to extensive studies of such kind of flows
over the last decades. In case of adding mass, i.e., blowing, skin friction
drag is reduced and removing mass, by suction, results in drag enhancement
[62, 63, 64]. The fluid viscosity on the surface of vehicles causes skin friction
drag on solid surfaces which is drastically increased by turbulent transition of
the flow and has a large economical and ecological impact from the fuel con-
sumption point of view. For reducing fuel consumption in major transportation
systems, like aircrafts, trains and ships, the reduction of skin friction drag in
turbulent flows is of great importance. Additionally, drag reduction for aerial
vehicle has positive ramifications such as larger operational range, greater
endurance and higher achievable speeds.

A variety of techniques have been devised for skin friction drag reduction
and to control other flow properties. Various passive and active flow control
techniques have been used. The passive control methods have been exam-
ined in several studies which include [65, 66, 67, 68]. However, the active
control methods were found to be more attractive due to higher control perfor-
mances and have been the focus in the studies from [69, 70, 71, 72, 73, 74].
A majority of the studies focus on internal flows, however, due to practical
importance, external flows are investigated via blowing and suction.

The spatially developing turbulent boundary layer (SBL) with blowing or
suction from a spanwise localized slot have been performed in [75] by DNS.
The study by means of LES is done in [76]. In [77] drag reduction effects of
blowing generated by a microblowing plate have been reported. An identity
equation decomposing the skin friction drag into a laminar component and a
turbulent component for canonical internal flows was introduced in [78]. This
equation was latter used in several studies related to external flows and it
shows a direct connection between the reduction of the Reynolds shear stress
and friction drag reduction. A DNS of the spatially evolving turbulent boundary
layer with uniform blowing and suction was performed in [63] and experimen-
tally in [77, 79]. However, the DNS [63] was performed at a low Reynolds
number which was only up to Reθ = 300. Recently the effect of uniform blow-
ing and suction with the finite streamwise length of the uniform blowing or
suction region have been studied in [64] reaching up to Reθ = 2500.
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However, further investigations are still required for the effective and prac-
tical drag reduction in external flows. Additionally, a large computational do-
main is required due to the inhomogenity in the streamwise and wall-normal
directions in SBL canonical flow [38, 39, 40, 41, 42, 43] and hence, lim-
ited to small and moderate momentum Reynolds numbers. However, the
Reynolds number needed in engineering applications is much higher [80, 81].
To achieve moderate Reynolds numbers, LES have been performed in [82]
for Reθ = 8300 in case of SBL and in [64] for blowing and suction up to
Reθ = 2500.

Even with the different methods available, there is a steady need for im-
proving the simulation methods. For high Reynolds number flows, a very high
grid resolution is required, which is computationally limited. To remove such
limitations, a new development in this field, which is not based on the RANS
or LES, is the one-dimensional turbulence (ODT) model.

In this thesis, the lower order simulation approach, ODT, is used as a
stand-alone model, to investigate the incompressible temporally and spatially
developing turbulent boundary layer. The study is further extended to investi-
gate the effects of uniform blowing in spatially developing turbulent boundary
layer. A good reason for validating the ODT temporal formulation is that there
is ample comparison data. The reason for validating the ODT spatial formu-
lation is because it is physically more relevant. ODT achieves major cost
reduction, while covering the large Reynolds number regime as compared to
the full 3-D simulations. The ODT model is based on two primary ingredients.
Firstly, the governing equations are written in terms of two independent vari-
ables, i.e., temporal ODT formulations or spatial ODT formulation. Secondly,
the non linear term is replaced by discrete “eddy events” that occur at vari-
ous points in temporal and spatial ODT formulations. This distinctive feature
of ODT is represented by a stochastic process modeling eddy motions via
discrete mappings [28]. The diffusion effects are fully and deterministically
resolved along a 1-D domain. The eddy size, the time, and the location of its
occurrence are chosen as a function of the local energy. Further details for
the formulation of the ODT model are discussed in the next chapter.

1.6 Organisation of the Manuscript

In order to present the relevant information in a continuousmanner, this manu-
script is structured into eight main chapters. The first two chapters aim to
present a theory related to turbulent flow including turbulent boundary layer
and the methodology adopted in the ODT model. The simulation set-up used
for all the cases is discussed in Chapter 3 and the findings obtained from the
numerical analyses carried out using ODT are presented in Chapter 4, 5, 6
and 7. The last chapter of the thesis summarises the major conclusions for all
the different configurations and also presents an outlook. The organization of
this thesis in the form of different chapters is as follows:
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Chapter 1 provides an overview of the theory related to turbulent flows
and turbulent boundary layer along with NS equations and various strategies
to solve NS equations. A literature review is also given in order to provide a
context to the physics related to the subject. It gathers essential study for a
good understanding of the work done during this thesis.

Chapter 2 presents the methodology adopted for the development of the
ODT model. This chapter discusses the various physical phenomena imple-
mented in the model and describes in detail the mathematical and numerical
aspects of these physical phenomena. The verification tests are presented
for the credibility of the ODT model to carry out further studies.

Chapter 3 provides the simulation set-up for all the three configurations
used in this thesis. These configurations are, temporally developing turbulent
boundary layer (TBL), spatially developing turbulent boundary layer (SBL) and
uniform blowing in SBL.

Chapter 4 aims to present the simulation results produced from the first
configuration, i.e., the TBL configuration. This chapter includes the simu-
lation results for four bulk Reynolds numbers at three momentum Reynolds
numbers. The comparison of these results with the DNS data is also pre-
sented.

Chapter 5 presents the simulation results for the SBL configuration in com-
parison with the reference DNS and LES data. This chapter is divided into
sections discussing about domain size sensitivity towards the statistics and
simulation results for two bulk velocities. This chapter also shows the com-
parison between TBL and SBL configurations obtained from the ODT model,
as well as the reference data.

Chapter 6 aims to extend the well validated spatial ODT formulation by ap-
plying uniform blowing on the bottom wall. The various velocity statistics as
functions of wall-normal coordinate and several global properties for bound-
ary layer varied with Reθ are presented in this chapter in comparison with the
reference LES data.

Chapter 7 provides the comparison between ODT results with the exper-
iments conducted at BTU (chair of Prof. Egbers) in collaboration with the
University of Lille, CNRS, France.

Lastly, Chapter 8 presents the conclusions and perspectives of the thesis.
This chapter summarises all the key findings from the three ODT configu-
rations used to carry out the simulations. Also, an outlook is given in this
chapter.

Some details of the ODT model and analysis of the influence of the ODT
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physical model parameters on various statistics produced by using the differ-
ent configurations is given in Appendices in the end of the thesis.

1.7 In Closing

The description of the problem in case of turbulent flows with examples is
discussed in this chapter. The Navier-Stokes equations obtained from RTT
are presented along with simulation and modeling approaches, for example,
DNS, LES and RANS. Further, theory related to boundary layer and various
important parameters are summarized along with the state of the art. Finally,
organisation of the thesis is given.
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Chapter 2

ODT Model Formulation

In this chapter, we start with the general Navier-Stokes equations and fi-
nally reach to the ODT equations for spatial and temporal formulation. Next,
the main features of the one-dimensional turbulence model are summarized.
This includes the map-based formulation of eddy events, their selection, de-
scription of the model parameters and an overview. Further details of the ODT
model are provided in Appendix B.

2.1 Introduction to the ODT Model

The One Dimensional Turbulence (ODT) model conceptually represents a
line of sight through a turbulent flow field. The ODT model is a stand-alone
model applicable in a situation where there is a direction of predominant large-
scale gradient such as shear- driven flow (channel flow), buoyancy-driven flow
(plumes) etc. Although the model has been implemented as sub-grid scale
model in LES and RANS, much of its application has been stand-alone model
and in this thesis also, the stand-alone ODT model has been utilized for in-
vestigating turbulent boundary layer.

There are many other applications which involve the inclusion of additional
properties of the flow such as the temperature and the transport of species or
impurities. Since ODT is a 1D domain model, so this is the major restriction
of ODT. Although this restriction provides an opportunity for high grid resolu-
tion, so that, each scale can be resolved. As ODT can simulate every scale, it
shows similar characteristic as DNS and can therefore be used for fundamen-
tal simulations of turbulence, providing the information needed to improve the
model used by LES and RANS. The literature related to the ODT model and
some of its applications are discussed next.

As explained in introduction, the ODT model enables affordable simula-
tion of high Reynolds number turbulence over the full range of dynamically
relevant length scales. This allows physically sound representation of inter-
actions between turbulent advection and microphysical processes and the
first formulation of the model was given in [29]. Another advantage of the
model is the demonstration of a degree of commonality among turbulent flow
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phenomena. This might not otherwise be readily apparent, by capturing di-
verse flow behaviors within a concise modeling framework based on broadly
applicable empirical principles [28, 29]. The lack of a unique, kinematically
and dynamically consistent analogy between the 1-D model formulation and
the 3-D turbulent flow under consideration is however, an inherent limitation
of the model [28].

The original formulation of ODT was given in [28] which was later extended
to include pressure scrambling effects in [29]. The model was gradually ex-
tended for the simulation of variety of flows [29, 83, 84, 85, 86, 87, 88, 89,
90, 91, 92, 93, 94, 95, 96]. These are channel [90, 89, 95, 97], pipe [98, 99],
multi-physics and reactive flows [92, 100, 93, 88, 101, 94, 102, 91] among
others.

Further elaborating these studies, in [29] the approach is extended by
treating the velocity as a three-component vector. A subgrid implementation
of ODT is formulated in [83] which also discussed the potential advantages
and limitation of the model. Based on the revised form of ODT, near-wall LES
model was developed in [84] and was tested with turbulent channel flow for
a wide range of Reynolds number. In [85], the model was generalized to in-
corporate variable-density effects where the model was used to analyze the
planar mixing layers and compared the results with DNS data. The model was
applied to turbulent convection over a wide range of physical parameter val-
ues and is found to be in good agreement with available experimental data in
[86]. [87] also applied the model to simulate the stably stratified atmosphere
boundary layer. The model was later on used to study the fluxes of heat and
salt across unsheared and sheared double-diffusive interfaces in [88].

In a later study, mesh adaption was implemented to further enhance the
performance of the model [89]. The computationally accessible scale range in
spatial domain was increased and in the time domain, it enabled Lagrangian
implementation of dilatation. ODT has been applied to study channel flow in
[89, 90] and has also been applied to investigate multi-physics and reacting
flows with complex chemical reactions on small scales in [91, 92, 93, 90]. ODT
was used to study the radiatively induced entrainment in stratiform clouds
driven by cloud-top cooling in [94]. The one-dimensional model is extended
to investigate complex flow by embedding ODT line in a coarse 3D LES mesh
and this multi-scale model is referred as ODTLES [103]. ODTLES is applied
to wall-bounded flows in [104] and to turbulent flows through heated channels
and ducts in [95]. Recently, ODT was used to analyse the suction boundary
layers in [96, 105, 106, 107]. These studies have demonstrated that the model
has the capability to produce results comparable with DNS in various fields.

Moreover, with these detailed applications, some important references
which are, in general, important for boundary layer-type flows are highlighted
here. In [89], a limited validation of a case involving forcing of a boundary
layer flow is presented and [87] discusses stably-stratified boundary layers
and in [84, 103, 102, 104, 108, 98] more complex cases were discussed. [96]
presented an asymptotic suction boundary layer exhibiting a temporal evolu-
tion running into a statistical steady state. The work presented in [96] further
motivated to investigate the effects of uniform blowing in SBL which inspired to
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first validate the reduced order model for simple canonical TBL [109, 110, 111]
and SBL [112] and then extent the investigation to the uniform blowing in SBL.

The main focus of the ODT model in this thesis is to investigate the ideal-
ized constant-property non-buoyant configuration of an incompressible tem-
porally and spatially developing turbulent boundary layer for the first time
which is further extended for uniform blowing in SBL. These presents impor-
tant validation cases for the model.

The ODT model consists of two primary ingredients. Firstly, the governing
equations are written in terms of two independent variables i.e. temporal ODT
(T-ODT) formulations (t, y) and spatial ODT (S-ODT) formulation (x, y). (In
this thesis, the ODT aligned coordinate is referred as y and the streamwise
coordinate as x.) Secondly, the discrete eddy events that occur at various
points in (t, y) or (x, y). A detailed discussion has been carried out for both
the ingredients in further sections of this chapter.

2.2 Governing Equations for ODT

The bases for the development of numerical simulations are the conserva-
tion of the mass and momentum. For this purpose, it is useful to write the
equations governing the flow for a fluid [1, 113].

Before discussing the keymodeling concept, i.e., the triplet map and kernel
transformation, several forms of governing equations are summarised first in
Lagrangian and Eulerian frame of reference for T- and S-ODT. The equation
and explanation in this section is taken from [11] and hence, for details, the
reader is referred to [11].

ODT formulation can be broadly classified into two categories. Firstly, the
temporal developing flows (T-flow), where (t, y) are chosen as the indepen-
dent variable. Secondly, the spatial developing flows (S-flow), where (x, y)
are chosen as the independent variables. We have Eulerian and Lagrangian
variants of ODT for both the categories [11]. Earlier ODT was described with
reference to T-flow which was later formulated to S-flow due to its extended
applications. As both the formulations are used in this thesis, the governing
equations for the two categories are discussed next.

2.2.1 Temporal ODT Evolution Equations

In this section the Eulerian and the Lagrangian forms of governing equations
are presented. As mentioned above, the ODT equations will describe evolu-
tion of various quantities on a line oriented on the y-direction and evolution in
time i.e. (t, y) [11].

Eulerian Temporal Form

Retaining only (t, y) as independent variables, we get from equation 1.5,
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∂ρψ

∂t
= −∂ρψv

∂y
−

∂Φψ,y

∂y
+ σψ, (2.1)

where v is the local mass-averaged fluid velocity in y-direction and Φψ,y =

Φψ · −→y represent the component of Φψ in y-direction. The equation can be
solved for ρ, streamwise momentum ρu and lateral momentum ρv (relevant
for this thesis) by using ψ = 1, u and v, respectively [11].

Lagrangian Temporal Form

Retaining only (t, y) as independent variables, we get from equation 1.4,

ρ
dψ

dt
= −

∂Φψ,y

∂y
+ σψ, (2.2)

and the equation can be written in integral form as,

d
dt

y2(t)∫
y1(t)

ρψdy =

y2(t)∫
y1(t)

(
−

∂Φψ,y

∂y
+ σψ

)
dy. (2.3)

These are the most often used forms for temporally evolving ODT simu-
lations (also for this thesis). (The quantities are evaluated at y1 and y2 re-
spectively.) In this frame of reference ν(t) (the volume of a finite material
element), S(t) (its associated surface) changes with time according to the v
(the local mass-averaged velocity). Ordinary differential equations (ODEs)
may be solved to determine the locations of the cell centroids (and faces) for
position of cell centroids or faces by [11],

dy
dt

= v, (2.4)

here v is the y-component of velocity. To get v i.e., the lateral velocity compo-
nent which is required in equation 2.4, we can solve equation 2.2 for ψ = v.
If we put ψ = 1 (enforcing continuity) in equation 2.3, we get [11],

d
dt

∫
ρdy =

dm
dt

= 0. (2.5)

The right hand side term in above equation states that mass is constant.
Thus, solving equation 2.4 evolves the size of the control volume that en-
forces continuity. However, the y and z components of velocity are used as
repositories of kinetic energy rather than advective velocities. Hence, even
if v is solved, rather than solving equation 2.4 to determine the limits for the
integrals in equation 2.3, equation 2.5 is utilized to describe the change in cell
size and is discretized using a first-order time approximation as [11],

(∆y)n+1 =
ρn(∆y)n

ρn+1 . (2.6)
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Note that the time coordinate is transformed to an equivalent spatial coor-
dinate by solving an ODT in one of two ways,

dx
dt

= ū, (2.7)

dx
dt

= u, (2.8)

here u is the x (streamwise) component of the velocity. The downstream
position for the ODT domain is determined by choosing average velocity u
from equation 2.7 and equation 2.8 uses the local velocity at each point on
the ODT line to solve a position equation for each point [11].

2.2.2 Spatially Evolving ODT Equations

It is advantageous in some situations to formulate governing equations by
considering (x, y) as independent variables because of the ambiguity in de-
termining a downstream location (x) in the temporally evolving approach. The
spatial approach has been used for this thesis as well. In this section, Eule-
rian and Lagrangian equations sets have been presented that uses (x, y) as
independent variables [11].

Eulerian Spatial Form

Retaining the independent variables, (x, y) in equation 1.5, we get the spa-
tially evolving governing equations as,

∂ρψu
∂x

= −∂ρψv
∂y
−

∂Φψ,x

∂x
−

∂Φψ,y

∂y
+ σψ. (2.9)

The above equation is an elliptic equation and an elliptic flow is governed
by a second order PDE in which there is no time-dependence, only steady
state spatial flow, and requires boundary conditions, for example, 2D Pois-
son equation. However, in case of S-ODT, there are no boundary conditions
which can be enforced on streamwise direction, only an initial condition. So
the flow is parabolic, which also explains why we can not have negative ve-
locities. It is only possible to start from an initial condition and backward ad-
vancement in streamwise direction is not possible. Hence, by neglecting the
second derivative term in above equation (second term on right hand side),
gives a convection-diffusion equation given below which can be solved using
the method of lines for the streamwise fluxes, ρψu,

∂ρψu
∂x

= −∂ρψv
∂y
−

∂Φψ,y

∂y
+ σψ. (2.10)

By putting ψ = 1, we get continuity equation [11],

∂ρu
∂x

+
∂ρv
∂y

= 0. (2.11)
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The complete set of equations will be equations 2.11 and 2.10 with ψ = u
and v (used in this thesis). Alternately equation 2.10 can be solved,

∂ψ

∂x
= − 1

ρu

[
ρv

∂ψ

∂y
+

∂Φψ,y

∂y
− σψ

]
, (2.12)

along with an alternate form of equation 2.11,

∂ρ

∂x
= − 1

u

[
ρ

∂u
∂x

+
∂ρv
∂y

]
. (2.13)

If we substitute ψ = u in equation 2.12, we get the term ∂u/∂x. The
complete set of equations are 2.13 and 2.12 with different definitions of ψ
along with an equation of state [11] (not discussed here because it is not used
for this thesis).

Lagrangian Spatial Form

Taking (x, y) as independent variables, we can write,

d
dx

=
∂

∂x
+

dy
dx

∂

∂y
=

∂

∂x
+

v
u

∂

∂y
. (2.14)

Equation 2.12 can be rewritten in Lagrangian form by using equation 2.14
as,

dψ

dx
= − 1

ρu

[
∂Φψ,y

∂y
− σψ

]
. (2.15)

This equation is applicable to all definitions of ψ except continuity equation,
ψ = 1. Therefore we can get the Lagrangian form of the continuity equation
by putting (ρu) in equation 2.14 and using equation 2.11 [11],

dρu
dx

=
v
u

∂ρu
∂y
− ∂ρv

∂y
. (2.16)

The integral form of equation 2.15 can be written as,

d
dx

y2(x)∫
y1(x)

ρψudy =

y2(x)∫
y1(x)

(
−

∂Φψ,y

∂y
+ σψ

)
dy. (2.17)

If Leibniz’ rule is applied to equation 2.17, then we get (equation 2.19 is
used for the transformation in equation 2.18),
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d
dx

y2(x)∫
y1(x)

ρψudy = ρ2ψ2u2
dy2

dx
− ρ1ψ1u1

dy1

dx
+

y2(x)∫
y1(x)

∂ρψu
∂x

dy

= ρ2ψ2v2 − ρ1ψ1v1 +

y2(x)∫
y1(x)

∂ρψu
∂x

dy

=

y2(x)∫
y1(x)

(
∂ρψu

∂x
+

∂ρψv
∂y

)
dy, (2.18)

where subscripts 1 and 2 indicate that the quantities are evaluated at y1 and y2
respectively. Equation 2.18 shows that equation 2.10 and 2.17 are equivalent
and also equation 2.15 and 2.17 are equivalent. An equation for y is required
to solve equation 2.15 in order to determine the position of the Lagrangian
system as [11],

dy
dx

=
v
u

, (2.19)

with u and v as the local fluid velocities in the x and y directions, respectively.
The position is required to determine the limits on the integral in equation 2.17
for each discrete volume element, if solving the integral form of the Lagrangian
evolution equations whereas, to solve the differential form of the equations,
via, e.g. a finite difference method, the position is required to evaluate the
fluxes and their divergences. The role of the velocity in both the cases is to
maintain the proper definition of the Lagrangian control volume. Equation 2.15
and 2.19 forms a complete set of equations together with an equation of state.
The Lagrangian position (y) is obtained via equation 2.17 with ψ = 1 (instead
of solving equation 2.19) as [11],

d
dx

∫
ρudy = 0. (2.20)

A first-order time discretization of the above equation results,

(∆y)n+1 =
(ρu∆y)n

(ρu)n+1 , (2.21)

with n as the solution at the streamwise position xn and n + 1 at xn+1. Note
that to determine a residence time in spatially developing formulation (e.g., in
order to advance a chemical-kinetic mechanism), we need to solve one of the
below equations [11],

dt
dx

= u−1, (2.22)

dt
dx

= ū−1. (2.23)
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Equation 2.22 accounts for the variation of residence time due to variation
in u. Whereas, equation 2.23 obtains a characteristic residence time for the
domain with the assumption that it moves with some characteristic velocity u.

2.3 Formulation of the Eddy Events

The distinctive feature of the ODT model is coupling of a stochastic imple-
mentation of 1-D eddy events (EE) to the deterministic solution of 1-D diffusion
evolution equation. The effects of turbulent transport due to eddies on the 1-D
property profile of the flow are modeled by the eddy events. The deterministic
diffusion process catches up to the implemented eddy events.

These events occur through the instantaneous displacement of the fluid
elements to represent a turbulent stirring motion and this process modifies
any property profile over the ODT line interval [y0, y0 + l], with y0 as the lower
edge of a notional eddy and l its size. The eddy events are implemented by
using the triplet map which induces fluid displacement and fulfills two other
fundamental requirements: (i) the mapping is measure preserving, (ii) it does
not introduce spatial discontinuities.

The triplet map essentially takes a property profile in an eddy region and
replaces it with three copies of the original in which each copy is compressed
by a factor of three and the middle copy is inverted in order to avoid disconti-
nuities shown in Figures 2.1 and 2.2. This correlate with a physical mapping,
that is, an advective, transport of fluid from a given location f (y) to a new
location y and the mapping function f (y) is given as [28],

f (y) = y0 +


3(y− y0), y0 ≤ y ≤ y0 + l/3
2l − 3(y− y0), y0 + l/3 ≤ y ≤ y0 + 2l/3
3(y− y0)− 2l, y0 + 2l/3 ≤ y ≤ y0 + l
(y− y0), otherwise.

(2.24)

To represent the effects of fluctuating pressure gradient forces, themapped
velocity field, u

(
f (y), t

)
is accomplished with the aid of a kernel function and

a coefficient vector c = (c1, c2, c3)
T [29]. The mapped velocity for S-ODT is

u
(

f (y), x
)
, however, here the equation are only presented for T-ODT to avoid

redundancy. The kernel function is defined as K(y) = y− f (y),

EE : u(y, t)→ u
(

f (y), t
)
+ c K(y) (2.25)

There is no uniquely preferable functional form noted for the kernel function
K(y). It is convenient to relate it to the fluid displacement induced by the
mapping f (y), that is, K(y) = y− f (y) [28]. An important physical constraints
is satisfies by this choice which makes the kernel function nonzero only in
the eddy-size interval [y0, y0 + l] and it integrates to zero which ensures that
there are no artificial momentum sources regardless of the selection of the
(Cartesian) components ci, where i ∈ {1, 2, 3}. However, care has to be
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FIGURE 2.1: Schematic of an eddy turnover by displacement of
the fluid elements (shown with red square and blue circle) to

represent turbulent stirring motion [114].

FIGURE 2.2: Schematic of 1-D representation of a scalar profile
before and after implementing the triplet map [114].
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taken in the selection of ci to ensure that the kinetic energy is not artificially
generated but only redistributed among the velocity components.

To determine the coefficients ci, the change of the kinetic energy ∆Ei in
the ith velocity component due to the application of Eq. 2.25 is considered
[29] next. This change of the kinetic energy is given as,

∆Ei =
ρ

2

∫ y0+l

y0

([
ui
(

f (y), t
)
+ ci K(y)

]2
− u2

i (y, t)
)

dy (2.26)

When the sum of the individual contributions ∆Ei vanishes, i.e., ∆E1 +
∆E2 + ∆E3 = 0 then Energy is conserved and it constrains the selection of ci
because each velocity component has a finite amount of energy that can be
added and removed to the other two components.

The extractable kinetic energies (−∆Ei) are maximized with respect to the
ci to find an appropriate energy scale which yields the maximum extractable
energy, Qi, for component i as,

Qi =
1

2K̂
ρlu2

i,K, (2.27)

where the two kernel-weighted quantities ui,K and K̂ are,

ui,K =
1
l2

∫ y0+l

y0

ui
(

f (y), t
)

K(y)dy (2.28)

and,

K̂ =
1
l3

∫ y0+l

y0

K2(y)dy. (2.29)

The model parameter α has been introduced considering that the pressure
fluctuations may not be universal. The pressure fluctuations do not neces-
sarily imply a maximization of the inter-component kinetic energy transfer. α
controls the fraction of each of the extractable (available) kinetic energies that
is actually used for the redistribution. This yields,

∆Ei = −αQi +
α

2
Qj +

α

2
Qk, (2.30)

where (ijk) represents cyclic permutations of (123). The model parameter α
varies in the range [0, 1] with α = 0 means there is no transfer of the kinetic
energy, α = 2/3 means equipartition of the energies and α = 1 represents
maximal transfer of the kinetic energy.

Equations 2.27 and 2.30 are inserted in Eq. 2.26 to obtain the coefficients
ci encountered in Eq. 2.25 and which gives,

ci =
1

K̂l

(
−ui,K + sgn(ui,K)

√
(1− α)u2

i,K +
α

2
u2

j,K +
α

2
u2

k,K

)
, (2.31)

where sgn represents the sign function which is needed for consistency of the
original single-velocity formulation [28] with the ODT vector formulation [29].
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2.4 Eddy Event Selection

For the above formulated eddy events, it is essential to determine the location
y0, size l, and time of occurrence t for T-ODT and streamwise position of oc-
currence x for S-ODT. These stochastic variables are governed by an ‘eddy
rate distribution’ λ(y0, l, t) or λ(y0, l, x) [28] and λ(y0, l, t)dy0 dl dt specifies
the number of eddies in the size range [l, l + dl], position range [y0, y0 + dy0]
and during a time interval [t, t + dt]. Note that the time interval for S-ODT is
replaced by a space interval [x, x + dx]. Constructing λ is not hard, sampling
the eddy PDF, which is defined in terms of λ is hard. The actual implemen-
tation constructs λ directly for each eddy event, but we do not know whether
those eddy events make sense because we do not construct the actual eddy
PDF, which is based on λ. The eddy PDF is λ/Λ, where Λ is the total rate
of all eddies. But to get that would require evaluating λ for all sizes and loca-
tions, and that is expensive to do considering that it changes as soon as an
eddy event or diffusive advancement occurs. The form for λ is given by,

λ(l, y0, t) =
C

l2 τ(l, y0, t)
. (2.32)

In this equation, τ represents the eddy turnover time. It is related to the
instantaneous flow state. C is amodel parameter which is related to the overall
rate of eddy events in the flow and it needs to be estimated for a given flow
configuration as the turbulence intensity in general depends on the prescribed
forcing mechanism.

The spatial analogue of eddy rate distribution explained above, λ can be
rewritten as [28, 85, 98],

λ(l, y0, x) =
Cṽε

l2 ξ(l, y0, x)
. (2.33)

In this equation, ξ is the eddy streamwise increment related to the instan-
taneous flow state and ṽε is the Favre averaged velocity in the eddy region.

To calculate τ in Eq. 2.32, the kinetic energy per unit mass l2/τ2 con-
tained in the eddy motion is considered in T-ODT and for S-ODT it becomes
l2ṽ2

ε/ξ2. This energy should be similar to the extractable kinetic energy given
in Eqs. 2.26 and 2.27. Therefore, maintaining consistency of the formulation
it yields,

l2

τ2 ∼
3

∑
i=1

u2
i,K − Z

ν2

l2 , (2.34)

l2ṽ2
ε

ξ2 ∼
3

∑
i=1

u2
i,K − Z

ν2

l2 , (2.35)

for T-ODT and S-ODT, respectively. Summation of u2
i,K in the above equation

(instead of ∆Ei) indicates the fact that the total extractable kinetic energy does
not depend on model parameter α representing the inter-component energy
transfer. The last term on right hand side of Eq. 2.34 represents the damping
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effects of the viscosity, and Z is a model parameter which takes values larger
or equal to zero. When Z = 1, the eddy events below the Kolmogorov scale
are suppressed effectively [28] since such small eddy events do not contribute
to the turbulent transport, neglecting them improves the numerical efficiency.

Once the location y0 and size l of an eddy event have been selected,
the eddy time scale τ for T-ODT and eddy streamwise increment ξ for S-
ODT, respectively, is computed from the instantaneous velocity profiles ui(y, t)
(ui(y, x)) as,

1
τ
=

√√√√ 1
l2

3

∑
i=1

u2
i,K − Z

ν2

l4 , (2.36)

1
ξ
=

1
ṽε

√√√√ 1
l2

3

∑
i=1

u2
i,K − Z

ν2

l4 . (2.37)

The eddy time scale τ and the mean sampling time scale τs are com-
pared to obtain the acceptance probability pa = (τ/τs)−1 < 1 for T-DOT and
(= ξ/ξs)−1 < 1 for S-ODT of a physically plausible eddy event. For this
purpose, τ and ξ needs to be computed at a specific instant or streamwise
position, respectively, that is sampled with the aid of a marked Poisson pro-
cess. Eddy events are assumed to be independent of each other in this pro-
cess, such that time or streamwise increment between two such events can
be sampled economically from an exponential distribution but the rejection
process introduces a dependence as eddy acceptance depends on property
profiles that are affected by previous eddy events. See [28] for more details.

The eddy selection process is schematised in Figure 2.3. This algorithm
includes an exception for the case the time-step dt becomes too large before
a viable eddy is found, where the governing equations of the flow will be ad-
vanced without implementing an eddy. Further details of the eddy selection
process are provided in Appendix B.

Sometimes it is important to suppress the unphysically large eddy events
which may occur seldomly in the sampling procedure. To suppress these
eddies, a large-eddy suppression (LS) is often used. A simple suppression
based on the fraction of the domain length [89, 98] may be sufficient for con-
fined flows, like channel or pipe flows and this suppression is termed as frac
domain. The elapsed-time LS mechanism [100, 92] is preferred for free shear
flows, such as jets, in which only eddy events satisfying τ ≤ βLS t are allowed,
(l ≤ βLS x for S-ODT) where t is the current simulation time and βLS a model
parameter [100, 115]. For boundary layer type flows, the shear can be highly
concentrated in a thin layer close to the wall, although the associated shear
in an eddy is nearly zero in almost all parts of its size range, such unphysical
eddy event may be accepted and can be suppressed with the two-thirds LS
mechanism [85]. In the two-thirds mechanism, the eddy interval is subdivided
into three equidistant subsections with the purpose of verifying that the eddy
is energetically feasible in at least two of these subsections.
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Initialisation

Solve Governing Equations
∂ui
∂t = ν

∂2ui
∂y2 − φ

Sample time-step ( dt? )

Sample eddy location Sample eddy size

Calculate triplet Map

Calculate Kinetic Energy Variation

Calculate turnover time
τ = l√

u2
1,k+u2

2,k+u2
3,k−Z ν2

l2

Calculate eddy rate
λ(l, y0 , t) = C

l2τ

λ(l,y0,t)
F(y0)G(l)RT

> PPRNG?

Apply Eddy to the flow

dt > dtmax?

Try again! ← No Yes→ Implement eddy

No

Yes

t = t + dt, dt = 0t = t + dt, dt = 0

dt = dt + dt?

FIGURE 2.3: Algorithm for the eddy selection and implementa-
tion.
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2.5 Numerical Basics

This section presents a short overview of the numerical basics used in the
ODT code. The code is based on the finite volumes method. A finite volume
method uses the integral form of the conservation equations where the cal-
culation of the solution (the simulation domain) is divided into arbitrary con-
trol volumes. The finite volume method integrates the solution within these
control volumes. Whereas, in the finite difference method, the unknown con-
tinuous solution of the variable is approximated by the conservation laws at
specific grid points. For more detailed discretization, the reader is referred to
[116, 117].

The starting point is the Lagrangian transport equations derived from the
Reynolds transport theorem as explained in [89] and also in previous chapter
of the thesis. To be consistent, the same terminology is followed as done in
[89]. The Reynolds transport theorem (RTT) in terms of an intensive variable
(equation 1.1 from previous chapter), i.e., some quantity per unit mass, ψ, is
written as,

d
dt

∫
νψ(t)

ρψdV =
∫

V(t)

∂ρψ

∂t
dV +

∫
S(t)

ρψvψ · ndS. (2.38)

Here, the equations are presented for individual control volumes on the
computational grid with quantities evaluated at the cell center. The quantities
evaluated on cell faces are denoted with subscript e and w representing the
right and left cell faces, respectively. The spatial derivatives appearing in
the governing equations are evaluated at cell faces using first-order central
differences such that, for cell i,(dφ

dy

)
i,e

=
(φi+1 − φi)

1
2(∆yi+1 + ∆yi)

, (2.39)

for some variable φ. Now, for the continuity equation, using ψ = 1 in Equa-
tion2.38, so that the system encloses themixturemass and the system bound-
ary moves with the mass average velocity and vψ = 0. As there is no mass
source term, Eq.2.38 becomes,

d
dt

∫
ν(t)

ρdV = 0. (2.40)

The equation for uniform propertied inside control volumes and in 1D is,

d
dt

(ρ∆y) = 0⇒ ρ∆y = C. (2.41)

For momentum equation, ψ = v is taken. The system and control volume
velocities are the same and vψ = 0. Hence, equation2.38 becomes,

d
dt

∫
ν(t)

ρvdV =
d
dt

∫
V(t)

ρvdV. (2.42)
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The Lagrangian conservation law is,

d
dt

∫
ν(t)

ρvdV =
∫

S(t)

FextdS = −
∫

S(t)

(pI+ τ) · ndS. (2.43)

Substituting above equation in Eq.2.42 and integrating over the control vol-
ume gives the u, v and w momentum equations. The u−momentum equation
is given below and v− and w−momentum equations can be written following
similar analogy,

du
dt

= − 1
ρ∆y

(τyy,e − τyy,w), (2.44)

where, the stress tensor is modeled as,

τyy = −µ
du
dy

. (2.45)

Now, Equation2.44 can be written as,

du
dt

=
1

ρ∆y

[(
µ

du
dy

)
e
−
(

µ
du
dy

)
w

]
. (2.46)

Equation2.39 can be used in Eq.2.46 for further simplification. Time inte-
gration is performed explicitly using either the first-order Euler method, or a
second-order trapezoid method also known as modified Euler method [118].
These methods are in the class of Runga-Kutta methods. So, Equation2.46
is solved as,

un+1 − un

∆t
=

1
ρ∆y

[(
µ

du
dy

)
e
−
(

µ
du
dy

)
w

]n

, (2.47)

where superscript n denoted the time advancement which is from tn to tn+1.
Above equation can be written as,

un+1 = un +
∆t

ρ∆y

[(
µ

du
dy

)
e
−
(

µ
du
dy

)
w

]n

, (2.48)

un+1 = un +
∆t

ρ∆y

[
µ

ui+1 − ui

yi+1 − yi
− µ

ui − ui−1

yi − yi−1

]n

. (2.49)

2.6 Statistical Quantities in ODT Realizations

A detailed description between DNS and ODT statistical quantities is given
in [29]. For this purpose, the mean ODT and Reynolds-Averaged Navier-
Stokes (RANS) momentum equations are compared. This section presents
the Reynolds stresses and Turbulent Kinetic Energy (TKE) budgets for T-ODT.
A similar analogue is followed for S-ODT.
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As detailed above, a mathematical representation of the generalized T-
ODT momentum evolution equation is,

∂u
∂t

= −1
ρ

∂p
∂x

+ ν
∂2u
∂y2 + M1 + T1 + S1. (2.50)

M1 represented the effect of the triplet map, S1 for pressure scrambling
and T1 for turbulent transport contribution in the ODT velocity component u.
For convenience, S1 = 0 due to absence of pressure scrambling effects in
the mean Navier-Stokes momentum equation. The steady state channel flow
RANS momentum equation is,

0 = −1
ρ

∂p
∂x

+ ν
∂2u
∂y2 −

∂u′v′

∂y
, (2.51)

and the mean T-ODT momentum evolution equation is,

�
�
�∂u

∂t
= −1

ρ

∂p
∂x

+ ν
∂2u
∂y2 + M1 + T1. (2.52)

Comparing the above two equations gives Reynolds stress component
u′v′ in the T-ODT case as,

− u′v′ =
∫ ∞

y∗
(M1 + T1)dy. (2.53)

u′v′ = 0 at y = ∞, y∗ refers to the position of the wall and M1 + T1 is
defined by changes in the velocity profiles due to eddies which can be con-
structed based on the cumulative sum of changes in the u velocity profiles
due to eddies. This can represented by considering the stochastic interaction
in Eq.2.50 only, within a given interval of time ∆t in which an eddy is deemed
to occur as,

∆u
∆t

= M1 + T1. (2.54)

The Reynolds stress component u′v′ for S-ODT is also given by Eq.2.53,
however, in S-ODT, M1 + T1 is calculated accounting for the changes in the
u2 velocity profile as,

∆u2

∆x
= M1 + T1. (2.55)

Now, Equation2.50 is multiplied by the u velocity component represent-
ing the kinetic energy of this component. This is done to evaluate the TKE
Budgets and it gives,

1
2

∂u2

∂t
= −u

ρ

∂p
∂x

+ νu
∂2u
∂y2 + M11 + T11 + S11, (2.56)

which is further simplified as,
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∂u2

∂t
= −2u

ρ

∂p
∂x

+ ν
∂2u2

∂y2 − 2ν

(
∂u
∂y

)2

+ M11 + T11 + S11, (2.57)

where M11, T11 and S11 are the effect of mapping, transport and pressure
scrambling, respectively to the kinetic energy of the u velocity component.
Further, Equation 2.52 is multiplied with 2u and Equation2.57 is averaged to
get an equation for the average of the square of the fluctuation velocity u′ as,

∂u′2

∂t
= ν

∂2u′2

∂y2 − 2ν

(
∂u′

∂y

)2

+

[
∂

∂y
(I11 − 2uI1) + S11

]
+ 2I1

∂u
∂y

, (2.58)

with I1 =
∫
(M1 + T1)dy, I11 =

∫
(M11 + T11)dy and u2 − u2 = u′2.

The equations for v′2 and w′2 are similar to Eq.2.58. Eq.2.58 is then com-
pared to the generalized TKE equation (see Appendix A) in a Cartesian Co-
ordinate system to give the TKE budgets for production P and dissipation ε
as,

P = ∑
k

Ik
∂uk
∂y

, (2.59)

ε = ∑
k

ν

(
∂u′k
∂y

)2

. (2.60)

It is possible to deduce an accurate representation of the flow by summing
up the contributions by u′2, v′2 and w′2 such that TKE = (1/2)(u′2 + v′2 +w′2).
Here, in the ODT model α 6= 0 and the most reasonable choice is α = 2/3
indicating equal available energy redistribution after an eddy event. Following
the similar analogue, the production and dissipation budgets for S-ODT are
calculated as,

P = I1
∂u
∂y

, (2.61)

ε = ν

(
∂u′

∂y

)2

. (2.62)

2.7 In Closing

The main features of the one-dimensional turbulence model are summarized
in this chapter which includes the governing equations for spatial and tem-
poral ODT, the map-based formulation of eddy events, their selection and
description of the model parameters.
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Chapter 3

ODT Simulation Set-Up

In this chapter, simulation set-up used for temporally developing turbulent
boundary layer (TBL), spatially developing turbulent boundary layer (SBL) and
uniform blowing in SBL is explained in detail. These set-ups are used for the
simulations and their results are presented in Chapter 4, 5, 6 and 7.

3.1 Characterization of the TBL and ODT Simula-
tion Set-Up

The TBL is characterized by statistically homogeneous fields in the stream-
wise and spanwise directions, thus, only the wall-normal direction remains,
which makes this problem statistically one-dimensional. This makes TBL fea-
sible to investigate with ODT as stand-alone tool. In the following, first the rel-
evant bulk quantities that characterize the TBL are discussed and afterwards,
the ODT simulation set-up, given that it references some of the characterizing
quantities.

3.1.1 Characterization of the TBL

This section summarises the definition of the relevant bulk quantities that are
useful for a characterization and quantitative understanding of the TBL.

The starting point is the ensemble-averaged velocity field ui(y, t). This ve-
locity field only has a nonzero streamwise component u(y, t) due to symme-
try of the configuration. For large enough ensemble sizes, u(y, t) is smooth.
Here, it can be used directly to define the boundary layer thickness. For ex-
ample by thresholding a fraction of the bulk velocity Ub. The 99% rule [119] is
used to yield,

δ99(t) = y for u(y, t)
Ub

= 0.99. (3.1)

The thickness δ99 carries the dilemma that non-monotonic and instanta-
neous velocity profiles cannot be adequately characterized. This problem
is addressed by the displacement and momentum thicknesses. These are
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integrals of the first and second order moments of the velocity field. The dis-
placement thickness and the momentum thickness are given as,

δ(t) =
∫ ∞

0

u
Ub

dy, (3.2)

θ(t) =
∫ ∞

0

u
Ub

(
1− u

Ub

)
dy. (3.3)

Both δ(t) and θ(t) are well-defined even for instantaneous profiles of the
streamwise velocity u(y, t) and will be used below for conditional computa-
tions of the turbulence spectra.

The wall-shear stress τw(t) = ρν |∂u/∂y| (y = 0, t) is another important
quantity used to characterize turbulent boundary layers. This quantity quanti-
fies the average momentum transfer from the fluid to the rigid surface or vice
versa. The related kinematic quantity is the friction velocity uτ =

√
τw/ρ. It

provides an inner scale of the wall-bounded flow and is therefore, frequently
used for the analysis of the similarity properties and the comparison of re-
sults from different sources. The inner velocity and length scales are uτ and
yτ = ν/uτ. Whereas the outer ones are Ub and δ99. The usual convention
is followed and the variables rescaled to the inner units are denoted with the
superscript ‘+’, for example, u+ = u/uτ and y+ = y/yτ.

For future reference, the friction, bulk and displacement or momentum
Reynolds numbers for the TBL are defined as follows,

Reτ =
uτ δ99

ν
, Reb =

Ub d
ν

, Reξ =
Ub ξ

ν
. (3.4)

In the first equation, the thickness δ99 serves as outer length scale of the
solution and in the second equation, the length scale d is prescribed by the
initial condition and it is constant similarly to laboratory experiments, where
d would be the trip-wire diameter explained below. In the last equation, ξ is
a placeholder for the thicknesses δ and θ or the streamwise length scale X,
respectively and it matches the TBL solution at time t to the local SBL solution
at position X via the Galilean transformation,

X = Ub t. (3.5)

For the TBL ODT simulations, the main control parameter is Reb. This
modified by adjusting the bulk velocity, Ub, prescribed at the bottom wall.

The boundary layer flow profiles can be characterized by a fewwell-defined
coefficients. These coefficients are frequently encountered in the literature.
For the TBL, the coefficients are considered as,

C1 =
δ

δ99
, C2 =

θ

δ99
, H =

δ

θ
=

C1

C2
. (3.6)

The ensemble-averaged velocity profile together with the quantities de-
fined above are combined in Coles’ empirical law [120], which is given as,

Ub − u
uτ

=
1
K

log
(uτ y

ν

)
+ A +

Π
K

W
(

y
δ99

)
. (3.7)
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In this equation, K is the von Kármán constant and A the log-layer offset,
W(y/δ99) Coles’ wake function and Π the corresponding wake strength. The
wake quantities are not discussed further as they are merely constant for the
TBL [49, 50] and [119] is followed. An outer-layer similarity is assumed for TBL
configuration. Inserting the definitions of the displacement and momentum
thicknesses, as well as the coefficients C1 and C2 gives the balance equation
[119, 120],

θ

δ99
=

C1

U+
b
− C2(

U+
b

)2 . (3.8)

The contributions to this equations are due to the boundary layer thickness
θ and δ99, the normalized bulk velocity U+

b = Ub/uτ (or the friction velocity uτ

since Ub is constant here), and the coefficients C1 and C2 and these quantities
are addressed in the upcoming chapters by comparing the ODT solutions to
available reference DNS. To the best of our knowledge, the balance of this
equation has not been presented so far in the relevant literature. The balance
equation is addressed numerically in Chapter 4.

3.1.2 ODT Simulation Set-Up for the TBL

The ODT simulation set-up used for the present study follows from Kozul et
al. [50]. The two fundamental configurations for SBL (used in Chapter 5 and
6) and TBL (utilized in Chapter 4) are sketched in Figure 3.1 (A) and (B), re-
spectively. The ODT computational domain is a line of size (height) D and this
line is here approximately taken as a closed system for each instant in time.
The TBL is realized on this line by prescribing Dirichlet boundary conditions
at the top as well as bottom walls and the shear is initially concentrated at the
lower wall in order to mimic a trip-wire configuration. The lower wall is taken
as moving and the free stream at rest for practical reasons, i.e., u = Ub and
v = w = 0 for y = 0 and u = v = w = 0 for y = D, respectively. One has to
make sure that the TBL remains confined to a region sufficiently smaller than
the domain height for the given set-up.

Conventional statistics, like mean velocity profiles, are obtained on an en-
semble basis using at least N = 1000 members and these members are indi-
vidual ODT realizations that are run in parallel on a large computing cluster. All
members are autonomous so that communication is not a limiting factor and
an ensemble of different turbulent solutions is obtained from the same initial
conditions by varying the seed of the underlying random number generator.

The initial conditions used for the ODT simulations are precisely those of
the reference DNS [50] and only the streamwise component u is initially non-
zero and exhibits a smooth, monotonic profile,

u0(y) =
Ub
2

+
Ub
2

tanh
[

d
2θsl

(
1− y

d

)]
, (3.9)

where θsl = 54ν/Ub, the scale length, depends on the prescribed kinematic
viscosity ν and bulk velocity Ub which implies that the shape factor depends
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y

x
no-slip wall

free streamUb

x1 x2

δ(x1)

δ(x2) δ(x)

(A) SBL

ODT line

no-slip wall

free stream

δ(t1)
δ(t2)

D

y

z x

v

w u

(B) TBL

FIGURE 3.1: Schematics of the (A) spatially developing bound-
ary layer (SBL) and (B) temporally developing boundary layer
(TBL). The correspondence between the two configurations is
indicated by broken domain boundaries in panel (A). The SBL
solution at locations x1 and x2 (with thickness δ(x1) and δ(x2))
corresponds roughly to the TBL solution at times t1 and t2. In
this study, stochastic ODT simulations are conducted only for
the TBL using the 1-D wall-normal domain of height D (ODT

line).
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on the bulk Reynolds number, that is, d/(2θsl) = Reb/108. The other ve-
locity components (v, w) are initialized to zero. All the constants used in the
equation are taken from [50] to make a better comparison of the results. d
is an external length scale which is here imposed through the bulk Reynolds
number Reb = Ub d/ν, whereas, in laboratory experiments, d would be the
trip-wire diameter. The streamwise velocity profile at t = 0 i.e. the initial pro-
file used to set the fluid at rest into motion and at t > 0 is depicted in Figure
3.2.

An overview of the simulated cases and the relevant model parameters
is given in Table 3.1. Five bulk Reynolds numbers from the range 250 ≤
Reb ≤ 2000 are considered as shown in Table 3.1. The initial length scale d
and the kinematic viscosity ν of the working fluid are fixed. d = 10−3 m and
ν = 1.5 × 10−5 m2/s (air) are used for TBL simulations. The domain size
D has been selected such that it is constant in bulk units ν/Ub. D for the
simulations is used as D Ub/ν = 43,200. The physical model parameters α,
C, and Z, as well as the large-eddy suppression (LS), have been described
in Chapter 2 and a few more numerical ones are addressed below.

Eddy events are efficiently sampled from empirical distributions and the
specific choice does not change the results as long as the physically relevant
range-of-scales is permitted [28]. In the present implementation, i.e., TBL,
three numerical parameters are needed and these are the maximum (Lmax),
minimum (Lmin), and most probable (Lp) eddy size [89] (see Table 3.1). It is
unnecessary to sample very large eddy events as these are unphysical and in-
stantly rejected by the large-eddy-suppression mechanism because the TBL
thickness must remain sufficiently smaller than the domain size, The maxi-
mum eddy size has been selected as Lmax Ub/ν = 25,920, which corresponds
to 60% of the domain size and this aids the numerical efficiency. The mini-
mum eddy size, Lmin, is estimated as the Kolmogorov length scale, LK, with
the aid of pre-simulations and the most probable eddy size has been selected
as Lp = 3Lmin. The value for Lp is motivated by the triplet map and the pres-
ence of a direct turbulence cascade. Due to the former the eddy events of
size l = 3LK ' 3Lmin and larger will remain unaffected by viscosity and due
to the latter the most frequent eddy events have sizes just above LK.

A dynamic adaptive mesh [89] is used to carry out the simulations which
demands the specification of several more numerical parameters. The default
values for most of them is used for TBL configuration. The most important
adaptivity parameters control the size range of the cells and the frequency of
mesh adaptations and it is important that the minimum and maximum allowed
grid cell sizes must be spaced sufficiently from each other for the dynamic
mesh adaption procedure [89]. The minimum and maximum grid cell sizes of
the reference DNS [50] are used to carry out the TBL simulations and their
values are given in Table 3.1). This range of values is sufficient for the dynamic
grid adaption procedure and the grid is adapted whenever an eddy event has
been accepted but at least every ten viscous time units. The latter is not
limiting, however, used to minimize the numerical transport for less turbulent
regions.
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(A)

(B)

FIGURE 3.2: Streamwise velocity (in m/s) profile along the do-
main y (in m) at (A) t = 0 and (B) t > 0 (Ub, in m/s is the

uniform velocity provided at the bottom of the wall).
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3.2 Simulation Set-Up for the SBL

The simulation set-up which was used for TBL [109] configuration as ex-
plained above is utilized for SBL as well by slightly modifying the boundary
and initial conditions which are discussed below for the present case (see Fig-
ure 3.1 (A)). Some of the physical as well as numerical parameters are also
adjusted according to the problem and are given in Table 3.2. The spatial for-
mulation of ODT allows simulations of flows that are statistically 2-D. The time
dimension is replaced by evolution in a direction orthogonal to the ODT line
[89]. A dynamic adaptive mesh is utilized to carry out the simulations with the
default values for the numerical parameters associated with mesh adaption
[89] for SBL as well and results are presented in Chapter 5. The minimum
and maximum allowed grid cell sizes must be sufficiently spaced from each
other to allow the dynamic mesh adaption procedure [89] and for SBL con-
figuration the maximum grid cell sizes of the reference DNS in [41] is used
and minimum cell size allowed by the mesh adaption process is calculated
using the Kolmogorov length scale as ∆ymin = η/3 and are summarised in
Table 3.2 along with the physical and numerical parameters used to carry out
the simulations for SBL configuration.

The ODT computational domain is a line of size D on which the SBL is
realized by prescribing Dirichlet boundary condition at the bottom wall with
bulk velocity, Ub and Neumann condition at the open domain and the lower
wall is takes as moving and the free stream at rest. The velocity statistics
are obtained on an ensemble basis using at least N = 4000 members which
is very high as compared to the TBL simulations. This is because in TBL
simulations, velocity statistics is averaged over number of realizations as well
as time window, however, in case of SBL averaging is only over number of
realization. These members are individual ODT realizations and are run in
parallel on a large computing cluster similar to TBL case explained above.

For the SBL configuration, the streamwise velocity component u has been
initialized using a laminar profile generated by solving the diffusion part using
the ODT model. The other velocity components (v, w) are initialized to zero.
Figure 3.3 shows that theODT laminar solution is similar to the Blasius laminar
solution from [1] which is generally used to initiate the DNS results and a
good degree of agreement between the ODT laminar solution and the Blasius
laminar solution from [1] is noted.

The simulations are carried out for different momentum Reynolds num-
bers, Reθ = θUb/ν, where θ is the momentum layer thickness and the kine-
matic viscosity ν of the working fluid air is ν = 1.5× 10−5 m2/s (same as TBL
case). The analyses is presented at Reθ ≈ 2000, 4000, and 8000. The do-
main size D has been selected such that it is constant in bulk units ν/Ub as
D Ub/ν = 45,000 (or 100 in terms of δ?, which is displacement thickness).

The friction Reynolds number is defined above and the thickness and dis-
placement Reynolds numbers for future reference for SBL are defined as,

Reδ99 =
Ub δ99

ν
, ReX =

Ub X
ν

. (3.10)
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FIGURE 3.3: A comparison between the ODT laminar solution
and the Blasius laminar solution from [1]. The ODT solution
is used to initialize the streamwise velocity component for the

SBL configuration.

Here the thickness δ99 serves as outer length scale of the solution and X
is the streamwise length scale.

The maximum eddy size has been selected as Lmax Ub/ν = 27,000, which
corresponds to 60% of the domain size to improve the numerical efficiency.
The minimum eddy size, Lmin, is estimated from the Kolmogorov length scale
and for the most probable eddy size we have used Lp = 3Lmin to capture
the initial transient stage. The physical and numerical model parameters are
given in Table 3.2. Note that the usual convention is followed for the SBL
configuration as explained above for the TBL configuration.

3.3 Simulation Set-Up for Uniform Blowing in the
SBL

For the uniform blowing configuration, a similar simulation set-up is used
which is used for LES in [64]. Figure 3.4 presents the schematic for ODT simu-
lation set-up used for blowing in SBL. The present configuration is realized on
the computational domain of the ODT model by prescribing no-slip conditions
at the bottom wall and Neumann conditions at the open domain with u = u∞,
∂v
∂y = ∂w

∂y = 0. The streamwise velocity component u has been initialized with
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a laminar profile similar to the SBL configuration explained above and shown
in Figure 3.3. The other two velocity components (v, w) are initialized to zero.

FIGURE 3.4: Schematics of the spatially developing boundary
layer with uniform blowing.

Blowing is achieved by the constant wall-normal velocity (in the cross-
stream direction) on the bottom wall, v0 as shown in Figure 3.4. A Lagrangian
method is used to establish blowing. In this method the mesh is evolved by
marching the ODT domain upwards [89] and hence, no extra source term is
required for this case. The amplitude of uniform blowing is set to be 0.1% of
the free-stream velocity, i.e, v0 = 1.0× 10−3 m/s. A dynamic C++ adaptive
code is utilized to carry out the simulations [89]. The important numerical
parameters associated with the mesh adaptions are the minimum and maxi-
mum allowed grid size (dxmin, dxmax). Another important numerical parameter
is the grid density factor (gDens) which controls the approximate number of
cells generated after the adaption process [98]. dxmin and dxmax are spaced
sufficiently from each other for the dynamic mesh adaption procedure and
these values are used from the reference paper [64] for uniform blowing con-
figuration. Table 3.3 gives all the physical model parameters used to carry out
the simulations..

The data was gathered until the statistical convergence of the desired
quantities was achieved. This was done on an ensemble basis using at least
N = 1000 members representing individual ODT realizations running in par-
allel on a large computing cluster and are autonomous so that communication
is not a limiting factor.

Other numerical parameters, Lmax, Lmin and Lp are explained in previous
sections. The simulations, for uniform blowing configuration, are carried out
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for momentum Reynolds number, Reθ = θu∞/ν up to 2500, where θ is the
momentum layer thickness, ν is the kinematic viscosity of the fluid and u∞ is
the free stream velocity. ν is fixed as 1.5× 10−5 m2/s. The velocity statistics
is compared with the reference data for Reθ ≈ 1407, 2082, and 2395 in Chapter
6. The friction, thickness and displacement Reynolds numbers for future ref-
erence are defined in previous section for the SBL configuration and remain
fixed for uniform blowing configuration. The usual convention is also same as
TBL and SBL case.

3.4 In Closing

This chapter describes the simulation set-up used for SBL, TBL and uniform
blowing in SBL. The simulation results produced using these set-ups are dis-
cussed next in Chapter 4, 5, 6 and 7.
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Chapter 4

Temporally Developing Turbulent
Boundary Layer

In this chapter we focus on the application of temporal ODT (T-ODT) formu-
lation to investigate the temporally developing turbulent boundary layer (TBL).
The various statistics for higher Reynolds numbers are also given in Appendix
F for this validated flow configuration which can be used in future. Some of
the results discussed in this chapter have been published in [109, 110, 111]

In the following, the predictive capabilities of ODT are addressed. This is
done by varying the bulk Reynolds number in the range 250 ≤ Reb ≤ 2000
for TBL configuration. However, the physical model parameters remain fixed
for this purpose and are used as α = 2/3, C = 9, Z = 400, and the two-
thirds large-eddy suppression (further detailed for selecting physical model
parameters is given in Appendix C). The set-up used for TBL is summarized
in Chapter 3. The numerical model parameters like the minimum eddy event
size or the minimum allowed grid cell size need to be adjusted accordingly as
these parameters are dependent on the Reynolds number.

In this section, ODT simulation results are discussed and compared to
available reference DNS results of [50]. Various statistical quantities are pre-
sented for different instants in time, or normalized for different Reθ. The veloc-
ity statistics presented here are averaged within time windows encompassing
several eddy events per realization in addition to the conventional ensemble-
averaging procedure. Smoother statistics are obtained by using larger time
windows in case of DNS as well [50]. This issue is discussed later in detail, as
it is specifically important for larger bulk Reynolds numbers. Same domain
length and grid points are used for all the simulation cases with the same
initial condition as used for DNS [50].

4.1 Velocity Boundary Layer for the TBL Case

Figure 4.1(A-D) illustrate the simulation set-up for four bulk Reynolds number,
i.e., Reb = [500, 1000, 1500, 2000], respectively. The velocity Ub at the bottom
wall initiate transitions and propagation of turbulence is observed at several
instances. Velocity field is shown on a ODT domain on y−axis which is same
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for all Reb and on x−axis, is the time window. Note that x−axis does not repre-
sent complete domain, instead, the time window represent only a screenshot
for a particular window. Since time is represented by Reθ so different Reθ

corresponding to the time window are provided in the figure. Figure 4.1(A)
depicts the snapshots for Reb = 500 at Reθ = [109, 581, 1076, 1843, 2606]
(representing different time window on the x−axis) and corresponding Reτ

are [7, 232, 497, 887, 1245] and we also show Reδ as [514, 900, 1506, 2449, 3390]
from (i-v), respectively. It can be seen from the snapshots that for Reθ = 109,
i.e. in the initial stage (Figure 4.1(A)(i)), the fluctuations are less than higher
Reθ. However, the turbulence is propagated away from the wall with time and
is increased for higher Reθ. The general observation for Figure 4.1(A) re-
mains consistent with Figure 4.1(B), (C) and (D) as well. On comparing these
visualizations with the different cases, i.e. Figure 4.1(A-D), it is found that
the transition also depends on Reb. It is observed that for Reb = 2000, the
transition to turbulence is started earlier and is further enhanced with time
showing the dependence on Reθ as well as Reb. Nevertheless, the details of
the transitions to turbulence are captured by ODT. The snapshots for all the
Reb are at the same instant and the values for several quantities are highly
influenced showing their dependency on Reb.

The temporally developing turbulent velocity boundary layer is shown in
Figure 4.2 (A-D) for all bulk Reynolds numbers, Reb = [500, 1000, 1500, 2000],
respectively. The velocity boundary layer is represented on the ODT domain
on y−axis (similar to the figure discussed above) and growing with time on
x−axis. The time on the axis is represented by the Reθ corresponding to
some instant and shown in figure for all Reb considered for TBL configuration.
This figure also demonstrates the dependence of propagation of transitions to
turbulence on time as well as on Reb. The variations are weaker for lower Reb
and stronger for higher Reb and are maximum for Reb = 2000. Note that the
Reθ mentioned in Figure 4.2 for various Reb is corresponding to same instants
for all cases, however, the Reθ is increasing with Reb. For Reb = 500, the value
for Reθ is 109 and for corresponding instant this value is 251, 474 and 613 for
Reb = 1000, 1500 and 2000, respectively. Hence, this Figure demonstrates the
capability of ODT to capture the behavior of the velocity boundary layer with
time and Reb, provided the model is one-dimensional.
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(A) Reb = 500 (B)
Reb = 1000

(C)
Reb = 1500

(D) Reb =
2000

FIGURE 4.1: Velocity field with domain on y-axis (in m) and
time window on x-axis (in s) which is represented by Reθ at (A-
D) Reb = [500, 1000, 1500, 2000]. These snapshots represent ve-
locity fields at small time windows corresponding to particular

Reθ (single value) mentioned in the figure above.
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FIGURE 4.2: Temporal development of the velocity boundary
layer with domain on y-axis (in m) and time on x-axis (in s)
represented by Reθ for bulk Reynolds number (A-D) Reb =
[500, 1000, 1500, 2000]. The figure illustrate the influence of Reb

on the velocity boundary layer.

4.2 First and Second Order Velocity Statistics

Figure 4.3 displays the mean streamwise velocity profile as a function of the
wall-normal coordinate at (A) Reθ ∼ 1100, (B) Reθ ∼ 1968 and (C) Reθ ∼ 2500
for Reb ∈ {500, 1000, 1500, 2000}. The DNS reference data (dashed line) is
available only for Reθ ∼ 1100 and Reθ ∼ 1968. The lower Reθ, i.e., Reθ ∼ 1100
represents transitions to turbulence and the higher Reθ, i.e., Reθ ∼ 2500 shows
fully turbulent state. The influence of the initial conditions on the velocity pro-
file is depicted in Figure 4.3 (A) particularly in the outer log-region.
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FIGURE 4.3: Mean streamwise velocity profile as a function of
the wall-normal coordinate (in viscous units) at (A) Reθ ∼ 1100,
(B) Reθ ∼ 1968 and (C) Reθ ∼ 2500. For comparison, the avail-
able reference DNS data from [50] are shown at Reθ ∼ 1100 and

Reθ ∼ 1968.

The profiles show agreement with the DNS data for low Reb, i.e., for Reb =
500 and 1000 (Figure 4.3 (A)). However, there are deviations for the other two
cases, i.e., Reb ≥ 1500. For the case at Reθ ∼ 1968, displayed in Figure 4.3
(B), all the curves are collapsing on top of each other. For this Reθ, a slight
variation is observed in the bulk, i.e., the outer log-region and the profiles
increases with increasing bulk Reynolds number. In the inner layer, i.e., y+ <
10, the velocity profile is independent of Reb. The mean velocity profile for
Reθ ∼ 2500 shown in Figure 4.3 (C) behaves similar to Reθ ∼ 1968, with
better collapse between profiles for all Reb for higher Reθ. ODT shows very
good agreement with the DNS data at both low and high momentum Reynolds
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numbers (Reθ ∼ 1100 and 1968), with deviations only in the outer-log region.
This shows the ability of the model to capture transitions from the inner to the
buffer layer, and further into the log-region.

The indicator function, y+ (∂u+/∂y+), as a function of wall-normal coordi-
nate in viscous units is presented in Figure 4.4 at (A) Reθ ∼ 1100, (B) Reθ ∼
1968 and (C) Reθ ∼ 2500 for Reb ∈ {500, 1000, 1500, 2000}. This function aids
in assessing whether there is a logarithmic region in the mean velocity profile
or not. The DNS data of a fully turbulent zero pressure gradient SBL from [44]
is plotted as a black dashed line at Reθ ∼ 2000 for reference. The evaluated
Reb are not sufficiently large in order to reach an asymptotic logarithmic region.
Hence, it is difficult to deduce an accurate value for the log-law constants [44].
The log-region in the velocity profile is identified by a constant region in the
plot. However, this log-region starts appearing only at fairly large Reynolds
numbers regimes and it is not discerned at the evaluated Reynolds number
for DNS as well as ODT.

The curves show dependence on Reb at Reθ ∼ 1100 as shown in Figure 4.4
(A). The indicator profiles at this Reθ are increasing with increasing Reb from
500 to 2000 in outer log-region starting from y+ > 4 depicting the transitions to
turbulence. The lower momentum thickness Reynolds number also capture
initial transients similar to the mean velocity. Nevertheless, the profiles remain
unaffected in the inner log-region (y+ < 4) for all Reb.

For Reθ ∼ 1968 illustrated in Figure 4.4 (B), the curves are independent
of Reb in the inner and buffer regions up to y+ < 200 and are found to be
dependent on it in the outer-log region after y+ > 200. A relatively large noise
component further away from the wall is noted which can be improved by using
very large ensemble sizes to achieve the statistical convergence. This would
not notably change the results and the qualitative trend would remain same.
The noise component occur due to the larger but less frequently occurring
eddy events. Interestingly, for Reθ ∼ 2500 displayed in Figure 4.4 (C), the
curves for all Reb collapses onto each other. This represents the fully turbulent
state for the TBL configuration for higher Reθ.
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FIGURE 4.4: Indicator function versus wall-normal coordinate
(in viscous units) at (A) Reθ ∼ 1100, (B) Reθ ∼ 1968 and (C)
Reθ ∼ 2500. For comparison, the reference DNS data for the

SBL from [44] at Reθ ∼ 2000 is given by a black dashed line.

Next the similarity properties are addressed by considering the von Kár-
mán constant K of the law of the wall. The constant K is defined as the inverse
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of the indicator function in the logarithmic region. Since there is no clear log-
arithmic region discerned either for ODT or the DNS, for ODT methodology,
K was obtained by averaging this function over 40 ≤ y+ ≤ 300. The value
obtained is close to K ∼ 0.4 and it is in very good agreement with the refer-
ence value [50] given that it is an empirical idealization. The qualitative trends
from the DNS [44], and the value of K are confirmed with ODT, despite the
disagreement in the outer-log region (see Figure 4.4 (B)). ODT can reproduce
but not confirm the value of K as the ODT parameters were tuned to match
the mean profile.

The root mean square (rms) of the normalized streamwise velocity compo-
nent (u+

rms =
√

u′2/uτ) as a function of the normalized wall-normal coordinate
in viscous units is shown in Figures 4.5 at (A) Reθ ∼ 1100, (B) Reθ ∼ 1968
and (C) Reθ ∼ 2500 for Reb ∈ {500, 1000, 1500, 2000}. At Reθ ∼ 1100, shown
in Figure 4.5(A), the profiles are in transition to turbulence and do not show
collapse. However, these profiles achieve collapse at higher Reθ as can be
seen in Figure 4.5 (B) and (C). The rms peaks are under-predicted compared
to the DNS data in both cases, i.e., at Reθ ∼ 1100 and 1968. The reference
data is not available for Reθ ∼ 2500 case. This case in shown only to illustrate
fully turbulent state achieved for the flow dynamics. The ODT modeling arti-
fact for under-predicting rms peak has already been reported in the literature
[84], and it can be avoided by retaining some 3-D information of the flow.

The weak double peak discerned in the vicinity of the wall at 10 < y+ < 40
might be due to the similarity of the mapping when the triplet map is applied
frequently close to a wall. This is explained in detail in [89]. This weak near-
wall double peak tends to disappear for low values of the α parameter shown
in Figures C.2 (A) at Reθ ∼ 1100 which might be due to the transient effects
because for Reθ ∼ 1968 in Figures C.2 (B), this peak exist for low α as well.
It was also not present in the single-velocity ODT Couette flow simulations of
[28]. This suggests that the specific choice of the mapping kernel, K(y) = y−
f (y), may contribute to this artifact. The eddy-event-based energy extraction
on the scale l from the driving mean shear in the u velocity component has
a spatial structure similar to K(y). On the same scale l, the mean shear is in
addition manipulated by application of the triplet map f (y). The other velocity
components, v and w receive the extracted energy on the selected scale but,
on average, do not provide energy back to u on that scale as they possess
no mean shear.

Further, note that the rms profiles in Figures 4.5 for all three Reθ values
exhibit an additional peak in the outer log-region. This additional peak is at-
tributed to the transient flow, or the effect of the initial conditions. This peak
is sensitive to the LS method used (see Figure C.12). It is also sensitive to
the time window used for averaging. For example, the time window to get the
profiles at Reθ ∼ 1968 is 1940 ≤ Reθ ≤ 2003. If this window is increased,
and selected as 1819 ≤ Reθ ≤ 2126, then the extra peak in the outer region
is resolved and we can obtain smoother statistics. For higher order statistics,
this window size is specially important [50]. Interestingly, the reference DNS
results in Figure 4.5 (A) also exhibit a similar outer peak around y+ ∼ 100 for
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higher bulk Reynolds numbers, i.e., Reb = 1500 and 2000. The peak is de-
creased after the initial transient has passed (see Figures 4.5 (B)). A ‘shoul-
der’ remains in the reference DNS data for all Reb investigated. Therefore,
the outer peak seems to be a general property of the outer layer dynamics
of the asymptotic TBL. To investigate this outer peak, the inner-outer interac-
tion have been considered in [121, 122] and [123] illustrated that the larger
outer-scaled contributions are peaking in the log region.
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FIGURE 4.5: Streamwise root-mean-square velocity profiles at
(A) Reθ ∼ 1100, (B) Reθ ∼ 1968 and (C) Reθ ∼ 2500. All quan-
tities are functions of the wall-normal coordinate (in viscous
units). For comparison, the reference DNS data from [50] is

shown at Reθ ∼ 1100 and Reθ ∼ 1968.

The reference DNS data reveals that the locations of the rms maxima
shown in Figure 4.5 (A) coincide approximately with the locations of inflection
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points of the mean profiles in Figure 4.3 (A). Moreover, the rms peak heights
are correlated with the mean velocity gradients at the nearby inflection points.
The ODT results presented here are in qualitative agreement with these DNS
results, which is seen best for the profiles at Reb = 1500 and 2000. The
outer layer dynamics exhibit strong random wall-normal fluid displacements
by which the upper edge of the boundary layer progresses into the bulk of the
fluid in case of DNS. In case of ODT, these displacements are represented
by large stochastic mapping events that are constrained by the scale locality
property of the triplet map and the LS mechanism. We note in this respect
that the velocity profiles at higher Reθ (later time) shown in Figures 4.3 (B) and
4.5 (B) exhibit weaker mean gradients in the outer layer suggesting that the
boundary layer growth is more vigorous during the initial transient stage since
the maximum permitted eddy sizes are small and thus frequent. At the same
time, they are relatively large in comparison to the thickness of the boundary
layer. The larger eddies become permissible as the boundary layer grows but
these occur less often and more probable ones only cover a fraction of the
boundary layer. The mean gradient as well as the rms fluctuations reduce as
the wall-normal fluid motions are relatively weaker. Finally, a developing but
asymptotic turbulent boundary layer flow is established and it has ‘forgotten’
its initial conditions.

In the following, we discuss additional Figure 4.6 giving the probability den-
sity functions (PDFs) of the eddy event locations in normalized wall-normal
coordinates for the 1/3 and 2/3 positions of theses eddies at (A) Reθ ∼ 1100
and (B) Reθ ∼ 1968. This type of PDF was used in [89] to explain the double
bump in the rms velocity profiles occurring in channel-type flows. This can
be adopted directly for other wall-bounded flows, for example the temporal
boundary layer considered here.

At the low momentum Reynolds number, we can see how the low bulk
Reynolds number flow exhibits already an approximately exponential tail of the
eddy event location PDFs far away from the wall. For the large bulk Reynolds
number flow, these PDFs are almost constant or even non-monotonic at large
distances from the wall. In the latter case the events are spread with more
or less equal probability throughout the whole boundary layer thus signalizing
the pronounced transient effect in the flow. For the largemomentumReynolds
numbers, we see that both low and large bulk Reynolds number flows have
collapsed on overlapping PDFs of the eddy locations, signalizing the end of
the transient and the achievement of a fully-developed condition (absence of
the influence of the initial conditions).

This PDF is also interesting to analyze, since, as in [89] the position of the
peaks for the 1/3 and 2/3 positions coincides with the double peak of the rms
profiles close to the wall (for the low bulk Reynolds number flow at the low and
high momentum Reynolds number, and for the large bulk Reynolds number
flow at the high momentum Reynolds number). There is no peak of the PDF
in the outer region, signalizing that there is nothing particularly special (other
than the influence of the initial conditions) in the large bulk Reynolds number
case at the low momentum Reynolds number.
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(A)

(B)

FIGURE 4.6: The probability density functions (PDFs) of the
eddy event locations in normalized wall-normal coordinates for
the 1/3 and 2/3 positions of theses eddies at (A) Reθ ∼ 1100

and (B) Reθ ∼ 1968.

The contour of constant root-mean-squared values of the streamwise ve-
locity fluctuations (u+

rms) as a function of Reθ is plotted in Figure 4.7 to quantify
the extent to which the initial conditions hasten or delay the collapse for the
profiles discussed for TBL flow configuration. As expected, we find collapse
of the profiles for all Reb investigated at high momentum Reynolds numbers
for the ODT model.
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FIGURE 4.7: Contour of constant root-mean-squared values of
the streamwise velocity fluctuations (u+

rms) in steps of ∆u+
rms=0.5

as a function of Reθ .

Figures 4.8 show the normalized Reynolds shear stresses as a function
of the wall-normal coordinate in viscous units, (u′v′/u2

τ) at (A) Reθ ∼ 1100,
(B) Reθ ∼ 1968 and (C) Reθ ∼ 2500 for Reb ∈ {500, 1000, 1500, 2000}. The
calculation of the Reynolds shear stresses are based on the changes of the
velocity profiles due to eddies (see [28] Appendix C). The Reynolds shear
stresses obtained using ODT matches well with the DNS data.

The profiles at Reθ ∼ 1100 (Figures 4.8 (A)) are still in transition to turbu-
lence for the ODT model as well as DNS. These profiles collapse at Reθ ∼
1968 (Figures 4.8 (B)) for Reb ≤ 1500 and shows an additional peak for
Reb = 2000 in the outer region, indicating the sensitivity of Reynolds shear
stresses to the large eddy suppression mechanism discussed earlier. In or-
der to discard possible numerical artifacts and confirm the effects of the tran-
sient flow, we also show the Reynolds shear stresses at high Reθ, that is, at
Reθ ∼ 2500, in Figure 4.8 (C) for which we do not have DNS data for compari-
son. The additional peak is found sensitive to the instabilities and disappears
at the large Reθ and for this case all the profiles track each other. For the
given initial conditions ODT takes slightly longer to transition to a fully turbu-
lent state as compared to DNS. In [96], the Reynolds shear stresses for the
suction boundary layer were reported to be over-predicted compared to DNS
data. But for the present analysis for temporally developing turbulent bound-
ary layer, the Reynolds shear stresses are in very good agreement with the
reference DNS results from [50]. This adds yet another sign of confidence in
the predictive capabilities of ODT for the TBL configuration.
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FIGURE 4.8: Profiles of the Reynolds shear stresses at (A)
Reθ ∼ 1100, (B) Reθ ∼ 1968 and (C) Reθ ∼ 2500. All quantities
are functions of the wall-normal coordinate (in viscous units).
For comparison, the reference DNS data from [50] is shown at

Reθ ∼ 1100 and Reθ ∼ 1968s.

4.3 Higher Order Velocity Statistics

The turbulent production in the flow is calculated as−u′v′
+ ∂u+

∂y+ . The turbulent
production as a function of the wall-normal coordinate in viscous units (nor-
malized with u4

τ/ν) at (A) Reθ ∼ 1100, (B) Reθ ∼ 1968 and (C) Reθ ∼ 2500 for
Reb ∈ {500, 1000, 1500, 2000} is shown in Figure 4.9.
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FIGURE 4.9: Turbulent kinetic energy production as a function
of the wall-normal coordinate (in viscous units) for (A) Reθ ∼
1100, (B) Reθ ∼ 1968 and (C) Reθ ∼ 2500. For comparison, the

reference DNS data from [38] is given by a black dashed line
.

For Reθ ∼ 1100, the DNS data is not available and the curves for Reb ≤
1000 collapse well onto each other for ODT simulation. The profile is smooth
with a small peak in outer log-region for Reb = 1500 but has not yet collapsed
with low Reb. Whereas, for Reb = 2000, this extra peak in the outer region
similar to the rms velocity profile and Reynolds shear stresses is discerned
for the production mechanism as well. This is exclusively due to the transient
effects in the flow and have been addressed in Appendix D by displaying
production mechanism for several Reθ starting from very low to high values.
As the DNS production results for Reθ ∼ 1100 is not available, we note that
we would also expect a peak in the outer region in the DNS data due to the
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transient effects. This is expected based on the shape of the DNS mean
velocity profiles and Reynolds shear stresses. This transient effect is removed
for statistics at higher Reθ shown Figure 4.9 (C) at Reθ ∼ 2500 and also shown
in Appendix D. The production profiles for all Reb cases at Reθ ∼ 1968 and
2500 collapse to a good degree. The ODT profiles at Reθ ∼ 1968 show fair
agreement with the DNS data from [38]. Therefore, an overall good estimation
of the turbulent production in ODT is expected.

The skewness of the streamwise velocity component, −u′3/u3
rms, as a

function of the wall-normal coordinate y+ (in viscous units), is shown in Fig-
ure 4.10 at (A) Reθ ∼ 1100, (B) Reθ ∼ 1968 and (C) Reθ ∼ 2500 for all four Reb.
The ODT results are qualitatively consistent with the DNS data for Reθ ∼ 1100
and Reθ ∼ 1968. The DNS data for TBL is not available at Reθ ∼ 2500.
With the increase of Reb, the skewness increases slightly in the buffer region,
20 < y+ < 100 and decreases in the inner (20 < y+) and outer log-region,
(y+ > 100) at lower Reθ, i.e., Reθ ∼ 1100 shown in Figure 4.10 (A), This trend
is consistent with the reference DNS. However, for the other two cases pre-
sented in Figure 4.10 (B) and (C), the ODT skewness profiles are collapsing
onto each other representing a fully developed turbulent flow. Although, the
skewness was reported over-predicted for both, inner as well as outer regions
in case of a suction boundary layer [96]. The profiles for all three Reθ show
similar behavior as reported for rms and Reynolds shear stresses, however,
the ODT profiles are sensitive towards C and α model parameters.

The figure also shows that the ODT model tends to under-predict the posi-
tive skewness near the wall for y+ < 10 which is similar to the suction bound-
ary layer [96]. A qualitatively different behavior in comparison to DNS can
be discerned in Figure 4.10 (A) and (B) for the buffer region, 10 < y+ < 40,
where ODT yields positive instead of negative skewness and the magnitude is
over-predicted in comparison to the DNS results. This behaviour is attributed
to some unrepresented features of the buffer layer dynamics analogous to
the argumentation for urms above. For the outermost region, y+ > 900, where
urms is positive but close to zero as discussed above shows the largest dis-
agreement for skewness profiles.

The skewness values of the order one or larger are likely caused by the
small values of |u′3| that result from occasional penetration of fluid from the
turbulent region into the free stream. In ODT, the skewness remains negative
whereas it recovers to positive values in the DNS. This indicates at qualita-
tively different dynamics at the edge of the boundary layer. The weakly pos-
itive deviations u′ (negative u) presumably dominate the negative skewness
observed for ODT as the mean, Ub − u, is very close to Ub. These positive
values in ODT are because of the inter-component energy redistribution, but
neither the triplet map nor the viscous diffusion causes positive skewness.
The viscous diffusion and the triplet map would retain the streamwise velocity
in its initial range 0 ≤ u ≤ Ub. Hence, the ODT model is not fully representa-
tive of the 3-D outer layer dynamics as these exhibit more degrees of freedom
and close to the upper edge of the boundary layer both positive and negative
u′ are generated.

Note that the above argumentation does not apply in the interior of the
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boundary layer. The mean streamwise velocity profile, u, is monotonic across
the log-region, for 40 < y+ < 600 and both u > 0 and (Ub − u) > 0, whereas
the gradient du/dy < 0 and d(Ub − u)/dy > 0. This suggests that the in-
stantaneous u velocity in not required to become negative to generate the ob-
served negative skewness under the action of the triplet map. The structure of
the triplet map together with the monotonicity of the driving mean streamwise
velocity can explain the positive skewness towards the wall for y+ < 40 by
positive u departures (negative u′) and this is consistent with the above inter-
pretation, Nevertheless, this figure illustrates the potential of ODT to calculate
third order velocity statistics.
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FIGURE 4.10: Profiles of the skewness of the streamwise ve-
locity fluctuations as a function of the wall-normal coordinate
(in viscous units) at (A) Reθ ∼ 1100, (B) Reθ ∼ 1968 and (C)
Reθ ∼ 2500. For comparison, the reference DNS data from [50]

is shown at Reθ ∼ 1100 and Reθ ∼ 1968s.
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FIGURE 4.11: Profiles of the flatness of the streamwise veloc-
ity fluctuations as a function of the wall-normal coordinate (in
viscous units) at (A) Reθ ∼ 1100, (B) Reθ ∼ 1968 and (C)
Reθ ∼ 2500. For comparison, the reference DNS data from [50]

is shown at Reθ ∼ 1100 and Reθ ∼ 1968s.

Further, the tendency of the ODT model is checked towards the flatness
of the streamwise velocity component, u′4/u4

rms, as a function of the wall-
normal coordinate y+ (in viscous units) and demonstrated in Figure 4.11 at
(A) Reθ ∼ 1100, (B) Reθ ∼ 1968 and (C) Reθ ∼ 2500 for Reb ≥ 500. ODT highly
under-predicts the fourth-order velocity statistics in the inner region near the
wall i.e. y+ < 10 and over-predicts it in the region 10 < y+ < 80 for Reθ ∼ 1100
as well as 1968. The profiles for ODT collapses onto each other for Reθ ∼ 1968
and 2500 but do not collapse for Reθ ∼ 1100 due to transitions to turbulence
and these profiles do not show good agreement with the DNS data. Unlike
the skewness, the kurtosis is relatively well captured by ODT for moderate
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to large distances from the wall. Here the sign of u has no influence on the
flatness, which is different from the skewness.

In general, ODT is more Gaussian than the DNS and close to the wall,
we observe approximately a Gaussian flatness with a value close to three.
This is attributed to the eddy motions and vortex stretching that remains un-
resolved in ODT but leads to inhomogeneity. The DNS may exhibit full 3-D
instabilities and coherent structures that are completely absent in the stochas-
tic picture of ODT. We might need to retain some 3D information to reproduce
fourth-order velocity statistics and the model might overcome this limitation if
finely resolved ODT lines are coupled with a coarse 3D LES mesh referred as
ODTLES [103]. ODTLES allows simulations of much more complex flows by
removing the restriction to one dimension.

4.4 Energy Spectra and Isotropy Indicator

Figure 4.12 shows the isotropy indicator as a function of the wall-normal coor-
dinate in viscous units at (A) Reθ ∼ 1100, (B) Reθ ∼ 1968 and (C) Reθ ∼ 2500
for Reb ≥ 500. For reference, the DNS data from [41] is shown with black
dashed line for Reθ ∼ 2000 in Figure 4.12(B). The ratio of the wall-normal
and streamwise rms velocity fluctuations, that is, v+rms/u+

rms is defined as the
isotropy indicator. It is noted that in the present ODT set-up by construc-
tion wrms = vrms. The condition for isotropic turbulence is vrms/urms = 1.
This condition is not met for the present formulation as shown in Figure 4.12.
Hence the turbulence dominated by u fluctuations across the boundary layer
is not isotropic.

The initial conditions have influence on lower Reθ, i.e., at Reθ ∼ 1100 as
shown in Figure 4.12 (A). The profiles for this particular Reθ captures transi-
tions to turbulence. Whereas, for higher Reθ in Figure 4.12 (B) and (C) the
flow is in fully turbulent state and the profiles for all Reb overlap each other.
The isotropy indicator in ODT depends very weakly on Reb in the inner and
buffer regions for the considered cases.

For all three Reθ considered here, the isotropy indicator in the inner region
is found to be slightly increasing for ODT and decreasing for DNS. ODT yields
more anisotropic state for the turbulent boundary layer in comparison to DNS
in the region y+ > 20. The transfer coefficient α can be modified to achieve a
much better match to the DNS isotropy indicator profile in the outer layer [96].
For the TBL flow configuration, the isotropy indicator is taken as a diagnostic
model result in order to estimate 1-D turbulence spectra as discussed below.
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FIGURE 4.12: Isotropy indicator v+rms/u+
rms as a function of the

wall-normal coordinate (in viscous units) at (A) Reθ ∼ 1100, (B)
Reθ ∼ 1968 and (C) Reθ ∼ 2500. For comparison, the reference
DNS data from [41] at Reθ ∼ 2000 is given by a black dashed

line.
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Figures 4.13(A, B) show the energy spectra of the streamwise velocity at
two different momentum Reynolds numbers, (A) Reθ ∼ 1100 and (B) Reθ ∼
1968, respectively. The energy spectra in case of DNS can be calculated at
different wall-normal positions due to the availability of both streamwise and
spanwise statistics along with different Reθ. But for the ODT model, the en-
ergy spectra are not dependent on wall-normal position while calculating for
a particular Reθ. In Figures 4.13(C,D), we try to calculate energy spectra at a
different wall-normal position for the same Reθ considered above and it was
found that the energy spectra are same as Figures 4.13(A, B), hence, con-
firming that they are not dependent on wall-normal position while calculating
for Reθ.

The streamwise wavenumber in DNS is associated to the Fourier trans-
formation of the streamwise profile of the fluctuating velocity field at a given
wall-normal position y, or rather y+, while the spanwise direction can be used
for ensemble averaging purposes. However, in ODT it is not possible to obtain
a direct expression for the velocity field as a function of the streamwise posi-
tion x due to the reduced dimensionality. Alternatives are available and could
be considered. For example, by displacing solutions in time by means of a
temporal-to-spatial correlation with a local advecting velocity. However, this
alternative (displacing solutions from time-to-space) turns out to be counter-
productive in this case, due to the developing character of the boundary layer
in time. Hence, no temporal-to-spatial transformation can be used if the pur-
pose of the study is to analyse energy spectra at a certain Reθ, directly asso-
ciated to a given instant of time.

To resort to the calculation of the spectra of velocity fluctuations along the
line could be another possible alternative. In this case, for a certain Reθ, the
dependence on y+ of the spectra is eliminated. The ODT and DNS fluctuating
velocity spectra are compared based on the above reasoning. This is done
by assuming equivalent isotropic turbulence energy spectra in ODT, i.e., a
spatial Fourier transformation of the fluctuating velocity field along the line
and a dependence on a kODT wavenumber. This represent the 1-D analog
of the 3-D k-shell. However, the isotropic turbulence consideration here is
clearly not the case in a boundary layer flow. This comparison nevertheless,
allows us to assess the dependence of the turbulence spectra between DNS
and ODT for the given Reθ.

This approach is justified with the isotropy indicator shown above. The
isotropy indicator exhibits a y+ range with approximately uniform anisotropy.
This range, 0 < y+ < 300 (for Reb = 500 case at a Reθ ∼ 2000), is used to
generate the corresponding spectra. This range varies heavily with Reb at
the low Reθ ∼ 1100 and more modestly at the high Reθ ∼ 2000. The ODT
spectra obtained using this methodology agrees qualitatively with DNS in the
inertial range, although there is more large scale variability in ODT. This is
also consistent with the outer peak observed for the Reynolds stress and the
rms velocity profiles discussed above.

It is noted that the spectra for the lower Reθ, i.e., Reθ ∼ 1100 exhibit a
clearer inertial range than those for the larger Reθ (Reθ ∼ 1968) in both DNS
and ODT. The reason for this feature could be that the non-asymptotic state
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(Reθ ∼ 1100) is more imbalanced than the asymptotic one (Reθ ∼ 2000).
The former is governed by a developing direct cascade that is closer to Kol-
mogorov’s picture than the latter, in which the small-scale dissipation and
multi-scale dynamics have saturated.
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FIGURE 4.13: Streamwise energy spectra as a function of nor-
malized wavenumber at (A) Reθ ∼ 1100 and (B) Reθ ∼ 1968.
ODT has no dependence on y+ in this case. For comparison,

the DNS data from [50] at y+ = 10 is shown.
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(A)

(B)

FIGURE 4.14: (A) Wall-normal position dependent ODT energy
spectra for the case Reb = 2000. For comparison, the refer-
ence DNS data from [50] at Reθ ∼ 1100 and Reθ ∼ 1968 are
shown. ODT results obtained for the time dependent spectra
(in the uniform anisotropy range) are shown as well. The po-
sition dependent spectrum has no dependence on Reθ in this
case, while the time dependent spectrum has no dependence on
the wall normal position. (B) Autocorrelation of the streamwise
velocity fluctuations as a function of the normalized streamwise
distance. Time dependent generated ODT spectra (in the uni-
form anisotropy range) are shown along the position depen-

dent ODT spectra.

The alternative method to obtain spectra could be a transformation of a
time series into a streamwise profile by means of Taylor’s frozen-turbulence
hypothesis, as in [124]. These spectra are just a modest comparison to show
both the y+ and θ dependence of the spectra and are considered next. Both
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the effects are isolated from each other. In case of the DNS, the calculated
spectra are certainly more detailed and faithful as compared to the reduced
order formulation to the flow dynamics. Details for the calculation of the spec-
tra along an alternative method proposed for the generation of the energy
spectra is explained Appendix E.

Next, the alternative method to calculate spectra (for Reb = 2000) is shown
in Figure 4.14. The energy spectra is generated from a transformation of the
time-series into a streamwise-series by means of Taylor’s frozen-turbulence
hypothesis, as in [124]. The comparison of spectra using this method is more
direct in terms of the streamwise wavenumber kx, however, as in [124], the
fidelity of the magnitude of the energy is lost up to some extent due to the
temporal-to-spatial transformation. Note that in this second alternative, there
is no possible Reθ dependency to calculate due to which we simultaneously
plot both DNS spectra at different Reθ for the comparison. The assumed win-
dow for time-averaging of the results is another drawback from these latter
spectra. In this approach large amounts of simulation data (instantaneous
flow profiles) have to be stored and processed afterwards and a serious draw-
back. As done in a more practical application, the output is limited and that is
why we are not able to capture all temporal (and subsequently, streamwise)
wavenumbers in this approach. This is seen in the shape of the autocorrela-
tion function in Figure 4.14, which is only approximated in a very coarse time
grid.

4.5 Temporal Behavior and its Influence on Struc-
tural Properties

The comparison of ODT structural properties with DNS i.e., (A) Reτ, (B) H, (C)
Reδ and (D) ReX with Reθ, is plotted in Figure 4.15 for the five bulk Reynolds
numbers Reb ∈ {250, 500, 1000, 1500, 2000} investigated. Note that the sub-
figure in all the plots represents the 1-D laminar profile obtained with the ODT
solver (Reb = 250∗) and Reb = 250 the corresponding case for DNS. The
DNS flow for this case is considered as laminar, however, for ODT, there is no
prior guarantee that the transition to turbulence happens for the same values
of diagnostic quantities as in the DNS. For the laminar profile, no eddy is
implemented in the flow and only the diffusion term is solved. Additionally, we
have also plotted the solution of Reb = 250 case when both stochastic and
deterministic terms are solved using the ODT methodology.

Figure 4.15 (A) shows the Reτ variation with Reθ and it is calculated us-
ing δ99. The comparisons are made with the DNS data and the profiles are
generally in good agreement. Although no convergence of the values with
increased Reθ is observed, unlike in the DNS data. At higher Reθ, the Reτ

seems to converge for lower Reb and it is expected that for higher Reb, these
profiles might converge for very high Reθ. The value of Reτ in case of DNS
converges for Reθ ∼ 2000, whereas for ODT in case of lower bulk Reynolds
number it converges at Reθ ∼ 3000. Table 4.1 summarises the values of Reτ

achieved at the last sampled Reθ.
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The shape factor (H) is the ratio of displacement thickness and momen-
tum thickness, i.e., H = δ/θ, and is plotted with Reθ in Figure 4.15 (B). The
asymptotic H value reaches ∼ 2.41 for the laminar flow, whereas for the other
cases, the value converges to ∼ 1.3. In case of DNS, the value for H is ∼ 1.4.
Like Reτ variation explained above, H variation also confirms that the DNS re-
sults converges for Reθ ∼ 2000 and the ODT results converges at Reθ ∼ 3000.
The figure presents that the shape factor for ODT is in relatively good agree-
ment with DNS.
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FIGURE 4.15: The quantities (A) Reτ, (B) H, (C) Reδ and (D) ReX
as a function of Reθ . For comparison, the reference DNS data
from [50] is shown. The sub-figure in all the plots shows the
laminar profile for ODT (Reb = 250∗) and the corresponding

DNS [50].

The variation of the displacement Reynolds number Reδ with momentum
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Reynolds number Reθ is shown in Figure 4.15 (C) for all the bulk Reynolds
numbers, i.e., Reb ∈ {250∗, 500, 1000, 1500, 2000}. The final values for all bulk
Reynolds numbers achieved are Reδ ∈ {1127, 3598, 4118, 4294, 4816}, respec-
tively. All the profiles show good agreement with DNS for all Reb cases. As
Reδ/Reθ = H, therefore, the collapse of the profiles into the very same slope
signalize the consistency with the results for the asymptotic H value.

The streamwise Reynolds number ReX as a function of the momentum
Reynolds number Reθ is shown in Figure 4.15(D) for the considered cases.
This quantity is directly proportional to the elapsed simulation time (X = Ubt).
The ODT results show a slight shift for low Reb numbers in comparison with
the DNS results. However, the shift is reduced for higher Reb. This can be ex-
pected as the assumptions for ODT are more applicable to fully developed tur-
bulent flows at higher Reynolds numbers. For Reb ∈ {250∗, 500, 1000, 1500, 2000},
the ReX/105 achieves 9.7, 15.0, 16.4, 15.7, 16.9, respectively as its final values
and are given in Table 4.1. All the profiles show very good agreement with
the DNS profiles, considering the reduced dimensionality of the ODT model.
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FIGURE 4.16: The quantity Reδ as a function of ReX. Dashed
line represent linear fit between ReX and Reδ for the considered

bulk Reynolds numbers.

The far-field asymptote of the boundary layer growth law, i.e., the depen-
dence of Reδ on ReX is the most basic global boundary layer property and is
shown in Figure 4.16. This connects the boundary layer growth in terms of
δ(t) with the notional spatial displacement X(t) and emphasizes the correla-
tion between the TBL and the SBL cases. Now that ODT has been calibrated
and validated for the TBL, it is a unique tool for exploration of global TBL prop-
erties at large ReX. The Figure shows linear behaviour of the quantities and
the equation for empirical linear fits, Reδ = m ReX + n, are given together with
the ODT data in Figure 4.16. These equations relates Reδ with ReX and can
be used to convert between the two Reynolds numbers. The slope m does
not depend on Reb and it reduces only weakly for increasing Reb, whereas,
the constant offset, n, depends strongly on Reb. The slope is obtained as
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m = (1.82± 0.08)× 10−3 for 500 ≤ Reb ≤ 2000. Here the confidence level is
estimated with the standard deviation.
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FIGURE 4.17: The quantities (A) Reτ, (B) Reθ , (C) Reδ and
(D) ReX as a function of time.

The above discussed global properties are varied with Reθ, where Reθ

represents the instants. It would be interesting to check behaviour of these
properties directly varied with time as well. Next, the ODT structural prop-
erties are presented as a function of time for (A) Reτ, (B) Reθ, (C) Reδ and
(D) ReX plotted in Figure 4.17 for the four bulk Reynolds numbers Reb ∈
{500, 1000, 1500, 2000} investigated. The DNS results for these quantities with
time is not available, hence only the ODT properties are presented and dis-
cussed.

All the properties, as expected, are growing with time. The Reτ value,
shown in Figure 4.17 (A), are very high for higher Reb within a very short time
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interval. As discerned from the figure, Reτ is approximately 1600 for t < 0.05 s
for Reb = 2000, whereas this value is< 1400 even for t = 0.40 s for Reb = 500.
This behaviour is similar for Reθ, Reδ and ReX shown in Figure 4.17 (B-D)
as well. Note that Reθ represents time analogous and it is expected linearly
growing with time which is discerned in the figure. In addition, ReX is also
directly proportional to time, as explained above and is confirmed here.

The quantities (A) δ99 and (B) θ as a function of time are presented in
Figure 4.18 for all four bulk Reynolds numbers Reb ∈ {500, 1000, 1500, 2000}
considered for TBL flow configuration. Both the quantities are growing linearly
with time. However, δ99 value achieved is approximately 0.02 m and θ is 0.002
m for Reb = 2000. Whereas, these values for Reb = 500 are approximately
0.06 and 0.006 m, respectively. The Reb = 2000 case is done for very small
simulation time because the statistics compared with DNS for this case is
achieved within short duration.
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FIGURE 4.18: The quantities (A) δ99 and (B) θ as a function of
time.

Next, the shape factor H is varied with time and is shown in Figure 4.19
for all four bulk Reynolds numbers Reb ∈ {250, 500, 1000, 1500, 2000}. The
trend for this figure is consistent with the Figure 4.15 (B) discussed above
which means that the H is converging with time. For Reb = 500, H have been
almost converged indicating a fully developed flow, whereas, for higher bulk
Reynolds numbers, i.e., Reb = 1000, 1500 and 2000, the H profile is still in
the transitions to turbulence. For these higher Reb case, the simulation time
needs to be significantly increased to achieve fully developed turbulence flow.
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FIGURE 4.19: The quantity H as a function of time.

Figure 4.20 displays the variation of skin friction coefficient, C f = 2/(U+
b )2

with (A) Reδ, (B) Reθ and (C) ReX Reynolds number for five discrete bulk
Reynolds numbers, i.e. Reb = [250, 500, 1000, 1500, 2000]. C f is important
since it has direct influence on the nature of the flow and represented as the
ratio of the wall shear stress to the dynamic pressure. The asymptotic values
achieved for skin friction coefficient for all Reb are mentioned in Table 4.1.

Figure 4.20(A) implies that the value of Reδ is increased with increas-
ing Reb and the opposite is observed for temporal development of turbulent
boundary layer represented by C f . Nevertheless, the ODT results shows
a similar behaviour as the reference DNS data from [50], with slight under-
prediction of the C f peaks using ODT methodology. The peak height can be
modified by changing the model parameters. However, the parameters show
influence on the velocity statistics as well. All the profiles finally collapses
onto each other. It can be observed that for the laminar case, i.e., Reb = 250,
the value of skin friction coefficient is ∼ 4× 10−3. However, for other cases,
i.e., Reb = [500, 1000, 1500, 2000], the value of C f decreases from ∼ 5× 10−3

to 4× 10−3, showing better agreement with DNS for higher Reb numbers.
Figure 4.20 (B) shows the development of C f with Reθ. Initially, the pro-

files for ODT show deviation from the DNS data and finally with the slight
delay, these profiles approaches towards each other similar to DNS indicat-
ing asymptotic insensitivity to the initial Reb. Similar to Reδ, the behavior of C f
with Reθ is very similar to the DNS profiles reported by [50] with slight under-
prediction of the C f peaks by ODT which depends on the model parameters.
With the selected set of optimal model parameters, however, the qualitative
trends are sufficiently well reproduced, as well as the collapse in the fully tur-
bulent state along with the lower and higher order statistics. This behaviour
once again hints at the predictive capabilities and the overall consistency of
the ODT model.

Figure 4.20 (C) shows the variation of C f with ReX. The C f profile be-
haves differently with ReX as compared to its behavior with Reδ and Reθ. In
the two previous cases, we found a fair collapse of all the profiles at larger
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Reθ, however, for this case the collapse is not achieved and there is a clear
scattering of the profiles. The same behavior is observed for the DNS case
[50].
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FIGURE 4.20: Skin friction coefficient C f as a function of
(A) Reδ, (B) Reθ and (C) ReX. In the case of ODT, Reb = 250∗

represents the laminar solution. For comparison, the reference
DNS data from [50] is shown.
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4.6 Coefficients in the Transient and Asymptotic
State

The temporal development and the asymptotic values of the coefficients C1
and C2 are addressed in this section. The coefficients, (A) C1 and (B) C2 ob-
tained with ODT as a function of Reθ in comparison with the DNS data [50] are
shown in Figure 4.21. The DNS as well as the ODT results exhibit an initial
transient phase in which the values of C1 and C2 drop very rapidly. Here, this
temporal behavior is shown in a normalized fashion due to the transforma-
tion of the time axis to the momentum Reynolds number Reθ. Both ODT and
reference DNS suggest once again the existence of an approximately univer-
sal asymptotic state that is approached for large Reθ when the system has
‘forgotten’ its initial condition. This state is characterized by C1,re f ∼ 4.0 and
C2,re f ∼ 25 in the available reference data [119, 125, 50] but somewhat lower
values in ODT, which are C1 ∼ 3.1 and C2 ∼ 17 and these asymptotic values
of the ODT solutions are given by dashed lines in Figure 4.21 (A) and (B).

Based on the coefficients, C1 and C2, the asymptotic state is approximately
reached for Reθ > Reb in the reference DNS [50] but delayed to somewhat
larger values of Reθ for ODT (factor 1.5). This suggests that the dynamics of
both the transient and asymptotic parts of the solution are different in ODT.
Nevertheless, it is remarkable that the lower-order stand-alone ODT model is
able to capture the relevant flow physics reasonably well.

The relatively small range of Reynolds numbers investigated is another as-
pect and this raises the questions whether and to which extent the temporal
development changes, even in the DNS, when Reb is increased. The refer-
ence DNS for the highest available Reynolds number, Reb = 2000, seemingly
has not yet reached the asymptotic state up to Reθ ∼ 2300 and it seems to
require longer to reach the asymptotic state that manifests itself by a rather
abrupt change of the slope of C1 and C2. This in case of ODT solutions is
different, where C1 and C2 level out more gradually towards high Reθ. The
solution for the smallest Reynolds number, Reb = 500, exhibits systematically
lower values of the coefficients than the other ones. This is likely due to the
specific choice of the ODT model parameters for the TBL flow configuration.
As discussed above, the similarity properties of the ODT solution suggests
that the systematically lower values of C1 and C2 are consistent with the limi-
tations of the lower-order formulation.

The semi-empirical equation discussed earlier is finally presented in or-
der to quantitatively address the balance for the asymptotic ODT state. The
different contributions to the semi-empirical equation for ODT as well as the
available reference DNS [50] are summarised in Table 4.2. A re-analysis of
published data was done to obtain the reference values. A similar quantifi-
cation has not been conducted so far in the relevant literature to the best of
our knowledge. This is also used to quantify the consistency of theory, DNS
and ODT. Note that both DNS and ODT are well within a 10% error margin
of the empirical prediction across the range 500 ≤ Reb ≤ 2000 investigated.
Furthermore it can be seen in Table 4.2 that the relative error decreases for
ODT with increasing Reb. This error is non-monotonic for the reference DNS
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which may be related to an insufficiently developed turbulent state. The rela-
tive errors are comparable for the largest Reb = 2000 investigated for ODT and
DNS. A larger Reynolds number yields a broader range of scales and, thus, a
more featureless, ‘stochastic’, state of the flow which leads to the expectation
that the ODT modeling error reduces with increasing Reynolds number and
has been confirmed for other applications (e.g. [96, 98, 126]). The numerical
values noted in Table 4.2 might therefore depend on the Reynolds number.
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FIGURE 4.21: Integral coefficients characterizing the TBL as
function of Reθ , (A) C1 and (B) C2. For comparison, the refer-

ence DNS data from [50] is shown.
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4.7 In Closing

The chapter presented a detailed validation for the temporally developing tur-
bulent boundary layer. Using the selected model parameters (discussed in
Appendix C), the various velocity statistics and important global properties
for boundary layer-type flows are compared with the available reference DNS
data from [50, 41]. Further statistics for TBL at higher Reynolds numbers is
provided in Appendix F.
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Chapter 5

Spatially Developing Turbulent
Boundary Layer

In this chapter, the main focus is applying the spatial ODT (S-ODT) formu-
lation to investigate the spatially developing turbulent boundary layer (SBL).
This chapter is divided into several sections discussing about domain size
sensitivity towards the statistics, simulation results for two bulk velocities in
comparison with the DNS data and finally the results from Chapter 4, i.e., for
TBL are compared with the SBL formulation. A detailed parameter sensitivity
for selecting optimal set of parameters in case of SBL configuration is pre-
sented in Appendix G and the physical model parameters used to carry out
the simulations presented in this chapter are used as α = 2/3, C = 6, and
Z = 600. Some of the results discussed in this chapter have been published
in [112] and [127].

5.1 Influence of Domain

The influence of the domain size on velocity statistics is analyzed in this sec-
tion. This is done for different Reθ as a prerequisite check tomake sure that the
simulations performed on various domain sizes within the Reynolds number
variation campaign would remain unaffected by any domain size considered.
To capture the boundary effects onto the flow, the domain size is increased. It
also verifies if the increasing boundary layer sizes are accommodated in case
of ODT similar to the reference DNS. In [128], the asymptotic suction bound-
ary layer investigation via LES reported a strong dependence of the boundary
layer thickness on domain dimensions. The large eddies in the outer region of
the flow are suppressed by a very small domain size. The wake strength ex-
hibited by the flow in very small domain are entirely vanished, once the span-
wise domain exceeds approximately two boundary layer thickness [129]. The
authors indicates that at these domain sizes, the boundary layer thickness
and friction Reynolds number may acquire box-size independent values.

The mean streamwise velocity and the rms profiles at Reθ ≈ 2000, 4000
and 8000 using the optimal set of physical parameters in comparison with the
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DNS and LES data from [41, 82] are shown in Figure 5.1, 5.2 and 5.3, respec-
tively. ODT simulations are carried out for two domains, D1 = 45, 000ν/Ub
and D2 = 90, 000ν/Ub and here the domain size D has been selected in bulk
units, i.e., ν/Ub.

The simulations performed with increased domain size for Reθ ≈ 2000
(Figure 5.1) show identical results to the reference DNS data for both the
domain sizes considered for the mean as well as rms velocity profiles. In Fig-
ure 5.2 at Reθ ≈ 4000, the profiles are in good agreement with the DNS data
for both domain sizes. However, Figure 5.3 shows that at Reθ ≈ 8000, the rms
profile for D1 is not matching with LES and there is some part missing. Nev-
ertheless, the mean velocity profile for this Reθ is acceptable for both domain
sizes considered in comparison with the LES.

The trend for rms profile for D1 is same for the model parameters C and Z
considered in Appendix G. Hence, D2 is considered for simulations at Reθ ≈
8000 to capture the boundary effects onto the flow. The increasing boundary
layer sizes are not accommodated for D1 and this domain size is discarded
for higher momentum Reynolds numbers.

5.2 Variation of Bulk Reynolds Numbers

This section presents various velocity profiles (up to 4th order) at several Reθ.
For Reθ ≈ 2000, 4000 and 8000 the ODT results are shown in comparison to
the available reference DNS data form [41] and LES data from [82]. To further
analyse the influence of various statistics with increasing Reθ, the ODT results
are given at Reθ ≈ 12000, 16000 and 20000. Note that the preliminary results
for velocity statistics up to 4th order for Reθ ≈ 2000 are published in [112].
Here, the investigation is extended for higher Reθ. Some of the structural
properties, like Reτ, H and C f as a function of Reθ up to ≈ 27, 000 are also
shown. The bulk velocity is varied to extend this investigation to determine the
predictive capabilities of the model on various statistics. The reference DNS
data is available for bulk velocity Ub = 12 m/s (indicated as U1 in figures)
and for the ODT model, in addition, the simulations are also performed for
Ub = 24 m/s (indicated as U2 in figures). The physical model parameters
remain fixed for this purpose which are α = 2/3, C = 6 and Z = 600.

Figure 5.4(A,B) illustrate the simulation set-up for two bulk velocities, i.e.,
(A) Ub = 12 m/s and (B) Ub = 24 m/s. To initiate transitions, the velocity
Ub is provided at the bottom wall and propagation of turbulence is observed
at several streamwise positions. Velocity field is shown on a ODT domain
on y−axis which is same for both bulk velocities (D1 for the present case)
and on x−axis, is the streamwise location. Note that x−axis does not repre-
sent complete streamwise domain, instead, the streamwise location represent
only a screenshot for a particular position. Since position can be represented
by Reθ so different Reθ corresponding to the streamwise locations are pro-
vided in the figure. Figure 5.4(A) depicts the snapshots for Ub = 12 m/s at
Reθ = [686, 2223, 3767, 4643, 6104] (representing different streamwise position
on the x−axis) from (i-v), respectively. It can be seen from the snapshots
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FIGURE 5.1: Normalized wall-normal profiles of the (A) mean
streamwise velocity and (B) rms velocity at Reθ ≈ 2000 for D1
and D2 domain size. ODT results are shown in comparison to

the reference DNS [41] at the matched Reθ .
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FIGURE 5.2: Normalized wall-normal profiles of the (A) mean
streamwise velocity and (B) rms velocity at Reθ ≈ 4000 for D1
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that for Reθ = 686, i.e. in the initial stage (Figure 5.4(A)(i)), the fluctuations
are less than higher Reθ. The turbulence is propagated, however, away from
the wall with streamwise location. It is increased for higher Reθ. The general
information for Figure 5.4(B) (Ub = 24 m/s) remains consistent with Fig-
ure 5.4(A). When these visualizations are compared with the different bulk
velocities, it is found that the transitions to turbulence depends on Reθ as well
as Ub. The transitions to turbulence are started earlier for higher Ub and are
further increased with streamwise position. The snapshots for both the Ub are
at the same location but the values for Reθ are higher for larger Ub at same
location.
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FIGURE 5.4: Velocity field with domain on y-axis (in m) and
streamwise location on x-axis (in m) in terms of corresponding
Reθ for two bulk velocities (A) Ub = 12 m/s and (B) Ub = 24

m/s.

The spatially developing turbulent velocity boundary layer is shown in Fig-
ure 5.5 (a,b) for the bulk velocities investigated above, i.e., (a) Ub = 12 m/s
and (b) Ub = 24 m/s. The velocity boundary layer is shown on the ODT
domain on y−axis (same as the figure discussed above). This is growing
with streamwise location on x−axis. The Reθ are calculated corresponding to
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particular location on x−axis. This figure illustrates the dependence of prop-
agation of transitions to turbulence with streamwise position as well as on Ub.
For both Ub, the flow is in fully turbulent state and Reθ reached are very high.
For Ub = 12 m/s in Figure 5.5 (a), the value for Reθ is 601 and the correspond-
ing location in Figure 5.5 (b) Reθ is 2355 which indicates that Reθ is increasing
with Ub. This figure shows that ODT is capable to capture the behavior of the
velocity boundary layer which is growing spatially.
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FIGURE 5.5: Velocity boundary layer development with do-
main on y-axis (in m) and streamwise location on x-axis (in m)
in terms of corresponding Reθ for bulk velocity (a) Ub = 12 m/s
and (b) Ub = 24 m/s. The figure illustrate the influence of Ub

on the velocity boundary layer.

Next, the spatially developing turbulent velocity boundary layer is shown
in Figure 5.6 for the bulk velocity Ub = 12 m/s. In this figure streamwise
positions are shown on x−axis instead of Reθ (discussed above). The ODT
domain on y−axis remains same as above.
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FIGURE 5.6: Velocity boundary layer development with do-
main on y-axis (in m) and streamwise location on x-axis (in m)
for bulk velocity Ub = 12 m/s. The figure illustrate the influ-

ence of Ub on the velocity boundary layer.

5.2.1 First and Second Order Velocity Statistics

Figure 5.7 (A) displays the mean streamwise velocity profile as a function of
the wall-normal coordinate in viscous units at Reθ ∼ 2000 for domain D1 and
D2 along with the DNS and LES reference from [41, 82]. The statistics is
given for two bulk velocities, i.e., U1 = 12 m/s and U2 = 24 m/s. On y-axis
We have U+

b − u+ due to the simulation set up used for the present study. The
ODT profile shows very good agreement with the reference data for this Reθ

for D1 as well as D2 for lower Ub, i.e., U1 but not for U2. This indicates that the
profiles are fully turbulent for U1 using both domain sizes. These profiles are
in transient to turbulence for U2. The higher bulk velocity captures transitions
in the flow. The main aim to use two Ub is to check influence of variation of
bulk velocity on various statistics. However, we do not have reference data
for U2. Nevertheless, the ODT model shows the ability to capture transitions
from the inner to the buffer layer, and further into the log-region for U1 with
both domain sizes.

Figure 5.7 (B) shows the mean streamwise velocity profile as a function
of wall-normal coordinate in viscous units for Reθ ≈ 4000. This is also shown
for two bulk velocities (Ub), U1 = 12 and U2 = 24 m/s in comparison with
the DNS and LES data [41, 82] at corresponding Reθ. The general trend
for this Reθ remains same as explained for Reθ ≈ 2000 for Figure 5.7 (A). The
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transitions to turbulence are captured for higher bulk velocity up to Reθ ≈ 4000.
Next, in Figure 5.8 the mean streamwise velocity profile as a function of

the wall-normal coordinate in viscous units is displayed at Reθ ∼ 8000 for
domain D1 and D2 in comparison with the LES reference from [82]. Along
with the comparison, the profiles for several other Reθ, as Reθ ≈ 12000, 16000
and 20000 are also presented to check the influence of growing Reθ on the
mean velocity profile. The profiles for SBL, produced by ODT, at all Reθ for
U1 = 12 m/s as well as U2 = 24 m/s using both domain sizes are very
much similar to the LES [82] data for Reθ ≈ 8000. This indicated that the
mean velocity has reached fully turbulent state even for U2 at Reθ ≈ 8000. In
the inner layer, i.e., y+ < 10, the velocity profile is independent of Ub as well
as domain size. However, some deviations from reference data are captured
only in the outer log-region for growing Reθ and also with domain variation.
Nevertheless, the model captures variations for the mean velocity for all Reθ

from the inner region to the buffer region and further in the log-region.
Note that the ODT model shows very good agreement with the DNS and

LES data for lower bulk velocity at all Reθ and at higher Reθ for higher bulk
velocity using both domain size for the spatially developing turbulent boundary
layer.

Figure 5.9 shows the pre-multiplied mean velocity gradient, i.e., the indi-
cator function, y+ (∂u+/∂y+), as a function of wall-normal coordinate for the
SBL configuration at Reθ ≈ 2000 and 4000 for two bulk velocities investigated.
The ODT results are shown in comparison with the reference DNS [41]. The
pre-multiplied mean velocity aids in assessing if there is a logarithmic region
in the mean velocity profile. The ODT profile for lower bulk velocity in Fig-
ure 5.9 (A) shows good quantitative agreement with the reference data and
for higher bulk velocity at same Reθ captures transition to turbulence. This
behaviour is consistent with the mean streamwise velocity profile discussed
above. The curves are dependent on Ub for Reθ ≈ 2000 and for Reθ ≈ 4000,
the profiles are independent of Ub only in the inner region.

The indicator profile for higher bulk velocity achieves fully turbulent state
with increasing Reθ as shown in Figure 5.10. This figure presents the indica-
tor function as a function of wall-normal coordinate at Reθ ≈ 8000 for two bulk
velocities considered above in comparison with the reference LES data [82].
At this Reθ, the profiles from inner region to the buffer region, remains unaf-
fected for the bulk velocities but dependent on Ub only in the outer log-region.
For U2 = 24 m/s at Reθ ≈ 8000, the profile still shows sensitivity towards
initial conditions and it captures the initial transitions. However, these transi-
tions were dominant for Reθ ≈ 2000 and 4000 when compared to Reθ ≈ 8000.
Large noise components are noticed in the outer region which might be due
to the large but less frequently occurring eddy events.

The von Kármán constant, K, of the law of the wall is defined as the in-
verse of the indicator function in the logarithmic region. This addresses the
similarity properties. K in the present case is obtained by averaging the in-
dicator function over 40 ≤ y+ ≤ 300. Note that ODT can reproduce but not
confirm the value of K. This is because the physical model parameters are
tuned to match the mean profile. To achieve the statistical convergence large
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FIGURE 5.7: The mean streamwise velocity profile as a func-
tion of the wall-normal coordinate (in viscous units) at (A)
Reθ ≈ 2000 and (B) Reθ ≈ 4000 for U1 and U2 as bulk veloci-
ties, 12 and 24 m/s, respectively. For reference, DNS and LES

data from [41, 82] at Reθ ≈ 2000 and 4000 is plotted.

ensemble sizes are required. This would not influence the overall observa-
tions about the results. The qualitative trends from the DNS and LES are
confirmed for lower bulk velocity at all three Reθ.

The root mean square (rms) of the normalized streamwise velocity compo-
nent (u+

rms =
√

u′2/uτ) as a function of normalized wall-normal coordinate in
viscous units is depicted in Figure 5.11 at (A) Reθ ∼ 2000 and (B) Reθ ∼ 4000
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FIGURE 5.8: The mean streamwise velocity profile as a function
of the wall-normal coordinate (in viscous units) at Reθ ≈ 8000
in comparison with the LES data at corresponding Reθ from [82]
is shown. The ODT results are presented for U1 and U2 as bulk

velocities, 12 and 24 m/s for several higher Reθ .

for U1 and U2 as bulk velocities, 12 and 24 m/s, respectively for two domain
sizes considered for investigation. For comparison, the reference DNS data
from [41] and LES data from [82] at Reθ ≈ 2000 and 4000 is plotted. As usual,
the peak amplitude remains under-predicted by ODT compared to the refer-
ence data for both domain sizes at lower bulk velocity. For higher bulk velocity,
the profiles are in transition to turbulence for both Reθ. The under-predicted
peak can be optimized by choosing small value of the model parameter C.
But in that case the velocity profile tends towards a laminar profile. This ODT
modeling artifact has already been reported in the literature by [84] and can
be avoided by retaining some 3-D information of the flow.

The double peak arising near to the wall, y+ ≈ 10, represents an artifact
generated by the topology of the triplet map close to the wall and is seen
only for lower bulk velocity. This peak is not seen for high bulk velocity due to
transitions. The origin of this peak is explained inmore detail by [89]. Although
the peak is under-predicted for rms, some general trends from the reference
data are confirmed with the ODT for the given initial condition and for the
chosen physical parameters.

The rms profile in Figure 5.12 is shown at Reθ ≈ 8000 for two bulk velocities
and for two domain sizes in comparison with the reference LES data from
[82] at corresponding Reθ. ODT results are presented for several higher Reθ

as well. The ODT rms profiles are under-predicted for all Reθ given in figure.
For this Reθ, bulk velocities does not affect the the rms profiles much and all
profiles have achieved fully turbulent state. However, domain size selected
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FIGURE 5.9: Indicator function versus wall-normal coordinate
(in viscous units) at (A) Reθ ≈ 2000 and (B) Reθ ≈ 4000 for
U1 and U2 as bulk velocities, 12 and 24 m/s, respectively. For
comparison, the reference DNS data from [41] at Reθ ≈ 2000

and 4000 is plotted.
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FIGURE 5.10: Indicator function versus wall-normal coordinate
(in viscous units) at Reθ ≈ 8000 for U1 and U2 as bulk veloci-
ties, 12 and 24 m/s, respectively. For comparison, the reference

LES data from [82] at same Reθ is plotted.

affects the profiles. D1 fails to capture growing turbulent boundary layer at
Reθ ≈ 8000 and capture only for lower Reθ. D2 presents good fit for rms
profile in comparison to the LES data at higher Reθ. The ODT implementation
for the SBL case confirms the double peak near the wall for this Reθ as well.

Figure 5.13 shows the profiles for the normalized Reynolds shear stresses
as a function of the wall-normal coordinate in viscous units, (u′v′/u2

τ), for
(A) Reθ ≈ 2000 and (B) Reθ ≈ 4000 in comparison with the reference DNS
and LES data from [41, 82]. The calculation of Reynolds shear stresses are
based on the changes of the velocity profiles due to eddies and is explained
in detail in [28], Appendix C. A peak is observed in the outer log-region for
Reynolds shear stresses at both Reθ for both bulk velocities and both domain
sizes. For higher bulk velocity, this is due to the transitions but for Reynolds
shear stresses, these transitions are captured even for lower bulk velocity.
Another different observation for Reynolds shear stress is that the profiles
show sensitivity towards domain sizes considered as well unlike the mean
and rms velocity profiles for both Reθ.

Figure 5.14 shows that the peak captured in the outer log-region is not
seen in case of higher Reθ, i.e., at Reθ ≈ 8000 for the lower Ub. The Reynolds
shear stress profiles are under-predicted in comparison to the reference LES
data [82] and the outer peak disappears for D1 but some signs are observed
for D2. This peak is attributed to the transient effects at lower Reθ indicating
that some of the simulated boundary layers are still developing. This indicates
that the flow have not reached to the final turbulent equilibrium state. This
behaviour was observed for TBL as well, as discussed in [109] and also in
earlier chapter of the thesis. However, in case of TBL, the peak was observed
till Reθ ≈ 1968 and no transient effects were seen at Reθ ≈ 2500. But in the
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FIGURE 5.11: The root mean square velocity profile, as a func-
tion of wall-normal coordinate (in viscous units) at (A) Reθ ≈
2000 and (B) Reθ ≈ 4000 for U1 and U2 as bulk velocities, 12
and 24 m/s, respectively. For comparison, the reference DNS
data from [41] and LES data from [82] at Reθ ≈ 2000 and 4000

is plotted.
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FIGURE 5.12: The root mean square velocity profile, as a func-
tion of wall-normal coordinate (in viscous units) at Reθ ≈ 8000
for U1 and U2 as bulk velocities, 12 and 24 m/s, respectively.
For comparison, the reference LES data from [82] at Reθ ≈ 8000
is plotted. ODT results are presented for several higher Reθ as

well.

SBL case, this peak is observed till Reθ ≈ 4000 and disappears till Reθ ≈ 7500.
A prolonged transient effects in case of SBL is reported in comparison to TBL
[109]. These transient effects are, however, highly sensitive for Ub as seen
from Figure 5.13 and Figure 5.14. The ODT model, in general, takes longer
to transition to a fully turbulent state for higher bulk velocity than the lower
bulk velocity. The effects of transient flow are observed up to Reθ ≈ 20, 000
for higher bulk velocity. It is noted that the Reynolds shear stresses for the
suction boundary layer [96] were reported to be over-predicted and for TBL
[109] case these profiles were in good agreement compared to the DNS data.
Whereas in the present SBL configuration, these profiles are under-predicted
as compared to the DNS and LES data [41, 82].

5.2.2 Higher Order Velocity Statistics

The turbulent production in the flow is calculated as −u′v′
+ ∂u+

∂y+ and plotted as a
function of wall-normal coordinate in viscous units in Figure 5.15 at (A) Reθ ∼
2000 and (B) Reθ ∼ 4000 for U1 and U2 as bulk velocities, 12 and 24 m/s,
respectively for two domain sizes. For comparison, the reference DNS data
from [41] and LES data from [82] at same Reθ is plotted.. The production
for both Reθ in SBL cases shows reasonable agreement with the available
reference data at matched Ub (lower bulk velocity) for D1 as well as D2. Some
transient effects are captured in turbulent production mechanism at both Reθ
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FIGURE 5.13: Profiles of the Reynolds shear stresses at (A)
Reθ ≈ 2000 and (B) Reθ ≈ 4000 for U1 and U2 as bulk veloc-
ities, 12 and 24 m/s, respectively. All quantities are functions
of the wall-normal coordinate (in viscous units). For compari-
son, the reference DNS data from [41] and LES data from [82]

at Reθ ≈ 2000 and 4000 is shown.
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FIGURE 5.14: Profiles of the Reynolds shear stresses at Reθ ≈
8000 for U1 and U2 as bulk velocities, 12 and 24 m/s, respec-
tively. All quantities are functions of the wall-normal coordi-
nate (in viscous units). For comparison, the reference LES data
from [82] at Reθ ≈ 8000 is shown. ODT results are presented

for several higher Reθ as well.

for higher bulk velocity for both domain sizes. These effects are expected
since production is calculated with the mean velocity and the Reynolds shear
stress. Such transient effects were observed in case of Reynolds shear stress
profiles at the same Reθ. Nevertheless, for U1 = 12 m/s, the Reynolds shear
stresses profiles for both Reθ using both domain sizes show agreement with
the reference data.

In case of U2 = 24 m/s, an extra peak is noted in the outer region at
higher Reθ which is similar to the rms velocity profile and Reynolds shear
stresses. At lower Reθ, i.e., ≈ 4000, the instabilities are dominant in the flow
for the SBL configuration. The transient effects are removed for statistics at
higher Reθ. The idea behind carrying out the ODT simulations for U2 = 24
m/s is to analyze the influence of bulk velocity on the statistics and we do
not have DNS or LES data to compare with for this case. Figure 5.16 shows
good agreement for ODT turbulent production with the reference LES data at
Reθ ≈ 8000 for both bulk as well as domain sizes.

The skewness of the streamwise velocity component, −u′3/u3
rms, as a

function of wall-normal coordinate in viscous units at Reθ ∼ 2000 is depicted in
Figure 5.17 (A) for U1 and U2 as bulk velocities, 12 and 24 m/s, respectively
for D1 and D2. For comparison, the reference DNS data from [41] and LES
data from [82] at same Reθ is shown in dashed lines. The figure shows that
the ODT model, using both domain sizes, tends to over-predict the positive
skewness near the wall i.e. y+ < 10 for lower bulk velocity and over-predict
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FIGURE 5.15: Turbulent kinetic energy production as a function
of the wall-normal coordinate (in viscous units) at (A) Reθ ≈
2000 and (B) Reθ ≈ 4000 for U1 and U2 as bulk velocities, 12
and 24 m/s, respectively. For comparison, the reference DNS
data from [41] and LES data from [82] at Reθ ≈ 2000 and 4000

is shown.
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FIGURE 5.16: Turbulent kinetic energy production as a function
of the wall-normal coordinate (in viscous units) at Reθ ≈ 8000
for U1 and U2 as bulk velocities, 12 and 24 m/s, respectively.
For comparison, the reference LES data from [82] at Reθ ≈ 8000
is shown. ODT results are presented for several higher Reθ as

well.

for higher bulk velocity. The skewness profile show agreement with the refer-
ence data in the outer region between 10 < y+ < 500 for lower bulk velocity.
However, there are large disagreements and very different trends in the outer-
log region, where DNS profiles exhibit a sudden increase in the skewness
values and this feature is not captured by ODT. This is presumably attributed
to the missing 3-D information. Nevertheless, this figure illustrates the poten-
tial of ODT to calculate the third order velocity statistics. A similar behaviour
is reported for a TBL using ODT ([109]). The ODT profiles are qualitatively
consistent with the reference data.

The skewness of the streamwise velocity component is plotted in Fig-
ure 5.17 (B) for Reθ ≈ 4000 for SBL in comparison with the reference DNS and
LES data. The qualitative trends for this Reθ are consistent with the reference
DNS and LES data as well as for Reθ ≈ 2000. A suction boundary layer [96]
reported considerable different behaviour for skewness as compared to SBL.
As for Reθ ≈ 2000, the positive skewness using ODT is under-predicted in the
inner region, i.e., y+ < 10, and in the outer region between 10 < y+ < 500,
shows good agreement with the reference data. Some of the flow structures
are not captured in the outer-region for spatial ODT formulations similar to the
temporal formulation. The reference data exhibit a sudden increase in the
skewness value in the outer-log region which is not captured by ODT. The ref-
erence data suggests negative skewness at the edge of the turbulent region.
There, the mean of u is very close to zero which indicates that negative-u
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excursions dominate the skewness. However, in ODT neither the triplet map
nor viscous transport can cause u to extend outside its initial bounds [0, Ub]
and only kernels can give negative u. Even if kernels give negative u, this
is a more limited mechanism for generating negative u than the mechanisms
available in DNS associated with pressure fluctuations, etc. Note that this
reasoning about negative u is not applicable in the interior of the boundary
layer, where the mean of u is positive so negative u is not needed to produce
negative skewness. Consistent with this, the negative skewness is found in
the interior but not at the edge.

Similar to rms and Reynolds shear stress, the transient effects are cap-
tured for skewness profile at lower Reθ for higher Ub with the general trends
being consistent. For higher Reθ shown in Figure 5.18, the third order velocity
statistics from reference data in [82] are in good agreement for both bulk ve-
locities. The figure also presents the ODT simulation results for several higher
Reθ as well.

Figure 5.19 shows the flatness of the streamwise velocity component, i.e.,
u′4/u4

rms, as a function of wall-normal coordinate (in viscous units) at (A)
Reθ ≈ 2000 and (B) Reθ ≈ 4000 for U1 and U2 as bulk velocities, 12 and
24 m/s, respectively for two domain sizes as D1 and D2. For comparison,
the reference DNS data from [41] and LES data from [82] at corresponding
Reθ is shown in dashed lines. Additionally, Figure 5.20 shows the flatness of
the streamwise velocity component at Reθ ≈ 8000 for both bulk velocities and
for both domain sizes in comparison with the reference LES data from [82] at
corresponding Reθ.

ODT highly under-predicts the fourth-order velocity statistics in the inner
region near the wall, i.e., y+ < 8 and agrees with reference data in outer
log-region for lower bulk velocity. For higher bulk velocity, initial transitions
are captures at lower Reθ and the profiles are consistent with other profiles at
higher Reθ. The flatness is over-predicted in the region between 8 < y+ < 600
for SBL and in case of TBL, this region was reported as 10 < y+ < 80. A
Gaussian flatness with a value close to three is observed close to the wall for
the ODT results for all bulk velocities using both domain except for higher bulk
velocity at lower Reθ. In general, ODT is more Gaussian than the DNS. This
can be attributed to the 3-D eddy motions and vortex stretching which leads
to inhomogeneity but remains unresolved in ODT. The full 3-D instabilities
exhibited by the reference data are absent in the ODT model. The profile
shows agreement with the reference data only in the outer log-region. Like
rms profiles, in case of flatness as well, we might need to retain some 3-
D information in a non-standalone application of ODT in order to reproduce
fourth-order velocity statistics to overcome this limitation [84, 103, 108], thus,
allowing simulations of much more complex flows. Unlike the skewness, the
sign of u has no bearing on the flatness. Due to this, ODT reproduces flatness
rather well in the far fields.
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(A)

(B)

FIGURE 5.17: The skewness of the streamwise velocity compo-
nent as a function of wall normal coordinate (in viscous units)
at (A) Reθ ≈ 2000 and (B) Reθ ≈ 4000 for U1 and U2 as bulk
velocities, 12 and 24 m/s, respectively. For comparison, the ref-
erence DNS data from [41] and LES data from [82] at Reθ ≈ 2000

and 4000 is shown.
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FIGURE 5.18: The skewness of the streamwise velocity compo-
nent as a function of wall normal coordinate (in viscous units)
Reθ ≈ 8000 for U1 and U2 as bulk velocities, 12 and 24 m/s,
respectively. For comparison, the reference LES data from [82]
at Reθ ≈ 8000 is shown. ODT results are presented for several

higher Reθ as well.

5.3 Variation of the Structural Properties with Reθ

For the SBL configuration, theODT structural properties, i.e., friction Reynolds
number (Reτ), shape factor (H) and skin friction coefficient (C f ) with Reθ are
discussed in this section in comparison with the reference DNS data from [41]
up to Reθ ≈ 4300 and LES data from [82] up to Reθ ≈ 8300. These simulations
are performed on a larger domain, i.e., D2 = 90, 000ν/Ub in order capture the
boundary effects onto the flow even at very high Reθ (≈ 27, 000). For U1 = 12
m/s, the Reθ value is in the range ≈ [600− 14, 000] and for U2 = 24 m/s, the
range is ≈ [2300− 27, 000]. The values of the properties achieved at the last
sampled Reθ are provided in Table 5.1.

The turbulence is further quantified in the near-wall region and Figure 5.21
is shown to obtain a functional relation for Reτ in terms of Reθ for two bulk
velocities. Reτ is calculated using uτ and δ99 and values are given in Table 5.1.
The Figure shows linear behaviour of the quantity with variation of Reθ. A
power-law relation is obtained as Reτ = 0.89× Reθ

0.89 to provide a good fit
for the ODT data. This equation also relates Reτ with Reθ. It can be used
to convert between the two Reynolds numbers. For comparison, the DNS
data up to Reθ ≈ 4300 and the LES data up to Reθ ≈ 8300 from [41, 82] is
shown with dashed lines. However, the ODT flow properties are shown up to
Reθ ≈ 14, 000 for lower Ub and up to Reθ ≈ 27, 000 for higher Ub. This quantity
is, in general, good agreement with the available reference data.
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(A)

(B)

FIGURE 5.19: The flatness of the streamwise velocity compo-
nent as a function of wall normal coordinate (in viscous units)
at (A) Reθ ≈ 2000 and (B) Reθ ≈ 4000 for U1 and U2 as bulk
velocities, 12 and 24 m/s, respectively. For comparison, the ref-
erence DNS data from [41] and LES data from [82] at Reθ ≈ 2000

and 4000 is shown.
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FIGURE 5.20: The flatness of the streamwise velocity compo-
nent as a function of wall normal coordinate (in viscous units)
at Reθ ≈ 8000 for U1 and U2 as bulk velocities, 12 and 24 m/s,
respectively. For comparison, the reference LES data from [82]
at Reθ ≈ 8000 is shown. ODT results are presented for several

higher Reθ as well.

The shape factor (H) defined as the ratio of the displacement thickness
and momentum thickness, i.e., H = δ/θ is plotted with variation of Reθ in
Figure 5.22 for different bulk velocities. Table 5.1 summarises the asymptotic
values achieved for the shape factor. This quantity gives a direct quantitative
estimation of the mean streamwise velocity profile independent of the skin
friction. The figure also shows the DNS results up to Reθ ≈ 4300 and the
LES results up to Reθ ≈ 8300 from [41, 82]. A convergence of the shape
factor is seen at higher Reθ but the ODT data does not show good agreement
with the reference data unlike TBL [109]. In the small Reθ range, a different
Reθ trend is noted for the reduced order model. However, a different trend at
low Reθ value is reported even in case of DNS [41]. ODT under-predicts the
value for the shape factor in the range from 2000 < Reθ < 8000 in comparison
with the reference data. It is worth noting the behaviour for this property for a
one-dimensional model.

Next, the development of the skin friction coefficient, C f = 2/(U+
b )2, with

Reθ for two bulk velocities up to very high Reθ (≈ 27, 000) (see Table 5.1) is
shown in Figure 5.23. The coefficient, C f is defined as the ratio of the wall
shear stress to the dynamic pressure. The behaviour for SBL flow configura-
tion is very much similar to the TBL configuration reported in [109]. The profile
for ODT show deviation initially from the DNS data. Although as it reaches
the final turbulent equilibrium state, it finally merge towards the reference data.
This shows asymptotic insensitivity to the initial conditions. Also, in case of
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FIGURE 5.21: The quantity Reτ as a function of Reθ for U1 and
U2 as bulk velocities, 12 and 24 m/s, respectively. For compar-
ison, the reference DNS data from [41] and LES data from [82]

is shown.

FIGURE 5.22: The quantity H as a function of Reθ for U1 and
U2 as bulk velocities, 12 and 24 m/s, respectively. For compar-
ison, the reference DNS data from [41] and LES data from [82]

is shown.

DNS [44], the laminar-turbulent transition is induced at different Reθ. These
transitions depends on tripping and as a result of transition, DNS exhibit typ-
ical overshoots of C f . A different behaviour of the DNS simulations in the
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region Reθ = 200− 1000 due to the transition mechanism is reported in [44].
The behavior of C f for the ODT model is similar to the DNS and LES profiles
reported in [41, 82] from Reθ ≈ 2500 onward with a slight under-prediction of
the C f for U1 = 12 m/s. However, in the small Reθ range, a inconsistent trend
with respect to Reθ is observed in case of the reduced order model in com-
parison with the reference data. The C f peak amplitude could be improved
by changing the model parameters. However, with the chosen combination
of parameters, the qualitative trends are sufficiently well reproduced, as well
as the collapse into the fully turbulent state along with the lower and higher
order statistics. This confirming once more the capability of ODT to predict
such properties.

FIGURE 5.23: Skin friction coefficient C f as a function of Reθ

for U1 and U2 as bulk velocities, 12 and 24 m/s, respectively.
For comparison, the reference DNS data from [41] and LES data

from [82] is shown.

The development of the skin friction coefficient, C f is now shown with
(A) Reτ, (B) Reδ (C) ReX for U1 and U2 as bulk velocities, 12 and 24 m/s,
respectively in Figure 5.24 only for ODT simulations. Table 5.1 summarises
the asymptotic values for all these quantities. The reference data is not avail-
able for these quantities for SBL configuration. Here, these quantities are not
discussed in detail.

Figure 5.25 displays variation of Reδ with Reθ and Figure 5.26, variation of
H with (A) Reτ and (B) Reδ for U1 and U2 as bulk velocities, 12 and 24 m/s,
respectively only for ODT simulations.

5.4 Comparison between TBL and SBL

A comparison between TBL and SBL flow characteristics for various velocity
statistics up to 4th order and some of the global properties with the spatial
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FIGURE 5.24: Skin friction coefficient C f as a function of
(A) Reτ, (B) Reδ (C) ReX for U1 and U2 as bulk velocities, 12

and 24 m/s, respectively.
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FIGURE 5.25: The quantity Reδ as a function of Reθ for U1 and
U2 as bulk velocities, 12 and 24 m/s, respectively. Reference

data is not available for this quantity.

and temporal DNS features is presented in this section.
The mean streamwise velocity profile as a function of wall-normal coordi-

nate in viscous units at Reθ ≈ 1968 for the present case, i.e., the SBL flow
configuration along with the TBL configuration reported in [109] is shown in
Figure 5.27. Note that the profiles for SBL and TBL for ODT simulations over-
lap on to each other up to y+ ≈ 200 and deviate from y+ > 200 onward.
However, there is a difference observed in outer-log region between spatial
[41] and temporal [50] DNS profiles as well. The accountability for such dif-
ference can be given to different initial and boundary conditions. In case of
SBL, the initial condition is laminar profile for ODT as well as DNS. For TBL
case, tan hyperbolic profile is used in [50, 109]. The bulk velocities used are
also different as Ub = 12 m/s for SBL and Ub = 15 m/s for TBL cases. The
selection of the optimal parameter for the individual flow configurations also
explains the difference in outer-log region in case of ODT than DNS.

Figure 5.28 shows the pre-multiplied mean velocity gradient, i.e., the indi-
cator function, y+ (∂u+/∂y+), as a function of wall-normal coordinate. This
figure includes the profiles for the SBL and TBL flow configuration for the ODT
methodology at Reθ ≈ 2000 and the reference spatial DNS data at corre-
sponding Reθ. The reference data for temporally developing turbulent bound-
ary layer is not available.

The profiles for SBL and TBL configurations for ODT model overlap on to
each other up to y+ ≈ 150 and minor deviation are observed in range 150 <
y+ < 300 which increases from y+ > 300 onward. These differences in the
outer-log region are noted earlier for TBL as well as SBL cases with increasing
bulk Reynolds numbers. We report that for this comparison between SBL and
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(A)

(B)

FIGURE 5.26: The quantity H as a function of (A) Reτ and (B)
Reδ for U1 and U2 as bulk velocities, 12 and 24 m/s, respec-

tively.
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FIGURE 5.27: Normalized wall-normal profiles of the mean
streamwise velocity component as a function of wall normal
coordinate (in viscous units) at Reθ ≈ 1968 for spatial and tem-
poral ODT formulation. For reference, spatial DNS data from
[41] and temporal DNS data from [50] at same Reθ is shown in

dashed lines.

TBL, we have different bulk Reynolds numbers. This could also be due to
the different initial and boundary conditions. Additional, the selected optimal
parameter for the individual flow configurations are also different.

Figure 5.29 (A) depicts the rms of the normalized streamwise velocity com-
ponent as a function of the normalized wall-normal coordinate in viscous units
is at Reθ ≈ 1968 for SBL and TBL, ODT and DNS. Some minor discrepancies
are noticed from ODT as well as DNS simulations. The C parameter plays
important role in improving rms peaks. Lower C values can be utilized for
modifying the rms peak. However, C = 9 is used for TBL and C = 6 for SBL.
The SBL peak is slightly under-predicted as compared to TBL. Other reasons
for the discrepancies remain same as explained for mean streamwise velocity
profile. These are distinct initial and boundary conditions and the model phys-
ical parameter selected for the flow configurations. The statistics, however,
is presented for SBL and TBL at same Reθ (≈ 1968). Nevertheless, TBL as
well SBL flow configuration under-predict the rms peak as compared to DNS.
The qualitative trend of the flow dynamics is capture well with a reduced order
model.

The profile for the normalized Reynolds shear stresses as a function of the
wall-normal coordinate in viscous units, for both SBL and TBL ODT configu-
rations are shown in Figure 5.29(B). The TBL data is shown at Reθ ≈ 1968.
The SBL data is shown at ≈ 1968 and ≈ 7500. For comparison, the reference
data from [41, 50], both at Reθ ≈ 1968 is also plotted. For SBL configuration,
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FIGURE 5.28: Indicator function versus wall-normal coordinate
(in viscous units) at Reθ ≈ 1968 for spatial and temporal ODT
formulation. For reference, spatial DNS data from [41] at same

Reθ is shown in dashed line.

a peak in outer-log region at Reθ ≈ 1968 is reported due to transient effects
and these effects were reported for TBL using ODT model in [109], however,
only up to Reθ ≈ 2500. Although, these transients effects for the present case
are noticed up to Reθ ≈ 7500. In case of the ODT model, the SBL peak is
slightly under-predicted in comparison with TBL. Note that the general shape
is captured by ODT using spatial as well temporal configuration.

The turbulent production in the flow is plotted as a function of wall-normal
coordinate in viscous units in Figure 5.30 at (A) Reθ ≈ 1968 and (B) Reθ ≈ 2000
for spatial and temporal ODT formulation. For reference, spatial DNS and LES
data from [41, 82] at same Reθ is shown in dashed lines. Temporal reference
data is not available for these profiles as well. Here, the factors responsible
for creating difference between SBL and TBL remains same as explained for
other profiles, which are different (a) initial conditions, (b) boundary condi-
tions, (c) bulk velocity and (d) optimal set of physical model parameter, for the
individual flow configurations. Additionally, it is important to mention that the
Reθ up to which flow capture transitions to turbulence is much higher in case
of SBL as compared to TBL for the ODT model. The Reθ considered here is
very small (Reθ ≈ 1968 and Reθ ≈ 2000).

The skewness of the streamwise velocity component is plotted as a func-
tion of wall-normal coordinate in viscous units in Figure 5.31 (A) at Reθ ≈ 2000
for spatial and temporal ODT profiles. This is done in comparison with the ref-
erence spatial DNS in [41] and temporal DNS in [50]. The qualitative trend
for the present SBL configuration is consistent with the TBL configuration for
the ODT simulations discussed in earlier chapter. Also these profiles for ODT
are consistent with the reference DNS data for considered Reθ. For both,
SBL and TBL flow configurations, the positive skewness using reduced order
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FIGURE 5.29: The (A) rms of the streamwise velocity compo-
nent and (B) Reynolds shear stresses profile as a function of
wall normal coordinate (in viscous units). The rms profiles
are shown at Reθ ≈ 1968 for SBL as well as TBL configura-
tion and the Reynolds shear stresses at Reθ ≈ 1968 for TBL and
at Reθ ≈ 1968, 7500 for SBL ODT formulation. For reference,
spatial DNS data from [41] and temporal DNS data from [50] at

Reθ ≈ 1968 is shown in dashed lines.
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FIGURE 5.30: Turbulent kinetic energy production as a function
of the wall-normal coordinate (in viscous units) for (A) Reθ ≈
1968 and (B) 2000 for spatial and temporal ODT formulation.
For reference, spatial DNS data from [41] and spatial LES data

from [82] at same Reθ is shown in dashed lines.
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model formulation is under-predicted as compared to the reference DNS data
in the inner region and in the outer-region, some of the flow structures are not
captured for TBL as well SBL configuration.

The flatness of the streamwise velocity component is depicted in Fig-
ure 5.31 (B) as a function of wall-normal coordinate in viscous units at Reθ ≈
2000 for spatial and temporal ODT profiles. For reference, the DNS data from
[41, 50] is also plotted. The qualitative trend for flatness profiles are also
consistent for the SBL and TBL configuration for ODT methodology and with
reference DNS data plotted with dashed lines. The Gaussian flatness value
for both cases considered is near to three. The profiles are under-predicted
in inner-region in comparison with the reference DNS data.

Skin friction coefficient C f as a function of (A) Reδ and (B) ReX for spa-
tial and temporal ODT formulation is shown in Figure 5.32. For reference,
temporal DNS data from [50] is shown in dashed lines.

Despite several differences (which are initial and boundary conditions, bulk
velocity, physical model parameters) in the the simulations carried out for SBL
and TBL flow configurations for ODT methodology, the profiles for C f with Reδ

for both configurations shown in Figure 5.32 (A) collapses onto each other at
higher Reδ. The TBL profile is available up to very small Reδ but it is expected
that if the simulations for TBL are carried out for long duration up to higher
Reδ then it may overlap with the SBL profile. Moreover, the peak in the initial
stage is under-predicted for SBL as compared to the TBL due to different C
opted.

Figure 5.32 (B) for C f with ReX shows different behaviour than with Reδ.
The C f variation with ReX seems parallel for SBL and TBL flow configurations
for ODT model. However, these profiles might collapse at very high ReX but
the range for ReX is not same for both cases. It can be commented that for
SBL, C f seems to achieve asymptotic state for very high ReX but for TBL the
profile has not reached asymptotic state.

Next, (A) skin friction coefficient C f and (B) shape factor H, as a function
of Reθ for spatial and temporal ODT formulation is shown in Figure 5.33. For
reference, spatial DNS and LES data from [41, 82] and temporal DNS data
from [50] at same Reθ is shown in dashed lines.

Note that for ODT, TBL data is available up to Reθ ≈ 3500 and SBL data up
to Reθ ≈ 14000. Figure 5.33 (A) captures initial transitions for all profiles for
ODT aswell as DNS and LES up to Reθ ≈ 2000. At higher Reθ, TBL profiles are
expected to collapse with SBL profiles for ODT and reference data. However,
due to limited data range for TBL profiles for ODT and DNS, it can not be
verified in the present work and remain open to verify in future investigations
related to boundary layer-type flows.

The shape factor H variation with Reθ in Figure 5.33 (B) also captures tran-
sitions to turbulence up to certain Reθ and is expected to show some similar
trend only at very high Reθ. Nevertheless, the trends are consistent with the
earlier simulations for SBL and TBL flow configuration using the ODT model
discussed in previous chapter and above in this chapter. It is also worth com-
paring these quantities for one-dimensional model for the considered formu-
lations.
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FIGURE 5.31: The (A) skewness and (B) flatness of the stream-
wise velocity component as a function of wall normal coordi-
nate (in viscous units) at Reθ ≈ 2000 for spatial and tempo-
ral ODT formulation. For reference, spatial DNS data from
[41] and temporal DNS data from [50] at same Reθ is shown

in dashed lines.
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FIGURE 5.32: Skin friction coefficient C f as a function of (A) Reδ

and (B) ReX for spatial and temporal ODT formulation. For ref-
erence, temporal DNS data from [50] is shown in dashed lines.

The spatial reference data for this quantity is not available.

Figure 5.34 displays variation of the quantity Reδ as a function of Reθ for
spatial and temporal ODT formulation. For comparison, the reference tem-
poral DNS data from [50] is shown. Spatial reference is not available for this
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FIGURE 5.33: (A) Skin friction coefficient C f and (B) shape fac-
tor H as a function of Reθ for spatial and temporal ODT formu-
lation. For reference, spatial DNS and LES data from [41, 82]

and temporal DNS data from [50] is shown in dashed lines.

quantity. The profiles collapse onto each other and shows very good agree-
ment for SBL and TBL ODT simulation with the temporal DNS results. Reδ in-
creases with increasing Reθ and shows linear behaviour. The values reached
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for T-ODT for Reδ is ≈ 4000 and Reθ ≈ 3500 and for S-ODT, Reδ ≈ 20000 and
Reθ ≈ 14000.
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FIGURE 5.34: The quantity Reδ as a function of Reθ for spatial
and temporal ODT formulation. For comparison, the reference

DNS data from [50] is shown.
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FIGURE 5.35: The quantity Reτ as a function of Reθ for spa-
tial and temporal ODT formulation. For reference, spatial DNS
and LES data from [41, 82] and temporal DNS data from [50] is

shown in dashed lines.

Figure 5.35 displays variation of the quantity Reτ a function of Reθ for spa-
tial and temporal ODT formulation. For reference, spatial DNS and LES data
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from [41, 82] and temporal DNS data from [50] is shown in dashed lines. S-
ODT, S-DNS and S-LES show good agreement with each other and T-ODT
matches with T-DNS. However, the spatial results for ODT, DNS as well LES
do not show agreement with the temporal results produced with ODT and
DNS. In general, Reτ increases with increasing Reθ for spatial as well as tem-
poral formulation. A linear behaviour of the quantity Reτ is noted with Reθ. The
values reached for T-ODT for Reτ is ≈ 1500 and Reθ ≈ 3500 and for S-ODT,
Reτ ≈ 6000 and Reθ same as above ≈ 14000.

5.5 In Closing

The chapter discusses a detailed validation for the spatially developing turbu-
lent boundary layer. The selection of optimal physical model parameters is
presented in Appendix G. These selected model parameters are used to in-
vestigate various velocity statistics and important global properties for bound-
ary layer-type flows and are compared with the available reference DNS and
LES data from [41, 82]. The various velocity statistics and global properties
are compared for S-ODT and T-ODT with reference data for boundary layer-
type problems.
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Chapter 6

SBL with Uniform Blowing

In this chapter, the well validated spatial ODT formulation in earlier chapter
is extended further by applying uniform blowing on the bottom wall. Blowing
and suction are two important aspects to reduce or enhance drag. The uni-
form blowing is presented in this chapter, whereas the suction case is pre-
sented elsewhere [96]. Various velocity statistics as a function of wall-normal
coordinate and several global properties for boundary layer varied with Reθ in
comparison with the reference LES data are discussed in detail in the chap-
ter. Since the ODT model is sensitive towards model physical parameters,
a detailed parametric study is conducted to choose the optimal set of these
parameters and presented in Appendix H.

6.1 Velocity Statistics for Uniform Blowing Con-
figuration

In this section, velocity statistics up to 4th order at some selected stream-
wise location represented by Reθ as Reθ ≈ 1407, 2082 and 2395 is discussed.
These results are presented in comparison to the available reference LES
data form [64] at same Reθ. For the comparison purpose, some of the DNS
profiles from simple SBL configuration without blowing from [41] are also used
as not all the statistic is available for the uniform blowing flow configuration.
Additional, some of the structural properties, for example, Reτ, H and C f as
a function of Reθ are also discussed as these quantities are very important
for boundary layer-type flows especially with uniform blowing. The simula-
tions are performed for one free-stream velocity. The optimal set of physical
model parameters are fixed as α = 2/3, C = 6, Z = 100, and the two-thirds
large-eddy suppression mechanism.

6.1.1 First and Second Order Velocity Statistics

The mean streamwise velocity profile as a function of the wall-normal coordi-
nate in viscous units for Reθ ≈ 1407, 2082 and 2395 with (A) uniform blowing
in SBL and at Reθ ≈ 1811 and 2047 (B) without blowing for a fixed free-stream
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velocity along with the LES reference data [64] (dashed line) is depicted in
Figure 6.1.

For the selected optimal parameters, the ODT profiles shows very good
agreement with the reference LES data for all Reθ for uniform blowing case.
The velocity profile is independent of Reθ from the inner region to the buffer
region up to y+ < 200, whereas, in the outer region, the profile for lowest
Reθ, i.e., Reθ ≈ 1407 is close to the wall. This moves away from the wall with
increasing Reθ for uniform blowing in turbulent boundary layer. Note that this
behaviour of profiles with increasing Reθ is similar to the reference LES data
[64] shown with dashed line in Figure 6.1 (A). This illustrates the ability of the
ODT model to capture the variations for the mean velocity from inner region
to the buffer region and further into the log-region for the spatially developing
turbulent boundary layer with uniform blowing.

The optimal set of model parameters for without blowing case is not the
same as for uniform blowing case. Nevertheless, for the selected model pa-
rameters, the mean streamwise velocity profiles for without blowing at both
Reθ considered show excellent agreement with the reference data as shown
in Figure 6.1 (B).

Note that the physical model parameters selected for uniform blowing case
are α = 2/3, C = 6.0, Z = 100 and two-thirds LS suppression mechanism.
Whereas, for without blowing case these parameters are α = 2/3, C = 4.5,
Z = 600 and frac domain LS suppression mechanism. In general the C pa-
rameter is important for boundary layer-type flows as seen in previous SBL
and TBL investigation. However, the Z parameter is found very important for
blowing configuration considered here. Small eddies might be important for
blowing case and hence a low Z value is used for the same.

The pre-multiplied mean velocity gradient, i.e., the indicator function is
shown in Figure 6.2 for Reθ ≈ 1407, 2082 and 2395 with (A) uniform blowing in
SBL and at Reθ ≈ 1811 and 2047 (B) without blowing for a fixed free-stream
velocity. Note that the LES data for comparison is not available for this profile
and the DNS data of a fully turbulent zero pressure gradient SBL from [44] is
used in the plot as a black dashed line at Reθ ∼ 2000. The indicator function
calculated as y+ (∂u+/∂y+), is varied as a function of wall-normal coordinate
(in viscous units) for uniform blowing and without blowing configuration.

The indicator function is important as it aids in assessing if there is a log-
arithmic region in the mean velocity profile and the log-region is identified in
the velocity profile by a constant region in the plot. It is known that this con-
stant region start appearing only at fairly large Reynolds number regime. The
profiles are noted as independent of Reθ from the inner to the buffer region.
There is dispersion in the profiles in the region far away from the wall. The
variation of indicator function with growing Reθ in the outer log-region is similar
to the mean streamwise velocity explained above.

The von Kármán constant K of the law of the wall is considered in order
to address the similarity properties. K is determined as the inverse of the
pre-multiplied mean velocity gradient, i.e., indicator function in the logarithmic
region and it is obtained for the present case by averaging indicator function
over 25 < y+ < 150 (given in Table 6.1 for Reθ ≈ 2395). K = 0.32 for the
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FIGURE 6.1: The mean streamwise velocity profile as a func-
tion of the wall-normal coordinate (in viscous units) at Reθ ≈
1407, 2082 and 2395 with (A) uniform blowing in SBL and at
Reθ ≈ 1811 and 2047 (B) without blowing. For comparison,
the reference LES data for uniform blowing as well as with-
out blowing configuration from [64] at corresponding Reθ are

shown.
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spatially developing turbulent boundary layer with uniform blowing. The ODT
model is capable to capture the qualitative trends from the reference DNS
data using the estimated set of physical model parameters.

Figure 6.2 (B) shows indicator function for no blowing case for two Reθ.
The observation for this profiles remains consistent with the other cases, for
example, for blowing case explained above as well as with SBL and TBL con-
figurations presented in previous chapters.

Figures 6.3 displays the root mean square (rms) of the streamwise velocity
component (u+

rms =
√

u′2/uτ) as a function of the normalized wall-normal
coordinate in viscous units for Reθ ≈ 1407, 2082 and 2395 with (A) uniform
blowing in SBL and at Reθ ≈ 1811 and 2047 (B) without blowing in comparison
with the LES reference data [64].

It is known from previous studies [28, 29, 89, 96, 109] that the ODT model
under-predicts the rms peaks due to missing 3-D information. Therefore,
some 3-D information [84, 94, 130, 131] needs to be retained to get a good fit
for the rms profiles using ODT in comparison to reference LES [64]. The peak
value for rms profile can be improved by choosing small value of the model
parameter C which however, have the direct effect on the slope of the mean
streamwise velocity.

For blowing configuration shown in Figures 6.3 (A), the general trend for
rms is similar to reference LES [64] with increasing Reθ. The rms profiles
remain unaffected in the inner region up to y+ < 10 and are sensitive to Reθ

from y+ > 10 onward. The peak amplitude for blowing is directly proportional
to the Reθ. The ODT implementation for uniform blowing also confirm a very
weak double peak in region 10 < y+ < 50. This peak in the vicinity of the
wall might be due to the artifacts generated by the topology of the triplet map
close to a wall [89]. This peak was also reported in the temporally developing
turbulent boundary layer [109].

An additional peak in the outer log-region was reported in [112] at small
Reθ and in [109] at all Reθ which was attributed purely to the transient flow or to
the effect of the initial conditions in [112]. This peak was also sensitive to the
LS method used and time window selected in [109]. For the present uniform
blowing configuration, the same LS method is used as it was in [109] but
no time window is used since the streamwise position is used to calculate Reθ

instead of instant. This peak is also discerned in the reference DNS results for
high bulk Reynolds number [50] and it has decreased after the initial transient
has passed leaving a ‘shoulder’. This ‘shoulder’ appears in reference LES
data as well [64] which hints that ODT seems to capture this general property
of the outer layer dynamics of the boundary layer.

When compared with the TBL and SBL case without blowing [109, 112],
and with blowing case for same simulation set-up which is used for blowing
in Figures 6.3 (B), a slight increase in the rms amplitude by blowing is noted.
This is due the reduced skin friction coefficient which is discussed below.

Figures 6.4 shows the profiles for the normalized Reynolds shear stresses
as a function of the wall-normal coordinate in viscous units, (u′v′/u2

τ), for
Reθ ≈ 1407, 2082 and 2395 with (A) uniform blowing in SBL and at Reθ ≈ 1811
and 2047 (B) without blowing. The reference data from [64] is plotted with
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FIGURE 6.2: The indicator function as a function of wall-normal
coordinate (in viscous units) at Reθ ≈ 1407, 2082 and 2395 with
(A) uniform blowing in SBL and at Reθ ≈ 1811 and 2047 (B)
without blowing configuration. For comparison, the reference
DNS data for the SBL configuration from [44] at Reθ ∼ 2000 is
given by a black dashed line. The reference data for blowing

case is not available for indicator function.
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FIGURE 6.3: The streamwise root-mean-square velocity pro-
files versus wall-normal coordinate (in viscous units) at Reθ ≈
1407, 2082 and 2395 with (A) uniform blowing in SBL and at
Reθ ≈ 1811 and 2047 (B) without blowing. For comparison, the
reference LES data from [64] at corresponding Reθ is shown for

uniform blowing as well as without blowing configuration.
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dashed lines for corresponding Reθ for blowing as well as without blowing
case. Note that the calculation of Reynolds shear stresses is different in ODT.
The Reynolds shear stress calculations are based on the changes of the ve-
locity profiles due to eddies which is explained in detail in [28] Appendix C.

An additional peak was reported in temporal and spatial ODT formulations
used for boundary layer investigation in [109, 112] which is not captured for the
uniform blowing configuration shown in Figures 6.4(A). This peak is however,
captured for the without blowing case in Figures 6.4 (B) using same simulation
set-up as used for blowing case. This suggests that the flow dynamics may be
different for different flow configurations and not all profiles behave in similar
fashion.

The qualitative trend for Reynolds shear stress profiles show agreement
with the LES data [64], however, the profiles are under-predicted as com-
pared to the reference data. The Reynolds shear stresses for the suction
boundary layer [96] were also reported to be over-predicted compared to the
reference DNS data. For the temporally developing turbulent boundary layer,
the Reynolds shear stresses were in very good agreement with the DNS re-
sults. Whereas, it was slightly under-predicted for spatially developing turbu-
lent boundary layer. This aids another sign of confidence in the predictive
capabilities of ODT for the selected flow configuration.

When Figures 6.4 (A) is compared with Figures 6.4 (B), the magnitude for
Reynolds shear stress in both the cases is different. For blowing configuration,
it is ≈ 1.0, whereas, for without blowing case it is ≈ 0.9. As expected, the
Reynolds shear stress is slightly increased for blowing configuration.

6.1.2 Higher Order Velocity Statistics

The turbulent production as a function of wall-normal coordinate in viscous
units is depicted in Figure 6.5. The turbulent production is calculated as
−u′v′

+ ∂u+

∂y+ . The figure displays production for Reθ ≈ 1407, 2082 and 2395
with (A) uniform blowing in SBL and at Reθ ≈ 1811 and 2047 (B) without blow-
ing configuration. The production data for reference LES for selected Reθ is
not available and a modest comparison is made by using DNS data without
blowing from [41] at comparable Reθ, i.e., Reθ ≈ 2000.

As expected in case of uniform blowing shown in Figure 6.5 (A), the peak of
production is noted slightly over-predicted for ODT simulations in comparison
to the DNS data. This might be due to the reduction in skin friction coefficient
for present configuration because for the case without blowing shown in Fig-
ure 6.5 (B), this peak is under-predicted. This indicates that ODT is capable
to capture flow dynamics for blowing configuration. Nevertheless, the quali-
tative trend remains unaltered for the blowing configuration when compared
to other cases in earlier chapters and dependence of production on Reθ is
not observed. Note that the Reynolds shear stress profiles shown above are
under-predicted, but the production curve is very close to the reference data,
suggesting the ∂u/∂y is over-predicted.

Figure 6.6 depicts the skewness of the streamwise velocity component,
−u′3/u3

rms, as a function of the wall-normal coordinate in viscous units, y+.
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FIGURE 6.4: The profiles of the Reynolds shear stresses versus
wall-normal coordinate (in viscous units) at Reθ ≈ 1407, 2082
and 2395 with (A) uniform blowing in SBL and at Reθ ≈ 1811
and 2047 (B) without blowing. For comparison, the reference
LES data from [64] at corresponding Reθ is shown for uniform

blowing as well as without blowing configuration.
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FIGURE 6.5: Turbulent kinetic energy production as a func-
tion of the wall-normal coordinate (in viscous units) at Reθ ≈
1407, 2082 and 2395 with (A) uniform blowing in SBL and at
Reθ ≈ 1811 and 2047 (B) without blowing configuration. For
comparison, the reference DNS data from [41] at Reθ ≈ 2000 is

shown for SBL configuration without blowing.
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Note that we do not have reference LES data for blowing configuration at
higher order velocity statistics and like production, DNS data from [41] at
Reθ ≈ 2000 is shown for comparison. For ODT, the profiles are displayed at
Reθ ≈ 1407, 2082 and 2395 with (A) uniform blowing in SBL and at Reθ ≈ 1811
and 2047 (B) without blowing configuration.

The behaviour for skewness in case of blowing case shown in Figure 6.6
(A) is similar to the spatial and temporal simulations without blowing reported
in [109, 112] in inner region, i.e., y+ < 10. Some deviations are discerned in
the buffer region, 10 < y+ < 100, for the blowing configuration in comparison
to the spatial boundary layer without blowing [112]. The skewness for blow-
ing and without blowing using same simulation set-up shown in Figure 6.6
(A) and (B) also show deviations in inner as well as buffer region from each
other. Nevertheless, the skewness profiles are consistent with the temporal
simulations performed using T-ODT [109]. The behaviour for skewness was
different in case of a suction boundary layer as well [96]. The ODT results are
observed qualitatively consistent with the DNS data considered. The depen-
dence of skewness on Reθ is dominant in the outer log-region, i.e., y+ > 300
which is consistent with other statistics discussed above. More details regard-
ing the skewness produced using the ODT model are already covered in TBL
as well as SBL chapter and also in [109, 112].

The flatness of the streamwise velocity component, u′4/u4
rms, as a function

of wall-normal coordinate in viscous units is displayed in Figure 6.7 for (A)
uniform blowing case at Reθ ≈ 1407, 2082 and 2395 and (B) without blowing
case at Reθ ≈ 1811 and 2047. For comparison, the DNS data from [41] at
Reθ ≈ 2000 is shown in dotted lines for planar spatially developing turbulent
boundary layer.

The flatness profiles are under-predicted in inner region for y+ < 10, near
the wall and over-predicted in the buffer region in the range 10 < y+ < 40. The
fourth order velocity statistics show reasonable agreement with the reference
DNS data along a certain y range from moderate to large distance from the
wall. Like the mean velocity profiles and the rms profiles, flatness shown
in Figure 6.7 (A) also show dependency on Reθ in outer log-region which is
consistent with other statistics for blowing case. The outer layer statistics in
ODT are dominated by the kernel-mechanism which is explained in detail in
[109, 112].

In general, ODT is more Gaussian than DNS and three is the Gaussian
flatness value for the ODT model which might be due to DNS being more
dynamic compared to the ODT model. Giving some more context, note that
the ensemble is built by ODT simulation runs. These runs have identical ini-
tial conditions but different random number sequences and are realized by
initializing with different random seeds. On average, all ensemble members
develop in time in a similar way. But all of them are uncorrelated when looking
at the flow profiles at a particular point in time. This property manifests itself
by virtually perfect Gaussianity of the point statistics. This would be differ-
ent in DNS. For example, when a similar ensemble of flow profiles would be
constructed from the spanwise direction as these profiles would be spatially
correlated (provided they are reasonably close to each other) which is not the
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FIGURE 6.6: Profiles of the skewness of the streamwise velocity
fluctuations as a function of the wall-normal coordinate in vis-
cous units at Reθ ≈ 1407, 2082 and 2395 for (A) uniform blow-
ing and at Reθ ≈ 1811 and 2047 (B) without blowing config-
uration. For comparison, the reference DNS data from [41] at

Reθ ≈ 2000 is shown for SBL configuration without blowing.
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FIGURE 6.7: Profiles of the flatness of the streamwise velocity
fluctuations as a function of the wall-normal coordinate in vis-
cous units at Reθ ≈ 1407, 2082 and 2395 for (A) uniform blow-
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uration. For comparison, the reference DNS data from [41] at

Reθ ≈ 2000 is shown for SBL configuration without blowing.
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case for the present ODT application.
The flatness disagreement with the reference DNS data is attributed to

the missing 3-D information and some 3-D information of the flow needs to
be retained to reproduce the 4th order velocity statistics. A non-standalone
application of ODT, referred as ODTLES [103, 132] can be used to overcome
above limitation. ODTLES permits the simulations of much more complex
flows by partially removing the one-dimensional constraint.

Figure 6.7 (B) shows flatness profiles for without blowing case using same
simulation set-up as used for the blowing configuration. These profiles devi-
ates from profiles shown in Figure 6.7 (A) in inner as well as outer region.
Profiles in Figure 6.7 (A) are more scattered in outer region but profiles in Fig-
ure 6.7 (B) are scattered more in inner region and collapses onto each other
for both Reθ in outer region.

6.2 Variation of the Global Properties with Reθ

In this section, some of the global properties are presented as a function of
Reθ. These quantities are shown below and are frictional Reynolds num-
ber (Reτ), shape factor (H), and skin friction coefficient (C f ) with Reθ up to
Reθ ≈ 2500 for uniform blowing configuration and up to Reθ ≈ 3000 for with-
out blowing case. The respective cases considered are represented as ’B-’
for blowing and ’NC-’ for no control in the figures discussed below for a fixed
free-stream velocity. The reference LES data from [64] is plotted for compar-
ison in dashed line for all the global properties. Table 6.1 gives the values of
the properties achieved at the last sampled Reθ.

Figure 6.8 displays the variation of Reτ with Reθ. This quantity further quan-
tify the turbulence in the near-wall region. The spatial development of Reτ is
calculated using uτ and δ99 and the values achieved are given in Table 6.1.
The figure also obtains a functional relation for the two Reynolds numbers,
i.e., Reτ in terms of Reθ. A linear behaviour of the quantities is noted. For the
blowing configuration, a power-law relation is obtained as Reτ = 0.61×Reθ

0.92

to provide a good fit for the ODT data and this equation can be used to con-
vert between Reτ and Reθ. This relation for without blowing configuration is
reported as Reτ = 0.76× Reθ

0.89. Note that the value reached for Reτ at any
Reθ is less in case of uniform blowing in comparison to without blowing config-
uration and a decrease of Reτ with blowing is observed for LES as well [64].
The ODT flow properties are generally in good agreement with the reference
LES data from [64].

The shape factor is calculated as the ratio of the displacement thickness
to the momentum thickness, H = δ/θ and plotted over Reθ as shown in Fig-
ure 6.9. For reference, the LES data from [64] in dashed lines for uniform
blowing as well as without blowing configuration is also shown.

The quantity H allows a direct quantitative estimation of the mean stream-
wise velocity profile which is independent of the skin friction. The ODT profiles
does not show good agreement with the LES data, however, an increase in H
by blowing is noted. This is similar to the reference data. In that sense, ODT
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FIGURE 6.8: The quantity Reτ as a function of Reθ up to
Reθ ≈ 3000 for uniform blowing (represented as ’B-’) and with-
out blowing (represented as ’NC-’ meaning ’no control’) con-
figuration. For comparison, the reference LES data from [64] is

shown for corresponding configurations.

capture the flow dynamics for the blowing configuration very well and this in-
dicates that the blowing can promote flow separation [64]. The shape factor
is under-predicted by ODT and in the small Reθ range a different Reθ trend is
observed for the reduced order model. However, this trend is consistent with
our earlier work [109, 112] and also at low Reθ, a different trend is spotted in
case of DNS as well [41]. The values achieved for H for the cases considered
for the present study is provided in Table 6.1.

Finally, the development of skin friction coefficient, C f = 2/(U+
b )2, is

shown with Reθ for both cases with and without blowing using the ODT model.
For reference, the LES data from [64] for fixed free-stream velocity in Fig-
ure 6.10 is plotted. C f is calculated as the ratio of the wall shear stress to
the dynamic pressure and like shape factor, skin friction coefficient also show
different trends in comparison to LES data initially. But the trend is consistent
with the earlier ODT applications [109, 112]. The laminar-turbulent transi-
tion is induced at different Reθ in case of DNS [44] and DNS exhibit typical
overshoots of C f depending on tripping and as a result of transition, the pro-
files using ODT methodology are slightly over-predicted as compared to the
reference data for the selected physical model parameters. However, it was
under-predicted for [109, 112]. The peak height can be modified by altering
the model parameters. Nevertheless, the qualitative trends are sufficiently
well reproduced with the selected set of model parameters.

Figure 6.10 also confirms the increase in the boundary layer thickness and
decrease in the skin friction for uniform blowing configuration. This is similar
to the reference LES data reported in [64]. ∼ 15% of the drag reduction is
achieved in case of blowing. In spite of the weak amplitude of the control,
flow dynamics for blowing configuration are captured using a reduced order
model. This confirms once more the overall consistency and the capability of
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the ODT model to predict such properties.
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6.3 In Closing

In this chapter, the ODT model is utilized to investigate effect of uniform blow-
ing in a spatially developing turbulent boundary layer. Various velocity statis-
tics up to 4th order and some of the global properties important for blowing
case are presented in comparison with the reference LES and DNS data. The
selection of optimal physical model parameters is presented in Appendix H.
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Chapter 7

Comparison with Experiments

The well validated spatial ODT formulation discussed in previous chapters
is here utilized for comparing ODT results with the experiments conducted
at BTU (chair of Prof. Egbers) in collaboration with the University of Lille,
CNRS, France. The comparison is done for a flat plate turbulent boundary
layer at high Reynolds number to demonstrate the capability of the ODTmodel
to capture flow dynamics at computationally high Reynolds numbers and to
present the state of the art. Various velocity statistics as a function of wall-
normal coordinate for boundary layer for a single Reθ are given in this chapter
in comparison with the reference experiment results [133]. We do not show
the comparison with all the Reθ discussed for experiments, rather we consider
only one Reθ which is highest for experiments.

7.1 The Logarithmic Law of the Wall

The mean streamwise velocity profile as a function of the wall-normal coor-
dinate in viscous units at Reθ ≈ 7603 for LES [82] and Reθ ≈ 18100 for ex-
periments [133] is depicted in Figure 7.1. The general trend for the velocity
profile is consistent with the other cases discussed in the previous chapters
and hence, to avoid repetition, these trends are not discussed again in this
chapter.

The problem with experiments is the examination of fluctuations and sta-
tistical values measured very close to the wall. As reported in [133] and can
also be seen from Figure 7.1 that the first measured point in case of experi-
ments for Reθ ≈ 18100 is at y+ = 45. Whereas, in case of ODT, at Reθ ≈ 7603,
the profile shows similar behaviour as LES [82] and successfully captures the
near wall dynamics. At Reθ ≈ 18100, the ODT model captures the first data
point at y+ = 2.

The pre-multiplied mean velocity gradient, i.e., the indicator function is
shown in Figure 7.2 at Reθ ≈ 7603 and 18100 for LES and experiments, re-
spectively, along with the ODT results at both Reθ. The indicator function is
calculated as y+ (∂u+/∂y+), and is varied as a function of wall-normal coor-
dinate (in viscous units).
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FIGURE 7.1: The mean streamwise velocity profile as a function
of the wall-normal coordinate (in viscous units) at Reθ ≈ 7603
for reference LES [82] and ODT along with the experiment data

[133] at Reθ ≈ 18100 in comparison with the ODT results.

As seen in Figure 7.1, that there is a linear region in the mean velocity
profile starting from y+ = 30 up to y+ = 1000 which is pretty flat in Figure 7.2,
identifying the log-region in the velocity profile. This constant region is con-
firmed at the given Reθ as it is known that it start appearing only at fairly large
Reynolds number regime. Note that the first measured point in case of ex-
periments is at y+ ≈ 60, whereas in case of ODT the first data point is at
y+ = 2.

7.2 Second Order Velocity Statistics

Figures 7.3 displays the root mean square (rms) of the streamwise velocity
component (u+

rms =
√

u′2/uτ) as a function of the normalized wall-normal
coordinate in viscous units at Reθ ≈ 7603 for LES and experiments along with
the ODT results.

It is discussed in earlier chapters and also known from previous studies,
for example, [28, 29, 89, 96, 109] that the ODT model under-predicts the rms
peaks due to missing 3-D information. Hence, some 3-D information [84]
needs to be retained to get a good fit for the rms profiles using ODT in com-
parison to reference LES and experiments. In case of rms profile as well, the
first measured point in case of experiments is at y+ ≈ 20, whereas ODT can
capture near wall dynamics.
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FIGURE 7.2: The indicator function as a function of the wall-
normal coordinate (in viscous units) at Reθ ≈ 7603 for refer-
ence LES [82] and ODT along with the experiment data [133] at

Reθ ≈ 18100 in comparison with the ODT results.
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FIGURE 7.3: The streamwise root-mean-square velocity profiles
versus wall-normal coordinate (in viscous units) at Reθ ≈ 7603
for reference LES [82] and the experiment data [133] in compar-

ison with the ODT results.
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FIGURE 7.4: The profiles of the Reynolds shear stresses versus
wall-normal coordinate (in viscous units) at Reθ ≈ 7603 for ref-
erence LES [82] and the experiment data [133] in comparison

with the ODT results.

Figures 7.4 shows the profiles for the normalized Reynolds shear stresses
as a function of the wall-normal coordinate in viscous units, (u′v′/u2

τ), at
Reθ ≈ 7603 for LES and experiments alongwith theODT results. TheReynolds
shear stress calculations in case of ODT are based on the changes of the ve-
locity profiles due to eddies [28] Appendix C.

An additional peak is reported for Reynolds shear stress in outer log-region
similar to previous cases. For details regarding this peak, the reader is re-
ferred to the previous chapters of the thesis. Like rms profiles discussed
above, the first measured point for Reynolds shear stresses in case of ex-
periments is also around y+ ≈ 20 and ODT captures near wall dynamics.

7.3 Higher Order Velocity Statistics

The turbulent production as a function of wall-normal coordinate in viscous
units is depicted in Figure 7.5 which is calculated as −u′v′

+ ∂u+

∂y+ . The fig-
ure displays production at Reθ ≈ 7603 and 18100 for LES and experiments,
respectively, along with the ODT results. As discussed for the previous pro-
files above, the ODT model is good in capturing the near wall dynamics and
shows the first data point for production at around y+ ≈ 2. Whereas, the first
measured point in case of experiments is around y+ ≈ 60.
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FIGURE 7.5: Turbulent kinetic energy production as a function
of the wall-normal coordinate (in viscous units) at Reθ ≈ 7603
for reference LES [82] and ODT along with the experiment data

[133] at Reθ ≈ 18100 in comparison with the ODT results.

Figure 7.6 depicts the skewness of the streamwise velocity component,
−u′3/u3

rms, as a function of the wall-normal coordinate in viscous units, y+.
The profiles are shown at Reθ ≈ 7603 for reference LES [82] and ODT along
with the experiment data [133] at Reθ ≈ 18100 in comparison with the ODT
results.

The behaviour for skewness for the present case is similar to the other
cases discussed in the previous chapter and hence, the reader is referred
to the previous chapters of the thesis for a detailed discussion regarding the
skewness profiles. Note that the first measured point for the skewness profile
in case of experiments is at y+ = 1.

The flatness of the streamwise velocity component, u′4/u4
rms, as a func-

tion of wall-normal coordinate in viscous units is displayed in Figure 7.7 at
Reθ ≈ 7603 for reference LES [82] and ODT along with the experiment data
[133] at Reθ ≈ 18100 in comparison with the ODT results. The flatness profile
is consistent with the previous cases, for example, TBL, SBL and SBL with
uniform blowing. As mentioned above, the ODT model captures the near wall
dynamics successfully, whereas, experiments show the first measured point
at y+ = 1.
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FIGURE 7.6: Same as Figure 7.5, but profiles of the skewness of
the streamwise velocity fluctuations.
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7.4 In Closing

In this chapter, the ODT model is utilized to compare the velocity statistics
with experiments conducted at BTU in collaboration with the University of Lille,
CNRS, France. The main aim of this chapter is to compare the ODT results
with experiments at high Reθ. Various velocity statistics up to 4th are presented
in comparison with the reference LES and experimental data.
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Chapter 8

Conclusions & Outlook

8.1 Conclusions

The role of turbulent boundary layers in numerous applications in the atmo-
spheric sciences, engineering and industry, have led to extensive studies of
such kind of flows over the last decades. Spatial and temporal approaches
have been used to analyze the incompressible as well as the compressible
boundary layers. Further, to control the flow for turbulent wall-bounded flows,
the mechanism of adding or removing mass through a porous surface, have
led to extensive studies of such kind of flows.

In this thesis, the ODT model has been applied for the first time to in-
compressible temporally and spatially developing turbulent boundary layers.
Additionally, the effect of uniform blowing in a spatially developing turbulent
boundary layer is investigated. The ODT model resolves the flow variables
along a 1-D computational domain. In this model, the viscosity effects are
represented by the deterministic diffusion equation and the turbulent advec-
tion by stochastic mapping events. From earlier studies, it is known that the
ODT results are sensitive to the choice of model parameters. So, first the
physical model parameters, α, C, Z and LS suppression mechanism are vali-
dated for each flow configurations.

For the TBL configuration, the ODT model is able to capture various rele-
vant features of the reference DNS data to a reasonable extent for the model
parameter values C = 9, Z = 400, α = 2/3 and the two-thirds large eddy
suppression method. Using the calibrated model parameters, various bulk
Reynolds numbers from the range 250 ≤ Reb ≤ 2000 have been investi-
gated for ODT methodology in comparison to the available reference DNS
[50] results. The velocity statistics such as mean, root mean square, turbu-
lent stresses, skewness and flatness as wall-normal profiles is obtained which
was then extended to turbulence spectra and global properties, that is, the
skin friction coefficient and various similarity Reynolds numbers.

For the TBL configuration the mean streamwise velocity matches to the
available reference DNS results up to a good degree for all bulk and momen-
tum Reynolds numbers investigated showing the ability of ODT to capture flow
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dynamics ranging from the viscous sublayer through the buffer layer and all
the way into the logarithmic layer. The rms peak amplitude is under-predicted
compared to the reference data which is a well-known limitation of the lower-
order formulation (e.g. [28, 29, 89]) and might be alleviated in future by a 3-D
expansion of the model, the so-called ODTLES [84, 88, 108], which aims to
retain the 3-D information. The profiles of the Reynolds shear stresses match
well with the reference DNS. The skewness of the streamwise velocity com-
ponent is under-predicted in the inner region (y+ < 10) of the TBL solution
and over-predicted in the buffer region (10 < y+ < 30). ODT is able to re-
produce the flatness values of the streamwise velocity component in large y
range.

Several global properties also show very good agreement with the refer-
ence DNS data. A semi-empirical balance equation for the asymptotically
self-similar state of the TBL have been diagnostically investigated with the aid
of ODT which suggests that ODT exhibits somewhat different asymptotically
self-similar solutions than the reference DNS. Both ODT and DNS fulfill the
semi-empirical balance with a relative error which is well below 10% for all
bulk Reynolds numbers investigated for the TBL configuration.

Further, for the SBL configuration, the model parameters used are, α =
2/3, C = 6, Z = 600 and the frac domain large eddy suppression mechanism.
The calibration procedure for the model parameters was carried out at Reθ ≈
4000 in comparison with the reference DNS data from [41] at the same Reθ.
For SBL, the influence of domain on velocity statistics at different Reθ for two
domain sizes is also analysed.

The calibrated model parameters and domain size same as the available
reference data is used to carry out the simulation for the SBL set-up and
the velocity statistics such as mean, root mean square, turbulent stresses,
skewness, flatness and indicator function as wall-normal profiles produced
from ODT is compared to the reference DNS and LES data from [41, 82] at
Reθ ≈ 2000, 4000 and 8000 for two bulk velocity. The structural properties
variation with Reθ is discussed for this configuration as well.

For the SBL configuration the results are consistent with the TBL configura-
tion and the mean streamwise velocity matches to the reference DNS results
up to a good degree. The peak amplitude of the root mean square velocity
profiles is under-predicted compared to the reference data for this case as well
and the Reynolds shear stresses profile shows an additional peak in the outer
region for Reθ = 2000 and 4000 due to transient effects which get resolved for
higher Reθ, i.e., at Reθ = 8000 and the profiles are slightly under-predicted in
comparison with the reference DNS and LES data from [41, 82] at all Reθ.

The skewness of the streamwise velocity component is slightly under-
predicted in the inner region, over-predicted in the buffer region and the flat-
ness of the streamwise velocity component is only matched reasonably in the
logarithmic region similar to the TBL case. The flow properties for example,
C f , H and Reτ as a function of Reθ shows moderate agreement with the avail-
able reference DNS and LES data and all the profiles capture transient effects
for higher bulk velocity at lower Reθ.

A comparison between SBL and TBL flow configurations is also presented
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using ODT with each other and with DNS at Reθ ≈ 1968 up to 2nd order
statistics and at Reθ ≈ 2000 for 3rd and 4th order velocity statistics and most
of the flow properties remain the same for both the approaches.

Next, the ODTmodel is applied to analyse the blowing boundary layer-type
flow and the ODT results are compared to the available reference LES data
at various momentum thickness Reynolds numbers. For this purpose, the
model parameters are calibrated in comparison with the LES data from [64]
at various Reθ and the optimal set of the model parameters is α = 2/3, C =
6, Z = 100 and two-thirds large eddy suppression method. The calibrated
model parameters are then used for further simulations to produce the velocity
statistics such as mean, root mean, turbulent stresses as wall-normal profiles
and the ODT results are compared with the LES [64] at various streamwise
locations.

For uniform blowing case, the mean streamwise velocity profile shows
good agreement to the reference LES data. The well known artifact of the
model is also confirmed and the peak amplitude of the rms velocity profile
is under-predicted compared to the LES data and the cross-stress profiles
show qualitative agreement with a overall under-prediction in comparison to
the LES profiles. The higher order velocity statistics are provided in compari-
son with DNS of spatially developing turbulent boundary layer without blowing
from [41]. An increase in H is observed using blowing configuration and this
is consistent with the reference LES data, however, the overall shape factor
profile does not show good agreement with the reference data. ∼ 15% of the
drag reduction is achieved in case of blowing using the ODT model hence,
confirming the overall consistency and the capability of the ODT model to
predict such properties.

The ODT model achieves considerable reduction in cost due to reduc-
tion in dimensionality and it makes ODT an interesting tool for investigating
such flows for high Reynolds numbers. The comparison presented in this
thesis suggests that ODT is able to reproduce several DNS and LES velocity
statistics for the temporally and spatially developing turbulent boundary layer
without blowing as well as with uniform blowing.

8.2 Outlook

As discussed in the previous section, in this thesis a number of different inves-
tigations on turbulent boundary layer using ODT have been performed suc-
cessfully. In this section, an overview of the issues is presented which could
have been addressed in the course of this work, for example, additional im-
portant flow types and modeling aspects to either improve the present results
or to analyse a new case study.

The primary aim for the present study is to understand the model be-
haviour and the flow physics captured for the simple configurations using the
stand-alone ODT model. However, the ODT model is restricted to 1-D effects.
Hence, to remove this restriction, a natural continuation of the present work
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is the extension of the ODT model into ODTLES formulation as ODTLES re-
tains the large structure information and accounts for 3-D effects. ODTLES
formulation may be promising to predict complex flows and higher order ve-
locity statistics accurately and it is also expected that the rms and Reynolds
stresses might improve significantly with this formulation [84, 103]. However,
ODTLES formulation uses the temporal ODT rather than spatial ODT.

Another alternative, which is more challenging, is to work aspects of the
near-wall cycle as in [134] into the ODT model. In [134], the approach is fol-
lowed from [135] and the evolution equations are Fourier transformed in the
streamwise and spanwise directions. In the ODT model [28], the individual
eddies are viewed as Fourier wave packets. However, there are discrepan-
cies noted reflecting the absence of wave phenomena in the model. Further
following [29], the kernel K(y) may be viewed as a wavelet construct and is
used to measure available energy and to implement energy transfers. Like a
wavelet, the kernel is effectively a local filter that selects fluctuations whose
length scales are comparable to the eddy size l and thus enforces the corre-
spondence between the eddy size and the scale of the dynamics governing
its occurrence. This may be regarded as a matter of definition rather than
a physical principle, because the turbulent eddy is a concept rather than a
physical observable. It is analogous to a normal mode of a linear system, but
has no precise definition owing to the strong nonlinearity of the Navier-Stokes
equations. If a turbulent eddy is heuristically defined as motion in response to
local forcing at a given length scale, then the use of a wavelet-type construct
to characterize the forcing can be viewed as a consistency requirement rather
than a physical modeling assumption. Therefore, to analyse the aspects of
the near-wall cycle, Fourier transformation of the kernels is needed which is
not implemented in the model so far. However, it is under consideration due
to the practical applications and to extend the model towards Quantum me-
chanics in order to obtain solution of the Schrodinger equations to describe
the evolution of a wave function in time.

It is also important to note that the advection term in not considered in
the present ODT algorithm as v is the advection velocity perpendicular to the
wall. In case of channel flow this advection can be neglected due to imposi-
tion of the boundary conditions, however, in the case of boundary layer, v in
not zero on the complete domain and cannot be neglected. Nevertheless, it
is verified for the present study that this term does not influence the results at
the considered Reynolds’s numbers. However, the effect of this term is more
dominant for very high Reynolds numbers and high Re demands the inclusion
of the missing advection term. So, in further investigations the magnitude of
the error has to be measured. This can be done in two ways. First, by modify-
ing the governing equations of the model where continuity equation is used in
momentum equation to get a quadratic PDE as discussed in [28] (Appendix
C, equation C4). This equation does not assume a low order approximation
for the advecting velocity, but rather solve directly the momentum flux in con-
servative formulation. However, the equation in conservative formulation is a
second order PDE and it would be expensive to solve. Second, by modifying
kernel operation which is currently in progress.
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Since, the ODT model has not been applied enough to investigate turbu-
lent boundary layer, there are several directions to extend the study. Another
very interesting application aiming at skin friction drag reduction is performed
by heating or cooling the wall surface. The present thesis deals with zero
pressure gradient (ZPG), so it is very important for technical applications to
investigate the effect of adverse pressure gradient (APG) as boundary layer
separation is dominant in APG.
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Appendix A

Turbulent Kinetic Energy

The turbulence kinetic energy (TKE) is defined as the mean kinetic energy
per unit mass associated with the eddies in the turbulent flow and is charac-
terised by measured rms velocity fluctuations. The TKE can be calculated
based on the closure method, i.e. a turbulence model in case of RANS equa-
tions. Here, only the budgets of TKE are explained however, for a detailed
derivation the reader is referred to [1].

The TKE is defined as the half the sum of the variances, i.e., the square
of the standard deviations of the velocity components given as,

K =
1
2

(
(u′)2 + (v′)2 + (w′)2

)
, (A.1)

where the difference between the instantaneous and the average velocity is
the turbulent velocity component, i.e.,

u′ = u− u, (A.2)

with the mean as,

u′ =
1
T

∫ T

0
(u(t)− u)dt = 0, (A.3)

and the variance as,

(u′)2 =
1
T

∫ T

0
(u(t)− u)2dt ≥ 0. (A.4)

The TKE produced by friction, fluid shear or external forces at integral
scale is transferred to the turbulence energy cascade which is then dissipated
by viscous forces at the Kolmogorov scale and this process is expressed as
[1],

DK
Dt

+∇ · T ′ = P − ε, (A.5)

where the first and second terms on the left hand are the mean-flow material
derivative and the turbulence transport, respectively. The terms on the right
hand side are the production and and the dissipation. Further, the full form
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of the TKE equations is given below (ignoring the buoyancy term) with the
assumption that the density and viscosity are constant,

∂K
∂t︸︷︷︸

Local derivative

+ uj
∂K
∂xj︸ ︷︷ ︸

Advection

= − 1
ρ

∂u′i p
′

∂xi︸ ︷︷ ︸
Pressure diffusion

− 1
2

∂u′ju
′
ju
′
i

∂xi︸ ︷︷ ︸
Turbulent transport T

+ ν
∂2K
∂x2

j︸ ︷︷ ︸
Molecular viscous transport

− u′iu
′
j
∂ui

∂xj︸ ︷︷ ︸
Production P

− ν
∂u′i
∂xj

∂u′i
∂xj︸ ︷︷ ︸

Dissipation ε

. (A.6)
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Appendix B

ODT Model Details

B.1 Eddy Sampling

An eddy rate distribution, λ(l, y0, t) and the eddy turnover, τ, has been dis-
cussed earlier in Chapter 2. Here, an event rate R(t) is considered and de-
fined by Equation B.1. R(t) is the cumulative event rate of all possible eddy
events for a given time. Using this variable it is now possible to define the
joint Probability Density Function (PDF), Λ, from Equation B.2,

R(t) =
∫ ∫

λ(l, y0, t)dldy0 (B.1)

Λ(l, yo, t) =
λ(l, y0, t)

R(t)
⊂ [0, 1]. (B.2)

To sample an eddy, a random number between 0 and 1 is selected. This
number corresponds to a single eddy event when using the joint PDF, Λ. This
eddy event is then applied to the flow.

To advance simulation time, a time step, dt is sampled via a Poisson pro-
cess. A Poison process is a stochastic method for modeling the time at which
a random event occurs. It can be constructed from the event rate of the pro-
cess we intend to model. In present case, this rate is the eddy event rate,
R(t). After implementing the eddy a random time-step is sampled from the
distribution of Equation B.3,

φ(dt) = exp(−R(t)dt). (B.3)

B.2 Eddy Sampling: the smart way

The eddy sampling technique described in the previous section is computa-
tionally too expensive to be considered in real life applications. An alternative
procedure, which is implemented in current ODT codes, is explained in this
section.
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Instead of calculating the event rate R(t), a predefined value of a trial event
rate, Rt, is used to sample the time step of the process. For each time-step an
eddy size and length will be sampled and a trial will occur. If the eddy passes
the trial, it will be implemented. Else, a new time step will be sampled and a
new trial will occur until a viable eddy is found.

The eddy trial starts by sampling a time-step, dt?, from the distribution of
Equation B.4. Then, two distinct probability functions, one for the eddy loca-
tion, F(y0), and another for the eddy size, G(l), which must be provided, are
sampled. It’s not overly important what these two functions look like, how-
ever, the closer they are to the actual probability functions for an eddy size
and location the more effective the whole process will be. Typically a uniform
distribution is used for the eddy location and an exponential distribution for
the eddy size,

φ(dt?) = exp(−RTdt?). (B.4)

For the sampled eddy, the same procedure from the previous section is
performed, culminating in the calculation of the eddy rate, λ, for this specific
eddy. The acceptance probability, AP, for an eddy can be defined as the joint
probability of the eddy rate, the two sample functions for the eddy size and lo-
cation, and the event rate. This acceptance probability is then compared with
a randomly selected number, PPRNG ⊂ [0, 1]. If the acceptance probability is
larger, the eddy is implemented,

i f AP ≡ λ(l, y0, t)
F(l)G(y0)RT

> PPRNG ⇒ Implement eddy! (B.5)

The eddy trial process is repeated until one eddy is accepted. Upon ac-
ceptance, the flow state is moved forward by the sum of all the time-steps
sampled until the eddy acceptance, dt = dt?0 + dt?1 + ...+ dt?n, and the eddy is
implemented.

For this approach to be equivalent to the one described in the previous
section, one condition must be met: RT >> R(t). Although R(t) is never
explicitly calculated, we can guarantee that this condition is respected if most
of the eddy trials fail.

We want the average acceptance rate of Equation B.5 to be of around
2%. If it’s much higher than this, the aforementioned condition can not be
guaranteed, and this process is not equivalent to the one from the previous
section. If it’s lower the process will be inefficient and too many eddy samples
will be performed before an eddy is implemented. To adjust the process we
can modify, RT, to reach the desired acceptance ratio.
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Appendix C

Model Parameter Sensitivity for
TBL

In this Appendix we analyse the influence of various model parameters on
several velocity statistics of boundary layer type flows. The sensitivity study
focus on the temporally developing turbulent boundary layer. Here, 4 major
physical model parameters are discussed and the numerical parameters are
discussed in previous chapters. The analysis is carried out only for physical
parameters because other ODT applications demonstrates that these param-
eters influence the results and it is important to calibrate these parameters
for any flow configuration before making a final choice for analysing the flow
dynamics. Numerical parameters do not influence the results, although im-
proves the efficiency of the model.

For the TBL configuration, our starting point is the set of model parameters
for the asymptotic suction boundary layer [96]. These parameters depend on
the physics included and the forcing mechanism used and unfortunately can-
not be taken over directly. Previous studies have shown that the ODT model
parameters are not universal, for example, non-reacting and reacting jets
[100, 92, 98], mixing layers [85], thermal convection [86], and wall-bounded
flows [28, 84, 87, 126]. These studies suggest that the optimal model param-
eters (usually) become asymptotically independent of the Reynolds number
which is a strong property of the model. This property makes ODT an interest-
ing candidate for forward modeling of high-Reynolds-number turbulent flows
as discussed in Chapter 4.

In this section, we estimate the ‘physical’ ODT model parameters, α, C,
Z, and the large-eddy suppression. We have discussed the sensitivity of the
results to parameter variations using a well-documented TBL reference case
for Reb = 1000 that has developed up to Reθ ∼ 1968. Conventional velocity
statistics and global properties of boundary layer are discussed by comparing
ODT results to those of the available reference DNS [50].

The velocity statistics presented here consider a time-averaging window
encompassing several eddy events in addition to the ensemble-based proce-
dure. The mean velocity profiles obey the same near-wall similarity solution
for all ODT solutions discussed in this section. Solely the friction velocities uτ
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are distinct as can be inferred from the non-constant value of the normalized
free-stream velocity U+

b among the cases.

C.1 Variation of the Model Parameter α

The pressure fluctuations may not be universal [29] and that the pressure
fluctuations do not necessarily imply a maximization of the inter-component
kinetic energy transfer, therefore, the model parameter α has been introduced
to control the exchange of the turbulent energy between the three velocity
components. This parameter takes values in the range [0, 1], where 0 means
no and 1 maximal transfer of the kinetic energy. For α = 2/3, equipartition
of the energies is approximated which can be interpreted as a tendency to
small-scale isotropy [29]. The ODT model parameters C = 9, Z = 400, and
the two-thirds large-eddy suppression were kept fixed here for calibrating the
α parameter.

Figure C.1 shows profiles of the mean streamwise velocity for various α
normalized in inner (A, B) and outer (C, D) scale. ODT results are shown in
comparison to the reference DNS of [50] for Reb = 1000 at (A) Reθ ∼ 1100 (B)
Reθ ∼ 1968. The mean profiles shown in Figure C.1 (A, B) exhibit an increase
of the slope of the logarithmic region (30 < y+ < 300) and the normalized free-
stream velocity with α. The viscous sublayer (y+ < 20), however, remains
unaffected. This hints at a dependency of uτ on the energy redistribution
mechanism, Note that the solutions for ODT remains same for both the Reθ

considered here.
The variability of the flow profiles with uτ raised the question that to what

extent these profiles are influenced by the representation of the boundary
layer growth and temporal development of the turbulent flow. This is ad-
dressed by showing the streamwise mean velocity, U−b − u− = (Ub − u)/Ub
(here U−b = 1) (scaled to outer units) in Figures C.1(C, D). The profiles of the
streamwise velocity at both Reθ collapse very well for all the α values consid-
ered specially in the range y− = y/δ99 > 0.6 for the TBL configuration. This
indicates that the growth of the outer layer as well as the large-scale dynamics
are comparable in the respective cases.

The optimal value is α = 2/3 and this implies a tendency to equiparti-
tion and small-scale isotropy of the turbulent flow. This value is consistent
with the Reθ which is a important observation as it shows that the α become
asymptotically independent of the Reynolds number.

Figure C.2 shows profiles of the root mean square (rms) velocity, u+
rms =√

u′2/uτ, for various α normalized in inner (A, B) and outer (C, D) scale. ODT
results are shown in comparison to the reference DNS of [50] for Reb = 1000
at (A) Reθ ∼ 1100 (B) Reθ ∼ 1968.

The qualitative trend for the rms velocity profiles shown in Figure C.1
(A, B) is consistent with the available reference data [50]. The peak value
is, however, under-predicted with the ODT methodology in comparison to the
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FIGURE C.1: Normalized wall-normal profiles of the mean
streamwise velocity for various values of the model parameter
α for Reb = 1000 at (A) Reθ ∼ 1100 (B) Reθ ∼ 1968. ODT results
are shown in comparison to a reference DNS [50]. The model
parameters C = 9, Z = 400 and the large-eddy suppression
are fixed. (C, D) Same data as in (A, B) but normalized with
the outer velocity, Ub, and length scale, δ99. The superscripts
‘+’ and ‘−’ indicate normalization with inner and outer units,

respectively.

DNS data. The profile in the inner region (y+ < 5) and in the outer log re-
gion (y+ > 400) does not depend on α. The most sensitive region for α is
10 < y+ < 400.

Figure C.2 also indicates that the normalized streamwise rms velocity fluc-
tuations decrease with increasing α from the buffer layer onward (y+ > 10).
The main features for any α are retained for the rms profiles. However, it fails
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FIGURE C.2: Normalized wall-normal profiles of the rms
streamwise velocity for various values of the model parameter
α for Reb = 1000 at (A) Reθ ∼ 1100 (B) Reθ ∼ 1968. ODT results
are shown in comparison to a reference DNS [50]. The model
parameters C = 9, Z = 400 and the large-eddy suppression
are fixed. (C, D) Same data as in (A, B) but normalized with
the outer velocity, Ub, and length scale, δ99. The superscripts
‘+’ and ‘−’ indicate normalization with inner and outer units,

respectively.

to capture the near-wall fluctuation peak. This is a well-known limitation of the
model [28, 29, 89]. For α = 0, all kinetic energy resides in the u component
and for α→ 1, the energy exchange increases towards its maximum possible
value, which results in a smaller uτ and larger U+

b . Hence, the momentum
transfer across the logarithmic region and from the fluid to the wall depends
on the energy redistribution.
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Figure C.2 (C, D) shows the rms velocity, u−rms =
√

u′2/Ub, scaled to outer
units. The figure suggests that the rms velocity profiles shown in Figure C.2
(C, D) imply that the height variation of the corresponding profiles in Figure C.2
(A, B) is not solely due to the variation of uτ.

We conclude that ODT is able to capture the first and second order mo-
ments of the streamwise velocity for the selected Reynolds numbers in com-
parison with the reference DNS. The optimal value selected is α = 2/3.

C.2 Variation of the Model Parameter C

The overall occurrence of the eddies is controlled by the parameter C, referred
as turbulence strength parameter. The simulations are carried out for three C
values i.e. C = [6, 9, 12]. The analysis is done for Reb=1000 at Reθ ∼ 1100
and 1968. While analyzing the influence of C parameter, all other parameters
are kept constant as Z = 400, α = 0.66 as well as usage of the two-thirds
suppression mechanism.

Figure C.3 shows the influence of the model parameter C on the mean
streamwise velocity normalized by (A,B) inner units and (C,D) outer units at
(A,C) Reθ ∼ 1100 and (B,D) Reθ ∼ 1968. The mean profile presented in
Figure C.3(A,B) shows that the slope of the normalized velocity profile in the
free-stream velocity U+

b as well as the logarithmic region are directly influ-
enced by the C parameter. For small C, the velocity profile tends towards a
laminar profile and uτ decreases and for large C, uτ increases. For small C
values the level of turbulence is reduced due to implementation of less eddies.
For large C, the turbulence intensity have increased. The similarity properties
of the inner layer (y+ < 10) remain unaffected by C similar to the parame-
ter α. The mean velocity profile exhibits good agreement for C = 9 with the
reference DNS data [50] for both Reθ.

Figure C.3(C) and (D) shows that the profiles collapses better in the outer
log-region, i.e., specially in the range y− = y/δ99 > 1 when normalised by
outer units for the TBL configuration. However, the profiles of the streamwise
velocity at higher Reθ collapse very well as compared to small Reθ, i.e., Reθ ∼
1100. It was observed that the profiles in Figure C.1 showed better horizontal
alignment when normalised by outer units because α have less effect than C
on the occurrence of large eddies that control boundary layer growth.

Figure C.4 shows the influence of the model parameter C on the rms veloc-
ity normalized by (A,B) inner units and (C,D) outer units at (A,C) Reθ ∼ 1100
and (B,D) Reθ ∼ 1968. The shape of the rms profiles is the same for all the
values of C considered. Interestingly, the fluctuation magnitude is inversely
proportional to C and implies less rms for larger turbulence intensity. The be-
haviour is counterintuitive. This can be understood by a much flatter mean
state in the more turbulent case such that turbulence is sustained by much
weaker available (shear-extractable) energies. This indicates less velocity
fluctuations and less shear. However, ODT keeps underestimating the rms
from the buffer until the log region for any value of C investigated similar to
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FIGURE C.3: Normalized wall-normal profiles of the mean
streamwise velocity for various values of the model parameter
C for Reb = 1000 at (A) Reθ ∼ 1100 (B) Reθ ∼ 1968. ODT results
are shown in comparison to a reference DNS [50]. The model
parameters α = 2/3, Z = 400 and the large-eddy suppression
are fixed. (C, D) Same data as in (A, B) but normalized with
the outer velocity, Ub, and length scale, δ99. The superscripts
‘+’ and ‘−’ indicate normalization with inner and outer units,

respectively.

α parameter. We therefore consider C = 9 obtained for the mean profile as
optimal value.

Figure C.4 (C, D) shows the rms velocity, u−rms =
√

u′2/Ub, scaled to
outer units. Similar to α parameter, this figure also suggests that the rms
velocity profiles shown in Figure C.4 (C, D) imply that the height variation of
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FIGURE C.4: Normalized wall-normal profiles of the rms
streamwise velocity for various values of the model parameter
C for Reb = 1000 at (A) Reθ ∼ 1100 (B) Reθ ∼ 1968. ODT results
are shown in comparison to a reference DNS [50]. The model
parameters α = 2/3, Z = 400 and the large-eddy suppression
are fixed. (C, D) Same data as in (A, B) but normalized with
the outer velocity, Ub, and length scale, δ99. The superscripts
‘+’ and ‘−’ indicate normalization with inner and outer units,

respectively.

the corresponding profiles in Figure C.4 (A, B) is not solely due to the variation
of uτ.

The results for variation of C for Reb=1000 at (A, C) Reθ ∼ 1100 and (B, D)
Reθ ∼ 1968 with α = 2/3, Z = 400 and the two-thirds suppression method
fixed are demonstrated in Figure C.5 for the cross stress profile, scaled in
(A, B) inner and (C, D) outer units.
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FIGURE C.5: Normalized wall-normal profiles of the cross
stresses for various values of the model parameter C for Reb =
1000 at (A) Reθ ∼ 1100 (B) Reθ ∼ 1968. ODT results are shown
in comparison to a reference DNS [50]. The model parameters
α = 2/3, Z = 400 and the large-eddy suppression are fixed.
(C, D) Same data as in (A, B) but normalized with the outer ve-
locity, Ub, and length scale, δ99. The superscripts ‘+’ and ‘−’
indicate normalization with inner and outer units, respectively.

The profile matches well with the DNS results for all C values considered
for the investigation for higher Reθ, i.e., Reθ ∼ 1968 shown in Figure C.5 (B).
However, for Reθ ∼ 1100 in Figure C.5 (A), the profiles are dependent on value
of C only in the region 50 < y+ < 300 and in this region, the magnitude for
cross stress is minimum for lowest C, i.e., C = 6. The magnitude is directly
proportional to C for cross stress profiles which is opposite to rms profiles.
Nevertheless, the ODT profiles agrees with the DNS results for both Reθ for



171

C = 9.
Note that Figure C.5 (C) and (D) shows the dependence of outer units on

cross stress profiles with variation of C parameter unlike the mean stream-
wise and rms velocity discussed above. We report that the height variation
at both Reθ for C parameter is strong for cross stress profiles. The height
change for the cross stress profiles normalized with outer units is increasing
with increasing the value of C.

ODT is able to capture the first and second order moments of the stream-
wise velocity for the selected Reynolds numbers in comparison with the ref-
erence DNS for C = 9 and hence this value is used for further investigation
for TBL configuration.

To further check the affect of the C parameter on higher statistics we have
considered skewness. Figure C.6 shows the skewness of the streamwise
velocity component for variation of C for Reb=1000 at (A, C) Reθ ∼ 1100 and
(B, D) Reθ ∼ 1968 with C = 9, Z = 400 and the two-thirds suppression method
fixed, scaled in (A, B) inner and (C, D) outer units.

For all C values, the parameter slightly influences the skewness in the
inner region with under-predicted amplitude and in the outer log region with
over-predicted amplitude as compared to the reference DNS data [50]. Never-
theless, the skewness profiles are qualitatively consistent for all C considered.
However, C = 9 gives a better fit for lower velocity statistics discussed for the
mean streamwise and rms velocity profile than the other C values. The skew-
ness in the inner region increases with decreasing C value. For example for
C = 12, the skewness is less as compared to the skewness for C = 6 as
shown in Figure C.6 (A) and (B). However, the skewness in the outer region
show opposite trend and increases with increasing C value.

Note that the qualitative trends for the skewness of the streamwise velocity
component are consistent for both Reθ considered for the present configura-
tion and behaves in a similar way. Figure C.6 (C, D), scaled with outer units on
x−axis does not change from Figure C.6 (A, B). This suggests that the higher
order velocity statistics is independent of the scaling. Note that the scaling on
y−axis is same for all the figures.

The quantities (A) Reτ, (B) H, (C) Reδ and (D) ReX as a function of Reθ

for various values of the model parameter C for Reb = 1000 is shown in
Figure C.7. For comparison, the reference DNS data from [50] is shown in
dashed line. The model parameters α = 2/3, Z = 400 and the large-eddy
suppression are fixed. Figure C.7 (A) shows that the value of Reτ converges
towards the reference DNS value for more turbulence intensity, i.e., for higher
C values. It diverges away for less turbulence intensity, i.e., C = 6. How-
ever, we have considered the optimal value of the C parameter according to
the establishment of log-law and we use C = 9 for investigating TBL flow
configuration.

For H variation with Reθ, the value for ODT solution is close to the reference
DNS data considered for C = 6 shown in Figure C.7 (B). The H behaves
opposite as compared to Reτ with the variation of C parameter. The H value
moves away from the DNS results with increasing C. For C = 9 and 12,
the H profile is similar. Figure C.7 (C) indicates that Reδ variation with Reθ in
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FIGURE C.6: Normalized wall-normal profiles of the skewness
of the streamwise velocity for various values of the model pa-
rameter C for Reb = 1000 at (A) Reθ ∼ 1100 (B) Reθ ∼ 1968.
ODT results are shown in comparison to a reference DNS [50].
The model parameters α = 2/3, Z = 400 and the large-eddy
suppression are fixed. (C, D) Same data as in (A, B) but nor-
malized with the outer velocity, Ub, and length scale, δ99. The
superscripts ‘+’ and ‘−’ indicate normalization with inner and

outer units, respectively.

independent of the C parameter which is consistent with the α parameter. ReX
shows good agreement with the reference DNS data for C = 9 as shown in
Figure C.7 (D). The profile for ReX deviates and diverges form the DNS results
for both C = 6 and C = 12. The ReX value tends to increase significantly for
low C values i.e. for C = 6 and decrease for high C (C = 12).

Skin friction coefficient C f as a function of (A) Reδ, (B) Reθ and (C) ReX
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FIGURE C.7: The quantities (A) Reτ, (B) H, (C) Reδ and (D) ReX
as a function of Reθ for various values of the model parameter
C for Reb = 1000. For comparison, the reference DNS data from
[50] is shown. The model parameters α = 2/3, Z = 400 and the

large-eddy suppression are fixed.

for various values of the model parameter C for Reb = 1000 is shown in Fig-
ure C.8. For comparison, the reference DNS data from [50] is shown. The
model parameters α = 2/3, Z = 400 and the large-eddy suppression are
fixed for this analysis. The skin friction coefficient peak is dependent on C
parameter. However, the peak in under-predicted for all C values considered
in comparison with the reference DNS data from [50]. The peak is more close
to the DNS data for higher C values and decreases with decreasing C. Nev-
ertheless, the profiles for all C values converges for higher Reθ. For higher
Reθ, the skin friction coefficient shows good agreement for C = 9 and hence,
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FIGURE C.8: Skin friction coefficient C f as a function of (A) Reδ,
(B) Reθ and (C) ReX for various values of the model parameter
C for Reb = 1000. For comparison, the reference DNS data from
[50] is shown. The model parameters α = 2/3, Z = 400 and the

large-eddy suppression are fixed.
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we choose C = 9 for analyzing the temporally developing turbulent boundary
layer.

C.3 Variation of the Model Parameter Z

This parameter is used to suppress the small eddies that are smaller than
the Kolmogorov scale to increase the performance of the model. In ODT, for
wall bounded flows, especially in the buffer layer, the behavior of 3-D eddies
is different from the 1-D representation and by excluding some slightly larger
eddies than the Kolmogorov ones (Z > 1), the position of the buffer layer in
the ODT solutions can be matched to DNS [84]. We have varied the Z value
in the range Z = [200, 400, 600] while keeping other parameters constant i.e.
C = 9, α = 0.66 and the two-thirds LS mechanism. The analysis is done for
Reb=1000 at Reθ ∼ 1100 and 1968.

Figure C.9 depicts the influence of the model parameter Z on the mean
streamwise velocity normalized by (A,B) inner units and (C,D) outer units
at (A,C) Reθ ∼ 1100 and (B,D) Reθ ∼ 1968. It can be seen from Figure
C.9(A)and (B) that the change of the Z parameter has no effect in the log-
arithmic region. Although, the change from the linear region towards the log-
arithmic region is highly influenced by this parameter. Mainly the start of the
buffer region is controlled by the Z parameter. When Z = 200, there is an ear-
lier start of the buffer layer in the velocity profile and the opposite is observed
for Z = 600. The TBL, in general seems to be less sensitive to Z than the
other parameters discussed above. For Z = 400, the profile is in good agree-
ment with the DNS profile reported in [50] for both Reθ, i.e., for Reθ ∼ 1100
as well as Reθ ∼ 1968 and this agrees with the optimal value reported for
the asymptotic suction boundary layer [96] and is close to the values used for
turbulent channel flows [89, 126].

The mean profile presented in Figure C.9(A,B) also confirms that the slope
of the logarithmic region of the mean profile remain virtually unaffected and
the free-stream velocity U+

b in the logarithmic region is directly influenced by
the Z parameter. For large Z, uτ decreases and for small Z, uτ increases.
For small Z values, the small eddies are included in the flow and for large Z
values, these small eddies are ignored which improves the performance of the
model. The similarity properties of the inner layer (y+ < 10) remain unaffected
by this parameter similar to the other parameters discussed earlier. The mean
velocity profile exhibits good agreement for Z = 600 with the reference DNS
data [50] for both Reθ for TBL configuration considered here.

Figure C.9(C) and (D) shows that the profiles collapses better in the outer
log-region, i.e., specially in the range y− = y/δ99 > 1 when normalised by
outer units for the TBL configuration. However, the profiles of the streamwise
velocity at both Reθ collapse very well for Z parameter as compared to the C
parameter. The mean streamwise velocity profiles for the Z and α parameters
obtain a large horizontal collapse in comparison to the C parameter. This was
expected as the C parameter effects the occurrence of the large eddies and
plays a key role in boundary layer dynamics.
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FIGURE C.9: Normalized wall-normal profiles of the mean
streamwise velocity for various values of the model parameter
Z for Reb = 1000 at (A) Reθ ∼ 1100 (B) Reθ ∼ 1968. ODT results
are shown in comparison to a reference DNS [50]. The model
parameters α = 2/3, C = 9 and the large-eddy suppression
are fixed. (C, D) Same data as in (A, B) but normalized with
the outer velocity, Ub, and length scale, δ99. The superscripts
‘+’ and ‘−’ indicate normalization with inner and outer units,

respectively.

Figure C.10 displays the influence of the model parameter Z on the rms
velocity normalized by (A,B) inner units and (C,D) outer units at (A,C) Reθ ∼
1100 and (B,D) Reθ ∼ 1968. The other optimal parameters are kept constant
for this purpose. Like other parameters discussed above, the shape of the
rms profiles is the same for all the values of Z considered. The rms velocity
profiles are less sensitive towards Z parameter unlike for C and α. Only the
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FIGURE C.10: Normalized wall-normal profiles of the rms
streamwise velocity for various values of the model parameter
Z for Reb = 1000 at (A) Reθ ∼ 1100 (B) Reθ ∼ 1968. ODT results
are shown in comparison to a reference DNS [50]. The model
parameters α = 2/3, C = 9 and the large-eddy suppression
are fixed. (C, D) Same data as in (A, B) but normalized with
the outer velocity, Ub, and length scale, δ99. The superscripts
‘+’ and ‘−’ indicate normalization with inner and outer units,

respectively.

peaks seem to vary slightly with Z. ODT underestimate the rms from the
buffer until the log region for any value of Z investigated similar to α and C
parameters. We therefore consider Z = 600 obtained for the mean profile as
optimal value for further simulations.

Figure C.10 (C, D) shows the rms velocity, u−rms =
√

u′2/Ub, scaled to
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outer units. Similar to α and C parameter, this figure also suggests that the
rms velocity profiles shown in Figure C.10 (C, D) imply that the height variation
of the corresponding profiles in Figure C.10 (A, B) is not due to the variation
of uτ as the height variation for outer as well as inner units is consistent for
both Reθ considered.

Since, ODT is able to capture the low order moments of the streamwise
velocity for the selected Reynolds numbers in comparison with the reference
DNS for Z = 600, we select this value for further investigation for TBL config-
uration.

C.4 Influence of the LS Mechanism

To avoid unphysically large eddy event which are rare to occur, Large eddy
Suppression (LS) mechanism is used in different ways. The simulations are
performed for three different mechanisms: 1) The eddies are allowed only
when the simulation elapsed time is greater than the eddy turnover time. This
is known as the ’elapsed time mechanism’. 2) When shear associated with
the eddy implementation is highly concentrated in a narrow position range and
causes the insertion of an eddy then this can be avoided by using the ’two-
thirds mechanism’. 3) These eddies can be suppressed by simply suppress-
ing those eddies whose size exceeds by a given fraction of the domain size,
referred as the ’frac domain mechanism’. Additionally, we have presented the
results when no eddy suppression mechanism is implemented (referred as
’none’ mechanism). The study is done for Reb = 1000 at Reθ ∼ 1100 and
Reθ ∼ 1968. The influence of these suppression mechanisms on various ve-
locity statistics and global properties is analysed and presented next. While
performing the simulations with LS, all the other parameters are kept constant
as α = 0.66, C = 9 and Z = 400.

Figure C.11 depicts the influence of the LSmechanism on themean stream-
wise velocity as a function of wall normal coordinates at (A) Reθ ∼ 1100 and
(B) Reθ ∼ 1968. In the logarithmic region, there is no influence of LS as shown
in Figure C.11(A)and (B). The influence is observed in the region y+ > 20
and the velocity profile agrees with the DNS data for the two-thirds LS mech-
anism. On the other hand, for the other two suppression mechanisms and
also for the none mechanism, the profile is under-predicted as compared to
DNS. For the elapsed time mechanism, the profile in the buffer region is the
same as for the frac domain and the none mechanisms but is slightly different
in outer log region. The profiles with the frac domain and the none mecha-
nisms overlap with each other. We conclude that the viscous sublayer and
the logarithmic region are only weakly affected by the large-eddy suppression
methods. This matches qualitatively the expectation since large eddy events
are expected to affect mainly the outer layer (y+ > 300).

Note that when the outer layer is modified due to too many large eddy
events, the distribution of the smaller ones is modified indirectly and, con-
sequently, the momentum transport is affected across the entire boundary
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layer. This alters uτ and also the normalized free-stream velocity U+
b , which

depends weakly on the large-eddy suppression as seen in the figure.
The two-thirds suppression mechanism has the largest effect on the low-

order velocity statistics (see Figure C.11) and for the other two suppression
mechanisms and also without suppression, the mean profiles are underesti-
mated in comparison to the reference DNS [50]. The profiles obtained without
the suppression (labeled with ‘none’) as well as with the elapsed time and frac
domain methods are within the statistical confidence level, identical to each
other up to y+ ∼ 100.
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FIGURE C.11: Normalized wall-normal profiles of the mean
streamwise velocity for various large-eddy suppression meth-
ods for Reb = 1000 at (A) Reθ ∼ 1100 (B) Reθ ∼ 1968. ODT
results are shown in comparison to a reference DNS [50]. The

model parameters α = 2/3, C = 9 and Z = 400 are fixed.

Figure C.12 displays the influence of the LSmechanism on the rms velocity
as a function of wall normal coordinates (in viscous units) at (A) Reθ ∼ 1100
and (B) Reθ ∼ 1968. The other optimal parameters are kept fixed for investing
influence of LSmechanism. For rms profile, shown in Figure C.12 (A) and (B),
the elapsed time, the frac domain and the none mechanisms almost overlap
with each other in the buffer region, while the two-thirds LS mechanism show
slightly more amplitude in this region. Whereas, in the outer region, two-thirds
and elapsed time mechanisms collapse onto each other and frac domain and
none mechanism collapse onto each other as well. Also, elapsed time and
two-thirds mechanisms show an additional peak in the outer log-region at both
Reθ and this peak is not discerned in other two mechanism and this peak also
appears as a ‘shoulder’ in the reference DNS [50]. The curves are under-
predicted than DNS results for all the cases. The frac domain and the none
mechanisms vary from other two mechanisms in the outer region with better
agreement for the two-thirds LS mechanism to the DNS data.
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FIGURE C.12: Same as above but for the rms streamwise veloc-
ity.
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FIGURE C.13: The indicator function versus wall-normal co-
ordinate (in viscous units) for various large-eddy suppression
methods for Reb = 1000 at Reθ ∼ 1968. For comparison, the
reference DNS data for the SBL from [44] at Reθ ∼ 2000 is given
by a black dashed line. The model parameters α = 2/3, C = 9

and Z = 400 are fixed.

Figure C.13 shows indicator function for various LS methods normalized
with the wall normal coordinates (in viscous units) at Reθ ∼ 1968 for Reb =
1000. ODT results are shown in comparison to the reference DNS of [41]. As
expected, the LS method influence the indicator function mostly in the outer
region, i.e., in the region y+ > 100. The curve for frac domain traces the
curve for none mechanism and the elapsed time and two-thirds trace each
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other. The profiles for all LS methods behaves in a similar fashion in the inner
region. However, the function is under-predicted as compared to the reference
DNS for frac domain and none methods and agrees fairly well for other two
mechanisms.
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Appendix D

Influence of Initial Conditions

An extra peak has been captured in the outer log-region for rms, cross
stress and turbulent production for the TBL configuration. This additional peak
has also been captured for the SBL configuration, however, it is dominant in
the TBL formulation. Here we discuss about the additional peak captured in
turbulent production.

We noticed three main factors that are responsible for this peak. As ad-
dressed before, first, this peak is neglected for higher averaging window. Sec-
ond, it also disappears for the LS methods (frac domain and none) and dis-
cerned for the elapsed time and two-thirds mechanisms. The third reason for
this peak could be transient effects and hence, we see this peak only for lower
Reθ.

The turbulent production as a function of the wall-normal coordinate in
the flow is shown for higher bulk Reynolds number, i.e., Reb = 2000 at four
different instant in Figure D.1. The optimal set of parameters for the TBL con-
figuration are used for this purpose. Reb = 2000 case is considered because
for this case the peak was discerned even for Reθ ∼ 1968, whereas for lower
Reb it disappears at higher Reθ.

This figure shows production at (A) Reθ ∼ 1212, (B) Reθ ∼ 1694, (C)
Reθ ∼ 2054 and (D) Reθ ∼ 2384. The extra peak in outer log-region is domi-
nant for Reθ ∼ 1212 and the magnitude of the peak reduces with increasing
Reθ. This peak disappears for Reθ ∼ 2054 and higher Reθ. Hence, the figure
demonstrates the influence of transient effects or initial condition on velocity
statistics for the temporally developing turbulent boundary layer.

A similar behaviour for rms and cross stresses have also been observed.
Here, the rms and cross stresses profiles are not shown and these profiles
are discussed in Chapter 4. It is assumed from the above analogy that initial
conditions have influence on lower order velocity statistics.
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FIGURE D.1: Turbulent kinetic energy production as a function
of the wall-normal coordinate (in viscous units) for (A) Reθ ∼
1212, (B) Reθ ∼ 1694, (C) Reθ ∼ 2054 and (D) Reθ ∼ 2384 to

analyse the influence of initial conditions.
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Appendix E

Generation of Energy Spectra in
ODT

As described earlier, there are two possible choices while comparing the
1-D turbulence spectra between ODT and DNS for the temporally developing
boundary layer application case. These choices are explained below.

E.1 Generation of Time-Dependent Energy Spec-
tra

Turbulence spectra are usually obtained for applications with a characteris-
tic homogeneous, stationary and isotropic turbulence, as explained in [136].
The cross power spectral density or co-spectrum is defined as the Fourier
transform of the fluctuating velocity autocorrelation,

S(k, t) ≡
∫ ∞

−∞
e−îkrR(r, t)dr, (E.1)

here î indicates the representation of the complex base with î2 = −1. k is the
wavenumber and R(r, t) is the fluctuating velocity autocorrelation,

R(r, t) = u′(y, t)u′∗(y + r, t). (E.2)

It is calculated as follows.

1. Firstly, the wall-normal positions corresponding to the uniform anisotropy
y+ range discussed for isotropy indicator is calculated. This can be done
once the average velocity profile Ub − u(y, t) has been obtained, given
that the normalization parameter uτ(t) is required. It determines a range
of cells jl < j < jl + Nj corresponding to the uniform anisotropy range
y+l (t) < y+(t) < y+h (t) discussed earlier. All of the averaged and fluc-
tuating quantities are calculated within this range and it has a length
YODT(t). A fixed and equidistant diagnostic grid for all of the calcula-
tions is used here. A C-spline interpolation is used to interpolate the
solutions from the adaptive ODT grid to the diagnostic grid.
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2. Next, a spatially filtered velocity is defined as û(t) which is within the
range y+l (t) < y+(t) < y+h (t). This represents the characteristic veloc-
ity of the uniform anisotropy range,

û(t) =
1

YODT

Nj−1

∑
j−jl=α=0

uα(y, t)∆yα. (E.3)

Note that it is possible to obtain an ensemble average across N realiza-
tions of this quantity, which is symbolized as û(t).

3. The fluctuating velocity field is calculated as u′(y, t) = u(y, t)− û(t) for
each realization.

4. To obtain the cross power spectral density the product of the filtered
Fourier transform and its complex conjugate from the fluctuating velocity
field is estimated [137, 124] which is equal to the Fourier transform of
the convolution, large ‘∗’, of the windowed fluctuating velocity field with
itself,

Ŝ(k̂, t) = F{Wu′}F ∗{Wu′} = F{
(
Wu′

)
∗
(
Wu′

)∗}. (E.4)

The superscript ‘∗’ represents the complex conjugate and W is the Han-
ning window (full cosine taper) as in [137, 124]. Now, averaging over
realizations would result in Eq. (E.1). In order to find Ŝ(k̂, t), we first
calculate the autocorrelation of the windowed fluctuating velocity field.
Then the ensemble average of the autocorrelation is estimated and then
the Fourier transform of the result is obtained.

5. The discrete Fourier transform of an Nj point record is calculated as,

Fm{·} =
Nj−1

∑
j−jl=α=0

(·)α e
− 2π îαm

Nj m = 0, . . . , Nj − 1 (E.5)

6. Here, the largest wavenumber is k = |k̂| = 2/∆y = 2Nj/δ99, being ∆y/2
the smallest length-scale according to the Nyquist-Shannon sampling
theorem. 2/δ99 is thus the smallest wavenumber. Using the discrete
notation in general, km = 2 (m + 1) /δ99.

7. As Ŝ(k̂, t) = Ŝ∗(−k̂, t), the one-sided (real) energy spectra are calcu-
lated as S(k, t) = 2

∣∣∣<{Ŝ(k̂, t)}
∣∣∣.

8. A constant c is calculated, such that Φ(k, t) = cS(k, t) for the final nor-
malization of the ensemble-averaged spectra. Here Φ is the turbulence
kinetic energy spectral density with units m3/s2. The constant c satis-
fies the condition u′u′(Reθ, y+) =

∫ ∞
−∞ S(k, t)dk [137, 124, 50]. Using
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our definition of k, dk = (2/δ99)dm, i.e., for the discrete version, the in-
tegral becomes a sum and we formally replace dm by ∆m = 1, thus,

c =
u′u′(Reθ, y+)

2
δ99

∑
Nj−1
m=0 Sm(km, t)

. (E.6)

9. Φ(k, t) is normalized in the friction units with the friction velocity uτ and
the Kolmogorov length-scale η = ν/uτ. The wavenumber k is normal-
ized by the inverse of the Kolmogorov length-scale 1/η (k+ = η/∆y+).

E.2 Generation of Position-Dependent Energy Spec-
tra

The Taylor’s hypothesis is used for the calculation of the position-dependent
energy spectra and the procedure in the ODT model is analogous to that
shown in [124]. The cross power spectral density or co-spectrum is defined
as,

S(kx, y) ≡ û(y)
2π

∫ ∞

−∞
e−îkx û(y)τR(y, τ)dτ. (E.7)

Above R(y, τ) is the fluctuating velocity autocorrelation defined as,

R(y, τ) = u′(y, t)u′∗(y, t + τ). (E.8)

1. Firstly, the wall-normal position corresponding to the desired y+ is calcu-
lated where the energy spectrum is needed. This step is done for every
realization, considering the instantaneous velocity profile. An equidis-
tant time grid is used for all of the calculations discussed here.

2. A time-filtered velocity, û(y) is defined as,

û(y) =
1
T

Nt−1

∑
α=0

uα(y, t)∆tα. (E.9)

Nt represents the number of time intervals sampled in T, with T as an
averaging time interval that starts at the smallest Reθ value after which
all velocity profiles are independent of Reb (fully turbulent regime) and
ends at the predefined input tend for every simulation. Similar to the
time-dependent spectrum, it is possible to obtain an ensemble average
across N realizations û(y),

û(y) =
1
N

N

∑
n=1

û(y). (E.10)

3. The fluctuating velocity field is calculated as u′(y, t) = u(y, t)− û(y) for
each realization.
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4. The calculation are similar as in the time-dependent spectrum and the
Fourier transform is defined analogous to Eq. (E.5). The cross power
spectral density is acquired as in Eq. (E.4), with the additional multipli-
cation factor û(y)/(2π) as specified by Eq. (E.7).

5. The largest wavenumber [124] is equivalent to

kx(y) = |k̂x(y)| = 2
[
2π/

(
∆tû(y)

)]
= 4πNt/(Tû(y)) (E.11)

and the smallest wavenumber is

4π/(Tû(y)) (E.12)

In general, kx,m(y) = 4π (m + 1) /
(

Tû(y)
)
.

6. The calculation for S(kx, y) is analogous to the previous case of the
time-dependent spectra described above. Finally, the constant c is cal-
culated for the final normalization such that Φ(kx, y) = cS(kx, y). Here
Φ is the turbulence kinetic energy spectral density with units m3/s2.
Similar to the time-dependent spectra, c satisfies the same condition as
u′u′(Reθ, y+) =

∫ ∞
−∞ S(kx, t)dkx. The selected Reθ used for the scaling

with u′u′(Reθ, y+) as well as the uτ and δ99 normalization is that corre-
sponding to the beginning of the sampling time interval.
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Appendix F

TBL Results for High Bulk
Reynolds Number

In the following, the ODT simulation results for high bulk Reynolds num-
bers, i.e., Reb = 2500 and 5000 are presented. The reference DNS data is
not available for these bulk Reynolds numbers and hence, only ODT results
are discussed. The various statistics are discussed for the given Reb at two
Reθ, Reθ ∼ 5045 and 9075 (∼ 104). For these simulations the domain size
is increased to capture boundary effects onto the flow. The optimal set of
physical model parameters is taken from the validated TBL flow configura-
tion discussed earlier. Most of the numerical model parameters are adapted
according to the given Reynolds numbers and the initial condition remains
unaltered for these simulations. The aim to carry out these simulation is to
check the behaviour of various ODT profiles for large Reynolds numbers. In
general, nothing ambiguous is observed from the results shown below and
the qualitative trends for these simulations are consistent with the previous
simulations.

First, the velocity statistics up to 4th order is presented for both Reb at
two Reθ. This discussion includes the mean streamwise velocity, indicator
function, rms velocity, the Reynolds stresses, production, skewness and flat-
ness of the streamwise velocity component, all as a function of wall-normal
coordinate. Next, isotropy indicator variation with wall-normal coordinate is
presented. At last, some of the global properties of the boundary layer, varied
with Reθ as well as time and constant coefficient C1 and C2 are shown.

Figure F.1 displays the mean streamwise velocity profile as a function
of the wall-normal coordinate at (A) Reθ ∼ 5045 and (B) Reθ ∼ 9075 for
Reb = 2500 and 5000. The profiles for the lower Reθ do not collapse onto
each other only in the outer-log region as shown in Figure F.1 (A). This indi-
cates that the transitions to turbulence are captured up to high Reθ for high
Reb. Whereas, the higher Reθ, i.e., Reθ ∼ 9075 shows fully turbulent state and
the profiles for both Reb collapse on top of each other. Similar to the other
TBL cases investigated, the influence of the initial conditions on the velocity
profile is depicted in Figure F.1 (A) particularly in the outer log-region. The
qualitative trend is consistent but quantitative trend can not be measured due
to unavailability of reference data.
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(A) (B)

FIGURE F.1: Mean streamwise velocity profile as a function of
the wall-normal coordinate (in viscous units) at (A) Reθ ∼ 5045

and (B) Reθ ∼ 9075 for Reb = 2500 and 5000.

The indicator function, y+ (∂u+/∂y+), as a function of wall-normal co-
ordinate in viscous units is presented in Figure F.2 at (A) Reθ ∼ 5045 and
(B) Reθ ∼ 9075 for two bulk Reynolds numbers. The curves are dependent
on Reb for both Reθ as shown in Figure F.2 (A) and (B). A large noise compo-
nent further away from the wall can be improved by using very large ensemble
sizes to achieve the statistical convergence. This would not change the re-
sults. Note that for these higher Reb, there is formation of the logarithmic
region.

The root mean square (rms) of the normalized streamwise velocity compo-
nent (u+

rms =
√

u′2/uτ) as a function of the normalized wall-normal coordinate
in viscous units is shown in Figures F.3 at (A) Reθ ∼ 5045 and (B) Reθ ∼ 9075
for two Reb. To obtain the statistical convergence for rms very large ensemble
sizes can be used however, it would not change the results. The qualitative
trend is consistent with other rms profiles presented above. The weak double
peak discerned in the vicinity of the wall for low Reb presented earlier, is not
developed for the cases considered here. However, this peak is expected for
large ensemble sizes because some small traces of the peak can already be
seen in Figures F.3 (A) and (B). Note that the additional peak in the outer-log
region is also not captured for these cases. Rest of the features remain same
as explained before and we do not discuss them here.

The normalized cross stresses as a function of the wall-normal coordinate
in viscous units, (u′v′/u2

τ) at (A) Reθ ∼ 5045 and (B) Reθ ∼ 9075 are shown
in Figures F.4 for Reb = 2500 and 5000. The profiles for higher Reb, i.e.,
Reb = 5000 at Reθ ∼ 5045 (Figures F.4 (A)) are still in transition to turbulence
and these profiles collapse at Reθ ∼ 9075 (Figures F.4 (B)) for both Reb.

The turbulent production as a function of the wall-normal coordinate in
viscous units in the flow is shown in Figure F.5 at (A) Reθ ∼ 5045 and (B) Reθ ∼
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FIGURE F.2: Indicator function versus wall-normal coordinate
(in viscous units) at (A) Reθ ∼ 5045 and (B) Reθ ∼ 9075 for

Reb = 2500 and 5000.

9075 for Reb = 2500 and 5000. The curves for both Reb collapse well onto each
other for ODT simulations. The collapse is achieved for Reθ ∼ 5045 as well
as Reθ ∼ 9075. The production mechanism, similar to other velocity statistics,
for higher Reynolds numbers remains consistent with the TBL case for ODT
methodology.

Figure F.6 illustrates the skewness of the streamwise velocity component
as a function of the wall-normal coordinate y+ (in viscous units) at (A) Reθ ∼
5045 and (B) Reθ ∼ 9075 for both Reb, i.e., Reb = 2500 and 5000. The ODT re-
sults for higher bulk as well as momentum Reynolds numbers are qualitatively
consistent with the other lower Reynolds numbers ODT results presented ear-
lier. Note that for Reθ ∼ 5045 (see Figure F.6 (A)), the profiles for considered
Reb collapses with each other in the inner region and some deviations are ob-
served in the outer log-region, whereas, opposite is indicated for Reθ ∼ 9075
shown in Figure F.6 (B). For the higher Reθ, the skewness profiles for both Reb
show variation in the inner region, y+ < 10.

Next, in Figure F.7 the tendency of the ODT model for high Reynolds
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(A) (B)

FIGURE F.3: Streamwise root-mean-square velocity profiles at
(A) Reθ ∼ 5045 and (B) Reθ ∼ 9075 for Reb = 2500 and 5000.
All quantities are functions of the wall-normal coordinate (in

viscous units).

(A) (B)

FIGURE F.4: Profiles of the cross stresses at (A) Reθ ∼ 5045
and (B) Reθ ∼ 9075 two bulk Reynolds numbers considered.
All quantities are functions of the wall-normal coordinate (in

viscous units).

numbers towards the flatness of the streamwise velocity component as a
function of the wall-normal coordinate y+ (in viscous units) is checked at
(A) Reθ ∼ 5045 and (B) Reθ ∼ 9075 for both Reb, i.e., Reb = 2500 and 5000.
A Gaussian flatness value is in range 3− 3.5 for the considered cases. How-
ever, there is no reference data to make further comments on the flatness
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(A) (B)

FIGURE F.5: Turbulent kinetic energy production as a function
of the wall-normal coordinate (in viscous units) at (A) Reθ ∼

5045 and (B) Reθ ∼ 9075 for Reb = 2500 and 5000.

(A) (B)

FIGURE F.6: Profiles of the skewness of the streamwise velocity
fluctuations as a function of the wall-normal coordinate (in vis-
cous units) at (A) Reθ ∼ 5045 and (B) Reθ ∼ 9075 for Reb = 2500

and 5000.

profiles for ODT simulation. Nevertheless, the qualitative trend seems to be
consistent with the well validated case presented for lower Reynolds number
for the model.

Isotropy indicator v+rms/u+
rms as a function of the wall-normal coordinate (in

viscous units) at (A) Reθ ∼ 5045 and (B) Reθ ∼ 9075 for Reb = 2500 and 5000
is displayed in Figure F.8. For Reθ ∼ 5045, the isotropy indicator is consistent
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(A) (B)

FIGURE F.7: Profiles of the flatness of the streamwise velocity
fluctuations as a function of the wall-normal coordinate (in vis-
cous units) at (A) Reθ ∼ 5045 and (B) Reθ ∼ 9075 for Reb = 2500

and 5000.

with the TBL validation case of lower Reynolds numbers. For the other case
at Reθ ∼ 9075, however, the indicator shows different trend for Reb = 2500
in the outer log-region and the profile do not return towards Reb = 5000 as
it follows for Reθ ∼ 5045. Nevertheless, the constant region for the large y+

range is discerned for both Reθ investigated.
The ODT structural properties are next shown in Figure F.9 for Reτ as a

function of (A) Reθ and (B) time for the two bulk Reynolds numbers for Reb =
2500 and 5000.

In Figure F.9 (A), Reτ varied with Reθ capture some initial transition to tur-
bulence up to Reθ ∼ 8000 and finally after Reθ > 8000, the profiles are col-
lapsing onto each other. For higher Reb (Reb = 5000), the Reτ at very high
Reθ achieves constant values and further seems to decrease. This might
be a natural behaviour or it might be restricted due to selected domain size
for considered Reynolds number. We have increased domain size for these
simulations based on earlier simulations presented as validation for TBL for-
mulation. Since, Reθ represents instant, a similar behaviour is expected for
Reτ variation with time which is confirmed in Figure F.9 (B).

In Figure F.10 the shape factor H is shown as a function of (A) Reθ and
(B) time for the two bulk Reynolds numbers for Reb = 2500 and 5000. The H
profile for both bulk Reynolds numbers collapse onto each other when varied
with Reθ starting from Reθ ∼ 8000 (see Figure F.10 (A)). However when varied
with time as in Figure F.10 (B), it tends to follow different trends for both Reb.
It seems the profiles might diverge for this case and may never collapse with
each other. Any further comment for these profiles is beyond the scope of the
present work.

The variation of Reδ with Reθ is linear after Reθ > 5000 for both Reb and
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FIGURE F.8: Isotropy indicator v+rms/u+
rms as a function of the

wall-normal coordinate (in viscous units) at (A) Reθ ∼ 5045 and
(B) Reθ ∼ 9075 for Reb = 2500 and 5000.

is shown in Figure F.11 (A). Very high values are achieved for Reδ. In Fig-
ure F.11 (B), Reδ with time is linear but the trends for both Reb are different.
This indicates that the global properties have this different behaviour with time
which can be verified in future.

The ReX variation with Reθ in Figure F.12 (A) is consistent with the ear-
lier TBL results discussed for lower Reb in comparison with the DNS. In Fig-
ure F.12 (B), ReX with time is linear but the profiles for both Reb are diverging
from each other. This figure hints that the domain selection might be proper
and do not influence any of the quantity. In that case. decrease of some of
the quantities at higher Reθ or instants might be a general property. How-
ever, no clear comments can be made because there is no reference data for
comparison.

Figure F.13 displays the variation of skin friction coefficient, C f with (A)
Reδ, (B) Reθ and (C) ReX for both discrete bulk Reynolds numbers, i.e. Reb =
2500 and 5000. The general trend for skin friction coefficient is consistent with
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(A) (B)

FIGURE F.9: The quantity Reτ as a function of (A) Reθ and (B)
time for Reb = 2500 and 5000.

(A) (B)

FIGURE F.10: The quantity H as a function of (A) Reθ and (B)
time for Reb = 2500 and 5000.

the well validated TBL case presented earlier. Figure F.13 (A) and (B) con-
firms that the value of Reδ and Reθ is increased with increasing Reb (shown
with arrow in the figure). Figure F.13 (C) shows that C f profiles approaches to-
wards each other similar to the other two profiles for both Reb. This behaviour
was different for lower Reb presented earlier for validation of TBL configura-
tion.

The temporal development (as a function of Reθ) of the coefficients (A) C1
and (B) C2 obtained with ODT for high bulk Reynolds numbers, i.e., Reb =
2500 and 5000 are displayed in Figure F.14. Unlike the universal asymptotic
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(A) (B)

FIGURE F.11: The quantity Reδ as a function of (A) Reθ and (B)
time for Reb = 2500 and 5000.

(A) (B)

FIGURE F.12: The quantity ReX as a function of (A) Reθ and (B)
time for Reb = 2500 and 5000.

state reached for low Reb presented before in comparison with the DNS, for the
investigated Reb, these coefficients are decreasing after Reθ = 9000. Never-
theless, the profiles for both Reb collapses onto each other for both constants.
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(A)

(B)

(C)

FIGURE F.13: Skin friction coefficient C f as a function of
(A) Reδ, (B) Reθ and (C) ReX for Reb = 2500 and 5000.
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(A)

(B)

FIGURE F.14: Integral coefficients characterizing the TBL as
function of Reθ , (A) C1 and (B) C2 for Reb = 2500 and 5000.
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Appendix G

Model Parameter Sensitivity for
SBL

This Appendix discusses the sensitivity of the results for SBL configura-
tion to the physical ODTmodel parameters. The important physical model pa-
rameters considered in earlier studies using ODT are α, C, Z and large eddy
suppression mechanism. These parameters are explained in detail while find-
ing optimal set of the parameters for TBL configuration and their influence on
various velocity statistics and global properties of boundary layer have been
presented. For the present, SBL configuration, the influence of the model pa-
rameters on all statistics is not considered, instead only the mean streamwise
and rms velocity profile are discussed to find optimal set of parameters. This
is done by comparing ODT results to the reference DNS [41] at several Reθ for
a fixed bulk velocity (Ub = 12 m/s). Note that a suitable C and Z parameter
value is selected for SBL configuration. For α, equipartition of energy, i.e.,
α = 2/3 is used and the default large eddy suppression mechanism [89] is
applied.

In [98], to avoid tuning the model parameters, the pipe and jet flow are
treated with the same set of parameters. However, in a third case, i.e., the
reactive jet, the parameter C was increased to get good results in compari-
son with the experiments. Several other studies suggests that the ODT model
parameters are not universal and cannot be taken over directly while theses
parameters depend on the physics included and the forcing mechanism used.
These studies includes wall-bounded flows [28, 84, 87, 126], thermal convec-
tion [86], mixing layers [85] and non-reacting and reacting jets [100, 92, 98]
among others. The real vortices formation in case of ODT can be different
which can slightly change the turbulent properties for the given flow configu-
ration and hence, restrict to take over these values directly from other stud-
ies. The parameters, however can be tuned at low or intermediate Reynolds
number and the optimal model parameters usually become asymptotically in-
dependent of the Reynolds number. This property makes ODT an interesting
tool for modeling of high-Reynolds number turbulent flows.

The starting point to fix the model physical parameters in the SBL configu-
ration is the set of model parameters used for an asymptotic suction boundary
layer [96] and a TBL [109] which is discussed in Appendix C. These cases are
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considered to find parameters as they are close to the present case investi-
gated. The value for α parameter is used as α = 2/3 which is consistent
with the previous studies and controls the exchange of the turbulent energy
between the three velocity components and α = 2/3 means equipartition of
energy in the velocity components. To calibrate the parameter C or Z, the
other model parameters are kept fixed. The numerical parameters used for
SBL configurations are given elsewhere (see Chapter 3). The ODT simula-
tions are carried out for C ∈ {3, 6, 9} and Z ∈ {400, 600, 800} and the results
are discussed below. In addition, we have onemore physical parameter which
is used to suppress very large eddies [100, 92, 85, 89, 98], that are physically
insignificant, i.e., large eddy suppression mechanism. For the SBL configu-
ration, we take the default mechanism for large eddy suppression from earlier
ODT applications.

G.1 Variation of the Model Parameter C

Referring to the TBL study in Appendix C, the C parameter, as expected was
found very important. This is because it controls the overall turbulence of the
flow or the frequency of the eddy events and sometimes referred as the tur-
bulence intensity parameter. As mentioned earlier, for small C values, less
eddies are implemented and the flow behaves like laminar. Opposite is ob-
served for large C values. This exhibit the direct influence on the slope of the
velocity. This parameter is optimized by varying the value of C from 3 to 9 for
the mean and root mean square (rms) velocity profile at Reθ ≈ 2000, 4000 and
8000 while keeping the α = 2/3 and Z = 600 fixed. Validating the parameter
for a range of Reθ also confirms that the parameters become asymptotically
independent of the Reynolds number.

Figure G.1 depicts the influence of the C parameter on the (A,C) mean
streamwise and (B,D) the rms velocity normalised with (A,B) outer (C,D) inner
units at Reθ ≈ 2000. The simulations are carried out for C ∈ {3, 6, 9} while
keeping the other parameters fixed. The reference DNS data at same Reθ is
shown for selecting the optimal C value.

Figure G.1 (A) confirms the influence of the C parameter on the slope of
the normalized velocity profile in the logarithmic region. It also effect the fric-
tional velocity, uτ. Less eddies are implemented for the small C values which
controls the turbulence of the flow and hence the level of turbulence is re-
duced depicting the laminar behaviour of the velocity profile with decreased
uτ. For large C values, opposite is observed and the turbulence intensity
is increased. In the inner region. i.e., y+ < 10, the flow dynamics remain
unaffected. Whereas there is a direct influence by the C parameter in the log-
arithmic region, i.e., y+ > 30. A good match for the mean velocity is achieved
between the ODTmodel and the reference DNS data for C = 6 for the present
configuration.

The rms velocity for all the C values considered for mean streamwise ve-
locity is depicted in Figure G.1 (B). The rms is underestimated from the buffer
until the log region for any value of C investigated. C = 6 obtained for the
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mean profile is considered for further simulations. Interestingly, the shape of
the rms profile remain unaffected with the variation of C. However, the fluc-
tuation magnitude is inversely proportional to C. The case representing less
turbulence intensity, i.e., C = 3 shows the most rms and vice versa imply-
ing less shear and less velocity fluctuations and can be interpreted by a much
flatter mean state in the more turbulent case such that turbulence is sustained
by much weaker available (shear-extractable) energies.

Figure G.1 (C) shows the streamwise mean velocity, U−b − u− = (Ub −
u)/Ub (here U−b = 1) collapses better for the profiles in the outer log-region,
i.e., specially in the range y− = y/δ99 > 1 when normalised by outer units for
the SBL configuration. It was observed from TBL case as well that the profiles
are most influence by C parameter due to the occurrence of large eddies
that control boundary layer growth. Note that a fairly good large-y collapse
is obtained for larger C values as C = 3 is plausibly an outlier because it
corresponds to less developed turbulence.

Figure G.1 (D) shows the rms velocity, u−rms =
√

u′2/Ub, scaled to outer
units which is similar to TBL configuration and imply that the height variation of
the corresponding profiles in Figure G.1 (B) is not only due to the variation of
uτ. Like, mean streamwise velocity profiles, the larger C values show large-y
collapse specially in outer log-region whereas C = 3 show some deviations
even in outer log-region for rms profiles.

Figure G.2 displays the influence of the C parameter on the (A,C) mean
streamwise and (B,D) the rms velocity normalised with (A,B) outer (C,D) inner
units at Reθ ≈ 4000. The simulations are carried out for the same C range
as considered above and other parameters are kept fixed. The reference
DNS data at Reθ ≈ 4000 is shown for selecting the optimal C value. The
influence of C parameter on mean streamwise velocity profile for Reθ ≈ 4000
re-affirms the direct influence on the slope of the normalised velocity profile in
the logarithmic region as shown in Figure G.2 (A). The validation for the given
Reθ also confirms that the parameters become asymptotically independent of
the Reynolds number.

The general information for the considered Reθ remains consistent with
the lower Reθ and the parameter also effect the frictional velocity, uτ due to
implementation of less eddies for the small C values which controls the tur-
bulence of the flow and hence the level of turbulence is reduced depicting the
laminar behaviour of the velocity profile with decreased uτ and opposite for
large C values. The flow dynamics still remain unaffected in the inner region.
i.e., y+ < 10 and direct influence in the logarithmic region, i.e., y+ > 30. A
good match for the streamwise mean velocity between the ODT model and
the DNS data [41] for C = 6 for the present configuration is achieved.

The rms velocity for all the C values as considered above for the stream-
wise mean velocity is shown next in Figure G.2 (B) at Reθ ≈ 4000. The rms is
still underestimated from the buffer until the log region, however, quantitative
trend remains consistent with the trend for Reθ ≈ 2000 as well as DNS. More-
over, quantitative measurement for Reθ ≈ 4000 seems more close to DNS as
compared to Reθ ≈ 2000 case explained above and the fluctuation magnitude
is inversely proportional to C. C = 3 shows amplitude of the peak more close
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(A) (B)

(C) (D)

FIGURE G.1: Normalized wall-normal profiles of the (A) mean
streamwise velocity and (B) corresponding rms velocity for var-
ious values of the model parameter C. ODT results are shown
in comparison to the reference DNS [41] at Reθ ≈ 2000. The
model parameters α = 2/3 and Z = 600 are fixed. (C, D) Same
data as in (A, B) but normalized with the outer velocity, Ub, and
length scale, δ99. The superscripts ‘+’ and ‘−’ indicate normal-

ization with inner and outer units, respectively.
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to the DNS data, however, the same C shows that the mean velocity profile
is tending towards the laminar flow due to implementation of less number of
eddies. Hence, C = 6 obtained for the mean profile is considered for the
simulations of SBL configurations.

Figure G.2 (C) shows the streamwise mean velocity at Reθ ≈ 4000 nor-
malised with the outer units. The profiles collapses better in the outer log-
region, i.e., specially in the range y− = y/δ99 > 1 with a fairly good large-y
collapse achieved for larger C values and C = 3 is an outlier as it corresponds
to less developed turbulence. Figure G.2 (D) shows the rms velocity scaled
to outer units at Reθ ≈ 4000. The rms velocity profiles are consistent with
Reθ ≈ 2000 and general trend and deviations remain same.

Figure G.3 displays the influence of the C parameter on (A) the mean
streamwise and (B) the rms velocity normalised with wall-normal coordinate
in viscous units at Reθ ≈ 8000. The profiles are not shown normalised with
the outer units as the general trends remain same. The simulations are car-
ried out for the same C range as done for other two Reθ. The LES data at
Reθ ≈ 8000 is also shown in the figure for reference. The influence of C
parameter on mean streamwise velocity profile for the considered Reθ also
remains same and show influence on the slope of the normalised velocity
profile in the logarithmic region as shown in Figure G.3 (A) and remains con-
sistent with the lower Reθ. A good match is obtained for the streamwise mean
velocity between the ODT model and the LES data [82] for C = 6.

The rms velocity for all the C values is shown in Figure G.3 (B) at Reθ ≈
8000. The profiles are normalised with the wall-normal coordinate in viscous
units. The profiles remain consistent with the lower Reθ, however some miss-
ing part is noted in outer log region at Reθ ≈ 8000. This is a restriction imposed
due to domain size selected for the simulations. To address this missing pro-
file, different domain sizes are considered and presented in Chapter 5.



206

100 101 102 103

y+

0

5

10

15

20

25

30

U
+ b
−
u

+

Reθ≈4000

C=3
C=6
C=9
DNS

(A)

100 101 102 103

y+

0.0

0.5

1.0

1.5

2.0

2.5

3.0

u
+ rm
s

Reθ≈4000

C=3
C=6

C=9
DNS

(B)

(C) (D)

FIGURE G.2: Normalized wall-normal profiles of the (A) mean
streamwise velocity and (B) corresponding rms velocity for var-
ious values of the model parameter C. ODT results are shown
in comparison to the reference DNS [41] at Reθ ≈ 4000. The
model parameters α = 2/3 and Z = 600 are fixed. (C, D) Same
data as in (A, B) but normalized with the outer velocity, Ub, and
length scale, δ99. The superscripts ‘+’ and ‘−’ indicate normal-

ization with inner and outer units, respectively.
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(A) (B)

FIGURE G.3: Normalized wall-normal profiles of the (A) mean
streamwise velocity and (B) corresponding rms velocity for var-
ious values of the model parameter C. ODT results are shown
in comparison to the reference LES [82] at Reθ ≈ 8000. The

model parameters α = 2/3 and Z = 600 are fixed.

G.2 Variation of the Model Parameter Z

The next model parameter considered is Z and this parameter increases the
efficiency of the algorithm by suppressing the eddy events that are smaller
than the Kolmogorov scale (Z > 1). The 3D eddies behaves in a different
way for the wall bounded flows in the 1D representation of the ODT model.
This behaviour is predominant in the buffer layer. Hence this parameter can
be used to match the position of the buffer layer in the ODT solutions with
the DNS data [84]. The same case investigated above is consider using the
optimal parameters (α = 2/3 and C = 6). The Z value is selected as 550, 600
and 650.

Figure G.4 depicts the influence of the Z parameter on the (A,C) mean
streamwise and (B,D) rms velocity normalized with (A,B) inner and (B,D) outer
units at Reθ ≈ 2000 in comparison with the DNS data at same Reθ. All the
profiles shows that the mean streamwise and rms velocity are not affected
much for any Z value considered for inner as well as outer units. The Z
parameter is expected to have less influence on profiles for boundary layer-
type flows as compared to the C parameter. The main effect of increasing Z
should be an upward shift of the mean velocity profile in the logarithmic region
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which is not observed for the SBL configuration. However, to confirm this
shift, Z values were selected as 400, 600 and 800 and presented elsewhere.
We have selected Z = 600 for further investigation and this also agrees with
the optimal value used for turbulent channel flow [89].

(A) (B)

(C) (D)

FIGURE G.4: Normalized wall-normal profiles of the (A) mean
streamwise velocity and (B) corresponding rms velocity for var-
ious values of the model parameter Z. ODT results are shown
in comparison to the reference DNS [41] at Reθ ≈ 2000. The
model parameters α = 2/3 and C = 6 are fixed. (C, D) Same
data as in (A, B) but normalized with the outer velocity, Ub, and
length scale, δ99. The superscripts ‘+’ and ‘−’ indicate normal-

ization with inner and outer units, respectively.

Figure G.5 shows the influence of the Z parameter on the (A,C) mean
streamwise and (B,D) the rms velocity normalised with (A,B) outer (C,D) inner
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units at Reθ ≈ 4000. The simulations are carried out for all Z values as done
for Reθ ≈ 2000 while keeping the other parameters fixed. The reference DNS
data at Reθ ≈ 4000 is shown in black dotted line. The profiles of the the mean
streamwise and rms velocity remain unaffected for any Z value considered for
inner as well as outer units at Reθ ≈ 4000 as well. The general explanation
for the profiles at considered Reθ remains same as discussed above.

(A) (B)

(C) (D)

FIGURE G.5: Normalized wall-normal profiles of the (A) mean
streamwise velocity and (B) corresponding rms velocity for var-
ious values of the model parameter Z. ODT results are shown
in comparison to the reference DNS [41] at Reθ ≈ 4000. The
model parameters α = 2/3 and C = 6 are fixed. (C, D) Same
data as in (A, B) but normalized with the outer velocity, Ub, and
length scale, δ99. The superscripts ‘+’ and ‘−’ indicate normal-

ization with inner and outer units, respectively.

Figure G.6 is shown for (A) the mean streamwise and (B) the rms velocity
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normalised with wall-normal coordinate in viscous units at Reθ ≈ 8000 for
various Z values considered for the validation. The main purpose to display
profiles at this Reθ is to analyse the influence of variation of parameters at
high Reθ. The LES data at corresponding Reθ is shown for reference. Similar
to the cases explained above, the profiles of the the mean streamwise and
rms velocity remain unaffected for this case as well. In general, the profiles
at this Reθ are consistent with the lower Reθ. Note that in the outer log region
at Reθ ≈ 8000 for variation of Z parameter, a similar behaviour is observed
which was reported for the C parameter and this point is addressed shortly.

(A) (B)

FIGURE G.6: Normalized wall-normal profiles of the (A) mean
streamwise velocity and (B) corresponding rms velocity for var-
ious values of the model parameter Z. ODT results are shown
in comparison to the reference LES [82] at Reθ ≈ 8000. The

model parameters α = 2/3 and C = 6 are fixed.
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Appendix H

Model Parameter Sensitivity for
Uniform Blowing in SBL

The sensitivity of the results to the physical ODT model parameters (α,
C, Z, and the large-eddy suppression) are discussed for each flow configura-
tions. It was noted that these parameters are different for SBL as well as TBL.
Hence, it is important to find the optimal set of the physical model parame-
ters for blowing configuration also. For the blowing case, the ODT results are
compared to the reference LES [64] at two Reθ.

Previous studies have also indicated that these parameters cannot be
taken over directly. The studies involving wall-bounded flows [28, 84, 87, 126],
mixing layers [85], thermal convection [86], and non-reacting and reacting jets
[100, 92, 98], shows that the ODT model parameters are not universal. The
pipe and jet flow have been treated with the same set of parameters in [98]
and in a third reactive jet case, C was increased to get reasonable results
compared to experiments. All these studies mentioned above demonstrates
that the selection of model parameters is influenced by the physics included
and the forcing mechanism used in the flow. Hence, these parameters needs
to be tuned for a given flow configuration.

To find the optimal set of parameters for blowing case, the set of model
parameters for the asymptotic suction boundary layer [96], TBL [109] and SBL
[112] cases are taken as starting point because these studies are close to our
present work.

The model parameter α, transfer coefficient, controls the exchange of the
turbulent energy between the three velocity components and its value can
vary from zero to one and α = 2/3 means equipartition of energy in the ve-
locity components. In most of the previous studies the value for α is used
as 2/3 and for the present case also α = 2/3 is selected without discussing
in detail. However, statistics variation with α parameter is shown below. The
other parameters C, Z, and the large-eddy suppression are calibrated against
the reference LES case [64] because C and LS suppression method were
found very sensitive for boundary layer-types flows shown in previous chap-
ters. The Z parameter was not much sensitive for SBL and TBL configurations
but it is found sensitive for blowing case discussed below. While calibrating
one particular parameter, all other parameters are kept fixed. The range of
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these parameters is very small and the ODT simulations are carried out for
C ∈ {5, 6, 7}, Z ∈ {50, 100, 150} and ‘thirds’, ‘elapsed time’ and ‘frac domain’
mechanism for large eddy suppression.

The mean velocity profile is considered for selecting the model parameters
by comparing to the LES results [64]. However, higher order velocity profiles
and variation of global properties with these parameters is also shown below
but does not influence the choice of parameters. Note that all the profiles obey
the same trend and are consistent with other studies.

H.1 Variation of the Model Parameter C

The C parameter is referred as the turbulent intensity parameter and controls
the frequency of the eddy events or the overall turbulence of the flow. The flow
behaves like laminar for small C values because less eddies are implemented
for small values of C and opposite is observed for large values of C further
exhibiting the direct influence on the slope of the velocity. ODT simulations are
carried out for C ∈ {5, 6, 7} for the blowing configuration at (A) Reθ ≈ 2082 and
(B) Reθ ≈ 2395 discussed below. The other parameters are kept constant for
investing considered parameter and optimal value is selected by comparing
with the reference LES data [64] at the same Reθ.

The influence of the C parameter on the mean streamwise velocity scaled
with inner units, uτ and yτ = ν/uτ and with outer units u∞ and δ99 are depicted
in Figure H.1 and H.2, respectively. The use of inner units are represented by
the superscripts ‘+’ and outer units by ‘−’.

Figure H.1 displays the impact of the C parameter on the slope of the
normalized velocity profile in the logarithmic region at (A) Reθ ≈ 2082 and (B)
Reθ ≈ 2395. The flow dynamics remain unaltered in the inner region, i.e.,
y+ < 20 and slope is changed in the logarithmic region, i.e., y+ > 30 for
both Reθ considered. The general behaviour of the mean streamwise velocity
profile with the C parameter is consistent with the earlier study for SBL and
TBL cases and are not discussed again here. A good match is achieved for
the mean velocity between the ODT results and reference LES data [64] for
C = 6. This value is further used to carry out the ODT simulations. The C
parameter is found most sensitive to the blowing case which is similar to the
boundary layer type flow [109, 112].

Figure H.2 displays the impact of the C parameter on the frictional velocity,
uτ at Reθ ≈ 2082 and this figure also illustrates how much the shape change
in Figure H.1 is explained by faster boundary layer growth for larger C. A fairly
good large-y collapse is obtained here and the profiles collapse very well for
all C values considered in the range y− = y/δ99 > 0.1 suggesting that the
large-scale dynamics as well as the growth of the outer layer are comparable
in the two respective cases. The streamwise mean velocity is u−∞ = 1 and the
outer units are most sensitive to the C parameter.

Figure H.3 shows the streamwise root-mean-square velocity profiles ver-
sus wall-normal coordinate (in viscous units) for various values of the model
parameter C at (A) Reθ ≈ 2082 and (B) Reθ ≈ 2395. ODT results are shown
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FIGURE H.1: Normalized wall-normal profiles of the mean
streamwise velocity u for various values of the model parame-
ter C at (A) Reθ ≈ 2082 and (B) Reθ ≈ 2395. ODT results are
shown in comparison to a reference LES [64] at corresponding
Reθ . The model parameters α = 2/3, Z = 100 and the large-

eddy suppression are fixed.
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FIGURE H.2: The profiles of the mean streamwise velocity nor-
malized with the outer units for various values of the model
parameter C at Reθ ≈ 2082. The model parameters α = 2/3,

Z = 100 and the large-eddy suppression are fixed.
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FIGURE H.3: The streamwise root-mean-square velocity pro-
files versus wall-normal coordinate (in viscous units) for var-
ious values of the model parameter C at (A) Reθ ≈ 2082 and
(B) Reθ ≈ 2395. ODT results are shown in comparison to a ref-
erence LES [64] at corresponding Reθ . The model parameters

α = 2/3, Z = 100 and the large-eddy suppression are fixed.

in comparison to a reference LES [64] at corresponding Reθ. The model pa-
rameters α = 2/3, Z = 100 and the large-eddy suppression are fixed. The
shape of the rms profiles is the same for all the values of C considered and
the overall observations are consistent with the SBL and TBL cases. Hence,
the figures are shown only to check if these profiles behaves as expected or
if there are some discrepancies. Since these profiles behaves as expected,
they are not discussed further,

The H variation with Reθ is shown in Figure H.4. ODT results are shown
in comparison to a reference LES [64]. The model parameters α = 2/3,
Z = 100 and the large-eddy suppression are fixed. The profiles are sensitive
towards the C parameter. These profiles are not sensitive towards any other
parameters as shown below. Lower C values are more close to the reference
results.

Skin friction coefficient C f as a function of Reθ for various values of the
model parameter C is shown in Figure H.5. ODT results are shown in com-
parison to a reference LES [64]. The model parameters α = 2/3, Z = 100
and the large-eddy suppression are fixed. Similar to shape factor, skin friction
profile is close to the reference data for lower C values.

H.2 Variation of the Model Parameter Z

Themodel parameter Z is utilized to suppress the eddy events that are smaller
than the Kolmogorov scale by using Z > 1 to increase the efficiency of the
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FIGURE H.4: The quantity H as a function of Reθ for various
values of the model parameter C. ODT results are shown in
comparison to a reference LES [64]. The model parameters α =

2/3, Z = 100 and the large-eddy suppression are fixed.
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FIGURE H.5: Skin friction coefficient C f as a function of Reθ

for various values of the model parameter C. ODT results are
shown in comparison to a reference LES [64]. The model pa-
rameters α = 2/3, Z = 100 and the large-eddy suppression are

fixed.
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FIGURE H.6: Normalized wall-normal profiles of the mean
streamwise velocity u for various values of the model parame-
ter Z at (A) Reθ ≈ 2082 and (B) Reθ ≈ 2395. ODT results are
shown in comparison to a reference LES [64] at corresponding

Reθ . The other model parameters are fixed.

algorithm in the model. The Z parameter affect the starting point of the buffer
layer and hence, a good match can be obtained between the ODT solutions
and LES [64] data by excluding eddies slightly larger than the Kolmogorov
ones by selecting Z > 1 [84]. ODT simulations are carried out for Z ∈
{50, 100, 150} for velocity statistics up to 4th order at (A) Reθ ≈ 2082 and (B)
Reθ ≈ 2395 and several global properties. The ODT results are presented
in comparison with the LES data [64] at the same Reθ with other parameters
fixed.

Figure H.6 and Figure H.7 depicts the impact of the Z parameter on the
mean streamwise velocity profile scaled with inner and outer units, respec-
tively. The inner and outer units representation remains same as explained in
previous section for the C parameter.

Figure H.6 shows that the Z parameter is less sensitive to the mean ve-
locity profile than the C parameter for uniform blowing case for both Reθ. The
insensitivity to Z over the range chosen suggests using a wider range of Z and
a higher Z range is presented elsewhere. Nevertheless, a well know effect
of the Z parameter is confirmed, that is, an upward shift of the mean velocity
profile in the logarithmic region with increasing Z which is due to the decrease
of uτ. In general, the profiles variation with the parameter remains consistent
with previous studies.

Figure H.7 show excellent horizontal alignment of profiles because the Z
parameter have less effect than the C parameter on the occurrence of large
eddies. These eddies controls the boundary layer growth. For the blowing
case, Z = 100 is used for the simulations. The value of the Z parameter con-
sidered for the uniform blowing configuration is noted smaller as compared
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FIGURE H.7: The profiles of the mean streamwise velocity nor-
malized with the outer units for various values of the model
parameter Z at Reθ ≈ 2082. The other model parameters are

fixed.

to the other ODT applications [89, 98, 96, 109] indicating that the small ed-
dies are important in case of blowing and are included to capture the flow
properties.

Now, the the rms of the streamwise velocity component as a function of
wall-normal coordinate is shown in Figure H.8. The profiles are shown at (A)
Reθ ≈ 2082 and (B) Reθ ≈ 2395 for variation of Z parameter with reference
data for comparison from [64] at corresponding Reθ. The other model param-
eters are kept fixes while performing simulations for the Z parameter. All the
profiles are consistent with the literature with variation of the Z parameter.

Variation of global properties, for example, C f with Reθ for different Z val-
ues considered is shown in Figure H.9. ODT results are shown in comparison
to a reference LES [64] and the profiles for these quantities are also consistent
with earlier results.

H.3 Influence of the LS Mechanism

Large eddy suppression (LS) is important feature introduced for the large ed-
dies to avoid large-scale anomaly, however, the occurrence of these large
eddy events is rare which if occurred may dominate the total transport as their
turnover time ismore than the current run time of the simulations. Hence these
eddies should be avoided. There are different ways implemented in the model
[89, 98, 100, 92, 85, 28] to restrict such large eddies and also discussed in
earlier chapters of the thesis. These eddies can be restricted by ‘frac domain’,
‘elapsed time’, or ‘two-thirds’ LS mechanism and the influence of these sup-
pression mechanism on various statistics and global properties is discussed
below for Reθ ≈ 2082 and 2395 in comparison to reference LES data [64] at
the same Reθ.



218

100 101 102 103

y+

0.0

0.5

1.0

1.5

2.0

2.5

3.0
u

+ rm
s

ReΘ∼2082

Z=50
Z=150
Z=100
LES

(A)

100 101 102 103

y+

0.0

0.5

1.0

1.5

2.0

2.5

3.0

u
+ rm
s

ReΘ∼2395

Z=50
Z=150
Z=100
LES

(B)

FIGURE H.8: The streamwise root-mean-square velocity pro-
files versus wall-normal coordinate (in viscous units) for var-
ious values of the model parameter Z at (A) Reθ ≈ 2082 and
(B) Reθ ≈ 2395. ODT results are shown in comparison to a
reference LES [64] at corresponding Reθ . The other model pa-

rameters are fixed.
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FIGURE H.9: Skin friction coefficient C f as a function of Reθ

for various values of the model parameter Z. ODT results are
shown in comparison to a reference LES [64]. The other model

parameters are fixed.
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FIGURE H.10: Normalized wall-normal profiles of the mean
streamwise velocity u for various LS suppression mechanisms
at (A) Reθ ≈ 2082 and (B) Reθ ≈ 2395. ODT results are shown
in comparison to a reference LES [64] at corresponding Reθ . The

other model parameters are fixed.

The influence of the LS mechanism on the mean streamwise velocity com-
ponent scaled with inner and outer units have been presented in Figure H.10
and H.11, respectively. The representation of inner and outer units remains
same as explained in previous section for the C parameter and also all the
other parameters are fixed at their optimal values.

In the viscous sublayer, there is no influence of LS mechanism on mean
velocity profile as shown in Figure H.10 at (A) Reθ ≈ 2082 and (B) Reθ ≈ 2395
in comparison with reference data. Hence the near-wall similarity solution is
obeyed for all ODT solutions. The influence is observed in the region y+ > 10
and the velocity profile agrees with the LES data for the two-thirds LS mech-
anism. For the frac domain and elapsed time suppression mechanisms, the
profile is under-predicted as compared to the LES data. The profile in the
buffer region as well as outer log region is the same for the frac domain and
the elapsed time mechanism. As expected and discussed for SBL and TBL
cases, the LS suppression mechanism impact the outer region the most and
as a result uτ as well as normalized free-stream velocity, u+, is changed.

Figure H.11 shows the mean streamwise velocity profile in outer units.
This figure explains the shape change by faster boundary layer growth for
LS mechanism. A good large-y collapse for elapsed time and frac domain
mechanism is obtained. The LS mechanism have more effect than the Z
parameter on the occurrence of large eddies that control the boundary layer
growth, however, for blowing case, note that C, Z and LS suppression are
important unlike SBL and TBL cases. For the blowing configuration, two-
thirds mechanism is used for the simulations.
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FIGURE H.11: The profiles of the mean streamwise velocity
normalized with the outer units for various LS suppression
mechanisms at Reθ ≈ 2082. The other model parameters are

fixed.
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FIGURE H.12: The streamwise root-mean-square velocity pro-
files versus wall-normal coordinate (in viscous units) for var-
ious LS suppression mechanisms at (A) Reθ ≈ 2082 and (B)
Reθ ≈ 2395. ODT results are shown in comparison to a ref-
erence LES [64] at corresponding Reθ . The other model param-

eters are fixed.
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FIGURE H.13: The quantity H as a function of Reθ for various
LS suppression mechanisms. ODT results are shown in com-
parison to a reference LES [64]. The other model parameters

are fixed.
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FIGURE H.14: Skin friction coefficient C f as a function of
Reθ for various LS suppression mechanisms. ODT results are
shown in comparison to a reference LES [64]. The other model

parameters are fixed.

In Figure H.12, the rms of the streamwise velocity component as a func-
tion of wall-normal coordinate is shown. The profiles are shown for both Reθ

considered above at (A) Reθ ≈ 2082 and (B) Reθ ≈ 2395 for different LS sup-
pression mechanisms with reference data for comparison from [64] at corre-
sponding Reθ. The other model parameters are kept fixed while performing
simulations for various LS methods. All the profiles are consistent with the
other results discussed.

Variation of global properties, i.e., H and C f with Reθ for different LS sup-
pression mechanisms considered is shown in Figure H.13 and Figure H.14,
respectively. ODT results are shown in comparison with the reference LES
from [64]. The profiles for these quantities are also consistent with earlier
results and hence their further discussion is avoided.
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H.4 Variation of the Model Parameter α

The pressure fluctuations may not be universal [29] and that the pressure
fluctuations do not necessarily imply a maximization of the inter-component
kinetic energy transfer. Therefore, the model parameter α was introduced
to control the exchange of the turbulent energy between the three velocity
components. This parameter takes values in the range [0, 1], with 0 means
no and 1 maximal transfer of the kinetic energy and for α = 2/3, equipartition
of the energies is approximated which can be interpreted as a tendency to
small-scale isotropy [29]. The other model parameters are kept fixed here for
calibrating the α parameter.

The mean streamwise velocity for variation of the α parameter is shown
below in Figure H.15 as a function of wall normal coordinate in viscous units.
The profiles are not discussed as they are consistent with other results pre-
sented in previous Appendix and in earlier sections of this Appendix. Only
difference is that for SBL and TBL, α = 2/3 gave good match with reference
results whereas, for blowing configuration, all α considered gives same trend
and the profiles are independent of the choice of the α parameter.
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FIGURE H.15: Normalized wall-normal profiles of the mean
streamwise velocity u for various values of the model param-
eter α at (A) Reθ ≈ 2082 and (B) Reθ ≈ 2395. ODT results are
shown in comparison to a reference LES [64] at corresponding

Reθ . The other model parameters are fixed.
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