

Request-driven GALS Technique for
Datapath Architectures

Von der Fakultät für Mathematik, Naturwissenschaften und Informatik

der Brandenburgischen Technischen Universität Cottbus

zur Erlangung des akademischen Grades

Doktor der Ingenieurwissenschaften

(Dr.-Ing.)

genehmigte Dissertation

vorgelegt von

Dipl.-Ing., M.Sc.El.Eng.

Miloš Krstić

geboren am 18. Oktober 1973 in Niš (Serbien und Montenegro)

Gutachter: Prof. Dr.-Ing. Rolf Kraemer

Gutachter: Prof. Dr.-Ing. Heinrich-Theodor Vierhaus

Gutachter: Prof. Christian Piguet

Tag der mündlichen Prüfung: 07.02.2006

 ii

 iii

Acknowledgements

While working in the IHP’s System Design department I had support from many colleagues. At

this place I want to thank those who helped me with the thesis:

 First of all, I want to thank to my supervisor Prof. Rolf Kraemer who supported my work on this

topic over the past years.

I especially want to thank Dr Eckhard Grass who guided and supervised my activities in the area

of asynchronous circuit design. In the mutual discussions we had, we defined many solutions

described in the following text. Without his support this thesis would not be possible.

Dr Alfonso Troya, Dr Koushik Maharatna, and Ulrich Jagdhold were part of our great team that

has developed a synchronous WLAN baseband processor. Many thanks for their support and

friendship.

I also want to thank Maxim Piz for his support in performing MATLAB simulations.

Special thanks to my proofreaders: Dr Eckhard Grass, Dr Michael Methfessel, Christoph Wolf

and Daniel Dietterle.

I am very grateful to Alexandra Julius, Christian Stahl, Prof. Wolfgang Reisig and Dr Frank

Winkler from Humboldt University in Berlin. I really enjoyed working together with them on GALS

topics, especially in the area of formal analysis and during the development of the externally driven

GALS wrapper. Furthermore, I want to acknowledge Kim Fahrion for developing the 3DConverter

tool and Prof. Mark Greenstreet, University of British Columbia - Vancouver, who helped me with

many valuable comments.

I want to thank my parents and sister for their support during all these years.

Finally, gratitude and love go to my wife Sanja and son Boris, for their love and support.

 iv

 v

Contents

Abstract . . . ix

Zusammenfassung . xi

1. Introduction . 1

1.1 Design Challenges for Wireless Communication Systems 1

1.2 GALS as a Solution for the System Integration Problem 3

1.3 Structure of the Thesis . 4

2. Related Work – from the Two-Flop Synchroniser to GALS 7

2.1 Introduction . . . 7

2.2 System Integration Strategies . 8

2.2.1 Standard Synchronisers 9

2.2.2 Adaptive Synchronisation 10

2.2.3 FIFO Synchronisation . 11

2.2.4 GALS Systems . 12

2.3 Power Saving with GALS . 18

2.4 Open Questions and Directions for Further Research 19

3. Proposed Novel GALS Architecture 21

3.1 Introduction . . 21

3.2 Motivation and General Principles 21

Contents

 vi

3.3 System Structure . . 22

3.4 Request Driven Technique with External Clocking 25

3.5 Potential Gain of the Novel GALS Architecture 26

4. Hardware Architecture of the GALS Wrapper 31

4.1 Introduction . . . 31

4.2 Overall Structure of the Asynchronous Wrapper 31

4.2.1 Pausable Clock . 34

4.2.2 Clock Control Unit. 36

4.2.3 Time-out Generation . 37

4.2.4 Input Port . 38

4.2.5 Output Port . 44

4.2.6 Mutual Exclusion Element 47

4.3 Formal Analysis of the Asynchronous Wrapper 48

4.4 Externally Clocked Asynchronous Wrapper 48

5 GALS Application in Wireless Communication Systems 53

5.1 Introduction . . 53

5.2 Baseband Processor Compliant to IEEE 802.11a Standard 54

5.3 GALS Partitioning . . 57

5.3.1 Transmitter Dataflow Organisation 60

5.3.2 Receiver Dataflow Organisation 60

5.4 Power Saving Mechanisms. 62

5.5 Important Details – GALS Extensions 64

5.5.1 Activation Interface for Blocks Rx_1 and Rx_2 64

 5.5.2 Specific Asynchronous Fork 65

 5.5.3 Token Alignment . . 66

5.5.4 Rate Adaptation . 68

 5.5.5 Token Synchronisation in the Transmitter 68

5.6 Synchronous-Asynchronous Interfaces 69

Contents

 vii

5.6.1 Synchronous to Asynchronous Communication 69

5.6.2 Synchronous to Asynchronous Communication with a Continuous

Synchronous Data Stream

69

5.6.3 Asynchronous to Synchronous Communication 70

6 Design for Testability in GALS Systems 73

6.1 Introduction . . 73

6.2 Test Techniques for GALS Systems 74

6.3 Proposed BIST Architecture 75

6.4 Implementation of the BIST in the Baseband Processor 79

7 Implementation and Evaluation of GALS Systems 85

7.1 Introduction . . 85

7.2 Design Flow 85

7.3 System Integration with GALS 89

7.4 Conceptual GALS Design Framework 90

7.5 Asynchronous Wrapper Implementation 92

7.6 Experimental GALS Chip . 94

7.7 GALS Baseband Processor Implementation 96

 7.7.1. Evaluation of Synchronous and GALS Baseband Processor 99

8. Experimental Results . . 103

8.1 Introduction . . 103

8.2 Functional Verification of the GALS Baseband Processor 103

8.3 Power Measurement . . 105

8.4 Supply Noise Measurement . . 106

9. Conclusions . . 109

9.1 Achieved Results . . 109

9.2 Request-Driven GALS as a Solution – Pros and Cons 110

9.3 Future Work . . 110

10. References . . 113

Acronyms and Symbols . . 121

Contents

 viii

Curriculum Vitae . . 125

 ix

Abstract

In this thesis a novel Globally Asynchronous Locally Synchronous (GALS) technique applicable

to wireless communication systems and generally to datapath architectures is presented. The

proposed concept is intended for point-to-point communication with very intensive but bursty data

transfer between the system blocks.

The GALS technique introduced here is based on a request-driven operation of locally

synchronous modules. The key idea behind this request-driven approach is that a module can use

the input request signal as its clock while receiving a burst of data. Inactivity of the request line is

detected with a special time-out circuitry. When time-out occurs, clocking of the locally

synchronous module is handed over to a local ring oscillator or an external clock source. This

allows emptying of internal pipeline stages of a locally synchronous module after a burst of data

was received.

Based on this concept, a practical hardware implementation of an asynchronous wrapper is

proposed. The asynchronous wrapper consists of several components, with different complexity

and structure. The internal clocking circuitry is based on a tunable ring oscillator that actually

consumes most of the area of the asynchronous wrapper. The main wrapper components are input

and output ports, which are developed as an Asynchronous Finite State Machine (AFSM). Those

ports perform hazard-free handshake operations between different GALS blocks and control safe

transfer of the data. The complete asynchronous wrapper uses a few thousand gates, which is

acceptable in comparison with an average synchronous block size of a few hundred thousand

gates. Furthermore, we discuss an alternative asynchronous wrapper architecture based on

external clocking.

The developed wrapper is applied to the design of an IEEE 802.11a compliant baseband

processor with the aim to alleviate the problems of system integration, timing closure, clock skew,

power consumption and electro-magnetic interference (EMI). The baseband processor is

Abstract

 x

partitioned into a set of different GALS blocks. The criteria for GALS partitioning were power saving

and natural architectural boundaries between the different blocks. Locally synchronous modules

were extended with adequate asynchronous wrappers. In order to control the complex dataflow

between the blocks, some additional asynchronous blocks for providing join, fork, and data-rate

adaptation functions between the GALS blocks were proposed. Additionally, it was needed to

guarantee certain performance levels for communication with the synchronous environment. For

that reason, synchronous-to-asynchronous and asynchronous-to-synchronous interface blocks

were proposed. For testing purposes, our GALS baseband processor is fitted with Design for

Testability (DFT) logic based on Built-in Self-Test (BIST).

The complete baseband processor including GALS wrappers was integrated, synthesized,

layouted, and finally fabricated. Implementation details are described in order to evaluate the

advantages of the proposed concept. Furthermore, a design-flow for GALS systems is proposed.

Finally, results of the measurements are presented and discussed. The GALS design was

compared with a synchronous version of the baseband processor with implemented clock-gating as

power saving technique. In our experimental setup we have measured a 1% reduction in dynamic

power consumption, 30% reduction in instantaneous supply voltage variations, and 5 dB reduction

in spectral noise.

Keywords: GALS, System Integration, Asynchronous design, EMI, BIST

 xi

Zusammenfassung

In dieser Doktorarbeit wird eine global asynchrone, lokal synchrone (GALS) Technik, die auf

drahtlose Kommunikationssysteme und im Allgemeinen auf Datenpfad-Architekturen anwendbar

ist, dargestellt. Das vorgeschlagene Konzept ist für Punkt-zu-Punkt organisierte Strukturen mit sehr

intensiver, aber Block organisierter Datenübertragung zwischen den System-Blöcken vorgesehen.

Die GALS-Technik, die in dieser Arbeit eingeführt wird, basiert auf einem Request-driven Betrieb

der lokalen synchronen Blöcke. Die Schlüsselidee hinter diesem Request-driven Konzept ist, dass

ein Modul das Request-Signal als Taktsignal beim Empfangen eines Blocks von Daten benutzen

kann. Untätigkeit des Request-Signals wird mit einer speziellen Time-out Schaltung ermittelt. Wenn

über einen bestimmten Zeitraum kein Request-Signal auftritt, wird die Erzeugung des Taktsignales

für den lokalen synchronen Block von einem lokalen Ringoszillator oder einem externen Takt

übernommen. Dies dient dem Leeren interner Pipeline-stufen des synchronen Blocks.

Basierend auf diesem Konzept, wird eine praktische Hardware-Realisierung eines asynchronen

Wrappers vorgeschlagen. Der asynchrone Wrapper besteht aus einigen Bestandteilen mit

unterschiedlicher Komplexität und Struktur. Ein stimmbarer Ringoszillator taktet den lokalen

synchronen Block. Dieser Ringoszillator verbraucht den größten Teil der Fläche des asynchronen

Wrappers. Die Haupt-bestandteile sind Eingangsschaltung und Ausgangsschaltung, die als

asynchrone endliche Zustands-automaten (AFSM) entwickelt wurden. Diese Schaltungen sollen

die Hazard-freie Kommunikation zwischen unterschiedlichen GALS-Blöcken durchführen und die

sichere Übertragung der Daten steuern. Im Allgemeinen benötigt der vollständige asynchrone

Wrapper wenige tausend Gatter, die im Vergleich mit einer durchschnittlichen synchronen

Blockgröße von einigen hunderttausend Gattern annehmbar ist. In der Arbeit besprechen wir auch

eine alternative asynchrone Wrapper-Architektur, die auf externer Taktung basiert.

Die entwickelte Wrapper-Struktur wird auf das Design eines IEEE 802.11a kompatiblen

Basisbandprozessors angewendet, um die Probleme System integration, Timing-closure, Clock-

Zusammenfassung

 xii

skew, Leistungsaufnahme und elektromagnetische Störung (EMS) zu vermindern. Der

Basisbandprozessor wird auf eine Anzahl unterschiedlicher GALS-Blöcke verteilt. Die Kriterien für

die Aufteilung waren Energieeinsparung und natürliche Grenzen zwischen den unterschiedlichen

Blöcken. Dann wurden lokal synchrone Blöcke mit passenden asynchronen Wrappern erweitert.

Um den komplizierten Datenfluss zwischen den Blöcken zu steuern, werden einige zusätzliche

Blöcke vorgeschlagen, die die Datenraten-Anpassung, das Aufteilen eines Datenstomes in

mehrere Datenströme und die Kombination mehrerer Datenströme in einen einzigen realisieren.

Zusätzlich war es erforderlich, bestimmte Kommunikationmuster mit der synchronen Umgebung zu

garantieren. Aus diesem Grund wurden synchron-zu-asynchrone und asynchron-zu-synchrone

Schnittstellen-Blöcke eingeführt. Für den Test wurde der GALS-Basisbandprozessor um Design-

für-Testability (DFT) Logik erweitert, die auf einem eingebauten Selbsttest (BIST) basiert.

Der komplette Basisbandprozessor einschließlich GALS Wrapper wurde integriert, synthetisiert,

und schließlich gefertigt. Implementierungsdetails werden hier beschrieben, um die Vorteile des

vorgeschlagenen Konzeptes darzustellen. Zusätzlich wird eine Entwurfsmethodik für GALS-

Systeme vorgeschlagen. Schließlich werden die Resultate der Messung dargestellt und diskutiert.

Das GALS-Design wird mit einer synchronen Version des Basisbandprozessors verglichen, die

Clock-Gating zur Energieeinsparung verwendet. Unsere Messungen ergaben eine Verringerung

des dynamischen Energieverbrauchs um 1%, eine Verringerung von Versorgungsspannungs-

schwankungen um 30% und eine Reduktion des spektralen Rauschens um 5 dB.

Schlagwörter: GALS, System Integration, asynchroner Entwurf, EMI, BIST

 1

Chapter 1

Introduction

1.1 Design Challenges for Wireless Communication Systems

Designing modern wireless communication systems is a very challenging task. The complexity of

digital systems grows enormously, as can be noticed from the technology roadmap [ITRS03, MED02]

in Table 1.1. We can conclude from the table that this trend will be continued in the following years.

The increasing demands of wireless applications create several problems for system design and

integration. The following issues will have the main importance in future: integration of complex

systems, timing closure including clock generation and control, system noise characteristic, and power

consumption for mobile applications.

Table 1.1 Technology roadmap from 1999 to 2011

 Year

 Property 1999 2001 2005 2011

 CMOS process [µµµµm] 0.18 0.15 0.1 0.05

 Transistors on chip [Mtrans/cm
2
] 7 14 41 247

 On-chip clock [GHz] 1.25 1.77 3.5 10

 Off-chip clock [GHz] 0.48 0.722 1.035 1.54

 Power dissipation (handheld systems) [W] 1.4 1.7 2.4 2.2

 Vdd [V] 1.5 1.2 0.9 0.5

Chapter 1. Introduction

 2

When a complex digital system is designed, system integration and timing closure are very

important tasks. A communication system usually contains blocks operating at different frequencies

and even different supply voltages. Integration of such blocks requires advanced design techniques.

An additional problem is the integration of prelayouted hardware IP-cores from different vendors for

specific process technologies. Those blocks are individually tested, but embedding them into the

system structure is often not trivial.

Most digital systems designed today operate synchronously. Consequently, one of the crucial

problems is the construction of the clock tree. The clock tree in complex digital systems is not just a

set of buffers, but it includes clock-gating supporting circuitry, clock dividers for different clock

domains, PLLs and complex clock-phasing blocks. Difficulties in clock-tree generation may lead to a

substantial slow-down of the design process. Even worse, in some cases it is not possible to design a

functional global clock tree at all. Additionally, a designer may have big problems with other timing

closure issues like: the appropriate setup and hold time requirements, a reset–tree generation, and

control of the boundary timing between different clock domains.

Today’s industrial trend is focussed on cost reduction by System-on-Chip (SoC) implementation

with integration of digital and analog processing parts on a single chip. There are already products on

the market that can be denoted as SoC systems. However, the noise level in the RF part of the circuit

can be significantly increased due to interference by strong spectral components of the synchronous

clock frequency and their harmonics. The synchronous global clock generates increased

electromagnetic interference (EMI), which can lead to severe distortions and crosstalk in the analog

domain.

One of the most important properties of a communication system is mobility. However, mobile

communication systems have one very critical constraint – power consumption. The limited capacity of

the batteries creates firm limits for the system power consumption. Furthermore, the power demands

of complex systems are usually high and hence, power consumption must be controlled and

minimised. Partly, this can be achieved by using known methods for minimisation and localisation of

switching power like clock gating, asynchronous design or voltage scaling. However, clock gating

makes the design of the clock tree even harder. Furthermore, mobile systems should support an “idle”

mode of operation that deactivates most of the system functionalities and even completely switches off

hardware blocks from power supply.

An additional issue is “time to market”. The intensive growth on the communication systems market

has been followed with rapid technological developments and increased competition between

companies. Consequently, design cycle time has been reduced to only few months. For example, the

expected design cycle in 1997 was 18-12 months and in the year 2002 this was expected to be

reduced to 8-6 months [CHAN99]. Accordingly, all already described design problems have to be

resolved rapidly and more or less automatically.

Chapter 1. Introduction

 3

Most known integration concepts are oriented towards general system structures and are not

optimized for particular applications. The optimization towards a specific application can lead to

increased performance, as well as power and noise reduction. This fact justifies our research effort in

this area.

For example, digital signal processing algorithms in communication systems can be implemented

with general DSP processors or dedicated datapath oriented hardware. If the system is implemented

as a dedicated datapath architecture, it usually contains complex circuit blocks that perform

sophisticated arithmetic or trigonometric operations. For example, a wireless LAN modem complying

with standard IEEE802.11a [IEEE99] requires an FFT/IFFT processor, Viterbi decoder, CORDIC

processor as well as cross- and auto-correlators. Often those blocks have point-to-point

communication using localised or distributed control. Typically, the communication between those

blocks requires high datarates. In many cases, periods of high data throughput are followed by periods

of long inactivity, thus causing bursty activity patterns. An optimal integration technique for this

particular system can give much better results than the application of some general integration

technique.

The described issues have to be investigated when a complex communication system is being

implemented. There are several methods and tools for managing each challenge separately. However,

there are almost no techniques which conceptually address most of these issues at the same time.

From my point of view, GALS techniques have the potential to solve some of the most challenging

design issues of SoC integration of communication systems in the future.

1.2 GALS as a Solution for the System Integration Problem

The idea that system blocks can internally operate synchronously and communicate

asynchronously is not novel. Already twenty years ago the first GALS proposal was formulated in

[CHAP84]. However, this topic has been reconsidered many years later and it is currently in the focus

of research. There are several GALS architectures that are proposed as an elegant solution for the

problems described previously [YUN96, BOR97, MUT01, MOO00].

Usually, a GALS system consists of a number of locally synchronous modules each surrounded

with an asynchronous wrapper. Communication between synchronous blocks is performed indirectly

via asynchronous wrappers. The current level of GALS development offers a reliable framework for

the implementation of complex digital systems. However, known GALS techniques may introduce

drawbacks in performance, additional constraints in the system, and hardware overhead. On the other

hand, all proposed GALS techniques are oriented toward some general architecture with sporadic and

not too intensive data transfer on its interfaces. For datapath organised circuits, the known

implementations of GALS do not fully utilise the potential of this technique.

Chapter 1. Introduction

 4

There are several goals that we want to achieve with the introduction of GALS for communication

systems. Firstly, the proposed GALS concept must guarantee fast and reliable transfer of large data-

bursts between locally synchronous modules. The data-transfer must be possible at every clock cycle

of the locally synchronous clock. The design-flow must be user-friendly and easily adoptable by a

designer who is not familiar with asynchronous design. The construction of complex designs should be

simpler than with the standard synchronous approach, and problems of timing closure and clock tree

generation should be relaxed.

One of our main motivators is noise reduction inside the digital system. The global clock is the most

important source of EMI. It is conceivable to conclude that if we decouple local blocks from the central

clock source and connect them to different local clock generators, the spectral noise can be

considerably reduced. Furthermore, we are aiming to reduce instantaneous supply current peaks. In

order to deal with mixed-signal applications, this can be a powerful technique to decrease noise

emission of the digital circuits. However, the noise reduction concept must not rely on the results of the

GALSification only. Further improvements can be achieved with additional application of clock-jittering

and clock-phasing.

Finally, mobile wireless communication systems’ power consumption is limited by battery capacity.

Therefore, a GALS design methodology should include power saving mechanisms. The goal is to

completely integrate power saving mechanisms into the asynchronous wrappers. Consequently,

GALSification would automatically introduce a certain power reduction. However, the power saving in

GALS is based on the same assumptions as clock-gating in the synchronous design. The main idea is

identical – lowering of switching activity by disabling the clock signal. Consequently, the results of

power saving in GALS are expected to be close to the results achieved by clock-gating.

Based on the described motivation, in this thesis we will introduce a novel GALS concept and

architecture, optimised for ASIC datapath structures, which are widely used in wireless communication

systems. The complete spectrum of advantages and disadvantages of our proposed request-driven

GALS technique can be seen best in a real complex datapath application. Our activity to work in the

GALS area was initiated by the work on developing an IEEE 802.11a compliant modem. Therefore, a

baseband processor for that standard appears to be the perfect candidate for introducing GALS. The

baseband processor is a complex design (around 700k gates) with an internal datapath structure

which includes sub-blocks such as Viterbi decoder, FFT/IFFT processor, and different CORDIC

processors. Introducing the GALS technique in this baseband processor was a challenge and our

results will be reported here.

1.3 Structure of the Thesis

The thesis is structured in ten different chapters. In Chapter 2, the state-of-the-art in the GALS area

is described. Moreover, some alternative approaches for complex digital system integration are

Chapter 1. Introduction

 5

described. Then, a discussion of possible gains of GALS techniques is presented. The conclusion of

this chapter contains a critical view on existing approaches and identifies possible drawbacks when

applying these.

Chapter 3 gives the motivation for our new GALS technique as well as the main ideas and

theoretical concepts of a request driven GALS technique. Accordingly, a global structure of the

request-driven GALS system is suggested and the purpose of the main system components is

described. Furthermore, the potential gain of the application of the proposed technique is evaluated.

Finally, some directions on the possible adaptation of the proposed concept are sketched. A modified

version of the wrapper which avoids local ring oscillators and uses an external clock instead is

introduced.

Furthermore, in Chapter 4, a possible request driven asynchronous wrapper implementation is

proposed. The detailed structure of the asynchronous wrapper is shown. The main components of the

wrapper are thoroughly discussed: pausable clock generator, clock control block, time-out generator,

input port, output port, and mutual-exclusion element. Details on the formal analysis of the

asynchronous wrapper are also included in this chapter. At the end of the chapter, a modified version

of the asynchronous wrapper with external clocking is considered.

Chapter 5 is dedicated to the application of the proposed GALS technique in wireless

communication system. The baseband processor for standard IEEE 802.11a is chosen as a

verification platform for GALS. In this chapter, some details on the structure of the processor and a

proposal for GALS partitioning is described. Special attention is paid to the power saving strategy in

this system. Due to the complexity of the system, it was necessary to design several additional blocks

as well as interfaces between synchronous and asynchronous blocks.

Modern digital systems must support effective ways of testing. Therefore, Chapter 6 is focused on

testing and design for testability (DFT) of GALS systems. Different DFT techniques are evaluated. A

test technique based on Built-in Self-Test (BIST) is proposed and the test structure is elaborated.

In Chapter 7 the current state of the design-flow, test flow and implementation details of

asynchronous wrappers are given. Additionally, a complete GALS design framework is proposed. Our

GALS technique is applied to the baseband processor, compliant with standard IEEE 802.11a. In this

chapter all relevant details regarding this implementation are presented.

Chapter 8 reports the results of testing and measurement of the produced GALS baseband

processor chip. Much attention is paid to answer the question how GALSification affected the power

consumption. In addition to that, the power supply variation spectrum is measured and evaluated. All

measurements include a comparison with the pure synchronous variant of the baseband processor.

Chapter 1. Introduction

 6

Chapter 9 summarizes the achievements of this thesis and points to possible future challenges and

solutions. Finally, Chapter 10 gives the references used in this thesis.

 7

Chapter 2

Related Work – from Two-Flop
Synchroniser to GALS Wrappers

2.1 Introduction

System on Chip (SoC) integration imposes a number of technical challenges on designers and

tools. The number of difficulties for the SoC implementation additionally grows in the area of wireless

communication systems. The methods and tools for reducing power consumption and minimizing

crosstalk between analog and digital parts of the system are very limited and often inefficient.

Many of the challenges are in conjunction with the design of the clock network in complex digital

systems. Clock skew appears to be a severe bottleneck for high-performance digital circuits. The

synchronous transitions of the clock lines are a strong source of noise and electro-magnetic

interference (EMI). Additionally, the power spent just for running the clock tree is comparable to the

power consumed in the functional blocks of the system. It is conceivable to conclude that splitting a

complex digital system into several independent subsystems, will relax problems significantly. Dealing

with smaller blocks is much simpler, and power saving techniques could be more successfully applied.

Crosstalk and EMI are suppressed due to the uncorrelated operation of the autonomous blocks.

However, synchronisation between blocks operating at the different speed could be very complicated.

Several existing approaches address the problem of block partitioning and data synchronisation

between independent blocks. Some of them are used to deal with increased power consumption and

EMI. Today, these techniques are mainly referred to as Globally Asynchronous Locally Synchronous

(GALS) methods. Many of them are effectively not applicable. However, some of the techniques are

actually present in the design practice. Choosing between different proposed strategies depends very

much on the particular system architecture.

Chapter 2. Related Work – from Two-flop Synchroniser to GALS

 8

In the following chapter, different synchronisation and integration schemes will be described.

Hereupon, advantages and disadvantages of those techniques will be discussed. Additionally, some

open points and issues not covered by the proposed techniques will be pointed out. Finally, directions

for possible activities in the area of synchronisation and GALS will be suggested.

2.2 System Integration Strategies

There is a long history of approaches that guarantee safe communication between blocks that do

not share the same common clock. In general, most of such systems rely on synchronous operation of

the local blocks, and asynchronous communication is based on handshakes between them. All these

systems could be referred to as Globally Asynchronous Locally Synchronous (GALS) systems.

However, in the literature only one subset of the related approaches is actually referred as “GALS”.

The “GALS” techniques are usually oriented toward providing a complete infrastructure for data

transfer between the complex synchronous blocks and include pausable clocks as local triggers. On

the other hand, there are many other approaches that aim to provide prerequisites for safe data

transfer. In Figure 2.1, a classification of system integration concepts is given.

Plesiochronuos
(Adaptive

Synchronisers)

Classification of System Integration Concepts

Clock relationship between
synchronising blocks

Synchronous

Mesochronous
(phase compensation)

Multi-synchronous
(Adaptive Synchronisers)

Periodic
(Predictive)

Asynchronous
(2-flop, GALS, FIFO)

Synchronisation
strategy

Resolving
metastability

(2-flop,
predictive)

Avoiding
metastability

(GALS, adaptive
sync., FIFO)

Synchronisation
target

Synchronising
data lines
(adaptive

synchronisation)

Synchronising
clock lines

(GALS)

Synchronisation
scope

Block data
transfer
(GALS)

Single data
transfer interface
(2-flop, predictive,

FIFO, adaptive
sync.)

Figure 2.1. Classification of system integration methods

The first classification parameter is the relationship between the clocks of the synchronous modules

that we want to integrate [GIN02]. In this context, a system can be synchronous (and no

synchronisation is required); mesochronous when there is a fixed phase difference but same

frequency of the different system blocks (in this case, a phase compensation can solve the problem);

multi-synchronous or plesiochronous when the phase varies or there is a very small difference in

frequency between the local blocks (adaptive synchronisation can be used for those cases); periodic

(predictive synchronisers are used); or asynchronous (when classical 2-flop synchronisers, FIFO or

GALS solutions are applied).

Furthermore, system integration techniques can avoid metastability (like in GALS or FIFO

technique) or try to resolve from the metastable state (as in 2-flop or predictive synchronisers). An

additional parameter can be the target for synchronisation. On one hand we can synchronise data

Chapter 2. Related Work – from Two-flop Synchroniser to GALS

 9

lines (as in adaptive synchronisation), and on the other hand, the clock lines can be synchronised (as

in GALS).

Finally, the integration approaches can be categorized on the basis of synchronisation scope. Two

main groups can be defined: the first that controls all existing data transfers from a single block to all

other connecting blocks (the examples are GALS techniques), and the other that focuses only on

particular interfaces for data transfer from block A to block B (this approach is used in all other “non-

GALS” solutions).

In the following text I will first describe some of the interesting “non-GALS” proposals and then

different “GALS” techniques and systems.

2.2.1 Standard Synchronisers

To avoid metastability and perform safe data transfer between asynchronously communicating

blocks, it is possible to implement standard synchronisers based on a cascade of registers. These

schemes are already known and successfully used for decades. A standard solution is to use two-flop

synchronisers (Figure 2.2a) or, as a minimum, one-flop synchronisers (Figure 2.2b) [GIN03]. As can

be seen from Figure 2.2, synchronised handshake is being performed to transfer data. In order to

avoid metastability problems a number of flip-flops is inserted to synchronise the request (Req) and

acknowledge (Ack) signals.

SSEENNDDEERR

RREECCEEIIVVEERR

AAcckk

RReeqq

SSEENNDDEERR

RREECCEEIIVVEERR

a) b)

RReeqq

AAcckk

Figure 2.2. Two-flop (a) and one-flop (b) synchroniser

In general, the parameter that defines the synchroniser characteristics is Mean Time Between

Failures (MTBF) [GIN03, DIKE99]:

DaW

/T

ffT

e
MTBF

τ

=

where τ is the settling time constant of the flop, T a settling window, TW a time window of

susceptibility, fa the synchroniser ‘s clock frequency, and fD the frequency of data transfer.

Chapter 2. Related Work – from Two-flop Synchroniser to GALS

 10

 The technique that uses a two-flop synchroniser is very safe, and the probability of a failure is

negligible. As an example, we calculated MTBF for 0.25 µm CMOS technology, with a clock frequency

of 80 MHz and data transfer every 8
th
 cycle. In this case, the MTBF can be estimated as 10

258
 years.

Unfortunately, a two-flop synchroniser adds several clock cycles latency, which could be unacceptable

for high-speed data communication. A one-flop synchroniser (Figure 2.2b) adds less latency in the

communication channel, but decreases MTBF by reduction of the settling window T. To conclude,

application of standard synchronisers is justified for low-speed data-transfer between independent

hardware blocks. For high-speed purposes, some other scheme must be used.

2.2.2 Adaptive Synchronisation

As an alternative, the adaptive synchronisation techniques [KOL98] could be used for

mesochronous systems. Mesochronous systems are using clock sources with exactly the same

frequency but unknown, constant phase shift between different blocks. The general scheme of an

adaptive synchroniser is shown in Figure 2.3. The main idea behind this approach is to delay data

lines as much as it is needed in a particular moment, in order to avoid metastability.

EENN
>

EENN
>

EENN
>

EENN
>

EENN
>

MM
AA

XX
 FF

II NN
DD

EE
RR

DDii

dd

dd

dd

dd

dd

Figure 2.3. Adaptive synchroniser

Additional circuitry is needed to estimate the delay margin needed. For that purpose, a statistical

phase detector is used, as shown in Figure 2.3. The role of this circuit is to perform measurements on

a statistical basis and to find the delay within one clock period that corresponds to the lowest risk of

metastability. The measurement is performed such that several counters count the number of ones at

the outputs of the corresponding XOR gates. Every XOR gate should calculate the difference between

the instantaneous data input and the same data input delayed by some fraction of the clock period. A

configuration as shown in Figure 2.3 uses delay increments of T/5. After a long calibration time, some

of the counters should show significantly higher values than the others. This will indicate that for the

corresponding values of data delay, the risk of metastability will be very high. On the other hand, if we

Chapter 2. Related Work – from Two-flop Synchroniser to GALS

 11

choose a data delay that corresponds to the counter with the lowest stored value, this risk will be low.

The statistical measurement is usually performed when the system is not in operation. These

calibration periods are referred as training sessions. The duration of the training session is estimated

to be around 100000 cycles in order to generate a representative statistical model of the data delay.

Training sessions must be performed after reset and can be repeated periodically in order to keep

track with PVT (Power, Voltage, Temperature) changes.

When the most suitable delay value for a data line is found, a tunable delay circuit connected to the

corresponding data line is programmed. This way, the probability of metastability can be reduced to

some degree, which is sufficient for most practical applications. However, this approach does not offer

any power saving mechanism and introduces a relatively large hardware overhead, because a

separate delay line is needed for every single data line. Also, the time overhead needed for statistical

analysis of the data could be important. On the other hand, this solution could be accepted in the case

of mesochronous communication between blocks. For the data transfer between blocks operating at

different clock speed, this approach cannot be applied.

Researchers from Technion in Haifa, Israel have recently formulated an optimized solution [FRA04]

for the same problem. This paper proposes the use of a Two-way Adaptive Predictive Synchroniser for

mesochronous operation. The synchronisation latency is smaller than one clock cycle. However, even

with providing a possibility for high-speed data-transfer between clock domains, this technique is

restricted to mesochronous systems and adds a significant amount of hardware overhead.

2.2.3 FIFO Synchronisation

Another possible approach is interfacing blocks with specially designed asynchronous FIFO buffers.

Consequently, hardware redundancy of the FIFO hides the problem of the synchronisation in the

system. Such a system can tolerate very large interconnect delays and is also quite robust with regard

to metastabillity. It can be used for interconnection of asynchronous and synchronous systems, but

also for synchronous-synchronous and asynchronous-asynchronous connections. Acceptable data

throughput via such an interface can be achieved [CHE01, CHE00a, CHE00b]. Additionally to the data

cells, the FIFO structure includes the full and empty detector as well as a special deadlock detector.

The advantage of FIFO synchronisers is that the operation of the locally synchronous module is not

affected by synchronisation. However, with very wide interconnect data buses, FIFO structures could

be very expensive in terms of area. Also, the introduced latency might be significant and possibly not

acceptable for high-speed applications. In the experiment described in [IYE02], the application of the

proposed FIFO structure in a 5-clock domain GALS processor caused a performance drop in the

range of 5 to 15 %.

Another interesting approach in the area of FIFO synchronisation is the STARI technique that was

presented in [CHAK99]. This technique is based on a self-timed FIFO that compensates clock skew

Chapter 2. Related Work – from Two-flop Synchroniser to GALS

 12

between different clock domains. However, this approach can lead to a significant performance loss

when large data bursts have to be transferred.

2.2.4 GALS Systems

Although all previous systems in general could be referred as GALS systems, usually this term is

only used for systems that offer a complete design framework. GALS systems have a unique structure

that is similar for all the different proposals. The principle architecture of GALS is given in Figure 2.4.

Locally synchronous modules are usually surrounded by asynchronous wrappers. Local clocks drive

those synchronous circuit blocks. Stoppable ring oscillators are frequently used to generate the local

clocks. Data transfer between different blocks requires stopping of the local clocks during data-transfer

in order to avoid metastability problems. The asynchronous wrappers should perform all necessary

activities for safe data transfer between the blocks. Locally synchronous modules do not play any role

in providing the prerequisites for block-to-block data transfer.

GALS as a technique was for the first time investigated in [CHAP84]. In this thesis, the fundamental

basis of globally asynchronous locally synchronous systems was given. Although the circuitry

described there cannot be successfully applied to modern high-speed digital systems, the ideas given

there are even today very interesting. Use of stretched clocks, for example, is the basic idea behind

this work, and is used in most modern GALS proposals.

SSYYNNCCHHRROONNOOUUSS

BBLLOOCCKK 22

SSYYNNCCHHRROONNOOUUSS

BBLLOOCCKK 11

SSYYNNCCHHRROONNOOUUSS

BBLLOOCCKK 33

data

Handshake
signals

Figure 2.4. GALS architecture

Many years after the first proposal, the GALS idea has been reactivated and a working architecture

is described in [YUN96, YUN99b]. This solution is based on pausable clocks in order to prevent

metastability. To increase the throughput, an asynchronous FIFO is added to this circuitry as depicted

in Figure 2.5.

Chapter 2. Related Work – from Two-flop Synchroniser to GALS

 13

SSYYNNCCHHRROONNOOUUSS

BBLLOOCCKK 11

PPCCCC

SSYYNNCCHHRROONNOOUUSS

BBLLOOCCKK 22

PPCCCC

FFIIFFOO

receiver

Figure 2.5. Two synchronous modules communicating via an asynchronous channel

The clock signal is controlled by a pausable clocking control (PCC) circuit given in Figure 2.6. A

fundamental problem of the GALS technique is a prevention of the simultaneous appearance of the

incoming request and the local clock. Consequently, for the purposes of arbitration a mutual exclusion

element (ME) is used (Figure 2.6). Therefore, when the clock signal is high, an incoming request will

not be processed until the clock is released. Also, when the request is asserted, the rising clock for the

locally synchronous module will be delayed until the request is released. If both events appear at the

same moment, the mutual exclusion circuit will “toss the coin” and grant just one of its outputs.

Consequently, either the next clock cycle will be granted or a data transfer handshake. In this way,

asynchronous data transfer between two blocks can be performed safely. The PCC controller is

equipped with an AFSM for supporting the asynchronous handshake protocol, and additionally, with a

synchronous FSM that should synchronise the acknowledge signal Ap to the local system clock

sysclk. A major drawback is the limitation to transfer only one data item every other clock cycle.

Additionally, multi-port applications will lower the maximum throughput. Therefore, this solution results

in poor performance for data-transfer intensive multi-channel systems.

RRIINNGG OOSSCCIILLLLAATTOORR

AAFFSSMM

MMEE

FFSSMM

RR11

GG11

rrccllkk

RRpp

SSRRpp
AApp

ssyyssccllkk

ssyyssccllkk
Figure 2.6. Pausable clock control (PCC) circuitry

Further improvements were made in [BOR97]. For the first time the term ‘asynchronous wrapper’ is

used for an asynchronous interface surrounding locally synchronous modules as shown in Figure 2.7.

The purpose of the asynchronous wrapper is to perform all operations for safe data transfer between

locally synchronous modules. Accordingly, a locally synchronous module should just acquire the input

data delivered from the asynchronous wrapper, process it and provide the processed data to the

Chapter 2. Related Work – from Two-flop Synchroniser to GALS

 14

output stage (port) of the asynchronous wrapper. Every locally synchronous module can operate

independently, minimising the problem of clock skew and clock tree generation. However, during data

transfer, the receiver block clock will be stretched in order to avoid metastability. An asynchronous

wrapper consists of input and output ports and local clock generation circuitry. Input and output ports

can be implemented either as demand or poll ports. Both types stretch the clock during data

transmission, but the demand port additionally stops the clock when data transfer is expected, in order

to avoid unnecessary clocking. This concept has similar implications like clock gating in the standard

synchronous design-flow. The locally synchronous part can be designed in standard fashion. This

concept is further elaborated in [MUT01, MUT99], and better arbitration of concurrent requests is

achieved. The work given in [MUT01] represents a comprehensive study of GALS systems, including

one of the first practical GALS experiments - the implementation of a GALSified cryptosystem chip.

Four port types are described there: input and output, as well as poll and demand type. The proposed

architecture is very general and allows multiport structures of the GALS wrapper, as well as an

integration of the GALS system into different interconnect topologies like point-to-point bus, tree, ring,

star [VIL02, VIL03]. Additionally, this proposal is applicable even for data-transfer intensive systems

because the data theoretically could be transferred with every clock cycle of the locally synchronous

(LS) module.

LLOOCCAALLLLYY
SSYYNNCCHHRROONNOOUUSS

MMOODDUULLEE

SSTTRREETTCCHHAABBLLEE
CCLLOOCCKK

II NN
PP

UU
TT

PP
OO

RR
TT

OO
UU

TT
PP

UU
TT

PP
OO

RR
TT

RReeqqii

AAcckkii

DDaattaaii

RReeqqoo

AAcckkoo

DDaattaaoo

ssttrreettcchh ssttrreettcchh

AASSYYNNCCHHRROONNOOUUSS WWRRAAPPPPEERR

Figure 2.7. Asynchronous wrapper

The structure of the proposed system and specifications of the controllers are shown in Figure 2.8.

The system configuration in that figure consists of one output D-type (demand type) port and one P-

type (poll type) input port. In the datapath, one latch stage must be inserted to assure safe data

transfer without risk of metastability. In the LS part, operation of the asynchronous ports must be

supported with the insertion of flip-flops. They shall grant data transfer in every clock cycle. In order to

allow high-speed data transfer, the toggle flip-flops (T-FF) are used. Therefore, a single control signal

(local clock) can drive data enable flip-flop. In Figure 2.8b and 2.8c, the port specifications of the

Chapter 2. Related Work – from Two-flop Synchroniser to GALS

 15

Demand-output and Poll-input port are given, respectively. The port structure consists of two identical

patterns in order to react on both edges of the data enable signal Den. From the port specifications it

is clear that the complexity of the controllers is quite low and that they can be realized with a couple of

tens of logic gates. Therefore such controllers offer high throughput.

Recently, the solution from [MUT01] was extended with a test methodology that includes circuitry

able to perform a functional test of the asynchronous wrapper [GUR02]. Additionally, an improved

adjustable clock generator is presented with the possibility to tune the frequency over a broad range.

However, frequency resolution decreases for the higher part of the spectrum.

LLSS11

TT--FFFF
DD--OOUUTT

CCLLKKGGEENN11

AAii11 RRii11

LLSS22

TT--FFFF PP--IINN

CCLLKKGGEENN22

PPeenn

AAii22 RRii22

RRpp

AApp

DDaattaa11 DDaattaa22

a)

00 11 22 33

44

55 66 77

88

DDeenn++//
RRii++

AAii++//
RRpp++

AApp++//
RRpp--

AApp--//
RRii--

DDeenn-- AAii--
// RRii++

AAii++//
RRpp++

AApp++//
RRpp--

AApp--//
RRii--

DDeenn++ AAii--
// RRii++

b)

00 11 22

33

44 55 66

77

PPeenn++
RRpp++//

AAii++//
AApp+

RRpp--//
RRii-- AApp-

AAii-- RRpp**//

c)

PPeenn-- RRpp++//
RRii++

AAii++//
AApp++

RRpp--//
RRii-- AApp--

AAii-- RRpp**//

DDeenn

Figure 2.8. GALS architecture for high-speed data communications (a), Demand-output (b) and

Poll-input (c) port specifications

Some proposals are made for the calibration of the local clock generator. However, the offered

solutions are not automated for industrial application. In [MOO00] this problem is tackled and the

generation of stable local clocks with a fixed frequency is provided. It is suggested to self-calibrate

local clocks by introducing an additional low frequency stable clock as a reference.

Chapter 2. Related Work – from Two-flop Synchroniser to GALS

 16

In many papers the proposed solution in [MUT01] is considered as a reference solution for GALS

systems. However, some drawbacks are noticeable even with this solution. In [DOB04] it is shown that

direct application of that solution may lead to a metastability problem, because the wrapper does not

take into account the effect of the clock-tree insertion in the LS module. In this paper some solutions

for fixing this problem are presented. However, even this “upgraded” solution suffers from different

timing limitations. For example, in the worst case, data needs to propagate within only half a clock

cycle, from one LS module to the first register of the subsequent LS module. This implies additional

registering of data at the boundary of locally asynchronous blocks. Additionally, the formal analysis in

[KON01] showed that several hazards, race conditions, and other faults are present in the proposed

wrappers from [MUT01].

A solution for point-to-point interconnection that uses very small and simple asynchronous wrappers

is suggested in [MOO02]. The principle used in this work is very similar to the one used in the other

GALS approaches, but the used circuitry is further optimized and minimized. In this proposal, as

shown in Figure 2.9, in order to achieve maximum throughput, an asynchronous FIFO between

producer and consumer is added. In general, a synchronisation circuit contains just a couple of flip-

flops for synchronisation, an arbiter, and a stretchable clock generator.

rreeqq

CClloocckk BB

CClloocckk AA

EENN

AA
RR

BB
II TT

EE
RR

CC

DDEELLAAYY LLIINNEE

FIFO

AA
RR

BB
II TT

EE
RR

CC

DDEELLAAYY LLIINNEE

EENN

ccllkkAA

ssyynncc

ddaattaa

ssyynncc__nneeww__ddaattaa

rreeqq

ddaattaa ddaattaa

ssyynncc

__aacckk

ccllkkBB

ssyynncc__rreeqq

ssyynncc__ddaattaa

ssyynncc__aacccceepptt__

nneeww
aacckk

SSYYNNCCHHRROONNOOUUSS CCOONNSSUUMMEERR SSYYNNCCHHRROONNOOUUSS PPRROODDUUCCEERR AASSYYNNCCHHRROONNOOUUSS

DDEECCOOUUPPLLIINNGG

Figure 2.9. Point-to-point GALS interconnect

Unfortunately, the proposed architecture does not offer high-speed data communication between

clock domains. For mesochronous systems, the data could be transferred at most every second clock

cycle even with FIFO buffering. This limitation restricts the use of the proposed circuitry for any data-

transfer intensive application.

Another type of a point-to-point communication GALS architecture is proposed in [ZHU02a,

ZHU02b, ZHU02c, CAR03]. The structure of this system is shown in Figure 2.10a. Signal transitions of

the write and read port are given in Figure 2.10b. This is probably the simplest GALS controller

presented in the literature. It contains just a stretchable clock generator and W-port (Write) and R-port

Chapter 2. Related Work – from Two-flop Synchroniser to GALS

 17

(Read) asynchronous controllers. The signal transition graph of the ports, as it is shown in

Figure 2.10.b, is quite simple. Therefore, the hardware complexity of the controllers is very low.

LLSS

LLCCLLKK

WW
-- PP

OO
RR

TT

LLSS

LLCCLLKK
RR

-- PP
OO

RR
TT

RReeqq

AAcckk

WWrr RRdd

ssttrreettcchh11 ssttrreettcchh22

WWrr++

ssttrreettcchh11++

RReeqq++

RReeqq--

ssttrreettcchh11--

WWrr--

RRdd++

ssttrreettcchh22++

AAcckk++

AAcckk--

ssttrreettcchh22--

RRdd--

a)

b)

Figure 2.10. Structure of point-to-point system (a) and signal transitions of the ports (b)

However, the applicability of this architecture is limited to specific cases, because there is a strong

coupling between the operation of producer and consumer. For example, the producer clock is

stretched until the consumer decides that data transfer should be performed. Therefore, this solution

could be used only if the data transfer is needed every cycle, and producer and consumer are

operating at the same speed. In other cases, the performance of the system will be dramatically

decreased. Alternatively, an additional buffer between the ports may increase the performance. On the

other hand this solution increases hardware complexity of the GALS interface.

AA11 RREEQQ

AACCKK

LL
AA

TT
CC

HH

RR
EE

GG
11

DDaattaa CCLL

DDLL RR
EE

GG
22

CCOONNTTRROOLL

YY11 LL

YY

YY

CClloocckk
lleeaavveess

a)

CC
OO

NN
TT

RR
OO

LL

AACCKK

RREEGG11

RREEQQ

RREEGG

DDAATTAA
OOUUTT
REG DDaattaa DDaattaa

AACCKK

RREEGG22
CCLL

DDLL

CClloocckk
lleeaavveess

YY YY
YY11

RR11 RREEQQ

AACCKK

b)

Figure 2.11. Structure of locally delayed latching input (a) and output (b) port

Chapter 2. Related Work – from Two-flop Synchroniser to GALS

 18

In the scientific community, there is also an opinion that the concept of pausable clocking cannot

promise the best results for high-speed applications as stated in [DOB04]. In this paper, several ways

of synchronising the data between independent clock domains on the basis of GALS are proposed by

the scientists from Technion, Israel. Additionally, in contrary to the other main proposals, the

architectures presented in this paper take into account the presence of a clock tree. One interesting

solution is shown in Figure 2.11. In Figure 2.11.a, the concept of the locally delayed latching input port

is presented and in Figure 2.11.b the structure of the equivalent output port is given. This proposal

introduces an interesting and novel concept of locally delayed latching. It allows application of the

standard clock generators (and avoids use of ring oscillators) and performs data synchronisation only

at the LS module boundaries. Thus, as seen in Figure 2.11.a, in the input port, synchronisation is

limited to the stages Latch and Reg1. Block Control performs the asynchronous handshake

communication with the blocks and the generation of control signals for the register stages. Similarly,

in the output port, a couple of registers are used for the synchronisation with the local clock, and a

Control unit performs the asynchronous communication.

However, as can be seen from the construction of the output port, the data cannot be transferred

every clock cycle due to the synchronous handshake that is performed at the boundaries of the

synchronous part of the output port. Actually, one data transfer usually needs several clock cycles.

This property of the proposed architecture restricts the application of the proposed circuitry to low

speed data-transfer applications.

2.3 Power Saving with GALS

The evaluation of the power saving benefits of GALS systems was performed by several authors.

Most of these investigations are based on the application of GALS to high-speed processor

implementations. However, these results show some general trend. In Figure 2.12 the power

distribution in a high-performance CPU is given [MEI99, HEM99].

DDAATTAAPPAATTHH

MMEEMMOORRYY

 CCOONNTTRROOLL,,

 II//OO

CCLLOOCCKK

Figure 2.12. Power distribution in high-performance CPU

Chapter 2. Related Work – from Two-flop Synchroniser to GALS

 19

It can be seen from the figure that the clock signal is the dominant source of power consumption in

such an environment. It is reasonable to assume that within GALS, the clock network is split into

several smaller sub-networks with lower power consumption. First estimations, according to [MEI99,

HEM99], showed that about 30% of power savings could be expected in the clock net due to the

application of GALS techniques. Recently, some more pessimistic power estimation figures were

presented in [IYE02]. After modelling the GALS superscalar processor, they demonstrated that

GALSification of the system actually leads to a performance drop. The achieved power reduction is not

very impressive either. The expected drop in performance was estimated around 10% and power

saving was about 10%. Finally, an increase of around 1% in energy consumption was observed.

However, GALS techniques offer independent setting of frequency and voltage levels for each

locally synchronous module. When using dynamic voltage scaling (DVS), an average energy reduction

of up to 30% can be reached, yet associated with a performance drop of 10%, as reported in [TAL05].

In general, we can conclude that the power saving techniques that are immanent with the

GALSification of a system have similar limits as clock gating. Further energy reduction is possible only

with the application of DVS in conjunction with GALS.

2.4 Open Questions and Directions for Further Research

In the previous subsections, several integration techniques were presented. However, there is still

scope for further research. Some of the design challenges are not fully addressed in known GALS

systems. Additionally, the proposed GALS techniques are not optimal for many specific hardware

architectures.

In many of the proposed solutions, the problems of data transfer and throughput is critical. Most of

them can perform data transfer every second clock cycle of the local clock. Even this result can be

reached only in an ideal case. In reality, this relation can be even worse. In some proposals, the

described circuits can theoretically transfer data every clock cycle, as in [MUT01]. However, the

intensive stretching of the pausable clock generator will significantly diminish the practical

performance. The performance degradation reported in [MUT01] was around 23%. Stretching the

clock every cycle would lead to a situation where the effective clock frequency is determined not by

the clock generator but by the rate of communication with other synchronous modules as stated in

[IYE02]. Consequently, a novel proposal, optimized for data transfer intensive application is urgently

needed.

The clock generation issue is also critical. Usually, standard ring oscillators constructed from

standard cells are deployed. They cannot generate a stable clock signal at a defined frequency. That

creates difficulties for many GALS systems. The frequency fluctuations complicate data transfer with

synchronous data producers or consumers such as analog-to-digital (ADC) and digital-to-analog

converters (DAC) operating at a predefined and stabilised clock. In communication systems, it is

Chapter 2. Related Work – from Two-flop Synchroniser to GALS

 20

nearly always necessary to communicate with such blocks. A way to resolve this problem is to over-

constrain locally synchronous modules to work at a higher local frequency. Another solution could be a

mechanism to calibrate the local clock. However, this would further complicate the design and cause

additional cost. Additionally, in many solutions, the effect of clock tree insertion is not taken into

account. Hence there is no real guaranty that metastability is avoided.

In more or less all GALS solutions, the operation of neighbouring asynchronous wrappers is

strongly decoupled. The latency of the transferred data is not known in advance and may vary from

one data transfer to the other one. Such property inherently leads to increased non-determinism in

GALS systems. To conclude, a more stable GALS framework is needed, which is able to guarantee

fixed and minimal latency in the data transfer and, consequently, reduces non-determinism in GALS

circuits.

All solutions described so far are oriented towards a very general application. Consequently, they

are not optimised for specific systems and environmental demands. Although these techniques are, to

a certain extent, intended for use by synchronous designers without special knowledge in the area of

asynchronous circuit design, some mechanisms cannot be implemented easily. In general, a standard

synchronous design strategy must be adapted to support the design of asynchronous wrappers.

Additional functions have to be incorporated to facilitate interaction with the asynchronous wrapper. In

some cases it is necessary to insert complex interface blocks (for example an additional FIFO)

between asynchronous blocks to prevent performance deterioration due to local clock stretching

[MOO02].

In many GALS proposals the problem of power saving is not addressed. Additionally, if some power

saving mechanism is provided, a deeper practical investigation is needed to estimate the effect of

GALS introduction with respect to power consumption.

I believe that, for datapath architectures, the technique presented in this thesis results in better

performance than known implementations.

 21

Chapter 3

Proposed Novel GALS
Architecture

3.1 Introduction

In the previous chapter a number of different system integration techniques were presented. Most

of them are defined just at the conceptual level, but there are some that have been implemented in

hardware. Our novel GALS architecture was developed for datapath architectures. It simplifies system

integration and solves some of the design problems.

In this chapter, the basic concept of our novel request-driven GALS approach will be presented.

First, I will discuss the motivation to work in this area and the general concept of the new technique.

Then, some global structure of a possible implementation will be presented. Additionally, the potential

gain of this approach will be estimated. Finally, a variant of the introduced GALS concept is proposed

that avoids local clock generation.

3.2 Motivation and General Principles

Different GALS systems were reported in the literature for several years. As the result of intensive

research, many GALS proposals were defined. On the basis of existing techniques we decided to

define a more optimal solution for datapath architectures. Three important aspects motivated the work

presented here. Firstly, it was our goal to establish a general and user-friendly design framework for

reliable integration of large digital systems with one or more clock domains. Secondly, much of our

effort is dedicated to EMI and crosstalk reduction in order to ease the integration of mixed-signal

designs. Thirdly, it is our aim to avoid unnecessary transitions and the attendant waste of energy

during data transfer between GALS blocks. In this context, it is necessary to achieve high data

throughput with low latency.

Chapter 3. Proposed Novel GALS Architecture

 22

It appears conceivable that for a continuous input data stream the GALS blocks may operate in

quasi-synchronous mode. In this way, no redundant transitions are generated. Therefore, in the mode

of operation in which data is continuously received at the input port, the request-driven clock (Figure

3.1) is directly derived from the request signal at the input port. However, for bursty signals, when

there is no input activity, the data stored inside the locally synchronous pipeline has to be flushed out.

This can be achieved by switching to a mode of operation in which the local clock generator drives the

GALS block autonomously. To control the transition from request driven operation to locally driven

mode, a time-out function is proposed. The time-out function is triggered when no request has

appeared at the input of a GALS block, but data is still stored in internal pipeline stages. It is also

conceivable to switch from a request-driven (push) operation to an acknowledge-driven (pull)

operation in this situation. However, this idea was rejected since it would be difficult to deal with

isolated tokens inside the synchronous pipeline. In particular, if the pull operation does not result in a

token being propagated to the primary output, an internal oscillator would still be required. A much

more sophisticated control would be required to facilitate this approach, which is in principle feasible.

Our proposed concept, which we have described in [KRS03a, KRS03c], is intended for complex

systems mainly consisting of point-to-point connections between circuit blocks. We assume, that the

communication between blocks is very intensive (i.e. every clock cycle of the local clock) but bursty,

with longer periods of inactivity. For example, in the case of a baseband processor for WLAN

[IEEE99], all OFDM symbols are composed of a 0.8 µs guard interval requiring very little computation

and the actual 3.2 µs data field, which is processed, using sophisticated algorithms.

It is assumed that a distributed control mechanism according to the ‘token flow’ approach is

deployed for synchronous blocks [BUCK93]. Therefore, a separate controller drives each of the

blocks. Such controller also sends a signal (token) to the next controller indicating its status.

Depending on this token signal, the next controller drives the block it is responsible for. In addition to

this, the modules belonging to the same block generate another (token) signal for the subsequent

module on completion of operation. Depending on this signal, the module accepts the data from the

previous one and processes it. This allows controlling of the complete system in an elegant and

effective way. This technique is applied to the datapath system, which consists of autonomous blocks.

Usually one block processes input data-bursts coming from the previous block and, as a result,

creates an output data burst for the following block. Accordingly, when the input token indicates the

validity of data, this should be a signal for the receiving block to start operation in request-driven

mode.

3.3 System Structure

The request-driven GALS technique is based on the standard asynchronous wrapper (AW), as

other main GALS techniques. Conceptually, the locally synchronous module is driven both by the

incoming request as well as the local clock signal. The driver of the request input signal is the output of

Chapter 3. Proposed Novel GALS Architecture

 23

the asynchronous wrapper of the predecessor block. It is aligned with the transferred data, and can be

considered as a token carrier.

When there is no incoming request signal for a certain period of time (defined as Ttime-out), the circuit

enters a new state where it can internally generate clock cycles using a local ring oscillator. The

number of internally generated clock cycles is set to match the depth of the locally synchronous

pipeline. When there is no valid token in the synchronous block, the local clock will stall and the circuit

remains inactive until the next request transition, indicating that a fresh data token has appeared at the

input. In this way, we avoid possible energy wastage.

This proposed solution allows a completely autonomous operation of the asynchronous wrapper

from the locally synchronous module with respect to clock control. However, this is just one possible

way of controlling the local clock generator. If this control mechanism is not applicable for a particular

system, it is possible to directly control the stopping of the clock via some synchronously generated

signal that indicates an empty local pipeline.

The scenario after time-out and start of the local-clock generation is more complex and demanding.

When a new request appears before the synchronous pipeline is emptied, it is necessary to complete

the present local clock cycle to prevent metastability at data inputs. Moreover, one important issue is

to assure that the clock period is within specified limits. However, it is possible to safely hand over

clock generation from the local ring oscillator to the input request line. To deal with this situation it is

necessary to implement some additional circuitry to prevent metastability and hazards in the system.

The principle architecture of our modified asynchronous wrapper around a locally synchronous

module is shown in Figure 3.1. In order to better understand the operation of the asynchronous

wrapper, its structure is partitioned into several sub-blocks with different functionality. The input and

output ports are controlling data transfer to/from the GALS block, a time-out generator observes

inactivity of the input request line, and the local clock generator triggers the locally synchronous

module when this is needed.

With the proposed solution we can guarantee the frequency and the shape of the clock pulse

distributed to the locally synchronous module. On the one hand, the clock may be derived from the

local clock generator, which is tunable. Consequently, we can control the rate and width of the clock

pulses. On the other hand, the source of the clock could be the request signal that is generated from

the previous asynchronous wrapper in the dataflow chain. This request signal is eventually controlled

by the corresponding clock signal of the data source. In this way, the specified time limits for the

period of the request signal are guaranteed. In addition to that, the control of the clock signal transition

time is provided by the clock-tree insertion in locally synchronous modules. The activity of the request-

driven clock and the locally generated clock is mutually exclusive and hence hazards are avoided.

Chapter 3. Proposed Novel GALS Architecture

 24

LLOOCCAALLLLYY
SSYYNNCCHHRROONNOOUUSS

MMOODDUULLEE

LLOOCCAALL CCLLOOCCKK

GGEENNEERRAATTIIOONN

II NN
PP

UU
TT

PP
OO

RR
TT

OO
UU

TT
PP

UU
TT

PP
OO

RR
TT

TTIIMMEE--OOUUTT

DDEETTEECCTTIIOONN

HH
aa
nn

dd
ss
hh

aa
kk

ee

ss
ii gg

nn
aa
ll ss

HH
aa
nn

dd
ss
hh

aa
kk

ee

ss
ii gg

nn
aa
ll ss

AASSYYNNCCHHRROONNOOUUSS WWRRAAPPPPEERR

DDaattaa__iinn DDaattaa__oouutt

rreeqquueesstt ddrriivveenn

 cclloocckk
llooccaallllyy ggeenneerraatteedd

cclloocckk

Figure 3.1. New asynchronous wrapper around locally synchronous module

Communication between different AWs is based on a standard 4-phase handshake protocol.

Therefore, although the concept is invented for point-to-point interfaces between blocks, a more

complex dataflow system can be constructed. Standard asynchronous elements such as ‘joins’ and

‘forks’ can be employed, as shown in Figure 3.2. For example, a join of two token streams generated

from two AWs can drive the receiving AW. However, only a single data stream can drive a GALS block

due to the request-driven property of the wrapper. Consequently, the different data streams

approaching from different data sources must be joined before they enter a particular GALS block. In

the current implementation, the output port generates single data stream. Therefore, if the output data

stream has to be distributed to several sinks, a fork construct must be implemented. On the other

hand, it is possible to adapt the proposed wrapper architecture in order to support multi-output-port

structures.

GGAALLSS
bblloocckk

ii

GGAALLSS
bblloocckk

ii++11

GGAALLSS
bblloocckk

ii++22

GGAALLSS
bblloocckk

ii++33

asynchronous
fork

asynchronous
join

Figure 3.2. Implementation of some more complex dataflow scenarios

Chapter 3. Proposed Novel GALS Architecture

 25

3.4 Request Driven Technique with External Clocking

Alternatively, the same concept could be implemented without the application of pausable clocks.

Pausable clocks are usually implemented as ring oscillators. When ring oscillators are used, additional

power is spent for switching of the numerous invertors inside the oscillator. The amount of this power

could be considerable. Additionally, in order to apply ring oscillators in practice, a careful calibration of

the oscillator frequency for each produced chip is needed. This fact may be a disadvantage for wide

industrial application of our request-driven GALS technique.

However, an adaptation of the proposed GALS concept is possible in order to accommodate the

application of standard external clocks, as we proposed in [GRA05]. In general, a GALS wrapper

should continue to operate in request driven mode in the same way as described in the previous

subsections. For the time-out measurement, instead of the local clock, an external clock source can be

used. When the time-out is reached, the locally synchronous module should start token generation

until the internal pipeline is emptied. For this triggering we may use an external clock source instead of

the locally generated clock. When the pipeline is empty, the external clock must be disabled by clock-

gating. In this case, the block denoted as Local clock generation in Figure 3.1 should be substituted

with the Clock Management Unit (CMU). The modified block diagram is shown in Figure 3.3. The

purpose of this block is the safe gating of the external clock source when it is not needed.

The advantage with such an implementation of the request-driven GALS technique is that usage of

the ring-oscillators is avoided. Power consumption is reduced due to abolishing the oscillator. The

designer is able to work with the standard external clock source. The determinism in the system is

increased and testing of the designs is easier.

However, there are some drawbacks as well. The performance of the system is in general

decreased. This is due to the fact that we cannot anymore pause the clock for a moment as with local

clock generation. A particular external clock cycle can be either accepted, or completely discarded.

Consequently, the latency in the system is increased. Furthermore, the CMU block must be very

carefully designed in order to avoid problems of unsafe clock-gating, such as clock clipping and

possible glitches. Finally, using an external clock source decreases the autonomy of the local block

and also limits the possibilities for optimal clock profiling for the particular block. With the tunable local

generators it is very easy to set the clock frequency to the minimal value needed to perform the

desired function. When the external clock is used, it is very expensive to use a separate external clock

source for every local block. In that case it is better if several blocks share the same clock source.

Chapter 3. Proposed Novel GALS Architecture

 26

LLOOCCAALLLLYY
SSYYNNCCHHRROONNOOUUSS

MMOODDUULLEE

CCMMUU

II NN
PP

UU
TT

PP
OO

RR
TT

OO
UU

TT
PP

UU
TT

PP
OO

RR
TT

TTIIMMEE--OOUUTT

DDEETTEECCTTIIOONN

HH
aa
nn

dd
ss
hh

aa
kk

ee

ss
ii gg

nn
aa
ll ss

HH
aa
nn

dd
ss
hh

aa
kk

ee

ss
ii gg

nn
aa
ll ss

AAssyynncchhrroonnoouuss wwrraappppeerr

DDaattaa__iinn DDaattaa__oouutt

rreeqquueesstt ddrriivveenn cclloocckk

eexxtteerrnnaallllyy

ggeenneerraatteedd cclloocckk

EExxtteerrnnaall

cclloocckk

AAddaapptteedd

bblloocckk
RReeuusseedd

bblloocckkss

Figure 3.3. Externally driven asynchronous wrapper

In general, it is up to the designer to decide which version of the request-driven GALS technique

should be used. There are pros and cons for both techniques, and depending on the particular

application, the best one can be selected. In the following text, more attention will be paid to the

technique that involves local clock generation, and the practical application is based on this technique.

However, basic implementational ideas will be presented also for the externally clocked GALS

wrapper.

3.5 Potential Gain of the Novel GALS Architecture

The proposed request-driven architecture has several potential advantages. It can be an excellent

basis of the design framework for integration of complex digital datapath systems. For example,

reliable and fast transfer of large bursts of data is achieved. Data transfer is possible at every clock

cycle of a locally synchronous module. This feature, in general, is missing in most of the other

published proposals. The clock speed is determined by the clock speed of the communication master

and not by the slower participant in the data transfer. Additionally, in request driven mode, when data

receiver and sender operate quasi-synchronously, it is possible to transfer the data without any

performance loss, because no additional synchronisation of the locally synchronous systems is

needed. This is a big differentiator compared to all other GALS techniques where every cycle of the

data transfer is connected with another series of synchronisation and arbitration operations. Moreover,

Chapter 3. Proposed Novel GALS Architecture

 27

the data transfer latency is decreased, when the circuit is operating in request-driven mode. In this

mode, arbitration is not needed and incoming requests are automatically considered as a clock signal.

Therefore, our implementation does not suffer the performance drop incurred by other GALS solutions.

The proposed GALS approach follows the usual design style of synchronous blocks and does not

require significant changes of locally synchronous components.

Hence, we can expect some system improvements as a consequence of GALS introduction.

GALSification of a complex system results in independent clocks driving locally synchronous modules.

These clocks will have arbitrary phases due to varying delays in different asynchronous wrappers.

Furthermore, the clock generators of the local blocks will run at different frequencies. In this way the

generation of substrate noise, supply noise, and crosstalk can be reduced.

In order to estimate the effect of GALSification on EMI characteristic, we have created a MATLAB

model of the supply current variation of an externally and an internally driven GALS system and

compared them with an equivalent synchronous system. The model for the current shape is based on

the same assumptions as in [BAD04, BLU04]. First, we have modelled the current shape for a

synchronous system as a triangular waveform with a 5 ns rise time and 10 ns fall time [GRA05]. The

peak supply current was assumed to be 1 A and the clock period was assumed to be 20 ns (50 MHz).

Additionally, we have assumed that after GALSification 10 blocks are formed. GALSification leads to a

different timing profile of the current consumption. As a consequence, we assumed that as a result the

following shapes are created: 2 blocks of 200 mA each, 4 blocks of 100 mA each and 4 blocks of

50 mA each. Rise time and fall time were not changed. We performed separate simulations for the

externally and for the internally driven GALS system. In order to model the externally driven GALS

system, each of the 10 current waveforms was given an equally distributed random phase in the range

of ±10 ns. For the locally driven GALS system we additionally defined that those 10 blocks have a

difference in frequency of ±2 % due to the tuning resolution of the ring oscillators. The ten waveforms,

each representing the supply current of a GALS block were combined to estimate the total supply

current. Subsequently, the power spectrum of the total supply current was calculated using a Fourier

transform. The results of this Fourier transform given in Figure 3.4 show, that the maximum spectral

peak with GALS is reduced by around 20 dB. For a wide range of frequencies the spectral

components in the GALS system are reduced by at least 10 dB when compared to the synchronous

circuit. Furthermore, in the time domain the supply current peaks are reduced to about 40% of the

synchronous system. Both, for the frequency domain and time domain, externally and internally driven

GALS show similar results.

Chapter 3. Proposed Novel GALS Architecture

 28

Figure 3.4. Current spectrum of synchronous design (a), externally driven GALS (b), and internally

driven GALS (c)

Our proposed architecture offers an efficient power-saving mechanism, similar to clock gating. A

particular synchronous block is clocked only when there is new data at the input, or there is a need to

flush data from internal pipeline stages. In all other cases there is no activity within this block.

Moreover, the depth of the clock tree is reduced, due to the decoupling of the global clock tree into a

set of independent local clock trees. In this way, the power consumption can be further reduced.

GALSification also more efficient facilitates application of other low-power techniques. For example, in

pure synchronous systems, blocks are often clocked at higher frequencies than actually needed. This

is done to avoid problems of synchronisation with neighbouring blocks and to limit the number of clock

domains. Using our GALS technique, we can optimally tune the clock frequency of any particular block

and the asynchronous wrapper will take care of the communication. Additionally, for each GALS block,

the optimal supply voltage could be applied, which would enable further reductions in power

dissipation. Furthermore, fine-grained clock gating can be applied within locally synchronous modules.

However, the general power saving limit of any GALS technique is very much comparable to clock

 0.5 1 1.5 2 2.5 3 3.5 4 4.5

 0.5 1 1.5 2 2.5 3 3.5 4 4.5

 0.5 1 1.5 2 2.5 3 3.5 4 4.5

a)

b)

c)

[[[[dB]]]]

[[[[dB]]]]

frequency[[[[GHz]]]]

frequency[[[[GHz]]]]

frequency[[[[GHz]]]]

-20

-40

-60

-80

-100

-120

-20

-40

-60

-80

-100

-120

-20

-40

-60

-80

-100

-120

-140

[[[[dB]]]]

Chapter 3. Proposed Novel GALS Architecture

 29

gating and it is not realistic to expect significant savings in power consumption with GALS application

in comparison with a synchronous system with clock-gating.

The target applications of the proposed GALS technique are datapath architectures, often deployed

for baseband processing in communication systems. From a top-level view, our architecture is

equivalent to an asynchronous design with coarse stages. In contrast to ‘normal’ asynchronous

circuits, a stage is not restricted to a single register with combinational logic, but can be a complex and

deeply pipelined synchronous block.

As with all GALS systems, no global clock-tree is required. The clock signal is generated by

‘multiplexing’ the local clock and the input requests. Due to the request-driven operation, the local

clock usually does not need to precisely match the frequency of the global clock or the datarate.

Hence, there are little constraints for the design of the ring oscillators. Locally synchronous modules

do not have to be ‘overconstrained’ and can be designed for clock frequency fc as with standard

synchronous designs. For the proposed implementation there is no need for registering input data in

locally synchronous modules. This prevents unnecessary latency and hardware in the system.

A token-flow approach, often deployed in a synchronous environment anyway, seems to be a more

natural style to design synchronous blocks for GALS application than the design rules proposed for the

GALS architecture in [MUT01]. An additional advantage is that our locally synchronous pipelines can

be easily substituted with fully asynchronous circuits if needed.

Standard GALS implementations as advocated in [MUT01] do not well support communication with

ADC and DAC running at a fixed and stable clock fc. The local clock signals within those GALS blocks

would have to be tuned to a higher frequency than fc or large interface FIFOs must be used. With

bursty data transfer it can be shown that stretching the local clock at every single data transmission

will significantly diminish performance. We think that our approach is better suited for the particular

systems described above.

However, there are some issues that limit the applicability of the proposed technique. For example,

there is a performance loss due to the time-out measurement. The introduction of ‘end-tokens’ to

trigger emptying of internal pipeline stages, as we proposed in [KRS03a], can improve this situation. In

that paper, we suggest introduction of an additional token indicating that the transmitting GALS block

has no more tokens to transfer. Consequently, time-out measurement is not needed anymore.

However, this solution leads to non-standard changes of the locally synchronous module. The

applicability of our wrapper is limited to architectures with data-streams based on token bursts.

Consequently, processing of single tokens can diminish performances. Finally, the proposed

implementation of the GALS concept is more complex than some other GALS techniques.

Chapter 3. Proposed Novel GALS Architecture

 30

 31

Chapter 4

Hardware Architecture of the
GALS Wrapper

4.1 Introduction

The request-driven concept as described in the previous chapter can be implemented in many

different ways. This chapter derives one possible implementation of an asynchronous wrapper

compatible with the proposed concept. First a detailed structure of the wrapper is described. Then the

following GALS system blocks are discussed: pausable clock generator, time-out block, input and

output ports. In order to verify the correctness of the planned implementation, a formal analysis of the

proposed asynchronous wrapper is performed. Finally, a possible modification of the GALS

implementation that avoids local clock generation is considered.

4.2 Overall Structure of the Asynchronous Wrapper

Based on the concept presented in the previous chapter, an asynchronous wrapper can be

designed. However, it is hard to realize an optimal configuration of this request-driven circuit. Ideally, a

single asynchronous controller can provide the correct operation of the wrapper. However, due to the

heterogeneous nature of the wrapper and the relatively complex request-driven protocol that has to be

followed, it is very hard to define and fulfil all requirements for the safe operation of such a controller.

Therefore, we decided to split the wrapper structure into several major sub-blocks and to distribute the

wrapper functionality in order to reduce the controller complexity. Consequently, each sub-block has a

very limited task and the sub-block structure is relatively simple. A comprehensive block diagram of a

single GALS block, including a locally synchronous module and the asynchronous wrapper, is shown

in Figure 4.1. Handshakes are performed in the asynchronous wrapper at three positions. There is an

input handshake (signals REQ_A and ACK_A), an output handshake (REQ_B and ACK_B), and finally

Chapter 4. Hardware Architecture of the GALS Wrapper

 32

an internal handshake between input and output port (signals REQ_INT and ACK_INT). A request-

driven clock is generated in the input port and in order to achieve the correct clocking of the system an

internal handshake is necessary. In this way, the input port has information about the status of the

output port which is essential for the correct clock generation.

We defined the interfaces of the GALS block to the outer world as follows. Firstly, REQ_A and

ACK_A are input 4-phase handshake control signals. Data is transferred via the Data_in signal. The

data bus is assumed to be stable when REQ_A is asserted high. The behaviour of the data lines has

to adhere to the “broad” handshake protocol [MUT01]. On the output side of the wrapper, the output

handshake control lines REQ_B and ACK_B and the respective DATA_OUT bus are placed. The

asynchronous wrapper delivers to the locally synchronous module data signal DATA_L and a

corresponding control signal DATAV_IN that defines the validity of the input data in the respective

clock cycle. Correspondingly, on the output side, the LS module should generate the signal

DATA_OUT and control signal DATAV_OUT. Additionally, the signal DATAV_OUT must indicate

validity of data for the next and not for the current clock cycle.

The asynchronous wrapper consists of the input and the output port(s), a data latch, a pausable

clock generator, a time-out generator, and a clock control circuit, as can be seen from Figure 4.1.

The purpose of the input port is to perform the input and internal handshake and to guarantee safe

input transfer of the data. Furthermore, the input port resets the time-out and clock control circuitry

after every handshake by activation of signal RST. The input handshake request signal REQ_A is not

directly used in the input port, because this signal is arbitrated at the time-out generator. Therefore, a

derived signal REQ_A1 is used for the handshake procedure in the Input port. This signal behaves

deterministically and cannot cause some hazard or deadlock of the input port controller.

The output port supports the data transfer to the following GALS block and performs the output

handshake. While a particular data transfer is not finished the output port will stretch the clock.

Alternatively, for the clock cycles when the output data transfer is not needed the output port just

supports internal handshake.

The time-out generation unit is implemented with a small number of hardware components. This

unit operates as a counter of the local clock on negative edges. The time-out signal is generated when

the counter is triggered for a sufficient number of times without being reset. This reset is activated by

the input port whenever the input handshake is performed. Consequently, the time-out signal can be

generated only when an input handshake channel has been inactive for a sufficient amount of time.

Additionally, the time-out unit performs the necessary arbitration for the safe operation of the input

port.

A local clock generator (LCG) generates triggers for the time-out measurement. Moreover, when

time-out is reached, it generates clocks for the LS module. The pausable clock generator is

Chapter 4. Hardware Architecture of the GALS Wrapper

 33

implemented as a tunable ring oscillator. Tunability is a very important property of the proposed LCG

in order to calibrate the clock frequency and avoid the effect of process, temperature or voltage

changes. The LCG can be stretched both from input and output ports. From the input side the lines

REQI1 and ACKI1 and from the output side the signal Stretch are used for this purpose. Signal LCLKM

is the output of the pausable clock generator, gated with signal ST as shown in Figure 4.1. LCLKM is

delivered to the Input port where is used for generation of the data valid signal and in the clock control

circuitry (that counts the number of locally generated clock cycles). From Figure 4.1 it can be seen that

signal INT_CLK is generated by an OR operation of signals REQ_INT and LCLKM. REQ_INT and

LCLKM are mutually exclusive. Therefore, glitch-free operation of INT_CLK is preserved. The signal

INT_CLK is delayed in comparison to REQ_INT and LCLKM for the time of the OR operation together

with the delay of the clock tree.

CCLLOOCCKK

CCOONNTTRROOLL

PPAAUUSSAABBLLEE

CCLLOOCCKK

SSTT

IINNTT__CCLLKK

LLOOCCAALLLLYY --
SSYYNNCCHHRROONNOOUUSS

MMOODDUULLEE

IINNPPUUTT

PPOORRTT

DDAATTAAVV__IINN

OOUUTTPPUUTT

PPOORRTT
AACCKK__IINNTT

RREEQQII11

AACCKKII11
ssttrreettcchh

DDAATTAA__LL DDAATTAA__OOUUTT

AASSYYNNCCHHRROONNOOUUSS WWRRAAPPPPEERR

LLCCLLKK

RREEQQ__IINNTT

DDAATTAAVV__OOUUTT

SSTTOOPPII

TTIIMMEE--OOUUTT

GGEENNEERRAATTOORR

LLCCLLKKMM

DDAATTAA LLAATTCCHH

SSTTOOPPHH

DDLLEE

DDAATTAA__IINN

AACCKK__AA

RREEQQ__AA RREEQQ__AA11

AACCKK__BB

RREEQQ__BB

RRSSTT

cclloocckk ttrreeee

SSTTOOPP

Figure 4.1. Block diagram of the proposed asynchronous wrapper

The clock control unit is designed to increase power-saving capabilities. The role of this block is to

count the number of locally generated clock cycles. When the LS pipeline is empty signals STOP and

STOPI will indicate that the local clock generation should be disabled. The internal request signals

REQ_INT and RST are used for resetting the clock control block.

Input data is buffered in a transparent latch. This is needed to prevent metastability at the input of

the locally synchronous module. The operation of this data latch is controlled by signal DLE with the

latch being transparent when DLE is asserted. Signal DLE is asserted after a transition of the local

clock, when previously latched data is already written into the register stage of the locally synchronous

Chapter 4. Hardware Architecture of the GALS Wrapper

 34

module. The input of the locally synchronous module is assumed to have no additional registers. The

data can be directly fed to a combinatorial logic block in front of the first register stage. In the following

sections all blocks shown in Figure 4.1 will be described in detail.

4.2.1 Pausable Clock

This local clock generator is implemented as a ring oscillator, and is shown in detail in Figure 4.2.

The structure of the generator is described in [TAY00, MUT01]. Generally, a pausable clock generator

consists of a delay line, a C-element, an arbitration section and one NOR-gate for enable/disable

function.

The delay line is designed in such way that the tunability of the clock generator is achieved. For this

property, a slice architecture of the delay line is used. The principle of delay element slicing is shown

in Figure 4.3a and the structure of the particular delay element is given in Figure 4.3b. With such

architecture, it is possible to choose how many delay elements will be included in the delay chain. The

more delay slices are active, the higher the delay of the signal (i.e. lower clock frequency) will be

achieved. Additionally, to forward and backward data lines, every delay slice has its own control signal

that will either enable further the forward path of the delayed signal or create a shortcut between

forward and backward delaypath.

The difference between the proposed implementation in [TAY00] and the one used in our approach

is that we use a simplified delay element. With that simplification only a coarse control signal (CC in

Figure 4.3b) is used for the delay element. For our request-driven GALS technique, in general, it is not

needed to have perfect matching of the operating frequency. Therefore, an additional signal for a fine

control and respective circuitry for support of this feature, as proposed in the literature, is not needed.

The step size of the generated frequencies is estimated to 180 ps, for the IHP 0.25µ CMOS process at

25 °C operating temperature. However, the step size can be easily changed if different standard cells

are used for delay slice implementation.

AARRBBIITTEERR

CC

AACCKKII11//22 RREEQQII11//22

LLCCLLKK
DDEELLAAYY LLIINNEE

RRCCLLKK

SSTTOOPPII

RRCCLLKKDD

ccllkk__ggrraanntt

Figure 4.2. Pausable clock generation

Chapter 4. Hardware Architecture of the GALS Wrapper

 35

The arbitration section consists of two mutual exclusion elements as depicted in Figure 4.4. One is

used to control the request from the input port of the asynchronous wrapper and the other for the

output port. The purpose of the MUTEX blocks is to arbitrate between incoming request signals and

clock generation. In general, if a request arrives when line RCLK is high, an acknowledge will not be

granted. Alternatively, if request is a high, the clock will be stretched until the request line is released.

In the case that both inputs of one of the MUTEX blocks go to high at the same moment, the MUTEX

will “toss the coin” and only one of the outputs will be granted.

 rrccllkk

rrccllkkdd

ffiinn ffoouutt

bboouutt bbiinn

DDEELLAAYY SSLLIICCEE

DDEELLAAYY SSLLIICCEE

DDEELLAAYY SSLLIICCEE

a)

ffiinn ffoouutt

bboouutt bbiinn

cccc

b)

cccc11 cccc22 ccccnn

Figure 4.3. Tunable delay concept (a) and delay element structure (b)

In the current implementation with one input and one output port, two MUTEX blocks are used in

the arbiter. One is fully used by the input port with input signal REQI1 and the respective output signal

ACKI2. For the output port a return information (acknowledge of the request) is not needed, so only

one signal Stretch is connected. When Stretch is high, new clock cycles will not be allowed.

Differing to the implementation in [TAY00, MUT01] it is possible to stop the clock with an additional

signal STOPI that is activated in two cases: Firstly, immediately after reset, to prevent the activation of

the clock oscillator before the first request signal arrives at the local block. Secondly, after time-out, i.e.

when the number of local clock cycles is equal to the number of cycles necessary to output all valid

data tokens stored inside the pipeline. In this situation, the local clock is stopped to avoid unnecessary

waste of energy.

To conclude, the ring oscillator of the clock generation unit can operate in three principle modes:

sleep mode, time-out measuring mode, and local clock generation mode. In sleep mode the stop

signal STOPI disables the clock generator’s operation. In time-out measuring mode the clock

generator is used for triggering the time-out block. Finally, the local clock generation mode is activated

Chapter 4. Hardware Architecture of the GALS Wrapper

 36

after occurrence of the time-out. In this mode, the clock generator drives the locally synchronous

module in order to flush all pipelined data.

MMEE

RREEQQII11 AACCKKII11

MMEE

RREEQQII22

((ssttrreettcchh))
AACCKKII22
((nnoott uusseedd))

ccllkk__ggrraanntt
rrccllkk

Figure 4.4. Arbiter used for GALS wrapper

4.2.2 Clock Control Unit

Activation of the pausable clock is controlled by a block named Clock control, the structure of which

is shown in Figure 4.5. This block generates two output signals: STOPI and STOPH. Signal STOPH is

implicitly used as a control signal for the asynchronous finite state machine (AFSM) in the input port.

Eventually, when STOPH is asserted the local clock will be halted. This signal is activated when the

counter, clocked with the local clock, reaches the number equal to the depth of the synchronous

pipeline. The counting number should be predefined during the design process. After that, clocking of

the locally synchronous module is not needed, and clock generation should be deactivated. With this

solution a significant amount of energy can be saved. Signal STOPI is directly used as a control signal

for the ring oscillator. This signal should hold the value of signal STOPH. One D-flip-flop will keep this

signal in asserted state until a new request arrives, even when signal RST resets STOPH. A new

request (REQ_INT high) resets this flip-flop and value of signal STOPI. However, it is hazardous to

directly drive the STOPI flip-flop with the STOPH signal. If we do that there is a certain risk of deadlock

in the input-port. Therefore, signal STOPI is arbitrated with signal REQ_A, in the time-out generator

and only the signal after arbitration (STOP) can be safely used for the STOPI generation.

QQ

 RR DD

CCoouunntteerrkk
 OO

RReesseett

RRSSTT

AACCKK__IINNTT

RREEQQ__IINNTT

SSTTOOPPHH

SSTTOOPPII
SSTT

SSTTOOPP

Figure 4.5. Clock control circuit

Chapter 4. Hardware Architecture of the GALS Wrapper

 37

This is just one possible way of controlling the ring oscillator. This solution relies on the most

general construction of the locally synchronous module and allows completely autonomous operation

of the asynchronous wrapper. If, in any case, this control is not satisfying, it is always possible to

directly control the stopping of the clock via some synchronously generated signal that indicates

whether the local pipeline is empty.

4.2.3 Time-out Generation

The time-out generation unit is implemented with a relatively simple hardware as shown in Figure

4.6. Nevertheless, it has to support a complex operating scenario. Generally, it consists of one counter

(Countern in Figure 4.6) that counts the number of negative edges of the local clock. This counter is

designed as a standard synchronous counter. When the final value is reached it eventually generates

a time-out signal ST. The counter’s reset signal RST is activated once during every input port

handshake. RST and the clock signal (extracted from inverted signal LCLK) are not a priori mutually

exclusive. This potentially gives rise to a metastable behaviour of this counter. To avoid metastability,

one mutual exclusion element must be inserted which resolves the simultaneous appearance of the

rising clock edge and the falling edge of the reset signal. Additionally, one flip-flop is inserted to

reshape the signal waveform of LCLK into pulses with much shorter duration than RST, allowing that

the reset cycle actually resets the time-out generator in every handshake.

LLCCLLKK
 CCOOUUNNTTEERRNN

OO

RR

 DD QQ

 RR

 DD QQ

 RR

MM
UU

TT
EE

XX

MM
UU

TT
EE

XX

RRSSTT

SSTT

RREEQQ__AA11 RREEQQ__AA

 DD RR

QQ

MM
UU

TT
EE

XX

SSTTOOPPHH SSTTOOPP

Figure 4.6. Time-out generation circuit

Another situation that must be dealt with is the appearance of an external request signal

simultaneously with the time-out signal (REQ_A and ST, respectively, in Figure 4.6). This condition

may violate the assumed burst mode operation and cause erroneous operation of the input port

Chapter 4. Hardware Architecture of the GALS Wrapper

 38

AFSM. In order to resolve this potential conflict, an additional mutual exclusion element is added. To

make the line REQ_A1 available for most of the time, the time-out signal entering the mutual-exclusion

circuit should be active for only a very short period of time. This behaviour is achieved using two flip-

flops (FF) as shown in Figure 4.6. The first FF is set to ‘1’ when time-out occurs i.e. the counter output

is ‘1’. When after arbitration time-out is granted, the second flip-flop is clocked. Clocking the second

flip-flop activates signal ST. This in turn resets the first FF, allowing fast propagation of any external

request signal REQ_A to the AFSM in the input port. Additionally, one mutex element is placed to

arbitrate between signals REQ_A and STOP. Simultaneous appearance of both signals may lead to a

hazard in the input port AFSM and must be avoided.

4.2.4 Input Port

The input port mainly consists of an input controller along with some supporting circuitry shown in

Figure 4.7. The input controller must guarantee safe data transfer and is implemented as an AFSM

working in burst mode. Port specifications of the input controller are given in Figure 4.8. The input port,

described here is a pull-type port. A push-type port can be constructed in a similar way with some

minor modifications. In the normal mode of operation it just reacts to the input requests and initiates

‘clock cycles’ (signal REQ_INT) for every incoming request. Therefore, the start of an input handshake

(signals REQ_A1 and ACK_A) will initiate the internal handshake as well (signals REQ_INT and

ACK_INT). The internal request will then be used as a clock source for the locally synchronous

module. During this “normal” mode of operation the time-out function will be regularly reset with signal

RST.

RREEQQ__IINNTT

AACCKKEENN

RRSSTT

AACCKKCC

IINNPPUUTT

CCOONNTTRROOLLLLEERR

 QQ

DD SS

DDAATTAAVV__IINN

RREEQQ__AA11

AACCKK__AA AACCKK__IINNTT

RREEQQII11 AACCKKII11

SSTT
SSTTOOPP

LLCCLLKKMM

DDLLEE

IINNTT__CCLLKK

Figure 4.7. Input port block diagram

If there is no activity on the request line for a certain period of the time, signal ST is activated (time-

out). This will disable further activities on the internal acknowledge line (signal ACKC) because signal

Chapter 4. Hardware Architecture of the GALS Wrapper

 39

ST will disable the rising edge of acknowledge. Now the circuit waits for one of two possible events.

The first one is the completion of the expected number of internal clock cycles (indicated by signal

STOP). This would bring the AFSM back into its initial state. The second possible event is the

appearance of an input request in the middle of the pipeline flushing process. This will activate a so-

called “transitional mode”. The already started local clock cycle must be safely completed and clock

generation must be handed over to the input requests.

66
77

88

RREEQQ__AA11++ //

RREEQQII11++

00

11

22 33

44

55

RREEQQ__AA11++ //
RREEQQ__IINNTT++,,

RRSSTT++,, AACCKK__AA++

AACCKKCC++,, RREEQQ__AA11-- //
RREEQQ__IINNTT--,, RRSSTT--,,

AACCKK__AA--

AACCKKCC--,, RREEQQ__AA11++ //
RREEQQ__IINNTT++,,

RRSSTT++,, AACCKK__AA++

AACCKKCC--,, SSTT++ //

SSTTOOPP++ //

RRSSTT++

SSTTOOPP--,, SSTT--//

RRSSTT--

AACCKKII11++ //
AACCKKEENN++,,

RREEQQII11--

AACCKKCC-- //

AACCKK__AA ++,, RRSSTT++

AACCKKII11--,, AACCKKCC++ //

RREEQQ__AA11--,, SSTT--//
AACCKK__AA--,, RRSSTT--,,

AACCKKEENN--

Figure 4.8. Specification of the input controller AFSM

In our implementation, the input controller is connected with a circuit adhering to a ‘broad’ 4-phase

handshake protocol. For designing the AFSM, the 3D tool [YUN99a] was used. The main reason was

the possible application of the extended burst mode specification. However, in the end we used only

burst mode specifications. The logic equations generated by 3D from the specifications in Figure 4.8.

are listed below:

ACKENST ACKC 1A_REQREQ_INTCKCAREQ_INTREQ_A1REQ_INT ⋅⋅⋅+⋅+⋅=

ACKENST ACKC 1A_REQ

RST1A_REQ0ZSTACKCACKENACKIREQ_INTACKC ACK_A 1

⋅⋅⋅+

⋅+⋅⋅⋅⋅+⋅=

Chapter 4. Hardware Architecture of the GALS Wrapper

 40

STACKENACKENREQ_A1 ACKI ACKEN 1 ⋅+⋅+=

ACKENST ACKC 1A_REQ 0ZSTACKCACKENACKI

RSTST RSTREQ_A1 REQ_INTACKC STOP RST

1 ⋅⋅⋅+⋅⋅⋅⋅

+⋅+⋅+⋅+=

ACKENACKISTREQ_A1 REQI 11 ⋅⋅⋅=

0ZACKENACKC

0ZACKENACKC0ZST1A_REQACKC1A_REQCKIA Z0 1

⋅⋅+

⋅⋅+⋅⋅+⋅⋅=

Z0 is an internal signal, added to provide hazard-free operation of this AFSM. In order to guarantee

the correct functioning of the AFSMs, it is needed to adhere to the “burst” mode operation. This mean

that inputs arrive in bursts in any order (but glitch-free). Once an “input burst” is complete, the machine

generates glitch-free “output burst” and a concurrent state change to a new state.

However, a new input burst must not arrive until the previous input burst has been fully processed

and the AFSM has stabilized from a previous input and state change [NOW02]. Having in mind this

particular implementation, “burst mode” requirements are fulfilled due to the slow environment of the

AFSM. This fact is confirmed by extensive simulations under different timing conditions.

The additional circuitry in Figure 4.6 is to disable, during local clock generation, the acknowledge

signal ACK_INT generated by the output port. ACK_INT is enabled once again after transition from

local clock generation to the request-driven operation by activation of signal ACKEN. Signal ACKC,

which is fed to the input port AFSM as shown in Figure 4.7, is also used as a control signal DLE for the

input data latch. Signal DLE is active when a new input transfer is being performed. Also this signal

will enable the data latch only when the input data is stable. We have searched for a long time the

right combination of the signals that guarantees that all requirements are fulfilled. Finally, for the

generation of this signal a combination of four signals as in the following logic equation is used:

 CKENA ACKC ACKENA_CKAINT_CLK DLE ⋅+⋅⋅=

The first term in the OR operation will enable the data latch during a normal input handshake when

both INT_CLK and ACK_A are high. That combination will result in a relatively short enable signal.

Another term is generated with signals ACKC and ACK_EN and it should support the DLE generation

during transition mode.

 Furthermore, there is an additional flip-flop for generating the data-valid input signal for the

synchronous block. The data valid signal is enabled when there is new data at the input port and

disabled when the input handshake lines are idle and the GALS block operates in local clock

Chapter 4. Hardware Architecture of the GALS Wrapper

 41

generation mode. Signal DLE activates the data valid signal, and for the deactivation of this signal a

combination of the signals for internal clock INT_CLK and local clock LCLKM is used.

In figures 4.9, 4.10, 4.11, and 4.12, four possible scenarios of input port operations are given. In

Figure 4.9 the usual start from the “zero” AFSM position is given. The input port is activated when

signal REQ_A1 arrives. Accordingly, handshakes at the input and internal nodes are performed. The

asynchronous wrapper operates in request-driven mode. The AFSM of the input port is either in state

“one” or in state “two” in this phase.

REQ_A1

ACK_A

REQ_INT

ACK_INT

ACK_EN

ACKC

INT_CLK

LCLKM

STOP

ST

RST

REQI1

ACKI1

DATAV_IN

DLE

state 0 state 1 state 2 state 1 state 2

Figure 4.9. Phase 1 – start of the request-driven mode

In the Figure 4.10, a transition from request-driven mode to local-clock generation mode is shown.

This transition will occur when, after some period of inactivity on the REQ_A1 line, signal ST becomes

active. Accordingly, the source of the LS clock will no longer be signal REQ_INT but signal LCLKM.

Figure 4.11 shows the transition of input port AFSM from state “3” to state “0”. That corresponds to the

situation when the internal LS pipeline is empty and clock generation can be stopped. Disabling the

local clock will start the activation of signal ST.

Chapter 4. Hardware Architecture of the GALS Wrapper

 42

REQ_A1

ACK_A

REQ_INT

ACK_INT

ACK_EN

ACKC

INT_CLK

LCLKM

STOP

ST

RST

REQI1

ACKI1

DATAV_IN

DLE

time-out period (state 2) state 1 state 3

Figure 4.10. Phase 2 – start of the local clock generation mode

REQ_A1

ACK_A

REQ_INT

ACK_INT

ACK_EN

ACKC

INT_CLK

LCLKM

STOP

ST

RST

REQI1

ACKI1

DATAV_IN

DLE

state 3 state 4 state 0

Figure 4.11. Phase 3 – local pipeline is empty

The fourth simulation (Figure 4.12) shows the most complicated scenario. There, the local clock-

generation mode has to be disabled when a new request appears at the input. In order to safely

perform this operation, a transitional period is provided. In this transitional period, first the current local

clock cycle has to be finished and then the control of the clock can be handed over to the request

input.

Chapter 4. Hardware Architecture of the GALS Wrapper

 43

REQ_A1

ACK_A

REQ_INT

ACK_INT

ACK_EN

ACKC

INT_CLK

LCLKM

STOP

ST

RST

REQI1

ACKI1

DATAV_IN

DLE

local clock generation (state 3) transitional mode (state changes 3 to 0) request-driven mode

Figure 4.12. Phase 4 – during local clock generation an input request appears

AACCKKCC--,, SSTT++ //

RREEQQ__AA11++ //

RREEQQII11++

00

11

22 33

44

55

66
77

RREEQQ__AA11++ //
RREEQQ__IINNTT++,,

RRSSTT++,, AACCKK__AA++

AACCKKCC++,, RREEQQ__AA11-- //

RREEQQ__IINNTT--,, RRSSTT--,,

AACCKK__AA--

AACCKKCC--,, RREEQQ__AA11++ //
RREEQQ__IINNTT++,,

RRSSTT++,, AACCKK__AA ++

SSTTOOPP++ //

RRSSTT++

SSTTOOPP--,, SSTT--//

RRSSTT--

AACCKKII11++ //
AACCKKEENN++,,

RREEQQII11--

AACCKKCC-- //

AACCKK__AA ++,, RRSSTT++

AACCKKII11--,, AACCKKCC++ //

88

RREEQQ__AA11--,, SSTT--//
AACCKK__AA--,, RRSSTT--,,

AACCKKEENN--

99

RREEQQ__AA11++ //

RREEQQ__IINNTT++,,

RRSSTT++,, AACCKK__AA++

SSTT++ //

RREEQQ__IINNTT == RREEQQ__AA11 RREEQQ__IINNTT ++ AACCKKCC'' RREEQQ__IINNTT ++
RREEQQ__AA11 AACCKKCC'' SSTT'' AACCKKEENN''

AACCKK__AA == AACCKKCC'' RREEQQ__IINNTT ++ RREEQQ__AA11 RRSSTT ++

AACCKKCC'' SSTT AACCKKII11'' AACCKKEENN ZZ00'' ++
RREEQQ__AA11 AACCKKCC'' SSTT'' AACCKKEENN''

AACCKKEENN == AACCKKII11 ++ RREEQQ__AA11 AACCKKEENN ++ SSTT AACCKKEENN

RRSSTT == SSTTOOPP ++ AACCKKCC'' RREEQQ__IINNTT ++ RREEQQ__AA11 RRSSTT ++ SSTT RRSSTT
++ AACCKKCC'' SSTT AACCKKII11'' AACCKKEENN ZZ00'' ++ RREEQQ__AA11 AACCKKCC'' SSTT''

AACCKKEENN''

RREEQQ__II11 == RREEQQ__AA11 SSTT AACCKKII11'' AACCKKEENN''

ZZ00 == AACCKKII11 ++ RREEQQ__AA11'' AACCKKCC ++ RREEQQ__AA11'' SSTT'' ZZ00 ++ AACCKKCC''
AACCKKEENN ZZ00 ++ AACCKKCC AACCKKEENN'' ZZ00

a) b)

Figure 4.13. a) Specification of the input controller AFSM that absorbs single tokens and b)

equations of the corresponding hazard-free logic (symbol ‘ denotes inversion)

The proposed input port AFSM assumes bursty data and does not cover all different scenarios

when a single token approaches the asynchronous wrapper. For example, in local clock generator

mode, the arrival of a single request will lead to a transition from state 3 to state 0 (state changes

3→5→6→7→8→0). However, the time-out function will not be available in state 0 if we apply the

originally proposed AFSM. However, it is possible to change and adapt the input port AFSM in order to

Chapter 4. Hardware Architecture of the GALS Wrapper

 44

adapt to the different applications and scenarios. The modified asynchronous wrapper is given in

Figure 4.13.

On the other hand, the proposed change will make the AFSM more complex and we did not use it

in our GALS circuits. Furthermore, the scenarios that are additionally covered with the updated AFSM

were not of interest for the intended applications.

4.2.5 Output Port

The purpose of the output port is to safely perform the output handshake of the GALS block.

Therefore, a generation of the new clock cycle will be disabled until the handshake is finished. When

there is no output data to be transferred, the output port has only the passive role to acknowledge any

internal request. A block diagram of the output port is shown in Figure 4.14.

It mainly consists of an AFSM output controller and two additional flip-flops. Those flip-flops are

used to condition the signals indicating data output valid (DOV) and not valid (DONV) for use in the

AFSM. Since the AFSM is event- and not level-driven, the level-based signal DATAV_OUT is

transformed into the two event based signals DOV and DONV, by strobing them with the local clock

signal INT_CLK. Signal DATAV_OUT is generated in the locally synchronous module and it should

indicate whether the next clock cycle generates output data or the output circuitry will stay idle.

Consequently, those two flip-flops for generating signals DOV and DONV are in general part of the

synchronous block and their output must be synchronised with the output data. Data valid signals are

triggered with the local clock. Therefore, their input should be the validity signal of the output data for

the next cycle and not for the current one.

OOUUTTPPUUTT

CCOONNTTRROOLLLLEERR

LLCCLLKKMM RREEQQ__IINNTT

AACCKK__IINNTT

RREEQQ__BB

AACCKK__BB

ssttrreettcchh

DDOONNVV DDOOVV

IINNTT__CCLLKK

DDAATTAAVV__OOUUTT

RR
DD QQ

RR
DD QQ

Figure 4.14. Output port

Chapter 4. Hardware Architecture of the GALS Wrapper

 45

The AFSM specifications of the output port controller are given in Figure 4.15. If there is no valid

data at the output (DONV is activated), an internal request is immediately acknowledged by activating

signal ACK_INT. When output data is to be transferred to the next GALS block (DOV is activated), an

output handshake (signals REQ_B and ACK_B) must be performed. When DOV is activated then the

local clock must be stretched using signal stretch, until an output handshake is performed. This will

prevent a new clock cycle before completion of the output data transfer.

The logic equations for a hazard-free AFSM implementation of the output controller, again

generated using the 3D tool [YUN99a], are listed below:

DOVB_ACK0ZDOVB_REQ ACK_BREQ_B ⋅+⋅+⋅=

DONVB_ACKDOVB_ACK0ZDOVREQ_BACK_BACK_INT ⋅+⋅+⋅+⋅=

0ZDONVDOVDOVB_ACK0ZB_CK A Z0 ⋅⋅+⋅+⋅=

Z0 is an internal signal added to achieve hazard-free behaviour of the AFSM. The burst mode

requirements are confirmed by the large set of simulations covering different modes of wrapper

operation.

00

11

22 33

DDOOVV++ //

RREEQQ__BB++,, AACCKK__IINNTT++

AACCKK__BB++,, DDOOVV-- //

RREEQQ__BB--,, AACCKK__IINNTT--

AACCKK__BB--,, DDOOVV++ //

RREEQQ__BB++,, AACCKK__IINNTT++

DDOONNVV++ //

AACCKK__IINNTT++

DDOONNVV-- //

AACCKK__IINNTT--

AACCKK__BB--,, DDOONNVV++ //

AACCKK__IINNTT++

Figure 4.15. Output controller specification

Figures 4.16 and 4.17 show the operation of the output controller. In Figure 4.16, the output port

performs the data output. This corresponds to the transition between states “1” and “2” of the output

port AFSM. In that case, the internal handshake is coupled with the output handshake. Figure 4.17

gives the function of the output port when there is no data to be output. In that case, every request

Chapter 4. Hardware Architecture of the GALS Wrapper

 46

coming from an internal handshake channel is confirmed. The output port, described here, is a push-

type port. The architecture of a pull-type port would be very similar, with only minor modifications.

REQ_INT

LCLKM

INT_CLK

ACK_INT

REQ_B

ACK_B

DATAV_OUT

DOV

DONV

state 1 state 2 state 2 state 1 state 2 state 1 state 2

Figure 4.16 Operation of the output port when there is data to be output

REQ_INT

LCLKM

INT_CLK

ACK_INT

REQ_B

ACK_B

DATAV_OUT

DOV

DONV

state 0 state 1 state 0 state 1 state 0 state 1 state 0

Figure 4.17 Operation of the output port when there is no data to be output

The implemented circuit is based on worst-case assumptions. It allows that in the middle of flushing

the pipeline, a new request at the input port may appear. However, there are some cases where the

operation of the output wrapper will not always grant safe data transfer. Problems may appear when

the clock is generated from the local oscillator and the output port is connected to a very slow token

absorber. From the AFSM specification it can be seen that the clock is stretched only in one half of the

period (when REQ_B is high). After setting ACK_B to high (during the handshake operation) the local

clock will be released from the stretch control. If, after that, setting ACK_B to low takes two much time

(longer than one period of the local clock generator) it may happen that we have more than one clock

cycle between consecutive handshakes. Under normal conditions that will never happen, but if it is

necessary to prevent such behaviour it is possible to add simple extensions to the proposed

architecture. For example, the output port could be structured as in Figure 4.18. The proposed circuitry

will ensure perfectly safe data transfer between two GALS blocks. For our purposes, we have used

simpler circuitry to increase the throughput.

Chapter 4. Hardware Architecture of the GALS Wrapper

 47

OOUUTTPPUUTT

CCOONNTTRROOLLLLEERR

LLCCLLKKMM RREEQQ__IINNTT

AACCKK__IINNTT

RREEQQ__BB

AACCKK__BB

ssttrreettcchh

DDOONNVV DDOOVV

IINNTT__CCLLKK

DDAATTAAVV__OOUUTT

RR
DD QQ

RR
DD QQ

Figure 4.18. Safe output controller architecture

4.2.6 Mutual Exclusion Element

For the purpose of arbitration in asynchronous circuits, it is necessary to use Mutual Exclusion

elements (MUTEX). The block diagram of the MUTEX is given on Figure 4.19a. When both inputs are

low, both outputs are low as well. When one input goes high, the corresponding output also goes to

high and the other output cannot be set until the first input is released. If both inputs go to high at the

same moment, the circuit tosses a coin to choose one of the outputs to go to high and the other should

remain low. In order to perform this function, Seitz proposed in [SEITZ80] an efficient circuit structure

given in Figure 4.19b. Unfortunately, a standard cell based on this schematic is very seldom in

libraries. So, in [M0098, KES97] a simple solution that uses only standard gates (Figure 4.18c) is

proposed. In this structure, 4-input NOR gates have two main functions. One is to filter the glitches on

the NAND outputs with considerable capacitance on the NOR gate, and the other one is to shift the

threshold voltage. We have used this solution in our implementations.

MMUUTTEEXX
IInn11

IInn22

OOuutt11

OOuutt22

IInn11

IInn22

OOuutt11

OOuutt22

IInn11

IInn22

OOuutt11

OOuutt22

a) b) c)

Figure 4.19. Mutual-Exclusion element, from block diagram to implementation

Chapter 4. Hardware Architecture of the GALS Wrapper

 48

4.3 Formal Analysis of the Asynchronous Wrapper

A formal analysis of the proposed asynchronous wrapper was performed [STA05], in order to

validate the correctness of the proposed concept. Additionally, we wanted to investigate possible

hazards, deadlocks and races in the system. A Petri-net model was built for every gate. It expresses

possible output signal changes and the next state of the gate as a consequence of the input signal

changes and the current state of the gate. The asynchronous wrapper contains only a small number of

different library elements (basic logic gates, flip-flops, counters, mutex, C-elements). For modelling the

gates a methodology similar to the one proposed in [GEN92] is used. All functional properties of the

elements are described via the Petri-net model; thus the complete wrapper can be structured by

plugging the respective models together.

For wrapper verification the Petri-net based model checker LoLA [SCHM00] was used that utilizes

powerful state space reduction techniques. In a first step, the net size was reduced. The model

completely ignores any timing relationships caused by switching and propagation delays. Therefore,

through introduction of causalities into the model, we can simplify the complete structure. Secondly,

sequenced gates are merged, e.g. two AND gates whose output signals are the input signals of an OR

gate. Unfortunately, the full state space did not fit into the memory of a computer. However, the LoLA

tool has features that allow checking for hazards even in this case.

In order to find potential hazards all possible hazardous paths have to be calculated and their

reachability has to be checked. In the case of a potential hazard, LoLA writes out a path from the initial

state to this marking. Each of the critical paths was analyzed. Afterwards, these scenarios were

checked by simulation, in order to confirm whether a risky scenario might occur in reality. During the

analysis, some possible hazards and glitches were found. After this analysis, the asynchronous

wrapper was modified in order to avoid hazardous behaviour. To summarize, the formal analysis was

very useful to verify the proper operation of the request-driven GALS method and to clearly define the

timing constraints for the wrapper implementation.

4.4 Externally Clocked Asynchronous Wrapper

In the previous chapter we have already mentioned that it is possible to avoid using the local clock

generators (i.e. ring oscillators) in conjunction with the request-driven GALS solution. Furthermore, the

basic concept of the necessary wrapper adaptation was introduced.

The implementation of the externally clocked asynchronous wrapper is based on the previously

described solution for the wrapper with ring oscillator. The block diagram is given in Figure 4.20. From

this figure, it is noticeable that the basic structure is very simple. Most of the blocks are the same,

including input and output port, time-out generator, data-latch and clock control circuitry. The only

Chapter 4. Hardware Architecture of the GALS Wrapper

 49

difference is the introduction of one new block - Clock Management Unit (CMU), as we described in

[GRA05]. Consequently, the Local Clock Generation block is not used any more.

CCLLOOCCKK

CCOONNTTRROOLL

CCMMUU

SSTT

IINNTT__CCLLKK

LLOOCCAALLLLYY
SSYYNNCCHHRROONNOOUUSS

MMOODDUULLEE

IINNPPUUTT

PPOORRTT

DDAATTAAVV__IINN

OOUUTTPPUUTT

PPOORRTT
AACCKK__IINNTT

RREEQQII11

AACCKKII11

ssttrreettcchh

DDAATTAA__LL DDAATTAA__OOUUTT

AASSYYNNCCHHRROONNOOUUSS WWRRAAPPPPEERR

EECCLLKK

RREEQQ__IINNTT

DDAATTAAVV__OOUUTT

SSTTOOPPII

TTIIMMEE--OOUUTT

GGEENNEERRAATTOORR

EECCLLKKMM

DDAATTAA LLAATTCCHH

SSTTOOPPHH

DDLLEE

DDAATTAA__IINN

AACCKK__AA

RREEQQ__AA
RREEQQ__AA11

AACCKK__BB

RREEQQ__BB

RRSSTT

cclloocckk ttrreeee

eexxtteerrnnaall cclloocckk

SSTTOOPP

rreeuusseedd bblloocckkss aaddaapptteedd bblloocckk

Figure 4.20. Block diagram of the externally clocked asynchronous wrapper

In Figure 4.21, the hazard-free implementation of the CMU unit is given. The proposed CMU

structure is very similar to the arbitration unit of the pausable clock generator of the internally driven

GALS wrapper. The external clock signal should only be stopped during its logic low phase. In order to

prevent metastability, the CMU is responsible for stretching the clock signal while there is handshake

activity at the interface of the wrapper. This means that the clock signal is kept low when data is

received at the input of the wrapper, during the time-out phase, and when data is transferred at the

output of the wrapper. For clock arbitration and halting, three mutex circuits are used.

Mutex block M1 is used to give the time reference for the REQI1 and ACKI1 signals. Activation of

REQI1 will stop the propagation of the external clock. Additionally, mutex block M2 is present to

disable the external clock when signals STOPI and stretch are active.

The role of mutex block M3 and the supporting asymmetric C-elements is to ensure that the clock

can be re-enabled again, only when the external clock is on low level. If this is not the case, the

arbitration circuitry will delay state change until the external clock changed its value to low. The C-

elements C1, C2 and C3 perform the glitch-free generation of the clock enable signal. For example,

Chapter 4. Hardware Architecture of the GALS Wrapper

 50

when stretch goes high, signal ste will go low. The precondition for this state change is that

external_clock is in the low phase. After that, the following scenario happens: C2- → sti- → →cg- and

clock is disabled. When stretch goes low then ste+ → C1+ → C2+ (when external_clock is low) → sti+

→ cg+ and the clock is re-enabled again. In this scheme, a possible race can occur between signals

cg and clk_grant during arbitration. To avoid this hazard, it is needed that the path external_clock →

M2 → clk_grant is faster than path stretch →M2 → ste → sti → cg. However, this precondition is easily

achievable.

EECCLLKK

eexxtteerrnnaall__cclloocckk

RREEQQII11 SSttrreettcchh AACCKKII11

ccllkk__ggrraanntt
MMUUTTEEXX MMUUTTEEXX

MMUUTTEEXX

--

CC

++

CC

CC

SSTTOOPPII

AANNDD22

MM33

MM11 MM22

CC22
CC11

CC33

OORR22

IINNVV11

ssttee

ccgg

ssttii

Figure 4.21. Clock Management Unit (CMU)

In general, it is possible to combine both internally and externally clocked solutions in one wrapper.

In this case, the wrapper should be structured as it is shown in Figure 4.22. For this solution we have

reused the part of the arbitration unit for both internal and external clocking modes. The advantage of

this solution is flexibility and fault tolerance. In some cases it maybe better to use embedded ring

oscillators (if we want to improve throughput and lower EMI). In some other application, if the power is

an important issue, the wrapper can be set to externally driven mode. Additionally, if for some reason

the internal solution is not functional, we can always apply the external clock. In this way, fault

tolerance is supported.

In Figure 4.23 a sample simulation run of the proposed externally driven GALS system is given.

During this run, the system changes into different operational modes (request-driven, externally–

driven, transitional and idle mode). It is noticeable that due to stretching many externally distributed

clock cycles are discarded in the externally driven mode. This happens, when the external clock

Chapter 4. Hardware Architecture of the GALS Wrapper

 51

frequency is beyond the maximal throughput of the wrapper. In other cases, with lower external

frequency every external clock cycle would be accepted and the operation of the wrapper will be very

similar to the operation of the internally driven wrapper.

00

11

ccllkk__sseelleecctt

SSTTOOPPII

ccllkk__ggrraanntt EECCLLKK

eexxttee rr nnaall__

cclloocckk

RREEQQII
11

SSttrreettcchh

AACCKKII
11

MMUUTTEEXX MMUUTTEEXX

MMUUTTEEXX

--

CC

++

CC

00

11

ccllkk__sseelleecctt

rrccllkk

SSTTOOPPII

ssttee

ssttii

ccgg

LLCCLLKK

CC

C ccoouutt

RRIINNGG OOSSCCIILLLLAATTOORR

MM33

MM11 MM22

IINNVV11

CC33 CC22
CC11

MMUUXX11
MMUUXX22

OORR22

CCLLKK

Figure 4.22. Mixed-mode arbiter

REQ_A

ACK_A

INT_CLK

ext. clock

ECLKM

STOPI

cg

REQI1

ACKI1

stretch

re
q

u
e

s
t-

d
ri
v
e

n
 m

o
d
e

e
x
ta

rn
a

lly
-d

ri
v
e

n
 m

o
d

e

tr
a

n
s
it
io

n
a

l
m

o
d

e

e
x
ta

rn
a

lly
-d

ri
v
e

n
 m

o
d

e

re
q

u
e

s
t-

d
ri
v
e

n
 m

o
d
e

p
ip

e
lin

e
 e

m
p

ty
 –

w

ra
p

p
e

r
d

e
a

c
ti
v
a
te

d

stretching discards some
externally generated

clocks

Figure 4.23. A simulation run of the externally clocked GALS system

Chapter 4. Hardware Architecture of the GALS Wrapper

 52

However, with this solution we can only accept or reject an external clock cycle. It is not possible to

delay or pause clock cycle. Accordingly, the performance of the system will be decreased to a certain

degree compared with the previously described request-driven GALS technique, based on pausable

clocks. On the other hand, with the externally clocked solution, it is possible to avoid problems of local

clock calibration and to save power spent in the ring oscillators.

In the following text, we will evaluate in a practical application the local clock generation GALS

technique based on ring oscillators. However, in Chapter 7, the externally driven and mixed mode

wrappers will be compared to the internally driven wrapper in respect to throughput, area, power

consumption and latency.

 53

Chapter 5

GALS Application in Wireless
Communication Systems

5.1 Introduction

The research and development of fourth generation (4G) wireless and mobile communication

systems is in industrial focus today. Such systems will offer revolutionary new types of services to

consumers. For example, broadband wireless networks will provide high-speed data transfer, suitable

for video transmission and mobile Internet applications.

The work on GALS implementations presented here is the outcome of a project that aims to

develop a single-chip wireless broadband communication system in the 5 GHz band, compliant with

the IEEE802.11a standard [IEEE99, GRA01, TRO02, TRO03, KRS03b, KRS03d]. This standard

specifies the application of Orthogonal Frequency Division Multiplexing (OFDM) with datarates ranging

from 6 - 54 Mbit/s. The datarate depends on the applied modulation techniques that can vary from

BPSK over QPSK and 16-QAM to 64-QAM. The physical layer of the WLAN modem includes the

analog front-end (AFE) and a digital baseband processor. The design of the required baseband

processor for this standard involves a number of design challenges. In particular global clock tree

generation, power consumption, testability, EMI, and crosstalk are very demanding issues for the

designer. Our proposed GALS architecture is evaluated as possible solution for those problems as

described in [KRS05a, KRS04a, KRS04b].

In the following chapter some details about the structure of the baseband processor compliant with

IEEE 802.11a are given. After that, the approach for a GALS partitioning and general problems of

GALSification of the baseband processor are discussed. Finally, the structure of interface blocks

necessary for GALSification is described.

Chapter 5. GALS Application in Wireless Communication System

 54

5.2 Baseband Processor Compliant to IEEE 802.11a Standard

Practical implementations of the IEEE 802.11a compliant baseband processor can be achieved in

many ways. Mainly, there are two possible implementation styles: a software based DSP solution or

alternatively application of dedicated ASIC (Application Specific Integrated Circuit).

In general, software based baseband processing can be done using either a multiprocessor system

or a single DSP processor with a number of hardware accelerators. The standard defines very

intensive computational activities, and possible software solutions lead to increased power dissipation.

The wireless LAN standard is mainly intended for handheld and mobile applications. Therefore,

power consumption is a critical issue. Consequently, we have decided to use a dedicated ASIC for

baseband processing. Initially, the baseband processor was implemented as an ASIC working

synchronously. This design requires about 700k gates, and clock gating was used as a low-power

technique. The architecture is divided in two principle blocks: Transmitter and Receiver block. The

baseband processing is separated into two independent dataflow directions: transmit and receive. The

transmitter and receiver are implemented as datapath architectures. The block scheme of the

designed synchronous baseband processor is given in Figure 5.1. This baseband processor is deeply

pipelined and register based without memory structures. To decentralise some timing critical control

functions a token-flow approach [BUCK93] for communication between successive blocks was

adopted.

The standard [IEEE99] defines the algorithms for receiver and transmitter datapath processing. The

initial part of the transmitter stage consists of a small data input buffer, data scrambler, signal field

generator, convolutional encoder, interleaver, circuitry for pilot insertion (with pilot scrambler), and a

mapper. The standard defines application of several modulation schemes including BPSK, QPSK, 16-

QAM and 64-QAM. A 64-point IFFT/FFT (Inverse Fast Fourier Transform / Fast Fourier Transform)

processor is used for transfer from time to frequency domain. The IFFT/FFT is a single block used in

both, receive and transmit direction in order to minimize the baseband processor silicon area. On the

other hand, this solution is more complex for implementation, because of the incomplete decoupling

between the transmitter and receiver datapath. Finally, a guard interval insertion block is needed to

reduce inter-symbol interference. The final block in the transmitter is the preamble insertion stage.

This block generates a preamble which is hard-coded in order to decrease the latency of the system.

The receiver has a more complex structure than the transmitter. The fundamental issues, not

specified by the standard, are the mechanisms of synchronisation, channel estimation, and

equalization. The solution for this problem is one of the most important outcomes of our project.

The synchroniser has to fulfil the following operations: frame detection, carrier frequency offset

estimation, symbol timing estimation, extraction of the reference channel, and data reordering. A block

scheme of the synchroniser is given in Figure 5.2. In order to obtain a power efficient design, the

Chapter 5. GALS Application in Wireless Communication System

 55

synchroniser structure was split into two mutually exclusive paths: tracking datapath and processing

datapath [KRS03d]. The main function of the tracking datapath is to detect an incoming frame by

searching for the periodic structure of the preamble symbols, and to estimate the carrier frequency

offset. In our design, a wide range of frequency offsets can be estimated (±80ppm) using only two

autocorrelators. The output of one of those is also used in the frame detection mechanism. This allows

a significant core area reduction in comparison with other proposed solutions, as in [SCHW01]. Here,

the range of the estimated frequency offsets is ±40ppm and three autocorrelators are used for the

frame detection, but only two of them for the frequency offset estimation.

After autocorrelation, the signal is averaged with FIR filters and the square magnitude is calculated.

In our design, frame detection is performed by a plateau detector, which has to detect a specific

plateau shape in the incoming preamble symbols. When this plateau is detected, the carrier frequency

offset can be estimated with a CORDIC processor operating in arctangent mode [MAH05]. As a result

of this estimation, the frequency correction parameter ε is generated.

BBAASSEEBBAANNDD PPRROOCCEESSSSOORR

TTRRAANNSSMMIITTTTEERR

RREECCEEIIVVEERR

II NN
PP

UU
TT

 BB
UU

FF
FF

EE
RR

SS
CC

RR
AA

MM
BB

LL
EE

RR

SS
II GG

NN
AA

LL
 FF

II EE
LL

DD

GG
EE

NN
EE

RR
AA

TT
OO

RR

EE
NN

CC
OO

DD
EE

RR

II NN
TT

EE
RR

LL
EE

AA
VV

EE
RR

MM
AA

PP
PP

EE
RR

PP
II LL

OO
TT

 II NN
SS

EE
RR

TT
II OO

NN

PPIILLOOTT

SSCCRRAAMMBBLLEERR

GG
UU

AA
RR

DD
 II NN

TT
EE

RR
VV

AA
LL

PP
RR

EE
AA

MM
BB

LL
EE

 II NN
SS

EE
RR

TT
II OO

NN

SS
YY

NN
CC

HH
RR

OO
NN

II SS
EE

RR

DD
AA

TT
AA

PP
AA

TT
HH

CC
HH

AA
NN

NN
EE

LL

EE
SS

TT
II MM

AA
TT

OO
RR

DD
EE

MM
AA

PP
PP

EE
RR

DD
EE

II NN
TT

EE
RR

LL
EE

AA
VV

EE
RR

VV
II TT

EE
RR

BB
II DD

EE
CC

OO
DD

EE
RR

EE
NN

CC
OO

DD
EE

RR

II NN
TT

EE
RR

LL
EE

AA
VV

EE
RR

MM
AA

PP
PP

EE
RR

DD
EE

SS
CC

RR
AA

MM
BB

LL
EE

RR

PP
AA

RR
AA

LL
LL

EE
LL

 CC
OO

NN
VV

EE
RR

TT
EE

RR

II FF
FF

TT
// FF

FF
TT

 PP
RR

OO
CC

EE
SS

SS
OO

RR

SS
YY

NN
CC

HH
RR

OO
NN

II SS
EE

RR

TT
RR

AA
CC

KK
II NN

GG

BB
UU

FF
FF

EE
RR

 22
00
 -- 88

00

BB
UU

FF
FF

EE
RR

 88
00
 -- 22

00

Figure 5.1. Baseband processor block diagram

Chapter 5. GALS Application in Wireless Communication System

 56

PPRROOCCEESSSSIINNGG DDAATTAAPPAATTHH

ZZ --6644

((..))** FFIIRR ((6644))

FFIIRR ((1166))

 
22 PPLLAATTEEAAUU

DDEETTEECCTTOORR

NNCCOO FFFFTT

CCRROOSSSSCCOORREELLAATTOORR

Data to the

Channel
Estimator

AARRCCTTAANN

Input
data

CCOOMMBBIINNEE

ZZ
--1166

α

β ε

TTRRAACCKKIINNGG DDAATTAAPPAATTHH

Figure 5.2. Structure of the synchroniser

The activity of the processing datapath starts after the frame is detected and the estimated value for

frequency offset is available. This part of the synchroniser performs the carrier frequency error

correction, estimates the symbol timing, and obtains the reference channel estimation. It consists of an

NCO (Numerically Controlled Oscillator, in this case a CORDIC processor operating in rotational

mode), an FFT processor and a simplified crosscorrelator based on XNOR gates [KRS03d].

Channel estimation and equalization is based on a decision-directed method [MIG96] with simplified

residual phase estimation and correction. This type of channel estimation is based on a feedback loop.

Therefore, our receiver performs additional convolutional encoding, interleaving and mapping (Figure

5.3). The interesting point in this concept is that it uses a division unit to correct the data samples

(blocks equalizer and zero forcing in Figure 5.3. The estimator is designed in such a way that the

samples of symbol i are used to calculate an estimation of the channel, which will be used to correct

the symbol i+D, where D is the delay introduced by the feedback loop. Therefore, a delay buffer is

needed to store the delayed symbols.

Other blocks in the receiving path are demapper, deinterleaver, descrambler, Viterbi decoder, and

additional buffers. In order to simplify processing of data and reduce power consumption, the complete

structure was divided into two clock domains. Computationally complex blocks without high data

throughput were designed for 20 MHz and high data throughput demanding circuits were designed for

80 MHz clock frequency. With this clock domain separation, significant power saving was achieved.

Chapter 5. GALS Application in Wireless Communication System

 57

EEQQUUAALLIIZZEERR

),D(ˆ

),(
),(ˆ

kiH

kiY
kiX

−
=

),D(ˆ

),D(
),D(ˆ

kiX

kiY
kiH

−
−

=−

DEMAPPER
DEINTERLEAVER

VITERBI
DECODER

MAPPER INTERLEAVER ENCODER
),D(kiY −

),D(ˆ kiH −

CCHHAANNNNEELL

EESSTTIIMMAATTOORR

RREESSIIDDUUAALL

PPHHAASSEE

CCOORRRREECCTTIIOONN

SYNC.
+

FFT

),D(ˆ kiX −

),(ˆ kiX

ZZEERROO FFOORRCCIINNGG

PILOT SIGN
CORRECTION

EESSTTIIMMAATTIIOONN

BBUUFFFFEERR
((CCIIRRCCUULLAARR

BBUUFFFFEERR))

DELAY
BUFFER

(D)

Figure 5.3. Structure of the channel estimator

The design of the synchronous baseband processor involves a number of integration challenges.

For example, it was very complicated to generate the global clock tree due to two different clock

domains (80 and 20 MHz, and an on-chip clock-divider) and an internally generated 10 MHz clock

domain for the Viterbi trace-back logic. On top of this structure, clock-gating was applied as a power

saving mechanism. Additionally, the complete design is flip-flop and not memory based, resulting in

leaves in the design of approximately 36k flip-flops. That led to an even more complicated generation

of the global clock tree. As a consequence, we had to solve enormous clock-skew problems.

Therefore, due to CAD tool limitations and design complexity, the complete process was very

prolonged and iterative.

As we plan to integrate a complete WLAN modem into a single chip, the integration problems will

be even worse. The transformation of the standard synchronous design to a request–driven GALS

architecture was pursued as a possible solution for the integration problems. The first task in order to

perform GALSification of the baseband processor is block partitioning.

5.3 GALS Partitioning

It is always hard to define the strategy for partitioning a complex digital system into blocks. There

are several options how this partitioning could be done, as we described in [KRS04a, KRS04b].

Additionally, the problem of GALS partitioning is elaborated in [MUT01].

It is plausible to take into account the natural division of processing stages of a system. In addition

to that, an important issue is the power distribution in the processor. An optimal partitioning should

support power saving in a similar way as clock gating.

Chapter 5. GALS Application in Wireless Communication System

 58

For example, if we have one simple input block which has to process data very frequently, and the

following very complex processing block which has to acquire data from time to time from the latter

one, we could achieve large power savings if we partition those two blocks into separate GALS blocks.

In this way, a complex block will be triggered only in the periods when there is some data to be

processed.

Several additional factors are important for partitioning, such as complexity of the dataflow, clock

frequency of locally synchronous modules, clock-tree complexity of the block, number of interconnects

between the blocks, and gate count of the blocks. For example, it is always desirable to achieve

acceptable trade-off between the gate size of a GALS block and the size of the wrapper. Additionally,

a certain performance level must be achieved in order to provide the correct functioning of the

baseband chip. Following this, during the process of block partitioning, we should take into account,

whether the required performance level can be achieved with this particular block division or not.

The proposed request-driven operation of the GALS blocks induces a problem when we want to

connect two blocks operating at different clock speed. Generally, low rate requests can drive high

clock speed blocks without additional timing requirements. However, this configuration may lead to an

unwanted performance drop. A more severe situation occurs when we connect high-speed request to

the block synthesized with relaxed timing constraints. In that case, the timing requirements of the

lower frequency may not be fulfilled. For example, in our baseband processor we have blocks that are

operating at 80 MHz and at 20 MHz. In order to resolve such problems, we generated a special

interconnection block that performs rate adaptation (dataflow transformation from 80 Msps to

20 Msps). For 80 Msps to 20 Msps rate adaptation, we could simply use a standard asynchronous

FIFO as an interface. For dataflow transformation from 20 Msps to 80 Msps, it is best to use a

separate GALS block as an interface. This block just buffers data in request-driven mode, and when

an input burst is received, the interface GALS block will retransfer data with a higher clock rate.

The baseband chip is naturally divided into two different processing blocks – transmitter and

receiver. In this implementation, there is no coupling between those two processing stages. Therefore,

GALS partitioning is separately performed in the transmitter and in the receiver. This partitioning took

into account natural boundaries between synchronous blocks, power saving issues, and need for

uniformly distributed area between the GALS blocks. Furthermore, we decided to introduce the limited

number of GALS blocks in order to simplify the GALSification and the hardware overhead. The result

of our GALS partitioning is shown in Figure 5.4.

The principle structure of the GALS and the synchronous baseband processor is the same. The

main change in the GALS implementation is a separation of IFFT and FFT processors in order to

simplify the dataflow and consequently the implementation. In contrast, in the synchronous

implementation, a single processor executes both operations. However, with reasonable effort it is

possible to merge FFT and IFFT processors for the GALS implementation as well.

Chapter 5. GALS Application in Wireless Communication System

 59

The baseband processor is a design with complex control structures. There are numerous control

signals connecting different blocks. Therefore, we separated all those signals into two basic types:

static and dynamic. An inter-domain signal is considered to be static when it doesn’t change its value

frequently and when this change is performed only when the receiving GALS block is inactive.

Consequently, static signals can be transferred between the blocks without synchronisation. On the

other hand, all other signals are considered as dynamic and they must be included in the data transfer

via asynchronous wrappers.

TTXX__22

BBLLOOCCKK

RRXX__11 BBLLOOCCKK

TTXX__11 BBLLOOCCKK

RRXX__TTRRAA

BBLLOOCCKK RRXX__33 BBLLOOCCKK

TT
XX

__
II NN

TT
 ((AA

SS
YY

NN
CC

-- SS
YY

NN
CC

II NN

TT
EE

RR
FF

AA
CC

EE
))

TTXX__33 BBLLOOCCKK

RRXX__22 BBLLOOCCKK

II NN
PP

UU
TT

 BB
UU

FF
FF

EE
RR

SS
CC

RR
AA

MM
BB

LL
EE

RR

SS
II GG

NN
AA

LL
 FF

II EE
LL

DD
 GG

EE
NN

..

EE
NN

CC
OO

DD
EE

RR

II NN
TT

EE
RR

LL
EE

AA
VV

EE
RR

MM
AA

PP
PP

EE
RR

PP
II LL

OO
TT

 SS
CC

RR
AA

MM
BB

LL
II NN

GG

&&
 II NN

SS
EE

RR
TT

II OO
NN

II FF
FF

TT

GG
UU

AA
RR

DD
 II NN

SS
EE

RR
TT

II OO
NN

PP
RR

EE
AA

MM
BB

LL
EE

 II NN
SS

EE
RR

TT
..

SS
YY

NN
CC

HH
RR

OO
NN

II ZZ
EE

RR

DD
AA

TT
AA

PP
AA

TT
HH

CC
HH

AA
NN

NN
EE

LL

EE
SS

TT
II MM

AA
TT

OO
RR

DD
EE

MM
AA

PP
PP

EE
RR

DD
EE

II NN
TT

EE
RR

LL
EE

AA
VV

EE
RR

VV
II TT

EE
RR

BB
II DD

EE
CC

OO
DD

EE
RR

EE

NN
CC

OO
DD

EE
RR

II NN
TT

EE
RR

LL
EE

AA
VV

EE
RR

MM
AA

PP
PP

EE
RR

DD
EE

SS
CC

RR
AA

MM
BB

LL
EE

RR

PP
AA

RR
AA

LL
LL

EE
LL

 CC
OO

NN
VV

..

FF
FF

TT

SS
YY

NN
CC

HH
RR

OO
NN

II ZZ
EE

RR

TT
RR

AA
CC

KK
II NN

GG

RR
XX

__
II NN

TT
 ((AA

SS
YY

NN
CC

-- SS
YY

NN
CC

II NN

TT
EE

RR
FF

AA
CC

EE
))

TT
OO

KK
EE

NN
 RR

AA
TT

EE

AA
DD

AA
PP

TT
AA

TT
II OO

NN

TT
OO

KK
EE

NN
 RR

AA
TT

EE

AA
DD

AA
PP

TT
AA

TT
II OO

NN

FF
II FF

OO
 ((FF

II FF
OO

 TT
AA

))

AA
CC

TT
II VV

AA
TT

II OO
NN

 II NN
TT

EE
RR

FF
AA

CC
EE

AAWW

TTXX__22
AAWW

TTXX__33

AAWW

RRXX__TTRRAA
AAWW

RRXX__33

AAWW

RRXX__11

AAWW

RRXX__22

a)

b)

Figure 5.4. GALS partitioning in the transmitter (a) and receiver (b)

Chapter 5. GALS Application in Wireless Communication System

 60

5.3.1 Transmitter Dataflow Organisation

Partitioning the transmitter is relatively easy. The transmitter is a straightforward datapath

architecture, based on a token-flow design technique. Normally, a block division must take into

account the functionality and complexity of the existing blocks. Consequently, the complete baseband

transmitter is divided by natural functional boundaries into three modules. Block Tx_1 comprises 80

MHz components such as signal generator, scrambler, encoder, interleaver and mapper. The

complexity of the block is about 17k gates (inverter equivalents). Block Tx_1 is not GALSified due to

the complex off-chip interface protocol. The intermediate block Tx_2 (20k gates) has to perform pilot

insertion and serial to parallel conversion. Additionally, this block performs token rate adaptation

because it receives tokens at a frequency of 80 Msps and should generate tokens at 20 Msps for the

last block. This is performed in the following way: When block Tx_2 is in request-driven mode, it will

collect data at 80 Msps, but it will not generate any token to the neighbouring block Tx_3. When a

complete data burst for one symbol is collected (48 data tokens), the local clock generator, set to 20

MHz, will initiate data transfer to block Tx_3. Block Tx_3 (153k gates) contains the very complex IFFT

processor as well as guard interval insertion and preamble insertion. There is an additional problem in

the communication between blocks Tx_2 and Tx_3. Generally, communication between those two

blocks is performed in bursts of 8 data tokens and then block Tx_3 has to process the data for the next

72 cycles without any new incoming data. Therefore, block Tx_3 generates a special signal that grants

transfer of a token burst (8 tokens) from the Tx_2 side. After that, this signal is released for 72 local

cycles needed for processing.

5.3.2 Receiver Dataflow Organisation

The GALS receiver is significantly more complex. The gate count is more than double that of the

transmitter. Moreover, the dataflow is much more complicated. The receiver can be partitioned into

blocks operating at 20 Msps and into blocks with 80 Msps datarate. Additionally, the 20 Msps domain

can be divided into two sub-blocks in order to limit the switching activity of the receiver. Consequently,

there are three major blocks in the receiver. Block Rx_1 is a tracking synchroniser block with a

hardware complexity of 80k gates and 20 Msps datarate. Block Rx_2 performs the datapath

synchronisation and channel estimation. This block is quite complex (235k gates) and it operates with

20 Msps datarate. Block Rx_3 (168k gates) performs, in terms of timing and power, the most critical

operations such as Viterbi decoding and deinterleaving. The block operates with 80 Msps datarate.

One of the main challenges in the receiver is how to control the token ring between blocks Rx_2 and

Rx_3, and how to achieve token rate adaptation from 20 Msps to 80 Msps (in forward data transfer

Rx_2 → Rx_3), and from 80 Msps to 20 Msps (in backward data transfer Rx_3 → Rx_2). An additional

problem is how to synchronise backward data transfer with forward data transfer. For solving those

problems there are two possible solutions.

Chapter 5. GALS Application in Wireless Communication System

 61

The first solution synchronises backward and forward dataflow. It appears plausible to define the

backward dataflow as a slave (dependent) dataflow and the forward as a master (independent)

dataflow. In this case, the slave dataflow can be established only in parallel to the master one. Token

transformation in the baseband receiver according to this proposal is illustrated in Figure 5.5. In order

to make this interface possible, one additional buffer stage, named Dataflow synchronisation, must be

added to block Rx_3. This stage has to synchronise the backward data transfer at 80 Msps with the

incoming forward data transfer to block Rx_3. Data can be transferred back to block Rx_2, only when

the new data is supplied to block Rx_3. With such solution, the slave dataflow will not be an

independent constituent of the asynchronous communication between the blocks, and the backward

data transfer will be coupled with the forward data transfer. Similarly, block Rx_TRA is added in order

to perform token rate adaptation (dataflow transformation from 20 Msps to 80 Msps) for the forward

dataflow.

However, we decided to use the more general token ring solution and to retain independent

backward dataflow. This can be achieved by adding two types of interface blocks: GALS block

Rx_TRA and the asynchronous FIFO_TA, as shown in Figure 5.4 and with more details in Figure 5.6.

This way, the backward dataflow is treated as an independent dataflow that creates asynchronous

tokens. Rx_TRA will perform datarate transformation from 20 Msps to 80 Msps and FIFO_TA datarate

transformation from 80 Msps to 20 Msps.

Module RX_TRA is implemented as a synchronous FIFO. It functions like any other GALS block. In

request-driven mode, it receives 48 data samples per OFDM symbol at a datarate of 20 Msps. When

the complete burst is received, the local oscillator resends the data to block Rx_3 at a datarate of 80

Msps. An equivalent block with the same structure and the same complexity exists also in the

synchronous implementation of the baseband processor. Block FIFO_TA is implemented as a latch-

based asynchronous FIFO. This block is supplied from Rx_3 block with 48 tokens per OFDM symbol

at 80 Msps datarate. The data into Rx_2 comes from two sources, FIFO_TA and activation interface.

1,6 µs

Master data burst
coming from
GALS Rx_2 block

Master data burst
after token
transformation
(multiplication 4*1)

2,4 µs 1,6 µs

0,6 µs 3,4 µs

Slave data burst
after token
transformation
(division 1/4)

Slave data burst
coming from
GALS Rx_3 block

2,4 µs

0,6 µs 3,4 µs

Synchronization of
master and slave data
streams

Figure 5.5. Possible solution of dataflow synchronisation

Chapter 5. GALS Application in Wireless Communication System

 62

1,6 µs

Data burst
coming from
GALS block Rx_2

Data burst after
token
transformation
(Rx_TRA)

2,4 µs 1,6 µs

0,6 µs 3,4 µs

Data burst after
FIFO_TA
(effectively token
rate division)

Data burst coming
from GALS block
Rx_3

2,4 µs

0,6 µs
3,4 µs

RR
XX

__
II NN

TT

 FF
II FF

OO
__
TT

AA

AA
CC

TT
II VV

AA
TT

II OO
NN

 II NN
TT

EE
RR

FF
AA

CC
EE

RRXX__33 BBLLOOCCKK

RRXX__TTRRAA

BBLLOOCCKK

RRXX__22 BBLLOOCCKK

RRXX__11 BBLLOOCCKK

20 Msps

2.4 µs
data burst

80 Msps

0.6 µs
data burst

80 Msps

0.6 µs
data burst

20 Msps

2.4 µs
data burst

Token alignment

(dataflow join)

Dataflow
fork

Figure 5.6. General solution for dataflow organisation

The FIFO output datarate is determined by the activation interface datarate. Since the activation

interface operates at 20 Msps, the output datarate of the FIFO_TA will be the same. A similar circuit

exists in the synchronous implementation of the baseband processor. However, the asynchronous

FIFO is less complex than the synchronous counterpart.

A critical aspect in this solution is the control of the asynchronous token ring. Since the latency in

this feedback loop is not known, joins and forks created in the system must be designed in such way

that the operation of the system is not disrupted. Therefore, we have implemented the special join

circuit for the alignment of tokens entering block Rx_2. FIFO_TA block performs the handshake very

fast. The rate of the joined dataflow is determined by the activation interface rate (20Msps).

5.4 Power Saving Mechanisms

Using the proposed partitioning inside the Baseband processor it is possible to efficiently implement

power saving mechanisms. In the following, we will analyze the activity of the baseband processor for

a typical scenario of transmitting one frame, waiting for a response from the other station and receiving

the acknowledgement frame.

As shown in Figure 5.7, after reset the baseband processor will produce no switching until the first

data from outside arrives. The activity starts when the first data from AFE arrives or a frame

transmission is initiated. After that, in the process of receiving, most of the time only block Rx_1 will be

Chapter 5. GALS Application in Wireless Communication System

 63

active, trying to find the synchronisation pattern. This block is relatively small and the power

consumption level will be acceptable. When synchronisation is reached, block Rx_1 becomes inactive

and block Rx_2 will start its activity. This is achieved by switching the token multiplexer that is termed

‘activation interface’ in Figure 5.4 from ‘tracking’ to ‘datapath’ synchroniser. The activation scenario

from Figure 5.7 did not cover the activity of the local clock of block Rx_2. In general, the local clocks of

the blocks Rx_1 and Rx_2 operate for very few cycles after the activation mechanism disables the

dataflow from the respective block. During those few cycles, the synchronous block should be

reinitialized and prepared for the next data processing. Block Rx_3 will be activated only after a frame

was detected and channel estimation was performed. Then the data is processed by the Viterbi

decoder and Rx_3 becomes active. Blocks Rx_TRA and FIFO_TA are active only for a short period of

time. During operation of the receiver, the transmitter is inactive.

Global clock

Req. clock Tx_2

Loc. clock Tx_2

Req. clock Tx_3

Loc. clock Tx_3

Req. clock Rx_1

Loc. clock Rx_1

Req. clock Rx_2

Loc. clock Rx_2

Req. clock Rx_23

Loc. clock Rx_23

Req. clock Rx_3

Loc. clock Rx_3

FIFO TRA active

Transmitting phase Receiving
 phase

 - frame tracking

Receiving phase
 - frame processing

Figure 5.7. Activation scenario in the baseband processor

The amount of power saving achieved by this technique is comparable to clock gating with a similar

strategy. An additional possibility to save power with respect to the standard synchronous solution is,

that we are dealing with generally simpler local clock trees. For our synchronous version, block Rx_1

is active even when the system is in transmit mode. In order to allow a fair comparison we have

retained this property for the GALS implementation.

The GALS introduction did not cause significant changes and challenges for the high-level system

integration. The same asynchronous wrapper architecture was used for all blocks. All synchronous

blocks remained unchanged. In principle, the interface block Rx_TRA already existed in the

synchronous design, whereas other interfaces had to be designed additionally. However, for future

GALS designs all blocks can be re-used.

Chapter 5. GALS Application in Wireless Communication System

 64

5.5 Important Details – GALS Extensions

In order to control the operation of the GALS baseband processor it was necessary to develop

several additional components. In general, to create a functional asynchronous token flow, it is needed

to construct asynchronous building blocks such as join, merge, and mux. Moreover, it is needed to

build blocks which provide communication of GALS wrappers with standard synchronous blocks. In

general, these blocks must be able to absorb all tokens coming from the synchronous circuitry, and,

on the other hand, to communicate all the time with asynchronous wrappers adhering to the

handshake protocol.

In the following subsections, the structure and operation of those block will be described. Special

attention will be paid to low power design of such components and possible optimizations of the

suggested concepts.

5.5.1 Activation Interface for Blocks Rx_1 and Rx_2

The receiver activation scheme, introduced in the previous section, requires implementation of the

interface between the blocks Rx_1 and Rx_2 with the synchronous decimator block. The purpose of

this interface is to activate just one of the receiver blocks depending on the state of the receiver. In the

tracking phase, block Rx_1 is activated and block Rx_2 is disabled. In the processing phase, block

Rx_2 is active and the token flow toward block Rx_1 is disabled. The interconnect structure is shown

in Figure 5.8.

II NN
TT

EE
RR

FF
AA

CC
EE

 TT
OO

 DD
EE

CC
II MM

AA
TT

OO
RR

SS
YY

NN
CC

HH
RR

OO
NN

II SS
EE

RR

DD
AA

TT
AA

PP
AA

TT
HH

SS
YY

NN
CC

HH
RR

OO
NN

II SS
EE

RR

TT
RR

AA
CC

KK
II NN

GG

ddaattaa RRoott__vvaall__ookk

rreeqq

rreeqqdd

rreeqqtt

aacckktt

aacckkdd
CChhaannnneell DD

CChhaannnneell TT

Figure 5.8. Synchroniser/decimator Interconnect

Chapter 5. GALS Application in Wireless Communication System

 65

In general, signal Rot_val_ok allows a handshake on one of two possible handshake channels

Channel D and Channel T. When Rot_val_ok is low, Channel T is active and the tracking part of the

synchroniser (GALS block Rx_1) receives the data. When coarse synchronisation is reached,

Rot_val_ok goes high and enables Channel D that triggers the datapath part of the Synchroniser

(GALS block Rx_2). With this solution only one of two synchronising datapaths are active at one

moment. The synchronous interface to the decimator cannot utilize the acknowledge signals of the

asynchronous channels. Therefore, the asynchronous wrappers for blocks Rx_1 and Rx_2 must be

able to finish a complete handshake within one clock cycle. In the GALS baseband system, this

prerequisite is easy to fulfil. Signal Rot_val_ok changes its value only when both requests are low.

This guarantees that the triggering of the request-driven blocks Rx_1 and Rx_2 is glitch free.

5.5.2 Specific Asynchronous Fork

From the baseband processor architecture in Figure 5.4 it is possible to observe the specific

dataflow configuration of block Rx_3. This receiver stage is supplying two adjacent blocks with tokens.

Therefore, it is necessary to implement a fork circuit for connection of block Rx_3 with FIFO rate

adaptation circuitry and synchronous interface. Two channels that are generated (Channel F and S)

with this fork can be activated only when there is an activation token for the particular channel. The

FIFO rate adaptation circuitry consumes 48 data tokens per symbol (4 µs). The synchronous interface,

on the other hand, receives the irregularly distributed tokens, indicating a valid received output byte.

The two control signals, coming from block Rx_3, used to enable Channel F and S are Start_m and

Write_fifo, respectively. The logical structure of the fork is given in Figure 5.9.

BB
LL

OO
CC

KK
 RR

XX
__

33

FF
II FF

OO
 RR

AA
TT

EE

AA
DD

AA
PP

TT
AA

TT
II OO

NN

SS
YY

NN
CC

HH
RR

OO
NN

OO
UU

SS

II NN
TT

EE
RR

FF
AA

CC
EE

DDaattaa11

rreeqq

rreeqqff

rreeqqss

aacckk

aacckkss

aacckkff

DDaattaa22

SSttaarrtt__mm

wwrriittee__ffiiffoo

CC

CChhaannnneell FF

CChhaannnneell SS

CC11

Figure 5.9. Circuit for connecting Rx_3, FIFO and synchronous interface

Chapter 5. GALS Application in Wireless Communication System

 66

When only one of the channels is active (indicated by activation of either Start_m or Write_fifo), the

simple handshake should be performed. When both are active (indicated by activation of both Start_m

and Write_fifo), the asynchronous fork operation should be performed. Activation of both signals

(Start_m and Write_fifo) is synchronised due to the fact that they are generated in the LS part of the

block Rx_3. The specific fork circuitry contains just AND gates for generation of the respective request

signals (reqf and reqs). They are activated if the request signal (req) and the respective activation

signal (Start_m and Write_fifo) are simultaneously present. On the other hand, the acknowledge signal

(ack) is generated from C-element C1, that joins acknowledge tokens from Channels F and S. Two

AND-OR gates drive this C-element. When the channel is active (indicated with Start_m and

Write_fifo) they should just pass the respective acknowledge signal (ackf or acks) to C-element. If the

channel is not active, every request will immediately generate an acknowledge from the respective

AND-OR structure. A precondition for glitch-free behaviour of the fork circuit is that signals Start_m

and write_fifo must change their value before or at the request rising edge. However, this is easy to be

fulfilled.

5.5.3 Token Alignment

In order to create the specific join between the synchronous interface and the FIFO token rate

adaptation circuitry, a token alignment circuit was developed. From the synchronous circuit, tokens are

coming every clock cycle (20 Msps), but from the FIFO, tokens are arriving in bursts and with a

different rate (48 tokens per 80 tokens from the synchronous part). The joined tokens trigger block

Rx_2. In order to not decrease the performance of the system, it is necessary to implement the

appropriate join circuitry, as proposed in Figure 5.10.

When tokens are expected from both channels, the handshake circuitry will perform a join of

requests REQ and REQL. When a token is expected only from the synchronous interface, the simple

one channel handshake (REQ-ACK) will be performed. The circuitry consist of an asynchronous

controller (given on Figure 5.11) which, depending on control signal EN, should join two incoming

requests or just perform a simple handshake.

Signal EN is generated from additional circuitry that incorporates one counter that should signal

when tokens on both channels are expected and when not. The counter counts until 48 and it will be

triggered with every incoming token from FIFO. Before this counter reaches 48, the full asynchronous

join is performed. After that, until a new REQL comes, only a simple handshake will be performed.

After that, the handshake circuitry will start again with the join operation. Implementation of the

ACONT controller is quite simple and it is defined by the following logic equations generated from 3D

tool [YUN99a]:

PASS*REQREQA*REQLREQA*REQ*REQL *REQ REQA ⋅+⋅+⋅+⋅=

Chapter 5. GALS Application in Wireless Communication System

 67

EN PASS =

Additional circuitry (Mutex element, RS-flip-flops, AND gates) shown in Figure 5.10 is required in order

to guarantee burst-mode behaviour of the AFSM controller. Mainly, those blocks should prevent the

appearance of signal REQL in the middle of a handshake on the REQ-ACK channel.

AACCKKLL

RREEQQ**

AACCOONNTT

RREEQQAA

AACCKKAA AACCKK

RREEQQLL**

Counter48

MM
uu

tt ee
xx

RREEQQ

 QQ

 SS

RR

EENN

 QQ

 SS

RR

ccllkk

PPAASSSS

rreesseett

RREEQQLL

RREEQQ--AACCKK

cchhaannnneell

RREEQQLL--AACCKKLL

cchhaannnneell

RREEQQAA--AACCKKAA

cchhaannnneell
ffrroomm

ssyynncchhrroonnoouuss

eennvviirroonnmmeenntt

ffrroomm FFIIFFOO

ttoo RRxx__22 bblloocckk

a)

b)

Figure 5.10. Join channel block diagram (a) and schematic (b)

Chapter 5. GALS Application in Wireless Communication System

 68

RREEQQLL**++,, RREEQQ**++ //

RREEQQAA++

RREEQQ**-- //

RREEQQAA--

11

00

22

33

EENN-- //

PPAASSSS++

RREEQQ**++ //

RREEQQAA++

EENN++ //

PPAASSSS--

RREEQQLL**--,, RREEQQ**-- //

RREEQQAA--

Figure 5.11. AFSM for ACONT controller

5.5.4 Rate Adaptation

At two interfaces in the receiver it is necessary to connect GALS blocks operating at different clock

speed. In both cases it is a connection between block Rx_2 (20 Msps block) and block Rx_3 (80 Msps

block). In one case, tokens are generated from Rx_2, and, in the other case, from Rx_3. Because our

GALS blocks are request-driven, it is necessary for the correct operation to have tokens coming at the

expected clock speed. In order to solve this issue, we have developed two decoupling circuits

RX_TRA and FIFO_TA as explained in section 5.3.1.

5.5.5 Token Synchronisation in the Transmitter

The token-flow of the baseband transmitter has one additional requirement, which cannot be

covered with the functional behaviour of the already proposed simple asynchronous wrappers. In the

transmitter, the last block in the dataflow - Tx_3, starts to send the preamble sequence immediately

after the transmit command. In the meantime, the other transmitter blocks process the signal and data

field information. After transmission of the preamble block, Tx_3 starts to send the signal field

information. However, data transfer between Tx_2 and Tx_3 must be synchronised in order to acquire

data in block Tx_3 in a particular clock cycle. For that reason, the data transfer in block Tx_2 is

prepared well before Tx_3 need the data, but it is not enabled. If the data is ready but the transfer is

not granted, further clocking of block Tx_2 is disabled with pausing of the local oscillator. When the

data is really needed, the clock oscillator of block Tx_2 will be released and the data transfer is

performed. In hardware, this is performed in a very simple manner. One AND gate disables incoming

requests between blocks Tx_2 and Tx_3. This gate will be released only when tokens from block Tx_2

are expected.

Chapter 5. GALS Application in Wireless Communication System

 69

5.6 Synchronous-Asynchronous Interfaces

The baseband processor is intended for use in a standard synchronous environment. In transmit

mode, it has to generate data tokens at every clock cycle (20 Msps) to the DAC (Digital to Analog

Converters). In receive mode, it must be able to absorb data tokens from the ADC (Analog to Digital

Converter) at every clock cycle (20 Msps). These specific requirements are very hard for a non-

deterministic GALS system. In order to perform those tasks, specific interface circuits are proposed.

The proposed blocks are of two types: the first for supporting the communication between a

synchronous producer and an asynchronous consumer and the second for communication between

an asynchronous producer and a synchronous consumer.

5.6.1 Synchronous to Asynchronous Communication

To connect a synchronous token producer with a request-driven GALS block, a relatively simple

pipeline circuit can be used (Figure 5.12). Pipeline stages are used to store tokens coming from the

producer, if the GALS block cannot immediately consume them. A tunable delay element is inserted

on the acknowledge line to the GALS block in order to preserve the minimum cycle time for this GALS

block (for request driven operation of GALS). However, this solution may cause significant delays in

the GALS block. On the other hand, if the delay is not long enough it is possible to trigger the GALS

block with a higher frequency than its locally synchronous pipeline can operate at.

SSTTAANNDDAARRDD
SSYYNNCCHHRROONNOOUUSS

PPRROODDUUCCEERR

((BBUURRSSTTYY OOUUTTPPUUTT))

ccllkk

GGAALLSS BBLLOOCCKK

mmaattcchheedd

ddeellaayy

rreeqq==ccllkk∧∧∧∧∧∧∧∧ddvv

aacckk

rreeqqgg

aacckkgg

SSYYNNCC--AASSYYNNCC IINNTTEERRFFAACCEE

Figure 5.12. Synchronous to asynchronous connection

5.6.2 Synchronous to Asynchronous Communication with a

Continuous Synchronous Data Stream

When data from the synchronous producer is continuously generated, we propose that the first

GALS block in the datapath is driven directly from the synchronous block (as depicted in Figure 5.13).

In order to avoid the performance drop in the first GALS block an interface described previously is

attached. The task of the interface is to decouple GALS block 1 and GALS block 2, and to collect

some possibly delayed tokens.

Chapter 5. GALS Application in Wireless Communication System

 70

However, even this solution may suffer from similar problems as the one from the subsection 5.6.1.

Therefore, in the GALS baseband processor we connected the request line of the first GALS block in

the dataflow directly to the synchronous clock. In this case, the acknowledge line is not used.

Consequently, we must rely on the fact that a token consumer is able to absorb every token for the

time of one synchronous clock cycle. For our GALS processor it was easy to guarantee such

behaviour. This condition is fulfilled with the insertion of decoupling circuitry between blocks RX_TRA

or Tx_2 block. The interface GALS block, when operating in request-driven mode, is completely

decoupled from the subsequent GALS blocks. Therefore, it can easily respond to the incoming request

without additional delay due to the handshake with the following GALS block.

GGAALLSS BBLLOOCCKK 11

GGAALLSS BBLLOOCCKK 22

ttuunnee

rreeqqgg11

aacckkgg11

rreeqqggnn

aacckkggnn

AASSYYNNCC--AASSYYNNCC IINNTTEERRFFAACCEE

SSYYNNCCHHRROONNOOUUSS

BBLLOOCCKK WWIITTHH

CCOONNTTIINNUUOOUUSS
DDAATTAA SSTTRREEAAMM

((II..EE.. AADDCC))

ccllkk

rreeqq((ccllkk))

aacckk

Figure 5.13. Connecting synchronous and asynchronous blocks with intensive data transfer activity

5.6.3 Asynchronous to Synchronous Communication

The interface between an asynchronous token producer and a synchronous consumer is a simpler

problem than the previous one. The reason is the request-driven nature of the GALS block, which

does not severely affect this type of communication. To connect an asynchronous producer with a

synchronous consumer we used well known pipeline synchronisation [SEIZ94] (Figure 5.14). This

solution is used for the connection of GALS baseband blocks with the DAC. It is also applied to the

receiver output stage when connecting block Rx_3 to the synchronous interface. Several MUTEX

elements are used to synchronise the incoming request with the synchronous clock. With this solution,

synchronisation problems are hidden in the hardware of FIFO stages. This way, we can safely connect

an asynchronous producer with a synchronous consumer. Addition of more pipeline stages leads to an

increase of the system robustness. However, an increased number of stages also leads to a

significant increase in power consumption and area.

Using pipeline synchronisation, the dataflow between an asynchronous producer and a

synchronous consumer is reliable and fast. However, in order to guarantee robust operation of this

Chapter 5. GALS Application in Wireless Communication System

 71

interface, the structure of the implemented pipeline synchroniser is very complex and power hungry.

Therefore, one of our future tasks is simplification of the applied concept.

GGAALLSS BBLLOOCCKK

ccllkk

SSYYNNCCHHRROONNOOUUSS

CCOONNSSUUMMEERR

rreeqqgg

aacckkgg

AASSYYNNCC--SSYYNNCC IINNTTEERRFFAACCEE

MM
UU

TT
EE

XX

MM
UU

TT
EE

XX

MM
UU

TT
EE

XX

ccllkk ccllkk

Figure 5.14. Asynchronous to synchronous interface

Chapter 5. GALS Application in Wireless Communication System

 72

 73

Chapter 6

Design for Testability in GALS
Systems

6.1 Introduction

Design for testability has always been a bottleneck for asynchronous systems and one of the most

important reasons why asynchronous techniques have not gained adequate industrial popularity yet.

In recent times, Globally Asynchronous Locally Synchronous (GALS) techniques are proposed as an

effective way of complex digital system integration. GALS wrappers have to facilitate the integration of

large synchronous blocks into complex digital systems. In order to achieve wide commercial use of the

GALS technique, it is needed to provide an adequate way of testing it.

Our aim is to test GALS chips with standard hardware testers. However, usually such equipment is

oriented towards pure synchronous systems. On the other hand, most GALS systems are externally

synchronous, but they are not timing deterministic. Therefore, a pure functional test of an

asynchronous digital system with standard synchronous test equipment is not easy. A simple and

efficient alternative is needed.

The choice of a suitable test technique is a complex problem. Generally, the design for testability

(DFT) of synchronous digital systems is based on the scan chain approach. There are similar

techniques also in the asynchronous side [BER02]. On the other hand, there are claims that a

functional test is adequately efficient for asynchronous circuits. Recently, a GALS test technique

based on a functional test is proposed in [GUR02]. Built-In Self-Test (BIST) could be a promising

approach for GALS systems and it is already successfully used in the asynchronous world [ALV98]. In

several papers BIST is reported as a possible technique for testing GALS systems [HEA03, DAM02,

BLA02]. However, in none of them particular test strategies and configurations are proposed.

Chapter 6. Design for Testability in GALS Systems

 74

In the following sections, different techniques for testing GALS systems will be evaluated. This was

reported in [KRS05b]. A test structure based on the BIST architecture will be described. Based on the

proposed strategy and circuits, BIST will be applied for the testing of our GALS baseband processor

compliant to the IEEE 802.11a standard.

6.2 Test Techniques for GALS Systems

To propose an optimal test strategy for GALS systems, it is necessary to define test requirements.

For a GALS application, the test must be clearly separated from the functional part in order that testing

cannot affect the proper operation of the system. Additionally, the test should be easily initialized and

controlled. The test circuitry should provide easy observability and controllability of all interesting

points in the system. On the other hand, it is desirable to provide hierarchical testing, and testing at-

speed of operation. Finally, all tests should show robustness towards the asynchronous behaviour of

the wrapper and the highest possible fault coverage.

There are different possibilities how a test of GALS systems can be performed. In Table 6.1 a

comparison of several testing techniques applicable to GALS is illustrated.

In general, BIST obviously separates the test circuitry from the functional part. On the other hand, in

the case of a scan-based approach, the test structure is directly coupled with the functional

components. BIST is also very useful allowing simplicity of the initialization and control procedure. For

the scan- based approaches, test generation and management is not effortless but there are many

tools which support the designer. In the case of the functional test, test vector generation is a critical

point. There is a problem to access deeper pipelines in the system with functional tests. Furthermore,

the number of vectors is usually huge and the cost of testing unacceptable. It is much easier to

organise hierarchical testing based on BIST than on scan methods. Regarding observability and

controllability it is clear that scan testing offers the best results. Functional testing has the problem that

many errors can be masked inside the design and are not observable on the I/O pins. In general, the

functional test and BIST test suffer from lower test coverage in comparison with scan-based

approaches. However, compared to functional tests, BIST is much cheaper, regarding time for testing,

for a certain level of test coverage. Finally, at-speed testing is not possible with scan methods. The

only possibility for this type of testing is to use either BIST or functional testing.

Our main motivation for DFT introduction within the GALS baseband processor is to have a

possibility to run very complex functional tests internally (without providing external test vectors). We

use a hardware tester that is strictly cycle based and cannot react to asynchronous output signals of

the circuit. The GALS arbitration processes preclude cycle level determinism. PVT variations further

contribute to timing non-determinism. BIST significantly reduces the effort for generating a test

program and enables us to use a synchronous tester. Furthermore, for datapath architectures (even

for the pure synchronous one), it makes no sense to implement a full scan chain. Several reasons

Chapter 6. Design for Testability in GALS Systems

 75

support that: the number of scan elements is huge and the time for testing will be unacceptable,

functional testing could verify correct system operation with high confidence, and scan-insertion will

diminish the performance of the system. Additionally, the scan approach does not cover dynamic

faults and race states. It requires a global test clock tree for the scan-cells that we wanted to avoid

with GALS. However, applying a functional test for GALS will require expensive testers and increase

the cost of testing. Therefore, we have decided to implement a BIST around the asynchronous

wrappers for the testing of our GALS systems.

Table 6.1. Comparison of test approaches for GALS systems

 Type of test

Requirements

Scan test Functional
test

BIST

Test circuitry separated from design ���� ������������ ��������������������

Simple initialization & control ������������ ���� ����������������

Easy observability & controllability �������������������� ������������ ����������������

Mixed granularity �������� ���� ��������������������

Robustness, coverage �������������������� ���� ��������

At-speed testing ���� �������������������� ��������������������

ΣΣΣΣ ������������ �������� ����������������

6.3 Proposed BIST Architecture

The architecture of one asynchronous channel is given in Figure 6.1. In order to test the operation

of the channel, several test components are placed. A test pattern generator (TPG) is positioned at the

output of the asynchronous GALS wrapper and the test data evaluator (TDE) is placed at the input of

the asynchronous wrapper. In principle, any placement of TPG and TDE around the wrapper is

conceivable. We decided to use the depicted configuration because the priority is testing of the

asynchronous channel. However, the testing of the handshake signals is possible only implicitly by

compacting the valid data transferred via the asynchronous channel. We will use one of the control

signals (REQ or ACK) to trigger the respective TDE. With an additional TDE, as shown in Figure 6.1, it

is possible to evaluate the operation of the locally synchronous part, too. The TDEs and TPGs must be

designed in such way that they operate completely asynchronously and follow the handshake protocol.

Chapter 6. Design for Testability in GALS Systems

 76

TTPPGGii--11

GGAALLSS
BBLLOOCCKK

ii--11

GALS
BLOCK

i

asynchronous channel

TTDDEEii--11 TTDDEEii

Figure 6.1. BIST configuration

The general architecture of the BIST building blocks is shown in Figure 6.2. Additionally, interfacing

of several BIST blocks is illustrated in Figure 6.3.

 TTEESSTT DDAATTAA

 EEVVAALLUUAATTOORR ((TTDDEE))

TTEESSTT PPAATTTTEERRNN

GGEENNEERRAATTOORR ((TTPPGG))

LLFFSSRR

BBIISSTT
CCOONNTTRROOLL tteesstt__vveeccttoorroouutt

PPAAUUSSAABBLLEE
CCLLOOCCKK

generator

tt ee
ss
tt __

ee
nn

aa
bb

ll ee

rreeqq__bbiissttoouutt

aacckk__bbiissttoouutt

a)

TTEESSTT

RREESSPPOONNSSEE
CCOOMMPPRREESSSSIIOONN

tteesstt__vveeccttoorriinn

rreeqq__bbiissttiinn

CC
OO

MM
PP

AA
RR

AA
TT

OO
RR

ccllkk__bbiisstt

ssiiggnnaattuurree

golden_signature1

ggoollddeenn__ssiiggnnaattuurree22

ggoollddeenn__ssiiggnnaattuurreenn

tteesstt__sseelleecctt

pp
aa

ss
ss
// ff aa

ii ll

tteesstt__eennaabbllee

b)

TT
EE

SS
TT

__
CC

YY
CC

LL
EE

CC

OO
UU

NN
TT

EE
RR

Figure 6.2. BIST components

A test pattern generator (TPG), given in Figure 6.2a, has to generate patterns that are suited to

perform the testing of internal operations of an asynchronous wrapper and the operation of a locally

synchronous module. The TPG consists of a Linear Feedback Shift Register (LFSR), a BIST controller

and a pausable clock generator. The LFSR has to generate pseudorandom patterns. The BIST

controller has to control the LFSR and to generate test vectors based on the LFSR output and,

optionally, on some predefined test patterns. This predefined data structure is usually connected with

the functional requirements of the specific GALS block. The purpose of this additional logic is to

enable non-random test vectors that open the LS datapaths for particular operations.

Chapter 6. Design for Testability in GALS Systems

 77

GGAALLSS

BBLLOOCCKK 11

BBIISSTT
TTDDEE LL

BBIISSTT
TTDDEE LL

BBIISSTT
TTDDEE LL

BBIISSTT
TTDDEE LL

BBIISSTT
TTPPGG LL

BBIISSTT
TTPPGG LL

BBIISSTT
TTPPGG LL

BBIISSTT
TTPPGG LL

BBIISSTT
TTPPGG GG

BBIISSTT

TTDDEE GG

CCEENNTTRRAALL

BBIISSTT
CCOONNTTRROOLLLLEERR

status and control -
externally accessible GGAALLSS

BBLLOOCCKK 33

GGAALLSS

BBLLOOCCKK 22

GGAALLSS

BBLLOOCCKK 44

Figure 6.3. Global BIST configuration

For example, sometimes it is necessary to combine the pseudorandom data pattern with certain

defined sequences in order to activate deeper datapath structures of a complex GALS system. Finally,

a clock generator is needed in the TPGs, because our GALS blocks are request-driven. We need to

trigger the synchronous part of the TPG in parallel with the token generation for the GALS block.

However, in general it is not always easy to use an ordinary external clock source for this purpose

because this clock cannot be stretched if the acknowledge on the GALS line does not arrive before the

next rising edge of the clock. Therefore, we need a pausable clock, based on a tunable ring oscillator

to drive the request and BIST clock. For better component utilization, it is proposed to use just one ring

oscillator for all local TPGs, because only one of them is needed for a particular test procedure.

The test data evaluator (TDE) should check the output test data and indicate the result of the

testing. The TDE consists of a test response compression circuit and a comparator, as shown in

Figure 6.2b. The test response compression block is based on signature analysis and, accordingly,

incorporates one LFSR in its structure.

The TDE is triggered with the respective handshake signal. It records the changes on the data lines

only when a valid control token in present. Because of that, with this BIST approach, we can tolerate

timing nondeterminism. For comparison, with the actual signature it uses one of n precomputed golden

signatures. Which golden signature will be used depends on the performed test. A golden signature

could be chosen via the test_select control signal, defined by the global BIST controller. The number

of test cycles is defined in the test cycle counter. This circuit is counting the number of accepted valid

test vectors and when this number is equal to the depth of the test vector set, the test response

compression block will be disabled and a pass/fail signal is generated.

Two different types of BIST have been implemented: global and local. Such hierarchical BIST

approach is not novel [HEAL04], but in the asynchronous and GALS area was not used until now.

The global BIST is initiated at the circuit boundaries and, therefore, is performed fully

synchronously. Consequently it is based on the general well-known BIST strategy. Additionally, during

the global test, it is possible to enable the local test compaction, placed between the GALS blocks, in

Chapter 6. Design for Testability in GALS Systems

 78

order to increase the number of check points and to achieve a better fault coverage. When the global

test is finished, our test controller can activate the local tests in order to further evaluate various

components of the GALS system. During every local test one local test pattern generator is activated

and the results are stored in one or more test data evaluators. With such a strategy, testing may give

broad and profound results about the correctness of the circuit operation and the operation of specific

GALS blocks. With an increased number of test points and with local testing it is possible to isolate

faulty components and possibly perform diagnostics of the fault.

For global testing of the system, a global test pattern generator (TPG G) is used. This generator

may function completely synchronously. The generated data should propagate through the system

and a global test data evaluator (TDE G) should process output data and compare it with the expected

value. Additionally, there are several local TPGs and TDEs (TGG L and TDE L) that are driven

completely asynchronously.

In order to control the BIST registers and to collect and process the results of test, one central BIST

controller (CBC) is proposed. This CBC includes a pausable test clock generator in its structure. It is

proposed that the BIST controller has its own autonomous reset signal in order to achieve decoupling

from the system reset. In this case the CBC can be programmed to prepare a particular test during

system reset when the GALS circuits are stable. Then the BIST can start immediately after the

deactivation of the system reset. After some period, which should be sufficient for performing the test,

the test status data is delivered.

In general, the purpose of the CBC is to allow a simple off-chip communication mechanism that can

be used for test parameter setting and test result reading. From the signals in Figure 6.4, Test_reset is

used for the reset of the testing circuitry, Test_on/off is used for the activation of the testing operation

and Test_select should select which specific vector set is activated. Signal Test_ok indicates the

success of the test, when all test vectors are processed. On the other hand, the CBC controls the

execution of the particular test, based on the external setting. For that reason, TPGi_en and TDEi_en

enable the respective TPGs and TDEs, TDEi_golden selects the golden signature value for a

respective TDE, and pass/faili should indicate the result of the testing. In addition to that, the CBC

enables the operation of the pausable test clock generator (PTCG) when the setting of all parameters

of the current vector set is finished and all TPGs and TDEs are ready to perform a particular test.

Moreover, it is possible to adapt the CBC such that it supports some of the existing test standards as

EJTAG etc. This activity of all BIST I/O pins is completely timing deterministic and synchronised with

the external clock. Hence, a hardware tester can be used for automatic testing.

Chapter 6. Design for Testability in GALS Systems

 79

CCEENNTTRRAALL BBIISSTT CCOONNTTRROOLLLLEERR ((CCBBCC))

PPAAUUSSAABBLLEE
TTEESSTT CCLLOOCCKK
GGEENNEERRAATTOORR

((PPTTCCGG))

TT
PP

GG
11

__
ee

nn

TT
PP

GG
22

__
ee

nn

TT
PP

GG
nn

__
ee

nn

TT
DD

EE
11

__
ee

nn

TT
DD

EE
22

__
ee

nn

TT
DD

EE
kk

__
ee

nn

TT
DD

EE
11

__
gg

oo
ll dd

ee
nn

TT
DD

EE
22

__
gg

oo
ll dd

ee
nn

TT
DD

EE
kk

__
gg

oo
ll dd

ee
nn

tteesstt__ccllkk__eenn

tt ee
ss

tt __
cc

ll kk

tt ee
ss

tt __
cc

ll kk
__

ee
xx

tt

ccllkk__ttuunnee

TT
ee

ss
tt __

rr ee
ss

ee
tt

TT
ee

ss
tt __

oo
nn

// oo
ff ff

TT
ee

ss
tt __

ss
ee

ll ee
cc

tt

TT
ee

ss
tt __

oo
kk

pp
aa

ss
ss

// ff aa
ii ll 11

pp
aa

ss
ss

// ff aa
ii ll 22

pp
aa

ss
ss

// ff aa
ii ll kk

Figure 6.4. Central BIST Controller (CBC) configuration

6.4 Implementation of the BIST in the Baseband Processor

The described BIST structures are applied in the GALS baseband processor. A major task of the

BIST implementation was to verify the functionality of the asynchronous control flow. A secondary task

was to test, with reasonable coverage, the operation of the locally synchronous module. In order to

fulfil those tasks, eleven different Test Data Evaluators (TDE) were incorporated in the system. Five of

them are situated in the transmitter and the others are part of the receiver. TDEs are inserted at critical

points of the GALS system. The most important positions are between the GALS blocks, where inter-

block communication can be observed. The implemented TDEs are of different width (in the range

from 10 to 256 bits) but with the same LFSR structure.

In order to more deeply investigate the correctness of the GALS baseband processor operation, five

different Test Pattern Generators (TPG) and, accordingly, five different types of tests are implemented.

The duration of all tests is around 300 µs, when the clock sources are set to support the real speed of

system operation. One Central BIST Controller (CBC), specially designed for this GALS baseband

implementation, performs the control of the complete test procedure. The CBC is designed according

to the proposal presented in the previous section. When some BIST test is finished, the state of line

Test_OK should indicate the success of the test. This value depends on the results of the global BIST

test. Additionally, before this value becomes stable, we are using the same line to indicate the

correctness at local test points. This information is indicated with the presence of pulses on the

Test_OK line. This representation is shown in Figure 6.5. When the BIST test is performed, we will get

at least one pulse indicating completion of the test procedure. The other pulses will indicate pass/fail of

test result at the particular checkpoint. The final steady value will indicate the result of the compaction

at the last TDE (TDE10) in the test chain. The complete structure of our GALS baseband processor

with positions of all TPGs and TDEs is given in Figure 6.6.

Chapter 6. Design for Testability in GALS Systems

 80

t

Test_OK

BIST procedure
finished

TDE0
correct

TDE1
correct

TDE2
correct

TDE3
correct

TDE4
correct

TDE5
correct

TDE6
correct

TDE7
correct

TDE8
correct

TDE9
correct

TDE10
correct

Figure 6.5. Representation of the test results

GGAALLSS BBAASSEEBBAANNDD PPRROOCCEESSSSOORR

TTXX__11 BBLLOOCCKK

TT
XX

__
II NN

TT

RR
XX

__
II NN

TT

 FF

II FF
OO

__
TT

AA

AA
CC

TT
II VV

AA
TT

II OO
NN

 II NN
TT

EE
RR

FF
AA

CC
EE

TTDDEE00

TTPPGG00

TTDDEE22 TTDDEE33 TTDDEE44

TTDDEE55

TTDDEE66
TTDDEE77

TTDDEE88
TTDDEE99

TTDDEE1100

TTPPGG22

TTXX__22 BBLLOOCCKK

TTPPGG11

TTDDEE11

TTXX__33 BBLLOOCCKK

RRXX__33 BBLLOOCCKK

TTPPGG44

RRXX__TTRRAA

BBLLOOCCKK

TTPPGG33

RRXX__22 BBLLOOCCKK

RRXX__11 BBLLOOCCKK

BB
II SS

TT
 II NN

TT
EE

RR
NN

AA
LL

 LL
OO

OO
PP

Figure 6.6. GALS baseband processor with BIST test points

With the proposed test structure we have the ability to run hierarchical tests. We have implemented

a global test of the complete transceiver structure. This test is initiated from TPG0 in Figure 6.7. TPG0

has an additional control mechanism that performs initialization of the transmitter and sets the number

of transmitted data words to 2kB. After that, random data is generated (2kB) and fed into the

transmitter. Consequently, the transmitter sends an IEEE 802.11a compliant frame. During the global

BIST test, an internal loop in the baseband chip is activated that directly feeds the data coming from

the transmitter back into the receiver. With this solution, we can test both transmitter and receiver.

Chapter 6. Design for Testability in GALS Systems

 81

TTXX__11 BBLLOOCCKK

TT
XX

__
II NN

TT

RR
XX

__
II NN

TT

 FF

II FF
OO

__
TT

AA

AA
CC

TT
II VV

AA
TT

II OO
NN

 II NN
TT

EE
RR

FF
AA

CC
EE

TTDDEE00

TTPPGG00

TTDDEE22 TTDDEE33 TTDDEE44

TTDDEE55

TTDDEE66
TTDDEE77

TTDDEE88
TTDDEE99

TTDDEE110

TTXX__22 BBLLOOCCKK

TTDDEE11

TTXX__33 BBLLOOCCKK

RRXX__33 BBLLOOCCKK

RRXX__TTRRAA

BBLLOOCCKK

RRXX__22 BBLLOOCCKK

RRXX__11 BBLLOOCCKK

BB
II SS

TT
 II NN

TT
EE

RR
NN

AA
LL

 LL
OO

OO
PP

Figure 6.7. Global test of the baseband processor

TTXX__11 BBLLOOCCKK

TT
XX

__
II NN

TT

RR
XX

__
II NN

TT

 FF

II FF
OO

__
TT

AA

AA
CC

TT
II VV

AA
TT

II OO
NN

 II NN
TT

EE
RR

FF
AA

CC
EE

TTDDEE00 TTDDEE22 TTDDEE33 TTDDEE44

TTDDEE55

TTDDEE66
TTDDEE77

TTDDEE88
TTDDEE99

TTDDEE110

TTXX__22 BBLLOOCCKK

TTPPGG11

TTDDEE11

TTXX__33 BBLLOOCCKK

RRXX__33 BBLLOOCCKK

RRXX__TTRRAA

BBLLOOCCKK

RRXX__22 BBLLOOCCKK

RRXX__11 BBLLOOCCKK

BB
II SS

TT
 II NN

TT
EE

RR
NN

AA
LL

 LL
OO

OO
PP

Figure 6.8. Reduced global test of the baseband processor

Chapter 6. Design for Testability in GALS Systems

 82

During the test, the complete datapath is in operation and all TDE blocks are activated. Hence, this

test will yield information about the complete system. In most cases it will be sufficient to successfully

perform just this global test in order to verify that the GALS system is correct.

In the case that some problems have occurred during this first test, the other local tests can be applied

to detect and isolate possible problems. The local tests will increase the test coverage and strengthen

the quality of the results. Those module tests are focused on parts of the dataflow or on particular

GALS blocks. A second test (Fig 6.8) is initiated from TPG1 which is mainly focused on the transmitter

operation. The receiver is also included into this testing chain. There are ten compactors that check

the generated data during this test (TDE1 – TDE10). It will provide more information about the

reliability of the data transfer between synchronous block Tx_1 and GALS block Tx_2.

RR
XX

__
II NN

TT

AA
CC

TT
II VV

AA
TT

II OO
NN

 II NN
TT

EE
RR

FF
AA

CC
EE

TTDDEE55

TTDDEE66
TTDDEE77

TTDDEE110

RRXX__33 BBLLOOCCKK

RRXX__TTRRAA

BBLLOOCCKK

RRXX__22 BBLLOOCCKK

RRXX__11 BBLLOOCCKK

TTPPGG22

Figure 6.9. Receiver test

RR
XX

__
II NN

TT

 FF

II FF
OO

__
TT

AA

TTDDEE66
TTDDEE77

TTDDEE88

TTDDEE110

RRXX__33 BBLLOOCCKK

RRXX__TTRRAA

BBLLOOCCKK

TTPPGG33

RRXX__22 BBLLOOCCKK

Figure 6.10. Test of the receiver internal loop

Chapter 6. Design for Testability in GALS Systems

 83

RR
XX

__
II NN

TT

 FF

II FF
OO

__
TT

AA

TTDDEE88

TTDDEE110

RRXX__33 BBLLOOCCKK

TTPPGG44

Figure 6.11. Test of the block Rx_3

The third test (TPG2 in Figure 6.9) is just a receiver test. Consequently, only compactors on the

receiver side are able to collect some data (TDE5, TDE6, TDE7 and TDE10). The receiver feedback

loop for this test is disabled. This test should give more detailed information on the forward datapath of

the receiver.

The fourth test (generated from TPG3 in Figure 6.10) takes a broader look at the receiver feedback

operation. Three TDEs are included in the process of testing (TDE7, TDE8, and TDE10).

The focus of the fifth test (TPG4 in Figure 6.11) is the operation of the very complex block Rx_3.

Accordingly, only TDE8 and TDE10 are able to collect data. In this block some huge circuits are

situated, such as Viterbi decoder and Deinterleaver. Here it is of utmost importance to provide a

method that performs test with maximum coverage. A suitable combination of different tests can give

us detailed and valuable information on the correctness of our GALS baseband processor.

For our GALS baseband processor, results of the synthesis show that the BIST circuitry occupies

around 3.5% of the area. Hence, the insertion of BIST is paid with a relatively low area overhead.

Additionally, BIST insertion did not lead to any significant performance drop and the functionality of the

GALS system is preserved. Therefore, the BIST technique could be successfully used in the GALS

systems.

Due to the lack of tool support, it is very hard to calculate the test coverage achieved with this BIST

approach. Much of the synchronous design involves DSP pipelines. Those blocks are easy to test,

because of the propagation of errors to the outputs. However, there are a few blocks that are only

Chapter 6. Design for Testability in GALS Systems

 84

implicitly part of the dataflow and are consequently hard to test. For example, in the tracking

synchroniser (block Rx_1), the activity of autocorrelators and the plateau detector block is not visible

from outside. Therefore, the fault coverage of those blocks is rather low. According to the switching

analysis of the GALS baseband processor we can roughly estimate the system fault coverage to 90%.

Nevertheless, further work in this direction is needed. However, the estimated test coverage that we

can reach is significantly higher than with a pure functional test. The reason for increased test

coverage compared to a functional test is increased observability and controllability. We can run

hierarchical tests and start the test at different internal positions of the system. Unfortunately we

cannot reach the test coverage of scan-based approaches. However, on the level of locally

synchronous modules, scan-chains could be implemented.

Additionally, we have performed an indirect estimation of the achieved test coverage. We have

used our BIST technique as a yield parameter for the after-production test of the GALS baseband

processor chip. On the same wafer we fabricated some RAM blocks, which are exhaustively tested

with a fault coverage of 100%. Having in mind that the average defect density is approximately

constant on the same wafer, it is conceivable to perform the following analysis. According to Price’s

model [PRI70], the yield formula for exponential defect density distribution is given by:

DA1

1
Y

+
=

where A is the area sensitive to defects and D is the average defect density.

From the yield measured for the RAM blocks, we interpolated the expected yield of the baseband

processor to be 20.97%. The measured yield value according to our BIST scheme was 14.7%. Those

numbers are based on an experimental technology run, and they are not relevant for process

characterization and general yield figure of the qualified process technology.

We conclude that this BIST technique can be used as a suitable method for prototype verification.

In combination with the scan approach for locally synchronous modules, we can even use this concept

as a basis for the manufacturing test.

 85

Chapter 7

Implementation and Evaluation of
GALS Systems

7.1 Introduction

 One of the main showstoppers for wider industrial application of systems with asynchronous

components is the lack of asynchronous EDA tools. Therefore, it is very important to define a design-

flow for GALS systems based on available tool support. In this chapter, a proposal for the design flow

will be presented. On the basis of the design flow, an implementation of GALS systems is performed.

Finally, some results of the implementation will be given. A comparison of the GALS approach with the

pure synchronous implementation of the same system will conclude this chapter.

7.2 Design Flow

Defining a design flow for Globally Asynchronous Locally Synchronous systems is a difficult task. In

general, designs that have asynchronous parts are relatively difficult to implement. A major problem is

the lack of support for asynchronous logic designs in commercial EDA tools. Starting from behavioural

simulation, the designer can experience that current HDLs (hardware description languages) such as

VHDL and Verilog do not satisfy the needs of asynchronous datapaths. Even more problems will

become apparent in the process of synthesis. The synthesis tools available on the market do not offer

any support for asynchronous design. The analysis of critical paths is not possible. Furthermore,

synchronous layout tools have special optimization procedures (as, for example, in-place optimization

or timing-driven placement) that are not suited for asynchronous components.

Chapter 7. Implementation and Evaluation of the GALS Systems

 86

 However, several asynchronous EDA tools have been developed and are available to the users.

There are two main categories of those tools. First, there are tools for synthesis of hazard-free

asynchronous controllers. Some examples are Petrify [COR96], MINIMALIST [FUH01] and 3D

[YUN99a]. In general, these tools are a good basis for the synthesis of relatively simple asynchronous

controllers. They do not offer support for designing large systems, and they do not integrate any

simulation tool. On the other hand, those tools are very useful help when some relatively simple

asynchronous component has to be generated.

The other category of EDA tools offers a complete design framework for system description,

simulation and synthesis. There are very few examples of such tools. Examples are TANGRAM

(recently offered commercially to the market with the name HASTE) [BER91, HAN05], BALSA

[BAR00] and TAST [DIN02]. Unfortunately, for GALS systems none of them is really useful. Due to

immaturity, those tools achieve only sub-optimal synthesis results and they support the design-flow

only up to the layout phase. The main obstacle for their application in the GALS area is that they are

directed towards asynchronous designs and not to mixed synchronous-asynchronous designs.

Therefore, it was necessary to formulate our own framework for GALS system design. This design

flow is based on existing tools, combined with our scripts. The proposed design flow for developing our

GALS system is a combination of the standard synchronous design-flow with addition of specific

asynchronous synthesis tools. However, most of the tools are taken from the pure synchronous world.

The reason for that is simple: In general, the asynchronous part of the GALS circuitry is very small in

comparison with the synchronous part. Accordingly, simple asynchronous circuits can be generated

with the use of asynchronous synthesis tools and then embedded in complex synchronous blocks.

A graphical view to our design flow is shown in Figure 7.1. All synchronous circuits are designed in

VHDL and synthesized for our in-house 5-metal layer 0.25 µm process with a FO4 delay of 140ps

using a standard cell library and Synopsys Design Compiler.

All asynchronous controllers are modelled as asynchronous finite-state machines (AFSM) and

subsequently synthesized using the 3D tool. 3D guarantees hazard-free synthesis of extended and

normal burst-mode specifications. This tool is used because we predicted a need for extended burst

mode (XBM) specifications. This tool is in the moment the only one that allows synthesis of the

hazard-free XBM asynchronous controllers. Finally, the extended part of the specifications was not

needed in the case of our asynchronous controllers. We have defined all controllers with burst mode

specifications. On the other hand, it is also conceivable to specify the controllers with Signal Transition

Graphs (STGs) or Petri-nets. Consequently, all tools that support hazard-free synthesis of

asynchronous controllers can be used.

Chapter 7. Implementation and Evaluation of the GALS Systems

 87

AAFFSSMM SSPPEECCIIFFAACCTTIIOONN

33DD -- LLOOGGIICC SSYYNNTTHHEESSIISS

33DDCC TTOOOOLL

–– FFRROOMM 33DD TTOO VVHHDDLL

FFUUNNCCTTIIOONNAALL

SSPPEECCIIFFIICCAATTIIOONN

VVHHDDLL DDEESSCCRRIIPPTTIIOONN

AABBSSTTRRAACCTT
BBEEHHAAVVIIOOUURRAALL

SSIIMMUULLAATTIIOONN

GGAATTEE MMAAPPPPIINNGG

RREEAALLIISSTTIICC
BBEEHHAAVVIIOOUURRAALL

SSIIMMUULLAATTIIOONN

TTIIMMIINNGG DDRRIIVVEENN
SSYYNNTTHHEESSIISS

PPOOSSTTSSYYNNTTHHEESSIISS

SSIIMMUULLAATTIIOONN

LLAAYYOOUUTT

BBAACCKK AANNNNOOTTAATTIIOONN

Tape-out

AASSYYNNCCHHRROONNOOUUSS WWRRAAPPPPEERRSS

SSYYNNCCHHRROONNOOUUSS BBLLOOCCKKSS

Synopsys DC

Synopsys DC

Cadence Silicon Encounter

Model Sim

Model Sim

Model Sim

Model Sim

PPOOWWEERR EESSTTIIMMAATTIIOONN

Prime Power

PPOOWWEERR EESSTTIIMMAATTIIOONN

Prime Power

FFOORRMMAALL
AANNAALLYYSSIISS

LoLA

Figure 7.1. Design flow for GALS

The logic equations generated by 3D are automatically translated into structural VHDL using an

own developed tool, called 3DC. The generated structural VHDL code represents a direct conversion

from the logic equations generated from 3D. Further synthesis in Synopsys Design Compiler will

Chapter 7. Implementation and Evaluation of the GALS Systems

 88

perform technology remapping. Consequently, Design Compiler cannot destroy the hazard-free

behaviour of the AFSM but it will annotate realistic timing behaviour of the asynchronous block. After

that, a formal analysis of the asynchronous controllers was performed in order to verify the hazard-free

operation of the complete asynchronous wrapper.

In order to generate a complete and reliable flow for GALS design, two types of behavioural

simulations are performed. Initially, a functional verification is performed at the level of VHDL

descriptions. This simulation run should confirm the conceptual correctness of the system.

Accordingly, for this simulation run, the complete synchronous part is modelled in behavioural VHDL

code. Asynchronous wrappers are modelled in structural VHDL, which is the output of the

3DConverter tool. Additionally, in this structural code, some artificial delay is assigned to every logic

operation. This is done in order to avoid races between the signals in the asynchronous part. During

simulation, it is useful to enter realistic values for the clock signal. This allows correct adjustment of the

system performance. Therefore, in this simulation the ring oscillators are described as real netlists and

annotated with the appropriate SDF (Standard Delay Format) file.

On the basis of the synthesized asynchronous parts and VHDL description of the locally

synchronous (LS) modules, a realistic behavioural simulation is performed after the abstract

simulation. The complete asynchronous wrapper is annotated with a SDF file (based on the typical

PVT values). This simulation will, with high probability, prove the correctness of the system function,

but also can be performed very fast, because all LS modules are still modelled in behavioural VHDL.

Subsequently, a complete gate-level simulation is performed using both asynchronous and

synchronous parts as synthesized netlists. This simulation is similar to any after-synthesis simulation

in the purely synchronous world. Of course, due to the large number of annotated gates, this

simulation run is rather slow in comparison with the one previously described. Accordingly, it should be

performed only when all possible problems and hazards from the behavioural simulation have been

resolved.

Layout is done using conventional synchronous layout tools. In particular, we have used two tools:

Cadence Silicon Ensemble and Cadence SoC Encounter. The later one is much more advanced and

better suited for complex designs. In the layout phase, we did not use advanced features as in-place

optimization or timing driven placement and routing. The main reason for that was our desire not to

unsettle sensitive timing issues in the asynchronous part of the system. However, an experienced user

may use these features for the synchronous blocks only. The main feature, which is extensively used,

is clock-tree generation. Specifically, clock-trees in the GALS blocks do not start from the clock pins

but from internal gates inside the GALS block where the clock signal is generated. Furthermore, clock-

tree generation is used for separate BIST domains and even for reset-tree generation.

Chapter 7. Implementation and Evaluation of the GALS Systems

 89

After layout, back-annotation is performed. Behavioural, post-synthesis simulation, and back-

annotation are performed using a standard VHDL-Verilog simulator.

One of the most important system issues is power consumption. Therefore, to efficiently design the

circuit, some power estimation is needed. Power estimation is usually performed after synthesis (in

order to create adequate power rings for floorplanning) and after layout (to estimate general power

consumption of the chip). However, power figures may vary, depending on the application scenario of

the circuitry. It is best when power estimation takes into account real switching activities of the circuit.

During development of the GALS system, we have always used a realistic application scenario. Power

estimation based on switching activities is done using the Synopsys Prime Power tool. Switching

activities in this tool are annotated via a VCD (Value Change Dump) file, created during simulation.

7.3 System Integration with GALS

The original synchronous design flow for the baseband processor suffered from significant

problems with global timing, clock tree-generation and clock-skew. Therefore, the design process was

very prolonged and iterative.

The current CAD tool support is not sufficient to provide a fast and robust automatic design

process, which is mandatory for this type of applications. GALSification provided some improvements

for system integration. Challenges like global clock tree generation with an enormous number of

leaves, clock divider and handling of clock gating simply disappeared. Clock skew within smaller clock

domains was significantly reduced. For example, the maximum clock skew for the synchronous

baseband processor was 660 ps. For the GALS design, we have reached 486 ps. However, with more

stringent constraints even better results can be achieved. Since there is no global clock tree, timing

closure of the complete design was achieved much more easily.

As this was the first complex GALS chip that we have designed, several new issues appeared. The

main difficulties were lacking tool support for asynchronous components, or immaturity of

asynchronous tools. For example, due to the limitations of the 3D tool, a direct gate-mapping of the

generated logic equations was not possible. Therefore, many operations had to be performed

manually. This degrades the performance of the final design and introduces additional delay in the

design process. Additionally, the wrapper evaluation and improvement was performed in parallel to the

GALS chip design. These issues caused some iterations of the GALS design process.

 However, the general conclusion is that GALS led to a significant simplification of the system

integration process. This simplification results in shorter design-to-market time and lower design cost.

Chapter 7. Implementation and Evaluation of the GALS Systems

 90

7.4 Conceptual GALS Design Framework

In the previous section, our GALS design flow was presented. Although this proposal allows the

relatively efficient integration of large synchronous blocks, the design flow is not completely

automated. Many tasks must be performed manually. Some of the design steps require a lot of design

experience in the area of asynchronous and synchronous design.

Therefore, there is a strong need to define a design flow that will incorporate all necessary

requirements for a simple and effective implementation of GALS systems. This concept that we refer

as “GALS Design Framework” (GALS DF) is shown in Figure 7.2.

GALS DF GUI

AASSYYNNCCHHRROONNOOUUSS
WWRRAAPPPPEERR

NN

AASSYYNNCCHHRROONNOOUUSS
WWRRAAPPPPEERR

22

AASSYYNNCCHHRROONNOOUUSS
WWRRAAPPPPEERR

11

PPRROOCCEESSSSIINNGG
BBLLOOCCKK

11

PPRROOCCEESSSSIINNGG
BBLLOOCCKK

22

PPRROOCCEESSSSIINNGG
BBLLOOCCKK

NN

MATLAB model, Petri Net,
VHDL model, Verilog netlist...

PPRROOCCEESSSSIINNGG
BBLLOOCCKK

11

PPRROOCCEESSSSIINNGG
BBLLOOCCKK

22

PPRROOCCEESSSSIINNGG
BBLLOOCCKK

NN

automatic block import
definition of interfaces
through GUI

automatic wrapper generation automatic wrapper generation automatic wrapper generation

FFOORRMMAALL

CCHHEECCKKEERR

SSIIMMUULLAATTIIOONN
MMOODDEELL

GGEENNEERRAATTOORR

MATLAB model, Petri Net,
VHDL model, Verilog netlist...

MATLAB model, Petri Net,
VHDL model, Verilog netlist...

Simulation and verification in
commercial VHDL /Verilog

simulator

AAUUTTOOMMAATTIICC
TTEESSTT

GGEENNEERRAATTOORR

performs automatic generation
of testing circuitry based on
the BIST or scan approach

performs the formal analysis of
control- and/or data-flow

NNEETTLLIISSTT

GGEENNEERRAATTOORR

Synchronous part synthesis in
the commercial CAD tools;

Asynchronous CAD tools used
for control-flow

Figure 7.2. GALS design framework

Chapter 7. Implementation and Evaluation of the GALS Systems

 91

The design framework is organised around a general graphical user interface (GUI). This

environment has to support the multi-level description of the processing blocks. The highest level

could be, for example, a MATLAB description (or any other high-level abstract model). However, the

blocks could also be described by their control-flow (using a Petri-net model). Finally, at the RTL and

gate level, it would be possible to use a VHDL model or a Verilog netlist. In the DF GUI it should be

possible to import a specific processing block and to define its model for every abstraction level.

Additionally, the DF GUI allows the definition of interfaces and interface protocols between

processing blocks. This should include the insertion of necessary interface blocks to support the

communication mechanism, such as different join and fork circuits, or some bus structures.

Finally, it is possible to automatically generate the asynchronous wrapper around every processing

block. Consequently, for every wrapper it should be possible to define the data width, time-out period,

and other important parameters.

On the basis of the defined processing blocks and their mutual interfaces, the analysis of the

defined complex system is performed. For example, at the level of the MATLAB description it is

possible to invoke the MATLAB simulator and to perform the functional simulation of the abstract

system model.

On the data-flow level, using Petri net models of the processing blocks, the formal analysis of the

system using a formal model checker (in Figure 7.2) is facilitated. The design framework should

automatically generate Petri-net models for wrappers and for interfaces. Using this analysis it should

be possible to verify the hazard-free and deadlock-free behaviour of the system as well as liveness

and reachability. Furthermore, a performance analysis is conceivable. Generally, the results from the

formal analysis should give the designers hints about a possible GALS partitioning and the possibility

to verify the control-flow for the proposed GALS partitioning in the system.

At the VHDL and the Verilog level, a simulation model generator (Figure 7.2) should be used in

order to generate a complete model of the system. This tool should generate the VHDL model or a

Verilog netlist for asynchronous wrappers and interfaces and integrate that code with the code for the

processing blocks. From that tool, the standard VHDL/Verilog simulators are invoked.

To support the design, DFT features are mandatory. Therefore, an automatic test generator is

included in GALS DF. The purpose of this tool is to automatically insert test circuitry and to perform

automatic test pattern generation (ATPG) if needed. The test strategy could be based on BIST or on

scan test and the structure should be defined by the user.

Finally, the netlist generator tool is required. It should generate the netlist on the basis of the VHDL

description (or even a MATLAB model) of the system. This feature requests the combination of

commercial CAD tools (as Synopsys Design Compiler) for processing blocks and special

Chapter 7. Implementation and Evaluation of the GALS Systems

 92

asynchronous tools for asynchronous wrappers and interfaces (as 3D, Petrify, Minimalist, Balsa,

Haste...). After generation of the system netlist, the after-synthesis simulation can be performed or the

layout process may be invoked.

The development of such a design framework would be very important for automation of the GALS

design process and it would shorten the time-to-market for GALS systems. However, this concept is

not yet implemented and at the moment it is just a basis for future explorations and research.

7.5 Asynchronous Wrapper Implementation

Following the proposed design flow, the gate mapping of the developed asynchronous wrappers

was performed. In Table 7.1 some synthesis results for our 0.25µ CMOS process are given. We have

performed implementations of three basic types of wrappers: internally driven (based on ring

oscillator), externally driven, and mixed internally/externally driven wrapper. All circuits are fitted with a

reset logic, necessary for initialisation. The area for all circuits is given in µm
2
 and equivalent inverter

gates. The local clock generator for the internally driven wrapper is tuneable, similar to the one

described in [MUT01]. For deriving the figures in Table 7.1, a 9-bit data latch connecting two

asynchronous wrappers is included. However, for designing a GALS system, the latch width that

corresponds to the application has to be taken into consideration. As can be seen in Table 7.1, the

circuit area for the complete internally driven asynchronous wrapper is equivalent to about 1.3 k

inverter gates.

Table 7.1 Asynchronous wrapper circuit area

Int. wrapper Ext. wrapper Int-Ext wrapper Wrapper type

Block (µµµµm
2
) (gates) (µµµµm

2
) (gates) (µµµµm

2
) (gates)

Input Controller 7100 118 7800 130 7800 130

Output Controller 3920 65 3900 65 3981 66

Time-out Detection 5179 86 5118 85 5632 94

Clock Control 4732 79 4631 77 4895 82

Clock Generation /Arbiter 55026 917 4489 75 58682 978

Total wrapper area 79929 1332 29879 498 84682 1411

For the internally driven wrapper, the largest area (917 inverter gates) is needed by the tuneable

clock generation. This is due to the fact that for tunability it is needed to add a significant overhead to

the clock generators. However, for an average size locally synchronous module of about 100,000

gates, this asynchronous wrapper would add just about 1% of the overall silicon area. An externally

driven wrapper uses much less area (around 500 gates) due to the elimination of local clock

Chapter 7. Implementation and Evaluation of the GALS Systems

 93

generator. The mixed-mode wrapper shows similar figures as the internally driven wrapper (1.4 K

gates).

The throughput of the GALS system after synthesis was determined by simulation. The results of

this evaluation are given in Table 7.2. In our technology, the wrappers are operational up to about

150 Msps in request-driven mode. However, this number depends very much on manual gate-resizing

done after initial gate-mapping. Therefore, there is some unfairness of the results in the table. In local

clock generation mode, the maximal throughput reached with internal clocking is in the range of 85 -

100 Msps. With external clocking we can reach a slightly lower speed of about 80-85 Msps.

However, this is fast enough for moderate speed applications. In any case, with the applied CMOS

process (0.25µ), it is expected to cover operating frequencies of around 100 MHz. For more advanced

technologies (0.18µ, 0.13µ, 0.09µ...) operating frequencies are higher. On the other hand, the

maximum throughput of the asynchronous wrapper will be increased as well. That indicates that the

application of the proposed asynchronous wrapper leads to very promising results, even for high-

speed datapath applications.

We have also presented latency figures for the different wrapper structures. Latency is defined as

the time that data needs to pass from the last register stage of one GALS block to the first register

stage of the subsequent GALS block in the datapath. As we can see from the table, this time is in the

order of 5 – 7.5 ns.

The power figures presented in Table 7.2 are extracted from simulation of different wrapper

configurations in a realistic scenario of receiving, processing and transferring one data burst at

50 Msps datarate. The interesting fact is that the power consumption of the internally driven wrapper is

only around 10% higher than the one from the externally driven wrapper. The reason is relatively low

power consumption of the ring oscillator for these moderate frequencies. In general, a single wrapper

consumes around 1 – 1.5 mW. Hence, normally the wrapper insertion should not lead to any

significant power overhead in a GALS system.

Table 7.2 Evaluation of asynchronous wrapper performance and power consumption

 Component

Parameter

Int. wrapper Ext. wrapper Int/Ext wrapper

Max. throughput - request mode (Msps) 119 133.9 148 / 148

Max. throughput - local mode (Msps) 86.9 79.4 96.2 / 82.6

Latency (ps) 7590 5150 6320 / 6290

Power (mW) 1.12 1.01 1.4 / 1.26

Chapter 7. Implementation and Evaluation of the GALS Systems

 94

7.6 Experimental GALS Chip

In order to validate the request-driven GALS concept, we decided to implement a simple GALS

demonstrator first. The main goal for this implementation was to check the feasibility of the proposed

GALS technique. In this implementation we have employed asynchronous wrappers with an

embedded ring oscillator, as described in the previous subsections. In this way, we wanted to check

the operation of the wrappers and to identify potentially unknown hazard situations. Additionally, we

were aiming to verify our design for testability strategy based on BIST.

The simple GALS demonstrator consists of a synthesised asynchronous wrapper fitted with a

behavioural model of a ‘dummy’ synchronous FIFO. In Figure 7.3.a, a simulation trace for different

modes of operation is shown. The chip structure is given in Figure 7.3.b. The ‘dummy’ synchronous

block is a 21-stage FIFO. The simulated system consists of three cascaded GALS blocks that are

fitted with an ideal token producer and a consumer at input and output respectively.

EEXXPPEERRIIMMEENNTTAALL GGAALLSS SSYYSSTTEEMM

AASSYYNNCCHHRROONNOOUUSS

WWRRAAPPPPEERR 11

INT_CLK

LCLKM

REQ_A

ACK_A

ST

DATA_L

Normal
operation

Waiting for
time-out

datai datai+1

Normal
operation

Transition
time

datai+2 datai+3

FFIIFFOO 11

AASSYYNNCCHHRROONNOOUUSS

WWRRAAPPPPEERR 22

FFIIFFOO 22

AASSYYNNCCHHRROONNOOUUSS

WWRRAAPPPPEERR 33

FFIIFFOO 33

CCEENNTTRRAALL BBIISSTT CCOONNTTRROOLLLLEERR

a)

b)

Figure 7.3. Asynchronous wrapper operation (a) in the experimental design structure (b)

Figure 7.3a shows the generation of signal INT_CLK within one asynchronous GALS wrapper. In

this figure we can see that INT_CLK is generated from signals LCLKM and REQ_A. Four different

modes of operation of the asynchronous wrapper are shown. First the ‘normal’ mode of operation can

be observed, where a standard handshake is performed on the lines REQ_A and ACK_A. Every

Chapter 7. Implementation and Evaluation of the GALS Systems

 95

request signal is interpreted as a new clock cycle. When REQ_A is kept at ‘0’, the circuit enters a

second state: waiting for time-out. During this period the internal clock signal is disabled. The time-out

event is indicated by activation of signal ST. Subsequently the transition into a third mode occurs. The

local clock signal LCLKM will be activated and in turn drive signal INT_CLK. Further, the REQ_A line

indicates the arrival of new data before deactivation of LCLKM. Now the system enters a transition

mode. In this mode the initiated local clock cycle must be completed and subsequently control of the

internal clock signal is handed over to the request line. In the last period of the simulation trace the

circuit has resumed ‘normal’ request-driven operation.

 This simple experimental GALS circuit was implemented as a chip in our in-house 0.25µm CMOS

technology. The circuit was fitted with BIST logic in order to simplify testing. The structure and concept

of the applied test logic was the same as described in the previous chapter. We have implemented a

single TPG for test vector generation and four different TDEs for extracting test results. The cell area

of the implemented chip is around 0.3 mm
2
. This layout was pad limited, and the final chip area was

4.47 mm
2
. This chip was fabricated and successfully tested. The test setup is shown in Figure 7.4.

Test results are generated using a logic analyzer and illustrated in Figure 7.5. The pass of the test is

indicated with three short pulses on the BIST_OK line, and then with a stable high value.

Figure 7.4. Testing experimental GALS chip

Chapter 7. Implementation and Evaluation of the GALS Systems

 96

BIST testpoints correct
BIST final result OK!

Test OK signal

Debug & clock pins

Figure 7.5. Test results collected from logic analyzer

7.7 GALS Baseband Processor Implementation

For the GALS baseband processor implementation, our previously described design flow was used.

After GALS partitioning of the baseband processor, the created GALS system was behaviourally

simulated and verified. After that, the synthesis of the individual synchronous blocks and the

asynchronous components was performed and a unified netlist was generated. On the basis of the

created netlist and a corresponding SDF file, a gate-level simulation was performed, which confirmed

the results of the behavioural simulation.

The complete system was verified using two different sets of test vectors. One is based on the

embedded BIST test and the other on a realistic transceiver application in the synchronous

environment of the IEEE 802.11a modem. A set of five different BIST tests was performed as well as

the functional test for eight different modulation schemes defined by the IEEE 802.11a standard.

Results of the synthesis and power estimation are shown in Table 7.3. These results are based on the

real transceiver application in the environment of an IEEE 802.11a modem. This functional test

includes transmission of an IEEE 802.11a compliant data frame (100 B) and reception of a data frame

of the same length.

It can be observed that synchronous functional blocks occupy almost 90% of the total cell area. The

BIST circuitry requires around 3.5%, interface blocks (asynchronous interfaces and asynchronous to

synchronous interfaces) 2.9%, asynchronous wrappers only 2% and the clock tree 1.7% of the area.

The overall cell area is 22.78 mm
2
. From these figures we conclude that the integration of the

asynchronous wrappers did not result in any significant hardware overhead. The test logic contributed

more to the overall silicon usage than the wrappers. However, since this was an experimental design,

more effort is devoted to testing. For future GALS applications, the logic dedicated to test can be

reduced. Additionally, some further investigations are required to reduce the complexity of interfaces in

the GALS chip. Currently, those interface blocks are suboptimal and create much overhead.

Chapter 7. Implementation and Evaluation of the GALS Systems

 97

Table 7.3. Area and power distribution in the GALS baseband processor

 Results

Component

Area [%] Power [%]

BB chip 100% 100%

Clock trees 1.7% 34.5%

Sync. blocks 89.5% 52.4%

 Rx_1 block 10.4% 6.9%

 Rx_2 block 30.4% 15.9%

 Rx_3 block 21.8% 17.2%

 Rx_TRA 2.4% 0.7%

 Tx_1 block 2.3% 1.1%

 Tx_2 block 2.5% 0.6%

 Tx_3 block 19.8% 10.0%

Asynchronous wrappers 2% 2.9 %

 Rx1 0.2% 0.8%

 Rx_TRA 0.3% 0.3%

 Rx2 0.3% 0.6%

 Rx3 0.3% 0.5%

 Tx2 0.3% 0.1%

 Tx3 0.6% 0.6%

Asynchronous interfaces 1.6% 0.6%

 Join 0.0% 0.0%

 FIFO_TA 1.5% 0.6%

As-sy interfaces 1.3% 7%

 Rx_int 0.5% 4.4%

 Tx_int 0.8% 2.6%

BIST 3.5% 1.5%

 CBC 0.2% 0.5%

 TDE 2.7% 0.2%

 TPG 0.6% 0.8%

Chapter 7. Implementation and Evaluation of the GALS Systems

 98

Based on the switching activity in a real transceiver scenario, dynamic power estimation with Prime

Power was performed. In the simulation example the baseband processor receives one frame and

transmits one frame. The synchronous blocks need most of the power (around 52.4%). A significant

amount is also spent in the local clock trees (34.5%). Other important power consumers are

asynchronous-to-synchronous interfaces with 7% and asynchronous wrappers with 2.9%.

The power consumption of the asynchronous wrappers including pausable clock generators is quite

low with respect to the overall power consumption. On the other hand, the power consumption of the

async-sync interfaces exceeds the usual limits for this type of circuitry. We have used complex FIFO

structures in the interfaces to decouple blocks and increase the robustness of the system. However,

these interfaces can be optimized, which would reduce their power consumption significantly.

Additionally, some power is spent in the BIST circuitry, even during normal operation. The reason is

the switching of small local clock trees in TPGs and TDEs, which are not disabled during ‘normal’

operation. With more careful design, this switching activity could also be avoided by gating these local

clocks. Based on the final netlist after layout, the overall estimated dynamic power consumption is

324.6 mW.

Our GALS baseband processor was fabricated and the die photo of the produced chip is shown in

Figure 7.6. In the floorplan it is noticeable that the receiver uses much more space than the

transmitter. Furthermore, the most dominant blocks are as expected Rx_2 (processing synchroniser

and channel estimator) and Rx_3 (dominated by the Viterbi decoder). The following blocks are also

very complex: Rx_1 and Tx_3, both dominated by the FFT/IFFT processor.

The total number of pins is 120 and the silicon area including pads is 45.1 mm
2
. For comparison,

the equivalent synchronous baseband processor occupies around 34 mm
2
. The significant increase in

silicon area of around 32% for the GALS chip is mainly due to an architectural modification. For the

GALS implementation, IFFT and FFT processors are realized as separate blocks in order to simplify

the dataflow. In contrast, in the synchronous implementation, a single processor executes both

operations. However, with reasonable effort it is possible to merge FFT and IFFT processors for the

GALS implementation, as well.

To conclude, the design of the GALS baseband processor is an experimental design with potential

for improvement. The main reason is that we focussed on robustness rather than efficiency.

Furthermore, for this first complex design, some lack of experience was apparent. However, the

results show very competitive numbers in some aspects. With some small optimizations in the future,

we can hope for more effective results.

Chapter 7. Implementation and Evaluation of the GALS Systems

 99

Receiver

Transmitter

Rx_1

Rx_3

Rx_2

Tx_1

Tx_3

T
x
_

2

F
IF

O
_
T

A

R
x
_
2

3

Figure 7.6. Die photo of the GALS baseband processor

7.7.1 Evaluation of Synchronous and GALS Baseband Processor

On the basis of a post-layout netlist and the corresponding power analysis, an interesting

comparison of the pure synchronous with the GALS baseband processor can be performed. This

analysis can quantify the influence of introducing GALS in a synchronous system, in terms of area or

hardware overhead.

In Figure 7.7, the area allocation of the synchronous and the GALS baseband processor is shown.

In the synchronous baseband processor, the BIST circuitry is not analyzed separately but it is a part of

receiver and transmitter. From this figure, it is obvious that the decision to implement FFT/IFFT

separately in the GALS processor leads to a significant change in the area profile. In the GALS

implementation, FFT and IFFT use almost one third of the total cell area. Consequently, the share of

the other components of receiver and transmitter decreases in comparison with the pure synchronous

Chapter 7. Implementation and Evaluation of the GALS Systems

 100

solution. The introduction of asynchronous components in the system (asynchronous wrappers and

different interfaces) resulted only in a comparatively small increase in area. Hence, GALSification as

such, does not necessarily lead to a significant area increase. GALS circuits can limit the area

overhead to 3-5% compared to its synchronous counterpart.

T
x

R
x

F
F

T
/I

F
F

T

A
W

A
s

y
n

c
.

in
te

rf
a

c
e

s

A
s

y
n

c
-S

y
n

c
 I

n
te

rf
a

c
e

s

B
IS

T

C
lo

c
k

tr

e
e

7.6

50.6

31

2 1.6
1.3 3.5

1.7

9.1

66.5

22.6

0 0 0 0 1.7
0

10

20

30

40

50

60

70

Synchronous BB

GALS BB

Figure 7.7. Area distribution in synchronous and GALS baseband processors

 Even more interesting data can be generated from power profiling of the GALS and the

synchronous processors. Results are illustrated in Figure 7.8. From this figure the greatest change in

the power profile is observed in the transmitter. The power consumption of the GALS version is

reduced due to the fine-grained clock gating mechanism. Additionally, the share of the clock-trees is

reduced due to their smaller size. The power consumption in the GALS receiver is also reduced due to

the improved power saving. The effective power spent in the FFT/IFFT is at the same level for the

GALS and the synchronous processors. For the asynchronous component, as already mentioned,

Async-Sync interfaces are the most dominant consumer. From their optimization, much better power

results may be expected.

Chapter 7. Implementation and Evaluation of the GALS Systems

 101

T
x

R
x

F
F

T
/I

F
F

T

A
W

A
s

y
n

c
.

in
te

rf
a

c
e

s

A
s

y
n

c
-S

y
n

c
 I

n
te

rf
a

c
e

s

B
IS

T

C
lo

c
k

tr

e
e

4.5

34.4

13.5

2.9
0.6

7

1.5

34.5

16

36.9

10.4

0 0 0 0

36.7

0

5

10

15

20

25

30

35

40

Synchronous BB

GALS BB

Figure 7.8. Power consumption for functional blocks in synchronous and GALS baseband processor

Chapter 7. Implementation and Evaluation of the GALS Systems

 102

 103

Chapter 8

Experimental Results

8.1 Introduction

In order to verify the behaviour of the fabricated chip extensive testing and measurements had to be

performed. Three tasks were of major importance for us. The first goal was to verify the correct

functional behaviour of the chip. Secondly, to justify the introduction the GALS technique we wanted to

compare the GALS and the standard synchronous approach in respect to power consumption. Thirdly,

the measurement of the noise level in different baseband processor chips was of special interest.

8.2 Functional Verification of the GALS Baseband Processor

An important task in the verification of any design is the after-production test. The first goal of the

measurement and test procedure was to verify the functionality of the chip and to estimate the yield.

For the after-production test, a hardware tester Agilent 93000 was used. However, the hardware tester

is targeted to synchronous circuits. That means that the input and output patterns should be defined

relative to tester clock cycles. Consequently, testing asynchronous logic is a very challenging task.

The GALS baseband processor has completely synchronously driven interfaces. Therefore, the

generation of the test input vectors was not too difficult. However, the embedded ring oscillators and

the arbitration units in the GALS lead to timing nondeterminism. The simulation of the system that is

performed after back-annotation will not necessarily give the same results as the test of the fabricated

circuitry. When correct setup is applied, the valid output tokens will eventually match both in the

simulation and the testing case. However, the timing of token appearance in these two cases will

probably be different. Therefore, although the outputs are also synchronised with the clock the

nondeterminism in the GALS system complicates strobing of the output vectors. To solve this issue,

we have used the embedded BIST circuitry in the baseband processor, as proposed in Chapter 6. The

Chapter 8. Experimental Results

 104

output of the BIST circuitry is driven by an external clock and generates the result in predefined clock

cycles. Having this in mind, the test can be performed in the standard way with the synchronous

hardware tester. The results can be automatically or manually observed and verified.

The tester generates a simple input pattern which initiates the BIST. After that, the test operator

should just observe the clock cycles where the BIST_OK line is activated. If the number of created

pulses and the final value of this signal correspond to the simulated behaviour, the chip is correct.

Otherwise, there is a malfunction in the chip. In Figure 8.1 a snapshot of the BIST test using our

hardware tester is shown.

This test strategy makes the generation of the test program very easy. The BIST creates the test

results at the moment when the BIST data compacting is already finished. Timing nondeterminism,

always present in the GALS system, is avoided by externally clocking the BIST circuitry. However, the

verification of the signals except the BIST_OK is not easily possible due to changes of the signal

edges from chip to chip and from one test run to the next test run.

In our test suite we have used functional tests as well, in order to check the correct behaviour of the

GALS chip in a realistic operational environment. This test was not part of the automatic test-flow for

yield evaluation, but it was used for power estimation and noise characterization. The verification of

the functional test was done manually.

Additionally, during the test we have noticed that the frequency of the ring oscillators is very

sensitive to PVT variations. Therefore, some way of automatic calibration is needed. Otherwise,

industrial application of this system will be limited. None of the commercial users of GALS systems

would accept that in each produced chip the ring oscillators have to be manually tuned to the right

frequency. Alternatively, for wider industrial application of GALS systems, it is desirable to avoid the

use of ring oscillators and apply external clocks instead.

BIST check-points
are correct

Final BIST check-point
is correct !!!

Figure 8.1. BIST testing on the Agilent hardware tester

Chapter 8. Experimental Results

 105

8.3 Power Measurement

Performing the power measurements was relatively easy, because this feature is supported by the

hardware tester. The measurement was done on the basis of a realistic scenario. This test lasts

around 100 µs and represents the transmission of a 100 B frame followed by the reception of a 100 B

frame at the transmission rate of 54 Mbps. For comparison, the same test was performed for the pure

synchronous baseband chip, too. A statistical analysis was done on the basis of the results from the

chips that have passed the after-production test. The results are shown in Table 8.1. One should have

in mind that those numbers are derived from an experimental technology run, and they are not

relevant for process characterization. The dynamic power dissipation of the pure synchronous

baseband processor was around 332 mW, and for the GALS baseband processor slightly lower, at

around 328 mW. Due to the much larger chip area the static power in the GALS baseband processor

is higher. However, the static power consumption is normally in the order of µW. Due to some

technology problems, this number was increased for several orders of magnitude for those runs where

the baseband processors were fabricated.

Table 8.1. Power consumption of the synchronous and GALS baseband chip

 Power

Design

Static power [mW] Dynamic power [mW] Overall power [mW]

GALS baseband chip 58,4 328,4 386,8

Sync. baseband chip 40,8 332,0 372,8

According to the after-layout power estimation, the expected dynamic power reduction for the GALS

version was expected to be around 17 %. The actually measured reduction was a bit more than 1 %.

The reason for this discrepancy is the power estimation of the synchronous baseband processor that

created too pessimistic results. In general, the GALS and the pure synchronous baseband processors

use similar power saving strategies. The difference is that in the synchronous implementation, this

strategy is realized using a clock-gating scheme, and in the GALS implementation it is embedded into

the operation of the asynchronous wrappers. The advantage of the GALS technique is the usage of

the several low complexity clock trees instead of one global clock tree. In addition to that, finer

granularity of the clock domains leads to lower power consumption. However, the considerable power

consumption in the asynchronous-synchronous interfaces diminished those advantages. Hence, the

difference in the dynamic power consumption is very small. Additionally, some power is consumed in

the BIST circuit clock trees. This can be avoided in future designs.

The potential for lower power consumption could be better utilized if GALS was used in a more

aggressive way. For example, asynchronous-to-synchronous interfaces could be realized in a more

optimal manner, since due to robustness they have a significant overhead. Moreover, the most

Chapter 8. Experimental Results

 106

complex block Rx_3 can operate at a much lower sample rate then the currently used 80 Msps. This

conservative sample rate was chosen in order to re-use the design of locally synchronous modules. In

principle, even 60 Msps are sufficient to fulfil the functional demands of the system. However, this

normally requires certain modifications of the VHDL code for the locally synchronous modules.

To conclude, the GALS implementation led to small improvement in the dynamic power

consumption in comparison with the pure synchronous solution. However, some parts of the

implementation were not optimal which resulted in relatively small gain. For future implementations,

with more careful planning of the design, the achievable power reduction can be significantly higher.

8.4 Supply Noise Measurement

Performing EMI measurements is generally quite complicated. Therefore, we decided to use the

supply current profile as an indirect representation of EMI. Initially, we intended to directly measure the

supply current profile via a small shunt resistor. However, this was not possible due to blocking

capacitors on the board which are necessary to limit the supply voltage drop to an acceptable value.

Therefore, we decided to measure the variations of the supply voltage of the inner processor core

using a functional output pin that was permanently set to logic high value. This is possible since, in our

design, core supply voltage and I/O supply voltage are directly connected. During our measurements,

the p-MOS transistor of the pad driver operates in the linear region (Figure 8.2) and can hence be

modelled as a resistor, directly connected to the chip-internal supply voltage. This method proved very

effective for our purpose. The voltage variations were analysed both for the synchronous and the

GALS baseband processor operating in receive mode. After that, the spectrum of the power supply

voltage was calculated.

pad

Vdd

a)

pad

Vdd

Rpmos

b)

Figure 8.2. The final inverter stage of the output pad (a), and its simplified equivalent circuit for the

p-MOS transistor in the linear region of operation (b)

Chapter 8. Experimental Results

 107

0

-10

-20

-30

-40

-50

-60

-70

 0 50 100 150 200 250 300 350 400 450 500

synchronous baseband processor GALS baseband processor

[[[[d
B

]]]]

[[[[MHz]]]]

Figure 8.3. Spectral profile of the supply voltage (receiving scenario)

The most interesting case is to measure the spectral profile of the functional test when the greatest

switching activity is generated. In our test, this is the part of the test when the baseband processor

operates in receive mode and the Viterbi decoder is activated. From the oscilloscope waveform we

confirmed that in this processing phase, the supply voltage showed maximum variations. The voltage

spectrum is shown in Figure 8.3. This spectrum covers frequencies up to 500 MHz. Having in mind

typical operating frequencies of the system, this is a sufficient spectrum. In Figure 8.3 there are strong

spectral components at the frequencies of 20, 80, 160 and 240 MHz visible for the pure synchronous

baseband processor. Obviously, the synchronous chip generates the peak spectral components at the

frequencies of the clock sources (20 and 80 MHz). However, significant components are at the

harmonic frequencies. In the GALS circuit, these components are less emphasised. The absolute

maximum of the power spectrum of the GALS circuit (at 40 MHz) is about 5 dB lower than the absolute

maximum for the synchronous circuit (at 80 MHz). However, even for the GALS chip, the components

at 40 and 80 MHz are significant, due to the fact that the complete external shell operates

synchronously. Additionally, less dominant peaks at frequencies of 50, 100 and 130 MHz are visible in

the GALS spectrum. They may result from mixing products of the actual settings of our stoppable

clock generators in the asynchronous wrappers.

In Figure 8.4, another measurement result is shown. Here, we have analyzed the transmit mode

where the switching activity is not so strong. The most active part in this period should be the FFT in

the transmitter operating at 20 MHz. However, for the synchronous chip one can still recognise the

peaks at 20, 40, 80, 120 and 240 MHz. For the GALS version there are peaks mainly at 30, 40, 60 and

100 MHz. However, the synchronous peaks are more dominant. The difference is not that emphasized

Chapter 8. Experimental Results

 108

as in the previous example. For the synchronous chip, the maximum of the power spectrum is at

40 MHz and it is around 2-3 dB higher than the most dominant power peak for the GALS circuit (at the

same frequency). The reason for the not so big differences between the GALS and the synchronous

version is that GALSification in the transmitter is not very deep. There are only two real GALS blocks

and hence, we cannot expect any significant noise reduction.

One additional important aspect of the noise measurement is the estimation of the instantaneous

current peaks on the supply line. In a mixed-signal environment, this fact is very important for

successful integration of digital and analog components. For the case given in Figure 8.3, the

instantaneous supply voltage peaks are reduced from 140 mV (synchronous design) to less than 100

mV (GALS).

However, from both examples, the general conclusion is that the GALS approach creates a

smoother spectrum without emphasized and frequent peaks when compared to the pure synchronous

approach. However, from the analysis presented in Chapter 3, the level of EMI reduction is expected

to be more emphasized. On the other hand, in the implemented baseband processor chip the number

of GALS blocks was very limited and the effect of the noise reduction as well. An application with fine-

grained GALS partitioning can achieve more impressive results. Additionally, pads may also have an

impact on our EMI measurement. However, the achieved results give us hope that GALS can reduce

EMI and crosstalk in mixed-signal designs. Additional noise suppression is possible using clock

phasing within every particular locally synchronous module. Also clock jittering can be applied as a

method for spectral reduction of EMI.

0

-10

-20

-30

-40

-50

-60

-70

 0 50 100 150 200 250 300 350 400 450 500

synchronous baseband processor GALS baseband processor

[[[[d
B

]]]]

[[[[MHz]]]]

Figure 8.4. Spectral profile of the supply voltage (transmitting scenario)

 109

Chapter 9

Conclusions

9.1 Achieved Results

In this thesis, a technique for asynchronous communication between synchronous blocks is

presented. This novel GALS technique, reported here, allows easy integration of synchronous blocks

into a complex system structure. The GALS concept is based on the application of an asynchronous

wrapper, which is particularly optimized for datapath architectures with intensive and bursty data

transfer between system blocks. The wrapper application is based on natural and simple rules for

synchronous block design without notable hardware overhead. Our proposed method also offers

explicit and effective power saving mechanisms. In this work, we presented one possible

implementation of the proposed GALS technique. However, for a specific application, the circuits can

be further optimised and hence made more area, speed, or power efficient.

As a feasibility study of the proposed GALS technique, the complete implementation of a complex

IEEE 802.11a compliant GALS baseband processor for a WLAN modem has been undertaken. To our

knowledge, this is one of the most complex GALS implementations on silicon reported so far. The

challenging process of power-optimal GALS partitioning in the processor is described. The structure of

the GALS baseband processor is completed with several additional blocks necessary for proper

operation of the system and with suitable testing logic. The design flow used for this system is

described and implementation results are presented.

By introducing GALS, our main goal of simplifying the system integration was achieved. Application

of our GALS technique relaxed global timing, simplified clock tree-generation, and reduced clock-

skew. Furthermore, the results of our measurements show that GALSification leads to slightly lower

dynamic power consumption and a considerable reduction of supply noise.

Chapter 9. Conclusions

 110

9.2 Request-Driven GALS as a Solution – Pros and Cons

 The proposed request-driven GALS technique differs significantly from other known approaches.

This technique is optimized for point-to-point communication. There are some properties of the

proposed technique that are unique. When the circuit is operating in request-driven mode,

synchronisation at the input port is not needed. In this mode of operation, the incoming request signal

drives the clock signal of the LS module. The determinism in the system is increased and the GALS

block can be connected more easily to pure synchronous token consumers or producers.

 However, there are some drawbacks as well. The hardware implementation of the wrapper is rather

complex compared with some other GALS approaches and, in some cases, it can limit the

performances of the system. System operation of our initial version of the GALS-wrapper still

depended on ring oscillators, which require tuning. This will be too costly for most industrial

applications. An advanced version with external oscillator was developed to fix this problem.

After the re-evaluation of the request-driven GALS concept, we can define the application area for

this approach. The request-driven GALS technique is applicable for systems with complex datapaths

based on point-to-point communication and bursty data transfer. The proposed GALS concept and the

corresponding design-flow are based on a robust and fast design process with intensive tool support.

On the other hand, this approach is not particularly well suited for high-performance systems (e.g.

general purpose CPUs), due to possible performance degradation. Additionally, the concept is not

best suited for applications with irregular and sporadic data-transfer between blocks.

 We demonstrated that the proposed concept can be successfully applied in the area of wireless

communication systems with datapath architectures. The measurements showed improvements in

power consumption and a reduction of supply current variations. Therefore, this approach can be an

efficient basis for complex digital system integration.

9.3 Future Work

The proposed GALS concept was successfully implemented and evaluated. However, many issues

can be investigated further.

Our proposed implementation can be refined with an additional self-calibration of the local clock

generators. This self-calibration can be achieved without any additional clock inputs, only by the use of

the input request signal as a reference. In this way, the local clock generation and time-out period can

be automatically tuned to precisely match the global clock frequency. This will lead to a PLL-like

frequency generation resulting in a smoother data-flow. As a consequence, smaller FIFO buffers

would be required in the system.

Chapter 9. Conclusions

 111

Furthermore, we are planning to expand the scheme by using ‘end-tokens’ to trigger emptying of

internal pipeline stages. Instead of the time-out circuit proposed here, these ‘end-tokens’ can be used

to start the local clock generator. This solution may be very effective. However, it would imply non-

standard modifications to synchronous cores.

We need to optimize our clock jittering scheme in order to improve the possibilities for noise

reduction. It is also very important to further explore theoretical limits of EMI reduction that can be

reached with GALS application.

The GALS partitioning scheme has to be re-evaluated. The GALS techniques urgently need a

systematic approach that can formalize the rules and algorithms for GALS partitioning. As a result of

this investigation an automatic partitioning flow should be generated.

Additional work is needed to establish a complete user-friendly design framework that will allow

easy integration of complex GALS blocks. Ultimately, application in a mixed-signal design will

demonstrate the potential of our technique.

A subjective comparison of the GALS implementation of the OFDM baseband processor shows that

the design process is easier, faster, and less error prone when compared with the equivalent

synchronous design. This gives us hope that the scheme can be successfully deployed to simplify the

design of datapath architectures for future mobile communication systems.

Chapter 9. Conclusions

 112

 113

Chapter 10

References

[ALV98] Vladimir C. Alves, Felipe M. G. Franca, Edson P. Granja, A BIST scheme for

asynchronous logic, Proceedings of the Asian Test Symposium, 1998.

[BAD04] Mustafa Badaroglu, Piet Wambacq, Geer Van der Plas, Stephane Donnay, Georges

Gielen, Hugo De Man, Digital Ground Bounce Reduction by Phase Modulation of the Clock,

Proceedings of the Design, Automation and Test in Europe Conference and Exhibition (DATE’04), Vol.

I, pp. 10088, Paris, 2004

[BAR00] A. Bardsley, Implementing Balsa Handshake Circuits, PhD thesis, Department of

Computer Science, University of Manchester, 2000.

[BLA02] B. Blaauwendraad, TIR - Design and Testing of a Simple GALS Circuit, Student thesis,

Linköping University, 2002.

[BLU04] Ivan Blunno, Guy Alain Narboni, Claudio Passerone, An automated methodology for low

electro-magnetic emissions digital circuits design, Proceedings of the EUROMICRO Symposium on

Digital System Design (DSD’04), pp. 540-547, Rennes, France, 31.08 – 03.09, 2004.

[BER91] K. van Berkel, J. Kessels, M. Roncken, R. Saeijs, F. Schailij, The VLSI-programming

language Tangram and its translation into handshake circuits, Proceedings of European Conference

on Design Automation (EDAC), pp. 384-389, 1991.

[BER02] K. van Berkel, F. de Beest, A. Peeters, Adding Synchronous and LSSD Modes to

Asynchronous Circuits, Proceedings of the Eighth International Symposium on Asynchronous Circuits

and Systems, pp. 161-170, April 2002.

[BOR97] David S. Bormann, Peter Y. K. Cheoung, Asynchronous Wrapper for Heterogeneous

Systems, Proceedings of International Conference on Computer Design (ICCD), October 1997.

Chapter 10. References

 114

[BUCK93] Joseph Buck, Edward A. Lee, The Token Flow Model, Presented at Data Flow

Workshop, Hamilton Island, Australia May, 1992, also in Advanced Topics in Dataflow Computing and

Multi-threading, ed. Lubomir Bic, Guang, Gao, and Jean-Luc Gaudiot, IEEE Computer Society Press,

1993.

[CAR03] Carlsson, W. Li, K. Palmkvist, L. Wanhammar, S. Zhuang, A Design Path for Design of

GALS Based Communication Systems, Proceedings of Swedish System-on-Chip Conference,

Eskilstuna, Sweden, April 8-9, 2003.

[CHAP84] Daniel M. Chapiro, Globally-Asynchronous Locally-Synchronous Systems, PhD thesis,

Stanford University, October 1984.

[CHAN99] H. Chang, L. Cooke, M. Hunt, G. Martin, A. McNelly, L. Todd, Surviving the SoC

Revolution, Kluwer Academic Publishers, 1999.

[CHAK03] Ajanta Chakraborty, Mark Greenstreet, Efficient Self-Timed Interfaces for Crossing Clock

Domains, Proceedings of 9th International Symposium on Asynchronous Circuits and Systems

(ASYNC'2003), pp. 78-88, Vancouver, Canada, 2003.

[CHE00a] Tiberiu Chelcea, Steven M. Nowick, Low-latency asynchronous FIFO's using token rings,

Proceedings of International Symposium on Advanced Research in Asynchronous Circuits and

Systems, pp. 210-220, April 2000.

[CHE00b] Tiberiu Chelcea, Steven M. Nowick, Low Latency FIFO for Mixed-Clock Systems,

Proceedings of the IEEE Computer Society Workshop on VLSI (IWLSI’00), pp. 119-126, 2000.

[CHE01] Tiberiu Chelcea, Steven M. Nowick, Robust Interfaces for Mixed-Timing Systems with

Application to Latency-Insensitive Protocols, Proceedings of ACM/IEEE Design Automation

Conference, pp. 21-26, Las Vegas, USA, June 2001.

[COR96] J. Cortadella, M. Kishinevsky, A. Kondratyev, L. Lavagno, A. Yakovlev, Petrify: A tool for

manipulating concurrent specifications and synthesis of asynchronous controllers, Proceedings of XI

Conference on Design of Integrated Circuits and Systems, Barcelona, November 1996.

[DAM02] Ø. Damhaug, T. Njølstad, Arbitration And Meta-Stability Management In Globally

Asynchronous Locally Synchronous Circuits, Proceedings of 5th Nordic Signal Processing

Symposium, On board Hurtigruten from Tromsø to Trondheim, Norway, 2002.

[DIKE99] C. Dike and E. Burton, "Miller and Noise Effects in a Synchronizing Flip-Flop," IEEE

Journal of Solid-State Circuits, vol. 34, pp. 849-855, 1999.

Chapter 10. References

 115

[DIN02] A. V. Dinh Duc, J. Rigaud, A. Rezzag, A. Siriani, F. Fragoso, L. Fesquet, M. Renaudin,

TAST CAD tools, Collection of regular and poster presentations at the 2
nd

 Asynchronous Circuit

Design Workshop ACiD 2002, Munich, Germany, 28-29 January, 2002.

[DOB04] R. Dobkin, R. Ginosar, C. Sotiriu, Data Synchronization Issues in GALS SoCs,

Proceedings of the 10th International Symposium on Asynchronous Circuits and Systems, pp. 170-

179, Crete, Greece, 19 - 23 April 2004.

[FRA04] U. Frank, R. Ginosar, A Predictive Synchronizer for Periodic Clock Domains, In

Proceedings of International Workshop on Power And Timing Modeling Optimization and Simulation

(PATMOS), pp. 402-412, Santorini, Greece, September 2004.

[FUH01] R. Fuhrer, S. Nowick, Sequential Optimization of Asynchronous and Synchronous Finite

State Machines: Algorithms and Tools, Kluwer Academic Publishers, Boston, 2001.

[GEN92] H.J. Genrich, R.M. Shapiro. Formal Verification of an Arbiter Cascade, In Jensen, K.,

editor, Proceedings of 13th International Conference on Application and Theory of Petri Nets

(ICATPN'92), Sheffield, UK, Springer LNCS, Vol. 616, June 1992.

[GIN02] Ran Ginosar, Application of the Async design to the Sync world: synchronization and

arbitration, Presentation at Summer School on “Asynchronous Circuit Design”, Grenoble, France, July

2002.

[GIN03] Ran Ginosar, Fourteen Ways to Fool Your Synchronizer, Proceedings of the Ninth

International Symposium on Asynchronous Circuits and Systems, pp. 89-96, May 2003.

[GRA01] Eckhard Grass, Klaus Tittelbach-Helmrich, Ulrich Jagdhold, Alfonso Troya, Gunther

Lippert, Olaf Krüger, Jens Lehmann, Koushik Maharatna, Kai Dombrowski, Norbert Fiebig, Rolf

Kraemer, Petri Mähönen, On the Single-Chip Implementation of a Hiperlan/2 and IEEE 802.11a

Capable Modem, IEEE Personal Communications, Vol. 8, No. 6, pp. 48 – 57, December 2001.

[GRA05] E. Grass, F. Winkler, M. Krstić, A. Julius, C. Stahl, M. Piz, Enhanced GALS Techniques

for Datapath Applications, Proceedings of International Workshop on Power And Timing Modeling,

Optimization and Simulation (PATMOS), LNCS 3728, Springer Verlag, pp. 581-590, Leuven, Belgium,

2005.

[GUR02] Frank Gürkaynak, Thomas Villiger, Stephan Oetiker, Norbert Felber, Hubert Kaeslin,

Wolfgang Fichtner, A Functional Test Methodology for Globally-Asynchronous Locally-Synchronous

Systems, Proceedings of the Eighth International Symposium on Asynchronous Circuits and Systems,

pp. 181-189, April 2002.

[HAN05] Handshake Solutions web page, http://www.handshakesolutions.com/.

Chapter 10. References

 116

[HEM99] A. Hemani, T. Meincke, S. Kumar, A. Postula, T. Olson, P. Nilsson, J. Öberg, P. Ellervee,

D. Lindqvist, Lowering power consumption in clock by using globally asynchronous locally

synchronous design style, Proceedings of ACM/IEEE Design Automation Conference, 1999.

[HEAT03] M. Heath, I. Harris, A Deterministic Globally Asynchronous Locally Synchronous

Microprocessor Architecture, Proceedings of 4th International Workshop on Microprocessor Test and

Verification (MTV), Austin, TX, May 29-30, 2003.

[HEAL04] James T. Healy, Shotgun Wedding Needed: BIST and ATE, Chip Scale Review, pp. 11-

13, Jan/Feb 2004.

[IEEE99] IEEE P802.11a/D7.0, Part 11: Wireless LAN Medium Access Control (MAC) and

Physical Layer (PHY) specifications: High Speed Physical Layer in the 5 GHz Band, July 1999.

[ITRS03] International Technology Roadmap for Semiconductors, 2003.

[IYE02] Anop Iyer, Diana Marculescu, Power and Performance Evaluation of Globally

Synchronous Locally Asynchronous Processors, Proceedings of 29th Annual International Symposium

on Computer Architecture, pp. 158-170, 2002.

[KES97] J. Kessels, P. Marston, Designing asynchronous standby circuits for a low power pager,

Proceedings of the International Symposium of Advanced Research in Asynchronous Circuits and

Systems, pp 268-278, April 1997.

[KOL98] Rakefet Kol, Ran Ginosar, Adaptive Synchronization for Multi-Synchronous Systems,

Proceedings of International Conference on Computer Design (ICCD), October 1998.

[KON01] Xiaohua Kong, Radu Negulescu, and Larry Weidong Ying. Refinement-based formal

verification of asynchronous wrappers for independently clocked domains in systems on chip,

Proceedings 11th Advanced Research Working Conference on Correct Hardware Design and

Verification Methods (CHARME), September 2001.

[KRS03a] M. Krstić, E. Grass, New GALS Technique for Datapath Architectures, Proceedings of

International Workshop on Power And Timing Modeling Optimization and Simulation (PATMOS), pp.

161-170, Turin, Italy, September 2003.

[KRS03b] M. Krstić, K. Maharatna, A. Troya, E. Grass, U. Jagdhold, Implementation of the IEEE

802.11A Compliant Low-Power Baseband Processor, Proceedings of 6
th
 International Conference on

Telecommunications in Modern Satellite, Cable and Broadcasting Services (TELSIKS), Nis, Serbia,

Vol I, pp. 97-100, 2003.

Chapter 10. References

 117

[KRS03c] M. Krstić, E. Grass, Request-driven GALS Technique for Datapath Architectures,

Collection of regular and poster presentation of ACiD-WG Workshop, Crete, Greece, January 2003.

[KRS03d] M. Krstić, A. Troya, K. Maharatna, E. Grass, Optimized Low-Power Synchronizer Design

for the IEEE 802.11a Standard, Proceedings of International Conference on Acoustics, Speech and

Signal Processing (ICASSP), Vol II, pp. 333-336, Hong Kong, April 6-10, 2003.

[KRS04a] M. Krstić, E. Grass, GALSification of IEEE 802.11a Baseband Processor, Proceedings of

International Workshop on Power And Timing Modeling Optimization and Simulation (PATMOS), pp.

258-267, Santorini, Greece, September 2003.

[KRS04b] M. Krstić, E. Grass, GALS Baseband Processor for WLAN, Collection of regular and

poster presentation of ACiD-WG Workshop, Turku, Finland, June 2004.

[KRS05a] M. Krstić, E. Grass, C. Stahl, Request-driven GALS Technique for Wireless

Communication System, Proceedings of 11th IEEE International Symposium on Asynchronous

Circuits and Systems (ASYNC 2005), pp. 76-85, New York, Mar 2005.

[KRS05b] M. Krstić, E. Grass, BIST Technique for GALS Systems, Proceedings - 8th

EUROMICRO Conference on Digital System Design (DSD 2005)- Architectures, Methods and Tools,

Porto, Portugal, pp. 10-16, August 30th - September 3rd, 2005.

[MAH05] K. Maharatna, S. Banerjee, E. Grass, M. Krstić, A. Troya, Modified Virtually Scaling Free

Adaptive CORDIC Rotator Algorithm and Architecture, IEEE Trans. on Circuits and Systems for Video

Technology (CSVT), Vol. 15, No. 11, November 2005, pp. 1463-1474.

[MED02] MEDEA+ Design Automation Roadmap, March 2002.

[MEI99] T. Meincke, A. Hemani, S. Kumar, P. Ellervee, J. Öberg, T. Olson, P. Nilsson, D.

Lindqvist, H. Tenhunen, Evaluating Benefits of Globally Asynchronous Locally Synchronous VLSI

architecture, Proceedings of International Symposium on Circuits and Systems, 1999.

[MIG96] V. Mignone, A. Morello, CD3-OFDM: A Novel Demodulation Scheme for Fixed and

Mobile Receivers, IEEE Transactions on Communications, vol. 44, no. 9, pp. 1144-1151, Sept. 1996.

[MOO98] Simon Moore, Peter Robinson, Rapid prototyping of self-timed circuits, Proceedings of

International Conference on Computer Design (ICCD), pages 360-365, October 1998.

[MOO00] Simon Moore, George Taylor, Robert Mullins, Paul Cunningham, Peter Robinson, Self

Calibrating Clocks for Globally Asynchronous Locally Synchronous System, Proceedings of

International Conference on Computer Design (ICCD), September 2000.

Chapter 10. References

 118

[MOO02] Simon Moore, George Taylor, Robert Mullins, Peter Robinson, Point to Point GALS

interconnect, Proceedings of the Eighth International Symposium on Asynchronous Circuits and

Systems, pp. 69-75, April 2002.

[MUT99] Jens Muttersbach, Thomas Williger, Hubert Kaeslin, Norbert Felber, Wolfgang Fichtner,

Globally-Asynchronous Locally-Synchronous Architectures to Simplify the Design of On-Chip

Systems, Proceedings of 12
th
 IEEE International ASIC/SOC Conference, Washington DC, pp. 317-

321, Sept. 1999.

[MUT01] Jens Muttersbach, Globally-Asynchronous Locally-Synchronous Architectures for VLSI

Systems, Doctor of Technical Sciences Dissertation, ETH Zurich, Switzerland, 2001.

[NOW02] S. Nowick, T. Chelcea, Minimalist CAD Tool Tutorial, Summer School on “Asynchronous

Circuit Design”, Grenoble, France, July 15-19, 2002

[PRI70] Price, J.E., A new look at yield of integrated circuits, Proc. IEEE, 58, 1290, 1970.

[SCHM00] K. Schmidt. Lola -- a low level analyser. In Nielsen, M. and Simpson, D., editors,

International Conference on Application and Theory of Petri Nets, LNCS 1825, pp. 465 ff. Springer-

Verlag, 2000.

[SCHW01] L. Schwoerer, H. Wirz, VLSI Implementation of IEEE 802.11a Physical Layer,

Proceedings of 6
th
 Int’l. OFDM Workshop, Hamburg, Germany, pp. 28.1 – 28.4, 2001.

[SEITZ80] Charles Seitz, System Timing. In Carver A. Mead and Lyn Conway, editors, Introduction

to VLSI systems, chapter 7, Addison-Wesley, 1980.

[SEIZ94] Jakov Seizovic, Pipeline Synchronization, Proceedings of the International Symposium of

Advanced Research in Asynchronous Circuits and Systems, pp 87-96, Nov 1994.

[STA05] C. Stahl, W. Reisig, M. Krstić, Hazard Detection in a GALS Wrapper: a Case study, In

Desel, J. and Watanabe, Y., editors, 5th International Conference on Application of Concurrency to

System Design (ACSD’05), pages 234-243, IEEE Computer Society, 2005.

[TAL05] Emil Talpes, Diana Marculescu, Toward a Multiple Clock/Voltage Island Design Style for

Power-Aware Processors, IEEE Transactions on Very Large Scale Integrations (VLSI) Systems, Vol.

13, No. 5, pp. 591-603, May 2005.

[TAY00] George Taylor, Simon Moore, Steve Wilcox, Peter Robinson, An on-chip dynamically

recalibrated delay line for embedded self-timed systems, Proceedings of International Symposium on

Advanced Research in Asynchronous Circuits and Systems, pp. 45-51, April 2000.

Chapter 10. References

 119

[TRO02] A. Troya, K. Maharatna, M. Krstić, E. Grass, R. Kraemer, OFDM Synchronizer

Implementation for an IEEE802.11a Compliant Modem, Proceeding of IASTED International

Conference Wireless and Optical Communications, Banff, Canada, ISBN 0-88986-344-X, pp. 152-157,

2002.

[TRO03] A. Troya, M. Krstić, K. Maharatna, Simplified Residual Phase Correction Mechanism for

the IEEE 802.11a Standard, Proceedings of IEEE VTC Conference, Orlando, USA, 2003.

[YUN96] Kenneth Y. Yun, Ryan P. Donohue, Pausible Clocking: A first step toward

heterogeneous systems, Proceedings of International Conference on Computer Design (ICCD),

October 1996.

[YUN99a] Kenneth Yun, David Dill, Automatic synthesis of extended burst-mode circuits: Part I and

II, IEEE Transactions on Computer-Aided Design, 18(2), pp. 101-132, February 1999.

[YUN99b] K. Y. Yun and A. E. Dooply, Pausible clocking based heterogeneous systems, IEEE

Transactions on VLSI Systems, Vol. 7, No. 4, pp. 482-487, Dec. 1999.

[VIL02] T. Villiger, F. Gurkaynak, S. Oetiker, H. Kaeslin, N. Felber, W. Fichtner, Multi-point

Interconnect for Globally-Asynchronous Locally-Synchronous Systems, Collection of regular and

poster presentations at the 2
nd

 Asynchronous Circuit Design Workshop ACiD 2002, Munich, Germany.

[VIL03] T. Villiger, H. Kaeslin, F. Gurkaynak, S. Oetiker, W. Fichtner, Self-timed Ring for

Globally-Asynchronous Locally-Synchronous Systems, Proceedings of the Ninth IEEE International

Symposium on Asynchronous Circuits and Systems, Vancouver, pp. 141-150, 2003.

[ZHU02a] S. Zhuang, W. Li, J. Carlsson, K. Palmkvist, L. Wanhammar, An Asynchronous Wrapper

with Novel Handshake Circuits for GALS Systems, Proceedings of International Conference on

Communications, Circuits and Systems (ICCCAS), Chuengdu, China, 2002.

[ZHU02b] S. Zhuang, W. Li, J. Carlsson, K. Palmkvist, L. Wanhammar, Asynchronous Data

Communication with Low Power for GALS Systems, Proceedings of IEEE International Conference on

Electronics, Circuits, and Systems (ICECS) 2002, Dubrovnik, Croatia, 2002.

[ZHU02c] S. Zhuang, W. Li, J. Carlsson, K. Palmkvist, and L. Wanhammar, The VLSI

Implementation of 1-D DWT Based On GALS Systems, Proceedings of IEEE Nordic Signal

Processing Symposium, Hurtigruta, Tromsö-Trondheim, Norway, Oct. 4-7, 2002.

Chapter 10. References

 120

 121

Acronyms and Symbols

3D - tool for synthesis of hazard-free asynchronous controllers

3DC - tool that converts the output of the 3D tool into VHDL

4G - fourth generation of mobile communications

Ack - acknowledge line of the handshake protocol

ACKC - gated internal acknowledge signal

ACKEN - acknowledge enable signal

ACK_A - input acknowledge signal

ACK_B - output acknowledge signal

ACK_INT - internal acknowledge signal

ACKI_1 - clock stretching acknowledge

ADC - Analog to Digital Converter

AFSM - Asynchronous Finite State Machine

AFE - analog front-end

ASIC - Application Specific Integrated Circuit

ATPG - Automatic Test Pattern Generation

BIST - Built-In Self-Test

BPSK - Binary Phase Shift Keying

CBC - Central BIST Controller

Acronyms and Symbols

 122

CC - coarse control signal for delay element

Clk_grant - enable for new clock cycle generation

clk - clock signal

CMOS - Complementary MOSFET

CMU - Clock Management Unit

CORDIC - COordinate Rotation DIgital Computer

DAC - Digital to Analog Converter

DATAV_IN - valid data present at the input stage of the LC block

DATAV_OUT - synchronous data valid signal

DFT - Design for Testability

DLE - data latch enable signal

DOV - data output valid signal

DONV - data output not valid signal

DSP - Digital Signal Processing

ECLK - external clock signal

EDA - Electronic Design Automation

EJTAG - Enhance Joint Test Action Group

EMI - Electro-Magnetic Interference

EN - enable for join circuitry

fc - clock frequency

FF - flip-flop

FFT - Fast Fourier Transform

FIFO - First-In First-Out memory

FIFO_TA - FIFO memory used for token alignment in the receiver

FIR - Finite Impulse Response

FSM - Finite State Machine

GALS - Globally Asynchronous Locally Synchronous

GALS DF - GALS Design Framework

GUI - Graphical User Interface

Acronyms and Symbols

 123

HDL - Hardware Description Language

IEEE 802.11a - IEEE standard for Wireless LAN

INT_CLK - Clock signal of the LS block

IP - Intellectual Property

IFFT - Inverse Fast Fourier Transform

LAN - Local Area Network

LCLKM - locally generated clock signal

LCLK - output of the ring oscillator

LFSR - Linear Feedback Shift Register

LS - Locally Synchronous

ME - Mutual Exclusion element

Msps - Mega samples per second

MTBF - Mean Time Between Failures

MUTEX - Mutual Exclusion element

NCO - Numerically Controlled Oscillator

OFDM - Orthogonal Frequency Division Multiplex

pass/fail - signal that indicates the result of the test

PCC - Pausable Clocking Control

ppm - part per million

PTCG - Pausable Test Clock Generator

PVT - process, voltage, temperature

QAM - Quadrature amplitude modulation

QPSK - Quadrature phase shift keying

RCLK - inverted local clock signal

RCLKD - delayed inverted local clock signal

Req - request line of the handshake protocol

REQ_A - input request of the asynchronous wrapper

REQ_A1 - hazard-free derivation of the input request

REQ_A - output request of the asynchronous wrapper

Acronyms and Symbols

 124

REQ_INT - internal request line in the asynchronous wrapper

REQI_1 - request for clock stretching generated from input port

Rot_val_ok - control signal that indicates coarse synchronisation

RST - time-out circuitry reset

RTL - Register-transfer level

Rx_TRA - token rate adaptation circuit of the receiver

SDF - standard delay format

SoC - System on Chip

ST - time-out indication signal

STG - Signal Transition Graph

Start_m - activation signal for receiver feedback loop

STOPI - internal stop signal

STOP - signal that indicates clock generator disabling

Stretch - signal that controls stretching of the pausable clock generator

T - clock period

Test_on/off - activation signal for BIST

Test_reset - reset for test circuits

Test_select - selection signal for the specific BIST test

TDE - Test Data Evaluator

TDEi_en - enable of i-th Test Data Evaluator

TDEi_golden_select - selection of the golden value for i-th TDE

Ttime_out - timing period of request line inactivity that activates local clock

TPG - Test Pattern Generator

TPGi_en - enable of i-th Test Pattern Generator

VCD - Value Change Dump file format

VHDL - Very high speed integrated circuits Hardware Description Language

WLAN - Wireless Local Area Network

Write_fifo - data output valid of the receiver

XBM - Extended Burst Mode

 125

Curriculum Vitae

Miloš Krstić received his Dipl.-Ing. degree in Electronics & Communications, and Master of Science

(M.Sc.) degree in Electronics from the University of Niš, Serbia and Montenegro, in 1997 and 2001,

respectively. In 2001 he joined the IHP GmbH in Frankfurt (Oder) as a Research Associate in the

Wireless Communication Systems department. For the last few years in IHP, his work was mainly

focused on low power digital design for wireless applications and Globally Asynchronous Locally

Synchronous (GALS) methodologies for large digital system integration. The developed concepts and

the respective results are presented in this thesis.

