
The solution of time-dependent ordinary differential
equations using neural networks:

collocation polynomial neural forms and adaptive
neural domain refinement

Von der Fakultät 1 - MINT - Mathematik, Informatik, Physik, Elektro-
und Informationstechnik der Brandenburgischen Technischen Universität

Cottbus-Senftenberg genehmigte Dissertation zur Erlangung des
akademischen Grades eines

Dr. rer. nat.

vorgelegt von

Toni Schneidereit

geboren am 25.08.1991 in Cottbus

Vorsitzender: Prof. Dr. rer. nat. habil. Gerd Wachsmuth

Gutachter: Prof. Dr. rer. nat. habil. Michael Breuß

Gutachter: Prof. Dr. rer. nat. Carsten Hartmann

Gutachter: Prof. Em. Dr. Isaac Lagaris

Tag der mündlichen Prüfung: 16.12.2022

DOI: https://doi.org/10.26127/BTUOpen-6389

Summary
Solving differential equations is still a topic of major interest, due to their appearance
in many fields of science and engineering. Differential equations may arise from mod-
elling processes of, e.g., physical phenomena. Numerical methods for the approximation
of their solution are often considered when there is no analytical solution. A classic
approach for solving differential equations with neural networks builds upon trial solu-
tions, the so-called neural forms. The latter are incorporated in a cost function that
is subject to minimisation, to train the involved neural networks. The cost function
can be constructed using the differential equation with a discretisation of the solution
domain. Neural forms represent general and flexible tools for solving ordinary differ-
ential equations, partial differential equations as well as systems of each. However, the
computational approach is in general highly dependent on a variety of computational
parameters and the choice of the optimisation methods.

Studying the solution of a simple but fundamental stiff ordinary differential equa-
tions with small feedforward neural networks and first order optimisation shows, that it
is possible to identify preferable choices for parameters and methods. It also reveals the
importance of a careful choice of the computational setup. That is, the neural network
weight initialisation appears to be a sensitive topic, while having a major impact on the
solution accuracy. Especially the use of non-random (deterministic) weights partially
shows poor performance, but removes a stochastic component. Further research reveals,
that a new polynomial representation of the neural forms can significantly increase the
reliability of a deterministic initialisation (all weights have initially the same values as-
signed). In general, the neural forms approaches either incorporate given initial values
directly in their construction or add them within additional terms to the cost function.
In order to maintain smaller neural network architectures and solve the differential
equation, even on fairly large domains, a new technique called domain segmentation
(for initial value problems) is introduced. The solution domain splits into equidistant
subdomains and the above-mentioned collocation polynomial neural forms are solved
separately in each domain fragment. At the boundary of any subdomain, a new initial
value is provided by the neural forms solution and directly incorporated in the adjacent
one. Results for more difficult differential equations show that this approach can even
further improve the weight initialisation topic.

In classic adaptive numerical methods for solving differential equations, the mesh
as well as the domain may be refined or decomposed, respectively, in order to improve
numerical accuracy. The subdomain distribution can also be connected with an adaptive
refinement. That is, the neural network training status is combined with an adaptive
subdomain size reduction in the new adaptive neural domain refinement algorithm.
That is, each subdomain is reduced in size until the optimisation is resolved up to a
predefined training accuracy. In addition, while the neural networks are by default
small, the number of neurons may also be adjusted in an adaptive way. Conditions are
introduced to automatically confirm the solution reliability and optimise computational
parameters whenever it is necessary.

After an introduction with the motivation and a literature review,the mathematical
methods are described in detail, together with discussing corresponding results. In the
end, a discussion brings the main results into context.

Zusammenfassung
Die Lösung von Differentialgleichungen ist auch heutzutage ein wichtiges Thema, da
diese in vielen Bereichen der Wissenschaft auftauchen und zum Beispiel bei der math-
ematischen Modellierung physikalischer Systeme Anwendung finden. Oftmals besitzen
diese Gleichungen keine analytische Lösung, weshalb numerische Methoden zur Ap-
proximation verwendet werden. Ein klassischer Ansatz aus dem Bereich der Neuronalen
Netze setzt auf sogenannte „trial solutions“ oder „neural forms“. Diese werden in eine
Kostenfunktion eingebunden, welche zum Zweck des Trainings der Neuronalen Netze
minimiert werden soll. Mit Hilfe der Struktur der gegebenen Differentialgleichung und
einer Diskretisierung des Lösungsgebiets kann eine solche Kostenfunktion aufgestellt
werden. Generell bilden die neural forms flexible Werkzeuge zur Lösung von gewöhn-
lichen, partiellen und auch Systemen von Differentialgleichungen. Dennoch sind diese
rechnergestützten Ansätze stark abhängig von einer Vielzahl an Parametern.

Eine rechenbasierte Studie zur Lösung eines einfachen, steifen Anfangswertprob-
lems mit einfachen, sogenannten „feedforward neural networks“ und Optimierung erster
Ordnung zeigt, dass die sorgfältige Auswahl durchaus vorteilhafte Parameterkombina-
tionen ergeben kann. Die Initialisierung der Anfangsgewichte der Neuronalen Netze
ist ein sensibles Thema. Während konstant (nicht zufällig) gewählte Gewichte einen
stochastischen Effekt eliminieren, so liefern sie stellenweise keine verlässlichen Approx-
imationen.

Weiterführend ist es jedoch möglich, mit einer Polynomdarstellung der neural forms,
die Aussagekraft der Lösungen mit konstanten Gewichten deutlich zu verbessern. Die
oben genannte rechenbasierte Studie zeigt zudem auf, dass zu groß gewählte Lösungsge-
biete zu keinen verlässlichen Ergebnissen führen können. Eine Charakteristik der neural
forms bezieht sich auf die Einbindung gegebener Anfangswerte in die neural forms selbst
oder direkt in die Kostenfunktion. Um die Architekturen der Neuronalen Netze weiter-
hin klein zu halten und die Differentialgleichungen trotzdem auch auf größeren Gebieten
lösen zu können, wird die Methode der „domain segmentation“ eingeführt. Diese teilt
das gesamte Gebiet in kleinere Untergebiete auf und löst die „collocation polynomial
neural forms“ einzeln in jedem der gleichverteilten Untergebiete. Die Lösung in einem
dieser Untergebiete liefert dann den neuen Anfangswert für das benachbarte Unterge-
biet. Das Testen dieser Methode an Differentialgleichungen mit speziellen Charak-
teristiken zeigt, dass dadurch die Verlässlichkeit konstanter Anfangsgewichte weiter
vorangetrieben werden kann.

Die Gebietsaufteilung durch domain segmentation ist ein Ansatz speziell für An-
fangswertprobleme. In der klassischen Numerik werden oft adaptive Ansätze zur Er-
höhung der Genauigkeit mit in die Lösung von Differentialgleichungen eingebaut. Dies
können zum Beispiel lokale Gitterverfeinerungen oder Gebietsaufteilungen sein. Der
domain segmentation Ansatz kann mit einer zusätzlichen adaptiven Verfeinerung kom-
biniert werden, in welchem die Kostenfunktion ausgewertet und als Status des Trainings
der Neuronalen Netze definiert wird. Zusammen mit einem adaptiven Algorithmus für
eine mögliche Verkleinerung der oben genannten Untergebiete ist der „adaptive neu-
ral domain refinement“ Ansatz entstanden. Jedes Untergebiet kann in seiner Größe
verringer werden, bis die Minimierung der Kostenfunktion bis zu einer vordefinierten
Genauigkeit erreicht ist. Eine Komponente zur automatischen Bestätigung des Ergeb-
nisses ist in den Algorithmus aufgenommen worden. Zusätzlich zu den normalerweise

kleinen Neuronalen Netzwerken wird eine automatische Anpassung der Parameter er-
möglich, sollten einzelne Untergebiete in ihrer Größe zu klein werden.

Nach einer allgemeinen Einführung mit Beschreibung der Motivation und einer Lit-
eraturübersicht zu den bereits existierenden wissenschaftlichen Arbeiten auf diesem
Gebiet, werden die mathematischen Grundlagen näher beleuchtet und zusammen mit
den entsprechenden Resultaten ausgewertet. Am Ende werden die Hauptresultate noch
einmal im gegenseitigen Zusammenhang diskutiert.

Acknowledgement
This work was funded by the Graduate Research School (GRS) from the Branden-
burg University of Technology Cottbus-Senftenberg as a part of the Research Cluster
Cognitive Dependable Cyber Physical Systems. I am very grateful for the granted
opportunity from this scholarship. Many thanks to all the unknown reviewers from
the Springer journal "Neural Computing and Applications", Algoritmy Conference and
ICAISC 2021 for their excellent work on remarks and suggestions when reviewing the
submitted papers. I want to align special thanks to Prof. Dr. Michael Breuß for his su-
pervision and support during the research and creation process of the produced papers.
He was always available and motivated to discuss ideas and possible research directions.
To my dearest family Slavomíra, Karin, Roland, Diana and Anna.

Contents
1 Introduction 1

1.1 Motivation and contribution . 1
1.2 Literature review . 5

1.2.1 A brief historical overview . 5
1.2.2 Artificial neural network architectures 6
1.2.3 First approaches using ANNs 7
1.2.4 ANN approaches based on neural forms 8
1.2.5 ANN approaches based on suitable cost functions 9
1.2.6 DNN approaches for differential equations 10
1.2.7 ANNs combined with numerical methods 11
1.2.8 Mesh refinement strategies using ANNs 12

2 Computational characteristics of neural forms approaches for solving
initial value problems 13
2.1 The feedforward neural network . 13
2.2 The neural forms approach . 15

2.2.1 Trial solution method (TSM) 15
2.2.2 Modified trial solution method (mTSM) 18

2.3 Optimisation, initialisation and evaluation 18
2.3.1 Backpropagation, Adam and BFGS 18
2.3.2 Weight initialisation . 23
2.3.3 Evaluation metrics and overfitting 25

2.4 Computational results for TSM and mTSM 26
2.4.1 TSM construction example . 26
2.4.2 Details on the experiments . 31
2.4.3 Experiment: weight initialisation 33
2.4.4 Experiment: number of hidden layer neurons 35
2.4.5 Experiment: number of hidden layers 37
2.4.6 Experiment: number of epochs 39
2.4.7 Experiment: stiffness parameter (part 1) and domain size (part 2) 40
2.4.8 Experiment: optimisation methods 42
2.4.9 Conclusion . 46

3 (Subdomain) Collocation polynomial neural forms for solving initial
value problems 47
3.1 The collocation neural forms approach 47
3.2 The domain segmentation approach . 50
3.3 Computational results for CNF and SCNF 52

3.3.1 Experiments on the collocation polynomial neural form (CNF) . 53
3.3.2 CNF Experiment: number of training epochs 53
3.3.3 CNF Experiment: domain size variation 56
3.3.4 CNF Experiment: number of training points variation 58

3.4 Experiments on the subdomain polynomial collocation neural form (SCNF) 58
3.4.1 SCNF Experiment: CNF versus SCNF 61
3.4.2 SCNF Experiment: CNF order variation 62

3.4.3 SCNF Experiment: number of subdomain variation 64
3.4.4 SCNF Experiment: numerical error in the subdomains 65
3.4.5 SCNF Experiment: system of initial value problems 66
3.4.6 Comparison with numerical methods 68
3.4.7 Conclusion . 69

4 ANDRe: adaptive neural domain refinement for solving initial value
problems 71
4.1 Algorithm summary . 71
4.2 ANDRe Flowchart explanation . 73
4.3 Computational results for ANDRe . 76

4.3.1 Details on parameters and measurement metrics 76
4.3.2 Details on parameter adjustment 78
4.3.3 The evaluation of ANDRe for different initial value problems . . 78
4.3.4 ANDRe and the analytical solutions 80
4.3.5 Numerical and neural network errors 84
4.3.6 Method and parameter evaluation 87
4.3.7 Comparison with numerical methods 91
4.3.8 Conclusion . 93

5 Discussion 94

1 Introduction
The very first section of this thesis is dedicated to provide the motivation of solving
differential equations with numerical and neural network based approaches. Especially
initial value problems lay in the focus of the motivation and the formulation of the
general problem. Followed up by a brief illustration of the contribution and a detailed
literature review.

1.1 Motivation and contribution

Differential equations (DEs) in general are important models in many fields of science
and engineering, as they often represent real-world behaviour [1, 2]. They are usually
formulated as initial or boundary value problems, where conditions at the beginning of
a process or at boundary points are given to obtain one specific solution. The equations
incorporate, depending on their type, the solution function, one or more independent
variables, additional constant terms and at least the first derivative of the solution func-
tion. They may appear as individual equations or as systems of equations, where it is
also possible that there are coupling terms involved. For ordinary differential equations
(ODEs) [3, 4], the solution function incorporates only one independent variable. Differ-
ential equations with more than one independent variable are called partial differential
equations (PDEs) [5, 6]. Well known described physical phenomena by ODEs are, e.g.,
the radioactive decay, the harmonic oscillation and the predator–prey model (Lotka-
Volterra equations) as a system of coupled ODEs. Most physical phenomena, however,
are modelled as PDEs, since their behaviour depends on several quantities. Important
examples are, e.g., the heat equation, the Schrödinger equation and the Navier-Stokes
equations. The analytical solution of a differential equation is a function which satisfies
(together with its derivative(s)) the DE itself and the given initial and/or boundary
conditions. A special class of (first order) ODEs are initial value problems (IVPs),
describing the time evolution of a system with a given initial state.

Those equations have in many cases a very difficult to find analytical solution.
Therefore, the consideration of numerical methods for an approximation of the solution
is often unavoidable. While Runge-Kutta 4 (fourth order Runge Kutta, RK4) [3, 4] is
widely used for time integration of initial value problems, the finite element method
(FEM) [7] can be used to solve PDEs on arbitrarily shaped domains. In addition, the
finite differences approach is also commonly used [1]. Such approaches use a discreti-
sation of the computational domain for finding an approximation of the solution. In
order to obtain higher accuracy and robustness, many numerical schemes also feature
adaptive mechanisms regarding, e.g., step size control [2, 3] for RK4 or adaptive mesh
refinement [8, 9, 10] for FEM. That is, certain areas of the solution domain may require
more elements or grid points, in other words a refined mesh, to improve to reliability
and accuracy. Such adaptive mesh refinement techniques enable the mesh to be lo-
cally refined based on a suitable error estimate. Since numerical methods provide an
approximation of the DE solution, the underlying algorithms need to be analysed and
somehow classified. Numerical algorithms and the investigation of their characteristics
are part of numerical analysis [11, 12]. There are a lot of important aspects, which are
briefly described in the following.

As there are various definitions and appearances of numerical stability, this charac-

1

teristic is connected to the error handling in the beginning or throughout the execution
of an algorithm. A method can be considered stable, whenever the error does not stack
up in a way that leads to large errors in the final results. Such errors can be related
and/or caused by, e.g., the discretisation, rounding errors and machine accuracy. Con-
nected to this interpretation of stability is the condition number, which measures how
much the output can be affected by changes in the input values (whereas changes can
refer to errors). A small condition number is desirable. Also connected to stability is the
convergence and the rate of convergence. As mentioned above, numerical schemes like
RK4 use a discretisation of the solution domain. For a certain number of discrete grid
points, the numerical solution will be somehow close to the analytical solution. Now,
the underlying numerical method converges, if the approximate solution gets closer and
closer to the real solution by increasing the number of discrete grid points. In other
words, the algorithm approaches a fixed value by refining the discrete domain. The rate
of convergence quantifies how fast the algorithms approaches this fixed value. Another
important characteristic is consistency, which means, the truncation error approaches
zero by refining the grid and the approximate solution advances towards the analytical
solution. In general, having stability and consistency implies that the numerical method
converges. Related to stability, there is a certain phenomenon, namely stiffness, which
is highly interesting. This phenomenon can cause a numerical method to be unstable,
although the solution to the corresponding differential equation does not visually im-
ply such a behaviour. In order to stabilise the numerical solution for stiff differential
equations, the step size has to be chosen extremely small.

While there already exist numerical solution methods that provide highly reliable
solutions, the research in that direction never stops trying to find improvements or even
news ways to approach differential equations. Although the approximation accuracy
plays a key role, other characteristics such as, e.g., computational time, flexibility or
the above mentioned stability, also have a high impact. Since neural networks and
deep learning have gained tremendous attention over the last decades, scientists have
applied various frameworks from this field of science to find an approximate solution of
differential equations. The upcoming section (literature review) will provide a detailed
overview of the current literature. The main idea behind modelling a neural networks
approach is to construct a cost function from the DE structure and training data from
the solution domain. Neural networks feature adjustable weights which are, during the
training process, updated until the cost function is minimised. Once a network has
been trained on a certain interval, the learned weights can be used for compute the
DE solution ab arbitrary grid points in this interval. Changing the distribution of the
discrete grid points for (most) numerical methods results in a required restart of the
method. Therefore, neural network approaches come with a certain amount of flexibility
and also have a generalising characteristic attached. Neural network based frameworks
have already been designed to represent several numerical methods. However, several
numerical analysis related questions still remain open. Scientific works show the ap-
proximation capability and therefore, that the approaches converge towards suitable
solutions. However, questions about the quality of convergence, consistency and sta-
bility, but also about phenomena like stiffness, are not fully resolved yet and (at least
partially) remain open. The presented thesis attempts to approach several open ques-
tions in that field on a computational level. The quintessence is a detailed investigation
and an extension of the neural forms (NF) methods of Lagaris et al. [13, 14] and Piscopo

2

et al. [15], which are referred to as trial solution method (short TSM) and modified
trial solution method (short mTSM), respectively.

Turning to a brief overview of the content and the contribution. While the TSM
approach employs a constructed neural form, satisfying given initial or boundary condi-
tions, mTSM defines the NF to be the neural network output and directly incorporates
the given conditions into the cost functions. The general task for approaching dif-
ferential equations with feedforward neural networks (FFNN), is to construct and to
minimise a cost function arising from the NF, which connects the differential equation
with a small FFNN (from now on simply referred to as neural network). After initialis-
ing the neural network weights, the optimisation, with training points from the solution
domain, aims to find a useful minimum in the weight space. Then the incorporated
neural network, either directly (mTSM) or as a part of the constructed neural form
(TSM), represents the solution function and is capable to find the approximation at
arbitrary grid points of the domain.

A detailed computational study on those methods with first order optimisation
examines the solution of a simple, yet stiff initial value problem (IVP) with the focus
on domain size, the stiffness parameter, the number of training points, the weight
initialisation, the first order optimisation methods as well as the neural architecture
related number of hidden layers and hidden layer neurons. It turns out that not only all
the examined parameters depend on each other, but especially the weight initialisation
appears to be a sensitive topic. The reason for this behaviour may connect to the
complexity of the weight space (or energy landscape), arising from the cost function,
which may inherent multiple local minima. In this context, TSM tends to struggle
with deterministic initial weights (zeros) and first order optimisation. Also discussed in
this context are convergence, consistency and stability. Here the goal is to try to find
similarities and relations to numerical methods and numerical analysis on a qualitative
level.

The results, especially focusing on stability, motivate to take directions for improving
the deterministic weight initialisation for IVPs. The possible NF extension to higher
order polynomials for both TSM and mTSM, including more than one (small) neural
network, offers a lot more flexibility than changing the architecture of a single neural
network. It turns out that the extension significantly increases the usefulness of TSM
with deterministic weight initialisation in context of first order optimisation. This
extension is referred to as collocation polynomial neural forms (CNFs). Results have
additionally shown, that the solution, especially for TSM, works quite well on smaller
domains. That motivates the introduction of domain segmentation approach. The idea
behind this method is to split the entire solution domain into smaller subdomains and
to solve the problem successively in each subdomain. Together with the CNFs, this
method enables TSM to provide suitable approximations for IVPs, even on fairly large
domains with deterministic weight initialisation. The corresponding neural forms in
the domain segmentation approach are called subdomain collocation polynomial neural
forms (SCNFs).

While domain segmentation employs equidistant subdomains, one may desire the
subdomain distribution according to the IVP difficulty. Neural network approaches
offer with their cost function a tool, which can be used to investigate the network
error. Here a training error is defined at the training points of the domain, as well
as a verification error at intermediate grid points. Those are introduced to quantify

3

the training status and to investigate possible overfitting. Small errors are desired and
small neural networks reduce to amount of possible minima in the weight space as well
as overfitting. Hence, this tool together with an iterative subdomain size reduction can
be used to determine, whether a subdomain has reached an appropriate size where the
TSM SCNF was able to find a useful solution.

The computational characteristics and method extensions are perhaps, and to an-
ticipate some of the later results, not state-of-the-art when compared to highly efficient,
standard numerical solvers. However, the findings are highly interesting and contribute
to a better understanding of the method related properties. Therefore, we conjec-
ture that the results have a high potential of being further developed and improved.
Nonetheless, this is a step forward to fully understand the relation between standard
numerics and neural networks approaches.

Published works related to this thesis:

T. Schneidereit, M. Breuß: Solving ordinary differential equations using artificial neural
networks - a study on the solution variance, Proceedings of the Conference Algoritmy,
pp. 21–30 (2020).

T. Schneidereit, M. Breuß: Computational characteristics of feedforward neural net-
works for solving a stiff differential equation, Neural Computing and Applications, 34,
pp. 7975–7989 (2022). doi:10.1007/s00521-022-06901-6

T. Schneidereit, M. Breuß: Polynomial neural forms using feedforward neural networks
for solving differential equations, Artificial Intelligence and Soft Computing, ICAISC
2021. Lecture Notes in Computer Science, 12854, pp. 236-245 (2021). doi:10.1007/978-
3-030-87986-0_21

T. Schneidereit, M. Breuß: Collocation polynomial neural forms and domain fragmenta-
tion for initial value problems, Neural Computing and Applications, 34, pp. 7141–7156
(2022). doi:10.1007/s00521-021-06860-4

T. Schneidereit, M. Breuß: Adaptive neural domain refinement for solving time-dependent
differential equations, arXiv:2112.12517, (2021).

Parts of this thesis are reproduced using content from the above mentioned publications,
with permission from Springer Nature.

4

1.2 Literature review

Artificial neural networks (ANNs) are computational representations of biological neu-
rons and their connections, in order simulate the human learning behaviour. They are
capable of recognising possible underlying pattern in all kinds of tasks and are part
of artificial intelligence (AI). The world without AI technology is barely imaginable
nowadays and already has a tremendous impact on the daily life [16, 17]. Assistant
software from major technology or e-commerce companies are used by customers many
times a day, potentially without noticing that they run complex AI behind the scenes
[18]. Those assistants may be embedded in the software for plenty devices, e.g., smart-
phones, televisions and even kitchen gadgets [19]. In general, they are able to receive
and process user requests, which may incorporate answering questions, turning devices
on and off, text-to-speech activities and many more [20]. The interaction with humans
is continuously used for training and updating the artificial assistants. While this con-
tributes to the further development and improvement od such assistants, there are also
risks connected to AI [21], like, e.g., data privacy, youth protection or its application
to warfare.

1.2.1 A brief historical overview

The idea behind creating a human like learning model dates back almost seventy years
[22, 23, 24, 25]. In 1943, Warren McCulloch and Walter Pitts suggested an artificial
model of a biological neuron in A logical calculus of the ideas immanent in nervous activ-
ity [26], known as the McChulloch-Pitts-Neuron. Based on the neurological knowledge
of nervous activity to this end, they found that neurons and their behaviour can be
interpreted by propositional logic. The McCulloch-Pitts-Neuron is considered to be
the first mathematical representation of a real-world neuron. In the next two decades,
scientists and engineers further developed the idea and proposed works on the learning
ability of neural networks, e.g. Donald Hebb in The organization of behaviour: a neu-
ropsychological theory [23, 27, 28] or Bernard Widrow and Marcian Hoff in Adaptive
switching ciruits [29]. In between, the perceptron was introduced by Rosenblatt et al.
in The perceptron: a probabilistic model for information storage and organization in
the brain [30], a first neural network model featuring adjustable connecting parameters,
which was capable of solving simple classification tasks after training. A drawback came
in the late 1960s, when Marvin Minsky and Seymour Papert published the book Per-
ceptrons: an introduction to computational geometry [31] and have shown how a simple
linear perceptron is limited in its function. It took more than ten years for the next
major steps. In the first half of the 1980s, John Hopfield published several works, in-
cluding the Hopfield neural network architecture in Neurons with graded response have
collective computational properties like those of two-state neurons [32]. One year later,
together with David Tank, Hopfield successfully applied the novel neural network to the
Traveling Salesman Problem [33] in “Neural” computation of decisions in optimization
problems [34]. With the works of Hopfield, the area of neural networks gained interest
again. The famous backpropagation learning algorithm came up one year ahead by
David Rumelhart et al. in Learning representations by back-propagating errors [35].
The algorithm is based on the gradient descent method. In the end of the 1980s, and in
the early 1990s, the universal approximation theorem was proven for sigmoidal neurons

5

in Approximation by superpositions of a sigmoidal function [36] by George Cybenko.
It basically states, that a neural network with only one processing layer and a finite
number of sigmoidal neurons is able to approximate every continuous function. Kurt
Hornik showed in Approximation capabilities of multilayer feedforward networks [37]
that the universal approximation characteristic rather arises from the network architec-
ture then from the sigmoidal neurons. In the following years and decades, the interest
in artificial neural networks was continuously rising. Then, in 2006, with the work of
Geoffrey Hinton et al., proposed in A fast learning algorithm for deep belief nets [38],
artificial neural networks and artificial intelligence became a tremendous boost with the
introduction of deep learning. The term arises from the deep neural network structure,
where several hidden processing layers with many neurons are involved.

1.2.2 Artificial neural network architectures

Over the time, many ANN architectures have been developed with their own charac-
teristics [22, 39, 40, 41]. An ANN uses artificial neurons to apply a so-called activation
function to incoming information. Often used are the sigmoid activation function, hy-
perbolic tangent or the rectified linear unit [42]. Depending on the architecture, the
neurons are connected to other neurons through adjustable parameters, the so-called
neural networks weights. The results of the information processing are returned by the
ANN. This output contributes to adjusting the weights, which is referred to as neural
network training. The task of training the ANN, is to minimise a cost function in order
to update the connecting weights, until the ANN provides the desired output. In the
simplest case, the ANN output compares to a value which is known to be the true
outcome to a corresponding input. A cost function may arise from the discrepancy be-
tween both the ANN and the correct output. Popular optimisation techniques are, e.g.,
backpropagation [43], Adam optimisation [44] or BFGS quasi-newton methods [46].

A common ANN architecture is the feedforward neural network (FFNN) [40]. It
features several layers with processing neurons, which may be linear or non-linear re-
garding the activation function. The input layer passes data into the network using at
least one, usually linear, neuron. In the hidden layer, the neurons are assigned with an
activation function, which actually processes the data and passes it either to another
hidden layer or to the output layer. The latter produces the ANN outcome, where the
amount of output neurons dictate the number of returned values. The term feedforward
implies that the data is truly processed forward through the layers, so that there are no
circles or back leading connections involved. Important to mention are bias neurons.
These neurons contribute to the neurons in the next layer as constant values or offsets.
They do not receive information from previous layers, but have a weight assigned as
well.

A modification of the FFNN is the recurrent neural network (RNN) [22]. Besides
processing information forward through the network, internal connections between neu-
rons may appear as well as connections between output and input neurons. Therefore
the output may be directly incorporated in the input again. In this way, the RNN
is said to have a memory, because the internal state depends on all previous inputs.
For learning a RNN, both input and output data are processed through the network,
until the output is stationary. Language processing is a common field of application for
RNNs [47].

6

A specific variant of the RNN comes with the Hopfield neural network [32], where all
the neurons are connected to each other. Excluded are connections within one neuron.
The neurons themselves are binary with values of positive 1 or negative 1 in case of
the binary Hopfield network or have real values between negative one and positive one
assigned in case of the continuous Hopfield network architecture.

The radial basis function neural network (RBF) [22] has an input layer, an output
layer and a hidden layer with radial basis functions representing the activation functions.
That is, depending on the choice of the basis functions, the input data may be expanded
into, e.g., polynomials. The weights from the hidden to the output layer are the function
coefficients. The RBF may be found in classification tasks [48].

Deep neural networks (DNNs) [38] are often extensions of common architectures,
with multiple hidden layers and usually many processing neurons in each layer. This
may tremendously increase the number of adjustable network weights, but can con-
tribute to the solution of difficult or complex tasks.

An important DNN architecture is represented by deep convolutional neural net-
works (CNNs) [49]. Those are common, e.g., in image or audio recognition [50]. The
neurons in a CNN represent convolutional kernels, which can extract certain features
from, e.g., an image. The more complex or abstract a feature is, the more convolu-
tional kernels may be necessary. So-called pooling layers are additionally incorporated
in CNNs. These layers can get rid of unnecessary information by, e.g., averaging the
outputs of each convolutional layer in order to speed up the training, as less variables
are present. After a series of convolutional and pooling layers, the CNN usually has
a deep FFNN connected, where the output neurons provide a probability related to
the possible classifications. With supervised learning, where the desired output to a
corresponding input in a training set in known, the comparison between the CNN out-
put and the desired output leads to a training error, which may be used together with
backpropagation in order to train the network weights.

1.2.3 First approaches using ANNs

In 1990, Lee et al. published their work Neural algorithm for solving differential equa-
tions [51]. They show how the method of finite differences can be used to construct
a cost function incorporating the Hopfield model [52] for IVPs as well as higher order
differential equations. The learning rule is derived from the time evolution of the con-
structed cost function. The authors find that the neural network approach requires,
compared to standard numerical methods at this time, less grid points and rather in-
creasing the number of neurons will contribute to the solution. Results on ODEs show
that increasing the total number of neurons actually decreases the necessary time for
solving the differential equation due to the parallel interactions between all neurons in
each iteration.

Maede et al. published in 1994 Numerical solution of linear ordinary differential
equations by feedforward neural networks [53] and Solution of nonlinear ordinary dif-
ferential equations by feedforward feural fetworks [54]. They constructed a FFNN for
both linear and non-linear ODEs directly without the need for training the network.
That is realised by approximating the solution with basis functions. The latter repre-
sent the activation functions in the network, while the input layer and bias weights arise
from the domain data and the hidden layer weights from the expansion coefficients. The

7

basis expansion may be realised by hat functions, splines or, e.g., sigmoid functions.
Since there are various parameters in neural networks, the authors state that this ap-
proach imposes constraints on the involved parameters and to assign them specific roles
for a better understanding. Additionally, they avoid cost function minimisation find a
fixed minimum in the weight space, rather than only a local one. An important result
of this approach is the quadratic decrease of the approximation error when increasing
the number of hidden layer neurons, which represent the basis functions.

1.2.4 ANN approaches based on neural forms

In 1998, Lagaris et al. proposed a novel approach for solving DEs including a feed-
forward neural network in Artificial neural networks for solving ordinary and partial
differential equations [13]. In order to solve ODEs, PDEs as well as systems of differ-
ential equations, a constructed trial solution or neural form is introduced. The solution
then comes in a differentiable and closed-form, which is a contrast to numerical meth-
ods like Runge-Kutta [55]. However, the approach still requires a discretised domain
with grid points acting as the training points. The authors in [13] use a second order
optimisation method (quasi-Newton BFGS [46]) to train their fairly small FFNN over
the domain. The results are partially compared to the FEM and perform very well.
In the end, the authors state that finding an optimal amount of hidden layer neurons
may further improve the results and varying the domain discretisation, e.g. with more
grid points in regions of a higher error, may also contribute to the accuracy. Regarding
the neural form construction, various shapes may be suitable for a single differential
equations with given initial or boundary conditions. In Systematic construction of neu-
ral forms for solving partial differential equations inside rectangular domains, subject
to initial, boundary and interface conditions [56], Lagari et al. presented and discussed
a systematic construction approach for neural forms.

Lagaris et al. expanded their work in Neural-network methods for boundary value
problems with irregular boundaries [14] with the focus on boundary value problems and
irregular boundaries. They discuss that one may consider a neural form consisting of a
RBF added to a FFNN. The latter takes on the structure of the differential equation,
while the RBF satisfies given boundary conditions. The authors also suggest to consider
a penalty approach, by simply setting the neural form to be a FFNN output and adding
the boundary conditions as ℓ2-norms with a penalty parameter to the cost function.

The neural forms approach has been adopted many times in various applications.
In Chebychev neural network based model for solving Lane-Emden type equations [57],
Mall et al. employed the neural forms approach together with a RBF that expands the
input data to Chebychev polynomials in the hidden layer. The hidden layer weights
represent the polynomial coefficients. The number of hidden layer neurons determines
the order of the Chebychev polynomial. With the Chebychev neural network, Mall et
al. construct a neural form and a cost function. The application to astrophysics and
related second order non-linear ODEs together with polynomial orders up to five shows
useful results with a considerably small numerical error. The authors also proposed
Application of Legendre neural network for solving ordinary differential equations [58]
to show the network construction principle with Legendre polynomials. Experiments on
initial and boundary value problems as well as system of coupled ordinary differential
equations are a part of the presentation and discussion.

8

Even two decades after neural forms [13] have been introduced by Lagaris et al.,
this approach still receives attention. A computational study by Famelis et al. in
Parameterized neural network training for the solution of a class of stiff initial value
systems [59] provides detailed results on the solution of systems of stiff IVPs. Their
FFNN features one hidden layer with a small amount of neurons involved. However, the
FFNN has a special characteristic in the input layer. Besides the input data from the
computational domain, the stiffness parameter is also passed into the neural network.
The numerical accuracy between the neural forms approach and an embedded MAT-
LAB numerical solver is discussed for different activation functions, various amounts of
hidden layer neurons and stiffness parameter values.

A related study by Schneidereit et al. in Solving ordinary differential equations
using artificial neural networks - a study on the solution variance [60] lays the focus on
a simple stiff IVP, solved by a single hidden layer FFNN with a small amount of sigmoid
neurons. The paper investigates the impact of various computational parameters on
the results. Especially the experiments on random weight initialisation with different
optimisation methods revealed a random stochastic characteristic regarding the results
with random weight initialisation. Uncarefully chosen, the optimisation methods may
not find a useful (local) minimum in the weight space or even the suitable minima may
immensely differ.

Another neural forms related work on initial value problems was proposed by Fla-
mant et al. in Solving differential equations using neural network solution bundles [61].
Their method is capable of training a neural network for various initial conditions, in-
stead of necessarily retraining for a new initial condition. In order to achieve this goal,
a fairly large neural network is employed and trained with Adam optimisation to find
useful results.

In Polynomial neural forms using feedforward neural networks for solving differential
equations [62], Schneidereit et al. extended the classic neural forms approach for IVPs
[13] into polynomials with several FFNNs, taking the role of polynomial coefficients.
This extension improves the use of deterministic weight initialisation and removes the
stochastic characteristic on the results, which comes with random initialisation [60].
Therefore it is possible to exactly reproduce certain results, important for numerical
analysis.

1.2.5 ANN approaches based on suitable cost functions

Alongside methods employing a neural form-based cost function construction, there are
several approaches incorporating given initial or boundary conditions directly in a cost
function as additional, supervised terms. In Solving differential equations with neural
networks: applications to the calculation of cosmological phase transitions [15], Piscopo
et al. reference to the construction difficulty of the neural forms approach from Lagaris
et al. [13] and take on the approach, similar to [14], for setting the neural form to be
equivalent to a FFNN output. The given initial or boundary conditions are directly
added to the cost function in a supervised way and additionally learned by the neural
network. Although this construction principle does not fulfill the above-mentioned
conditions exactly, the network itself is trained to represent the solutions without a
specifically constructed neural form. In order to prove the effectiveness of this approach,
results on examples of both ODEs, PDEs and coupled DEs are presented. Finally, the

9

authors apply the method to an even more complex topic, namely the computation of
phase transitions in the early stage of the universe.

A similar approach regarding the cost function construction was proposed by Shir-
vany et al. in Multilayer perceptron neural networks with novel unsupervised training
method for numerical solution of the partial differential equations [63]. The non-linear
Schrödinger equation is treated as an example. An algorithm is proposed by the authors
to solve the arising eigenvalue problem in an iterative way. The incorporated network
is allowed to grow under predefined conditions.

1.2.6 DNN approaches for differential equations

The physics-informed neural networks are introduced by Raissi et al. in Physics-
informed neural networks: A deep learning framework for solving forward and inverse
problems involving nonlinear partial differential equations [64]. This DNN framework
has already been applied and modified for a variety of physics related problems. The
approach comprehends unsupervised terms in the cost function connected to the DE
structure and supervised terms for the given conditions. The DE-related terms are
trained by collocation points from the domain, whereas the mentioned method inher-
ent both a continuous time and a discrete time model. The application to various
physics-related DEs shows the usefulness of the approach. Jagtap et al. proposed an
extension in Conservative physics-informed neural networks on discrete domains for
conservation laws: Applications to forward and inverse problems [65] to combine the
previous described approach with domain decomposition, where the domain is separated
into subdomains using individual neural networks to find a solution in each subdomain.
That enables parallel computation and the solution is later stitched together.

Chen et al. introduced a new type of DNN approach in Neural ordinary differential
equations [66]. They employ deep residual and recurrent neural networks and find the
hidden state update to be similar to an Euler discretisation of an ODE. The hidden
state is then, in the limit of more layers and smaller steps, parameterised by an ordinary
differential equation, incorporating the neural network parameters. The neural network
can then be solved with a black box ODE solver.

Continuing with deep neural networks and partial differential equations, an impor-
tant work was published by Ruthotto et al. in Deep neural networks motivated by partial
differential equations [67]. The authors take on deep convolutional neural neural and
interpret these as a discretisation of a PDE in space and time. In order to address the
network type related challenges like designing suitable architectures for learning tasks
and analysing the network stability, three new architectures are presented: parabolic,
hyperbolic and second-order hyperbolic convolutional neural networks. Each network
type comes with specific and useful characteristics. The networks are tested for image
recognition and provide competitive results.

Another composition of deep learning and differential equations are PDE-Nets, pub-
lished by Long et al. in PDE-Net: learning PDEs from data [68]. The authors aim
to find PDE models of complex systems with a supervised learning approach, incorpo-
rating multiple convolutional neural network layers combined in a so-called Network-
In-Network architecture [69]. A function is constructed incorporating convolutional
operations on the input data, approximating the differential operators. The PDE-Net
output is then used to obtain a ℓ2-norm cost function. The authors also state that with

10

some knowledge of the differential equations structure, the function of convolutional
networks may be simpler to train and this can improve the results. In the experimental
section, the method is applied to several PDEs and the results prove the usefulness of
the proposed approach.

1.2.7 ANNs combined with numerical methods

Solving differential equation in a non-analytic way may always bring numerical meth-
ods onto the scene [1, 2]. Therefore it arises naturally to consider combining numerical
methods with neural network approaches. In 1998, the same year as Lagaris et al.
proposed the neural forms approach [13], Wang et al. published their work on Runge-
Kutta neural network for identification of dynamical systems in high accuracy [70].
They proposed a neural network architecture which is based on Runge-Kutta methods
and applied their approach to non-linear IVPs. That is, the Runge-Kutta neural net-
work replaces the right-hand side function while the relation between input and output
still reads like a classic Runge-Kutta method. Incorporated numerical coefficients are
represented by subnetworks in this approach. It is derived how backpropagation and
non-linear recursive least-squares learning can be used to update the network weights.
The latter has been studied in theory regarding its convergence property.

The fact that the neural network output computation resembles a linear combination
of basis (activation) functions leads to a network architecture as presented by Rudd et
al. in A constrained integration (CINT) approach to solving partial differential equations
using artificial neural networks [71]. In this work, the incorporated ANN architecture
is combined with Galerkin FEM [72]. The presented ANN features one hidden layer
with two sets of activation functions, one of which is supposed to satisfy the PDE and
the second dealing with boundary conditions. The basis function coefficients are set to
be the connecting weights from the hidden layer to the output neuron, and the sum
over all basis functions and coefficients makes up the neural form. The authors find
the method to show a high convergence rate, accuracy and the ability to be applied to
non-rectangular domains, which is verified by examples on PDEs.

A novel and presumably important work with the title Connections between nu-
merical algorithms for PDEs and neural networks [73] has recently been published.
Alt et al. investigate, e.g., implicit and explicit discretisation schemes and multi grid
methods in order to connect those numerical approaches with different neural network
architectures. With the resulting networks, the authors have performed computational
experiments on image processing tasks like denoising and inpainting [74]. They are also
able to show the effectiveness of incorporating non-monotone activation functions in
their constructed neural architectures. U-net architectures [75] have recently become
popular as a deep learning application in, e.g., biomedical detection. They perform
down sampling and up sampling several times on the input data in combination with
a processing through incorporated convolutional neural networks. Alt et al. show how
to convert a multi grid method into a U-net architecture and find, that convolutional
neural networks and numerical methods for diffusion evolution have structural charac-
teristics in common.

11

1.2.8 Mesh refinement strategies using ANNs

Several works offer neural network based strategies and approaches to generate optimal
meshes or mesh refinements for use with the finite element method [76, 77]. However
these approaches do not combine neural solution of DEs with mesh adaptivity, and also
they stick to a traditional mesh and do not explore the approximation capability of
neural networks. Predicting areas which are of interest in the sense of a required mesh
refinement using neural networks is the objective of Manevitz et al. in Neural network
time series forecasting of finite-element mesh adaptation [78]. Their time-series analysis
is employed to predict element-wise solution gradient values. The participating neural
network yields an indicator based on local gradient values in space and time. This
indicator is then used to predict whether a mesh refinement or a coarsening may be
suitable. While in this method the mesh refinement indicator is realised by a neural
network, the FEM is used for solving the PDE examples. Complementary to the latter
approach, in Fuzzy numerical schemes for hyperbolic differential equations [79] Breuß et
al. developed a learning strategy is which keeps the mesh fixed but selects the numerical
scheme that gives locally high accuracy based on local gradients.

An adaptive neural approach has been proposed by Anitescu et al. in Artificial
neural network methods for the solution of second order boundary value problems [80].
It features a FFNN in a framework combining both supervised and unsupervised terms,
similar to [15, 65]. The training process includes several evolution steps, each consisting
of the optimisation over the training points combined with an evaluation of results at
a finer grid. The latter is realised with the same set of neural network parameters
obtained from the training step. It is proposed to start with a coarse grid and to
perform local grid refinement whenever the resulting network errors differ. The method
is developed for boundary value problems arising with stationary PDEs, like e.g. the
Poisson equation. Results indicate that more complex neural network architectures
(w.r.t. number of layers and neurons) or more training points may increase the accuracy.

12

2 Computational characteristics of neural forms ap-
proaches for solving initial value problems

The sections starts with an introduction to the basic concepts of feedforward neural
networks, the neural forms based trial solution method (TSM) and the modified trial
solution method (mTSM). In addition, it is shown how the training and optimisation
with backpropagation, Adam and BFGS works. Furthermore, important and detailed
information about the weight initialisation of neural networks, as well as the measure-
ment metrics for the later discussed computational results are given.

2.1 The feedforward neural network

In order to visualise neural networks, the neurons are usually depicted as circles and
the connecting weights as lines. The now described architecture is not fixed by any
means and only serves as an explicit example, since similar structures are used in
this work. In the corresponding experimental sections, the involved configurations are
always carefully addressed. Fig. 1 shows a basic neural network architecture with a

Input

Layer
Hidden
Layer

Output

Layer

t

νj

1
ηj

σ1

σ2

σ3

σ4

σ5

ρj

1

γ

N

Figure 1: Feedforward neural network with five hidden layer neurons.

total of three layers. There are two kinds of neurons incorporated: processing ones and
bias neurons. The latter are assigned with the value one, which is always constant.
On the other side, the processing neurons apply an activation function to the incoming
information. That is, the processing neuron in the input layer receives (later discretised)
time data

t ∈ D ⊂ R (1)

where D denotes the solution domain. Here, a linear function is applied so that the
data gets passed right through the neuron. There is an additional bias neuron incor-
porated in the input layer, in order to increase the flexibility. Now, both neurons are
connected with every single neuron in the hidden layer by weights (adjustable param-
eters). Therefore, the input layer can pass the domain data t, weighted by νj and
ηj,

zj = νjt+ ηj, j = 1, . . . , 5 (2)

13

to the hidden layer for processing. Each hidden layer neuron applies a non-linear
activation function to the incoming data. The activation function used in this work is
the sigmoid function

σj = σ(zj) =
1

1 + e−zj
(3)

which is a continuous and arbitrarily often differentiable function with values between
zero and one, cf. Fig. 2. In addition to the five processing neurons in the hidden layer,

-10 -5 0 5 10

z
j

-0.25

0

0.25

0.5

0.75

1

1.25

j)

Figure 2: Graph of the sigmoid activation function with values between zero and one.

one bias is added to serve the same purpose as in the input layer. After the data has
been processed through all hidden layer neurons, the single output layer neuron receives
itself a sum, weighted by ρjσj together with γ, as well. Since this neuron is linear, the
neural network output assembles as

N(t,p) =
5∑

j=1

ρjσ(zj) + γ (4)

where all weights are stored in the weight vector

p =
(
ν1, . . . , ν5, η1, . . . , η5, ρ1, . . . , ρ5, γ

)T (5)

The weights are usually assigned with random values [84]. In case of additional hidden
layers, Eq. (4) would act as the weighted sum for the first neuron in the second hidden
layer and a non-linear activation function may be applied again. Additional weights
would be incorporated as well in case of more hidden layers. Eq. (4) can now be
used to construct the cost function E[p], which is then used in to train the neural
network. Training in this context means learning the underlying structure in general,
from given training points. Connected to this work, the training points are given by
grid points from the discrete time domain arising from Eq. (1) by discretising it into
n + 1 (equidistant) grid points ti, (t0 < t1 < . . . < tn). With the training data, an
optimisation method is used to minimise the cost function E[p] and repeatedly update
the weights p in order to find a suitable minimum. Each of these iterative steps is
called an epoch of learning. For supervised learning, where both input data ti and
corresponding correct output data di, i = 1, . . . , n, are given, the cost function may be

14

chosen as the squared ℓ2-norm

E[p] =
1

2(n+ 1)

∥∥∥∥N(ti,p)− di

∥∥∥∥2

2

:=
1

2(n+ 1)

n∑
i=0

{
N(ti,p)− di

}2

(6)

The ℓ2-norm applies to vectors and therefore the corresponding (middle) expression in
Eq. (6) may identify as the vector of corresponding entries (grid points ti). However,
the notation on the right-hand side is followed in this work. Now in the case of unsu-
pervised learning, where no correct output data is known, the cost function is part of
the modelling process.

2.2 The neural forms approach

After a formulation of the general problem, the TSM [13] and mTSM [14, 15] solution
approaches, and how to obtain their neural forms, are described in detail in this section.
The construction for ODEs of order two and above follows the same principle, which
also holds for PDEs. However, the latter requires the incorporated neural network to
feature additional input neurons, one for each dimension. It is also possible to solve
higher order ordinary or partial differential equations, as well as systems of ODEs or
PDEs, cf. [13, 15].

A general first order IVP may be given in form of

G
(
t, u(t), u̇(t)

)
= 0, t ∈ D ⊂ R, (7)

together with the corresponding initial condition

u(t0) = u0 (8)

In Eq. (7), u(t) denotes the analytical solution function with t as the independent
variable, whereas u̇(t) identifies the time derivative.

2.2.1 Trial solution method (TSM)

The main idea behind this approach is the construction of a continuous differentiable
function (trial solution/neural form) in order to approximate the original solution func-
tion u(t) in Eq. (7). That is, the neural form (NF) must satisfy the given initial condition
by construction. In order to embed this constraint, the NF in general appears as a sum
of two terms

ũ(t,p) = A(t) + F (t,p). (9)

In Eq. (9), the term A(t) is supposed to satisfy the initial condition u(t0) at the initial
point t0. The simplest choice here is to set A(t) = u(t0). Meanwhile, the neural
network-related term F (t,p) is constructed to eliminate the impact of N(t,p) at the
initial point t0. The choice of F (t,p) determines the influence of N(t,p) over the
domain. For example, the classic NF for IVPs from [13] reads

ũ(t,p) = u(t0) +N(t,p)(t− t0). (10)

Please note that the NF can be defined in many possible ways for the same IVP, since
the only constraint per definition is to satisfy the given initial condition [56], besides
having the neural network-related term.

15

The NF in Eq. (9) transforms the IVP from Eq. (7) into

G
(
t, ũ(t,p), ˙̃u(t,p)

)
= 0 (11)

Now G incorporates the NF and its time derivative. The latter can be found analytically
for the neural form in Eq. (10):

˙̃u(t,p) = Ṅ(t,p)(t− t0) +N(t,p) (12)

The neural network time derivative of N(t,p) is derived from Eq. (4) and reads

Ṅ(t,p) =
5∑

j=1

ρjνjσ
′(zj)

The derivative of the sigmoid function w.r.t. its argument can be expressed using the
sigmoid function itself:

σ′(zj) = σ(zj)(1− σ(zj)) (13)

As mentioned in Section 2.1, the input data for the neural network is obtained by
discretising the time domain in Eq. (1) into n+ 1 grid points ti, i = 0, . . . , n. With the
discrete domain and the given initial condition incorporated, Eq. (11) is now solved by
an unconstrained optimisation problem using the cost function

E[p] =
1

2(n+ 1)

n∑
i=0

{
G
(
ti, ũ(ti,p), ˙̃u(ti,p)

)}2

(14)

Solving differential equations of order d with the neural forms approach, one may con-
sider to choose an activation function, which is at least (d+ 1) times continuously dif-
ferentiable, since the solution approaches require the d-th activation function derivative
and the later introduced gradient-based optimisation methods require another differen-
tiation.

Turning to systems of IVPs, where G (cf. Eq. (7)) represents not a single IVP, but
a system of o IVPs:

G
(
t,U(t), U̇(t)

)
= 0, t ∈ D ⊂ R, (15)

In Eq. (15),
U(t) =

(
u1(t), . . . , uo(t))T (16)

represents the involved equations with. Superscript indices are used here, since the
subscript index will later be used as well. The given initial values are denoted as

U(t0) =
(
u1(t0), . . . , u

o(t0))
T (17)

TSM now employs to set up one NF per equation with individual neural networks:

ũ1(t,p1) = u1(t0) +N1(t,p1)(t− t0)

... (18)
ũo(t,po) = uo(t0) +N o(t,po)(t− t0)

Whereas the cost function results in the sum over all l2-norm terms

E[p] =
1

2(n+ 1)

n∑
i=0

[o∑
r=1

{
G
(
ti, ũ

r(ti,p
r), ˙̃ur(ti,p

r)
)}2]

(19)

16

Possible similarities to numerical methods

This paragraph will briefly describe Runge-Kutta 4 and the Euler method [3, 4]
without going too much into detail. The main purpose is to show a possible link be-
tween the neural forms related approaches and the numerical methods. Both numerical
methods use discrete grid points ti, i = 0, . . . , n from the solution domain in order to
approximate an IVP in form of

u̇(t) = f(u(t), t), u(t0) = u0 (20)

The analytical solution u(t) can be approximated at each grid point by ui ≈ u(ti).
Using the discrete time derivative

u̇(t) ≈ ui+1 − ui
h

, h = ti+1 − ti (21)

a simple iterative scheme for Eq. (20) reads

ui+1 = ui + hf(ui, ti), (22)

which is the explicit Euler method. The initial value u(t0) = u0 is the starting point
for iterating towards the approximate solution by evaluating f(u(t), t) at one grid point
in each step. The Euler method can also be referred to as a first order Runge-Kutta
method. Evaluating f(u(t), t) at several orders leads to Runge-Kutta methods of higher
order. The most popular version is the fourth order, often named Runge-Kutta 4 (RK4).
This method follows the iterative scheme

ui+1 = ui +
h

6

(
k1 + 2k2 + 2k3 + k4

)
(23)

k1 = f
(
ti, ui

)
(24)

k2 = f

(
ti +

h

2
, ui +

k1
2

)
(25)

k3 = f

(
ti +

h

2
, ui +

k2
2

)
(26)

k4 = f
(
ti + h, ui + k3

)
(27)

A quantitative comparison between the neural forms approaches and the numerical
methods will be discussed later.

In general, comparing RK4 and the TSM neural forms approach on a qualitative
or construction level is not an easy task. In order to find similarities between both
methods, the usage of grid points and epochs is worth comparing. A common setup for
TSM in this thesis features 10 grid points and 1e5 epochs. That is, in each epoch, the
TSM cost function is evaluated at these 10 grid points. On the other hand, RK4 iterates
over the grid points and evaluates the right-hand side of Eq. (20) at three different
positions, namely ti, ti + h/2, ti + h. Therefore, and although a comparison appears to
be difficult, possible similarities in the structure can perhaps be found between TSM
epochs/RK4 grid points and TSM grid points/RK4 evaluation steps.

17

Other numerical aspects, e.g., related to convergence or stability are not simple to
derive. Perhaps, the cost function can play a significant role in finding equivalent mea-
sures such as the Courant–Friedrichs–Lewy condition for convergence of certain PDEs,
the von Neumann stability analysis or the quality of approximation [6, 3]. However,
these topics are not part of this thesis. Also not covered here are questions related to
the solution of inverse problems. In contrast to forward problems, where, e.g., a simu-
lation results from a mathematical model, inverse problems have a system outcome or
behaviour given and aim to find the underlying model.

2.2.2 Modified trial solution method (mTSM)

An alternative approach completely replaces the construction by introducing the uni-
versal NF

ũ(t,p) = N(t,p) (28)

The requirement of satisfying given initial conditions is dispensed. Although the con-
struction of the TSM neural form for IVPs appears to be straight forward, this procedure
can get very complicated for, e.g., higher order boundary value problems.

One of the main properties of a cost function approach in general, is the ability to
add additional terms. This may change the energy landscape completely but enables
the approach to come with great flexibility. Therefore, while ũ(t,p) does not satisfy
initial or boundary conditions per definition, they rather appear in the cost function as
an additional term, regarding IVPs, namely

E[p] =
1

2(n+ 1)

{
G
(
ti, ũ(ti,p), ˙̃u(ti,p)

)}2

+
1

2

{
ũ(t0,p)− u(t0)

}2

(29)

whereas for higher order IVPs or boundary value problems, the additional initial or
boundary conditions are added as extra terms to the cost function w.r.t. the corre-
sponding domain points. Therefore, the mTSM approach represents a joint framework
with an unsupervised term, regarding the IVP structure G in Eq. (29), and a supervised
term related to directly learning the initial condition.

2.3 Optimisation, initialisation and evaluation

The optimisation task is to find a (local) minimum in the weight space. This holds,
when the squared ℓ2-terms in the cost function become sufficiently small, and therefore
it becomes sufficient to suggest that, cf. Eq. (6),

N(ti,p) ≈ di, i = 0, . . . , n (30)

Then the neural network N(ti,p) has learned the given data structure.

2.3.1 Backpropagation, Adam and BFGS

In order to achieve a final training state, several techniques focus on the cost function
gradient ∇E[p] with respect to the neural network weights. The gradient points out the
direction of the greatest slope. This characteristic can be used to determine the impact
of each weight on the output N(ti,p) to update them accordingly. The procedure is an

18

adaption of the gradient descent method and is called backpropagation [43]. In general,
this method uses the gradient of a differentiable function to make iterative steps in the
steepest direction and is therefore able to find a (local) minimum. Backpropagation
adopts this principle for neural networks. After forward processing the input data, the
difference between the neural network output and the desired results, cf. Eq. (6), defines
as the so-called training error. This error is then propagated back through the neural
network to adjust the weights in order to improve the results in the next processing.
That is where the name backpropagation arises from.

The process of updating the neural network weights is called training. After one
complete iteration over all input information, one epoch of training has finished. Effec-
tive training usually takes several epochs and results in finding a local minimum in the
weight space. The backpropagation algorithm may be incorporated as an optimiser in
the above-mentioned task. For epoch k, the backpropagation update rule [85] reads

p(k + 1) = p(k) + ∆p(k) (31)

where the adjusted weights p(k+1) are on the left-hand side and compute as the sum of
the old weights p(k) and the current update ∆p(k). Prior to specifying the latter term,
the differential operator identifying the gradient w.r.t. the neural network weights in
∇E[p] follows the notation

∇ :=
∂

∂p
:=

(
∂

∂ρ1
, . . . ,

∂

∂ρ5
,
∂

∂ν1
, . . . ,

∂

∂ν5
,
∂

∂η1
, . . . ,

∂

∂η5
,
∂

∂γ

)T

(32)

based on Eq. (5). For larger neural networks as in Fig. 1, the gradient features additional
entries. The weight update term in Eq. (31) mainly depends on the negative cost
function gradient. However, there is an additionally factor α involved:

∆p(k) = −α ∂

∂p
E[p(k)] (33)

The parameter α is called learning rate or step size and scales the gradient. Prior to a
more detailed description of the gradient computation, the backpropagation updating
term can be improved by adding a momentum term [85]:

∆p(k) = −α ∂

∂p
E[p(k)] + β∆p(k − 1) (34)

with the corresponding momentum parameter β. It uses impact from last epoch to
reduce the chance of getting stuck in a shallow local minimum or saddle point. Fur-
thermore, it may also speed up the training in certain declining areas. The complete
backpropagation (BP) update rule now reads

p(k + 1) = p(k)− α
∂

∂p
E[p(k)] + β∆p(k − 1) (35)

The learning rate α is either constant (cBP) or variable (vBP), which may prevent
the optimiser from oscillating around a minimum. Selecting a suitable value can be
a challenging task. A not carefully chosen learning rate can distract the optimisation
method from landing in a minimum, or can get pushed out of a local minimum, if its

19

value is too high. On the other hand, with a too small learning rate incorporated,
the training process may take disproportional long or does not even finish. There are
different approaches for learning rate control [86], where

α → α(k) (36)

now depends on the epoch k. One approach employs a linear decreasing model

α(k) =

{
α0 − α0 − αe

kc
k, k ≤ kc

αe, k > kc
(37)

with an initial learning rate α0, a final learning rate αe and an epoch cap kc. When the
latter is reached, α switches to the constant learning rate αe. The employed parameters
in this work are α = 1e-3 with β = 9e-1 for cBP and α0 = 1e-2, αe = 1e-3, kc = 1e4
with β = 9e-1 for vBP.

Adam (adaptive moment estimation) [44] is an adaptive optimisation method based
on cost function gradient as well. The explained procedure in the following follows
the algorithm in [44]. Preliminary initialised are the moving averages of the gradient
m(0) = 0 and v(0) = 0, as well as an initial learning rate α, the exponential decay
rates for the moving averages β1, β2 and the constant ε. The optimiser uses the cost
function gradient in the k-th epoch

g(k + 1) =
∂

∂p
E[p(k)] (38)

to perform updates on

m(k + 1) = β1m(k) + (1− β1)g(k + 1) (39)
v(k + 1) = β2v(k) + (1− β2)g

2(k + 1) (40)

The squared gradient in Eq. (40) represents the vector of the squared gradient elements.
Every operation in the algorithm in [44] is performed element by element of the vectors.
As mentioned earlier, m(k+1),v(k+1) represent the moving averages of the gradient.
More specific, m(k + 1) is the estimate of the 1st moment (mean) and v(k + 1) the
2nd raw moment (uncentered variance) of the gradient. The corresponding parameters
β1 and β2 are the exponential decay rates. While m(0) and v(0) are initialised with
zeros, the moment estimates are biased towards the origin. That leads to a necessary
bias-correction with

m̂(k + 1) =
m(k + 1)

1− βk+1
1

(41)

v̂(k + 1) =
v(k + 1)

1− βk+1
2

(42)

The Adam update rule then reads

p(k + 1) = p(k)− α
m̂(k + 1)√
v̂(k + 1) + ε

(43)

20

where ε is a small positive and additive constant, to prevent the denominator from
becoming zero. The standard parameter for Adam [44] are obtained using α = 1e-3,
β1 = 9e-1, β2 = 9.99e-1 and ϵ = 1e-8.

Both backpropagation and Adam make use of the cost function gradient and are
therefore called first order optimisation methods. Another approach uses the curvature
(second derivatives/Hessian matrix) of the cost function. The BFGS (Broyden-Fletcher-
Goldfarb-Shanno) approach, a Quasi-Newton method [45], is a popular second order
optimisation method, approximating the inverse of the Hessian matrix. [87] The general
idea of the Newton method is to approximate the cost function E[p] with a Taylor-series
of order two around a current iterate p(k). The derivative of this series has to be zero as
a necessary condition for finding a minimum. In addition, the resulting Hessian matrix
must be positive definite. The iterative scheme then reads

p(k + 1) = p(k)−H−1(p(k))∇E[p(k)] (44)

While the Newton method now requires the computation of the inverse Hessian H−1(p(k)),
the Quasi-Newton method replaces it with the approximation H−1(p(k)) = α(k)B(p(k)).
Here, α(k) is the step size which can be determined using, e.g., backtracking or Wolfe-
Powell line search. The update of B(p(k)), according to the BFGS method reads

B(p(k + 1)) =

(
I − syT

yT s

)
B(p(k))

(
I − ysT

yT s
+

ssT

yT s

)
(45)

where I denotes the identity matrix and

s = p(k + 1)− p(k), y = ∇E[p(k + 1)]−∇E[p(k)] (46)

together with

p(k + 1) = p(k)− α(k)g(k), g(p(k)) = −B(p(k))∇E[p(k)] (47)

The equation for p(k+1) in Eq. (47) also denotes the neural network weight update in
this approach. The Hessian approximate B(p) in Eq. (45) can be initially set to equal
the identity matrix or a multiple of the identity matrix [87].

As stated above, the step size α(k) can be found using Wolfe-Powell line search. The
idea is to use the search direction g(k) (with has to be a descent direction, wherefore
gT (k)∇E[pk] < 0 has to hold) in Eq. (47) in order to find α(k), so that

1. sufficient decrease condition:

E[p(k) + αg(k)] ≤ E[p(k)] + τα∇E[p(k)]Tg (48)

2. curvature condition:

∇E[p(k) + αg(k)]Tg(k) ≥ σ∇E[p(k)]Tg(k) (49)

are satisfied. In contrast to Adam and backpropagation, which are straight forward to
implement, the line search requires a separate algorithm with numerical difficulties [87].
The following algorithm (one possible realisation) requires the weight vector p ∈ Rn, the
search direction g ∈ Rn with ∇E[p]Tg < 0, an initial step size α = 1 and parameters τ ∈
(0, 0.5), σ ∈ [τ, 1). Prior, the weight vector p(0) and the inverse Hessian approximate
B(0) = I are initialised. A possible realisation of the algorithm [87, 88, 89] to find the
step size α(k) = αWP and to update inverse Hessian approximate reads (initially set
k = −1):

21

1. Set k = k + 1 and find search direction g(p(k)) = −B(p(k))∇E[p(k)]

2. Perform Wolfe-Powell line search to obtain a suitable step size αWP :

• Set α(k) = 1

– if Eq. (48) holds, find the smallest number b ∈ {21, 22, 23, . . .} for which
(with α(k) = b) Eq. (48) is not satisfied and set a = 0.5b.

– else find the largest number a ∈ {2−1, 2−2, 2−3, . . .} for which (with
α(k) = a) Eq. (48) is satisfied and set b = 2a.

• repeat with α(k) = a

– if Eq. (49) holds, return αWP = α(k) and stop.
– else set α(k) = 0.5(a+ b)

∗ if Eq. (48) holds for α(k) = 0.5(a+ b), set a = α(k)

∗ else b = α(k)

3. Set s(k) = −αWPg(k) and update p(k + 1) = p(k) + s(k)

4. Set y = ∇E[p(k + 1)]−∇E[p(k)]

5. Update

B(p(k + 1)) =

(
I − syT

yT s

)
B(p(k))

(
I − ysT

yT s
+

ssT

yT s

)
(50)

6. Go to 1. until a stopping condition is satisfied.

Stopping conditions may include the gradient or the improvement to the cost function
to be close to zero.

At this point it is important to introduce a training method called batch training,
related to processing the training points. In one epoch, obtaining the gradient indi-
vidually after the computation of the cost function for each training point may result
in n + 1 weight updates in that epoch. From now on, this training approach will be
referred to as single batch training. An alternative procedure employs to perform the
weight update after a complete iteration over all grid points, averaging the cost function
gradient and training error and is called full batch training in this work. One may also
consider mini batch training, which employs training with pairs of two or more training
samples at ones. The expressions used for each weight update for single and full batch
training read:

• single batch training:

training error:
1

2
Ei[p(k)] (51)

gradient:
1

2

∂

∂p
Ei[p(k)] (52)

• full batch training:

training error:
1

2(n+ 1)

n∑
i=0

Ei[p(k)] (53)

gradient:
1

2(n+ 1)

n∑
i=0

∂

∂p
Ei[p(k)] (54)

22

With this notation, Ei[p(k)] represents the cost function term, regarding the i-th grid
point in the k-th epoch. However, to not affect the readability in an unpleasant way,
the k-th epoch is not explicitly addressed from now on.

The gradient w.r.t. the neural network weights in Eq. (35) effectively operates on
the neural network itself. Therefore it is possible to retrieve the analytical expressions,
with the weighted sum zj = νjti + ηj, j = 1, . . . , 5, i = 0, . . . , n, as follows:

N(ti,p) =
5∑

j=1

ρjσ(zj) + γ, Ṅ(ti,p) =
5∑

j=1

ρjνjσ
′(zj) (55)

∂

∂ρj
N(ti,p) = σ(zj),

∂

∂ρj
Ṅ(ti,p) = νjσ

′(zj) (56)

∂

∂νj
N(ti,p) = ρjtiσ

′(zj),
∂

∂νj
Ṅ(ti,p) = ρjσ

′(zj) + ρjνjtiσ
′′(zj) (57)

∂

∂ηj
N(ti,p) = ρjσ

′(zj),
∂

∂ηj
Ṅ(ti,p) = ρjνjσ

′′(zj) (58)

∂

∂γ
N(ti,p) = 1,

∂

∂γ
Ṅ(ti,p) = 0 (59)

Here, the neural network time derivative is also considered, since it appears in the NF
approaches, described in Section 2.2. The first and second derivative of the sigmoid
function are given as

σ′(zj) = σ(zj)(1− σ(zj)) (60)
σ′′(zj) = 2σ3(zj)− 3σ2(zj) + σ(zj) (61)

2.3.2 Weight initialisation

Poorly chosen training or neural network parameters may lead the (first order) optimi-
sation to find a local minimum that does not sufficiently solve the underlying problem.
In addition, a very important task is to assign the neural network weights (νj, ηj, ρj, γ in
Fig. 1) with carefully chosen initial values. However, this task may be challenging, since
they determine the starting point in the weight space and may be close to a suitable
minimum, or far away. In general, it is common to initialise the weights with random
values [84, 90, 91]. However, also an initialisation with equal values for each weight,
e.g., zeros, is possible. This variant will be named deterministic initialisation, while
the random starting weights will additionally have the name non-deterministic initial-
isation attached. Both descriptions are more meaningful and the reason for choosing
such specific names is related to the general outcome of one complete optimisation. In
this thesis, the deterministic initialisation will often be referred to as pinit

deter and the
non-deterministic or random initialisation as pinit

rnd. Regarding the impact of the non-
deterministic (or random) initial weights on the neural network optimisation, the very
first computation of N(ti,p) (see Eq. (4)) in epoch one will return an arbitrary value.
This value depends on the initially chosen random weights and therefore N(ti,p) differs
each time another set of initial weights is chosen at the start of an optimisation cycle.
Therefore, also the cost function differs, depending on the initial set of weights which
causes the gradient to return an individual descent direction each time and the resulting
weight updates (e.g., with backpropagation or Adam) as well.

23

In epoch two, the computation of the neural network output, the cost function and
the weight updates start again with the previously updated weights. Therefore, all these
values again depend on the initially chosen set of weights (in the epoch before). This
hold through all epochs so that it is very unlikely for two individual sets of initial weights
(considering the other computational parameters to remain unchanged) to end up in the
exact same location of a local minimum. Resulting in different (but maybe very similar)
solutions to the optimisation problem and the differential equation. This characteristic
can possibly be handled using multi-start stochastic global optimisation [92, 93, 94] for
finding the best set of weights. However, neural networks approaches, especially in deep
learning with large numbers of hidden layers and neurons, may experience increasing
computational effort using such approaches.

Another option is to choose a deterministic initialisation. Setting each neural net-
work weight to, e.g., zero, will result in identical computations regarding the cost func-
tion and weight updates for several optimisation cycles (several times restarting the
optimisation). This approach will always find the exact same local minimum which can
be beneficial for an in depth computational numerical analysis or detailed comparison
to other methods. The solution stability is a major advantage of the deterministic
initialisation with equal weights. However, the neurons in the hidden layer will act as
there is only one hidden layer neuron incorporated. This is expressed by the fact, that
all νj in Fig. 1 have the exact same values in each epoch during one optimisation cycle.
The same holds for ηj and ρj in Fig. 1. In other words, the weight vector p is most
likely individual in different epochs, but all νj have the same value, all ηj have the same
value and all ρj have the same value in each epoch.

For further details on the optimisation, the following IVP is considered:

u̇(t) = t sin(10t)− u(t), u(0) = −1 (62)

for which G in Eq. (14), involved in the cost function, is found as

G = ˙̃u(ti,p) + ũ(ti,p)− ti sin(10ti) ≈ 0 (63)

The minimisation of Eq. (14) aims to get G in Eq. (63) as close to zero as possible.
That is, the expression of interest actually reads, cf. Eq. (30),

˙̃u(ti,p) + ũ(ti,p) ≈ ti sin(10ti) (64)

Here, the values of ti sin(10ti) are predetermined by the domain, whereas the NF and
its time derivative additionally depend on the neural network weights and their opti-
misation. Hence, Eq. (64) can be considered as satisfied for various combinations of
˙̃u(ti,p)+ ũ(ti,p). Therefore, the results may highly depend on the final location in the
weight space.

One reason for this circumstance may relate to the complexity of the energy land-
scape which can inherent multiple local minima that can lead to several combinations
of the left-hand side in Eq. (64). Not all of these combinations must be real or useful
solutions. This issue may occur, e.g., when the initial weights are far away from a
suitable minimum for a helpful approximation. When there is a minimum nearby the
initialisation with unfavourable optimisation parameters, such that the optimiser can
get stuck inside. However, fine tuning all the incorporated computational parameters
is an ungrateful task since some of these are not independent of each other [81, 60].

24

2.3.3 Evaluation metrics and overfitting

In order to classify the solution of the optimisation problem and the approximation
of the differential equation, this paragraph introduces the metrics for evaluation and
verification. On the numerical side, the solution can be evaluated regarding its accuracy
with a comparison between the analytical and the neural forms solution. Therefore,
the averaged l1-norm (computed in each epoch individually)

∆ui =
∣∣u(ti)− ũ(ti,p)

∣∣, ∆u =
1

n+ 1

n∑
i=0

∆ui (65)

is a fundamental evaluation metric in this thesis, as it averages the absolute values of
the differences between the analytical solution u(ti) to the neural forms solution ũ(ti,p)
at each of the n+ 1 grid points ti. Another approach may use the expected value over
the initial weights here. In addition, it is often useful to consider the l∞-norm, which
returns the maximum value

∆u∞ = max
i

(∆ui) = max(∆u0, . . . ,∆un) (66)

The metrics in Eqs. (65) and (66) contribute to the numerical evaluation and are also
referred to as l1-error and l∞-error. On the neural network and optimisation side, the
grid points heavily support the training process as the cost function is build upon them.
Therefore, it appears natural to evaluate the training process at the training points so
that an error metric can be defined as

E[p] =
1

2(n+ 1)

n∑
i=0

{
G
(
ti, ũ(ti,p), ˙̃u(ti,p)

)}2

(67)

Since Eq. (67) is not the only way to express and compute a cost function related
metric, the training error is later often specified by E[p] ≡ ETP [p]

ETP [p] =
1

2(nTP + 1)

nTP∑
i=0

{
G
(
ti, ũ(ti,p), ˙̃u(ti,p)

)}2

(68)

In other words, whenever E[p] appears, it is related to the computation and evaluation
at the grid or training points n = nTP (TP for training points) and therefore equivalent
to ETP [p] (assuming that the amount of grid points for training and evaluation is the
same). On the other hand, one of the main features which comes with neural net-
work approaches is the ability to generalise functions or solutions. Once (successfully)
trained on a set of grid points, the neural forms are able to find the solution of the
differential equations in between the training points. These intermediate grid points
can be arbitrarily distributed over the solution domain. The evaluation (or verification)
with intermediate grid points n = nV P (VP for verification points)

EV P [p] =
1

2(nV P + 1)

nV P∑
i=0

{
G
(
ti, ũ(ti,p), ˙̃u(ti,p)

)}2

(69)

is important to detect a phenomenon named overfitting [95, 96, 97]. A trained neural
network shows overfitting, when the training points (or the training data in general)

25

are too well approximated. This is the case when the training error ETP is sufficiently
small, but the verification error EV P returns a much larger value. This resembles a
major problem because overfitting highly impacts the generalisation performance in a
bad way. Therefore it is important to investigate and avoid overfitting.

2.4 Computational results for TSM and mTSM

The reliability and accuracy of the approximation still represent not fully resolved issues
in the current literature. Computational approaches are in general highly dependent
on a variety of computational parameters and the amount of parameters related to
the differential equation, neural network, optimisation and cost function structure is
numerous. The contribution in this section is a study with the variation of (i) weight
initialisation methods, (ii) number of hidden layer neurons, (iii) number of hidden
layers, (iv) number of training epochs, (v) stiffness parameter and domain size, (vi)
optimisation methods, (vii) cost function construction approaches, and especially their
mutual dependence. Let us note that it has turned out to be a nontrivial task to set
up a meaningful proceeding that gives an account of the latter aspect. We consider the
evaluation presented here as a number of carefully chosen experiments that are in many
aspects related to each other. The intention of this section is to make a step towards
resolving the previously mentioned open issues. To this end we study here the solution
of a simple but fundamental stiff ordinary differential equation modelling a damped
system. We consider two computational approaches for solving differential equations
by neural forms with first order optimisation. These are the classic but still present
method of trial solutions (or neural forms) defining the cost function, and a direct
construction of the cost function related to the trial solution method. By a detailed
computational study we show that it is somehow possible to identify preferable choices
to be made for parameters and methods. We also illuminate some interesting effects
that are observable in the neural network simulations. By doing this we illustrate the
importance of a careful choice of the computational setup.

2.4.1 TSM construction example

The computational characteristics in this section are analysed using the test equation

G = u̇(t) + 5u(t) = 0, u(0) = 1, t ∈ [0, 2] (70)

which resembles a homogeneous first order ordinary differential equation, also named
initial value problem (IVP) [98]. With the IVP in Eq. (70), we will demonstrate how
to construct the classic neural form employed by Lagaris et al. [13], the cost function
and the corresponding gradient used for backpropagation, Adam and BFGS. Here we
also have the opportunity to compare all three optimisation methods, and on top, with
numerical solution methods. The differential equation in Eq. (70) has the analytical
solution u(t) = e−5t and represents a simple model for stiff phenomena involving a
damping mechanism. This test equation is similar to the one later used one for the
extensive computational experiments, where the constant coefficient in Eq. (70) is re-
placed by a more general parameter λ ∈ R, λ < 0. This will be mentioned again at
the corresponding text passage. The equation was chosen since it incorporates stiff

26

behaviour, which results for some numerical methods in a limitation of the chosen step
size between two grid points in terms of stability. In other words, stiff behaviour may
force a numerical methods to tremendously decrease the step size in regions where such
a behaviour is not expected.

Turning to the construction principle as introduced in Section 2.2.1, the classic TSM
neural form (NF) for the IVP in Eq. (70) can be considered as

ũ(ti,p) = 1 +N(ti,p)ti (71)

It satisfies the initial condition u(0) = 1 and already incorporates the discretised domain
with grid points ti, i = 0, . . . , n. The classic NF in Eq. (71) is set to replace u(t) in Eq.
(70), resulting in

G = ˙̃u(ti,p) + 5ũ(ti,p) ≈ 0 (72)

where the NF time derivative reads

˙̃u(ti,p) = N(ti,p) + Ṅ(ti,p)ti (73)

Eq. (73) features the neural network N(ti,p) and its derivative Ṅ(ti,p) w.r.t. the time
domain data input. In this example, both read

N(ti,p) =
5∑

j=1

ρjσ(νjti + ηj) (74)

Ṅ(ti,p) =
5∑

j=1

νjρjσ
′(νjti + ηj) (75)

with the derivative of the sigmoid function

σ′(νjti + ηj) = σ(νjti + ηj)(1− σ(νjti + ηj)) (76)

The neural network incorporates one hidden layer with five sigmoid neurons and an
input layer for ti and a unit reference (bias neuron), as displayed in Fig. 3. For training,

Input

Layer
Hidden
Layer

Output

Layer

ti

νj

1
ηj

σ1

σ2

σ3

σ4

σ5

ρj

N

Figure 3: The neural network architecture as used in this section.

the discretised time domain with 10 equidistant grid points ti is used: The resulting

27

t0 t1 t2 t3 t4 t5 t6 t7 t8 t9
0 0.22 0.44 0.66 0.88 1.11 1.33 1.55 1.77 2.00

Table 1: Training points.

cost function used for full batch training of the neural network follows Eq. (14):

E[p] =
1

2(n+ 1)

n∑
i=0

{
˙̃u(ti,p) + 5ũ(ti,p)

}2

(77)

E[p] =
1

20

9∑
i=0

{
˙̃u(ti,p) + 5ũ(ti,p)

}2

(78)

=
1

20

9∑
i=0

{
N(ti,p) + Ṅ(ti,p)ti + 5(1 +N(ti,p)ti)

}2

(79)

=
1

20

9∑
i=0

{
Ṅ(ti,p)ti +N(ti,p)(1 + 5ti) + 5

}2

(80)

Let us note at this point, that the cost function in Eq. (77) is one of two general
evaluation metrics in this paragraph. One evaluates the neural forms solution at the
training points (TP) and is denoted by E[p] = ETP [p], while the over one is evaluated
at so called verification points (VP) E[p] = EV P [p] (cf. Sec. 2.3.3). The other metric
is related to the numerical error, which is defined as

∆u1 =
1

n+ 1

n∑
i=0

∣∣u(ti)− ũ(ti,p)
∣∣ (81)

the l1-error at the corresponding grid points ∆u1 = ∆uTP
1 and ∆u1 = ∆uV P

1 (cf. Sec.
2.3.3). The next step is to minimise Eq. (77) with an optimisation method (see 2.3.1).
For full batch training, cf. Eq. (53), one averages the gradients over all training points

∂

∂p
E[p] =

1

2(n+ 1)

n∑
i=0

∂

∂p

{
Ṅ(ti,p)ti +N(ti,p)(1 + 5ti) + 5

}2

(82)

=
1

n+ 1

n∑
i=0

ei(p)
∂

∂p

{
Ṅ(ti,p)ti +N(ti,p)(1 + 5ti) + 5

}
(83)

where
ei(p) = Ṅ(ti,p)ti +N(ti,p)(1 + 5ti) + 5 (84)

results from the quadratic function derivative. The corresponding neural network
derivatives w.r.t. the network weights are given in Eq. (55)-(59). In Eq. (82), the
differential operator-related partial derivatives w.r.t. p are applied to the neural net-

28

work and its derivative in Eqs. (74),(75). In this case, the cost function gradient reads

∂Ei[p]

∂ρj
= ei(p)

[
νjσ

′(νjti + ηj)ti + σ(νjti + ηj)(1 + 5ti)
]

(85)

∂Ei[p]

∂νj
= ei(p)

[
νjρjt

3
iσ

′′(νjti + ηj) + ρjtiσ
′(νjti + ηj)(1 + 6ti)

]
(86)

∂Ei[p]

∂ηj
= ei(p)

[
νjρjσ

′′(νjti + ηj)ti + ρjσ
′(νjti + ηj)(1 + 5ti)

]
(87)

Figure 4: Evolution of approximating the IVP in Eq. (70) with a small neural
networks, (black/solid) analytical solution, (orange/triangle (up)) 1e0 epoch, (yel-
low/triangle (down) 1e1 epochs, (purple/circle) 1e2 epochs, (green/diamond) 1e3
epochs, (blue/square) 1e4 epochs, (red/dash) 1e5 epochs.

(a) Errors at training points nTP = 10 (b) Errors at verification points nV P = 100

Figure 5: Resulting error values of non-deterministic (random) weight initialisation
depending on the Euclidean distance between initial p0 and learned p∗ weights, (blue)
numerical error, (purple) cost function error.

As mentioned above, the training process for updating the neural network weights p
is performed with full batch training, where the optimiser receives an averaged gradient
over the entire training points. In order to obtain the NF solution to Eq. (70), the cost
function in Eq. (77) is minimised using different optimisation methods. The optimisa-
tion parameters are given in Sec. 2.3.1 and the training is performed with 1e5 epochs

29

and 10 equidistant training points. The initial neural network weights are randomly
chosen from pinit

rnd ∈ [−1, 1].
The diagram in Fig. 4 shows different NF solution stages during the optimisation

process. Taking at least 1e3 epochs (green/diamond) to start recognising the shape
of the analytical solution (black/solid) is remarkable. Then the transition from 1e3
epochs to 1e4 (blue/square) epochs is significant, while the values at some training
points still lay below or above the desired solution function. Finally, after 1e5 epochs,
the NF solution (red/dash) lays on top of the analytical solution without any visual
differences. The numerical error ∆u measured at the training points and averaged over
the entire domain is ∆u = 9.0668e-5 for 1e5 epochs (red/dash).

The Figure 5 and Table 2 serve the purpose to deliver a brief insight into the general
investigations and characteristics later shown in this section. The results in Fig. 5 show
1e5 complete optimisation cycles with pinit

rnd ∈ [−1, 1], where all other computational
parameters remain unchanged in each cycle. Displayed are both the cost function
related training/verification error and the numerical error, depending on the euclidean
distance between the initial p0 and learned p∗ neural network weights. Please note
that there is no information given about the direction, in which the optimiser moved
in the weight space. In Fig. 5(a), the errors are evaluated at the 10 training points nTP

right after the training process has finished and in Fig. 5(b), the errors are evaluated
at 100 intermediate verification points nV P with the corresponding learned weights.
The results show how the error evaluations are distributed and connected to a variety
of final states. Depending on the starting point in the weight space, determined by
the initial weights, the end results differ a lot. While some numerical errors (blue)
are in range of ∆u1 ≈ 1e-3, others approximate the IVP way better with an accuracy
around ∆u1 ≈ 1e-5 to ∆u1 ≈ 1e-6, even referring to similar ∥p∗ − p0∥2. One of the
most remarkable characteristics shown in Fig. 5 however, both the numerical error at
the training points and the numerical error at the verification points (blue) are very
similar. On the other hand, the training and verification error (purple) show significant
differences. This is an indication of the complexity of the energy landscape, spanned by
the cost function, and it shows that the numerical error is somehow way more robust to
the evaluation than the cost function related verification error. The difference between
the best and the least good approximation in Fig. 5 lets the question arise, if this is an
Adam-related characteristic or a common behaviour. Table 2 shows results for different
optimisation methods in effort to a possible answer of the previously asked question.
Ten different weight initialisation lead to ten different results for each optimiser. Clearly
the best results, as expected, are provided by the second order optimiser BFGS with
Wolfe-Powell line search. On the other hand, the first order optimiser Adam also
shows useful approximations and backpropagation with constant step size (cBP) is still
decent. However, BFGS is one order of accuracy ahead of Adam, while Adam is up
to two orders ahead of cBP. Why backpropagation is performing in this way is mainly
because both BFGS and Adam come with a variable step size which is important for
convergence. Although backpropagation converges here, its ability to find a better
minimum is limited. However, due to an adaptive computation of step sizes, Adam and
especially BFGS take more computational time.

In context of this thesis, a comparison of both the deterministic weight initialisation
(with zeros) and numerical methods are highly interesting. Table 3 clearly shows how
good the approximation of the IVP in Eq. (70) with Runge-Kutta 4 (RK4) is. However,

30

No. BFGS Adam cBP
∆uTP

1 ETP [p] ∆uTP
1 ETP [p] ∆uTP

1 ETP [p]
1 1.4738e-6 6.7649e-12 4.2002e-4 4.0616e-6 1.7612e-3 8.5323e-5
2 1.0605e-6 2.9857e-12 5.7301e-5 1.5680e-7 2.2369e-3 1.4033e-4
3 1.6127e-4 1.0884e-8 6.1655e-4 1.0822e-5 2.3431e-3 1.7050e-4
4 5.5344e-5 3.2874e-8 9.2765e-5 2.5113e-7 1.8863e-3 1.5189e-4
5 2.5290e-6 2.1285e-11 3.4758e-4 8.3530e-7 1.8524e-3 9.2519e-5
6 5.5974e-5 1.0898e-10 1.0348e-4 1.5602e-7 3.6199e-3 5.4148e-4
7 4.1287e-5 6.5687e-10 1.5558e-3 4.4211e-5 2.6456e-3 2.8715e-4
8 3.8454e-6 1.9548e-11 6.9340e-4 5.4726e-7 2.3210e-3 1.5105e-4
9 7.5611e-7 2.2515e-14 8.0274e-5 1.4119e-7 2.5934e-3 3.1952e-4
10 7.6278e-6 2.0684e-11 4.2030e-5 1.9385e-8 1.9461e-3 1.1138e-4

Table 2: Results for ten complete optimisation cycles with different random weight
initialisation pinit

rnd.

BFGS Adam cBP Euler RK4
∆u1 6.3848e-7 8.5091e-1 8.3705e-2 4.9975e-6 1.6659e-10

Table 3: pinit
deter=0 and 1e5 grid points for Euler and RK4.

also the Euler method shows reliable results, under the fact, that the number of grid
points is chosen to be really high. That is, to match the number of training epochs
for TSM with the number of grid points for the numerical methods, see Sec. 2.2.1.
The numerical error for both Adam and cBP are not useful by any means. Since in
combination with the deterministic initialisation, all optimisation methods return a
constant but individual result. Only BFGS shows a very good approximation which is
even better compared to the random initialisation with the particular parameter setup.

Concluding this introducing experiment, we will focus in the following on first or-
der optimisation methods (Adam and backpropagation) in order to investigate their
characteristics. This is because first order optimisation methods are more often used in
machine learning since the computational time they require is lower compared to sec-
ond order methods. Additionally, we want to find out how to improve the deterministic
weight initialisation for the first order methods. Up to the current results, BFGS fulfills
the expectations to provide very good results so that in the context of this thesis the
question arises, how to improve the use of first order optimisation methods, especially
in the context of a deterministic weight initialisation.

2.4.2 Details on the experiments

For experiments on both solution approaches (TSM [13] and mTSM [14, 15]) with
different parameter variations, as well as optimisation with Adam and backpropagation,
we make use of the model problem

u̇(t) = λu(t), u(0) = 1 (88)

a homogeneous first order ordinary differential equation with λ ∈ R, λ < 0. The IVP
in Eq. (88) has the analytical solution u(t) = eλt and represents a simple model for stiff

31

Weights initialised with pinit
deterequal values

Weights initialised with pinit
rndrandom values

Numeric error for pinit
deter ∆udeter

Mean value of numeric ∆urnderror for pinit
rnd

Trial solution method TSM
Modified trial solution mTSM
method
Backpropagation with cBP
constant learning rate
Backpropagation with vBP
variable learning rate
Adam optimisation Adam
Number of training points nTP

Number of maximal epochs kmax

Stiffness parameter λ
Left domain boundary tend

Table 4: Abbreviations in the experiment section.

phenomena involving a damping mechanism. With ũ(ti,p) = 1+ tiN(ti,p) we take the
form of the classic neural form for TSM proposed by Lagaris et al. in [13] to construct
the cost function

E[p] =
1

2(n+ 1)

n∑
i=0

{
Ṅ(ti,p)ti +N(ti,p)− λ (1 +N(ti,p)ti)

}2

(89)

For mTSM the neural form ũ(ti,p) = N(ti,p) results in the cost function [14, 15]

E[p] =
1

2(n+ 1)

n∑
i=0

{
Ṅ(ti,p)− λN(ti,p)

}2

+
1

2

{
N(t0,p)− 1

}2

(90)

In subsequent experiments we study ∆u with respect to several, meaningful variations
of computational parameters.

The main parameters and abbreviations of the computational settings are defined as
in Table 4. In most subsequent experiments we used cBP instead of vBP, to reduce the
amount of parameters. The numerical error ∆u is exclusively evaluated at the training
points in this section. However, it is important to note at this point, that usually a
step size control or line search is required in order to make α adaptive. A constant step
size can be chosen too small which may result in a very slow convergence. On the other
hand, a larger step size can result in an oscillation around a minimum with an impact
on the accuracy. Nonetheless, the later presented results using backpropagation with a
constant step size are still meaningful, as this contributes to the speed of computation
and makes backpropagation faster compared to Adam. Specific parameters for each
optimisation method are documented in Sec. 2.3.1. The optimisation was realised with
single batch training (cf. Eq. (51)). In addition, some experiments show averaged
graphs to see the general trend with a reduced influence of fluctuations. If we do

32

not say otherwise in the subsequent experiments, the computational parameters are
fixed with one hidden layer, five hidden layer neurons, number of maximal epochs
kmax = 1e5, domain data t ∈ [0, 2] and stiffness parameter λ = −5. Concerning the
following experiments, let us stress again that these are not considered to be separate or
independent of each other. We consequently follow a line of argumentation that enables
us (i) to reduce step by step the degrees of freedom in the choice of computational
settings, and (ii) to clarify the influence of individual computational parameters. In
doing this we also demonstrate how to achieve tractable results. We consider this as
an important part of our work since this makes the whole approach more meaningful.

2.4.3 Experiment: weight initialisation

-10 -8 -6 -4 -2 0 2 4 6 8 10

weight initialisation

1e-6

1e-5

1e-4

1e-3

1e-2

1e-1

1e0

(a) TSM, Adam, nTP = 10

-10 -8 -6 -4 -2 0 2 4 6 8 10

weight initialisation

1e-6

1e-5

1e-4

1e-3

1e-2

1e-1

1e0

(b) TSM, Adam, nTP = 20

-10 -8 -6 -4 -2 0 2 4 6 8 10

weight initialisation

1e-6

1e-5

1e-4

1e-3

1e-2

1e-1

1e0

(c) TSM, Adam, nTP = 40

-10 -8 -6 -4 -2 0 2 4 6 8 10

weight initialisation

1e-6

1e-5

1e-4

1e-3

1e-2

1e-1

1e0

(d) TSM, cBP, nTP = 10

-10 -8 -6 -4 -2 0 2 4 6 8 10

weight initialisation

1e-6

1e-5

1e-4

1e-3

1e-2

1e-1

1e0

(e) TSM, cBP, nTP = 20

-10 -8 -6 -4 -2 0 2 4 6 8 10

weight initialisation

1e-6

1e-5

1e-4

1e-3

1e-2

1e-1

1e0

(f) TSM, cBP, nTP = 40

-10 -8 -6 -4 -2 0 2 4 6 8 10

weight initialisation

1e-6

1e-5

1e-4

1e-3

1e-2

1e-1

1e0

(g) mTSM, Adam, nTP = 10

-10 -8 -6 -4 -2 0 2 4 6 8 10

weight initialisation

1e-6

1e-5

1e-4

1e-3

1e-2

1e-1

1e0

(h) mTSM, Adam, nTP = 20

-10 -8 -6 -4 -2 0 2 4 6 8 10

weight initialisation

1e-6

1e-5

1e-4

1e-3

1e-2

1e-1

1e0

(i) mTSM, Adam, nTP = 40

-10 -8 -6 -4 -2 0 2 4 6 8 10

weight initialisation

1e-6

1e-5

1e-4

1e-3

1e-2

1e-1

1e0

(j) mTSM, cBP, nTP = 10

-10 -8 -6 -4 -2 0 2 4 6 8 10

weight initialisation

1e-6

1e-5

1e-4

1e-3

1e-2

1e-1

1e0

(k) mTSM, cBP, nTP = 20

-10 -8 -6 -4 -2 0 2 4 6 8 10

weight initialisation

1e-6

1e-5

1e-4

1e-3

1e-2

1e-1

1e0

(l) mTSM, cBP, nTP = 40

Figure 6: Experiment 2.4.3. Weight initialisation variation, (orange/solid) ∆udeter,
(blue/dotted) ∆urnd.

This experiment illustrates differences between the two weight initialisation meth-
ods, employing either pinit

deter or pinit
rnd. We averaged 1e2 complete optimisation cycles for

displaying each point in the graph depicting ∆urnd, implying that for the values given

33

at the lower axis we perform computations with 1e2 overlaid random perturbations,
with random numbers in range of 1e-2, as initialisation around each point. The aver-
aging is important to mention, because every iteration with pinit

rnd and exactly the same
computational parameter setup, is expected to return different results.

Let us first comment on our choice of the deterministic initial weights pinit
deter. Evi-

dently, one has to choose here some fixed value, and by further experiments, the value
zero appears to be a suitable generic choice for mTSM. Considering the experiments
documented in Fig. 6, TSM with both cBP and Adam (see illustrations (a)–(f)) does not
return helpful results for the deterministic initialisation pinit

deter with the current param-
eter setup. All experiments for TSM with pinit

deter give here uniformly a very high error
(depicted by orange/solid lines), even when increasing the number of training points.
Besides returning a stable solution (no variations caused by different initial weights),
the TSM approach combined with a deterministic initialisation clearly lacks flexibility.
This is mainly because initialising each weight with the same value effectively reduces
the amount of hidden layer neurons to one. Considering five hidden layer neurons with
pinit
deter, the five weights from the input neuron to the hidden layer each have the same

impact on the neural network outcome. The same holds for the five weights from the
bias neuron to the hidden layer and the weights from the hidden layer to the output
layer. In other words, each hidden layer neuron receives the exact same weighted sum
and therefore the output neuron also receives a weighted sum consisting of five equal
terms. In total, this characteristic lets the hidden layer neurons effectively act as one
neuron. However, there is still a difference regarding the initial weights since employing
either, e.g., small or large initial values can still have an impact on the results.

The overall clearly best results for pinit
deter are provided by mTSM in combination with

Adam and nTP = 40. Not only is the ∆udeter (orange/solid) slightly decreasing with
higher numbers of training data (nTP), but also the region of stable results appears to
be slightly larger over nTP = 10 and nTP = 20. However, the results demonstrate that
the overall visual dependency of pinit

deter on the number of training points seems to be
insignificant while Adam provides a desirable proceeding.

When considering the non-deterministic weight initialisation pinit
rnd in Fig. 6, the

Adam solver gives also for TSM reasonable results in terms of the numerical error with
a large stable region. This behaviour has similarities to the characteristics shown for
mTSM, Adam and pinit

deter in Fig. 6(g)–(i). Furthermore, that is maybe an indication for
a relation between both solution methods. However, the energy landscape is spanned
by the cost function in the weight space and both TSM and mTSM are more likely
to show different behaviours with different minima. Therefore, the visible similarities
in the behaviour are perhaps only random occurrences. In Fig. 6(g)–(i), the random
initialisation shows a complete different trend, compared to Fig. 6(a)–(c), with several
highs and lows. For these diagrams, there seems to be no clear relation to any other
result in this experiment. As a general trend in all experiments with pinit

rnd, we observe
that the weight initialisation in a small range around zero seems to work best. Let us
also comment on the illustrations in Fig. 6(j)–(l) in this context, since we observe here
the behaviour that both pinit

deter and pinit
rnd around zero seem to work reasonably with cBP.

One may conjecture for other example ODEs, that there could be some deterministic
initialisation and a range of random fluctuations around it that may work well.

Concluding the deterministic initialisation, the results in Fig. 6 show the behaviour
of both solution approaches and optimisation methods for a specific set of computational

34

parameters, where only the initial weights are subject to variation. Since a suitable
choice of pinit

deter and pinit
rnd is important in all subsequent experiments, we decided as a

consequence of the experiments discussed here to initialise pinit
deter with zeros and pinit

rnd

with random values in range of 0 to 1e-2 from now on.

2.4.4 Experiment: number of hidden layer neurons

1 5 10 15 20 25 30 35 40 45 50

number of hidden layer neurons

1e-5

1e-4

1e-3

1e-2

1e-1

1e0

(a) TSM, Adam, nTP = 10

1 5 10 15 20 25 30 35 40 45 50

number of hidden layer neurons

1e-5

1e-4

1e-3

1e-2

1e-1

1e0

(b) TSM, Adam, nTP = 20

1 5 10 15 20 25 30 35 40 45 50

number of hidden layer neurons

1e-5

1e-4

1e-3

1e-2

1e-1

1e0

(c) TSM, Adam, nTP = 40

1 5 10 15 20 25 30 35 40 45 50

number of hidden layer neurons

1e-5

1e-4

1e-3

1e-2

1e-1

1e0

(d) TSM, cBP, nTP = 10

1 5 10 15 20 25 30 35 40 45 50

number of hidden layer neurons

1e-5

1e-4

1e-3

1e-2

1e-1

1e0

(e) TSM, cBP, nTP = 20

1 5 10 15 20 25 30 35 40 45 50

number of hidden layer neurons

1e-5

1e-4

1e-3

1e-2

1e-1

1e0

(f) TSM, cBP, nTP = 40

1 5 10 15 20 25 30 35 40 45 50

number of hidden layer neurons

1e-5

1e-4

1e-3

1e-2

1e-1

1e0

(g) mTSM, Adam, nTP = 10

1 5 10 15 20 25 30 35 40 45 50

number of hidden layer neurons

1e-5

1e-4

1e-3

1e-2

1e-1

1e0

(h) mTSM, Adam, nTP = 20

1 5 10 15 20 25 30 35 40 45 50

number of hidden layer neurons

1e-5

1e-4

1e-3

1e-2

1e-1

1e0

(i) mTSM, Adam, nTP = 40

1 5 10 15 20 25 30 35 40 45 50

number of hidden layer neurons

1e-5

1e-4

1e-3

1e-2

1e-1

1e0

(j) mTSM, cBP, nTP = 10

1 5 10 15 20 25 30 35 40 45 50

number of hidden layer neurons

1e-5

1e-4

1e-3

1e-2

1e-1

1e0

(k) mTSM, cBP, nTP = 20

1 5 10 15 20 25 30 35 40 45 50

number of hidden layer neurons

1e-5

1e-4

1e-3

1e-2

1e-1

1e0

(l) mTSM, cBP, nTP = 40

Figure 7: Experiment 2.4.4. Number of hidden layer neurons variation, (or-
ange/solid) ∆udeter, (blue/dotted) ∆urnd.

The behaviour of ∆udeter and ∆urnd when increasing the number of hidden layer
neurons is subject to this experiment, where ∆urnd is averaged over 1e2 optimisation
cycles for every tested number of hidden layer neurons.

There is almost no difference between the experiments for TSM in Fig. 7(a)–(f),
they all show a similar saturating behaviour. As discussed in the previous experiment,
it is clear that we have to focus here on the random initialisation, and for this setup we
observe here desirable results for about five or more neurons.

35

1 5 10 15 20 25 30 35 40 45 50

number of hidden layer neurons

1e-6

1e-5

1e-4

1e-3

1e-2

(a) nTP = 10

1 5 10 15 20 25 30 35 40 45 50

number of hidden layer neurons

1e-6

1e-5

1e-4

1e-3

1e-2

(b) nTP = 20

1 5 10 15 20 25 30 35 40 45 50

number of hidden layer neurons

1e-6

1e-5

1e-4

1e-3

1e-2

(c) nTP = 40

1 5 10 15 20 25 30 35 40 45 50

number of hidden layer neurons

1e-6

1e-5

1e-4

1e-3

1e-2

(d) nTP = 80

1 5 10 15 20 25 30 35 40 45 50

number of hidden layer neurons

1e-6

1e-5

1e-4

1e-3

1e-2

(e) nTP = 160

Figure 8: Experiment 2.4.4. Number of hidden layer neurons variation with the
focus on mTSM and Adam, extending Fig. 7, (orange/solid) ∆udeter, (blue/dotted)
∆urnd.

Turning to mTSM, a higher number of hidden layer neurons leads to an increase
in accuracy for Adam for larger numbers of training points explored here (nTP = 40).
For smaller numbers of training points (nTP = 10 and nTP = 20) we observe here
indications that the number of hidden layer neurons and thus the degrees of freedom
introduced by the neural network should be in a relatively small range, e.g., about half
the amount of training points. In this context, the results shown in Fig. 7(g)–(i) are
further investigated in Fig. 8. Here, the vertical axis is slightly different scaled in order
to have a better view on the general trend, since results for nTP = 80 and nTP = 160
are added. In general, duplicating the number of training points in each diagram allows
us to comment the computational convergence behaviour. For results with pinit

deter we
see that there is a saturation towards higher numbers of hidden layer neurons, while
too many training points may cause an unstable behaviour. Returning to ∆urnd, a
clear relation between the number of training points and the number of hidden layer
neurons is visible. Namely, increasing nTP leads to a smaller ∆urnd for a higher number
of hidden layer neurons. While for nTP = 10 in Fig. 8(a) the numerical error related
to pinit

rnd is continuously increasing, does nTP = 20 stabilise the results towards the end
of diagram 8(b). Further increasing the number of training points dampens the numer-
ical error in general. However, the most remarkable characteristic in Fig. 8 relates to
smaller amounts of hidden layer neurons. Throughout all diagrams, the numerical error
∆urnd rapidly decreases in the beginning (for around three to four neurons) and starts
increasing again. This local minimum has most of the time the best results attached.
This phenomenon appears to be related to double descent [99]. The local minimum is
most likely a combination of an initially decreasing trend and a diverging trend. Once
the error starts increasing we would except it to totally diverge. However, the model
manages to be able to decrease the numerical error again. The initial trend of a de-
creasing numerical error is something we would also expect since the flexibility should
theoretically increase using more hidden layer neurons. This assumption is related to
the universal approximation theorem [36]. The theorem basically states that a feedfor-

36

ward neural networks with a finite number of hidden layer neurons can approximate
every continuous function on a subset of R with arbitrary accuracy. Therefore, one
may assume that an increasing number of hidden layer neurons may continuously lower
the numerical error. However, the theorem does not relate to the optimisation problem
and it also does not state how many neurons are required. With the rest of the compu-
tational parameters remaining unchanged, the general trend of the initially decreasing
numerical error differs to expected values in the investigated range. Let us note at this
point, that in context of double descent we do not see the training loss depicted in the
diagrams, but the numerical error. Nonetheless, this phenomenon seems to apply here
as well.

Also for cBP the saturation value of the numerical error in Fig. 7(j)–(l) for mTSM is
affected by increasing the number of hidden layer neurons. The general trend for ∆urnd
provides a slightly higher accuracy in this way, and that the saturation level is visible
already when using a small number of neurons. Here the double descent phenomenon
is also visible.

As a consequence of these investigations, we employ five hidden layer neurons in the
other experiments (note that this setting has also been used in the previous experiment)
as this appears to be justified by the stable solutions and the amount of computational
time.

2.4.5 Experiment: number of hidden layers

In order to focus on the impact of the number of hidden layers, we decided here to keep
the number of neurons in the hidden layers constant, employing five neurons in each
layer. As in previous experiments, ∆urnd is averaged over 1e2 optimisation cycles.

The results in Tab. 5 show that one hidden layer is not always enough to provide
useful results. In the previous experimental sections we found TSM in combination
with pinit

deter to not be flexible enough to provide reliable results. Here we find employing
one or two additional hidden layers to be beneficial. As expected, also the number
of training points (nTP) effects the accuracy and usefulness of adding hidden layers.
The more hidden layers a neural network features, the more neurons and degrees of
freedom (weights) are incorporated. In numerical approximation methods, increasing
the number of grid points often results in a better accuracy. In contrast, and as we have
shown in the previous experimental sections, maintaining or improving the accuracy is
not always related to the number of training points. However, universal conclusions are
difficult to make. Let us now provide a brief summary of findings related to Tab. 5:

• cBP and ∆udeter:
This combination together with TSM highly benefits from a second and third
layer by gaining one order of accuracy for each layer. This holds for nTP = 10
and nTP = 20. Further increasing nTP is not beneficial anymore. Increasing the
layers has only minor impact on the combination together with mTSM.

• cBP and ∆urnd:
The impact of adding layers is close to irrelevant for both TSM and mTSM. A
slightly higher impact does the number of training points have. Overall, using a
second hidden layer is a minor improvement.

37

nTP = 10

method cBP Adam
∆udeter ∆urnd ∆udeter ∆urnd

hidden Layer TSM mTSM TSM mTSM TSM mTSM TSM mTSM
1 8.25e-2 3.25e-3 7.84e-4 1.98e-3 8.74e-2 2.20e-4 2.67e-4 1.26e-4
2 2.72e-3 2.11e-3 6.40e-4 1.15e-3 3.73e-3 5.27e-4 5.34e-4 1.84e-4
3 6.88e-4 1.54e-1 8.15e-4 1.54e-1 2.10e-3 3.45e-4 8.69e-4 4.78e-4
4 2.94e-1 1.54e-1 2.94e-1 1.54e-1 2.94e-1 2.93e-4 2.94e-1 1.21e-2
5 2.94e-1 1.54e-1 2.94e-1 1.54e-1 2.94e-1 1.28e-1 2.94e-1 4.12e-2

nTP = 20

method cBP Adam
∆udeter ∆urnd ∆udeter ∆urnd

hidden Layer TSM mTSM TSM mTSM TSM mTSM TSM mTSM
1 7.85e-2 2.14e-3 5.43e-4 7.00e-4 8.49e-2 1.33e-4 5.51e-4 5.04e-5
2 1.82e-3 2.24e-3 2.74e-4 5.16e-4 2.54e-3 2.06e-4 5.05e-4 2.12e-4
3 7.76e-4 1.28e-1 3.40e-4 1.28e-1 9.91e-4 3.37e-4 9.18e-4 2.92e-4
4 3.08e-1 1.28e-1 3.09e-1 1.28e-1 3.09e-1 1.08e-4 3.09e-1 2.26e-2
5 3.08e-1 1.28e-1 3.09e-1 1.28e-1 3.09e-1 1.04e-1 3.09e-1 1.33e-2

nTP = 40

method cBP Adam
∆udeter ∆urnd ∆udeter ∆urnd

hidden Layer TSM mTSM TSM mTSM TSM mTSM TSM mTSM
1 7.62e-2 1.54e-3 4.04e-4 3.16e-4 8.24e-2 9.35e-5 2.79e-4 6.01e-5
2 2.33e-2 2.17e-3 2.37e-4 3.01e-4 1.55e-3 5.84e-5 4.68e-4 5.23e-5
3 2.01e-3 1.16e-1 3.28e-4 1.16e-1 2.25e-3 1.80e-4 4.91e-4 1.19e-4
4 3.15e-1 1.16e-1 3.15e-1 1.16e-1 3.14e-1 2.29e-4 3.13e-1 2.94e-2
5 3.15e-1 1.16e-1 3.15e-1 1.16e-1 3.14e-1 9.46e-2 3.13e-1 1.03e-2

Table 5: Experiment 2.4.5. Number of hidden layer variation.

• Adam and ∆udeter:
The overall trend for TSM is very similar to cBP and ∆udeter. and the combination
together with mTSM does not really benefit from adding layers.

• Adam and ∆urnd:
Here it is neither beneficial for TSM nor mTSM to add more layers.

For cBP we find TSM in general to be accurate for up to three layers, while mTSM
is accurate up to two layers. With Adam on the other hand, the deterministic ini-
tialisation pinit

deter for mTSM is accurate up to four layers while TSM with pinit
deter and

both TSM and mTSM with pinit
rnd show useful approximations for up to three hidden

layers. However, please note that this conclusion may highly depend on the employed
computational parameters and the fact that only first order optimisation methods are
used. The result in general appears to be to some degree surprising, as the universal
approximation theorem should imply that one hidden layer could be enough to give

38

here experimentally an accurate approximation of our solution function. Let us recall
in this context Experiment 2.4.4, where we have seen that increasing of the number of
neurons in one hidden layer leads to a saturation in the accuracy for pinit

rnd, while we
observe here a clear improvement. Increasing the number of neurons and using pinit

deter

did not lead to reasonable results there, while pinit
deter here in combination with more

hidden layers gives good results plus a significant improvement.
As a consequence of this investigation, we decided to use one hidden layer for all

computations in the other experiments, having in mind that TSM may allow an accuracy
gain for more hidden layers. However, a possible reason for the general observation of
decreasing accuracy can be an indication for the approximation and optimisation error
to highly increase with more hidden layers, under the employed parameter setup with
first order optimisation.

2.4.6 Experiment: number of epochs

1e0 1e1 1e2 1e3 1e4 1e5

number of maximal epochs per computation

1e-5

1e-4

1e-3

1e-2

1e-1

1e0

(a) TSM, Adam, nTP = 10

1e0 1e1 1e2 1e3 1e4 1e5

number of maximal epochs per computation

1e-5

1e-4

1e-3

1e-2

1e-1

1e0

(b) TSM, Adam, nTP = 20

1e0 1e1 1e2 1e3 1e4 1e5

number of maximal epochs per computation

1e-5

1e-4

1e-3

1e-2

1e-1

1e0

(c) TSM, Adam, nTP = 40

1e0 1e1 1e2 1e3 1e4 1e5

number of maximal epochs per computation

1e-5

1e-4

1e-3

1e-2

1e-1

1e0

(d) TSM, cBP, nTP = 10

1e0 1e1 1e2 1e3 1e4 1e5

number of maximal epochs per computation

1e-5

1e-4

1e-3

1e-2

1e-1

1e0

(e) TSM, cBP, nTP = 20

1e0 1e1 1e2 1e3 1e4 1e5

number of maximal epochs per computation

1e-5

1e-4

1e-3

1e-2

1e-1

1e0

(f) TSM, cBP, nTP = 40

1e0 1e1 1e2 1e3 1e4 1e5

number of maximal epochs per computation

1e-5

1e-4

1e-3

1e-2

1e-1

1e0

(g) mTSM, Adam, nTP = 10

1e0 1e1 1e2 1e3 1e4 1e5

number of maximal epochs per computation

1e-5

1e-4

1e-3

1e-2

1e-1

1e0

(h) mTSM, Adam, nTP = 20

1e0 1e1 1e2 1e3 1e4 1e5

number of maximal epochs per computation

1e-5

1e-4

1e-3

1e-2

1e-1

1e0

(i) mTSM, Adam, nTP = 40

1e0 1e1 1e2 1e3 1e4 1e5

number of maximal epochs per computation

1e-5

1e-4

1e-3

1e-2

1e-1

1e0

(j) mTSM, cBP, nTP = 10

1e0 1e1 1e2 1e3 1e4 1e5

number of maximal epochs per computation

1e-5

1e-4

1e-3

1e-2

1e-1

1e0

(k) mTSM, cBP, nTP = 20

1e0 1e1 1e2 1e3 1e4 1e5

number of maximal epochs per computation

1e-5

1e-4

1e-3

1e-2

1e-1

1e0

(l) mTSM, cBP, nTP = 40

Figure 9: Experiment 2.4.6. Number of maximal epochs variation, (orange/solid)
∆udeter, (blue/dotted) ∆urnd.

39

In this experiment we aim to investigate and fix the maximal number of training
epochs per optimisation cycle to a convenient value. This relates to the question if
one could bound the computational load by employing in general a small number of
iterations. To this end, we consider the convergence of the training as a function of an
increasing maximal number of epochs kmax. In addition we discuss the influence of the
number of training points again. More precisely, we increased kmax from 1 to 1e5 and
averaged 1e2 optimisation cycles for one and the same kmax. In other words, and to make
clear the meaning of the lower axis in Fig. 9, one entry of the number kmax relates to 1e2
corresponding complete optimisations of the neural network. Let us note again, that in
the case of pinit

rnd, the convergence behaviour can only be evaluated by average values,
and that each computation in this context was realised with a new set of random initial
values. As can be seen in Fig. 9, best results are returned by mTSM with Adam for
both pinit

rnd (especially nTP = 20) and pinit
deter (especially nTP = 40). Except for TSM and

nTP = 10, the Adam optimiser clearly reaches a saturation regime showing convergence
for TSM and mTSM with the non-deterministic initialisation pinit

rnd. For cBP, ∆udeter and
∆urnd, still may decrease for even higher kmax as evaluated here. However, let us note
here that we employed in cBP a constant learning rate, for decreasing learning rates as
often used for improved convergence behaviour, we may expect that a saturation regime
may be observed. However, with Adam, ∆urnd shows a small fluctuating behaviour in
the convergence regime, so that results for non-averaged computations with pinit

rnd may
be not satisfying. The cBP optimiser together with both TSM and mTSM shows very
minor fluctuations, but also provides less good approximations. However, these tend
to get better with higher nTP . Nonetheless, since we see averaged values for ∆urnd,
individual optimisation cycles may converge earlier or fluctuate around on their own.
Speaking of the latter in other words, some realisations are likely to stop (after, e.g.,
1e5 epochs) at a useful position around a local minimum while others perhaps end at a
slightly less useful position around the same local minimum. Besides selecting a fixed
number of epochs for training, another strategy to use is early stopping [100, 101]. The
main idea is to stop the training process, before the training error and a validation error
(evaluation on test data during training) differ too much, e.g., due to overfitting. A
possible way to employ this technique is to stop training when the training error itself
does not significantly change over the last epochs. In this case a minimal number of
training epochs should be considered since we observe in Fig. 9 that in some cases the
training error first takes some time before it starts decreasing. In case of a possible
oscillation around a local minimum in the end of an optimisation cycle, rapid and
repeatedly changing in the training error can be eliminated by stopping at a suitable
position. All diagrams related to mTSM again show a certain phenomenon, namely
double descent, which we have discussed in Experiment 7. In the context of our results,
let us note that in [15] the authors employed 5e4 epochs. Our investigation shows that
the corresponding results are supposed to be in the convergence regime. In conclusion,
we find that kmax=1e5 as used for all other experiments is suitable to obtain useful
approximations.

2.4.7 Experiment: stiffness parameter (part 1) and domain size (part 2)

Let us now investigate the solution behaviour with respect to interesting choices of the
stiffness parameter λ (Fig. 10), and it turns out that it makes sense to do this together

40

-20 -18 -16 -14 -12 -10 -8 -6 -4 -2 0
1e-6

1e-5

1e-4

1e-3

1e-2

1e-1

1e0

1e1

(a) TSM, Adam, nTP = 10

-20 -18 -16 -14 -12 -10 -8 -6 -4 -2 0
1e-6

1e-5

1e-4

1e-3

1e-2

1e-1

1e0

1e1

(b) TSM, Adam, nTP = 20

-20 -18 -16 -14 -12 -10 -8 -6 -4 -2 0
1e-6

1e-5

1e-4

1e-3

1e-2

1e-1

1e0

1e1

(c) TSM, Adam, nTP = 40

-20 -18 -16 -14 -12 -10 -8 -6 -4 -2 0
1e-6

1e-5

1e-4

1e-3

1e-2

1e-1

1e0

1e1

(d) TSM, cBP, nTP = 10

-20 -18 -16 -14 -12 -10 -8 -6 -4 -2 0
1e-6

1e-5

1e-4

1e-3

1e-2

1e-1

1e0

1e1

(e) TSM, cBP, nTP = 20

-20 -18 -16 -14 -12 -10 -8 -6 -4 -2 0
1e-6

1e-5

1e-4

1e-3

1e-2

1e-1

1e0

1e1

(f) TSM, cBP, nTP = 40

-20 -18 -16 -14 -12 -10 -8 -6 -4 -2 0
1e-6

1e-5

1e-4

1e-3

1e-2

1e-1

1e0

1e1

(g) mTSM, Adam, nTP = 10

-20 -18 -16 -14 -12 -10 -8 -6 -4 -2 0
1e-6

1e-5

1e-4

1e-3

1e-2

1e-1

1e0

1e1

(h) mTSM, Adam, nTP = 20

-20 -18 -16 -14 -12 -10 -8 -6 -4 -2 0
1e-6

1e-5

1e-4

1e-3

1e-2

1e-1

1e0

1e1

(i) mTSM, Adam, nTP = 40

-20 -18 -16 -14 -12 -10 -8 -6 -4 -2 0
1e-6

1e-5

1e-4

1e-3

1e-2

1e-1

1e0

1e1

(j) mTSM, cBP, nTP = 10

-20 -18 -16 -14 -12 -10 -8 -6 -4 -2 0
1e-6

1e-5

1e-4

1e-3

1e-2

1e-1

1e0

1e1

(k) mTSM, cBP, nTP = 20

-20 -18 -16 -14 -12 -10 -8 -6 -4 -2 0
1e-6

1e-5

1e-4

1e-3

1e-2

1e-1

1e0

1e1

(l) mTSM, cBP, nTP = 40

Figure 10: Experiment 2.4.7 (part 1). Stiffness parameter λ variation, (or-
ange/solid) ∆udeter, (blue/dotted) ∆urnd.

with an investigation of the solution domain size (Fig. 11). Informally speaking, these
parameters also impact the general trend of the analytical solution in a similar way so
that it appears also from this point of view natural to evaluate them together in one
experiment. As shown in Fig. 11, the influence of different domains with increasing nTP

is the objective of this experiment. Intervals used for computations are given in terms of
t ∈ [0, tend], with the smallest interval being t ∈ [0, 5e-2] and then increasing in steps of
5e-2. As also in the first experimental part here, ∆urnd is averaged by 1e2 optimisation
cycles for each domain. Turning to the results, first we want to point out that for TSM,
cBP and nTP = 20 there are values displayed as ∆urnd = 9e0, to visualise them. In
reality, these values were Not a Number (NaN), which means, that at this point at
least one of the 1e2 averaged optimisation cycles diverged for the corresponding of λ
in Fig. 10(c), or large domains. Furthermore, the solution accuracy for TSM and cBP
in Fig. 10 is strictly decreasing for larger negative values of λ and larger domains until
it saturates in unstable regions. While increasing the number of training points from
nTP = 10 to nTP = 20 some iterations diverged, another increase to nTP = 40 enlarges

41

0.05 1 2 3 4 5 6 7 8 9 10

t
end

1e-6

1e-5

1e-4

1e-3

1e-2

1e-1

1e0

1e1

(a) TSM, Adam, nTP = 10

0.05 1 2 3 4 5 6 7 8 9 10

t
end

1e-6

1e-5

1e-4

1e-3

1e-2

1e-1

1e0

1e1

(b) TSM, Adam, nTP = 20

0.05 1 2 3 4 5 6 7 8 9 10

t
end

1e-6

1e-5

1e-4

1e-3

1e-2

1e-1

1e0

1e1

(c) TSM, Adam, nTP = 40

0.05 1 2 3 4 5 6 7 8 9 10

t
end

1e-6

1e-5

1e-4

1e-3

1e-2

1e-1

1e0

1e1

(d) TSM, cBP, nTP = 10

0.05 1 2 3 4 5 6 7 8 9 10

t
end

1e-6

1e-5

1e-4

1e-3

1e-2

1e-1

1e0

1e1

(e) TSM, cBP, nTP = 20

0.05 1 2 3 4 5 6 7 8 9 10

t
end

1e-6

1e-5

1e-4

1e-3

1e-2

1e-1

1e0

1e1

(f) TSM, cBP, nTP = 40

0.05 1 2 3 4 5 6 7 8 9 10

t
end

1e-6

1e-5

1e-4

1e-3

1e-2

1e-1

1e0

1e1

(g) mTSM, Adam, nTP = 10

0.05 1 2 3 4 5 6 7 8 9 10

t
end

1e-6

1e-5

1e-4

1e-3

1e-2

1e-1

1e0

1e1

(h) mTSM, Adam, nTP = 20

0.05 1 2 3 4 5 6 7 8 9 10

t
end

1e-6

1e-5

1e-4

1e-3

1e-2

1e-1

1e0

1e1

(i) mTSM, Adam, nTP = 40

0.05 1 2 3 4 5 6 7 8 9 10

t
end

1e-6

1e-5

1e-4

1e-3

1e-2

1e-1

1e0

1e1

(j) mTSM, cBP, nTP = 10

0.05 1 2 3 4 5 6 7 8 9 10

t
end

1e-6

1e-5

1e-4

1e-3

1e-2

1e-1

1e0

1e1

(k) mTSM, cBP, nTP = 20

0.05 1 2 3 4 5 6 7 8 9 10

t
end

1e-6

1e-5

1e-4

1e-3

1e-2

1e-1

1e0

1e1

(l) mTSM, cBP, nTP = 40

Figure 11: Experiment 2.4.7 (part 2). Domain size variation, (orange/solid)
∆udeter, (blue/dotted) ∆urnd.

the unstable region with a stabilisation in between. In the total, we observe that there
seems to be a relation between the experiments that one may roughly formulate as a
relation between λ and domain size given by tend as a factor of −2. We also conjecture,
that the higher the values of −λ and tend, the more neurons or layers are required for a
convenient solution. As a consequence of these experiments, we decided to fix λ = −5
and t ∈ [0, 2] for all computations in the other experiments.

2.4.8 Experiment: optimisation methods

The final experiment in this section compares Adam, cBP and vBP optimisation for
TSM and mTSM, depending on nTP = 10, 20, 40 with the other computational param-
eters fixed to one hidden layer, five hidden layer neurons, kmax = 1e5, λ = −5 and
t ∈ [0, 2]. Fig. 12 and 13 show 1e5 (non-averaged) computed results for each parameter
setup and weight initialisation.

Previous experiments led to the conclusion, that TSM in combination with pinit
deter

42

0 1 2 3 4 5 6 7 8 9 10

number of computations 10 4

1e-6

1e-5

1e-4

1e-3

1e-2

1e-1

1e0

1e1

(a) TSM, Adam, nTP = 10

0 1 2 3 4 5 6 7 8 9 10

number of computations 10 4

1e-6

1e-5

1e-4

1e-3

1e-2

1e-1

1e0

1e1

(b) TSM, Adam, nTP = 20

0 1 2 3 4 5 6 7 8 9 10

number of computations 10 4

1e-6

1e-5

1e-4

1e-3

1e-2

1e-1

1e0

1e1

(c) TSM, Adam, nTP = 40

0 1 2 3 4 5 6 7 8 9 10

number of computations 10 4

1e-6

1e-5

1e-4

1e-3

1e-2

1e-1

1e0

1e1

(d) TSM, cBP, nTP = 10

0 1 2 3 4 5 6 7 8 9 10

number of computations 10 4

1e-6

1e-5

1e-4

1e-3

1e-2

1e-1

1e0

1e1

(e) TSM, cBP, nTP = 20

0 1 2 3 4 5 6 7 8 9 10

number of computations 10 4

1e-6

1e-5

1e-4

1e-3

1e-2

1e-1

1e0

1e1

(f) TSM, cBP, nTP = 40

0 1 2 3 4 5 6 7 8 9 10

number of computations 10 4

1e-6

1e-5

1e-4

1e-3

1e-2

1e-1

1e0

1e1

(g) TSM, vBP, nTP = 10

0 1 2 3 4 5 6 7 8 9 10

number of computations 10 4

1e-6

1e-5

1e-4

1e-3

1e-2

1e-1

1e0

1e1

(h) TSM, vBP, nTP = 20

0 1 2 3 4 5 6 7 8 9 10

number of computations 10 4

1e-6

1e-5

1e-4

1e-3

1e-2

1e-1

1e0

1e1

(i) TSM, vBP, nTP = 40

Figure 12: Experiment 2.4.8. Optimiser comparison (part 1), (orange/solid) ∆udeter,
(blue/dotted) ∆urnd.

only provides unstable solutions for the chosen parameter setup. Therefore, when eval-
uating TSM, we only refer to the non-averaged numeric error ∆urnd for pinit

rnd.
To start the evaluation with TSM and Adam, there are almost no visible differences

between nTP = 10 and nTP = 40, with a large difference between the best and the least
good approximation, see first row in Fig. 12. Only for nTP = 20 the solutions tend to
be more similar.

In contrast, the difference between the best and the least good approximation for
TSM and cBP grows by one order of magnitude with a higher number of training points
while simultaneously the accuracy for the best approximations increases, cf. second row
in the figure.

The reason we show results on vBP only in this final experiment (see third row in the
figure) is, that the efficiency of an adaptive step size method may be in general highly
dependent on the used step size model and parameters. However, the results turn out
to be interesting. In combination with nTP = 10, vBP and TSM reveal several minima
far away from the best approximation. Even more minima appear for a training points
increase to nTP = 20. However, another increase to nTP = 40 stabilises the solutions.
In addition, nTP = 40 provides the best approximations for TSM and vBP. One may
conjecture here, that either one has here to reach a critical number of training points,
or that the weight initialisation here is not adequate together with lower nTP .

Now we turn to mTSM and Adam, see first row in Fig. 13. We find pinit
deter to

show useful results (∆udeter) and a small gain in accuracy for higher nTP . For pinit
rnd,

we find the best approximations throughout the whole experiment to be provided by

43

0 1 2 3 4 5 6 7 8 9 10

number of computations 10 4

1e-6

1e-5

1e-4

1e-3

1e-2

1e-1

1e0

1e1

(a) mTSM, Adam, nTP = 10

0 1 2 3 4 5 6 7 8 9 10

number of computations 10 4

1e-6

1e-5

1e-4

1e-3

1e-2

1e-1

1e0

1e1

(b) mTSM, Adam, nTP = 20

0 1 2 3 4 5 6 7 8 9 10

number of computations 10 4

1e-6

1e-5

1e-4

1e-3

1e-2

1e-1

1e0

1e1

(c) mTSM, Adam, nTP = 40

0 1 2 3 4 5 6 7 8 9 10

number of computations 10 4

1e-6

1e-5

1e-4

1e-3

1e-2

1e-1

1e0

1e1

(d) mTSM, cBP, nTP = 10

0 1 2 3 4 5 6 7 8 9 10

number of computations 10 4

1e-6

1e-5

1e-4

1e-3

1e-2

1e-1

1e0

1e1

(e) mTSM, cBP, nTP = 20

0 1 2 3 4 5 6 7 8 9 10

number of computations 10 4

1e-6

1e-5

1e-4

1e-3

1e-2

1e-1

1e0

1e1

(f) mTSM, cBP, nTP = 40

0 1 2 3 4 5 6 7 8 9 10

number of computations 10 4

1e-6

1e-5

1e-4

1e-3

1e-2

1e-1

1e0

1e1

(g) mTSM, vBP, nTP = 10

0 1 2 3 4 5 6 7 8 9 10

number of computations 10 4

1e-6

1e-5

1e-4

1e-3

1e-2

1e-1

1e0

1e1

(h) mTSM, vBP, nTP = 20

0 1 2 3 4 5 6 7 8 9 10

number of computations 10 4

1e-6

1e-5

1e-4

1e-3

1e-2

1e-1

1e0

1e1

(i) mTSM, vBP, nTP = 40

Figure 13: Experiment 2.4.8. Optimiser comparison (part 2), (orange/solid) ∆udeter,
(blue/dotted) ∆urnd.

nTP = 10. However, most of the 1e5 computed results appear around a less good (but
still reasonable) accuracy with only a few results peaking further in accuracy. Increasing
the number of training points to nTP = 20 and nTP = 40 results in a drop of accuracy
from the former best solutions, while overall the results become more similar.

For mTSM and cBP, see second row in the figure, we find a likewise behaviour of
∆udeter, similar to the case mTSM and Adam. The solutions become slightly more
accurate and similar with higher nTP . However both weight initialisation methods can
not compete with the combination mTSM and Adam.

Now for mTSM and vBP as displayed by the last row in the figure, we find sta-
ble results for all nTP , which is in sharp contrast to TSM and vBP. Again, ∆udeter
behaves like the other computations for mTSM, and we find similarities in the overall
behaviour of ∆urnd compared to TSM and cBP. Increasing nTP leads to slightly better
approximations, while the difference between the best and the least good approximation
grows.

Turning to Table 6, we now discuss the stochastic quantities for pinit
rnd, related to the

results shown in Fig. 12 and 13. We focus on the results for random weight initialisa-
tion as the diagrams have shown the deterministic weight initialisation to always return
the same numerical error. The 1e5 complete computations (optimisations) should suf-
ficiently support the meaning of the analysed data.

Regarding the mean value, Adam has the overall smallest value and seems to be
the best choice. However, for TSM and nTP = 40, cBP almost equals Adam with vBP
outperforming Adam in this specific setting. That result is particular interesting, since

44

method training
points optimiser mean

value
standard
deviation

10%-
quantile

20%-
quantile

30%-
quantile

TSM

nTP = 10
Adam 2.70e-4 1.89e-4 9.54e-5 1.31e-4 1.66e-4
cBP 8.79e-4 5.56e-5 8.16e-4 8.40e-4 8.54e-4
vBP 8.89e-2 2.32e-1 6.32e-4 7.09e-4 8.05e-4

nTP = 20
Adam 5.49e-4 2.38e-4 1.88e-4 2.80e-4 3.91e-4
cBP 6.07e-4 1.11e-4 4.48e-4 5.08e-4 5.55e-4
vBP 4.78e-2 1.44e-1 4.04e-4 4.64e-4 4.70e-4

nTP = 40
Adam 3.55e-4 1.86e-4 1.40e-4 1.96e-4 2.49e-4
cBP 3.60e-4 1.69e-4 1.64e-4 2.06e-4 2.46e-4
vBP 1.54e-4 3.31e-5 1.10e-4 1.22e-4 1.34e-4

mTSM

nTP = 10
Adam 1.24e-4 2.51e-5 1.06e-4 1.10e-4 1.13e-4
cBP 2.01e-3 4.45e-4 1.64e-3 1.77e-3 1.89e-3
vBP 1.24e-3 1.04e-4 1.18e-3 1.23e-3 1.25e-3

nTP = 20
Adam 5.01e-5 1.51e-5 3.35e-5 3.75e-5 4.11e-5
cBP 7.46e-4 1.67e-4 5.73e-4 6.02e-4 6.24e-4
vBP 4.02e-4 1.11e-4 2.72e-4 3.10e-4 3.40e-4

nTP = 40
Adam 5.67e-5 1.30e-5 4.76e-5 5.03e-5 5.23e-5
cBP 3.22e-4 7.26e-5 2.53e-4 2.70e-4 2.79e-4
vBP 2.29e-4 6.28e-5 1.70e-4 1.83e-4 1.93e-4

Table 6: Experiment 2.4.8. Optimiser comparison (part 3), quantitative data for
∆urnd.

vBP shows for TSM and both nTP = 10 and nTP = 20 very limited approximations.
In contrast to TSM, Adam dominates for mTSM the lowest mean value without any
exception.

The former statement however does only hold partially when it comes to the stan-
dard deviation. Here, TSM seems to favour cBP over Adam, again with vBP for
nTP = 40 to pass downwards. Excluding vBP for nTP = 10 and nTP = 20, the stan-
dard deviation in the other cases are in an acceptable range. That is, the mean value
and standard deviation could be suitable when evaluating stability and reliability. How-
ever, it can be difficult to specify the term reliability. The lower the numerical error,
the better the approximation. Nonetheless, defining a threshold needs justification and
discussion on how the neural network methods behave compared to standard numerical
algorithms like Runge-Kutta 4.

We also take different quantiles (10%,20%,30%) into account. The percentage spec-
ifies the relative amount of data points which appear below the quantile value itself.
Although several minima for TSM and vBP in Fig. 10(g),(h) appear to be less useful
than the lowest one, all quantiles for these cases are better than for the same settings
with cBP. The situation for mTSM is the same, while Adam outperforms both cBP and
vBP in this context. Therefore one may find that further adjusting the optimisation
parameters for vBP can in general lead to perform better than cBP. However, it is
questionable if this would also perform better than Adam. We find all quantiles values
to be good in case of Adam optimisation. In this sense, we consider Adam here as the
most reliable optimiser.

45

Concluding, the overall best performance related to the numeric error shows mTSM
and Adam for both pinit

deter and pinit
rnd. Although TSM and vBP appear to have some

stability flaws for smaller nTP , it stabilises for nTP = 40. Overall, both vBP and cBP
can not compete with Adam and mTSM. However, this conclusion is made based on the
results in this section. As we have seen in the very beginning, BFGS was performing
even better than Adam so that basically more experiments are necessary to make a
final conclusion.

2.4.9 Conclusion

When solving the stiff model IVP with feedforward neural networks, the solution reli-
ability depends on a variety of parameters. We find the weight initialisation to have
a major influence. While the initialisation with zeros does not provide reasonable ap-
proximations for TSM with one hidden layer, it is capable to work reasonably well for
mTSM. First setting the weights to small random values shows the best results with
Adam and mTSM, although the use of more training points may yield less suitable
results. This may indicate an overfitting and could be resolved by employing more
neurons or other adjustments. This is a possible subject for a future study.

However, our work also indicates that all the investigated issues may have to be
considered together as a complete package, e.g, the investigated aspects may not be
evaluated completely independent of each other. Even after a detailed investigation
as provided here it seems not to be possible to single out an individual aspect that
dominates the overall accuracy and reliability.

We tend to favour the combination of Adam and mTSM in further computationally
oriented research, since it provides the best approximations for both weight initialisation
methods. Future research may also include theoretical work, e.g., on sensitivity and
different neural forms for TSM. One main goal in this context is to decrease the variation
of possible solutions together with an increase of the solution accuracy.

Moreover, our third experiment has shown that it may make sense to investigate
deep networks, since these could result in a significant accuracy gain, reminding of
higher order effects in classic numerical analysis.

Furthermore, our future work will include more difficult differential equations with
a focus on initial value problems and the improvement of deterministic weight initiali-
sation.

46

3 (Subdomain) Collocation polynomial neural forms
for solving initial value problems

Motivated by the construction principle of collocation methods in numerical analysis,
we propose here a novel extension of the classic neural forms approach. Our exten-
sion is based on the observation, that the neural form using one feedforward neural
network as employed by Lagaris et al. [13] may be interpreted as a first order colloca-
tion polynomial. The novel collocation-type construction includes several feedforward
neural networks, one for each order. Compared to a collocation method from standard
numerics, the networks take on the role of coefficients in the collocation polynomial
expansion. Furthermore, we aim to approximate initial value problems on fairly large
domains. Therefore, and based on the NF structures, we also propose the domain seg-
mentation extension, which splits the computational domain into subdomains. In each
subdomain, we solve the initial value problem with a collocation polynomial neural
form. This is done proceeding in time from one domain segment to the adjacent sub-
domain. The interfacing grid points in any subdomain provide the initial value for the
next subdomain. The neural forms are solved on each subdomain, whereas the interfac-
ing grid points overlap in order to provide initial values over the whole segmentation.
We also illustrate in experiments that the combination of collocation neural forms of
higher order and the domain segmentation allow to solve initial value problems over
large domains with high accuracy and reliability.

3.1 The collocation neural forms approach

The classic NF in the TSM approach for an IVP G = 0, cf. Eq. (7), with the initial
value u(0) = u0 reads

ũ(ti,p) = A(ti) + F (ti,p) (91)
= u0 +N(ti,p)ti (92)

Compared to a first order polynomial

q1(ti) = a0 + a1ti (93)

the structure of Eq. (92) and Eq. (93) inherent similarities. Motivated by the expansion
of an m-th order collocation function polynomial [2]

qm(ti) = a0 +
m∑

κ=1

aκt
κ
i (94)

it appears natural to also expand the polynomial order of the classic NF. Considering a
more general formulation of the given initial value, it is now represented by u(t0) = u0.
Whereas setting A(ti) in Eq. (92) to equal the given initial value u(t0) still is a suitable
choice, the neural network term transforms into

F (ti,p) → F (ti,Pm) =
m∑

κ=1

Nκ(ti,pκ)(ti − t0)
κ (95)

47

This leads to the collocation polynomial neural form (CNF) for the TSM approach:

ũC(ti,Pm) = u(t0) +
m∑

κ=1

Nκ(ti,pκ)(ti − t0)
κ (96)

This polynomial extension adds more flexibility to the approach. However, this is
achieved in a different way than just increasing the number of hidden layer neurons in a
single neural network, since additional networks arise that are multiplied by the factors
(ti − t0)

κ [82]. The weight vector in Eq. (96) is denoted by pκ and the matrix Pm is
defined over the m weight vectors as Pm = (p1, . . . ,pm).

The use of higher order powers of (ti − t0)
κ as in Eq. (96) not only generalises

previous methods, but may also enable better stability and accuracy properties. From
the structural similarities to the polynomial in Eq. (94), the neural networks take on
the roles of coefficient functions for the values of (ti − t0)

κ. It is important to mention
that the new CNF construction in Eq. (96) still fulfills the initial condition.

The proposed appearance in Eq. (96) includes m neural networks, where Nκ(ti,pκ)
represents the κ-th neural network

Nκ(ti,pκ) =
H∑
j=1

ρj,κσ(νj,κti + ηj,κ) + γk (97)

The corresponding cost function is then given as in Eq. (14):

E[Pm,l] =
1

2(n+ 1)

n∑
i=0

{
G
(
ti, ũC(ti,Pm), ˙̃uC(ti,Pm)

)}2

(98)

Turning to mTSM, the extension can be obtained in a similar way as found for TSM
in Eq. (96):

ũC(ti,Pm) = N1(ti,p1) +
m∑

κ=2

Nκ(ti,pκ)(ti − t0)
κ−1 (99)

Thereby the first neural network N1(ti,p1) is set to learn the initial condition in the
same way as stated in Eq. (29):

E[Pm,l] =
1

2(n+ 1)

n∑
i=0

{
G
(
ti, ũC(ti,Pm), ˙̃uC(ti,Pm)

)}2

(100)

+
1

2

{
N1(t0,p1)− u(t0)

}2

Now G in Eq. (98) and Eq. (100) shares the same structure as the general problem in
Eq. (7). However, the original solution function u(t) has been replaced by the CNF
ũC(ti,Pm). Therefore, G involved in the cost function now relies on one or more neural
networks, depending on the neural forms order. From now on, the number of neural
networks in the neural form will be referred to as the collocation polynomial neural
form order m.

48

Considering other polynomials

A more general notation of the (TSM) neural network-related term may be given by

F (ti,Pm) =
m∑

κ=1

Nκ(ti,pκ)Tκ(ti − t0) (101)

which enables the usage of different polynomial expansions, different from Tκ(ti− t0) =
(ti− t0)κ. For example, Chebyshev polynomials of first kind are (recurrence definition):

T1(ti − t0) = 1 (102)
T2(ti − t0) = ti − t0 (103)

Tκ+1(ti − t0) = 2(ti − t0)Tκ(ti − t0)− Tκ−1(ti − t0) (104)

One may also consider Legendre polynomials (recurrence definition):

T1(ti − t0) = 1 (105)
T2(ti − t0) = ti − t0 (106)

(κ+ 1)Tκ+1(ti − t0) = (2κ+ 1)(ti − t0)Tκ(ti − t0)− κTκ−1(ti − t0) (107)

Please note, that those polynomials come with the drawback of incorporating terms
independent of (ti − t0) and therefore not fulfilling the condition of eliminating the
impact of any neural network at the initial point ti = t0. However, due to the flexibility
of the NF approach, it is possible simply add an additional factor in order to handle
this issue:

F (ti,Pm) = (ti − t0)
m∑

κ=1

Nκ(ti,pk)Tκ(ti − t0) (108)

This ensures F (ti,Pm) to become zero at the initial point but also makes the neural form
more complex which may result in a complete different behaviour. On the other hand,
one may only consider even orders for the above-mentioned polynomials. However, this
work does focus on polynomials in form of Tκ(ti − t0) = (ti − t0)

κ.

49

3.2 The domain segmentation approach

The (classic) NF approaches use the IVP structure together with the given initial value
in order to train the neural networks on a certain domain. An experimental study
[60] has figured out, that especially TSM tends to struggle with approximating the
solution on larger domains. However, on small domains the numerical error tends to
remain small. Now, the previously introduced CNF incorporates the domain variable in
(ti− t0)

κ, which effectively acts as a scaling of Nκ(ti,pκ). A large domain size variation
may introduce the need for a significant higher amount of training points or the use of
a more complex neural network architecture.

Therefore, this section introduces domain segmentation, a combination of the CNF
and a technique that refines the computational domain. This approach may be inter-
preted as a second stage of discretising the domain. That is, the solution domain D is
split into h equidistant subdomains Dl: symbolically

D → Dl, l = 1, . . . , h (109)

with n + 1 equidistant grid points ti,l in each subdomain. The CNF now transforms
into the subdomain collocation neural form (SCNF): symbolically

ũC(ti,Pm) → ũC(ti,l,Pm,l) (110)

and is solved separately in each domain fragment. The computation starts in D1,
the leftmost subdomain, since the initial value u(t0) = u0 is given there. The in-
terfacing grid points in each subdomain overlap, whereby the computed SCNF value
ũC(tn,l−1,Pm,l−1) at the last grid point of any subdomain Dl−1 is set to be the new ini-
tial value ũC(t0,l,Pm,l) for the next subdomain Dl. Therefore the SCNF also holds the
characteristic of satisfying the given/computed initial value by construction, namely

ũC(ti,l,Pm,l) = ũC(t0,l,Pm,l) +
m∑

κ=1

Nκ(ti,l,pκ,l)(ti,l − t0,l)
κ (111)

Since the cost function construction still requires the SCNF time derivative, it can be
analytically retrieved as

˙̃uC(ti,l,Pm,l) =
m∑

κ=1

[
Ṅκ(ti,l,pκ,l)(ti,l − t0,l)

κ +Nκ(ti,l,pκ,l)κ(ti,l − t0,l)
κ−1

]
(112)

The general idea of domain segmentation is visualised in Fig. 14, where the black/vertical
marks represent the equidistantly distributed subdomain boundaries for the solution of
an example IVP.

The neural networks that are now scaled by (ti,l − t0,l)
κ, may in fact avoid higher

scaling factors, depending on the subdomain size. The arising cost function, similar to
Eq. (98), is

El[Pm,l] =
1

2(n+ 1)

n∑
i=0

{
G
(
ti,l, ũC(ti,l,Pm,l), ˙̃uC(ti,l,Pm,l)

)}2

(113)

50

0 1 2 3 4 5

t

-1

-0.5

0

0.5

1

u
(t

)

Figure 14: SCNF domain segmentation example for the IVP u̇(t)− t sin(10t) + u(t) =
0, u(0) = −1 (later discussed) with fixed and equidistant subdomains, (orange)
analytical IVP solution, (black/marked) subdomain boundaries.

Proceeding to mTSM, it is also possible to adopt the CNF approach and to set the first
neural network to learn the new initial value in each subdomain. That is, the SCNF
for mTSM now reads

ũC(ti,l,Pm,l) = N1(ti,l,p1,l) +
m∑

κ=2

Nκ(ti,l,pκ,l)(ti,l − t0,l)
κ−1 (114)

with its time derivative

˙̃uC(ti,l,Pm,l) = Ṅ1(ti,l,p1,l) +
m∑

κ=2

[
Ṅκ(ti,l,pκ,l)(ti,l − t0,l)

κ−1+ (115)

Nκ(ti,l,pκ,l)(κ− 1)(ti,l − t0,l)
κ−2

]
The corresponding cost function follows

El[Pm,l] =
1

2(n+ 1)

n∑
i=0

{
G
(
ti,l, ũC(ti,l,Pm,l), ˙̃uC(ti,l,Pm,l)

)}2

+ (116)

1

2

{
N1(t0,l,p1,l)− ũC(t0,l,Pm,l)

}2

Once trained, each subdomain has its unique learned weight matrix Pm,l, which can
later be used to recreate the solution or evaluate the solution at grid points intermediate
to the training points.

In order to keep the overview of all terms and indices, a summary reads: The i-th
grid point in the l-th subdomain is denoted by ti,l, while t0,l is the initial point in the
subdomain Dl with the initial value ũC(t0,l,Pm,l). That is, tn,l−1 and t0,l are overlapping
grid points. In D1, ũC(t0,1,Pm,1) = u(t0) holds. The matrix Pm,l contains the set of the
m neural network weight vectors in the corresponding subdomain l. Finally, Nκ(ti,l,pκ,l)
denotes the κ-th neural network in Dl.

If G in, e.g., Eq. (113) represents a system of o IVPs, each solution function requires
its own NF and the cost function derives from the sum over o separate ℓ2-norm terms,
one for each equation involved, cf. Eq. (19).

51

3.3 Computational results for CNF and SCNF

This section is divided into experiments on the collocation polynomial neural form
(CNF), followed by experiments on the subdomain collocation polynomial neural form
(SCNF). Prior to this, we will provide detailed information about how the weight initial-
isation for the different neural networks are realised. The discussion of the deterministic
weight initialisation is also one of the main subjects in the experimental section. As
stated before, the specific neural network configurations will be addressed in the sub-
sequent experiments.

No. ∆u(pinit
rnd) ∆u(pinit

deter)

1 5.7148e-6 2.6653e-6
2 7.5397e-6 2.6653e-6
3 3.7249e-5 2.6653e-6
4 1.1894e-5 2.6653e-6
5 7.7956e-6 2.6653e-6

Table 7: Results for five different realisations during optimisation (mTSM, m = 2).

Weight initialisation with pinit
deter applies to all corresponding neural networks so

that they use the same initial values. Increasing the neural forms order m for the
initialisation with pinit

rnd works systematically. For m = 1, a set of random weights for
the neural network is generated. For m = 2 (now with two neural networks), the first
neural network is again initialised with the generated weights from m = 1, while for
neural network number two, a new set of weights is generated. This holds for all m
for higher orders, subsequently, in all experiments. To achieve comparability, the same
random initialised weights are used in all experiments. We use the Adam optimiser here,
for details see Sec. 2.3.1. Let us recall the choice of initial weight values in some detail
as it is important for the upcoming experiments. The weight initialisation plays an
important role and determines the starting point for gradient descent. Poorly chosen,
the optimisation method may fail to find a suitable local minimum. The initial neural
network weights are commonly chosen as small random values [102]. Let us note that
this is sometimes considered as a computational characteristic of the stochastic gradient
descent optimisation. Another option is to choose the initialisation to be deterministic.
This method is not commonly used for the optimisation of neural networks since random
weight initialisation may lead to better results (stochastic aspect). However, initialising
the weights with equal values may also return reliable results of reasonable quality if the
computational parameters in the network remain unchanged. As previous experiments
have documented [60, 13, 15], both TSM and mTSM are able to solve differential
equations up to a certain degree of accuracy. However, an example illustrating the
accuracy of five computations with random pinit

rnd and deterministic weights pinit
deter shows

that the quality of approximations may vary considerably, see Table 7. As observed
in many experiments, even a small discrepancy in the initialisation with several sets of
random weights in the same range, may lead to a significant difference in accuracy. On
the other hand, the network initialisation with deterministic/equal values very often
gives reliable results by the proposed novel approach. This motivates us to study in
detail the effects of a deterministic network initialisation under the consideration of a
first order optimisation method.

52

3.3.1 Experiments on the collocation polynomial neural form (CNF)

In this section, we want to test our novel CNF approach (see Sec. 3) with the initial
value problem

u̇(t) + 5u(t) = 0, u(0) = 1 (117)

which has the analytical solution u(t) = e−5t and is solved over the entire domain D =
[0, 2] (without domain segmentation). The Eq. (117) involves a damping mechanism,
making this a simple model for stiff phenomena [98].

The numerical error ∆u shown in subsequent diagrams is again defined as the l1-
norm (l1-error) of the difference between the analytical solution and the corresponding
CNF

∆u =
1

n+ 1

n∑
i=0

∣∣u(ti)− ũ(ti,p)
∣∣ (118)

If we do not say otherwise, the fixed computational parameters in the subsequent ex-
periments are: 1 input layer bias, 1 hidden layer with 5 sigmoid neurons, 1e5 training
epochs, 10 training points, D = [0, 2] and the weight initialisation values which are
pinit
deter = −10 and pinit

rnd ∈ [−10.5,−9.5]. These values may seem arbitrarily chosen, but
we found them to work well for both TSM and mTSM so that a useful comparison is
possible.

3.3.2 CNF Experiment: number of training epochs

ti ∆u(ti) (TSM) ∆u(ti) (RK4)

0.00 0.0000e0 0.0000e0
0.22 3.8158e-5 0.1769e0
0.44 3.5101e-5 0.1478e0
0.66 1.4318e-5 9.4013e-2
0.88 1.2001e-5 5.3900e-2
1.11 4.5407e-5 2.9361e-2
1.33 5.2069e-6 1.5546e-2
1.55 6.6105e-5 8.0942e-3
1.77 1.2052e-5 4.1712e-3
2.00 7.9787e-5 2.1357e-3

Table 8: Numerical error comparison at individual grid points with m = 5, pinit
deter and

an equal amount of grid points.

The first experiment in Fig. 15 shows for different orders m of the neural form,
how the numerical error ∆u behaves depending on the number of training epochs. The
diagrams only display every hundredth data point and investigate various combinations
for TSM and mTSM together with single batch training (SBtraining), full batch training
(FBtraining), pinit

deter and pinit
rnd. Let us recall, that for SBtraining, the weights updates are

performed individually after each training point processing, while FBtraining averages
the gradient and updates the weights only once per epoch.

The visual differences shown in Fig. 15 are remarkable. Results in Fig. 15(d),(h)
appear to be independent of the neural forms order m, which seems to be characteristic

53

0 2 4 6 8 10

number of epochs 10 4

1e-6

1e-5

1e-4

1e-3

1e-2

1e-1

1e0

(a) TSM, SBtraining, pinit
deter

0 2 4 6 8 10

number of epochs 10 4

1e-6

1e-5

1e-4

1e-3

1e-2

1e-1

1e0

(b) mTSM, SBtraining, pinit
deter

0 2 4 6 8 10

number of epochs 10 4

1e-6

1e-5

1e-4

1e-3

1e-2

1e-1

1e0

(c) TSM, FBtraining, pinit
deter

0 2 4 6 8 10

number of epochs 10 4

1e-6

1e-5

1e-4

1e-3

1e-2

1e-1

1e0

(d) mTSM, FBtraining, pinit
deter

0 2 4 6 8 10

number of epochs 10 4

1e-6

1e-5

1e-4

1e-3

1e-2

1e-1

1e0

(e) TSM, SBtraining, pinit
rnd

0 2 4 6 8 10

number of epochs 10 4

1e-6

1e-5

1e-4

1e-3

1e-2

1e-1

1e0

(f) mTSM, SBtraining, pinit
rnd

0 2 4 6 8 10

number of epochs 10 4

1e-6

1e-5

1e-4

1e-3

1e-2

1e-1

1e0

(g) TSM, FBtraining, pinit
rnd

0 2 4 6 8 10

number of epochs 10 4

1e-6

1e-5

1e-4

1e-3

1e-2

1e-1

1e0

(h) mTSM, FBtraining, pinit
rnd

Figure 15: Experiment in 3.3.2. Number of training epochs, (blue) m = 1, (orange)
m = 2, (yellow) m = 3, (purple) m = 4, (green) m = 5.

of the specific combination of mTSM and FBtraining. Both require many epochs of
training before they begin to approximate the IVP solution. Here we have an example,

54

where the random initialisation still outperforms the deterministic initialisation. On
the other hand, we find that mTSM and SBtraining do not have such characteristics
in common. There is Fig. 15(f) with a relatively fast accuracy improvement during the
training process (using pinit

rnd) but with heavy oscillation. This is most likely an indication
of a local minimum which has been found by Adam, since at some point Adam tends
to oscillate around a minimum. Nonetheless, the results here are in range of 1e-6
which can be considered as useful and reliable. Turning to the deterministic initialised
counterpart in Fig. 15(b), the differences between each order m are quiet insignificant
in the beginning. After tens of thousands of epochs, we observe that only the transition
from m = 1 (blue) to m = 2 (orange) affects ∆u with increasing accuracy, while heavy
oscillations start to occur again. In case of best performance related to mTSM, we
find that pinit

deter does indeed provide the best results here, although the results between
Fig. 15(b) and Fig. 15(f) are minor. Nonetheless, the results have already shown the
potential of the collocation polynomial neural forms. However, already m = 1 converges
to a solution accuracy that can be considered reliable or useful.

Now we want to evaluate the results related to TSM. As mentioned before, this
method had the least favourable results in the investigation of the computational char-
acteristics (under the employed parameter setup). In general, dependencies can be
observed regarding the different weight initialisation methods. That is, the overall be-
haviour shows similarities on the one hand related to pinit

deter and on the other hand
regarding pinit

rnd. In Fig. 15(a) with TSM and the deterministic weight initialisation
pinit
deter, results for m = 1 (blue) do not provide any useful approximation, independent

of the batch training method selected. This confirms the results from the previous
experimental section on computational characteristics. Let us recall, that there was
not a single indication for TSM in combination with pinit

deter to provide any useful result.
However, with a second polynomial term m = 2 in the neural form (orange), ∆u ap-
proximately lowers by one order of magnitude so that we now obtain a solution which
can be considered to rank at the lower end of reliability. The combination of TSM,
SBtraining and pinit

deter shows best results for m = 3, as orders m = 4, 5 downgrade the
accuracy again.

Switching the training method from single batch to full batch training, the first three
orders show almost no remarkable accuracy-related differences. The most interesting
result in Fig. 15(c) is m = 5 (green) with the best accuracy at the end of the training
process. The oscillation once more indicate that Adam has found a local minimum. We
find that several neural networks with polynomial orders in the domain variable (ti−t0)κ
may restore the characteristic of random initialisation which was lost by initialising the
neural networks in a deterministic way. In other words, while pinit

deter effectively reduces
the hidden layer to one neuron, additional small neural networks that are scaled by
(ti − t0)

κ, κ = 1, . . . ,m appear to act as individual neural networks with (effectively)
one hidden neuron. In total, we assume that the scaled neural networks cooperate in
order to improve the solution accuracy. However, these statements tend to last only
regarding TSM, as we have seen that mTSM related CNF show completely different
characteristics.

In the diagrams showing TSM and pinit
rnd, m has only minor impact on the accuracy,

as 15(e),(g) show the same general trend for both training methods. However, single
batch training here does not benefit from any order above m = 1 (classic neural form)
and this is in fact a unique behaviour compared to the other results.

55

For full batch training, at the end of the training process, again raising the neural
form order has a positive but minor impact on the numerical error.

Table 8 shows the numerical error ∆u(ti) at the individual and equidistant grid
points ti. For both CNF and Runge-Kutta 4 (RK4), the results were computed with
ten grid points, resulting in the CNF approach with pinit

deter performing better over RK4.
The amount of training points was chosen to somehow achieve a comparable parameter
setup. However, further refining the grid for RK4 will result in significantly lower
∆u(ti). We also find this comparison to only be interesting related to the grid points.
In total, while RK4 evaluates the right-hand side of an IVP for each grid point at three
different steps, the neural forms approach evaluates the IVP at ten grid points in each
epoch. Therefore, a fair comparison should perhaps consider as many grid points for
RK4 as there are epochs for TSM. In the end, RK4 will most likely outperform TSM.

Concluding this experiment, we were able to achieve equal or sometimes even better
results with deterministic weight initialisation pinit

deter over pinit
rnd. Increasing m to at least

order five seems to be a good option for TSM and FBtraining, whereas further raising
m may provide even better approximations. For mTSM we can not observe benefits for
m above order 2. Moreover, we see especially that the increase in the order of the neural
form in (96) appears to have a similar impact on solution accuracy as the discretisation
order in classical numerical analysis.

3.3.3 CNF Experiment: domain size variation

Investigating the methods concerning different domain sizes provides information on
the reliability of computations on larger domains. The domains in this experiment read
as D = [0, tend] and we directly compare in this experiment pinit

deter with pinit
rnd.

In Fig. 16, we observe TSM from around tend = 3.5 to incrementally plateau to
unreliable approximations. Increasing m improves ∆u on small domains and shifts the
observable step-like accuracy degeneration towards larger domains. However, even with
m = 5 (green) the results starting from domain size tend = 3.5 towards larger sizes are
unreliable. Previous to the first plateau higher m provide significant better ∆u for the
deterministic initialisation pinit

deter, while there are only minor changes for pinit
rnd for the

TSM method. This holds for both SBtraining and FBtraining, and one can say that in
this experiment TSM works better with pinit

rnd, even without increasing m.
Turning to the mTSM extension, we observe in Fig. 16(b) with pinit

deter and SBtraining
the existence of a certain point from where different m return equal values, whereas
FBtraining returns (close to) equal results for all the investigated domain sizes in Fig.
16(h). However, we see some evidence for the use of m = 2 (orange) over m = 1
(blue) to show an overall good performance. A further increase of m is not necessary
with this approach, confirming results from Experiment 3.3.2. The latter proved the
characteristic of mTSM and FBtraining to be independent of m and this is (mostly)
confirmed here as well. Although the random initialisation for mTSM in Fig. 16(h)
shows minor differences, we believe that these are very insignificant and based on, e.g.,
rounding errors.

Let us finally mention a very remarkable characteristic regarding mTSM, which is
related the overall behaviour of pinit

deter in Fig. 16(b),(d). For both training methods,
the numerical error lowers towards the end and appears to not have saturated, even for
domains around D = [0, 10]. Especially FBtraining has a highly decreasing numerical

56

0.1 1 2 3 4 5 6 7 8 9 10

t
end

1e-7

1e-6

1e-5

1e-4

1e-3

1e-2

1e-1

1e0

1e1

(a) TSM, SBtraining, pinit
deter

0.1 1 2 3 4 5 6 7 8 9 10

t
end

1e-7

1e-6

1e-5

1e-4

1e-3

1e-2

1e-1

1e0

1e1

(b) mTSM, SBtraining, pinit
deter

0.1 1 2 3 4 5 6 7 8 9 10

t
end

1e-7

1e-6

1e-5

1e-4

1e-3

1e-2

1e-1

1e0

1e1

(c) TSM, FBtraining, pinit
deter

0.1 1 2 3 4 5 6 7 8 9 10

t
end

1e-7

1e-6

1e-5

1e-4

1e-3

1e-2

1e-1

1e0

1e1

(d) mTSM, FBtraining, pinit
deter

0.1 1 2 3 4 5 6 7 8 9 10

t
end

10
-7

10
-6

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

10
1

(e) TSM, SBtraining, pinit
rnd

0.1 1 2 3 4 5 6 7 8 9 10

t
end

10
-7

10
-6

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

10
1

(f) mTSM, SBtraining, pinit
rnd

0.1 1 2 3 4 5 6 7 8 9 10

t
end

10
-7

10
-6

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

10
1

(g) TSM, FBtraining, pinit
rnd

0.1 1 2 3 4 5 6 7 8 9 10

t
end

10
-7

10
-6

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

10
1

(h) mTSM, FBtraining, pinit
rnd

Figure 16: Experiment in 3.3.3. Domain size variation, (blue) m = 1, (orange)
m = 2, (yellow) m = 3, (purple) m = 4, (green) m = 5.

error attached and a local maximum for smaller domains.
Concluding this experiment, TSM overall struggles with larger domains, as it shows

in all configurations undesirable results for domains larger than D = [0, 3.5]. On the

57

other hand, mTSM again provides useful and reliable results for the chosen parameter
setup. To mention the latter is very important, since minor changes or even using BFGS
for examples, may completely change the behaviour. However, these characteristics are
very important to investigate.

3.3.4 CNF Experiment: number of training points variation

The behaviour of numerical methods highly depend on the chosen amount of grid points,
so that in this experiment we analogously investigate the influence of the number of
training points (nTP). In every computation, the domain D is discretised by equidistant
grid points.

As in the previous experiments, m shows a major influence on the results with TSM,
and the best approximations are provided by pinit

deter with m = 5 (green) as seen in Fig.
17(c). An interesting behaviour (observed also in a different context, e.g, in Fig. 15(c))
is the equivalence between m = 3 (yellow) and m = 4 (purple). Both converge to almost
exactly the same ∆u, where one may assume a saturation for the m. However, another
increase of the order decreases the numerical error again by one order of accuracy.
However, this mainly holds for TSM, FBtraining and the deterministic initialisation.
Both TSM and mTSM together with FBtraining and pinit

rnd show an almost constant
behaviour from nTP = 10 on.

Turning to mTSM with pinit
deter and SBtraining in Fig. 17(a) we again find a major

increase in accuracy after a transition from m = 1 (blue) to m = 2 around nTP =
10. However, the behaviour towards higher nTP is interesting, as for m = 1 (the
classic neural form) the numerical error lowers as expected, but higher orders show
continuously less good results. Increasing the order tends to be beneficial for smaller
nTP , while its meaning decreases towards higher nTP .

Concluding this experiment, we again find evidence that increasing m in the pro-
posed approach provides an improved accuracy for pinit

deter. However, increasing nTP

seems not to improve the accuracy from a certain point on for every combination, un-
like for numerical methods. But one could argue, that the analogy between the number
of grid points for numerical methods here is the number of epochs.

3.4 Experiments on the subdomain polynomial collocation neu-
ral form (SCNF)

In Section 3.3.1, while the test equation is stiff, its solution function is at the same
time very smooth and the equation is solved on a small domain. However, Fig. 16
in Experiment 3.3.3, shows that TSM does not provide reliable solutions on larger
domains. Hence, we want to show that the novel SCNF approach is able to work even
on a fairly large domain with a different initial value problem. Therefore we use the
following test equation

u̇(t)− t sin(10t) + u(t) = 0, u(0) = −1 (119)

with the analytical solution

u(t) = sin(10t)

(
99

10201
+

t

101

)
+ cos(10t)

(
20

10201
− 10t

101

)
− 10221

10201
e−t (120)

58

2 10 20 30 40 50

Number of training points

10 -6

10 -5

10 -4

10 -3

10 -2

10 -1

10 0

10 1

(a) TSM, SBtraining, pinit
deter

2 10 20 30 40 50

Number of training points

10 -6

10 -5

10 -4

10 -3

10 -2

10 -1

10 0

10 1

(b) mTSM, SBtraining, pinit
deter

2 10 20 30 40 50

Number of training points

10 -6

10 -5

10 -4

10 -3

10 -2

10 -1

10 0

10 1

(c) TSM, FBtraining, pinit
deter

2 10 20 30 40 50

Number of training points

10 -6

10 -5

10 -4

10 -3

10 -2

10 -1

10 0

10 1

(d) mTSM, FBtraining, pinit
deter

2 10 20 30 40 50

number of training points

1e-6

1e-5

1e-4

1e-3

1e-2

1e-1

1e0

1e1

(e) TSM, SBtraining, pinit
rnd

2 10 20 30 40 50

number of training points

1e-6

1e-5

1e-4

1e-3

1e-2

1e-1

1e0

1e1

(f) mTSM, SBtraining, pinit
rnd

2 10 20 30 40 50

number of training points

1e-6

1e-5

1e-4

1e-3

1e-2

1e-1

1e0

1e1

(g) TSM, FBtraining, pinit
rnd

2 10 20 30 40 50

number of training points

1e-6

1e-5

1e-4

1e-3

1e-2

1e-1

1e0

1e1

(h) mTSM, FBtraining, pinit
rnd

Figure 17: Experiment in 3.3.4. Number of training points variation, (blue) m = 1,
(orange) m = 2, (yellow) m = 3, (purple) m = 4, (green) m = 5.

The solution is shown in Fig. 18 for t ∈ [0, 15] and incorporates heavily oscillating and
increasing characteristics, similar to instabilities. Although our approach is not limited

59

0 2.5 5 7.5 10 12.5 15

t

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

u
(t

)

Figure 18: Analytical solution for initial value problem (119).

to certain types of IVPs, we find Eq. (119) to represent possible real-world behaviour
and find it suitable to serve as an example IVP.

The weight initialisation works as employed in Section 3.3 and the values are fixed to
pinit
deter = 0 and pinit

rnd ∈ [−0.5, 0.5]. In the subsequent experiments, the solution domain
is kept constant to D = [0, 15] and the neural networks are training with 1e5 epochs.

In addition we use the method of training the neural networks incrementally which
has been employed in [15]. That is, we initially train the neural networks for the first
grid point, afterwards for the first two grid points. We continue the procedure up to a
FBtraining of all grid points in each subdomain. The initial weight initialisation is the
same in each subdomain.

Please note at this point, that we provide an explicit comparison to the Runge-
Kutta 4 method only in the last experiment of this section. We find that our approach
provides by construction a very high flexibility, to deal with many types of initial
value problems that may require specific constructions in classic numerical analysis
(e.g. by symplectic integration). However, in simple settings we will usually find the
neural network based approach (with first order optimisation) at the moment to be
not competitive to numerical state-of-the-art solvers (w.r.t. computational efficiency)
which have been developed and refined over decades. We think that because of the
much higher flexibility of the network based tool, this comparison would not be entirely
adequate, considering the employed optimisation methods.

As an example for the flexibility, a recent neural network approach [61] makes it
superficial to restart the computation of numerical solutions when considering multiple,
different initial conditions. We also demonstrate the flexibility of the approach in Sec-
tion 3.4.5 and show how invariants can be simply added to the cost function. Regarding
numerical methods for handling those problems, special constructions are often needed.

In our test example in Eq. (119), we find a graphical comparison in the subsequent
experiments to not provide further information since the visual differences between
analytical solution and solution with Runge-Kutta 4 with adaptive time stepping are
minor.

A scaling experiment

The original TSM neural form (cf. Eq. (10)) is theoretically capable of approximat-
ing every continuous function, according to the universal approximation theorem [36].

60

However, Table 9 shows results for a TSM neural form with a single neural network. For
different domains we scaled the number of hidden layer neurons linearly and averaged
ten computations for each domain with the same computational parameters.

domain D ∆u neurons nTP

[0, 1] 8.4228e-4 5 10
[0, 2] 9.2191e-4 10 20
[0, 3] 1.9448e-3 15 30
[0, 4] 1.6751e-2 20 40

Table 9: TSM neural form, pinit
rnd.

The results in Table 9 provide the following message. Increasing the domain size
forces the neural network to incorporate more hidden layer neurons and grid points.
Indeed, to reach, e.g., (averaged) ∆u = 9.5873e-4 for D = [0, 3], learning the neural
network required 50 hidden layer neurons and 75 grid points. In general, determining a
suitable architecture in terms of the number of hidden layer neurons and training points
is a challenging task. Please note, that the results and the statements hold under the
employed computational parameters and first order optimisation.

In subsequent experiments, we find the SCNF to be able to solve the initial value
problem with neural networks including a small fixed amount of hidden layer neurons
and training points in each subdomain. At the same time, this allows to define various
important parameters in a simple and straightforward way.

3.4.1 SCNF Experiment: CNF versus SCNF

In the first experiment we compare results of a SCNF with a CNF that is solved
over the entire domain. For comparability, the total number of training points is con-
stant, namely nTP = 1000 for the red line and nTP = 10 with 100 subdomains for the
black/dotted line. However, the comparison of two CNFs with the same architecture
would not be meaningful because the domain size has a significant influence. Therefore
we decided to realise the CNF (red) with a neural network incorporating 1 input layer
bias and 100 sigmoid neurons with 1 bias. The SCNF (black/dotted) features neural
networks with 1 input layer bias and 5 sigmoid neurons with 1 bias per subdomain.
Both CNF and SCNF incorporate m = 3. In addition we did not increase the domain
size incrementally for this experiment, to reduce the number of parameters that prevent
comparability.

The CNF solution (red) shows throughout all experiments in Fig. 19 no useful ap-
proximation. In total, the number of hidden layer neurons and training points that
would be needed to obtain a useful approximation seems to be much higher. Nonethe-
less, the SCNF approach (black/dotted) working with the same number of training
points was able to solve the initial value problem in a satisfactory way. From a quali-
tative perspective both TSM and mTSM together with pinit

deter and pinit
rnd provide similar

results. These findings confirm the results from previous experiments.
Concluding this experiment, we see that the SCNF method provides a useful solution

to the initial value problem. In addition, the incorporated small number of hidden layer
neurons enables a much more effective training of the neural networks.

61

0 2.5 5 7.5 10 12.5 15

t

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

u
(t

)

(a) TSM pinit
deter

0 2.5 5 7.5 10 12.5 15

t

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

u
(t

)

(b) TSM pinit
rnd

0 2.5 5 7.5 10 12.5 15

t

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

u
(t

)

(c) mTSM pinit
deter

0 2.5 5 7.5 10 12.5 15

t

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

u
(t

)

(d) mTSM pinit
rnd

Figure 19: Experiment in 3.4.1. CNF versus SCNF, (orange) analytical solution,
(red) CNF solution, (black/dotted) SCNF solution.

3.4.2 SCNF Experiment: CNF order variation

m ∆u(tn,l−1) ∆u(t0,l)

1 2.7834 4.8758
2 0.5763 0.7478
3 0.0846 0.0848

Table 10: Numerical error for mTSM interface grid points, pinit
deter.

The ability to approximate the initial value problem with SCNF, depending on
different m, is subject to this experiment. Here the SCNFs include 1 input layer bias
and 5 sigmoid neurons with 1 bias. The solution domain is split into 60 subdomains
with 10 grid points in each subdomain. Here, we employ incremental learning in the
subdomains.

Results for TSM with m = 1 in Fig. 20(a) and mTSM with m = 1 in Fig. 20(b)
indicate that the original TSM and mTSM methods are not useful over larger domains,
even when employing domain segmentation. However, the SCNF of first order is able
to get back on the solution trend, although several subdomains do not provide correct
approximations. In total, both solutions for m = 1 (especially mTSM) cannot be
considered to be reliable.

That changes for m = 2, at least for TSM in Fig. 20(c). Here we find, with the
exception of some local extreme points, the SCNF to be a reasonable approximation of

62

0 2.5 5 7.5 10 12.5 15

t

-2

-1

0

1

2

3

4

u
(t

)

(a) TSM, m = 1

0 2.5 5 7.5 10 12.5 15

t

-2

-1

0

1

2

3

4

u
(t

)

(b) mTSM, m = 1

0 2.5 5 7.5 10 12.5 15

t

-2

-1

0

1

2

3

4

u
(t

)

(c) TSM, m = 2

0 2.5 5 7.5 10 12.5 15

t

-2

-1

0

1

2

3

4

u
(t

)

(d) mTSM, m = 2

0 2.5 5 7.5 10 12.5 15

t

-2

-1

0

1

2

3

4

u
(t

)

(e) TSM, m = 3

0 2.5 5 7.5 10 12.5 15

t

-2

-1

0

1

2

3

4

u
(t

)

(f) mTSM, m = 3

Figure 20: Experiment 3.4.2. CNF order (m) variation, pinit
deter, (orange) analytical

solution, (black/dotted) SCNF solution.

the initial value problem. This statement however, does not hold for mTSM. Although
the general trend now is much closer to the analytical solution, there are still subdomains
which do not approximate the solution well.

Results shown in Table 10 represent the numerical differences between the analytical
and the computed solution, for mTSM as displayed Fig. 20, measured at the last grid
points in Dl−1, namely tn,l−1, and the corresponding initial points in Dl, t0,l. We propose
to consider this measure, since it indicates how well the solution can be met over the
subdomains. We find that increasing m has a major influence on the accuracy.

We conjecture that learning the subdomain initial values becomes easier for mTSM,
the more neural networks are incorporated. That is mainly because the first neural
network can so to say focus on learning the initial values, while the other networks are
more engaged with the IVP structure. We think that this conjecture can be confirmed

63

by the decreasing discrepancy between the overlapping at the interfaces for higher orders
of m.

The overall best solutions here are provided by m = 3 (Fig. 20(e),20(f)) for both
TSM and mTSM in this experiment.

We tend to favor TSM over mTSM, since the initial value in each subdomain is
satisfied by the corresponding SCNF (where the learned value at tn,l−1 is set to be the
initial value for t0,l) and does not have to be learned again.

3.4.3 SCNF Experiment: number of subdomain variation

10 50 100 150 200 250 300 350 400

number of subdomains

1e-6

1e-5

1e-4

1e-3

1e-2

1e-1

1e0

(a) TSM

10 50 100 150 200 250 300 350 400

number of subdomains

1e-6

1e-5

1e-4

1e-3

1e-2

1e-1

1e0

(b) mTSM

Figure 21: Experiment in 3.4.3. Number of subdomain variation, (blue) pinit
rnd,

(yellow) pinit
deter.

In this experiment we investigate the influence of the total number of subdomains on
the numeric error ∆u. Fig. 21 shows the behaviour for pinit

rnd (blue) and pinit
deter (yellow).

The SCNF incorporate m = 3, 1 input layer bias, 5 sigmoid neurons with 1 bias
and 10 grid points in each subdomain. We again employ incremental learning in the
subdomains.

Let us first comment on the SCNF for TSM in Fig. 21(a). Despite minor differences
between the solutions corresponding to pinit

rnd and pinit
deter for smaller numbers of sub-

domains, both initialisation methods show a very similar trend. A saturation regime
seems to appear for around 350 subdomains with ∆u ≈ 1e-5.

Turning to mTSM in Fig. 21(b), we again observe a similar behaviour between the
methods with pinit

rnd and pinit
deter. Although the differences disappear not before larger

numbers of subdomains. We find that even at 400 subdomains the numerical error ∆u
can not compete with TSM here.

Let us note again, that the chosen weight initialisation approach for pinit
rnd (see Section

3.3) means that the random weights are initialised in the same way in each subdomain.
In undocumented tests we observed that the results may show slight to significant
variations, when the random weights are generated independently for each network
over the subdomains. However, the results we have shown here using pinit

rnd represent a
rather typical trend observed in the results.

In conclusion, one can obtain very good approximations with the TSM SCNF ap-
proach for both weight initialisation methods. That means, choosing pinit

deter over pinit
rnd

has no downsides, which leads us to again support the use of deterministic weight
initialisation with the employed first order optimisation method.

64

3.4.4 SCNF Experiment: numerical error in the subdomains

1 10 20 30 40 50 60 70 80 90 100

subdomains

1e-6

1e-5

1e-4

1e-3

1e-2

1e-1

1e0

1e1
l

(a) TSM pinit
deter

1 10 20 30 40 50 60 70 80 90 100

subdomains

1e-6

1e-5

1e-4

1e-3

1e-2

1e-1

1e0

1e1

l

(b) TSM pinit
rnd

1 10 20 30 40 50 60 70 80 90 100

subdomains

1e-6

1e-5

1e-4

1e-3

1e-2

1e-1

1e0

1e1

l

(c) mTSM pinit
deter

1 10 20 30 40 50 60 70 80 90 100

subdomains

1e-6

1e-5

1e-4

1e-3

1e-2

1e-1

1e0

1e1

l

(d) mTSM pinit
rnd

Figure 22: Experiment in 3.4.4. Numerical error in the subdomains, (blue) m = 1,
(orange) m = 3, (yellow) m = 5.

The last experiment investigates the numeric error ∆ul in each subdomain Dl, de-
pending on different m. Again, the SCNFs feature 1 input layer bias and 5 sigmoid
neurons with 1 bias. The solution is computed with 100 subdomains together with 10
grid points each and incremental learning in the subdomains.

Throughout Fig. 22, m = 1 shows the least good results. Although, if we compare
mTSM with pinit

deter in Fig. 22(b) to results for 60 subdomains in Fig. 20(b), increasing
the domain fragments by 40 subdomains seems to prevent the solution from diverging.
Random weight initialisation works better for m = 1, especially with TSM.

Solutions provided by m = 3 and m = 5 are much better than for m = 1, and
increasing the order clearly tends to increase the accuracy. For TSM with both m = 3
and m = 5, as well as for mTSM with m = 5 from a certain subdomain on, the
numerical error saturates. Let us note, that for both pinit

deter and pinit
rnd the differences in

the overall numerical error ∆u are not significant in these cases.
In this experiment, we again tend to favour TSM with the deterministic weight

initialisation pinit
deter. Although m = 1 does not work well (with first order optimisation),

the other shown higher orders provide good approximations with saturation regimes.
The results confirm our preference of deterministic initialisation, because pinit

deter does
not depend on a good generation of random weights by chance.

65

3.4.5 SCNF Experiment: system of initial value problems

In this section we study a non-linear system of initial value problems. The example
system we consider reads

u̇(t) = auv(t)w(t) (121)
v̇(t) = avw(t)u(t) (122)
ẇ(t) = awu(t)v(t) (123)

with
au =

Iv − Iw
IvIw

, av =
Iw − Iu
IwIu

, aw =
Iu − Iv
IuIv

(124)

where Iu, Iv, Iw are non-zero real numbers, and given initial values for u, v, w. The
equations describe the angular momentum of a free rigid body [103, 104] with the
centre of mass at the origin. These coupled initial value problems are often denoted
as Euler equations and feature time invariant characteristics since the independent
variable t (time) does not explicitly appear on the right-hand side. The quadratic
invariant expression

R2 = u2(t) + v2(t) + w2(t) (125)

conserves the so-called magnitude and describes a sphere, while another quadratic in-
variant

H =
1

2

(
u2(t)

Iu
+
v2(t)

Iv
+
w2(t)

Iw

)
(126)

conserves the kinetic energy and describes an ellipsoid. Both invariant quantities force
the solution to stay on the intersection formed by the sphere and the ellipsoid. Since
Eqs. (125) and (126) remain unchanged over time along the solutions, we have

H =
1

2

(
u2(0)

Iu
+
v2(0)

Iv
+
w2(0)

Iw

)
(127)

R2 = u2(0) + v2(0) + w2(0) (128)

The corresponding initial values u(0), v(0), w(0) are given as in Fig. 23 and the fixed
principle moments of interior (see [103], Section 14.3) have the values

Iu = 2, Iv = 1, Iw =
2

3
(129)

assigned. In general, the neural network approach allows given invariant expressions to
be directly added to the cost function, due to its flexibility. For systems of initial value
problems, the cost function can be obtained by assigning each solution function its own
SCNF and sum up the retrieved l2-norms, here together with the invariant quantities:

E[Pm,l] =
1

2(n+ 1)

n∑
i=0

[{
˙̃uC − auṽCw̃C

}2

+

{
˙̃vC − avw̃C ũC

}2

(130)

+

{
˙̃wC − awũC ṽC

}2

+

{
ũ2C + ṽ2C + w̃2

C −R2

}2

+

{
ũ2C
2Iu

+
ṽ2C
2Iv

+
w̃2

C

2Iw
−H

}2]

66

We use ũC = ũC(ti,l,Pm,l), ṽC = ṽC(ti,l,Pm,l) and w̃C = w̃C(ti,l,Pm,l) as shortcuts.
In order to visualise the invariant behaviour, the computed results in Fig. 23 are

obtained for t ∈ [0, 30], which allows the solution to pass its own initial points more than
once. The solution domain is fragmented into 40 subdomains with ten training points
in each subdomain. Due to overlapping grid points at the subdomain intersections, the
total number of unique training points is nTP = 361, the same amount was used to
obtain computational result with Runge-Kutta 4. Each SCNF has m = 3 and therefore
features three neural networks involved. The latter are initialised with zeros and other
training parameters and methods remain unchanged (see Section 3.4).

In Fig. 23, we display both the Runge-Kutta 4 (coloured/solid) and the SCNF
(black/dots) solution. As mentioned above, the curves lay on intersections formed
between a sphere and an ellipsoid. Changing the point of view in Fig. 24 reveals
the contours of intersections between the corresponding spheres and ellipsoids for the
different initial conditions.

Figure 23: Experiment in 3.4.5. Runge-Kutta 4 (coloured/solid) and SCNF
(black/dots) solution of the free rigid body problem in Eqs. (121)-(123) for different
initial values, (blue) {u(0)=cos(1.1); v(0)=0.6; w(0)=sin(1.1)}, (orange) {u(0)=cos(1);
v(0)=0.7; w(0)=sin(1)}, (yellow) {u(0)=cos(1.2); v(0)=0.5; w(0)=sin(1.2)}.

Fig. 25 shows the training error arising from the cost function in Eq. (130) over the
incorporated subdomains. Since the SCNF solution in each subdomain is computed
independently (except for the provided initial value), the training error can differ sig-
nificantly, even between two adjacent subdomains. Additionally, the flexibility of those
independent computations enables this decreasing behaviour of the training error, al-
though the previous subdomain may have shown large errors.

In conclusion, the SCNF approach can be easily extended to handle systems of initial
value problems, even with non-linear and time invariant characteristics. A qualitative
comparison between the SCNF solution and the Runge-Kutta 4 solution shows only
very minor visual differences. As mentioned in Section 3.4, a quantitative comparison
may favour Runge-Kutta 4 in terms of the numerical error in this experiment.

67

-1 -0.5 0 0.5 1

v(t)

-1

-0.5

0

0.5

1

u
(t

)

Figure 24: Experiment in 3.4.5. Top view of Fig. 23 to visualise the spherical and
ellipsoidal intersections, colours are adopted from Fig. 23.

3.4.6 Comparison with numerical methods

Putting the SCNF results in context with the Euler method and Runge-Kutta 4, Fig.
26 shows the numerical (l1-) error in each subdomain for the IVP in Eq. (119). The
numerical methods were computed with 500 grid points per subdomain, whereas the
neural forms approaches used 10 grid points. We can clearly see that each configura-
tion of TSM and mTSM with deterministic pinit

deter and random pinit
rnd weight initialisation

have a similar behaviour, where TSM in general performs slightly better than mTSM.
Although it is arguable whether 500 grid points here are enough for the Euler method
to provide useful results. In order to compare the numerical methods with even con-
ditions, we decided to limit the number of grid points. Therefore, the Euler method
shows a worse accuracy over the neural forms approaches, while RK4 has a tremendous
accuracy advantage in this comparison. Table 11 confirms the findings where the aver-
aged numerical error over the 100 subdomains for TSM, mTSM is shown, together with
results for Euler, RK4 over the entire domain (1 subdomain). RK4 clearly outperforms

method TSM pinit
rnd TSM pinit

deter mTSM pinit
rnd mTSM pinit

deter Euler RK4

∆u 1.1318e-4 1.4339e-4 2.5184e-4 1.8362e-4 7.2374e-2 3.9164e-9

Table 11: Comparison between TSM, mTSM with deterministic/random weight ini-
tialisation (100 subdomains) and both Euler method and RK4 (1 subdomain, 500 grid
points).

the other methods here. However, we want to point out that this is not a big disad-
vantage in context of the major findings related to the SCNF. That is, we were able to
highly improve the results, especially for TSM and deterministic initial weights pinit

deter,
over larger domains in combination with first order optimisation. Since second order
optimisation is not part of the investigations, but we believe that BFGS works very
well, TSM could perform even better. Nonetheless, the comparison is highly useful and

68

1 10 20 30 40

subdomains

1e-12

1e-11

1e-10

1e-9

1e-8

1e-7

1e-6

tr
a

in
in

g
 e

rr
o

r

Figure 25: Experiment in 3.4.5. Training error over the subdomains for {u(0)=cos(1.2);
v(0)=0.5;w(0)=sin(1.2)}.

1 10 20 30 40 50 60 70 80 90 100

subdomains

1e-20

1e-17

1e-14

1e-11

1e-8

1e-5

1e-2

Figure 26: Comparison of neural forms and numerical methods (500 grid points) with
an equal amount of subdomains, (dark blue/solid) TSM pinit

rnd, (orange/solid) TSM
pinit
deter, (yellow/solid) mTSM pinit

rnd, (purple/solid) mTSM pinit
deter, (green/dotted) Euler

method, (light blue/dashed) RK4.

shows that although we made good progress with the domain segmentation approach,
further development and investigations are necessary.

3.4.7 Conclusion

The proposed CNF and SCNF approaches merging collocation polynomial basis func-
tions with neural networks and domain segmentation show clear benefits over the pre-
vious neural form constructions for the employed first order optimisation. We have
studied in detail the deterministic weight initialisation for our novel CNF approach

69

with a basic stiff initial value problem. Depending on the batch learning methods, the
collocation-based extension seems to have some benefits for both TSM and mTSM. For
the TSM CNF, this effect is more significant than observed for the mTSM extension.

Focusing on mTSM and the CNF approach, using two neural networks, one for
learning the initial value and one multiplied by (ti − t0)

κ, seems to have some advan-
tages over other possible mTSM settings. Considering approximation quality as most
imperative, we find mTSM with m = 2 to provide the overall best results for the
investigated initial value problem.

We find that the proposed SCNF approach combines many advantages of the new
developments. Employing higher order CNF methods, it is possible to solve initial
value problems over large domains with very high accuracy, and at the same time with
reasonable optimisation effort. Moreover, many computational parameters can be fixed
easily for this setting, which is a significant issue with other TSM and mTSM variations.

As another important conclusion, in the experiments we were able to show that
we can favour deterministic weight initialisation over random weight initialisation.
Nonetheless, the complexity of the IVP has an impact on the architecture and on
the values of the initially deterministic/equal weights. As we have pointed out in a
computational study [81], DE and network related parameters may not be indepen-
dent of each other. However, the underlying relation between problem complexity and
necessary neural network architecture is yet part of future work.

When focusing on deterministic weight initialisation, we find a further investigation
on how to find suitable (equal) initial weights to be of interest. The same holds for the
sensitivity of the neural network parameter.

Future research may also include work on other possible collocation functions and
on combining the networks with other discretisation methods. In addition to that, let
us note that we find optimal control problems to be a possible and relevant potential
field of applications for our method, see for instance [106] for recent research in that
area.

70

4 ANDRe: adaptive neural domain refinement for
solving initial value problems

In the previous section, we proposed a collocation polynomial extension for the neu-
ral forms and a subdomain division approach, which splits the solution domain into
equidistant subdomains [82]. Since the neural forms adopted from [13] directly incor-
porate the initial condition in its construction, each temporal subdomain generates a
new initial condition for the subsequent subdomain. As it turns out, both extensions
to the original neural forms approach were able to improve the computational results
with respect to weight initialisation and larger domain sizes under the consideration
of first order optimisation. However, equidistant subdomains may not be the optimal
choice in regions where the solution is easy or difficult to learn. In classic adaptive
numerical methods, the mesh as well as the domain may be refined or decomposed,
respectively, in order to improve accuracy. Also the degree of approximation accu-
racy may be adapted. As it is desirable to transfer such important and successful
strategies to the field of neural network based solutions, this section investigates com-
putational results on the adaptive neural domain refinement algorithm, short ANDRe,
which makes use of the subdomain collocation (polynomial) neural forms (SCNF). The
adopted subdomain collocation polynomial neural forms from the Section 3.3 are opti-
mised repeatedly over the domain. The domain itself is allowed to split into subdomains
which may locally decrease in size, whenever the network error is not sufficiently small.
Therefore,the advantageous characteristics from domain decomposition are combined
with adaptive mesh refinement. Furthermore, we embed into the described process a
means to adapt the number of neurons used for optimisation in each subdomain. This
is done with the aim to increase reliability and accuracy of the approximation. Thus,
ANDRe combines the adaptive refinement of the domain with adaptivity in the neural
sense. We also introduce conditions to automatically confirm the solution reliability
and optimise computational parameters whenever it is necessary. In addition to that,
the results open an opportunity to discuss the relation between neural network and
numerical measurement metrics. The SCNF appearance for an IVP does not change
for ANDRe, reading

ũC(ti,l,Pm,l) = ũC(t0,l,Pm,l) +
m∑

κ=1

Nκ(ti,l,pκ,l)(ti,l − t0,l)
κ (131)

The adaptive neural domain refinement approach abbreviates with ANDRe.

4.1 Algorithm summary

In Fig. 27, an artificial example to sketch the principle behind ANDRe is visualised. The
basic idea is to optimise the cost function El[Pm,l] for a given number of equidistant
training points (nTP) in each subdomain and to evaluate the results at equidistant
verification points (nV P), intermediate to nTP . To obtain the subdomains, the algorithm
starts with the cost function optimisation on the entire domain (Fig. 27(1.)). If the
predefined verification error bound σ > 0 is not fulfilled, the domain is split in half.
Now the optimisation task starts again for the left half since only there the initial value
for this subdomain is known. In case of the verification error EV P

l [Pm,l] (cost function

71

1.
EV P
1 > σ

t1 t2

2.
EV P
1 > σ

t1 t3t2

3.
EV P
1 ≤ σ EV P

2 > σ

t1 t3t2

4.
EV P
1 ≤ σ EV P

2 ≤ σ EV P
3 > σ

t1 t4t2 t3

Figure 27: A visualisation of the basic idea behind ANDRe, with the error comparison
and (sub-)domain split/reduction, EV P

l denotes the verification metric and the constant
σ is the verification error bound.

evaluated for nV P) again fails to go below σ, the current (left) subdomain is reduced
in size (see differences in Fig. 27(2.) to (3.)). Whereas a splitting is only performed
when the computation takes place in the rightmost subdomain and σ is not satisfied
by EV P

l [Pm,l], meaning that the original right domain border is always kept and not
shifted during refinement. The process of comparing the verification error to its error
bound, reducing the current subdomain and starting the optimisation another time, is
repeated until EV P

l [Pm,l] ≤ σ. Therefore, in the artificial example in Fig. 27(3.), the
leftmost subdomain is now considered to be learned.

Now, the process starts again for the rightmost subdomain (see Fig. 27(3.) and (4.))
with a new initial condition provided by the learned (left) subdomain. However, the
current (new) subdomain starts at the right boundary of the first (learned) subdomain
and ends at the right boundary of the entire domain. Therefore, the already learned
subdomain is excluded from further computations.

If a subdomain becomes too small or if the verification error increases after a sub-
domain split/reduction, the computational parameters are adjusted in a predefined,
automated way. Details on the parameter adjustment will be provided in a correspond-
ing paragraph later.

Let us now provide detailed information about ANDRe, which is shown as a flowchart
in Fig. 28. Starting point is the choice of the SCNF order m and the subdomain resize
parameter δ, which acts as a size reduction whenever a decrease is necessary. For the
optimisation, equidistant training points nTP are used. An important constant is the
verification error bound σ > 0, used to verify the SCNF solution in the corresponding
subdomain. After each complete optimisation, the results are evaluated by the cost
function with the previous learned weights at intermediate verification points, resulting
in EV P

l [Pm,l]. The latter (scalar value) is then compared to σ in order to find out
whether the solution can be considered as reliable or not. The subdomain index is de-

72

fined by l, in which the SCNF is currently solved and h represents the total number of
subdomains. The latter is not fixed and will increase throughout the algorithm. Finally,
the very first domain is set to be the entire given domain D1 = [tstart, tend] = [t1, t2].
Please note, while on the computational side, the subdomains are discretised and cor-
responding grid points denoted by ti,l, in this paragraph the subdomain boundaries are
represents by tl, for simplicity.

set m, nTP , nV P , σ > 0
set l = 1, h = 1, t1 = tstart, t2 = tend

Initialise
neural networks
for ũC(ti,l,Pm,l)

minimise ETP
l [Pm,l]

evaluate EV P
l [Pm,l]

EV P
l [Pm,l] ≤ σ?

no
l = h?

no complex
condition

yes

parameter
adjustment

no

reduce sub-
domain size

yes

split
domain

yes

l = h?
nol = l + 1,

reset parameters

yes

problem solved

Figure 28: Flowchart for the ANDRe algorithm.

4.2 ANDRe Flowchart explanation

The first processing operation

Initialise neural networks for ũC(ti,l,Pm,l) (132)

covers setting the initial architecture parameters such as number of hidden layer neu-
rons, Adam learning rate and initialising the weights for Pm,l.

73

Afterwards the optimisation problem

minimise ETP
l [Pm,l] (133)

evaluate EV P
l [Pm,l] (134)

is solved by training the SCNF framework for given equidistant nTP over the entire
domain D1 = [t1, t2] (cf. Fig. 27(1.)). The evaluation for equidistant and intermediate
nV P leads to the verification error EV P

l [Pm,l].
Then the first decision block compares the verification error (after the training

process has ended) to the error bound σ:

EV P
l [Pm,l] ≤ σ? (135)

• Eq. (135) NO: In case the verification error did not go below σ, the size of the
current subdomain will be reduced. But first, another decision has to be made
here. Namely, has El[Pm,l] been solved for the first time on the current, rightmost
(sub-)domain or in other words, is the current domain index l equal to number of
total subdomains h:

l = h? (136)

• Eq. (136) YES: That means the right boundary is tend and the current
subdomain l is split in half first, which leads to an increase of the number
of total subdomains by 1 (h = h + 1). The boundaries now have to be
adjusted with the left one tl to remain unchanged, while the former right
boundary is now scaled by tl+1 = tl + δ(tl+1 − tl), after tl+2 = tl+1 is set to
be the right boundary of domain l + 1. For example, if an entire domain
D1 = [t1, t2] = [0, 10] has to be split for the first time with δ = 0.5, the
resulting subdomains are D1 = [t1, t2] = [0, 5] and D2 = [t2, t3] = [5, 10].
Afterwards, the algorithm leads back to Eq. (132).

• Eq. (136) NO: In this case the current subdomain has already been split up.
Now the right boundary has to be adjusted in order to decrease the current
subdomain size. But beforehand ANDRe checks for a complex condition
(highlighted in blue) to ensure that a subdomain does not become too small.
Additionally ANDRe also checks if the verification error decreased compared
to the prior computation on the same subdomain l. That is, the algorithm
compares the verification error from the formerly larger subdomain l to the
current, size reduced subdomain l. The condition itself may come in different
shapes. It was decided to check for one of the

complex conditions:

tl+1 − tl ≤ 0.1?
or

EV P
l from previous (l ̸= h) subdomain ≤ current EV P

l ?

(137)

• Eq. (137) YES: At this point the framework employs a

parameter adjustment (138)

74

which may be realised problem specific and is later addressed in a corre-
sponding paragraph. Afterwards, the algorithm leads back to Eq. (132).
Basically speaking, the adjustable parameters may include the number
of hidden layer neurons, the learning rate, the number of training points
and so on.

• Eq. (137) NO: In this case, the subdomain is still large enough to be
reduced in size while the verification error decays. Therefore ANDRe
resizes the right subdomain boundary tl+1 to

tl+1 = tl + δ(tl+1 − tl) (139)

where δ denotes the domain resize parameter. Continuing the exam-
ple from above, resizing D1 of the already split domain leads to D1 =
[t1, t2] = [0, 2.5] and D2 = [t2, t3] = [2.5, 10]. Afterwards, the algorithm
leads back to Eq. (132).

• Eq. (135) YES: In case of the verification error being smaller or equal com-
pared to σ, the current subdomain l has been successfully learned by means of
a sufficiently small verification error. Now it is necessary to determine, whether
ANDRe is already in the last subdomain (right boundary is tend) or if there is
still one subdomain to solve the optimisation problem on, namely

l = h? (140)

• Eq. (140) NO: There is at least one subdomain left and therefore the current
subdomain index is updated to l = l + 1 in order to solve the optimisation
problem on the adjacent subdomain. Additionally ANDRe resets all the
possibly adjusted parameters to the initial ones. This is to make sure to not
overuse the variable parameters in regions where the solution computes by
using the initial ones. The algorithm then leads back to Eq. (132).

• Eq. (140) YES: All subdomains have been successfully learned and the
initial value problem is entirely solved.

ANDRe was developed in four steps, making it an adaptive neural algorithm for
domain refinement. Excluding the blue part in Fig. 28, the black part represents a
fully functional algorithm that can refine the domain in an adaptive way with the focus
laying on the verification error. Prior to this final version, the training error was used
as the main training status indicator. The evaluation stage (verification error) on the
other hand was later added, in addition to the training error. It turned out that small
training errors do not necessarily result in a comparable numerical error, presumably
due to possible overfitting. Therefore the verification stage was included, to reduce
the impact of overfitting on the end result. However, it was later recognised that the
verification error has a much stronger relation to the numerical error. Therefore it
was possible to reduce the complexity by laying the focus directly on the verification.
Furthermore, some examples have shown, that the preset neural network architecture
may not be flexible enough to learn certain subdomains. Hence, ANDRe was upgraded
to incorporate an automated parameter adjustment mechanism, highlighted in Fig.
28 as blue. Whenever a subdomain becomes too small or the verification error in

75

a subdomain increases compared the previous optimisation on the same subdomain
(e.g., prior to a size reduction), network and optimisation related parameters may be
re-balanced in a predefined way.

4.3 Computational results for ANDRe

The computational results and detailed investigations of ANDRe are part of this sec-
tion. However, and prior to this, the computational parameter setup, the measurement
metrics and the studied IVPs are discussed.

4.3.1 Details on parameters and measurement metrics

The neural forms approach comes with plenty parameters. We have already shown in a
computational study [81], that they are not independent of each other. Changing one
parameter may require another parameter to be changed as well in order to improve or
maintain the reliability.

computational parameter value
hidden layer neurons∗ 5
initial weight values 0
initial learning rate∗ 1e-3
number of epochs 1e5
training points (nTP) 9
verification points (nV P) 11
SCNF order (m) 5
resize parameter (δ) 0.5

Table 12: Initial computational parameters, (∗) part of parameter adjustment.

Tab. 12 lists the computational parameters which are initially fixed in our compu-
tational setup. Parameters marked with (∗) will be separately discussed in the corre-
sponding paragraph. The initial weight values, the SCNF order as well as the number
of epochs and training points (nTP) have been previously investigated and are fixed
to suitable values, see previous sections and [81, 82] for further details. Nonetheless,
each parameter has its impact on the solution. Key in training the neural networks
are the training points ti, i = 0, . . . , nTP , schematically depicted in Fig. 29 as green
circles. Generally speaking, Fig. 29 shows an arbitrary subdomain and the notation
ti was chosen for simplicity. From now on, the grid points in subdomain l are again
referred to as ti,l and follow the structure in Fig. 29.

t0 t1 t2 t3 t4 t5 t6 t7 t8 t9

Figure 29: Visualisation of grid point distribution in a subdomain, (green/circle) 10
equidistant training points ti, (orange/cross) 12 equidistant verification points. Please
note that, e.g., nTP = 9 refers to ten training points in Tab. 12.

76

They serve as the input data and are important for the optimisation of the cost
function

ETP
l [Pm,l] =

1

2(nTP + 1)

nTP∑
i=0

{
G
(
ti,l, ũC(ti,l,Pm,l), ˙̃uC(ti,l,Pm,l)

)}2

(141)

in the l-th subdomain. Let us comment on an optimisation procedure in some detail,
referred to as incremental learning, employed in [15]. Here, the computation includes
several complete optimisations per (temporarily untouched) subdomain. That is, for
example with five increments in Fig. 29, the training points are split into five sets
and the first optimisation only takes t0 and t1 into account. Then, the second one
uses t0, t1, t2, t3 with the same weights from the first (complete) optimisation. This
is continued until the optimisation uses all training points. The incremental learning
procedure only applies to the training process and ETP

l [Pm,l], not to the verification.
Speaking of that, the verification is performed with the cost function and the corre-

sponding verification points (nV P), which are differently distributed (cf. Fig. 29) than
the training points. With these discrete points and after the training process, the cost
function returns a scalar value named verification error

EV P
l [Pm,l] =

1

2(nV P + 1)

nV P∑
i=0

{
G
(
ti,l, ũC(ti,l,Pm,l), ˙̃uC(ti,l,Pm,l)

)}2

(142)

As the naming suggests, this verification error is used to evaluate and verify the training
results to indicate whether the IVP has been solved sufficiently well or not. For this
purpose, the verification error bound σ will compare to Eq. (142).

The domain resize parameter has also been fixed for all computations to δ = 0.5.
A larger value, up to δ = 0.9, would find individual subdomains faster due to the
bigger size reduction but perhaps result in too many subdomains. On the other hand,
a smaller value, down to δ = 0.1 may find the individual subdomains more carefully
but would also heavily increase the computation time. We will discuss an experiment
regarding the domain resize parameter later.

Tab. 12 will later also be extended by problem specific parameters, which are (i) ver-
ification error bound σ, (ii) computational domain size, (iii) initial conditions and (iv)
learning increments. These parameters will be specified and discussed in a subsequent
paragraph.

Turning to the measurement metrics for the results, we will compare ANDRe to
the analytical solutions of four different initial value problems. We make use of the
absolute value differences between the analytical solution and ANDRe in context of the
(averaged) l1-norm ∆ul,1 and the l∞-norm ∆ul,∞

∆ul,1 =
1

n+ 1

n∑
i=0

∣∣u(ti,l)− ũC(ti,l,Pm,l)
∣∣ (143)

∆ul,∞ = max
i

∣∣u(ti,l)− ũC(ti,l,Pm,l)
∣∣ (144)

77

whereas ∆u1 and ∆u∞ average the numerical error over all subdomains

∆u1 =
1

h

h∑
l=1

∆ul,1 (145)

∆u∞ =
1

h

h∑
l=1

∆ul,∞ (146)

The l∞-norm basically returns the largest numerical error value. We will later refer to
the corresponding norms as l1-error and l∞-error.

4.3.2 Details on parameter adjustment

Let us now comment on the parameter adjustment since this part of the algorithm
required a lot of fine tuning. After several experiments with different parameter ad-
justment methods, not documented here, the Adam learning rate and the number of
hidden layer neurons were chosen to be a part of the parameter adjustment and may
change during the process. Not only determine the hidden layer neurons the amount
of adjustable weights, they are also connected to the universal approximation theorem
[36]. It basically states, that one hidden layer with a finite number of sigmoidal neurons
is able to approximate every continuous function on a subset of R. Since the finite num-
ber is not known beforehand, making the number of hidden layer neurons an adjustable
parameter in this approach, seems reasonable and so does starting with a small amount
(five neurons).

The initial learning rate of Adam optimisation impacts how vast the location in the
weight space changes after a weight update. Figuratively speaking, the larger the initial
learning rate, the farther the optimiser can travel in the weight space, adding more
flexibility and increasing the chance to find a suitable minimum. In this context, such a
suitable minimum can be located at different positions, depending on the subdomain. It
is not guaranteed by any means to find one near by the starting point. That motivates
to start the computation with a fairly small initial learning rate (values taken from
[44]) and to enable ANDRe to increase this value outside the optimisation cycle. That
is, the initial learning rate can increase several times before the number of hidden layer
neurons rearranges by two additional neurons. Adjusting the number of neurons resets
the learning rate to its default parameter.

Has a subdomain in this way been successfully learned, both parameters are reset
to their initial values. Let us recall, that the parameter adjustment does not take place
during an optimisation cycle, it rather appears outside. In other words, we do not
perturb the neural network training during the optimisation process.

4.3.3 The evaluation of ANDRe for different initial value problems

In [82] we have shown, that the SCNF with a fixed number of subdomains is capable
of solving IVPs on larger domains. Increasing this number resulted in a decreasing
numerical error. Now with ANDRe, we show that by demanding the network error to
become sufficiently small in each subdomain, the algorithm can automatically determine
a suitable number (and distribution) of the subdomains.

78

The following paragraph will introduce initial value problems (IVPs) for our evalu-
ation. We have chosen these examples because (i) each one represents a different IVP
type, (ii) expect for the last (system of IVPs) example, the analytical solutions are
available and (iii) each of them incorporates at least one interesting behaviour. How-
ever, the difficulty is limited because of (ii), but the focus of this approach does not lay
on competitiveness in the first place. We rather show that the neural forms approach
[13, 81] benefits from our extension in terms of accuracy on large domains. In addition,
this paper serves as an investigation of the relation between both numerical and neural
network errors.

Example IVPs and their analytical solutions

As a first example, we take on the following IVP with constant coefficients
ψ̇(t)− t sin(10t) + ψ(t) = 0, ψ(0) = −1

ψ(t) = sin(10t)

(
99

10201
+

t

101

)
+ cos(10t)

(
20

10201
− 10t

101

)
− 10221

10201
e−t

(147)

which incorporates heavily oscillating and increasing characteristics, similar to insta-
bilities. This example is still relatively simple and serves to demonstrate the main
properties of our approach. We then proceed to an IVP with non-constant coefficients,
that includes trigonometric and exponentially increasing terms:

ϕ̇(t) +
1 +

1

1000
et cos(t)

1 + t2
+

2t

1 + t2
ϕ(t) = 0, ϕ(0) = 5

ϕ(t) =
1

1 + t2

(
− t− et cos(t)

2000
− et sin(t)

2000
+

10001

2000

) (148)

Furthermore, we choose to investigate the results for the non-linear IVP
ω̇(t)

cos2(ω(t))

1

cos2(2t)
− 2 = 0, ω(0) =

π

4

ω(t) = arctan

(
1

4
sin(4t) + t+ 1

) (149)

which also has non-constant coefficients. Finally, we used ANDRe to solve the following
non-linear system of IVPs τ̇(t) = Aτ(t)− Bτ(t)ι(t), τ(0) = τ0

κ̇(t) = −Cι(t) +Dτ(t)ι(t), ι(0) = ι0
(150)

which is also known as the Lotka-Volterra equations [107], with parameters A = 1.5,
B = 1, C = 3, D = 1. The initial values are τ0 = 3, ι0 = 1, ι0 = 3, ι0 = 5 depending on
the subsequent experiment. The chosen value for ι0 will be explicitly addressed. Since
the Lotka-Volterra equations in Eq. (150) do not have an analytical solution, we will
compare the results to a numerical solution method, namely Runge-Kutta 4.

79

We take the coupled IVPs in Eq. (150) to demonstrate how the cost function for the
neural forms approach reads. It is obtained as the sum of ℓ2-norms of each equation.
We use τ̃C = τ̃C(ti,l,Pm,l) and ι̃C = ι̃C(ti,l,Pm,l) as shortcuts:

El[Pm,l] =
1

2(n+ 1)

n∑
i=0

[{
˙̃τC − Aτ̃C +Bτ̃C ι̃C

}2

+{
˙̃ιC + Cι̃C −Dτ̃C ι̃C

}2] (151)

This equation is then subject to optimisation/training and verification.

4.3.4 ANDRe and the analytical solutions

In this paragraph we demonstrate the results for applying ANDRe to the previously
introduced example IVPs. We discuss the contrast to the analytical solutions and in case
of Lotka-Volterra, to the numerical results provided by Runge-Kutta 4. In addition to
the already given computational parameters in Tab. 12, the problem specific parameters
are listed in Tab. 13. The corresponding initial conditions are given with the examples
above.

example domain σ incr.
IVP in Eq. (147) t ∈ [0, 15] 1e-5 5
IVP in Eq. (148) t ∈ [0, 25] 1e-4 5
IVP in Eq. (149) t ∈ [0, 20] 1e0 2
IVP in Eq. (150) t ∈ [0, 30] 1e-3 5

Table 13: Problem specific parameters, (σ) represents the verification error bound,
(incr.) is short for increments and refers to the learning procedure discussed in context
of Fig. 29.

The domain sizes are chosen in this way, so that interesting parts in the analytical
solution are visible and as challenges available for ANDRe. During the experimental
testing, we recognised that the neural network errors and especially the verification
error EV P

l [Pm,l] were not becoming arbitrarily small. In addition, the experiments
revealed the problem specific dependencies of (local) minima locations in the weight
space. Therefore we had to find (in an experimental way) the verification error bounds
σ for each example IVP.

example domain h l1-error l∞-error
IVP in Eq. (147) t ∈ [0, 15] 113 1.4499e-4 1.9268e-4
IVP in Eq. (148) t ∈ [0, 25] 50 6.8152e-4 9.8980e-4
IVP in Eq. (149) t ∈ [0, 20] 32 4.6545e-3 4.9861e-3
IVP in Eq. (150) t ∈ [0, 30] 51 - -

Table 14: Overview of the numerical results for the example IVPs in Eq. (147)–Eq.
(150), (h) total number of learned subdomains.

80

0 2.5 5 7.5 10 12.5 15

-1

0

1

(a) entire domain

0.5 0.75 1 1.25 1.5 1.75 2 2.25 2.5
-0.75

-0.5

-0.25

0

0.25

(b) clipped domain

Figure 30: IVP in Eq. (147) Comparison between (orange/solid) analytical solution
and (black/dotted) ANDRe solution.

In Fig. 30, both the analytical solution (orange/solid) and ANDRe solution (black/dotted)
are shown for the IVP in Eq. (147). Tab. 14 shows that 113 subdomains were necessary
in order to satisfy the chosen verification error bound. The corresponding (averaged)
l1-error indicates a decent behaviour, which we consider to represent a reliable solution
to the IVP. It also compares to the results from our SCNF experiments [82] (predefined
equidistant subdomain distribution). The same IVP, solved with 100 equidistant sub-
domains, returned an l1-error of 1.4339e-4. Therefore, ANDRe maintains the solution
accuracy and comes with an advanced measurement metric.

The total number of training points for all subdomains is not equidistantly dis-
tributed. This circumstance is demonstrated in Fig. 30(b) for a clipped domain of
Fig. 30(a). Because of the general trend of the solution, we expect the density to be
higher at the peaks and dips, while declining in between. However, the subdomain
D3 = [0.9229, 1.8027] is fairly large and includes two peaks and almost two dips as well.
Compared to its adjacent subdomain D4 = [1.8027, 2.0089], the size of D3 is unique,
but also has a lower numerical error assigned. So the (local) numerical error in one
subdomain, as well as the subdomain size itself do not necessarily share the global be-
haviour, where a higher amount of subdomains leads to a decreasing numerical error.
[82]

Fig. 31 shows the subdomain distribution related to Fig. 30 in the beginning for
D = [0, 5]. We find the domain size adjustment parameter δ to show a significant
influence here. It appears to be very important where one subdomain ends, because
this may cause the adjacent one to be more difficult to solve. Please note that this
statement holds under the consideration of the chosen neural network parameters.

In contrast to the previous example, the IVP in Eq. (148) is solved on an even larger
domain with extensively increasing values. The results are shown in Fig. 32 and aim to
show that ANDRe is capable of solving time-integration problems on large domain with
small neural networks. This is of particular importance as the domain size has been
identified as an intricate parameter of the underlying problem, see also the detailed
study in [81].

As displayed in Fig. 32, the ANDRe solution fits the analytical solution (orange)
again on a qualitative and useful level. In total, the algorithm has finished after splitting
the solution domain into 50 subdomains with the averaged l1-error of ∆ϕ1 = 6.8152e-4

81

0 1 2 3 4 5
-1

-0.5

0

0.5

1

Figure 31: IVP in Eq. (147) ANDRe subdomain distribution for a cut-out of Fig.
30a, (orange/solid) analytical solution, (black/marked) subdomain boundaries, cf. Fig.
14.

0 5 10 15 20 25
-5e4

-4e4

-3e4

-2e4

-1e4

0

1e4

2e4

(a) entire domain

0 2 4 6 8 10 12 14 16
-5

0

5

10

15

20

25

(b) clipped domain

19 19.5 20 20.5 21 21.5 22
-1e3

0

1e3

2e3

3e3

4e3

(c) clipped domain

22.5 23 23.5 24 24.5
-1e4

0

1e4

2e4

(d) clipped domain

Figure 32: IVP in Eq. (148) Comparison between (orange/solid) analytical solution
and (black/dotted) ANDRe solution.

(cf. Tab. 14). In comparison, ∆ϕ∞ differs more from ∆ϕ1 than the counterparts for
IVPs in Eqs. (147),(149).

While Fig. 32(a) shows the ANDRe solution for the entire domain, Figs. 32(b),32(c)
and 32(d) are zoomed in, to provide a more detailed view on certain areas. In Figs.
32(b) and 32(d), we observe the local extreme points to be covered by more densely

82

packed subdomains, especially the maximum in range of high function values. This
may indicate, that the domain refinement not only depends on the complexity of a
certain region, but on finding suitable minima in the weight space in order to get the
training error below the verification error bound σ. This however, does not hold for the
extreme point in Fig. 32(c). We see the local minimum to be covered by approximately
equidistant subdomains (on a qualitative level) up to t = 21.0362. The next three
subdomains however, are densely packed, only to be stretched again afterwards.

0 2 4 6 8 10 12 14 16 18 20
0.7

0.8

0.9

1.0

1.1

1.2

1.3

1.4

1.5

1.6

(a) entire domain

0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 5.5
1

1.1

1.2

1.3

1.4

1.5

(b) clipped domain

Figure 33: IVP in Eq. (149) Comparison between (orange/solid) analytical solution
and (black/dotted) ANDRe solution.

0 5 10 15 20 25 30
0

2

4

6

8

p
o

p
u

la
ti
o

n

(a) Population over time, τ(0) = 3, ι(0) = 5

0 2 4 6 8
0

1

2

3

4

5

6

(b) Comparison between τ(t) and ι(t) in
phase space with τ(0) = 3 and (yellow)
ι(0) = 1, (purple) ι(0) = 3, (green) ι(0) = 5.

Figure 34: IVP in Eq. (150) Comparison between (coloured/solid) Runge-Kutta 4
solution with 1e3 grid points and (black/dotted) ANDRe solution.

Results for the IVP in Eq. (149) are displayed in Fig. 33. We decided to investigate
this example because of the saddle points, which are repeatedly occurring. We observe
a reliable solution approximation in the beginning of Fig. (33)(a). However, from
subdomain D7 and t = 4.7760 on, we can see that ANDRe starts to differ from the
analytical solution. Although it keeps the general trend, and seems to converge against
the analytical solution again in the end, the differences in this region are remarkable.
This also marks a turning point computational-wise, which we will discuss more in
detail in the corresponding experimental paragraph. Nonetheless, we had to decide to

83

limit the verification error bound to σ = 1e0, since the computation with a lower error
bound always got stuck around this area. This means both the Adam learning rate and
the number of hidden layer neurons started to increase heavily. Although one would
suggest, based on the universal approximation theorem, that at some point ANDRe
would move on, we cancelled the time consuming computation at this point. This
circumstance is definitely interesting to further investigate. We do not see a limitation
of ANDRe here, since on a theoretical level, there should be an amount of hidden layer
neurons, which is able to finish the computation even for a smaller verification error
bound σ.

Fig. 33(b) confirms the results from the previous examples, that the appearance of
local extreme points (saddle points in this case) not necessarily result in more densely
packed subdomains directly at their location. However, the final distribution has some
packed subdomains involved, prior to the local extreme points. The reason for this
seems to be that a saddle point can not be part of a subdomain that is too large.
Therefore the antecedent subdomain results in a smaller size so that the saddle point
can be part of an appropriate sized subdomain.

In Fig. 34 both the Runge-Kutta 4 solutions and the ANDRe solutions are shown.
For a fair comparison on the quantitative side, both method should use equal amount
of training points, which in this case would arise from ANDRe solution. However, we
are more interested in a qualitative comparison, since the Runge-Kutta 4 is known
to provide very good results. ANDRe found a useful solution for the Lotka-Volterra
equations in Fig. 34(a), since there are only minor differences from the qualitative
perspective.

Fig. 34(b) shows the solution related to three different initial values for the preda-
tors. Let us note, that although Fig. 34(b) only displays the solution at the training
points (the same holds for the previous example IVPs), the trained SCNF is capable
of evaluating the solution at every arbitrary discrete grid point over the entire domain,
which is an advantage over numerical integration methods.

4.3.5 Numerical and neural network errors

The measurement metrics (numerical and verification error) are highly relevant to dis-
cuss for ANDRe. In the subsequent diagrams we show the l1-error (blue/solid), the
l∞-error (black/dotted), as well as the verification error (green/solid) and the training
error (orange/marked) over the successfully learned subdomains.

Commenting on the relation between the verification and the training error in Fig.
35a for the IVP in Eq. (147) (cf. Eqs. (141),(142)), we see that both are mostly equal.
This implies, that the corresponding subdomains have been effectively learned up to
the desired state. Turning to the numerical errors, in regions where ∆ψ1 shows an
approximately constant slope, e.g., D58 to D64, ∆ψ∞ appears to deviate less from the
averaged l1-error. Since the main goal of ANDRe is to make use of the verification
error as a measurement metric for the numerical error, finding a relation between both
is desirable. In Fig. 35a, there are some regions that may indicate such a relation. The
network errors from around D58 to D64 show a slightly decreasing behaviour, only to
highly differ in D65. In comparison, ∆ψ1 also slightly decreases for some subdomains
and dips, together with the network errors, for D65. However, in other regions almost
no consistent relation is visible.

84

1 20 40 60 80 100 113

subdomains

1e-9

1e-7

1e-5

1e-3

1e-1

5e0

e
rr

o
r

(a) IVP in Eq. (147)

1 10 20 30 40 50

subdomains

1e-9

1e-7

1e-5

1e-3

1e-1

5e0
e

rr
o

r

(b) IVP in Eq. (148)

1 5 10 15 20 25 30 32

subdomains

1e-9

1e-7

1e-5

1e-3

1e-1

5e0

e
rr

o
r

(c) IVP in Eq. (149)

1 10 20 30 40 50

subdomains

1e-9

1e-7

1e-5

1e-3

1e-1

5e0

e
rr

o
r

(d) IVP in Eq. (150)

Figure 35: Error comparison, (blue/solid) numerical error, (black/dotted) infinity
norm, (orange/marked) training error, (green/solid) verification error.

The statements made above also apply to Fig. 35b for the IVP in Eq. (148), where

85

one may find some relation in the beginning, while afterwards the l1-error is almost
constant and the network errors drop and rise by several orders.

However, let us comment on the behaviour of both verification and training error,
displayed in Fig. 35b. While both match, they undergo the preset of σ = 1e-4 in some
cases by several orders. Two adjacent subdomains may have a verification/training
error with significant differences. Although we find a local maximum for the l1-error
in the beginning, it decreases afterwards and remains in a certain region with local
minima and maxima. However, we find the decreasing behaviour to be an important
characteristic compared to numerical methods, where one would expect the error to
accumulate.

1 10 20 30 40 50 60 70 75

subdomains

1e-9

1e-7

1e-5

1e-3

1e-1

5e0

e
rr

o
r

Figure 36: IVP in Eq. (148) Solved with ANDRe and alternative SCNF approach
(mTSM) in Eq. (152) Error comparison, (blue/solid) l1-error, (black/dotted) ℓ∞-error,
(orange/marked) training error, (green/solid) verification error.

Commenting on Fig. 35c for the IVP in Eq. (149), the possible local relations be-
tween the numerical and network errors seem to have turned into a chaotic state. For
the corresponding verification error bound σ = 1e0, even the network errors are most of
the time not equal anymore. In contrast the both Fig. 35a and Fig. 35b, the numerical
errors lay in between the values of the network errors, which is highly interesting. This
more or less confirms, that even if the verification/training error indicate a shallow
(local) minimum in the weight space, the numerical error can still be useful. Although
∆ω1 and ∆ω∞ are, expect for the beginning, almost constant throughout the domain.
That circumstance inherents both good and bad news. The latter connects to the ap-
parent random behaviour, while the good news is that even though the network errors
appear to be random, the IVP can still be considered to be solved.

The results for the Lotka-Volterra equations in Fig. 35d also seem to indicate a
chaotic behaviour. That is, the local minima of orders around ≈ 1e-8 relate to arbitrary
subdomains, that are not connected to, e.g., the periodic extreme points of the solution.

The diagram in Fig. 36 shows the results for a different SCNF approach (mTSM)
[15, 82], combined with ANDRe. In contrast to the neural forms approach (using the
initial condition to construct the neural form), now we directly combine with neural

86

networks with the polynomial ansatz [82, 81]:

ϕ̃C(ti,l,Pm,l) = N1(ti,l,p1,l) +
m∑
k=2

Nκ(ti,l,pk,l)(ti,l − t0,l)
k−1 (152)

Since the initial condition is not included in Eq. (152), it appears as an additional term
directly in the cost function. Here, we use

g(t) =
1 +

1

1000
et cos(t)

1 + t2
(153)

as a shortcut for:

El[Pm,l] =
1

2(n+ 1)

n∑
i=0

{
˙̃ϕC(ti,l,Pm,l) + g(t) +

2t

1 + t2
ϕ̃C(ti,l,Pm,l)

}2

+

1

2

{
N1(t0,l,p1,l)− ϕ̃C(t0,l,Pm,l)

}2
(154)

Hence, the initial condition is learning by the first neural network. The cost func-
tion construction concept is very similar to physics-informed neural networks [64, 65].
However, the polynomial approach ansatz is different in this context. Let us recall,
that the initial values follow ϕ̃C(t0,1,Pm,1) = ϕ(0) in the leftmost subdomain and
ϕ̃C(t0,l,Pm,l) = ϕ̃C(tn,l−1,Pm,l−1) elsewhere. This concept avoids possible difficulties
in constructing a suitable neural form. Since both approaches (Eq. (111) and Eq.
(152)) only differ in their cost function construction, it appears natural to compare
them. That is, the results in Fig. 36 compare to Fig. 35b. The behaviour of both
verification/training error does not seem to be connected to the numerical error, for
both methods. Fig. 36 shows less accurate results for the l1-error. The loss of accuracy
possibly relates to the fact, that here the new initial condition for the next subdomain
is not fixed by adding it to the neural form. It rather has to be learned again, which in
practice may harm the usefulness of this approach. The gap between both l1-error and
l∞-error closes at a certain point.

When turning to Fig. 37, we observe that the parameter adjustment brought the
Adam learning rate (coloured) up to various values in order to finish learning the subdo-
mains. Additionally, the necessary number of hidden layer neurons also heavily increases
towards higher subdomains.

Although the results in terms of the numerical error are not better than in Fig.
35b, we find here a confirmation of the automatic parameter adjustment. With this
feature, ANDRe was able to solve the IVP. That is, we see our approach to enable the
parameter adjustment when necessary, to be justified by the results. However, this does
not support the overall usage of this alternative SCNF approach in context of ANDRe.

4.3.6 Method and parameter evaluation

In this paragraph we investigate and evaluate different parts of the method.
In Fig. 38, the sizes of the learned subdomains for the IVP in Eq. (147) are shown.

The general trend points towards smaller subdomains throughout the computation.
However, we witness that there are local differences with bigger or smaller subdomains

87

1 10 20 30 40 50 60 70 75

subdomains

1

5

10

15

20

25

h
id

d
e

n
 l
a

y
e

r
n

e
u

ro
n

s

0

0.02

0.04

0.06

0.08

0.1

Figure 37: IVP in Eq. (148) Solved with ANDRe and alternative SCNF approach
(mTSM) in Eq. (152) Visualisation of the automatic parameter adjustment (hidden
layer neurons and learning rate) over the subdomains, (coloured) Adam learning rate
α.

1 20 40 60 80 100 113

subdomains

1e-2

1e-1

1e0

1e1

s
u

b
d

o
m

a
in

 s
iz

e

Figure 38: IVP in Eq. (147) Visualisation of the learned subdomain sizes.

and this is what we expect from ANDRe. The subdomain size is reduced until it is
sufficiently small and that can be individual for each part of the solution. Nonetheless,
let us compare both the numerical error in Fig. 35a and the subdomain sizes in Fig.
38. In the first ten subdomains there seems to be a certain correlation, a larger size
in this range results in a larger numerical error. A smaller verification error bound σ
to deal with the discrepancy between verification and training error in Fig. 35a may
have resulted in another size reduction with better results. However, the statement
that a smaller (local) subdomains size implies a better numerical error does not hold
here. Although one of the complex conditions employed each subdomain to not become
smaller than 0.1, we can see in Fig. 38 that certain subdomains towards the end undergo
this preset condition. This is related to the fact, that the subdomain size is first reduced
and then checked for its size. Therefore it is still possible for a subdomain, to slightly
undergo the size of 0.1. However, and as the results confirm, a further size reduction is
not possible. Turning to Fig. 39, the (learned) neural network outputs are displayed for

88

1 10 20 30 40 50

subdomains

-12e4

-10e4

-8e4

-6e4

-4e4

-2e4

0

2e4

n
e

u
ra

l
n

e
tw

o
rk

 o
u

tp
u

t

Figure 39: IVP in Eq. (148) Output of the incorporated SCNF neural networks,
(blue) N1, (orange) N2, (yellow) N3, (purple) N4, (green) N5.

the incorporated SCNF (cf. Eq. (111)) order m = 5 of the IVP in Eq. (148) (cf. Fig.
32). That is, the five displayed graphs each represent one neural network output over
the subdomains. We see the first and second SCNF orders to dominate the results for
higher numbers of subdomains. However, higher orders also contribute to the solution,
making our approach adaptive in the approximation order, indirectly. Let us recall,
that the factors (ti,l − t0,l)

κ for the different neural networks Nκ(ti,l,pκ), κ = 1, . . . , 5,
dictate the impact of each neural network since they act as a scaling factor. Hence,
subdomains with a size below 1 imply a smaller influence of higher SCNF orders. This
circumstance can be challenging for an IVP solution with large values. Nonetheless,
we see that our SCNF algorithm was able to solve the IVP in Eq. (148), even tough it
incorporates fairly large values.

t25 t26 ∆ψ1 ETP
25 EV P

25 α
5.5953 15.000 1.3557 22.888 23.598 1e-3
5.5953 10.298 2.3780 1.7622 22.695 1e-3
5.5953 7.9465 1.3774 6.8529 34.448 1e-3
5.5953 7.9465 0.3868 10.640 9.9730 6e-3
5.5953 6.7709 3.4447e-2 3.2209e-2 3.9242e-2 6e-3
5.5953 6.1831 1.1881e-2 3.4791e-2 3.5682e-2 6e-3
5.5953 5.8892 3.3488e-4 1.0875e-4 1.0779e-4 6e-3
5.5953 5.7423 1.6882e-4 2.4565e-6 2.3747e-6 6e-3

Table 15: IVP in Eq. (147) Results for a complete learning procedure for one subdo-
main.

In Tab. 15, quantitative results for the entire learning process of one subdomain of
the IVP in Eq. (147) are displayed. The left subdomain boundary t25 remains constant
while the right subdomain boundary t26 is adjusted as in Eq. (139). The verification er-
ror values EV P

25 demonstrate the appearance of non-uniform learning during the solution
process and show how important the verification error and the parameter adjustment
are. While ETP

25 decreases (as intended) for the first two subdomain size reductions, it

89

increases for the third one, which leads to a growth of the initial learning rate α. Now
for the same subdomain size, EV P

25 decreased significantly (while ETP
25 has increased

again). That circumstance enables ANDRe to continue reducing the subdomain size
until it is sufficiently small.

σ h ∆ϕ1 EV P [Pm,l] ETP [Pm,l]
1e-1 37 5.5512e-2 1.8907e-2 1.8537e-2
1e-2 39 1.0749e-2 1.5714e-3 1.6255e-3
1e-3 47 6.2122e-3 1.1582e-4 1.1917e-4
1e-4 50 6.8152e-4 2.6581e-5 2.7788e-5
1e-5 59 3.0005e-4 1.9260e-6 2.2057e-6
1e-6 74 1.1870e-4 2.1157e-7 2.2076e-7

Table 16: IVP in Eq. (148) Results for different σ, on domain t ∈ [0, 25].

From the perspective of employing a condition for minimising the cost function, the
question arises how the algorithm outcome is affected by different error bound values
σ. Tab. 16 shows the overall l1-error, verification error and training error for different
σ regarding the IVP in Eq. (148). The choice of σ has a direct impact on each error
value, as they all decrease the smaller σ gets. However, an experiment for σ = 1e-7 did
not finish learning the subdomains. We terminated the computation after the number
of hidden layer neurons crossed fifty one. In this subdomain, the smallest verification
error was 1.9881e-7 but the optimisation did not manage to go below σ = 1e-7. This
phenomenon may again relate to the complexity of the cost function energy landscape.
Either such a local minimum could not be found by the optimiser for various reasons,
or even the global minimum is still too shallow for that error bound.

Results in Tab. 16 confirm the results from [82], where an increasing number of
subdomains shows a decreasing numerical error.

δ h ∆ω1

0.9 5 6.2398e-3
0.8 5 7.0250e-4
0.7 4 3.4629e-3
0.6 5 9.1571e-2
0.5 4 6.9541e-4
0.4 5 6.2569e-3
0.3 5 4.4258e-3
0.2 7 1.1200e-3
0.1 13 2.7217e-4

Table 17: IVP in Eq. (149) Results for different domain size reduction parameter
values δ, on domain t ∈ [0, 5].

Last but not least we discuss experimental results for different domain resize pa-
rameter values δ in Tab. 17 for the IVP in Eq. (149). The higher this value is set, the
more aggressive each subdomain is reduced in size. On the other Hand, the smaller δ
is, the more careful the subdomains are reduced in size. However, one would expect
the necessary amount of subdomains to increase, the higher the resize parameter is.

90

But in reality the results and the amount of subdomains are comparable for all δ, if we
exclude δ = 0.1. On the l1-error side, except for δ = 0.6, all the results are comparable.
Although the results are highly problem specific and may change with a larger domain
size, we find δ = 0.5 to provide the best mix with h = 4 and ∆ω1 = 6.9541e-4. This
domain size parameter was used for all the computations.

4.3.7 Comparison with numerical methods

Again we want to put the current results in correlation with the Euler method and
Runge-Kutta 4. The qualitative results in Fig. 40 show various interesting properties. In
general, the relation between the neural forms approach and the numerical methods are
very similar to the findings for SCNF in Sec. 3.4.6, where RK4 outperformed the other
approaches. Expect for Fig. 40(c), the Euler method is accuracy-wise behind ANDRe
with TSM. In Fig. 40(a), we observe that the overall trend for ANDRe throughout the
subdomains is slightly increasing in accuracy, while Euler and RK4 show a somewhat
decreasing behaviour. We have already stated in previous sections, that a subsequent
subdomain only depends on the provided initial conditions from the last subdomain.
That is, we see evidence that the optimisation is flexible enough to damp inaccuracies
in these initial conditions. However, although we see a slight decrease in accuracy
for Euler and RK4 here, this characteristic seems to depend on the problem in Eq.
(147). Namely in Fig. 40(c), both Euler and RK4 show the opposite behaviour we an
overall increasing accuracy. In this figure, as mentioned before, Euler even outperforms
ANDRe with TSM.

Prior to discussing the highly interesting results in Fig. 40(b), let us comment on
Tab. 18 in this context. Again and with no doubt, RK4 provides superior results.
Nonetheless, we see that for the IVP in Eq. (147) and Eq. (148), TSM ranks above
Euler. However, both Euler and RK4 show for the IVP in Eq. (149) their best accuracy,
while ANDRe with TSM has the worst here. So in general, we again see evidence that
finding a general relation between the characteristics of all methods is actually very
difficult.

IVP TSM pinit
deter Euler RK4

IVP in Eq. (147) 1.4499e-4 7.2374e-2 3.9164e-9
IVP in Eq. (148) 6.8152e-4 82.1303e0 8.6055e-7
IVP in Eq. (149) 4.6545e-3 2.4318e-3 4.5611-13

Table 18: Comparison between TSM, mTSM with deterministic/random weight ini-
tialisation (100 subdomains) and both Euler method and RK4 (1 subdomain, 500 grid
points).

Nonetheless, now we want to comment on Fig. 40(b). Here we see that ANDRe
with TSM has an overall decent accuracy, even in the region with large function values
(towards larger domain parts). Although Euler is slightly better in accuracy in the
beginning, towards the larger domain parts (with large function values), the methods
starts diverging. The behaviour of RK4 is very similar, but the accuracy remains
on a highly useful level. However, further enlarging the solution domain may favour
TSM over RK4 in that region. This diverging behaviour may indicate that we have to

91

1 20 40 60 80 100 113

subdomains

1e-18

1e-15

1e-12

1e-9

1e-6

1e-3

1e0

1e3

(a) IVP in Eq. (147)

1 10 20 30 40 50

subdomains

1e-18

1e-15

1e-12

1e-9

1e-6

1e-3

1e0

1e3

(b) IVP in Eq. (148)

1 5 10 15 20 25 30 32

subdomains

1e-18

1e-15

1e-12

1e-9

1e-6

1e-3

1e0

1e3

(c) IVP in Eq. (149)

Figure 40: Comparison of neural forms methods and numerical methods (500 grid
points) with an equal amount of subdomains, (orange/solid) TSM pinit

deter, (green/dotted)
Euler method, (light blue/dashed) RK4.

deal with stiffness phenomenon here. Another indication for this assumption is that
increasing the number grid points for Euler to 1e7, than the overall numerical error
(computed over the entire domain [1 subdomain]) reduces to 4.0093e-3. Requiring an
unexpected high amount of grid points (extremely small step size) for a useful solution
is a basic characteristic for Euler when dealing with stiff differential equations. We

92

see that the neural forms approach can, although the accuracy is far away from being
state-of-the-art, deal with stiffness and appears to be unaffected by this phenomenon. In
general, investigation second order optimisation in this context could reveal additional
interesting behaviour and perhaps compete with numerical methods.

4.3.8 Conclusion

The proposed ANDRe is based on two components. First, the resulting verification
error arising from the participating subdomain collocation neural form (SCNF) acts as
a measurement metric and refinement indicator. The second component is the proposed
algorithm which refines the solution domain in an adaptive way. We find ANDRe to be a
dynamic framework adapting the complexity of a given problem. We have shown that
the approach is capable of solving time-dependent differential equations of different
types, incorporating various interesting characteristics, in particular including large
domains and extensive variations of solution values.

In contrast to numerical solution methods for solving initial value problems, the
numerical error does not inevitable accumulate over the subdomains. It can rather de-
crease again due to the flexibility of the neural forms approach. A significant advantage
of ANDRe is the verification step to make sure that the solution is also useful outside
of the chosen training points. All this makes ANDRe a unique and conceptually useful
framework.

However, several questions remain open for future work. While there seems to be
a certain and natural correlation between the neural network and the numerical error,
in reality this correlation appears to be sometimes a sensitive issue. It is unclear yet,
whether some minima in the cost function energy landscape contribute better to the
numerical error, or not. However, we find the verification error to already serve as
a useful error indicator in ADNRe. In addition, we would like the numerical error
to proportionally correspond to the neural network verification. If we could manage
to achieve an improvement in the correlation between both errors or understand the
relation more in detail on the theoretical level, we think that the ANDRe approach can
perform even better in the future.

We also find relevant to further investigate the computational parameters and fine
tuning the parameter adjustment part of ANDRe. The verification step may be consid-
ered as a part in the optimisation process, to predict early, whether a further optimi-
sation in the corresponding subdomain is useful or a size reducing is mandatory. This
could lower the computational cost but has to be incorporated and tested carefully to
not lose any information during the optimisation process.

Since ANDRe represents an additional discretisation in time, the approach should
also work for PDEs with both time and spatial components and it appears natural to
extend in future work the method to multidimensional differential equations.

93

5 Discussion
With the intention of further investigating approaches from a numerical point of view,
the focus began to lay on two methods (TSM [13], mTSM [14, 15]) employing and
incorporating small neural network architectures and intuitive procedures to approach a
given differential equation with neural forms. Besides the solution approaches, different
first order optimisation methods (Adam [44], backpropagation [43]) have also been taken
into account.

The first steps for the research in that direction, were based on the question, how
both TSM and mTSM work and how stable these methods are with respect to pa-
rameter changes. That being said, the computational study in Section 2.4 investigated
the effects of varying parameters related to a stiff initial value problem and the used
feedforward neural network. At this point it is important to recall the focus on first
order optimisation methods (backpropagation and Adam) in this thesis. The quan-
tity of interest was set to be the numerical error. For most experiments, and separate
from testing neural network architecture configurations itself, a basic neural network
with one hidden layer with five neurons was incorporated. As an important result, it
turned out that the numerical error is highly dependent on the chosen parameters and
methods. That is, when testing the impact of the domain size on the solution, TSM
provided useful results on smaller domains, while failing to approximate the solution
on larger domains. The behaviour of mTSM was completely different and the domain
size did almost not affect the numerical error in a bad way. However, especially the
neural network weight initialisation turned out to be a sensitive topic. The differences
between the initialisation with deterministic values (pinit

deter) and random values (pinit
rnd)

were significant. While TSM did not provide any useful results with pinit
deter and the used

first order optimisation methods, mTSM has shown reliable results with both initialisa-
tion methods. Nonetheless, experiments on random weights with several computations
and otherwise unchanged parameter configurations revealed how sensitive this topic is.
Although pinit

rnd only has been altered in a small range, the resulting numerical error was
in some cases far away from being useful. This is a strong indication that the weight
space, or energy landscape, is very difficult in shape. Since the initial weights dictate
the starting point for the optimisation in the energy landscape, even minor changes
may significantly affect the gradient direction for the first order methods. Therefore
the trained neural network may provide results that can be considered as useful or not,
depending on the final location of the weights. However, in all the corresponding re-
sults, pinit

rnd did provide better results than pinit
deter. The overall best performance, in terms

of the lowest numerical error, came with mTSM, Adam and pinit
rnd. Nonetheless, when

considering additional computational numerical analysis, e.g. sensitivity, condition or
stability, one may want the outcome to remain unchanged in several computations and
not to depend on a good or poor initialisation with pinit

rnd. Therefore, after the com-
putational study, the next steps in research are dedicated to improve the numerical
results with the use of deterministic initial weights. Nonetheless, the comparison with
numerical methods like the Euler method, Runge-Kutta 4 or BFGS (second order opti-
misation) with Wolfe-Powell line search especially revealed the difficulty of combining
TSM and first order optimisation. Although BFGS was still behind Runge-Kutta 4, the
provided results were above both TSM and mTSM. So when making conclusions based
on the results from Section 2.4, the statements most likely only hold for the employed

94

first order optimisation methods.
Further research in that direction was documented in Section 3.3. While focusing on

IVPs, the classic neural form proposed by the authors of TSM [13] resembles a first order
polynomial in the domain variable. The incorporated neural network in this context
may remind of a non-constant polynomial coefficient. Therefore it arises naturally to
try to increase the polynomial order, including several (small) neural networks as the
function coefficients. The extension to collocation polynomial neural forms (CNFs)
incorporates, depending on the neural forms order, several neural networks of the same
architecture with unique sets of weights (in the trained state). However, although
the number of hidden layer neurons in total were now increased, the behaviour was
completely different to just increasing the number of neurons in the classic neural form,
as experiments in the previous experiments section have shown. Whereas the flexibility
now raised from the neural networks in combination with the domain variable and the
chosen polynomial order. Results have shown a significant increase in the reliability
of pinit

deter for TSM with a raise of the polynomial order. It turned out that one neural
network is not capable of having its weights adjusted in an adequate way to solve the
model IVP with TSM and first order optimisation. Now, several networks incorporated
in the CNF were capable of finding a suitable minimum with pinit

deter. Turning to mTSM,
expanding the approach to a polynomial representation was also possible but did barely
make any profit out of more then two neural networks. However, with one more neural
network incorporated, the numerical error was lowered for pinit

deter in some cases as well.
Deterministic initial weights in some cases even outperformed the random initialisation
regarding mTSM. However, even with the CNF extension, TSM still struggled to solve
the model problem on larger domains and a further improvement without more and
more complex neural network architectures was still a goal.

The unique construction characteristic of the TSM classic neural forms not only
resembles a first order polynomial for IVPs, but also directly embeds the given initial
value. Since the previous discussed results show that TSM works fine on smaller do-
mains, the provided solution at the last grid point of the domain may identify as a
new initial value for an adjacent domain. Therefore it appeared to be possible to split
the entire domain into subdomains with the domain segmentation approach. As men-
tioned above, each subdomain then provided a new initial value for the neighbouring
subdomain. That is, the subdomain collocation neural form (SCNF) was also intro-
duced in Section 3.3 and solved separately in each domain segment, from left to right.
Setting a computed value to be the starting point for the approximation in another
optimisation cycle may cause doubts at a first glance. From a numerical point of view,
a possible computation-related numerical error may accumulate over time, especially
when the initial value is already disturbed. However, a major strength of the neural
forms approach in general is that finding the optimal weights in each subdomain can
be independent to the already learned weights in the previous subdomain. Although
the constructed cost function did not change its appearance in different subdomains,
the different grid points incorporated may change the corresponding energy landscape.
Therefore the error in one subdomain can be unsatisfying, while in an adjacent one it
appears to be useful again. After initialising the neural networks with pinit

deter in each
domain fragment, the optimiser may find and follow a different and unique path in the
weight space. The results have shown that the CNF is not be able to approximate the
investigated example IVP on the given domain. Whereas the SCNF provided useful

95

results for both TSM, mTSM and pinit
deter, p

init
rnd. However, the domain segmentation ap-

proach may be more suitable for TSM than mTSM, since the latter has to learn the
new initial value in a supervised way. The results showed that directly incorporating
the initial value in the SCNF tended to work better. Nonetheless, for both approaches,
a very important result was that increasing the number of subdomains can lower the
numerical error significantly, especially for TSM. The latter result also showed that
pinit
deter now competes with pinit

rnd is several cases. Therefore, choosing the number of sub-
domains may replace the fine tuning of several other parameters, like the number of
hidden layer neurons or the number of training points. The final results for the domain
segmentation approach demonstrated another strength of the neural forms approach.
The cost function is able to take certain characteristics into account, simply by adding
them as additional terms. Therefore, e.g., systems with quadratic invariant expressions
can also be dealt with. This only requires additional terms in the cost function, but no
general rework in the approach.

If the numerical error decreases with an increasing number of subdomains, one may
consider to reverse this statement. That is, the research in Section 4.3 investigated
whether a certain, user defined, error bound can determine the necessary amount of
subdomains for the TSM SCNF. The results in this section in general lead to a frame-
work, combining the advantages of two well-known numerical concepts: adaptive mesh
refinement and domain decomposition. Therefore, the resulting framework was called
adaptive neural domain refinement (ANDRe), which feature two main components: (i)
an error indicator and (ii) an algorithm to manipulate the subdomains. The entire
solution domain can be split into domain fragments and certain subdomains can be
reduced in size until the error indicator meets a predefined error bound. ANDRe was
tested with different IVPs with interesting, yet difficult, characteristics and has shown
that the solution of IVPs not necessarily requires the subdomains to be distributed in an
equidistant way. The results indicated on a qualitative level a very good approximation.

Going further into detail on ANDRe, the error indicator was first related to the
training error, which is defined as the value returned by the cost function. The smaller
the training error, the better the learning problem may be solved. However, it turned
out that the numerical error and the training error may not be proportional to each
other. Moreover, details on the relation are yet unclear. Another cost function related
error was introduced, the verification error which evaluated the learned SCNF at grid
points intermediate to the training points. This is also a strategy to detect overfitting.
In Section 2.4, the behaviour of both errors are directly compared for a stiff model IVP.
Several local minima found by the optimiser share error values that do not lay in the
exact same range. Although the locations appear to be most of the time similar, the
training error often appears to be much smaller than the numerical error. In a next
step, the training error was eliminated as the main measurement metric and completely
replaced by the verification error in the ANDRe algorithm. However, the relation be-
tween the verification error and the numerical error also remains unclear. Sometimes
a very small verification error lead to a very small numerical error, other times this
statement did not hold. Right now this seems to limit the effectiveness of ANDRe,
although the framework has shown its capabilities. However, in its current state one
may simply choose a sufficiently high number of subdomains to receive useful approxi-
mations. Therefore, a further understanding of the energy landscape and therefore the
relation between both error values may significantly increase the reliability of ANDRe.

96

References
[1] M. Hanke-Bourgeois: Grundlagen der Numerischen Mathematik und des Wis-

senschaftlichen Rechnens, 2nd edition, Teubner Verlag / GWV Fachverlage GmbH,
Wiesbaden (2006). ISBN:3-8351-0090-4

[2] H.M. Antia: Numerical methods for scientists and engineers, 3rd edition, Hindustan
Book Agency, New Delhi (2012). doi:10.1007/978-93-86279-52-1

[3] E. Hairer, S.P. Nørsett, G. Wanner: Solving ordinary differential equations 1: non-
stiff problems, 2nd edition, Springer Series in Computational Mathematics, Springer-
Verlag, Berlin Heidelberg (1993). doi:10.1007/978-3-540-78862-1

[4] E. Hairer, G. Wanner: Solving ordinary differential equations 2: stiff and
differential-algebraic problems, 2nd edition. Springer Series in Computational Math-
ematics. Springer-Verlag, Berlin Heidelberg (1996). doi:10.1007/978-3-642-05221-7

[5] R. Courant, D. Hilbert: Methods of mathematical physics volume II: partial differ-
ential equations, 2nd edition. Wiley-VCH Verlag GmbH, Weinheim (1962). ISBN-13:
978-0-471-50439-9

[6] L.C. Evans: Partial differential equations, 2nd edition, American Mathematical
Society, Rhode Island (2010). ISBN:978-0821849743

[7] O.C. Zienkiewicz, R.L. Taylor, J.Z. Zhu: The finite element method: Its Basis
and Fundamentals, 7th edition, Elsevier Butterworth-Heinemann, Oxford (2013).
doi:10.1016/B978-1-85617-633-0.00019-8

[8] W. Bangerth, R. Rannacher: Adaptive finite element methods for differential equa-
tions, Lectures in Mathematics, Springer Basel AG, Basel (2003). doi:10.1007/978-
3-0348-7605-6

[9] M.J. Berger, J. Oliger: Adaptive mesh refinement for hyperbolic partial differ-
ential equations, Journal of Computational Physics, 53(3), pp. 484–512 (1984).
doi:10.1016/0021-9991(84)90073-1

[10] R. Verfürth: A posteriori error estimation and adaptive mesh-refinement tech-
niques, Journal of Computational and Applied Mathematics, 50(1), pp. 67–83 (1994).
doi:10.1016/0377-0427(94)90290-9

[11] K.E. Atkinson: An introduction to numerical analysis,2nd edition, John Wiley &
Sons, New York (1989). ISBN:978-0-471-62489-9

[12] R.L. Burden, J.D. Faires: Numerical analysis, 10th edition, Cengage Learning,
Boston (2015). ISBN:978-0-538-73351-9

[13] I.E. Lagaris, A.C. Likas, D.I. Fotiadis: Artificial neural networks for solving ordi-
nary and partial differential equations, IEEE Transactions on Neural Networks, 9.5,
pp. 987–1000 (1998). doi:10.1109/72.712178

97

[14] I.E. Lagaris, A.C. Likas, D.G. Papageorgiou: Neural-network methods for boundary
value problems with irregular boundaries, IEEE Transactions on Neural Networks,
11.5, pp. 1041–1049 (2000). doi:10.1109/72.870037

[15] M.L. Piscopo, M. Spannowsky, P. Waite: Solving differential equations with neural
networks: Applications to the calculation of cosmological phase transitions, Physical
Review D, 100.1, pp. 016002 (2019). doi:10.1103/PhysRevD.100.016002

[16] R.S.T. Lee: Artificial intelligence in daily life, Springer Nature Singapore Pte Ltd.,
Singapore (2020). ISBN:978-981-15-7694-2

[17] M. Koch: Artificial intelligence is becoming natural, Cell, 173.3, pp. 531–533
(2018).

[18] T.M. Brill, L. Munoz, R.J. Miller: Siri, Alexa, and other digital assistants: a study
of customer satisfaction with artificial intelligence applications, Journal of Marketing
Management, 35.15-16, pp. 1401–1436 (2019). doi:10.1080/0267257X.2019.1687571

[19] V.T. Minh, R. Khanna: Application of artificial intelligence in smart kitchen, Inter-
national Journal of Innovative Technology & Interdisciplinary Sciences, 1.1, pp. 1–8
(2019). doi:10.15157/IJITIS.2018.1.1.1-8

[20] N. Goksel-Canbek, M.E.. Mutlu: On the track of artificial intelligence: learning
with intelligent personal assistants, Journal of Human Sciences, 13.1, pp. 592–601
(2016).

[21] H. Chung, M. Iorga, J. Voas,S. Lee: Alexa, can I trust you?, IEEE Computer,
50.9, pp. 100–104 (2017). doi:10.1109/MC.2017.3571053

[22] N. Yadav, A. Yadav, M. Kumar: An introduction to neural network methods for
differential equations, SpringerBriefs in Applied Sciences and Technology, Heidelberg,
Berlin (2015). doi:10.1007/978-94-017-9816-7

[23] Y. Wu, J. Feng: Development and application of artificial neural network, Wireless
Personal Communications, 102, pp. 1645–1656 (2018). doi:10.1007/s11277-017-5224-
x

[24] B. Müller, J. Reinhardt, M.T. Strickland: Neural networks: an introduction, 2nd
edition, Springer-Verlag Berlin Heidelberg, Berlin, Heidelberg (1995). ISBN:3-540-
60207-0

[25] K.L. Priddy, P.E. Keller: Artificial neural networks: an introduction, SPIE press,
Bellingham (2005). ISBN:0-8194-5987-9

[26] W.S. McCulloch, W. Pitts: A logical calculus of the ideas immanent in
nervous activity, Bulletin of Mathematical Biophysics, 5, pp. 115–133 (1943).
doi:10.1007/BF02478259

[27] T.J. Sejnowski: The book of hebb, Neuron, 24.4, pp. 773–776 (1999).

[28] D.O. Hebb: The organization of behaviour: a neuropsychological theory, John Wi-
ley & Sons, New York (1949). doi:10.2307/1418888

98

[29] B. Widrow, M.E. Hoff: Adaptive switching circuits, Stanford Electronic Labora-
tory, Technical Report No. 1553-1, (1960).

[30] F. Rosenblatt: The Perceptron: a probabilistic model for information storage
and organization in the brain, Psychological Review, 65.6, pp. 386–408 (1958).
doi:10.1037/h0042519

[31] M.L. Minsky, S.A. Papert: Perceptrons: an introduction to computational geome-
try, The MIT Press, Cambridge (Massachusetts) (1969). ISBN:978-0-262-53477-2

[32] J.J. Hopfield: Neurons with graded response have collective computational proper-
ties like those of two-state neurons, Proceedings of the National Academy of Sciences,
81.10, pp. 3088–3092 (1984). doi:10.1073/pnas.81.10.3088

[33] M.M. Flood: The traveling-salesman problem, Operations Research, 4.1, pp. 61–75
(1956). doi:10.1287/opre.4.1.61

[34] J.J. Hopfield, D.W. Tank: “Neural” computation of decisions in optimization prob-
lems, Biological Cybernetics, 52, pp. 141–152 (1985). doi:10.1007/BF00339943

[35] D.E. Rumelhart, G.E. Hinton, R.J. Williams: Learning representations by back-
propagating errors, Nature, 323, pp. 533–536 (1986). doi:10.1038/323533a0

[36] G. Cybenko: Approximation by superpositions of a sigmoidal function, Mathemat-
ics of Control, Signals, and Systems, 2, pp. 303–314 (1989). doi:10.1007/BF02551274

[37] K. Hornik: Approximation capabilities of multilayer feedforward networks, Neural
Networks, 4.2, pp. 251–257 (1991). doi:10.1016/0893-6080(91)90009-T

[38] G.E. Hinton, S. Osindero, Y.W. Teh: A fast learning algorithm for deep belief nets,
Neural Computation, 18.7, pp. 1527–1554 (2006). doi:10.1162/neco.2006.18.7.1527

[39] S. Leijnen, F. van Veen: The neural network zoo, MDPI Proceedings, 47.1, pp. 1–6
(2020). doi:10.3390/proceedings2020047009

[40] K. Suzuki (Ed.): Artificial neural networks: architectures and applications, InTech,
Rijeka (2013). doi:10.5772/3409

[41] B. Mehlig: Machine learning with neural networks, arXiv:1901.05639, (2021).

[42] S. Sharma, S. Sharma, A. Athaiya: Activation functions in neural networks, Inter-
national Journal of Engineering Applied Sciences and Technology, 4.12, pp. 310–316
(2020).

[43] S.I. Amari: Backpropagation and stochastic gradient descent method, Neurocom-
puting, 5.4, pp. 185–196 (1993). doi:10.1016/0925-2312(93)90006-O

[44] D.P. Kingma, J. Ba: Adam: a method for stochastic optimization, arXiv:1412.6980,
(2017).

[45] S.S. Rao: Engineering Optimization: Theory and Practice, 5th edition, John Wiley
& Sons, Hoboken (2019). ISBN:978-1119454717

99

[46] M. Al-Baali, E. Spedicato, F. Maggioni: Broyden’s quasi-Newton methods for
a nonlinear system of equations and unconstrained optimization: a review and
open problems, Optimization Methods & Software, 29.5, pp. 937–954 (2014).
doi:10.1080/10556788.2013.856909

[47] T. Mikolov, G. Zweig: Context dependent recurrent neural network language model,
2012 IEEE Spoken Language Technology Workshop (SLT), pp. 234–239 (2012).
doi:10.1109/SLT.2012.6424228

[48] J.A. Leonard, M.A. Kramer: Radial basis function networks for classifying process
faults, IEEE Control Systems Magazine, 11.3, pp. 31–38 (1991). doi:10.1109/37.75576

[49] I. Rocco, R. Arandjelović, J. Sivic: Convolutional neural network architecture for
geometric matching, Proceedings of the IEEE conference on computer vision and
pattern recognition, pp. 6148–6157 (2017).

[50] W. Rawat, Z. Wang: Deep convolutional neural networks for image classifica-
tion: a comprehensive review, Neural Computation, 29.9, pp. 2352–2449 (2017).
doi:10.1162/neco_a_00990

[51] H. Lee, I.S. Kang: Neural algorithm for solving differential equations, Journal of
Computational Physics, 91.1, pp. 110–131 (1990). doi:10.1016/0021-9991(90)90007-N

[52] J.J. Hopfield: Neural networks and physical systems with emergent collective abil-
ities, Proceedings of the National Academy of Sciences, 79.8, pp. 2554–2558 (1982).
doi:10.1073/pnas.79.8.2554

[53] A.J. Meade Jr, A.A. Fernandez: The numerical solution of linear ordinary differ-
ential equations by feedforward neural networks, Mathematical and Computer Mod-
elling, 19.12, pp. 1–25 (1994). doi:10.1016/0895-7177(94)90095-7

[54] A.J. Meade Jr, A.A. Fernandez: Solution of nonlinear ordinary differential equa-
tions by feedforward neural networks, Mathematical and Computer Modelling, 20.9,
pp. 19–44 (1994). doi:10.1016/0895-7177(94)00160-X

[55] J.C. Butcher, G. Wanner: Runge-Kutta methods: some historical notes, Applied
Numerical Mathematics, 22, pp. 113–151 (1996). doi:10.1016/S0168-9274(96)00048-7

[56] P.L. Lagari, L.H. Tsoukalas, S. Safarkhani and I.E. Lagaris: Systematic construc-
tion of neural forms for solving partial differential equations inside rectangular do-
mains, subject to initial, boundary and interface conditions, International Journal on
Artificial Intelligence Tools, 29.5, pp. 1–10 (2020). doi:10.1142/S0218213020500098

[57] S. Mall, and S. Chakraverty: Chebychev neural network based model for solving
Lane-Emden type equations, Applied Mathematics and Computation, 247, pp. 100–
114 (2014). doi:10.1016/j.amc.2014.08.085

[58] S. Mall, and S. Chakraverty: Application of Legendre neural network for solving
ordinary differential equations, Applied Soft Computing, 43, pp. 347–356 (2016).
doi:10.1016/j.asoc.2015.10.069

100

[59] I.T. Famelis, V. Kaloutsa: Parameterized neural network training for the solution
of a class of stiff initial value systems, Neural Computing and Applications, 33,
pp. 3363—3370 (2021). doi:10.1007/s00521-020-05201-1

[60] T. Schneidereit, M. Breuß: Solving ordinary differential equations using artificial
neural networks - a study on the solution variance, Proceedings of the Conference
Algoritmy, pp. 21–30 (2020).

[61] C. Flamant, P. Protopapas, D. Sondak: Solving differential equations using neural
network solution bundles, arXiv:2006.14372, (2020).

[62] T. Schneidereit, M. Breuß: Polynomial neural forms using feedforward neural net-
works for solving differential equations, Artificial Intelligence and Soft Computing,
ICAISC 2021. Lecture Notes in Computer Science, 12854, pp. 236-245–30 (2021).
doi:10.1007/978-3-030-87986-0_21

[63] Y. Shirvany, M. Hayati, R. Moradian: Multilayer perceptron neural net-
works with novel unsupervised training method for numerical solution of the
partial differential equations, Applied Soft Computing, 9.1, pp. 20–29 (2009).
doI:10.1016/j.asoc.2008.02.003

[64] M. Raissi, P. Perdikaris, G.E. Karniadakis: Physics-informed neural networks: A
deep learning framework for solving forward and inverse problems involving nonlinear
partial differential equations, Journal of Computational Physics, 378, pp. 686–707
(2019). doi:10.1016/j.jcp.2018.10.045

[65] A.D. Jagtap, E. Kharazmi, G.E. Karniadakis: Conservative physics-informed neu-
ral networks on discrete domains for conservation laws: Applications to forward and
inverse problems, Computer Methods in Applied Mechanics and Engineering, 365,
pp. 113028 (2020). doi:10.1016/j.cma.2020.113028

[66] R.T.Q. Chen, Y. Rubanova, J. Bettencourt, D. Duvenaud: Neural ordinary differ-
ential equations, arXiv:1806.07366, (2018).

[67] L. Ruthotto, E. Haber: Deep neural networks motivated by partial differential
equations, Journal of Mathematical Imaging and Vision, 62, pp. 352-364 (2020).
doi:10.1007/s10851-019-00903-1

[68] Z. Long, Y. Lu, X. Ma, B. Dong: PDE-Net: learning PDEs from Data, Proceedings
of the 35th International Conference on Machine Learning, 80, pp. 3208–3216 (2018).

[69] M. Lin, Q. Chen, S. Yan: Network in Network, arXiv:1312.4400, (2013).

[70] Y.J. Wang, C.T. Lin: Runge-Kutta neural network for identification of dynamical
systems in high accuracy, IEEE Transactions on Neural Networks, 9.2, pp. 294–307
(1998). doi:10.1109/72.661124

[71] K. Rudd, S. Ferrari: A constrained integration (CINT) approach to solving partial
differential equations using artificial neural networks, Neurocomputing, 155, pp. 277–
285 (2015). doi:10.1016/j.neucom.2014.11.058

101

[72] V. Thomée: Galerkin finite element methods for parabolic problems, 2nd edition,
Springer-Verlaf Berlin Heidelberg, Berlin, Heidelberg (2007). ISBN:3-540-33121-2

[73] T. Alt, K. Schrader, M. Augustin, P. Peter, J. Weickert: Connections between
numerical algorithms for PDEs and neural networks, arXiv:2107.14742, (2021).

[74] J. Xie, L. Xu, E. Chen: Image denoising and inpainting with deep neural networks,
Advances in Neural Information Processing, pp. 341–349 (2012).

[75] T. Falk, D. Mai, R. Bensch, Ö. Çiçek,A. Abdulkadir, et al.: U-Net: deep learning
for cell counting, detection and morphometry, Nature Methods, 16, pp. 67–70 (2019).
doi:10.1038/s41592-018-0261-2

[76] S. Alfonzetti: A finite element mesh generator based on adaptive neural network,
IEEE Transactions on Magnetics, 34.5, pp. 3363–3366 (1998). doi:10.1109/20.717791

[77] J. Bohn, M. Feischl: Recurrent neural networks as optimal mesh refinement
strategies, Computers and Mathematics with Applications, 97, pp. 61–76 (2021).
doi:10.1016/j.camwa.2021.05.018

[78] L. Manevitz, A. Bitar, D. Givoli: Neural network time series forecasting
of finite-element mesh adaptation, Neurocomputing, 63, pp. 447–463 (2005).
doi:10.1016/j.neucom.2004.06.009

[79] M. Breuß, D. Dietrich: Fuzzy numerical schemes for hyperbolic differential equa-
tions, KI 2009: Advances in Artificial Intelligence, Lecture Notes in Computer Sci-
ence, Springer, Berlin, Heidelberg, 5803, pp. 419–426 (2009). doi:10.1007/978-3-642-
04617-9_53

[80] C. Anitescu, E. Atroshchenko, N. Alajlan, T. Rabczuk: Artificial neural network
methods for the solution of second order boundary value problems, Computers, Ma-
terials and Continua, 59.1, pp. 345–359 (2019). doi:10.32604/cmc.2019.06641

[81] T. Schneidereit, M. Breuß: Computational characteristics of feedforward neural
networks for solving a stiff differential equation, Neural Computing and Applications,
34, pp. 7975–7989 (2022). doi:10.1007/s00521-022-06901-6

[82] T. Schneidereit, M. Breuß: Collocation polynomial neural forms and domain
fragmentation for initial value problems, Neural Computing and Applications, 34,
pp. 7141–7156 (2022). doi:10.1007/s00521-021-06860-4

[83] T. Schneidereit, M. Breuß: Adaptive neural domain refinement for solving time-
dependent differential equations, Under review in: Advances in Continuous and Dis-
crete Models, arXiv:2112.12517, (2021).

[84] D. Nguyen, B. Widrow: Improving the learning speed of 2-layer neural networks
by choosing initial values of the adaptive weights, 1990 IJCNN International Joint
Conference on Neural Networks, 3, pp. 21–26 (1990). doi:10.1109/IJCNN.1990.137819

[85] V.V. Phansalkar, and P.S. Sastry: Analysis of the back-propagation algorithm
with momentum, IEEE Transactions on Neural Networks, 5.3, pp. 505–506 (1994).
doi:10.1109/72.286925

102

[86] Y. Kaneda, Q. Zhao, Y. Liu, Y. Pei: Strategies for determining effective step
size of the backpropagation algorithm for on-line learning, 7th International Confer-
ence of Soft Computing and Pattern Recognition (SoCPaR), pp. 155–160 (2015).
doi:10.1109/SOCPAR.2015.7492800

[87] J. Nocedal, S.J. Wright: Numerical optimization, 2nd edition, Springer Sci-
ence+Business Media, New York (2006). ISBN:978-0387-30303-1

[88] A. Frommer: Numerische Methoden der nichtlinearen Optimierung (engl. Numeri-
cal methods of nonlinear optimisation, lecture notes, Wuppertal (2004). LINK: http:
//www2.math.uni-wuppertal.de/%7Efrommer/manuscripts/NichtLinOpt.pdf
(last visited 01.02.2023)

[89] R. Reemtsen: Einführung in die nichtlineare Optimierung (engl. Introduction to
nonlinear optimisation, lecture notes, Hagen. LINK: https://www.fernuni-hagen.
de/mi/studium/module/pdf/Leseprobe-komplett_01221.pdf (last visited
01.02.2023)

[90] X. Glorot, Y. Bengio: Understanding the difficulty of training deep feedforward
neural networks, Proceedings of the 13th International Conference on Artificial Intel-
ligence and Statistics, 9, pp. 249–256 (2010).

[91] W.F. Schmidt, M.A. Kraaijveld, R.P.W. Duin: Feed forward neural networks with
random weights, International Conference on Pattern Recognition, IEEE Computer
Society Press, 9, pp. 1–4 (1992).

[92] R. Martí, J.A. Lozano, A. Mendiburu, L. Hernando: Multi-start methods, In:
Martí, R., Pardalos, P., Resende, M. (eds) Handbook of Heuristics, Springer Na-
ture, (1992). doi:10.1007/978-3-319-07124-4_1

[93] Y. Shang, B.W. Wah: Global optimization for neural network training, Computer,
29.3, pp. 45–54 (1996). doi:10.1109/2.485892

[94] R.G.. Regis, C.A. Shoemaker: A stochastic radial basis function method for the
global optimization of expensive functions, INFORMS Journal on Computing, 19.4,
pp. 497–509 (2007). doi:10.1287/ijoc.1060.0182

[95] N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever, R. Salakhutdinov: Dropout:
a simple way to prevent neural networks from overfitting, Journal of Machine Learning
Research, 15, pp. 1929-1958 (2014).

[96] D.M. Hawkins: The problem of overfitting, Journal of Chemical Information and
Computer Sciences, 44.1, pp. 1–12 (2004). doi:10.1021/ci0342472

[97] X. Ying: An overview of overfitting and its solutions, Journal of Physics: Confer-
ence Series, 1168.2, pp. 022022 (2019). doi:10.1088/1742-6596/1168/2/022022

[98] G.G. Dahlquist: G-stability is equivalent to A-stability, BIT Numerical Mathemat-
ics, 18.4, pp. 384–401 (1978).

103

http://www2.math.uni-wuppertal.de/%7Efrommer/manuscripts/NichtLinOpt.pdf
http://www2.math.uni-wuppertal.de/%7Efrommer/manuscripts/NichtLinOpt.pdf
https://www.fernuni-hagen.de/mi/studium/module/pdf/Leseprobe-komplett_01221.pdf
https://www.fernuni-hagen.de/mi/studium/module/pdf/Leseprobe-komplett_01221.pdf

[99] P. Nakkiran, G. Kaplun, Y. Bansal, T. Yang, B. Barak, et al.: Deep double descent:
where bigger models and more data hurt, Journal of Statistical Mechanics: Theory
and Experiment, 2021.12, pp. 124003 (2021).

[100] L. Prechelt: Automatic early stopping using cross validation: quantifying the cri-
teria, Neural Networks, 11.4, pp. 761–767 (1998). doi:10.1016/S0893-6080(98)00010-0

[101] L. Prechelt: Early Stopping — But When?, Neural Networks: Tricks of the Trade,
Lecture Notes in Computer Science, 7700, pp. 53–54 (2012). doi:10.1007/978-3-642-
35289-8_5

[102] M. Fernández-Redondo, C. Hernández-Espinosa: Weight initialization methods
for multilayer feedforward, ESANN, pp. 119–124 (2001).

[103] D.F. Griffiths, D.J. Higham: Numerical methods for ordinary differential equa-
tions, Springer-Verlag London Limited 2010, London (2010). doi:10.1007/978-0-
85729-148-6

[104] E. Hairer, C. Lubich, G. Wanner: Geometric numerical integration: structure-
preserving algorithms for ordinary differential equations, 2nd edition, Springer-Verlag
Berlin Heidelberg, Berlin, Heidelberg (2006). ISBN:3-540-30663-3

[105] E. Celledoni, R.I. McLachlan, D.I. McLaren, B. Owren et al.: Energy-preserving
Runge-Kutta methods, ESAIM: Mathematical Modelling and Numerical Analysis, 43,
pp. 645–649 (2009). doi:10.1051/m2an/2009020

[106] M. Woźniak, D. Połap: Hybrid neuro-heuristic methodology for simulation and
control of dynamic systems over time interval, Neural Networks, 93, pp. 45–56 (2017).
doi:10.1016/j.neunet.2017.04.013

[107] M.C. Anisiu: Lotka, Volterra and their model, Didáctica Mathematica, 32, pp. 9–
17 (2014).

104

	Introduction
	Motivation and contribution
	Literature review
	A brief historical overview
	Artificial neural network architectures
	First approaches using ANNs
	ANN approaches based on neural forms
	ANN approaches based on suitable cost functions
	DNN approaches for differential equations
	ANNs combined with numerical methods
	Mesh refinement strategies using ANNs

	Computational characteristics of neural forms approaches for solving initial value problems
	The feedforward neural network
	The neural forms approach
	Trial solution method (TSM)
	Modified trial solution method (mTSM)

	Optimisation, initialisation and evaluation
	Backpropagation, Adam and BFGS
	Weight initialisation
	Evaluation metrics and overfitting

	Computational results for TSM and mTSM
	TSM construction example
	Details on the experiments
	Experiment: weight initialisation
	Experiment: number of hidden layer neurons
	Experiment: number of hidden layers
	Experiment: number of epochs
	Experiment: stiffness parameter (part 1) and domain size (part 2)
	Experiment: optimisation methods
	Conclusion

	(Subdomain) Collocation polynomial neural forms for solving initial value problems
	The collocation neural forms approach
	The domain segmentation approach
	Computational results for CNF and SCNF
	Experiments on the collocation polynomial neural form (CNF)
	CNF Experiment: number of training epochs
	CNF Experiment: domain size variation
	CNF Experiment: number of training points variation

	Experiments on the subdomain polynomial collocation neural form (SCNF)
	SCNF Experiment: CNF versus SCNF
	SCNF Experiment: CNF order variation
	SCNF Experiment: number of subdomain variation
	SCNF Experiment: numerical error in the subdomains
	SCNF Experiment: system of initial value problems
	Comparison with numerical methods
	Conclusion

	ANDRe: adaptive neural domain refinement for solving initial value problems
	Algorithm summary
	ANDRe Flowchart explanation
	Computational results for ANDRe
	Details on parameters and measurement metrics
	Details on parameter adjustment
	The evaluation of ANDRe for different initial value problems
	ANDRe and the analytical solutions
	Numerical and neural network errors
	Method and parameter evaluation
	Comparison with numerical methods
	Conclusion

	Discussion

