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Abstract

Multi- and manycore processors promise to combine high overall peak performance with
moderate power consumption to meet the constantly growing demand for computational
power under the energy constraints of today’s CMOS technology. Future systems with
manycore processors are expected to contain a huge amount of cores, which exceeds the
number of processes that will run simultaneously. Consequently, processor time sharing
approaches, that introduce significant overhead from regular context switches in common
Operating Systems, will no longer be necessary.

This work investigates mechanisms for scalable and energy-efficient spatial partitioning of
multi- and manycore processor systems. In addition, it explores the implications of exclusive
processor core allocation to user processes due to the absence of temporal multiplexing and
offers approaches to ease the adaptation to the new programming model.

The proposed mechanisms achieved fast thread allocation which motivates applications
for dynamic thread allocation and benefits performance as well as energy efficiency. The
efficiency control and resource revocation mechanisms detect and prevent wasteful and
inefficient resource occupation from poorly optimized or malicious processes. In this way, the
global efficiency of the system is optimized. The dynamic processing resource allocation and
revocation handling has been integrated into a task parallel runtime system, to disburden
the application programmer from manual implementation and to increase productivity.
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Zusammenfassung

Mehrkern- und Vielkernprozessoren versprechen eine hohe Spitzenrechenleistung bei mode-
ratem Stromverbrauch, um den ständig wachsenden Bedarf nach Rechenleistung mit den
Energiebeschränkungen der heutigen CMOS-Technologie zu erfüllen. Es wird erwartet, dass
zukünftige Systeme mit Vielkernprozessoren eine riesige Anzahl von Rechenkernen enthalten
werden, welche die Anzahl der gleichzeitig laufenden Prozesse übersteigt. Folglich werden
Ansätze für das zeitliche Multiplexing der Prozessoren, die in bestehenden Betriebssyste-
men erhebliche Kosten durch regelmäßige Kontextwechsel verursachen, nicht mehr zwingend
erforderlich sein.

Diese Arbeit untersucht Mechanismen für eine skalierbare und energieeffiziente räumliche
Partitionierung von Mehrkern- und Vielkernprozessorsystemen. Darüber hinaus werden die
Auswirkungen der exklusiven Prozessorkernzuweisung, aufgrund des fehlenden zeitlichen
Multiplexings, für den Benutzer untersucht und Ansätze zur Erleichterung der Anpassung an
das neue Programmiermodell angeboten.

Die entwickelten Mechanismen erreichen eine schnelle Threadallokation, die Anwendungen
zur dynamischen Ressourcenbelegung motiviert und damit sowohl die Rechenleistung als
auch die Energieeffizienz erhöht. Die Mechanismen zur Effizienzkontrolle und zum Entzug
von Ressourcen erkennen und verhindern eine verschwenderische und ineffiziente Ressourcen-
belegung durch schlecht optimierte oder bösartige Prozesse. Auf diese Weise wird die globale
Effizienz des Systems verbessert. Die dynamische Belegung von Rechenressourcen und die
Behandlung von Ressourcelimitierungen wurden in ein aufgabenparalleles Laufzeitsystem
integriert, um Anwendungsprogrammierer von der manuellen Implementierung zu entlasten
und die Produktivität zu steigern.
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CHAPTER 1

Introduction

For decades, the microprocessor industry has been committed to the continuous improvement
of single-core processors by increasing clock frequency and core sophistication to maximize
serial performance. Due to the enormous requirements in die area for more and more complex
cores and constraints in power consumption, which are limited by the chip’s heat density, the
industry responded by halting increases in core sophistication and clock rate improvements.
Instead, multiple processor cores are integrated into a single chip, producing a multi- or
manycore processor to achieve higher overall peak performance without increasing power
consumption and complexity of every single core. In this manner, the energy efficiency in
form of computation per watt can be improved by scaling the energy consumption linearly
with the number of cores instead of exponentially with the frequency and voltage. Thereby,
the former trend of integrating a huge amount of simple in-order cores in a manycore processor
went to a smaller but increasing number of more complex and powerful out-of-order cores.
So, not only do today’s large-scale supercomputers and cloud computers already contain
tens to hundreds of cores per socket, but also mobile and Internet of Things (IoT) devices
accommodate an increasing number of processor cores[54, 107]. However, future processors
are expected to contain a much larger number of cores.

In order to take full advantage of the potential of a multi- or manycore processor, applications
need to divide their work and employ multiple threads in parallel to process a problem cooper-
atively. Parallel runtime systems ease the development of parallel applications, because they
implement the basic functionality of the parallel execution model, for example, taskification,
synchronization, work distribution, and work balancing.

Usually, parallel programs operate in multiple phases with variations in parallel work that
can be executed concurrently. So, a single process is usually not able to keep all cores of a
manycore processor fully utilized to derive the highest potential benefit from the available
hardware. That is why multiple programs have to be executed in parallel. Due to process
isolation, the programs are functionally not affecting each other. To overlap input and output
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1.1 Problem Statement

latencies and phases with low parallelism, the number of threads of all processes must be
greater than than the number of processor cores.

The management of the available processor cores as a hardware resource is a typical task
of the Operating System (OS). The process scheduler, as a part of the OS, has to decide
which process thread to run on which processor core at which time. In order to approach
specific optimization goals like throughput, fairness, or response time, the scheduler regularly
switches the execution between multiple threads on a core, when the number of threads
exceeds the number of cores available. This is called time sharing[32].

1.1 Problem Statement

The development of multi- and manycore processors were driven by the constantly growing
demand for computational power. In addition to acquisition costs, energy consumption is one
of the major cost factors in the operation of computing systems. The maximum performance
of processors is limited both by the amount of energy available and by the dissipation of
power loss in the form of thermal energy. Therefore, users have an interest in obtaining
the highest possible ratio of computing work per energy input. Due to the breakdown of
Dennard Scaling[24], only fractions of the integrated circuits of those processors can be active
at the full frequency at any given time without violating Thermal Design Power (TDP)
constraints. Dark Silicon[33, 100] refers to the amount of circuitry that is powered off in
order to meet the given power constraints. The Operating System-directed Configuration and
Power Management (OSPM) is responsible for managing processor power consumption and
systematically putting unused cores to sleep to save energy and boost active cores. Thereby,
choosing the right idle sleep depth means a trade-off between energy savings and wake-up
latency when needed again[18, 23].

Parallel applications try to improve their performance by using multiple threads solving
problems cooperatively. Unfortunately, creating and starting a new thread is an expensive
procedure when using existing OSs. Repeating this process every time a new task is produced
results in significant performance degradation, which contradicts the reason for using multiple
threads. In order to mitigate this performance loss, common parallel runtime systems try to
reduce the number of threads to be created by building and maintaining static thread pools
instead of dynamically creating and destroying them. Accordingly, threads are created and
kept in the thread pool until they are needed. After finishing a task, they are returned to the
thread pool to be used again later[37, 22]. This behavior hides the dynamics in the application
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parallelism from the OS and, thus, complicates the resource and power management of the
OS.

Today’s OSs still rely on processes as an abstraction for running programs to simulate exclusive
access to all processor resources. The processes abstraction was originally introduced in the
single-core era to provide pseudo concurrent execution and overlap latency of input and output
operations when there is only one processor available. Hence, each process perceives its own
virtual processor that is realized using time-division multiplexing of the processor where it is
quickly switching between processes, running each for tens to hundreds of milliseconds[96]. In
today’s systems, offering real hardware parallelism due to multiple processor cores, processes
are still in use although they can now be executed fully concurrently. A process can include
multiple software threads that have an individual control flow but share the same address
space and might be executed in parallel as well. However, processes on common OSs are still
agnostic to the processor utilization and, therefore, tend to create more threads than free cores
available. This leads to oversubscription of the processor cores which is still handled using
preemptive scheduling that requires regular context switches[115]. Those context switches
do not come for free. The direct overhead of a process context switch includes entering the
kernel mode, switching the kernel stack, saving the old thread state, loading the new data
into the registers, switching the address space, and refreshing the Translation Lookaside
Buffer (TLB). Additionally, indirect overhead arises due to missing hotness of the TLB and
all levels of caches which slows down the execution of the new process after switching. While
the direct overhead takes about tens of processor cycles, the indirect costs can be much
higher but are heavily dependent on the hardware platform, application behavior, and data
set size[72, 99]. Hence, frequent context switches introduce significant overhead to the actual
productive work.

Research OSs with a focus on manycore processors propose to follow the one-thread-per-core
execution model[67, 86], where a multi-threaded process can allocate multiple cores, but a
core is always allocated exclusively to only a single process. So, frequent context switches,
including their overheads, are avoided and scheduling complexity can be reduced which
benefits the scalability of the scheduling algorithm. Since the overall number of threads of all
processes becomes limited to the number of cores in the system, thread allocation requests
might fail, which requires all applications to act resource-aware. However, these research
OSs do not focus on energy efficiency and thermal interdependency between all cores of the
same processor socket. Furthermore, they lack dark-silicon management and require offline
performance analyzes or specialized hardware for application profiling in order to rebalance
resource allocation. Preemptive resource revocation is not supported.
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1.3 Structure of this Thesis

When following the one-thread-per-core model, keeping temporally unused threads in pools
blocks the associated cores from doing any productive work. Hence, common parallel runtime
systems are not suitable for such resource-aware environments, because they do neither
dynamically express the applications parallelism profile to OS nor are they able to deal with
limited resources or resource revocation.

1.2 Main Contributions

This thesis made several research contributions in the field of energy-efficient resource manage-
ment on multi- and manycore processor systems. It introduces a scalable processing resource
management mechanism that improves energy efficiency compared to Linux. Therefore, it
follows the one-thread-per-core execution model to avoid the overhead of regular context
switches and systematically puts unused cores, considering the actual hardware topology, into
a specific sleep state to reduce energy consumption and accelerate active cores. Additionally,
the core allocation latency is reduced to motivate the runtime system to pass the application’s
dynamics in parallelism using dynamic core allocation and deallocated instead of thread
pools.

This thesis introduces a resource revocation mechanism allowing asynchronous deprivation
of cores that are already allocated to processes but do not meet the global requirements
for energy efficiency with their utilization. As a basis for the dynamic resource balancing
decisions, an online application profiling mechanism, that uses hardware performance counter
and a proof-of-concept balancing strategy are introduced as well.

State-of-the-art parallel runtime systems are neither able to handle limited resources nor
resource revocation. Hence, a concept for adapting existing parallel runtime systems to
behave malleable and handle resource revocation is introduced and exemplarily integrated
into Intel Threading Building Blocks (TBB).

1.3 Structure of this Thesis

The remainder of this dissertation is outlined as follows. The second chapter presents an
overview of the architecture and properties of multi- and manycore processors and how
their power consumption can be controlled by the OS. Additionally, the processor resource
management of existing OSs and parallel runtime systems are examined. In Chapter 3,
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requirements and design aspects for the scalable and energy-efficient organization of processing
resources in the OS, mechanisms for core allocation and redistribution based on application
profiling, and resource-aware thread management for task-based parallel runtime systems
are discussed and concepts derived. Chapter 4 presents the integration of the developed
resource management mechanism and application profiling into Many Threads Operating
System (MyThOS) as well as the adaptation of a parallel runtime system in order to meet
the requirements of malleable applications on the example of TBB. The benefits of resource-
aware applications combined with hierarchical processor management are evaluated and the
limitations are critically examined in Chapter 5. Chapter 6 summarizes the contributions of
this thesis and gives an outlook on future work.
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CHAPTER 2

Background

The goal of this thesis is to investigate scalable and energy-efficient processor resource
management mechanisms for multi- and manycore processor systems. Therefore, this chapter
examines the architecture and power management infrastructure of existing multi- and
manycore processors. After that, processor resource management mechanisms of state-of-
the-art OSs and approaches for online application profiling are analyzed. Finally, thread
management in common parallel runtime systems is presented.

2.1 Multi and Manycore Architectures

Due to limits in power density, the microprocessor industry has stopped trying to just steadily
increase single-core performance. Instead, multiple processor cores are integrated into a
single chip to improve the overall performance without increasing the power consumption.
Multi-core processors correspond to this approach but do only contain a few but complex
cores. They still provide a high single-core performance so that a good performance can be
gained even with moderate parallelism of the application. Manycore processors do not only
contain more, but generally simpler cores and aim for power efficiency. The lower single-core
performance needs to be compensated with massive parallelism. However, a clear distinction
between multi- and manycore is difficult to make for recent processors because they include a
high number of complex cores with good single-core performance. Nevertheless, there are
multiple properties that allow a further classification of multi- and manycore processors.
The following section examines the difference based on the core composition, multithreading
support, Tiling, and Network on a Chip (NoC) topology. Multiple processor examples and
their classifications are given in table 2.1.
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2.1 Multi and Manycore Architectures

Name Cores Composition Multithreading Tiling NoC topology Release
AMD EPYC 7003 64 homogeneous 2 way SMT eight cores per tile star1 2021
Intel Xeon Gold 6200 28 homogeneous 2 way SMT one core per tile 2D mesh 2020
Intel Xeon Phi 7200 72 homogeneous 4 way SMT two cores per tile 2D mesh 2016
Intel Xeon Phi 7100 61 homogeneous 4 way SMT one core per tile bi-directional ring 2013
Mellanox TILE-Gx72 72 homogeneous - one core per tile 2D mesh 2013
UltraSPARC T1 8 homogeneous 4 way interleaved one core per tile crossbar 2005

Table 2.1: Examples for multi- and manycore processors[20, 21, 56, 58, 62, 69, 102]

2.1.1 Core Composition

Multi- and manycore processors can be categorized by the composition of processing cores[77].
Homogeneous processors include a collection of identical cores. This simplifies hardware
design, verification, and implementation as well as software development. Due to the end of
Dennard scaling[24], that stated that the energy consumption per chip area stays constant
even if the transistors get smaller and the number of transistors per area increases, the power
density became the limiting factor for processor performance. This causes the dark silicon
effect[33] so that not all transistors can be used at the same time and some areas of the chip
remain dark. To counteract this effect, heterogenous processors integrate a mix of processing
cores that differ in the power and performance characteristics or functionality. So, a task can
be executed on the most suitable processor core with comparatively high performance and
low energy consumption.

2.1.2 Multithreading

Hardware multithreading is the capability of a compute core to process multiple threads of
execution concurrently. There are different types of hardware multithreading: Temporal mul-
tithreading and Simultaneous Multithreading (SMT)[12, 69, 93, 98]. These and their subtypes
are explained in the following section and are illustrated in figure 2.1 for comparison.

Temporal Multithreading In temporal multithreading only instructions of one thread can
be executed at a time and the processor core regularly switches between multiple threads.
Hence, it is also called time-sliced or vertical multithreading. It is used to improve throughput

1Up to eight compute cores form a Core Complex (CCX) and share one last level cache. Each CCX is
contained within a single die, called Core Complex Die (CCD). The individual CCDs are directly connected
to the central I/O Die (IOD) over Global Memory Interconnect (GMI) and Infinity Fabric. The IOD
connects all dies and contains the memory controllers as well as other Input and Output (I/O) devices[56,
58].
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Figure 2.1: Hardware multithreading types

by hiding memory latency. There are two variations of temporal multithreading. In the case
of Coarse-grain Multithreading (CGMT), a thread has full use of the core resources until
a long-latency event like a memory stall occurs. In this case, the core switches to another
thread in order to bridge the latency. This introduces overhead for the context switch that
requires a flush of the instruction pipeline. Therefore, a context switch is only performed
when the event is expected to exceed a certain latency. Fine-grain Multithreading (FGMT)
(also called interleaved multithreading) switches between threads with a more fine granularity
which happens typically at an instruction cycle boundary. A selection policy allocates the
processor resources to threads that are currently ready and therefore not blocked due to
memory stalls. In order to minimize switching costs, processors with fine-grain multithreading
include special logic for thread switching.

Simultaneous Multithreading SMT schedules instructions from multiple threads on different
functional units of a processor at the same cycle and is also called horizontal multithreading. It
was introduced to improve the utilization of shared functional units in superscalar processors.
However, SMT is also used to hide memory latency and increase throughput as well as
energy efficiency. SMT has additional hardware costs compared to interleaved multithreading,
because each pipeline stage has to track the corresponding thread identifier. The register set
for the architectural state is duplicated for each individual thread, but the duplication of
other components is processor-specific. Depending on the processor design and application,
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2.1 Multi and Manycore Architectures

SMT might decrease the performance if shared resources like Floating Point Unit (FPU),
TLB, or caches become bottlenecks.

2.1.3 Tiling

Processors can be clustered into tiles where each tile contains a set of cores, a local cache
that is accessed via a shared bus, and one NoC router or switch to communicate with other
tiles. An example is given in figure 2.2.

Putting all cores of a multi- or manycore processor into a single tile promises a simple
hardware implementation because a NoC is not needed but suffers from limited scalability of
the shared memory bus. In contrast, putting each core into an individual tile requires the
most additional die area for NoC interconnection but is most flexible and scalable in the
number of cores that can be attached by just adding more tiles to the NoC[101, 114].
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Figure 2.2: Example of processor tiling architecture with four tiles containing four cores and a local
cache each. All tiles, memory, and IO devices are connected via NoC
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2.1.4 NoC Topology

Multi- and manycore processors can also be divided by the underlying Network on a Chip
(NoC) topology that connects the tiles, memory, and I/O devices. Thereby, they form the
foundation for communication between those individual components while each topology has
its own characteristics. Choosing a NoC topology means making a trade-off to meet the
chip area, complexity, latency, scalability, and power constraints. As depicted in figure 2.3,
common topologies are, for example mesh, ring, star, bus, and tree.

(a) Mesh (b) Ring (c) Star

(d) Bus (e) Tree

Figure 2.3: Examples of Network on a Chip topologies

2.2 Dynamic Power Management in Multi- and Manycore
Processors

Multi- and manycore processors increase the overall peak performance and consume less
energy than systems in which each processor has its own physical chip. Due to dark silicon,
not all circuitry of those processors can be permanently active at the full frequency and the
performance is therefore tightly coupled to the available energy budget. Hence, this section
examines the sources of power dissipation and the capabilities to regulate it during runtime.
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2.2 Dynamic Power Management in Multi- and Manycore Processors

2.2.1 Energy Dissipation in CMOS Processors

Energy consumption is a significant criterion when designing integrated circuits. It is limited
by the capabilities of the power supply and current requirements as well as the cooling
capacity of the heat sink. When examining the energy consumption of processors, one has to
think about the energy consumption of integrated circuits using Complementary Metal Oxid
Semiconductor (CMOS) technology, because it has been the standard technology for the last
five decades[111].

The total power consumption in CMOS technology arises from several sources. Therefore, it
can be divided into static and dynamic components[61]. Static power consumption occurs
when all inputs of a circuit are held at some constant level and is caused by leakage current
due to parasitic diodes in the CMOS circuit. It increases with the supply voltage. Dynamic
power consumption only occurs when switching between logical states in the circuit and
consists of transient power consumption and capacitive-load power consumption. It contributes
a major portion of the overall power consumption and scales linearly with the switching
frequency and the supply voltage squared. Hence, performance improvements by frequency
increase, and consequently an increase of the supply voltage as well in order to meet timing
requirements, scale sublinearly to the power dissipation. Further explanation can be found in
the appendix A.

2.2.2 Dynamic Power Consumption Reduction Techniques

In order to understand how the operating system can optimize the processor’s energy
consumption, this section examines existing mechanisms to dynamically influence the power
dissipation during runtime[82].

Power Gating The most effective method for reducing power dissipation is to shut down
currently unused blocks of the circuit by switching off the power supply. This technique is
called power gating and prevents not only dynamic but also the static power dissipation,
because it inhibits leakage current of unused but powered circuits. Although the benefits
of high energy savings are promising, this technique requires additional logic to the circuit
for power management and might cause increased time delays for entering and exiting
power-saving states.
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Clock Gating A second power reduction technique is clock gating. In contrast to power
gating, it only avoids dynamic power dissipation by pruning the clock tree which prevents state
transition in a specific block of the circuit. The leakage current of static power consumption
remains and it requires additional logic for controlling the clock tree in the circuit.

Dynamic Frequency and Voltage Scaling The dynamic power consumption of CMOS-based
processors increases quadratically with the supply voltage and linearly with the clock frequency.
Instead of completely disabling a functional unit in the circuit, the power dissipation can
be regulated by dynamically adjusting the clock frequency and supply voltage. Lowering
the supply voltage (undervolting) promises the greatest energy savings but increases the
time required to charge and discharge the capacitances in the circuit leading to slower
operations. Therefore, the clock frequency needs to be adjusted to match the supply voltage
in order to guarantee timing requirements. Decreasing the clock frequency (underclocking)
directly reduces the dynamic power consumption linearly and also enables undervolting by
being able to tolerate extended operation delays. When the maximum computing power
is required, the opposite operation is also possible. Therefore, as long as the energy and
cooling budget allow it, the clock frequency (overclocking) and supply voltage (overvolting)
can temporarily be increased to boost the execution of the processor. Dynamic voltage
and frequency scaling requires sophisticated hardware support which increases a processor’s
complexity. Additionally, the voltage and clock frequency will only be adjusted with a certain
delay to fluctuating performance requirements.

2.2.3 Processor Power Management from the Operating System’s Perspective

Today’s CMOS-based processors offer mechanisms to adjust the power consumption according
to the current performance requirements. However, the processor lacks knowledge about the
process schedule and performance, and energy requirements of the user. This knowledge is
essential when deciding whether or not to enter a specific power optimization state because
state transitions introduce extra delay and consume energy by themselves as well. The
operating system is responsible for process scheduling and is therefore aware of the near-
future processor utilization. In addition, it might include own power management strategies
and accept performance hints from the user. For this reason, the power reduction mechanisms
of the processor are partly made controllable by software, especially the operating system.
Modern processors offer multiple interfaces for operating the power management hardware.
This section provides a brief overview of the most common ones.
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2.2 Dynamic Power Management in Multi- and Manycore Processors

Performance-States (P-States) Modern Central Processing Units (CPUs) include mecha-
nisms to monitor thermal conditions and control power consumption. P-states [18, 57, 59] are
operational performance states that allow switching between multiple voltage-frequency pairs
while the processor is actively executing instructions. They are defined as performance states
in the Advanced Configuration and Power Interface (ACPI)[60]. The performance increases
with frequency and power consumption which is realized as frequency and voltage scaling in
the processor’s CMOS circuits.

P-states can be changed in up to 16 P-states from P0 to P15 where P0 is the highest
power/performance state which enables the highest possible frequency and each ascending P-
state number represents lower power, lower performance state. The operating system controls
P-state per core by accessing specific control, status, and limit registers in order to reduce the
peak thermal load and save power. Hardware may limit P-states due to interdependencies
between cores that affect the P-state (e.g. thermal constraints). Latest Intel CPUs offer
support for Hardware-Controlled Performance States (HWP). This technology is referred
to as Intel Speed Step or Intel Speed Shift[18, 20]. When activated, the operating system
is allowed to give hints about performance preferences, but the actual P-state control is
performed by the hardware autonomously.

CPU Idle States (C-States) C-states [18, 23] are, unlike P-states, idle power-saving states
which are used to shut down parts of the processor when unused. They are typically imple-
mented using clock-gating and power-gating of individual functional units of the processor.

ACPI[60] defines a set of four logical C-states C0 to C3 where a higher number refers to
a deeper sleep state with lower power consumption and potentially higher wakeup latency.
Those logical sleep states do not necessarily refer to hardware C-states because the mapping
is processor-specific. From a hardware perspective, we differentiate two types of C-states:
core level CC-states and package level PC-states. Core level CC-states are used to shut down
parts of individual cores. Only the CC-states can directly be influenced by the operating
system. Entering those idle states can either be done using the ACPI interface or using
a set of hardware specific instructions. An overview about CPU instructions for entering
idle states is provided in appendix B. Each processor core might contain multiple hardware
threads. Therefore, the CC-state of a core equals the lowest (not the deepest) C-state
of all threads on this core. The number of available CC-states is hardware specific, but
recent Intel processors specify idle states from CC0 to CC10 where some include substates[17]:
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CC0 is the active state where the core is executing code at normal frequency and thus not
an actual idle power-saving state.
CC1/CC1E is the least deep idle state leading to the lowest energy savings and wakeup
latency. The core is halted and most clocks are stopped. Substate CC1E allows the package
to throttle the core’s frequency and voltage.
CC2 is only a temporary intermediate state before entering deeper sleep states.
CC3 flushes the core local first-level data and instruction cache as well as the second-level
cache to the shared Last-Level Cache (LLC).
CC4 and CC5 are only temporary intermediate states before entering deeper sleep states.
CC6 saves the cores state to a dedicated Static Random-Access Memory (SRAM) and
power-gates the core after completion. The core state will be automatically restored when
exiting the sleep state.
CC7 - CC10 behave similar to CC6, but allow the package to enter a deeper PC-state

Package level C-states (PC-states) are able to shut down the circuits that support and
connect the individual cores. The PC-state is limited to the lowest CC-state among all cores
it contains and cannot explicitly be requested by the operating system. In order to enter a
PC-state higher than PC0, all hardware threads and cores must be in an idle state. Intel
mentions package level sleep states from PC0 to PC10 but not all states are defined:

PC0 is the active state where at least one core is executing code or did not enter a CC-state
higher than CC1. In addition, the platform configuration might prohibit entering a package
level low-power state.
PC1/PC1E is the least deep package idle state. In PC1, no additional power reduction
actions are initiated. In substate PC1E throttles the cores frequency and voltage to a
minimum.
PC2 is entered if all cores have requested CC3 or deeper idle states, but constraints like a
programmed timer in the near future or outstanding memory requests prevent the package
from entering a deeper PC-state.
PC3 might flush and power of the LLC. Most Uncore clocks are stopped and Uncore voltages
are reduced.
PC6 saves the core states before they are shut down and the Phase-Locked Loop (PLL) is
turned off.
PC7 behaves similar to PC6 but the LLC might get flushed.
PC8 equals CC7 but the LLC must be flushed and powered off.
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2.3 Operating System Processor Allocation

PC9 equals CC8 but most uncore devices, except input and output devices, are power-gated.
PC10 equals CC9 but the voltage regulators are in an optimized state (low power mode).

2.2.4 Dynamic Performance Boosting

The dynamic usage of performance states and idle states allows to build up headroom in
power in the form of saved energy and thermal capacity. The processor monitors its activity
and estimates the power consumption. If the power consumption is below the internally
defined capacity of the hardware, it can be used to increase the performance in means of
voltage and frequency of single cores for short periods of time without exceeding design
limits. Examples for this technology are AMD Core Performance Boost[57] and Intel Turbo
Boost[18]

2.3 Operating System Processor Allocation

The available processors of a computer system must be made accessible for user applications
in order to do useful work. This is one type of resource management for which the OS
is responsible. Therefore, it needs to fulfill two requirements. At first, it must provide
an abstract representation of the actual hardware to increase the programmability and
portability of the user application and, secondly, it must control the allocation of system
resources to ensure the correct execution of the applications while maximizing the efficiency
of the overall system. In order to take advantage of the high peak performance of multi-
and manycore processors, multiprogramming has to be applied, because a single sequential
application is not able to utilize numerous cores simultaneously. Multiprogramming can
either be realized using inter-program parallelism, intra-program parallelism, or a combination
of both. Inter-program parallelism denotes the parallel execution of multiple sequential
applications, whereas intra-program parallelism terms the sequential execution of parallel
programs[45]. This work applies a combination of both to meet the increasing number of
available cores of future processors. The allocation of processing resources to applications
depends on many criteria which are discussed in the following. Afterwards, examples for
processing resource management in existing OSs are investigated.
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2.3.1 Intra-Program Scalability

Intra-program parallelism as a kind of multiprogramming is one way to utilize the high
parallel peak performance of multi- and manycore processors. The number of processing
elements in future processors is expected to further increase, but parallel applications are
possibly not able to benefit from even more resources[54]. Hence, when assuming an infinite
amount of processing resources, what would be the optimal number of processors for an
application? This question is investigated in the following.

Amdahl’s Law In 1967, Gene Amdahl[3] emphasized that single computer systems reached
their limits in computational power and that, in order to significantly accelerate the execution
of applications to real problems, multiple computers need to be connected to permit a
cooperative solution. He also noted that the speedup in the runtime of these applications does
not scale linearly with the number of compute nodes used and concluded that the speedup is
limited by the sequential part of an application.

According to Amdahl, an application with a fixed problem size can always be divided
into a parallel part (Pparallel) and a sequential part (Psequential), so that applies Pparallel +
Psequential = 1. Therefore, the total runtime T equals the sum of the runtime of the sequential
part Tsequential and the runtime of the parallel part Tparallel. The speedup of the parallel part
(Pparallel) is assumed to scale linearly with a number of processing units (n) applied to it
while the time required to execute the sequential part (Psequential) remains constant. Based
on this assumption, a model for the expected application speedup depending on the parallel
portion and the number of applied processing units is made:

T = Tsequential + Tparallel (2.1)

Speedup = T (1)
T (n) = T (1)

Tsequential + Tparallel

n

= 1
Psequential + Pparallel

n

(2.2)

Therefore, he concludes that the portion of sequential work limits the performance of highly
parallel processing. Figure 2.4a shows the expected speedup in runtime for an application
with a parallel portion of 50%, 75%, 90%, and 95% that is executed on up to 4096 processing
units.

Gustafson’s Law In 1988, John Gustafson[46] expressed skepticism about Amdahl’s Law
and that the maximum speedup of an application is only 1

Psequential
, even for an unlimited
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2.3 Operating System Processor Allocation

(a) Scalability in runtime with fixed problem size
depending on the portion of parallel work according
to Amdahl’s Law[3]

(b) Scalability in problem size with fixed runtime
depending on the portion of parallel work according
to Gustafson’s Law[46]

Figure 2.4: Application speedup models

number of processing units. He also mentioned that in practice, one would not run a fixed-size
problem on machines with a various number of processing units. Instead, the problem size
generally expands in order to make use of the additional resources, which increases the
parallel portion, because sequential work like initialization is only done once. Therefore, not
the problem size, but the runtime is assumed to be constant when estimating the speedup.
Figure 2.4b shows the scaled speedup in the problem size for a fixed runtime depending on
the parallel portion of an application. The scaled speedup calculates as follows:

Speedupscaled = Psequential + Pparallel ∗ n

Psequential + Pparallel
= n + (1 − n) ∗ Psequential (2.3)

Amdahl’s Law and Gustafson’s Law in the Multi- and Manycore Era Amdahl proposed to
connect multiple single-processor systems to a distributed machine in order to cooperatively
solve problems. Today, High Performance Computing (HPC) cluster machines are state of the
art and even individual nodes contain numerous multi- or Manycore processors, making them
a distributed system themselves. So, the scalability models can be applied on inter-node,
intra-node, and on-chip levels. However, Amdahl and Gustafson did not take the overhead for,
among other things, communication and resource management into account which also limits
speedup[50]. Additionally, the software is not just infinitely parallel and sequential, but more
complex in its structure. Superlinear speedup due to increased cache and main memory size
when using more processing units is not considered as well. Other, more complex scalability
models extend Amdahl’s Law and Gustafson’s Law by considering communication costs and
available chip area as a limiting factor in multi-core systems[52]. Nonetheless, those models
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only serve as a coarse approximation or an upper bound for the expected speedup, because
this highly depends on the individual application and hardware. Often, parallel applications
experience a sweet spot at a certain number of processing units and suffer from performance
penalties when using more.

Speedup Efficiency Optimizing the number of allocated processing cores of a sub-linearly
scaling application according to the shortest execution time maximizes the speedup, but
reduces the overall efficiency of the system. The efficiency E(n) = S(n)

n is defined as
the normalized speedup divided by number of processors. Maximizing the efficiency and
minimizing the execution time results in a conflict of opposing goals. The speedup efficiency
η(n) = E(n) ∗ T (1)

T (n) = E(n) ∗ S(n) = S(n)2

n is a compromise for this conflict and describes the
ratio of costs C(n) = n ∗ T (n)

T (1) = n
S(n) and benefits E(n). The maximum speedup efficiency

minimizes the cost-benefit ratio and is denoted as processor working set[40, 45]. Figure
2.5 illustrates the relationship between execution time, speedup, efficiency, and speedup
efficiency.
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Figure 2.5: Relationship between execution time, speedup, efficiency, and speedup efficiency

2.3.2 Optimization Criteria

As already indicated, pure intra-process parallelism might not be sufficient to efficiently
utilize the performance capabilities of future parallel processors. Hence, multiple processes
can be executed simultaneously, sharing the same manycore processor. This requires suitable
processor allocation management. Thereby, the primary goal of the processor allocation
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is to ensure the successful execution of all applications, but there are further optimization
goals. It is necessary to be specific about the goal in order to make appropriate allocation
decisions[36].

Utilization The utilization is denoted as the percentage of processor cycles spent for
productive computation or rather allocated to user programs. Optimizing only for utilization
might lead to a long response time or even to starvation of small jobs, whereas massively
parallel and long-running jobs will be preferred because they require a smaller timeshare for
administrative overhead. This possibly harms the primary goal and is also limited to the
current system load if below a certain saturation point. Additionally, utilization does not
consider the efficiency of executing user code that might be able to occupy many resources
but spends most processing time for management overhead.

Throughput The number of completed jobs per time unit is termed throughput. With an
increasing number of jobs completed, more user applications become satisfied. Similarly to
utilization, it is limited to the current system load. When saturated, a strictly throughput
optimized system prefers short over long-running jobs which harms fairness and might cause
starvation as well. Furthermore, the throughput heavily depends on the average size of the
available jobs.

Response Time For interactive applications, fast feedback to the user is essential. Hence,
two measures are relevant and thus serve as the basis for optimization. The response time
denotes the latency from job submittal until first response to the user whereas the turnaround
time is defined as the latency to completion. Analogically to throughput, the response time
heavily depends on the job size. In addition, not all applications have time requirements and
there are thresholds below which the user can no longer detect any improvement.

Fairness Resources are allocated fairly to all processes so that no process is permanently
neglected. This reduces the average response time and avoids starvation. Fairness can be
achieved on the user, process, or thread level.
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Transparency Multiuser systems or systems on which the number of simultaneously running
processes exceeds the hardware parallelism strive to create the illusion of a dedicated machine
for each individual process. Being agnostic of other processes eases the software development
and is usually achieved using temporal processor multiplexing which is examined in the
following.

2.3.3 Processor Multiplexing

Modern parallel computer systems usually run multiple applications simultaneously to increase
utilization. In order to enable this kind of resource sharing, mechanisms for partitioning
the processing hardware are required. Thereby, a distinction between temporal and spatial
processor multiplexing is made. The concepts of both types are depicted in figure 2.6.
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Figure 2.6: Types of processor multiplexing

Temporal Multiplexing Temporal multiplexing[32], which is also known as time sharing,
denotes a processor sharing mechanism where multiple applications are allocated to a single
processing element. Each application runs for some quantum of time before being preempted
in order to allow the next application to run. This mechanism is required in multitasking OSs
if the number of concurrently running applications exceeds the amount of available processing
elements. Thus, a pseudo-concurrent execution can be achieved and the average response
time can be minimized.

21



2.3 Operating System Processor Allocation

The procedure of changing the execution from one application to another is called context
switch and needs to be performed after each quantum. The size of the quantum depends on
the particular scheduling algorithm and the number of threads. Thereby, a too-large quantum
time increases the response time which might not be tolerated in interactive environments,
but a too small quantum size leads to unnecessarily frequent context switches, that introduce
a certain overhead and thus reduce throughput [2].

Context Switch Overhead As mentioned before, context switches introduce overhead that
reduces the proportion of processing time actually used for productive computation. This
overhead arises from multiple sources. The direct overhead of a process context switch
includes entering the kernel mode, switching the kernel stack, saving the old thread state,
loading the new data into the registers, switching the address space, and refreshing the TLB.
Additionally, indirect overhead arises due to missing hotness of the TLB and all levels of
caches which slows down the execution of the new process after switching. While the direct
overhead takes about tens of processor cycles, the indirect costs can be much higher but
are heavily dependent on the hardware platform, application behavior, and data set size[72,
99]. Hence, frequent context switches introduce significant overhead to the actual productive
work.

Modern processors contain Process-Context Identifiers (PCIDs) which are used to distinguish
information about address translation cached for different address spaces. Thus, when
creating entries in the TLB, it associates new entries with the current PCID and only uses
matching entries for address translation. So, when switching contexts, the TLB does not have
to be flushed and entries of processes might still be present from the previous execution[18].
However, the TLB owns a limited number of entries which are, if using temporal multiplexing,
shared between all processes running on this processor and thus displace each other, reducing
the hotness of the TLB.

Spatial Multiplexing Spatial multiplexing[32, 113], also called space sharing, refers to a
processor sharing mechanism where the system is partitioned into clusters of processing
elements, and each cluster is exclusively allocated to a single application that is allowed
to run to completion without being preempted in favor of another application. Compared
to temporal multiplexing, this reduces the overhead for context switching and eliminates
side-channel effects caused by processor state sharing and thus increases the throughput
and predictability of applications. Spatial multiplexing limits the number of simultaneously
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running applications to the number of processing elements in the system, but future systems
are expected to contain so many processing elements that they will exceed the average number
of applications that a user wishes to run simultaneously[94]. Nevertheless, depending on
the actual system load, parallel applications may get assigned fewer processing resources
than requested. In order to avoid delays in execution, those applications must be able
to dynamically adapt to the actual available resources. This property is also referred to
as resource-awareness and requires applications to be malleable which is discussed in the
following.

2.3.4 Spatial Processor Partitioning

As examined in section 2.3.1, the intra-program scalability is usually limited by multiple
factors so that the speedup increases only sub-linearly with the number of processing elements
which decreases the efficiency. So, in order to increase the system efficiency, inter-program
scalability can be applied where the available processing resources need to be shared among
multiple programs that are executed simultaneously. Spatial partitioning is a processor
sharing mechanism where the available processing units are split into contiguous disjoint
territories. Thereby, it focuses on the quantitative and qualitative allocation of processing
resources to individual applications which are examined in the following[89].

Quantitative Partitioning

When partitioning a multi- or manycore system, one has to decide, which program obtains
how many processors. The number of resources per application is determined by specific
allocation strategies that strive to reach the optimization goal. The allocation decision can
be made at different points in time.

Static Partitioning Using static partitioning, the number of processing units allocated
to an application happens before the actual execution and stays constant over the entire
runtime. The allocation can either be determined offline by solving user-defined constraints
and compiler-generated information about the program structure and data dependencies or
at the starting time of the application at which the current system load can be taken into
account for decision making. Static partitioning has the advantage that applications can
rely on the number of processor cores allocated to them during their entire runtime. Hence,
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applications do not have to be able to release or accept additional cores at runtime. However,
there are also disadvantages associated with static partitioning. If too many processor cores
are currently occupied, additional applications can only be started after the execution of a
running application has been completed and its cores become available again. Furthermore,
running applications can not take benefit from the allocation of additional, otherwise unused
cores. The resource allocation of running applications cannot be redistributed in order to
optimize utilization or efficiency.

Dynamic Partitioning While in the case of static partitioning the programs were given a
fixed number of processor cores over the whole runtime, dynamic partitioning is more flexible
and allows additional cores to be allocated to and withdrawn from an application dynamically.
So, the resource allocation can be optimized using resource redistribution in order to for
instance, archive the highest speedup of individual applications or maximize global efficiency.
Thereby, the overhead for profiling, reallocation, and adaption of the application needs to
be lower than the expected performance gain. Dynamic partitioning requires co-design of
the OS, the runtime system, and the application model. This is examined in the following
section.

Parallel Application Types

Depending on the programming model, applications are expected to fulfill a resource handling
model that meets the convention of the OS. Therefore, applications can be categorized into
multiple job types[36] as shown in table 2.2.

Rigid Jobs Rigid jobs require a user-defined fixed number of logical processors that are
statically requested at the creation time. The job is not able to run with less and cannot
make use of additional processors, but it does not need to provide further information to
the scheduler for decision making. Rigid jobs are typically applied for applications that are

Who decides When is it decided
at submittal during execution

User Rigid Evolving
System Moldable Malleable

Table 2.2: Parallel job types in terms of processor allocation[36]
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written to be compatible with such simple system interfaces or are highly optimized for a
fixed number of processors.

Moldable Jobs In contrast to rigid jobs, moldable jobs are flexible in the number of
processors they require. They allow the scheduler to dictate the number of processors at the
beginning of execution under the assumption that additional resources will improve the job’s
performance. The application automatically configures to the given number of processors and
does not allow any reconfiguration of this number during execution. Hence, the scheduler is,
based on the current system status, able to set the number of processors which is referred
to as adaptive partitioning. This allows the system to globally maximize the overall system
performance, while rigid jobs would only optimize to run at the sweet spot of their local
speedup curve. Moldable jobs might specify individual constraints like a minimum and a
maximum number of processors, memory, and response time requirements. A typical use case
for moldable jobs is, for example Single Program Multiple Data (SPMD) style applications
that can be executed over a wide range of processors.

Evolving Jobs Evolving jobs are similar to rigid jobs but may change their resource
requirements during execution. Those are usually jobs that are composed of multiple phases
with different parallelism properties. For each phase, evolving jobs can only continue execution
when the current resource requirements are fulfilled and are not able to take benefit from
additional resources.

Malleable Jobs Malleable jobs are the most flexible job type because they can adapt
to changes in the number of processors during execution. This allows the scheduler to
dynamically adjust the processor allocation when system load changes and is called dynamic
partitioning. A varying number of assigned processor units can also be used to collect
scalability information about the job during execution. Malleable jobs are currently only
available in some scientific projects[68] but not supported on commercial machines because
they require complex interactions between the OS and the runtime system. Most applications
and OSs are neither able to express or handle dynamic resource limitations nor resource
revocation.
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2.3 Operating System Processor Allocation

Qualitative Partitioning

Besides the pure number of processing cores, the actual position in the network and other
specific properties of the individual cores matter when allocating them to applications.
Hence, qualitative partitioning concerns the question of which program obtains which proces-
sors[49].

Communication Distance In order to solve computational problems cooperatively, com-
munication between processing units allocated to an application is required. Thereby, the
performance depends on the communication delay, which increases with the physical distance
and the number of routers that need to forward a message along the shortest path between the
interacting processing units. Hence, communicating threads should be placed close together
to keep communication delays low.

Fragmentation In order to minimize communication distance, each application should reside
in exactly one individual, contiguous and pairwise disjoint territory, called partition. Allocat-
ing parts of a multi- or manycore processor as contiguous partitions leads to fragmentation.
On the one hand, dynamic allocation and release operations may leave fractions of the many-
or multicore processor unused because their size is too small to satisfy outstanding requests.
This is referred to as external fragmentation. On the other hand, allocating partitions to
applications that are larger than requested, in order to avoid external fragmentation and
reduce contention on the NoC, causes internal fragmentation since a fraction of the allo-
cated resources remains unused. Internal fragmentation can be handled by rearranging the
partitions and consequently migrating the associated application threads which introduces
significant overhead and disrupts the application processes. Non-contiguous allocation avoids
fragmentation and thus allows to satisfy larger requests with a set of smaller partitions, which
increases utilization but might cause long communication distances if not optimized according
to the communication graphs of the applications. However, if the contiguous allocation fails,
non-contiguous allocation can be applied complementary as a fallback mechanism.

Heterogeneity As mentioned in section 2.1, heterogeneous multi- and manycore processors
integrate a mix of processing units that differ in power and performance characteristics or
functionality. Accordingly, the suitability and performance according to the optimization goal
for the particular applications need to be taken into account during resource allocation.
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2.3.5 Application Profiling

When spatially partitioning multi- or manycore processors, it is necessary to decide how
many cores to allocate to which application. This decision depends on the optimization goal
and other factors such as the resource constraints of the individual applications. Thus, the
following section investigates profiling approaches for parallel applications. This enables
the comparison of parallel applications which is required for global resource allocation
optimization.

Parallelism Profile

Applications usually run in multiple phases with varying degrees of parallelism. When
executing a parallel application on a system with unlimited available processing units, then
the histogram of the number n of active processor units over the execution time is denoted
parallelism profile[89]. Figure 2.7 visualizes an example of a parallelism profile. The area
under n(t) indicates the amount of computational work and corresponds to the serial execution
time T (1) =

∫ T (∞)
0 n(t) dt. The average parallelism n = 1

T (∞)
∫ T (∞)

0 n(t) dt = T (1)
T (∞) = S(∞)

equals the asymptotic speedup when assuming an unlimited number of processor cores.

0 Time t

Number of active
processing units n(t)

T (∞)

n

nmin

nmax

Figure 2.7: Parallelism profile of a parallel program
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Speedup Model

Based on the parallelism profile, Downey[31] developed a scalability model that estimates
the speedup curve of a parallel application using only the average parallelism A = n and
σ which approximates the variance of parallelism. This unified scalability representation
allows for comparison of the expected speedup gain depending on the assigned processing
units for different applications and thus for allocation optimization when using inter-program
parallelism. Equation 2.4 (taken from [31]) presents how the speedup is calculated. It
differentiates a low variance and a high variance case as well as multiple cases depending
on the number of allocated processing elements compared to the average parallelism. For
a given application, the values A and σ can be determined by running them on the target
platform.

σ < 1 (low variance) :

S(n) =



An

A + σ
2(n−1)

1 ≤ n ≤ A

An

σ(A − 1
2) + n(1 − σ

2 )
A ≤ n ≤ 2A − 1

A n ≥ 2A − 1

σ ≥ 1 (high variance) :

S(n) =


nA(σ + 1)

σ(n + A − 1) + A
1 ≤ n ≤ A + Aσ − σ

A n ≥ A + Aσ − σ

(2.4)

Offline Profiling

The application’s parallelism profile and therefore the scalability parameters can be determined
either statically, in advance of the actual execution, or dynamically during runtime. One
approach for offline profiling is to execute the application to be profiled multiple times with
a varying number of processing resources assigned on the target machine and measure the
execution time. So, the speedup curve can be approximated. It is not necessary to measure
the runtime for each individual number of processing units because missing values can be
extrapolated or interpolated, but more measurement values enhance the accuracy[89, 27].
The preceding profiling in advance of the actual execution includes some obvious drawbacks.
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Extensive profiling causes costs in the form of processor time and energy consumption which
is difficult to be saved again during the optimized execution. Additionally, the parallelism
profile can be highly dependent on the actual machine and the input data, which might not
be statically known.

Online Profiling

In order to avoid the disadvantages of offline profiling, it can be replaced or combined with
online profiling mechanisms. So, the preceding execution and the lack of knowledge about
input data can be circumvented. The dynamic measurement of the parallelism profile is
more sophisticated than the static analysis since the results are already needed for allocation
optimization during runtime and profiling measurements are only useful after execution if
the application will be executed again with the same configuration. In order to determine
the speedup of an application dynamically while using the values for allocation optimization
during this execution, direct or indirect approaches can be applied.

Direct approaches measure the application performance over specific intervals which are
fractions of the application. Since the degree of parallelism in the phases of an application
might change, the performance measurements over fixed time intervals are poorly comparable
and are thus not accurate enough to determine the speedup curve. Alternatively, the
performance over fixed periodic code intervals can be determined and compared. So, each
time the program iterates over a specific loop procedure, the execution time is measured. This
requires the periodicity of applications to be annotated which can be done either manually
by the programmer or automatically by the compiler. The number of active processing units
needs to be varied for several iterations to obtain a set of measurement points to approximate
the speedup curve[39, 106].

In contrast to direct approaches, indirect profiling does not measure the speedup itself but
derives it from the efficiency. As described in section 2.3.1, the efficiency is defined as
E(n) = S(n)

n . An efficiency E(n) = 1 describes linear scalability and a speedup S(n) = n.
The actual efficiency can indirectly be determined by measuring reasons that reduce the
efficiency and subtracting that from the ideal efficiency. Causes of efficiency reduction are,
e.g., resource sharing, cache coherency, synchronization, load imbalance, and parallelization
overhead[34, 83, 84].

Modern processors provide hardware infrastructure, called Performance Monitoring Units
(PMUs)[18], for counting performance-relevant events e.g. clock ticks, instructions, unhalted
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cycles, and cache hits or misses. The availability and supported measurable event types are
highly dependent on the particular processor architecture.

In this section, the theoretical basics of processor allocation have been examined. The
following sections describe the practical implementation in widely used and scientific OSs.

2.3.6 Linux

Linux[104] is a Unix-based monolithic kernel that is the de facto standard OS on the world’s
most powerful computer systems[107]. It was considered a bottleneck on manycore systems
but has shown good scalability on processors with tens of cores with minor adaptions[10,
73].

Thread Allocation Linux applies the abstraction of processes for running user programs
and creates the illusion of many CPUs using processor virtualization which aids the program
portability. Intra-program parallelism is supported using lightweight processes that share the
same address space, namely threads. Threads are usually created through the C standard
library that implements the Portable Operating System Interface (POSIX)[53, 90]. The
procedure is as follows. The user program calls the pthread_create function which allocates
and initializes memory for the stack and Thread-Local Storage (TLS). After that, the clone
system call is invoked which creates a child process that shares parts of its execution context
with the parent process. Nevertheless, a new Process Control Block (PCB) and kernel stack
need to be allocated. The new thread is then handed over to the scheduler for execution[80,
104].

Completely Fair Scheduler The CPU scheduler of an OS is responsible to distribute the
processor capacity among tasks. In Linux, the Completely Fair Scheduler (CFS) replaced the
O(1)-scheduler and strives to provide fair processor allocation between tasks proportionally
to their priorities and to maximize utilization while providing responsiveness for interactive
applications using temporal multiplexing. Tasks are organized in a red-black tree that creates
a timeline of future task execution in nanosecond granularity. The time-slices for each task
are not constant but depend on the calculated fraction of the scheduling period, in which each
task should run at least once to meet the target latency. The default scheduling period is set
to 20 milliseconds. To prevent excessive scheduling when the number of tasks significantly
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exceeds the number of processing units, CFS stretches the scheduling period so that the
minimum time slice is four milliseconds[78, 95, 115].

CPUfreq Governors Linux implements infrastructure to operate dynamic voltage and
frequency scaling mechanisms of the CPU, called cpufreq. This allows to save energy and
scale CPU frequencies automatically, depending on the system load, in response to ACPI
events, or manually by the user. Thereby, multiple power schemes (governors) are available
to choose from. The performance and powersave governor statically set the CPU to the
highest respectively lowest available frequency. The ondemand and schedutil governor scale
the frequency dynamically according to the system load[88].

CPU Idle Governors While CPUfreq regulates processor power consumption during active
phases (P-State), the CPUidle subsystem is responsible for managing the power of idling
processors (C-State). As examined in section 2.2.3, sleep states enable significant energy
savings during idle or partial load scenarios but choosing a proper idle sleep state requires a
trade-off between potential energy savings and performance penalties for long respectively
short phases of inactivity. The CPUidle governor implements a bundle of policies that control
the processor using CPUidle drivers. For appropriate decision making, the Linux kernel
implements a set of architecture-specific idle information, e.g. available C-States with their
corresponding exit latency and target residency duration[55, 87, 104].

2.3.7 iRTSS

Invasive Computing[94, 103] investigates a paradigm for future parallel computing systems
containing thousands of heterogeneous cores per chip. Therefore, hardware/software co-
design is applied combining the development of a massively parallel Multi-Processor Systems-
on-Chip (MPSoC) with resource-aware applications that explicitly express their preferred
parallelism degree but are able to adapt to an actual available amount of resources. The
underlying invasive hardware architecture is specified as tiled MPSoC where there are tiles
with different functionalities like computation, I/O, and memory tiles. Heterogeneity can also
be found within the individual tiles. Thus, compute tiles can contain a set of different compute
elements like Reduced Instruction Set Computer (RISC) cores, dynamically reconfigurable
invasive cores, or Tightly-Coupled Processor Arrays (TCPAs). All tiles are connected via an
invasive NoC with a two-dimensional mesh topology. Cache coherence is only maintained
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within the individual tiles. Invasive Run-Time Support System (iRTSS) denotes the system
software that runs on top of the invasive hardware platform and consists of the OctoPOS
parallel operating system and the Agent System that is responsible for dynamic resource
management of the applications.

OctoPOS OctoPOS [85, 86, 103] is an OS for invasive computing and focuses on minimizing
the overhead on massively parallel systems, enabling fine-grained parallelism. Aiming for high
scalability and support of heterogeneous hardware, OctoPOS applies the design approach
of a distributed OS and thus follows the example of barrelfish[7], Popcorn[5] and M3 [4].
However, instead of replicating the OS for each core, it creates only a single instance per
cache coherence domain and therefore per compute tile. In the context of Invasive Computing,
the number of computing cores contained in future systems is expected to be greater than
the average number of simultaneously running applications. Under this assumption, spatial
processor multiplexing is applied as default following the one-thread-per-core execution model
in order to reduce contention due to shared processor states of temporal multiplexing and
improve throughput. Hence, the large number of cores are divided among the individual
applications which get exclusive access to the allocated resources without any virtualization
layer in between. Nevertheless, the limited number of computational resources requires the
applications to behave resource-aware.

In order to exploit the high degree of parallelism from the hardware, OctoPOS provides
the invasive application model, that is specially designed for tiled manycore systems, where
each application requests and temporarily claims processing and memory resources, executes
in parallel and frees resources afterwards. This enables fine-grained spatial expansion and
contradiction of the resource-aware applications in the neighborhood of the actual computing
environment according to their parallelism profile and reduces contention due to resource
sharing. Figure 2.8 illustrates the life cycle of a resource-aware application running on
OctoPOS. The central object of this procedure is called Claim and denotes a set of processing
resources that are currently allocated to this particular application and can be used for
parallel execution. Initially, a new claim is allocated by calling the invade system function.
When the resource requirements of this application change, the reinvade function is used to
adjust the current claim. The assort operation structures the program in parallel portions
according to the claimed resources building a Team that represents an invasive-parallel
program in execution and consists of a set of i-lets. Those are a lightweight control-flow
abstraction and are typically executed using run-to-completion semantics sharing the same
execution context, but are also able to block and cooperatively initiate a context switch to the
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next i-let using lazy context allocation. This allows for fine-grain parallelism with minimal
memory footprint. The team then infects the resources of the claim with the program and
starts execution. After finishing execution, the application deallocates its claim and therefore
the processing resource using the retreat function. So, the resources become available to other
applications.

start

stop

invade Claim

reinvade

assort Team

infectretreat

Figure 2.8: The life cycle of a resource-aware application in OctoPOS[85]

Agent System As a part of iRTSS, the Agent System[68, 67, 94, 103] runs on top of OctoPOS
and is responsible for dynamic resource allocation to applications. It conquers the high
complexity and scalability of scheduling highly dynamic and non-predictable workloads on
manycore systems by using a distributed multi-agent-based resource management. Therefore,
each application is advocated by an individual agent that continuously negotiates the resource
allocation with its neighboring agents based on current hardware requirements and constraints.
So, global throughput will be optimized while the agents make only local decisions, potentially
providing shares of their resources to the neighboring applications that can reach the highest
performance gains as long as the minimal resource constraints are fulfilled. Idle cores are
managed by idle agents where initially one idle agent is created per 25 cores. An idle agent
terminates when out of cores and terminating application agents, in turn, transform into idle
agents again. The application profile is modeled using Downey’s speedup model[31] (described
in section 2.3.5) extended by considering NoC communication overhead and measured online
using a Core-i-let controller in hardware per tile.

This distributed multi-agent approach corresponds to the concept of self-stabilization[28, 30]
for fault-tolerance in distributed systems where a distributed system will end up in a correct
state in a finite number of steps from any initial state. In this case, a correct state equals an
optimal global resource allocation, which may get disrupted each time an application enters
a new phase and thus changes its resource constraints.

33



2.3 Operating System Processor Allocation

2.3.8 MyThOS

This section provides an overview of existing abstractions and mechanisms of the Many
Threads Operating System (MyThOS)[71, 81, 92] kernel that are necessary for the concept.
MyThOS is a minimal OS and adopted many design concepts from seL4 [66]. It follows the
microkernel approach and promises to be a highly configurable and dynamically adaptable
platform with a much lower thread creation latency compared to monolithic kernels like Linux.
The communication to and between kernel objects is achieved through asynchronous messages
that are executed in object-specific delegation monitors which ensure mutual exclusion and
reduce cache misses due to local and synchronous execution of all messages in the queue of a
specific object at the location of the current monitor owner. Table 2.3 lists corresponding
concepts of other OSs compared to MyThOS kernel Objects. The most relevant kernel object
types are examined in the following.

MyThOS seL4 Nova Unix
Address Space Page Table

Protection Domain Process
Capability Space Cnodes
Execution Context Thread Control Block Execution Context Thread
Scheduling Context ? Sched. Context Scheduler
Portal Endpoint ? Sockets etc.
Frame Frame pages mapped files
Kernel Memory Untyped Memory frame pool frame pool

Table 2.3: Comparable concepts of MyThOS in sel4, Nova, and Unix[71]

Address Space The Address Space kernel objects represent a configuration for the translation
from logical to physical addresses. It includes access protection flags and allows for mapping
and unmapping physical memory frames into a logical address space.

Capability Space The application’s access to kernel objects is managed using capabilities.
A capability space implements a mapping from numerical capability pointers to capability
entries that reference specific kernel objects and store meta-data such as access rights and
resource inheritance information.

Execution Context Execution contexts are an abstraction for software threads of applications.
They contain a copy of the thread state, including register contents as well as thread-local
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storage, and offer mechanisms for suspension and migration. Each execution context is
associated with an address space, a capability space, and a scheduling context that can be
shared between multiple threads in arbitrary combinations.

Scheduling Context Individual logical processors, or more precisely hardware threads, are
represented using scheduling contexts. An execution context can explicitly be bound to specific
scheduling contexts to be scheduled at the specific place which corresponds to the thread
affinity control known from common OSs. Thread migration is achieved by explicit rebinding
of execution contexts to other scheduling contexts. The current implementation of scheduling
contexts includes a cooperative First-In, First-Out (FIFO) scheduler that comes into operation
when multiple software threads are bound to the same scheduling simultaneously. Hence,
temporal multithreading with periodic preemption is not supported.

Portal Portal kernel objects act as endpoints for deferred synchronous communication
between execution contexts as well as between applications and kernel objects. Each execution
context requires its own portal including an individual message buffer frame in order to allow
for concurrent capability invocations and Inter-Process Communication (IPC) requests. Each
portal is associated with a specific execution context, which is resumed whenever a message
arrives at the portal.

Frame Frames represent contiguous and well-aligned physical memory ranges that can be
mapped into address spaces. Therefore, they can be used to establish shared memory across
multiple address spaces. Frame objects can be inherited into sub-ranges and are responsible
for tracking the use in address spaces. Additionally, they are able to enforce revocation by
unmapping themselves from the affected address ranges.

Kernel Memory All kernel objects are explicitly allocated and do not change their size later
on. This requires appropriate physical memory ranges but cannot be provided by frames
because kernel objects are not allowed to be mapped to user-level address space. Hence,
untyped kernel memory objects are used which, like frames, represent contiguous physical
memory address ranges. Kernel memory can be split into smaller portions using resource
inheritance.
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2.4 Thread Management in Parallel Runtime Systems

Parallel applications strive to improve their performance by using multiple threads to solve
problems cooperatively. Unfortunately, creating and starting a new thread is an expensive
procedure when using standard OSs. Repeating this process every time a new fine-grain task
is produced results in significant performance degradation, which contradicts the reason for
using multiple threads. In order to mitigate this performance loss, common parallel runtime
systems try to reduce the number of threads to be created by building and maintaining static
thread pools instead of dynamically creating and destroying them. Accordingly, threads are
created and kept in the thread pool until they are needed. After finishing a task, they are
returned to the thread pool to be used again later[37, 22]. This behavior hides the dynamics
in the application parallelism from the OS and, thus, complicates the resource and power
management of the OS. To demonstrate this scheme, the thread management mechanisms of
common parallel runtime systems are exemplarily examined in the following.

2.4.1 OpenMP

Open Multi-Processing (OpenMP) [37, 105] is a parallel programming Application Program-
ming Interface (API) for C, C++, and Fortran on shared-memory systems supporting a wide
range of OSs. If not defined otherwise in the environment variable OMP_NUM_THREADS,
using the num_threads clause, or omp_set_num_threads library routine, then OpenMP
automatically determines the number of logical processors and creates one worker thread
per core. Idle workers register on a central thread pool and sleep in the OS kernel using
futex mechanism via pthread_cond_wait on Linux or WaitForSingleObject on Windows until
woken up again when new work arises or the process exits.

2.4.2 Intel Threading Building Blocks

Intel Threading Building Blocks (TBB)[22, 112, 91] is a task-based parallel programming
library for C++. Instead of directly creating and programming threads, TBB offers multiple
mechanisms to specify fine-grain tasks which are in dependable work packages that are
scheduled using work-stealing[9]. If not manually configured differently, the TBB runtime
system creates, in addition to the main application thread, one worker thread fewer than the
number of logical cores available in the system. When a worker thread runs out of tasks to
be executed, it follows a multi-level task dispatch loop trying to find an available task with
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the highest affinity to this thread, before becoming idle. Idle worker threads are registered in
a central thread pool and sleep in the OS kernel using a Fast Userspace Mutex (FUTEX)
mechanism via sem_wait on Linux and WaitForSingleObjectEx on Windows until woken up
recursively when new tasks become available or the process exits. Further implementation
details are presented in section 4.3.

2.5 Conclusion

This thesis focuses on scalable and energy-efficient processor allocation mechanisms for
multi- and manycore processor systems. Those processors strive to increase the overall peak
performance and consume less energy than systems in which each processor has its own
physical chip. CMOS is the standard technology for processor manufacturing and suffers from
power dissipation that scales linearly with the switching frequency and the supply voltage
squared. Due to the breakdown of Dennard Scaling, not all circuitry of those processors can
be permanently active at the full frequency and the performance is therefore tightly coupled
to the available energy budget. The energy consumption of CMOS processors can dynamically
be adjusted using power gating, clock gating, and dynamic frequency and voltage scaling
techniques which are partially controllable by the OS as available power states. The saved
energy can be used to temporarily boost active cores. Consequently, such systems require
the precise operation of the power adjustment infrastructure by theOS to avoid performance
penalties and energy wastage.

In order to efficiently exploit the computational performance of multi- and manycore systems,
multiprogramming has to be applied. Intra-program scalability is often limited and needs
to be combined with inter-program parallelism. This requires temporal or spatial processor
multiplexing. While temporal multiplexing requires regular preemption and thus context
switches which introduce significant overhead and reduce the throughput, spatial multiplexing
mechanisms necessitate co-design of the OS, the runtime system, and flexible applications
when done dynamically. Therefore, quantitative and qualitative spatial partitioning ensures
the successful execution of the applications and optimizes the overall system efficiency.
To do so, the application’s parallelism profile is needed and can be obtained using offline
or online profiling approaches. However, the most existing OSs still rely on temporal
multiplexing to form a convenient environment for applications on systems without massive
parallelism. Dynamic spatial processor partitioning is only found in specialized OSs but
requires applications to be profiled either offline or using specialized hardware. Additionally,
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2.5 Conclusion

such systems lack preemptive mechanisms and rely on the cooperation of the applications to
enforce redistribution decisions for global allocation optimization.

Creating new threads is an expensive procedure when using standard OSs. Hence, common
parallel runtime systems maintain static thread pools, instead of dynamically creating new
threads every time new tasks are generated and destroying them after execution. This behavior
hides the dynamics in the application parallelism from the OS and, thus, complicates the
resource and power management of the OS.

In conclusion, existing OSs are not suitable to handle the dynamics of parallel applications,
which is the basis for efficient utilization of future manycore systems. Additionally, they lack
proper dark silicon management that is required to maintain energy efficiency and avoid
performance penalties. This will change in the following chapter.
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CHAPTER 3

Energy-Efficient Processor Allocation on Multi-
and Manycore Systems

This chapter explores approaches to conquer the lack of suitable processor allocation mech-
anisms for future multi- and manycore processors with a focus on scalability and energy
efficiency.

Memory and processing units are both important resources to be managed by the OS and
share multiple concerns. Hence, analogies between memory management and processor
allocation are investigated in the following section. After that, the requirements, assumptions,
and goals for the processor allocation concept to be developed are clarified. The concept itself
is divided into three parts. At first, scalable and energy-efficient processor partitioning and
allocation to applications are investigated. Second, online application profiling and resource
redistribution mechanisms for global allocation optimization are explored. Spatial partitioning
and resource reclamation require all applications to comply with the flexible execution model
expected by the processor management in the OS. To disburden the programmer from manual
resource management, a concept for integrating dynamic processor allocation into existing
task-based parallel runtime systems is developed using work-stealing with dynamically sized
worker pools. Finally, the main points of this concept are summarized.

3.1 Analogy to Memory Management

Processors and main memory are both important resources in computer systems that require
accurate management in order to ensure successful execution and avoid performance losses.
While the main memory size per node has already reached billions and trillions of bytes, the
number of processor cores per compute node just started to steadily increase from tens to
hundreds. In contrast to processor management, memory management[51] is, with respect to
the number of resource units to manage, a well-studied field in computer science that has
grown with increasing demand in size, bandwidth, and small latency of the main memory.
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3.1 Analogy to Memory Management

From a user’s perspective, every programmer would like to have exclusive access to an
unlimited number of infinitely fast processors that are tightly coupled over shared memory
with Uniform Memory Access (UMA) properties. Due to physical constraints like limited
energy density, increasing signal propagation delay with long distances in integrated circuits,
manufacturing technology that defines the maximum number of transistors per die area, and
production costs, the present technology does not provide such ideal systems. Instead, a
rising number of energy-efficient processors that have interdependencies regarding package
global power limitations are coupled via Non-Uniform Memory Access (NUMA) in order to
ensure fast local memory access is common. Hence, managing those processors with respect to
power limitations and data locality is an emerging field in operating system design. Therefore,
this section explores design aspects of processor management that can be derived based on
similarities to memory management.

3.1.1 Abstraction

In order to get any productive work done, hardware resources have to be exposed to user
programs. Providing direct access to physical resources without any abstraction would force
the user to care for resource management, which would, if not done right, lead to system
crashes that cannot be prevented by the OS. Additionally, without resource abstraction, it is
difficult to run multiple programs concurrently and thereby provide proper isolation between
them to avoid influence.

For decades, address spaces have been used as an abstraction for main memory. Each program
lives in an individual address space which allows for protection and relocation. The mapping
of logical to physical memory addresses is realized by segmentation using base/limit registers
and virtual memory using paging. Since programs are, due to isolation, agnostic of other
programs, the total amount of memory needed can exceed the amount of physical memory
available. This scenario is solved by temporally swapping parts or even whole address spaces
onto disks, making the physical memory a time-multiplexed resource.

A commonly used abstraction for processors is processes. It was initially introduced to
allow for pseudo-concurrent execution and to bridge over input and output latencies using
multiprogramming in systems with only a single processor but is still applicable in systems
with multiple CPUs[97].
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3.1.2 Virtualization

In order to run programs that are not flexible in the number of resources available for
execution, virtualization can be used, pretending to have more resources than physically
existing. This concept is commonly implemented as virtual memory and used to extend
the available main memory to the user at the cost of hardware and software management
overhead and increased access latency if memory is swapped out to disk. Every program sees
its private plain address space while the OS breaks it up into small chunks called pages and
dynamically maps the logical to physical memory which is transparent to the user. Memory
pages are used as a unit of allocation size and are typically from four kilobytes to one gigabyte
large, which is a compromise between management overhead and fragmentation. When
the usage is high, memory pages that need to be accessed in order to continue execution
are loaded into the main memory, and pages that are not supposed to be used in the near
future might get swapped out to mass storage. This is called demand paging and allows
for functional memory extension but does not guarantee temporal transparency. This pays
off due to programs usually running in different phases and with temporal and spatial data
locality. Hence, only a part of a program’s memory is really used and everything else can be
swapped out during this time. Latencies introduced by loading data back from mass storage
to main memory can be bridged using multiprogramming[26].

Using the same assumptions as for virtual memory, virtual processors can increase system
utilization when pretending to have more processors than physically available. This approach
equals the temporal multiplexing of processors in a multi-programmed environment where
threads are scheduled alternately on processors. At this point, the goals for switching threads
have to be differentiated. Rapid switching between threads helps to pretend pseudo-parallel
execution of multiple sequential processes. This comes with periodic expenses in overhead
for switching. In contrast to this, switching threads in the case of an I/O intensive program
phase where the process is blocking, it is anyway an instrument to reactively bridge over
processor dead times to increase utilization while only introducing switching costs when really
needed.

Future manycore systems are assumed to have so many cores available that every program
can occupy a set of private cores without the need for time-sharing. This makes it necessary
to rethink virtualization with respect to management overhead for multiplexed resources. Re-
moving processor virtualization from current systems requires support and a suitable interface
from the OS and programs to behave flexibly in the number of resources available[94].
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3.1 Analogy to Memory Management

3.1.3 Replacement

At the latest when the system runs out of free resources, the operating system must decide
which chunk of the logical resource will temporally be swapped out in order to fulfill the need
of additional resources. The optimal replacement algorithm will always evict the resource
that will be used the furthest in the future. This is not implementable since it requires
the prediction of the future access pattern. In the context of memory management, this
mechanism takes place as page replacement algorithm that is implemented in different flavors
depending on the strategy. Examples for page replacement algorithms are First-In, First-
Out (FIFO), Not Recently Used (NRU), Least Recently Used (LRU), Aging, Clock, and
Working set algorithm[13, 35]. More sophisticated heuristics among these make their decisions
based on the online profiling information of the application’s memory access. Therefore,
hardware features like, e.g., access information in the page table entries are used[44]. This
corresponds to the dynamic profiling approaches used for processor allocation as examined
in section 2.3.5. Replacement algorithms can be applied locally to the resources that are
already allocated to a specific process or globally to the resources of all processes.

3.1.4 Working Set

For memory management, the working set[25] is referred to as a collection of currently
referenced memory pages and serves as an approach for memory balancing in page replacement
algorithms. The program can run with fewer memory pages but would suffer from severe
performance degradation because of frequent page faults which each take the operating
system up to a few milliseconds for handling.

The concept of a working set is applicable for processor allocation as well. In theory, all
programs can be executed with only a single processor but they might suffer from performance
loss that scales super linearly to the saved number of processors due to less available cache size
and increased overhead of frequent context switches for communication and synchronization
between tightly coupled software threads. As examined in section 2.3.1, the working set ηmax

in the context of processor allocation is defined as the number of processing units allocated
to an application that maximizes the speedup-efficiency.
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3.1.5 Fragmentation

An important issue that must be addressed with any allocator, including allocators for
memory and processing resources, is the problem of fragmentation. External fragmentation is
denoted as the inability to serve a user request for a contiguous block of resources because the
available resources exist only in smaller and non-contiguous blocks. Internal fragmentation
occurs when servicing a resource request with a block that is larger than the requested size
since fractions of the allocated resources remain unused[44].

3.1.6 Resource Quality

When allocating resources, it is important to consider that the available resources do not
always have the same properties and thus it has to be decided which resource to choose.
For both memory and processor allocation, the relative positions of the processor core and
the NUMA node to each other define the memory access latency which directly influences
the performance. In addition, resource heterogeneity can not only be found in multi- and
manycore processors, as described in section 2.1, but is for example also present in systems
that contain both Dynamic Random-Access-Memory (DRAM) and Non-volatile Random-
Access-Memory (NVRAM) as main memory.

3.2 Requirements and Assumptions

In order to design a suitable processor allocation mechanism, the design criteria must be
defined. The goal of this thesis is to maximize the energy efficiency and thus the computation
per watt ratio. For this, either the computing performance can be increased or the energy
consumption can be reduced.

3.2.1 Hardware Model

As described in section 2.1, multi- and manycore processors come in different flavors. As
already mentioned, heterogeneous processors integrate a mix of cores that differ in performance
and power characteristics and functionality and can thus be used to further increase energy
efficiency. However, this work concentrates on homogeneous processors, because others, e.g.
[94], have already shown how resource management can be extended in order to support
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heterogeneous hardware. Additionally, the memory architecture is expected to consist of
one or multiple NUMA domains providing a global shared memory with cache coherency.
Mechanisms for distributed memory machines and incoherent manycore systems are already
addressed by others, e.g. [70, 94], as well. This thesis focuses on systems containing one
or multiple sockets equipped with a multi- or manycore processor each. Any socket again
can be structured in tiles containing a set of cores. Each core might provide multiple SMT
threads. All cores are connected by a NoC.

3.2.2 Application Model

To exploit the potential of manycore systems, this work proposes multiprogramming in form
of both inter-program and intra-program parallelism. All applications are expected to be
malleable and thus need to be flexible in the number of available processing resources allocated
by the OS. Applications start with a single hardware thread and can dynamically request
further processing resources as required. Additional processing resources might be reclaimed
by the OS due to resource redistribution.

3.2.3 Partitioning and Allocation Mechanism

Future manycore systems are expected to contain more processing elements than the average
number of applications the user requires to run simultaneously on the system. Under this
assumption, this work circumvents the overhead and the associated energy wastage for regular
context switches of temporal processing multiplexing. Thus, the available processing resources
are spatially partitioned and divided among the applications. Thereby, communication
distances between processors of individual applications should be minimized.

To encourage applications and parallel runtime systems to dynamically allocate and release
processing resources instead of maintaining static software thread pools, thread allocation
latency needs to be minimized. This is also directly beneficial for performance and energy
efficiency since the allocation might be in the critical path and hinders the application
from making progress while waiting threads might waste energy. Since manycore systems
contain more and more processor cores, more applications might run concurrently and also
make individual allocation requests. Therefore, the scalability of the processor allocator is
essential.
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In order to further minimize the energy consumption and potentially accelerate active cores,
processor cores that are currently not used should be put to sleep. Nevertheless, this must be
united with a fast wakeup which is required to serve spontaneous thread allocation requests
with low latency.

3.2.4 Profiling and Redistribution

The total processing units requested by all running applications might exceed the physically
available amount and thus one has to decide which core to allocate to which application in
order to maximize the energy efficiency of the execution. The same applies in the case of
allocated but underutilized cores, which do not significantly increase the application’s speedup
but decrease the energy efficiency. Hence, the system’s energy efficiency might benefit from a
resource reclamation and subsequent redistribution or shutdown. Making proper decisions
necessitates knowledge about the parallelism profiles of all applications.

This work does neither assume any static knowledge nor preceding offline profiling of the
application’s scalability. Hence, information is required to be gathered online during the
actual execution. Additionally, information from the application, respectively the runtime
system is not trusted, because it might be inaccurate and the information of different runtime
systems might not be comparable. Consequently, application profiling needs to be done in
the OS only using standard PMUs.

In order to enforce redistribution decisions, a resource reclamation mechanism is necessary.
Besides the actual revocation of the processing unit, the associated application needs to be
notified so that it has the opportunity to react and adapt to this decision.

The realization of the OS-level processor management depends on both mechanisms for the
allocation and revocation of individual cores and strategies to decide which cores should
when to be allocated to which application. In addition, the target sleep states for idling
cores need to be determined. This work focuses on the mechanisms and provides interfaces
to make strategies replaceable. The strategies that will be employed in this work for a proof
of concept are not expected to be optimal.
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3.2.5 Flexible Task-Parallel Runtime System

The application model requires user programs to be flexible in the number of allocated
processor units and be able to handle revocation. This behavior can be implemented
manually by the user, but increases code complexity and is potentially fault-prone. In order
to relieve the user from the burden of manually managing dynamic resource allocation and
revocation, this mechanism needs to be moved into the runtime system and thus be hidden
from the user. So, productivity will be improved. This work focuses on task-based parallel
runtime systems with work-stealing.

3.3 Hierarchical Processor Allocation

This section discusses the design aspects to develop a scalable and energy-efficient proces-
sor allocation mechanism for flexible, and therefore malleable, applications on manycore
processors.

3.3.1 Processor Topology Tree

The power management of processors is tied to the actual hardware topology of the system.
This also applies to the memory hierarchy and communication distances. Hence, this topology
must also be modeled and made available to the OS. Figure 3.1 shows the tree-based structure
of the processor topology model.

Figure 3.1: Structure of the processor topology tree

Since this work focuses on shared memory machines (e.g., a single compute node), sockets
form the coarsest level of the processor topology. The resource management of an entire
compute cluster might be implemented in the runtime environment on top of this local
resource management layer. A compute node contains one or multiple processor sockets. As
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already mentioned in section 2.1, manycore processors can be structured in tiles containing
local caches, several cores, and form a management unit for dynamic voltage and frequency
scaling. Each core might include multiple hardware threads. This model is applicable for all
current multi-core and manycore systems. Due to its hierarchical structure, it eases the search
for related processing elements which eases dynamic partitioning and promises scalability.
Information about NoC topologies like two-dimensional meshes are not directly representable,
but the communication distances between neighboring elements can be provided for each
level of the topology tree.

3.3.2 Resource Management Approaches

Bookkeeping of unused processor cores, as well as the allocation to individual applications,
can be managed in different places.

Central Widely used OSs like Linux usually employ centralized processor management
mechanisms. Those provide a global view on the respective processor and task state which
allows for global optimization of the schedule. While centralized approaches are comparably
simple to implement, they suffer from limited scalability which contradicts the application on
manycore systems[10].

Distributed Distributed resource management aims to avoid the scalability bottlenecks
of centralized approaches. An example is multi-agent resource management (described in
section 2.3.7) where each application is represented by an individual resource agent that
continuously negotiates the processor allocation with neighboring agents. Idle cores are
managed using idle agents[67]. Distributed management approaches offer the most possible
scalability but lack global optimization due to the local view of the agents that is limited to
the own neighborhood.

Hierarchical Hierarchical approaches create a trade-off between the global view of centralized
and the scalability of distributed approaches. This promises not only sufficient scalability
but also facilitates global energy consumption control because it is well compatible with the
resource topology tree. Therefore, this work applies a two-level hierarchical approach for
managing processor allocation. A central instance (processor allocator) keeps track of idling
branches in the resource topology tree and allocates them to individual processes that are
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represented as a team of threads when needed. Individual thread teams form the second level
of the hierarchical management and maintain multiple lists for active and free resources on a
smaller scale in chunk size and wakeup latency. The details of this mechanism are described
in the following.

3.3.3 Hierarchical Processor Pools

Section 2.2.3 has stated that putting currently unused processor cores into an idle sleep
state can significantly reduce energy consumption. Deeper sleep states promise the highest
energy saving at the cost of increased wakeup latency. At first glance, this seems great for
energy efficiency but contradicts the low allocation latency requirement. In contrast to this,
keeping idling cores in an active state would lead to the lowest allocation latency but wastes
much energy. Additionally, one has to consider that energy savings can be used for dynamic
performance boosting of active cores, which also accelerates the application progress.

This work proposes a hierarchical set of processor pools holding processor cores in different
sleep states to minimize both energy consumption and wakeup latency. Figure 3.2 illustrates
the mechanism. The processor resources are provided as a machine-specific topology tree. In
this example, we find a system containing two sockets, four tiles, eight cores, and 16 threads
that are all evenly distributed over the system. The processor allocator is a central instance
that manages all processing resources that are currently inactive and not allocated to a
specific team (process). Therefore, it maintains a processor pool. Processor pools can reference
individual threads or whole branches of the topology tree making it easier to partition the tree
for power optimization and mapping strategy. The processor resources kept in the processor
pool of the central processor allocator are not expected to be required in the near future
and, therefore, are configured to enter a deep sleep state in order to minimize the power
consumption.

The groups of processing resources that are assigned to individual processes are represented
by a team. Each team contains three processor pools: low latency free, cached, and active.
The low latency free pool holds hardware threads or branches of the topology tree that are
currently not used and therefore in a low latency sleep state but already assigned to a specific
team. The active processor pool of a team contains all threads that are currently executing
code of the application. The cached pool holds processing resources that have already been
active but are currently unused and entered a specific sleep state. When the application
requests additional processing resources, the cached pool is the preferred source over the free
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pool, because the cores have warm caches and, depending on the sleep state, cause a lower
wakeup latency.

Figure 3.2: Processor pools

Figure 3.3 shows the state diagram of a processor thread under resource management. After
initialization and when currently not needed, the processor allocator puts threads to deep
sleep to reduce energy consumption. When needed, the pool balancing algorithm moves the
ownership of a thread or a whole branch of the topology tree from the central processor
allocator to a specific team that contains a local pool of free processing resources that are
put into low latency sleep to be quickly available. After the application processor allocation
request, a free thread is woken up, moved to the active list, and then starts executing code of
the application. When a thread terminates its execution, it will be moved from the active list
to the cached pool. When the whole application of a team terminates, all assigned processor
resources are released to the central processor allocator. Additionally, if the pool balancing
algorithm decides to do so, unused resources from the free and cached pools of a team can be
revoked in favour of other teams or for energy optimization.

As already mentioned, each processor pool can reference arbitrary nodes in the topology
tree. In order to provide a constant time lookup for the availability of a specific partition
of the tree, each pool maintains an individual list for each of the four levels of the topology
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Figure 3.3: Resource management hardware thread state diagram

tree. The scheme is illustrated in figure 3.4. If, for example, a processor pool of the central
processor allocator initially holds both of the two available sockets, they would be registered
in the socket list of the pool. If then, a single thread is allocated from this pool, one of the
socket entries will be split into its tiles, cores, and threads until the requested partition grain
size is reached. Then again, if this single missing hardware thread is moved back to this pool,
it will recursively merge with its associated threads, cores, and tiles. This is similar to the
binary buddy memory allocation strategy. Hence, the pool can look up its biggest partition
in constant time. In addition, it allows to simply move whole partitions as branches in a
single step between different pools without moving each individual thread.

Figure 3.4: The internal structure of a processor pool

3.3.4 Pool Balancing Strategy

The proposed processor allocation mechanism operates multiple processor pools for different
sleep states and applications. In order to decide which pool should own which resources at
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what point of time and when should which resource be moved from one pool to another, a
suitable pool balancing strategy is required.

When a logical processor terminates the execution of its software threads, it has to determine
its target idle sleep state. Implementing the target sleep state to be pool-specific would
require the processor to identify the pool in which it is currently managed. Each logical
processor only knows its corresponding leaf in the topology tree and is able to derive the
owner of the resource branch in which it is contained. Since each team includes multiple
pools, determining the corresponding pool of a logical processor could either be done by
searching all pools of the owner or continuously maintaining another reference for each logical
processor in the topology tree to its assigned pool. In order to avoid this overhead, this work
proposes to define owner-specific idle sleep states, because the ownership of a processing
resource can directly be read from the topology tree. So, the central processor allocator as
well as each thread team define the target idle sleep state for all processing resources they
contain. This implies that all resources in both processor pools of a thread team have the
same target idle sleep state.

Deep Sleep versus Low Latency Sleep The processor pool of the central processor allocator
holds all processors that are currently not used and not assigned to any team. Therefore,
they are put into a deep sleep state trying to save as much energy as possible. The processors
in the pools of the individual teams are kept in a low latency sleep state to have a lower
wakeup latency. In order to guarantee a fast response time of assigned threads when serving
allocation requests, the low latency pools of the teams need to have a reserve of resources
ready, whenever free resources are available in the system.

Global to Team For scalability reasons, each team maintains its own pool of free processors
to serve frequent allocation requests without permanent interaction with the central processor
allocator. Therefore, the central processor allocator generally provides bigger chunks of
processing resources which are then managed at a fine grain level within the individual
teams.

Team to Global When the system load increases, it can be necessary to reclaim unused
processing resources from a team to be able to serve the resource requests of other teams.
Consequently, the central processor allocator has to directly or indirectly inform the teams
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about the system load which then triggers resource reclamation. On termination, all assigned
resources of a team are deallocated back to the central processor allocator.

Strategy: Balancing Thresholds In order to avoid the overhead of frequent sampling, the
pool states and speculative rebalancing which would require sophisticated heuristics, the
applied rebalancing scheme only works reactively. Therefore, this work proposes to use a
hysteresis for rebalancing and, hence, define thresholds for the reserve of resources in the
pools. So, if the number of free processing resources in the pools of a team falls below this
threshold, it triggers the rebalancing of the pools. Similarly, if the number of free resources
in a team exceeds a specific threshold, some resources are returned to the central processor
allocator. Those threshold values are platform-specific and considered as tuning parameters.
Nevertheless, a shortage of free resources in the system or resource allocation adjustments due
to global optimization can be realized using trimming of those thresholds for each individual
team. Since this work focuses on the allocation mechanism, the developed pool balancing
strategy is not expected to be optimal but is needed for a proof-of-concept.

3.3.5 Placement Strategy

As described in section 2.3.4, besides the pure number of processing units, the actual position
in the network and specific properties of the cores matter as well. So, when allocating processor
resources, the question of which resource to assign to which application in which order arises.
This qualitative partitioning is realized through mapping or placement decisions and has a
major impact on the application performance and energy consumption[74]. Thereby, effects
like communication distances, network contention, memory hierarchy, energy consumption,
heat distribution, and fragmentation have to be considered. Since this work focuses on
homogeneous multi- and manycore systems, placement optimizations due to heterogeneous
compute units are not examined.

Communication Distance and Network Contention Parallel applications usually run
multiple software threads that need to communicate with each other in order to solve
problems cooperatively. Communication distance in the NoC and therefore latency between
interacting threads heavily influences the performance. Hence, tightly coupled threads need
to be placed close together in terms of network distance to ensure fast interaction. On the
other hand, placing too many threads in the same area of the network might overload the
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communication channels and slow all threads down due to network contention. Consequently,
preferably independent clusters of threads need to be placed at a sufficient distance to other
threads.

Memory Hierarchy The same characteristics, as for communication distance and contention,
also apply to the memory hierarchy. Threads of the same application are assumed to work
on shared data and therefore profit from shared caches with low distance and therefore low
access latency. If, however, the currently used data of a group of software threads in the same
area of the system exceeds the capacity of the caches, they become a performance bottleneck.
In this case, distributing this group of threads over a wider area in the system increases the
usable cache size and thus lowers the pressure on the cache but potentially increases the
access latency for data that resides in remote caches of other hardware threads.

Energy Consumption and Heat Distribution Putting unused processors into a sleep state
reduces energy consumption. Since the hardware power management operates on the granu-
larity of the individual branches of the processor topology tree, it seems reasonable to place
all software threads close together in the branch in order to keep as many branches of the
topology tree as possible in a deep sleep state. Nevertheless, placing all software threads close
together would reduce the performance of the active cores due to the lack of heat distribution
in the system, which intensifies the dark silicon effect and accelerates the hardware wear
out.

Fragmentation The allocation mechanism serves the spontaneous resource requests of the
individual applications. From a user’s perspective, the chunk size of a requested processing
resource from the processor allocation mechanism in the OS is always a single logical hardware
thread. This prevents external fragmentation of the processor allocation when assuming the
same properties for all processing resources. However, due to implicit resource sharing on
multiple levels, processing resources may not be assigned independently. So, in order to avoid
unintentional influences and contention between unrelated applications, each application
should reside in a contiguous pairwise disjoint partition of the manycore processor system.
Due to possible spontaneous and unpredictable allocation requests from all applications during
execution, contiguous allocation causes fragmentation. If the contiguous allocation fails due to
external fragmentation, non-contiguous allocation can be applied complementary as a fallback
mechanism to further serve requests. This results in sub-optimal placement due to increased
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communication distance and access latency to data in remote caches. Internal fragmentation
and non-contiguous allocation can be handled using defragmentation. Thus, one has to
decide whether to keep a sub-optimal allocation or resolve it subsequently by migrating the
software threads of different applications within the system. Making the decision for thread
migration depends on the expected performance improvements and migration overhead that
includes the interruption of running threads and replacement of cached data. In addition,
due to migration latency and possibly changing properties of the execution location (e.g.
unsynchronized clocks), thread migration is not transparent to the user and therefore might
hinder the progress of all threads assigned to its application. Since the processor allocation
demand can possibly change anytime, it needs to be estimated by heuristics to predict future
requirement changes in order to determine the costs and benefits of thread migration.

Maximum Serial Performance Placement Strategy From the perspective of a single
application, one has to decide whether to place threads close together or distribute them
widely over the partition. Placing all software threads close together would lead to a bad
utilization of the cache capacity, increased network contention, and reduced performance of
the active cores due to the lack of heat distribution in the system, which intensifies the dark
silicon effect. So, distributing the software threads widely increases the serial performance,
because it avoids resource contention. Additionally, this might be more energy-efficient since
high serial performance might cause an application to finish its execution earlier. So, all
processors can again enter a deep sleep state or be used to process the following applications.
However, in order to avoid contention with other applications, a wide distribution requires
a large partition size and causes internal fragmentation, because close processing elements
remain idle in favor of the serial performance.

Maximum Resource Sharing Placement Strategy In order to maximize the systems utiliza-
tion, the software threads of individual applications can be placed closely. So, communication
distances within the NoC and access latency to shared caches are minimized. This is beneficial
for tightly coupled threads whose performance is primarily determined by communication
overhead. Additionally, internal fragmentation in the partitions can be reduced so that a
greater fraction of the system remains available to other applications or can be put to sleep to
decrease energy consumption. A dense arrangement of software threads maximizes resource
sharing and thus the system’s utilization. Nevertheless, it is vulnerable to contention which
is able to heavily degrade the performance of individual threads.
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Intra-Application Locality Placement Strategy This work does not presume knowledge
about applications’ communication schemes or memory access pattern, but expect different
applications not to communicate regularly with each other. Thus, individual applications
should reside as far apart as possible to reduce resource contention and the risk for external
fragmentation of future contiguous allocation. Software threads of the same application, on
the other hand, are suspected to tightly interact with each other and are therefore placed
closely. This minimizes communication distance, maximizes resource sharing, and reduces
internal fragmentation within the partitions.

This work focuses on the processor allocation mechanism and therefore does not have the
claim of an optimal placement strategy. As a proof-of-concept, the described application-local
placement strategy is developed and implemented but is designed to be exchangeable. The
algorithm can be described as a combination of the memory management strategies binary
buddy for splitting the topology tree, first fit for the allocation of application threads within
a partition, and worst fit for placing a partition for a newly created application.

3.4 Application Profiling and Processor Redistribution

As examined in section 2.3.5, when using dynamic partitioning, the question of how many
processing resources to allocate to which application arises. When leaving this decision to
the application developer, they will strive to execute at the knee of their speedup curves and
thus optimize the allocation only according to their local point of view. This approach breaks
at latest if the sum of required processing elements of all simultaneously running applications
exceeds the hardware capabilities and applications need to compete for resources. In addition,
it is prone to inaccurate speedup estimations or malicious resource requests of applications.
Thus, this thesis proposes a system global allocation optimization to maximize the overall
system performance and energy efficiency. Consequently, individual applications can be
executed at a point in their speedup curve that might differ from their local optimum in favor
of global efficiency. However, making proper allocation decisions necessitates knowledge about
the parallelism profile of all applications. In order to be independent of possibly inaccurate
and hardly comparable information from the application and to disburden the user from
static analyses, profiling needs to be done online by the OS. So, online profiling techniques
are investigated in the following. Afterward, it is examined how redistribution decisions can
be enforced using resource reclamation.
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3.4.1 Online Application Profiling

The profiling approach described in this section is based on the master thesis of Florian
Bartz[6] that was supervised during the creation of this work. That thesis investigated online
profiling mechanisms for dynamic processor partitioning. Therefore, multiple concepts for
determining the current application acceleration by scaling the assigned number of processors
were discussed. It proposed an approach that is based on an indirect determination of the
application’s parallel efficiency by means of performance counters and can serve as a basis for
decision-making in dynamic partitioning. The evaluation has shown that passive waiting and
its impact on parallel efficiency can reliably be detected but cache coherency related delays
were only determined inaccurately.

Online Profiling Approaches

Besides offline profiling, static preferences of the application programmer, or statistics of the
parallel runtime system, there are multiple approaches to determine applications’ parallelism
profile, without having to rely on user information. These include repetition of program
sections while varying the number of processors , directly measuring the application progress,
and indirect efficiency determination which are described in the following.

Varying the Number of Processors for Program Sections As described in section 2.3.5,
offline profiling mechanisms are able to determine the scalability by executing a given
application multiple times with a varying number of processing elements assigned. This
approach is applicable for online profiling within the OS as well. Instead of measuring
the execution time of the whole application, the speedup of specific program sections is
determined by varying the number of allocated processing resources per iteration. So, the
speedup curve can be approximated. Although this approach seems simple to implement, it
has some disadvantages. It requires user annotation or detection of sections and thus the
program structure. Since different sections in the program vary in the amount of work, only
measurements of the same sections can be compared. Therefore, the application is required
to have an iterative structure. Additionally, the size of the inspected sections has to be small
enough to allow allocation adjustments before the application finishes execution but also has
to be big enough to allow accurate measurements and avoid the high management overhead
for profiling of too many fine-grained sections. Due to changing input data, synchronization,
or I/O latency, scalability results of such program sections can be distorted.
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Measuring the Application Progress The execution time of an application depends on how
long it takes to execute its instructions. Therefore, one might try to measure the execution
speed of an application in terms of instructions per time interval. So, the speedup could be
determined by varying the number of allocated processing units and monitoring its influence
on the instruction execution rate. However, the pure number of executed instructions is not
a reliable indication for the progress of an application execution, because it is not fixed and
not every instruction contributes to the application progress. A large number of executed
instructions can also be caused by a high management or parallelization overhead of the
parallel runtime system rather than by a high execution speed of the application. Even
with active waiting, instructions are executed without causing any progress in application
execution. Nevertheless, some certain instructions, e.g. floating point operations, reflect the
progress more reliably, because they are usually used only rarely by the parallel runtime
system. Still, the occurrence of those instructions is highly application-specific and cannot
be used as a general indicator.

Indirect Efficiency Determination The direct determination of an application’s speedup
suffers from the difficulty of measuring the progress accurately and the need for comparative
values. Therefore, this work follows the approach of deriving the speedup from the efficiency,
which can indirectly be determined by measuring influences that reduce the efficiency and
subtracting them from the ideal efficiency. Thereby, the ideal efficiency assumes a linear
scalability of the application. The advantage of this approach is that it does neither require
comparative values for speedup, nor multiple executions of specific code sections, nor any
cooperation by the application. However, the accuracy depends on the determination of
influences that degrade efficiency. Those are examined in the following.

Reasons for Inefficiency

The indirect determination of speedup, that is derived from the efficiency, requires accurate
measurement of the influences that degrade efficiency. This can be done without assis-
tance and transparent to applications by the OS using hardware monitoring infrastructure.
This work assumes only standard PMUs for profiling. Unfortunately, the availability and
supported measurable event types are highly dependent on the particular processor architec-
ture. Nevertheless, a survey of efficiency influences in parallel applications is given in the
following.
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Waiting Due to synchronization, I/O latency, or if workers run out of tasks, associated
software threads need to wait until further processing is possible. Waiting wastes processor
cycles which thus contradicts the utilization and efficiency of the processor. In the case of
passive waiting, the affected processor unit halts its execution which is directly measurable
by the PMUs. During active waiting, on the other hand, the software thread continuously
checks the fulfillment of the blocking condition. This causes permanent utilization of the
processing unit without generating application progress and is difficult to detect, because the
executed instructions barely differ from the instructions potentially used in other sections of
an application.

Parallelization Overhead Parallelization overhead results from the effort required to initialize
and coordinate the parallel execution of applications and is considered to increase with the
number of used processing units. From the hardware perspective, the instructions that
are executed for this parallelization are indistinguishable from other instructions of the
application. Therefore, the parallelization overhead is not determined in this work.

Resource Sharing When executing applications in parallel, shared hardware resources can
affect efficiency through positive and negative interference. In the case of positive interference,
the execution time can be reduced because an operation is performed by a shared resource
only once for several program sections which would have to be executed multiple times if
the application was executed sequentially. One example for this are main memory requests
whose data is accessed by multiple threads and collaboratively used through the shared
caches. Positive interference allows for super-linearly scalability and thus for an efficiency
greater than one. However, the execution time savings are difficult to determine because it
requires to measure how much more often operations on shared resources would have to be
executed in the case of sequential execution and how much execution time is required for
those operations. The effects of positive interference are therefore not determined in this
work. On the other hand, there are negative interferences that reduce efficiency and thus
cause sub-linear scalability. In this case, additional latency is introduced by parallel running
threads that compete for shared resources. An example of negative interference is data in a
shared cache that needs to be reloaded from main memory because it has been displaced
from the cache due to memory accesses by other processor cores. With negative interference,
additional time is required because several application sections running in parallel compete
for a shared resource. Some of those waiting times can be determined at runtime using PMUs
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but the precise scope of measurable interference due to shared resources depends on the
specific processor.

Dynamic Partitioning Strategy

As discussed previously, this work derives the speedup of an application from its efficiency
which is indirectly determined by measuring causes of inefficiency. However, such application
profiling information needs to be translated into allocation and redistribution decisions to
increase the system’s productivity and thus energy efficiency. Hence, a suitable dynamic
partitioning strategy needs to be employed. As mentioned in section 3.2, this work focuses on
mechanisms rather than strategies. Thus, the applied partitioning strategy is not expected
to deliver optimal results but is used as a proof of concept and considered exchangeable. An
overview about state-of-the-art dynamic partitioning strategies can be found in the master
thesis of Florian Bartz[6].

Equipartition (EQUI)[75, 108] is a space sharing strategy that strives to maintain equal
allocation of processors to all applications. This provides fairness but does not take the
individual characteristics of the applications parallelsim profiles into account and thus results
in suboptimal system efficiency. The self-tuning equipartition (ST-EQUI) strategy[84] uses
runtime measured speedup characteristics to dynamically adjust the partitions from the
applications local point of view. Therefore, each application regularly estimates how many of
its processors it should actually use to maximize its speedup. If an application benefits from
fewer processors than currently allocated, it releases the unused processors to the system,
which then reallocates them equally among the other applications. In contrast to this, the
equal efficiency (EQUAL-EFF) strategy[84] strives to maximize the global system efficiency
instead of running applications at the knee of their local speedup curves. Therefore, the
system allocates most processors to those application that achieve best efficiency, but still
this does not necessarily mean a good efficiency. To conquer this issue, an improved version of
the equal efficiency strategy (EQUAL-EFF++)[15] only allocates additional processors if an
application satisfies a target efficiency. Consequently, some processors may remain unallocated
leading to a reduced utilization of the machine. This can be avoided by dynamically adjusting
the number of running applications to the system load[16].

This work applies the EQUAL-EFF++ partitioning strategy because it promises high system
efficiency which is expected to also optimize energy efficiency. Underutilization due to
unallocated processors will not directly be targeted, but unused processing units are put into
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an energy saving idle state to reduce power consumption and boost active cores to further
increase energy efficiency. However, adjusting the number of allocated processors requires
resource revocation from inefficient applications. Hence, resource revocation mechanisms are
discussed in the following.

3.4.2 Processor Revocation

When, due to application profiling and ongoing optimization, the processor management
decides on redistribution of the resource allocation, then a mechanism for revocation of
assigned processing resources is required. Simply withdrawing an assigned processor and
thus stopping the execution of the corresponding software thread potentially harms the
functional integrity of an application, since this event is hardly detectable by the application.
Additionally, this might cause a deadlock because other software threads will at some point
wait for a response of the suspended thread. Therefore, an application needs to be informed
in case of resource revocation, giving it the opportunity to react and thus restore functional
integrity. Still, the procedure of notification and revocation can be done either cooperatively
or preemptively.

Cooperative Revocation From an application’s perspective, it is a convenient approach
to become just notified about the intention of the withdrawal of a processor and then have
the possibility to bring the corresponding software thread in a safe state and to terminate or
migrate it afterwards by yourself. This facilitates the synchronization within an application
and thus reduces the risk of deadlocks. The downside of this cooperative revocation scheme
is that, from the resource management point of view, the response time until a revocation is
realized heavily depends on the behavior of the individual application and is thus not statically
known. Additionally, faulty or malicious applications might not behave cooperatively and
consequently do not return such resources. Hence, resource redistribution decisions cannot
be enforced and the processing units will not become available for other undersupplied
applications.

Preemptive Revocation To guarantee immediate enforcement of redistribution decisions
and to avoid the dependence of cooperative behavior of applications, the resource revocation
can be realized preemptively. Therefore, the allocated processing unit is directly revoked
from the application and the corresponding software thread becomes suspended accordingly.
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Only afterwards the application will be informed and can then handle the revocation by, e.g.,
migrating the suspended software thread to another processing unit and safely terminating
it there. Nevertheless, migrating suspended threads to just exit them directly afterwards
introduces additional overhead compared to cooperative termination. However, the actual
revocation handling routine needs to be application specific.

Although cooperative processor revocation simplifies the handling for applications and reduces
the deadlock risk, this work applies a preemptive revocation scheme, because it guarantees
instant enforcement of redistribution decisions and is robust against malicious application
behavior.

3.5 Dynamic Processor Allocation in Task-based Parallel Runtime
Systems

The previously described processing resource allocation and redistribution mechanism requires
applications to dynamically allocate processing resources and handle revocations to allow
for energy-efficient allocation optimization. To disburden the application programmer from
the manual resource handling, this behavior can be implemented in the runtime system.
Exemplarily, this section explores how existing task-based runtime systems with work-
stealing can be adopted to meet those requirements. Therefore, the following section first
investigates the dynamic processor allocation followed by the dynamic worker suspension
and resumption.

The worker suspension mechanism described in this section is based on the master thesis
of Oliver Giersch[41] that was supervised during the creation of this work. That thesis
investigated work-stealing with dynamically sized worker pools and thus mechanisms to
suspend workers in case of processor revocation.

3.5.1 Dynamic Thread Allocation

In order to take full advantage of the potential of multi- or manycore processors, applications
need to split their work and employ multiple threads in parallel to process a problem
cooperatively. Parallel runtime systems ease the development of parallel applications, because
they implement the basic functionality of the execution model. This includes, e.g., taskification,
synchronization, work distribution, and work balancing. Hence, the runtime system is
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responsible to distribute the application’s tasks over the available processor units. This can
be done using multiple approaches that bring different implications for dynamic resource
management.

Static Worker Pool

As examined in section 2.4, existing task-based parallel runtime systems usually maintain static
worker pools to avoid the significant overhead of regular processor allocations on common OSs.
Unfortunately, this behavior hides the application’s dynamics from the processor resource
management. In addition, when using the proposed processor allocation mechanism without
temporal multiplexing, idling workers would block their corresponding processors from being
reassigned to other undersupplied applications. This results in underutilization and thus
reduced energy efficiency. The proposed profiling and redistribution mechanism strives to
detect this reduced efficiency of the application in phases of low utilization and will penalize
it using processor revocation. Nevertheless, this profiling and redistribution procedure is
only enforced with a certain delay so that valuable processing time and energy is wasted by
idling workers. Then again, if the application enters a program phase with high parallelism,
it may be denied further resources because of inadequate profiling statistics. In conclusion,
the static worker pools are not suitable to achieve maximum energy efficiency in conjunction
with the proposed processor management.

One Thread per Task

Static worker pools are employed to avoid the overhead of regular thread allocations. The
proposed processor allocation mechanism strives for low thread allocation latency which
reduces this overhead. Hence, frequently allocating threads becomes less costly, which
again raises the question whether it is reasonable to just allocate an individual thread per
task. This would make work distribution strategies in the runtime system unnecessary
as long as more processing units than simultaneous tasks are available. Additionally, the
dynamics in the parallelism of the application would directly be observable by the processor
management. However, if application programmers employ the fine-grain task parallelism
that is supported by existing runtime systems, the number of simultaneous tasks might exceed
the number of available processing units. Thus, work distribution strategies are still needed.
Furthermore, although the costs for thread allocation are reduced they still accumulate with
the number of created task. In conclusion, dynamically allocating one software thread and
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thus one processing unit per task created provides maximum interaction with the processor
management but introduces significant overhead if the task size is small. Nonetheless, too
fine-grain parallelism information are not helpful for the processor management because its
time scale does not allow redistribution nor significant energy saving through dark silicon
management between tasks.

Adaptive Work Stealing

There are approaches which dynamically adjust the number of workers in task-based parallel
runtime systems according to the actually available amount of work and other factors as , e.g.,
observed efficiency in the runtime system or feedback from external resource management
components. Those are commonly termed adaptive work stealing[1, 29, 110]. Therefore,
new workers are dynamically added to the work stealing domain by allocating the necessary
resources if the available work load increases while underutilized workers are removed. With
adaptive work stealing, the high overhead of separate thread allocation per task can be
reduced while still providing the application’s dynamics to the processor management. In
addition, this avoids the potentially low utilization and lack of dynamics of the static worker
pools and allows to handle resource limitations from the processor management. The downside
of adaptive work stealing is that it trades dynamicity for increased complexity because it
requires the collection of feedback data upon which it has to decide how to adjust the worker
allocation. A survey about state-of-the-art adaptive work stealing algorithms can be found
in the master thesis of Oliver Giersch[41].

This work proposes to employ adaptive work stealing to dynamically negotiate the resource
allocation with the processor management based on the actually available work and the system
load. It promises to be a reasonable approach to disburden the application programmer from
manual processing resource allocation while still providing information about the application’s
dynamics in parallelism to the processor management.

3.5.2 Worker Suspension

As described in section 3.4.2, assigned processing units need to be revoked if the proposed
resource management decides to. This processor revocation can be realized using cooperative
or preemptive approaches. In order to disburden the application programmer from manual
reaction of resource revocation, the question of how to handle those events automatically in

63



3.5 Dynamic Processor Allocation in Task-based Parallel Runtime Systems

the parallel runtime system arises. When using a work stealing based task scheduler in the
runtime system, there is one worker thread assumed to be running per allocated processing
unit. Hence, the worker thread of a revoked processing unit needs to be suspended without
corrupting the functional integrity of the application. There are multiple approaches for
suspending worker threads which are discussed in the following.

Cooperative Suspension

A straightforward approach for worker suspension is to simply indicate a suspension request
to the worker and wait for it to cooperatively terminate. So, the worker is able to finish its
current task. Remaining tasks in the queue of the worker can either be individually stolen
by other workers or the whole queue can be set muggable and be assigned to another idling
worker[1]. In case of cooperative suspension, all workers need to regularly check the revocation
indicator at certain points of their scheduling loops. If a suspension request is detected, the
worker makes its remaining tasks available to other workers and halts its execution in a safe
state for later resumption or terminates. Cooperative suspension can be used to dynamically
adjust the worker pool size due to adaptive work stealing, but is only suitable for cooperative
revocation mechanisms. It is not applicable for preemptive revocation schemes, because the
response time until a worker becomes suspended depends on the currently running task size
and is thus not statically known.

Preemptive Suspension

In contrast to cooperative suspension, preemptive suspension enforces an instant suspension
of a worker and does not depend on the size of the currently running task. Therefore, when
a suspension is requested, the worker is halted immediately and its execution state, including
the register set and stack, is saved. Pending tasks are available for execution by other
workers. Since the suspended worker was probably interrupted during the execution of a
task, the task remains unfinished and needs to be continued later. This requires worker
resumption mechanisms and therefore probably a migration of the suspended worker to
another processing unit to continue and finish the interrupted task. Preemptive suspension is
a suitable mechanism to automatically handle preemptive processor revocation in parallel
runtime systems with work stealing.
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Hybrid Suspension

While cooperative worker suspension suffers from a potentially long response time in case
of long-running tasks, preemptive suspension requires later worker resumption and thus
introduces migration overhead which might exceed the remaining execution of a small task.
To ensure a static response time of a suspension request and avoid migration overhead of
small tasks, a hybrid suspension scheme can be used. Therefore, a cooperative suspension
is requested firstly. Only if the worker does not become suspended after a certain time, a
preemptive suspension is triggered. Although the hybrid suspension combines the benefits of
cooperative and preemptive suspension, revoked processing units do not become instantly
free and sophisticated time management for outstanding revocation requests is required.

This work proposes to apply a plain preemptive suspension, because revoked processing
resources are instantly made available for other purposes. Additionally, it is not prone to
faulty or malicious applications.

3.5.3 Worker Resumption

Preemptive suspension instantly halts the execution of the worker thread, which requires
later resumption to continue and finish its current task. Figure 3.5 illustrates the procedure
of worker resumption. The state of a suspended worker is defined by its corresponding thread
context that includes saved stack and register contents. The associated task queue of the
worker might be empty because the remaining tasks could be stolen by other workers during
suspension. To continue and finish the task that the worker was executing at the point of
interruption, the worker needs to be rescheduled to a processing unit. This can be initiated
either by the system scheduler or by another worker thread.

Resumption by Scheduler

One approach for worker resumption is that a worker which was originally suspended by the
system scheduler is also resumed by the scheduler. Therefore, the worker thread is moved to a
ready list of the system scheduler. When a free processing unit becomes available, the worker
is rescheduled and continues execution. This can either be the case if other applications
release processing resources or will occur at the latest if another worker thread of the same
application runs out of tasks and terminates due to underutilization. Hence, a processing
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Figure 3.5: Procedure of resuming a suspended worker thread by rebinding its saved software thread
context to a processing unit, taken from [41]

unit becomes available and the suspended worker can be resumed without requiring any
intervention by the runtime system. If the worker is assigned to a processing unit in same
area of the system where it was previously executed, the data locality can be maintained.

Resumption by Worker

When relying only on worker resumption by the scheduler, idle workers of the same application
will usually perform multiple rounds of work stealing attempts before terminating, wasting
valuable processor cycles until the processing unit is released and handed over to the suspended
worker. To avoid this, idle workers could directly resume a suspended worker, if available,
instead of trying to steal tasks from active workers. Therefore, suspended workers need to be
declared muggable in the runtime system to be resumed by idling workers.

This work proposes a combination of resumption by a worker and by the scheduler. Hence,
the suspended workers are registered to the system scheduler demanding to be assigned
to a free processing unit. When, in the meantime, another worker becomes idle, then it
hands over its processing unit to the suspended worker. In this way, a suspended worker will
directly be resumed in both cases if an additional processing resource becomes assigned to
the application or if another worker thread of the same application becomes idle.
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3.6 Summary

Existing OSs are not suitable to handle the dynamics of parallel applications, which is the
basis for efficient utilization of future manycore systems. Additionally, they lack proper dark
silicon management that is required to maintain energy efficiency and avoid performance
penalties. To conquer this deficiency, processor allocation mechanisms for future multi- and
manycore processors with a focus on scalability and energy efficiency were investigated in
this chapter. Thereby, analogies to memory management were made, because memory and
processing units are both important resources that require accurate management to ensure
successful execution and avoid performance degradation.

Although multi- and manycore processors come in different flavours, this work focuses on
systems containing one or multiple sockets equipped with a homogeneous multi- or manycore
processor each. Any socket again can be structured in tiles containing a set of cores which
are conected by a NoC and may provide multiple SMT threads. Additionally, the memory
architecture is expected to consist of one or multiple NUMA domains providing a global
shared memory with cache coherency.

Future manycore systems are expected to contain more processing elements than the average
number of applications the user requires to run simultaneously on the system. Under this
assumption, this work circumvents the overhead and the associated energy wastage for regular
context switches of temporal processing multiplexing. Thus, the available processing resources
are spatially partitioned and divided among the applications. This requires applications to
be malleable and thus flexible in the number of available processing resources allocated by
the OS.

The power management of processors is tied to the actual hardware topology of the system.
This also applies to the memory hierarchy and communication distances. Therefore, the pro-
cessing resources are modeled and managed using a tree-based topology structure. Scalability
in the processor allocation mechanism is reached by using a two-level hierarchical manage-
ment approach. Therefore, a central processor allocator keeps track of idling branches in the
resource topology tree and allocates them to individual processes, that are represented as a
team of threads, when needed. Individual thread teams form the second level of hierarchical
management and maintain multiple processor pools for active and free resources on a smaller
scale in chunk size and wakeup latency.
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3.6 Summary

To encourage applications and parallel runtime systems to dynamically allocate and release
processing resources instead of maintaining static software thread pools, the developed
allocation mechanism strives to minimize the thread allocation latency. This is also directly
beneficial for performance and energy efficiency since the allocation might be in the critical
path of execution and hinders the application from making progress while waiting threads
might waste energy. To further minimize the energy consumption and potentially accelerate
active cores, processor cores that are currently not used are put to sleep. Using multiple
processor pools with different idle sleep states, energy efficiency and low latency thread
allocation can be united.

When using dynamic partitioning, the question of how many processing resources to allocate
to which application arises. When leaving this decision to the application developer, they will
strive to execute at the knee of their speedup curves and thus optimize the allocation only
according to their local point of view. Thus, this thesis proposes a system global allocation
optimization to maximize the overall system performance and energy efficiency. Allocation
decisions are made using the EQUAL-EFF++ partitioning strategy[15] based on online
application profiling using indirect efficiency determination. This work applies a preemptive
revocation scheme, because it guarantees instant enforcement of redistribution decisions and
is robust against malicious application behavior.

The application model requires user programs to be flexible in the number of allocated
processor units and be able to handle resource revocation. This behavior can be implemented
manually by the user, but increases code complexity and is potentially fault-prone. In order
to relieve the user from the burden of manually managing dynamic resource allocation and
revocation, this mechanism needs to be moved into the runtime system and can thus be hidden
from the user. Hence, productivity will be improved. Therefore, this chapter investigated
how the required execution model can exemplarily be integrated into task-based parallel
runtime systems with work stealing. It has been discussed that adaptive work stealing can
be applied to dynamically negotiate the resource allocation with the processor management
based on the actually available work and the system load. This work proposes to apply a
plain preemptive worker suspension in case of resource revocation, because revoked processing
resources are instantly made available for other purposes and it is not prone to faulty or
malicious applications. Suspended workers are later continued using a resumption mechanism
to finish their current task.

The following chapter provides an overview of how the developed mechanisms can be imple-
mented and integrated into existing OSs and task-based parallel runtime systems.
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CHAPTER 4

Implementation

This chapter provides insight into the implementation details of the developed processor
allocation and redistribution mechanisms and is structured as follows. Dynamic processor
partitioning requires co-design of the OS and applications to allow for on-demand resource
allocation. Hence, section 4.1 examines how the widely used Posix-thread API can be
extended to enable proper resource limitation while reducing necessary modifications of the
application software and changes in the habits of programmers. After that, an overview of
the software architecture of the allocation mechanism and its integration into MyThOS is
provided. Optimization of processor allocation to maximize energy efficiency requires dynamic
resource redistribution based on application profiling. Therefore, section 4.2 examines how
application information are gathered and describes the realization of the redistribution
mechanism. Finally, section 4.3 demonstrates the exemplary integration of adaptive work
stealing and resource revocation handling into TBB to meet the execution model while
disburden the application programmer from manual resource management.

4.1 Processor Allocator

This section provides a brief overview about the implementation of the previously developed
hierarchical processor allocation mechanism. In order to reach a high scalability and low
overhead, the proposed processor allocation mechanism is integrated in the minimal and
highly parallel Many Threads Operating System (MyThOS)[81, 92]. As examined in section
2.3.8, it follows the microkernel approach and promises to be a highly configurable and
dynamically adaptable platform with a much lower thread creation latency compared to
monolithic kernels like Linux. The communication to and between kernel objects is achieved
through asynchronous messages that are executed in object specific delegation monitors which
ensure mutual exclusion and reduce cache misses due to local and synchronous execution of
all messages in the queue of a specific object at the location of the current monitor owner.
Kernel object access protection is achieved using capabilities. However, MyThOS itself lacks
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a processor allocator and thus leaves the management of the resources entirely to the user. So,
it forms a suitable basement that can benefit from the extension of the developed processor
management approach. Before presenting the integration of the proposed processor allocator
in MyThOS, the interface to the user is examined.

4.1.1 User Interface

Due to the absence of processor time-slicing, the processor allocation mechanism requires
the user applications to act resource aware. Hence, they must be able to handle rejected
resource allocation requests. In addition, in case of insufficient resources, it is beneficially
for an application to express a demand of additional resources to the OS, so that further
resources can automatically be assigned when available.

Listing 4.1: Extended posix thread interface

1 # include <pthread .h>

2

3 // behavior desired by the user in case of insufficient resources

4 typedef enum {

5 // fail and return 0

6 CREATE_FAIL = 0,

7 // run thread next to other thread using time - sharing

8 CREATE_FORCE = 1,

9 // enqueue to wait list and run when free resources become available

10 CREATE_DEMAND = 2

11 } pthread_core_alloc_t ;

12

13 int pthread_create ( pthread_t *thread ,

14 const pthread_attr_t *attr ,

15 void *(* start_routine )( void *),

16 void *arg ,

17 pthread_core_alloc_t allocType = FAIL );

18

19 int pthread_revoke_demand ( pthread_t * thread );

To reduce necessary modifications of application software and changes in the habits of
programmers, the processor allocation mechanism is made accessible through an extended
Posix-thread interface that is integrated into the musl libc[80](Version 1.1.20) environment.
Listing 4.1 shows the extended posix thread interface. The function pthread_create accepts an
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additional parameter (allocType) that indicates how the processor management, as part of the
operating system, should behave in case of insufficient resources. For compatibility reasons,
the default value of this parameter is set to CREATE_FAIL and thus pthread_create fails with
error code EAGAIN, if there are currently no free resources available. Therefore, this behavior
is equal to the original Posix API. Unfortunately, some common parallel runtime systems like
OpenMP[37] and TBB[22] do not adapt their resource requirements when resource allocation
using pthread_create fails, but abort execution and terminate the application. Calling this
function with CREATE_DEMAND instructs the resource management, in case of insufficient
resources, to store the pthread in a waiting queue and automatically schedule it to a new
free processor when available. When, in turn, the resource requirements change again and
the demanded pthreads are no longer needed, they can be removed from the waiting queue
using pthread_revoke_demand function. In order to handle race conditions, this function
returns a specific value to indicate whether a thread has successfully been removed from the
waiting queue or has been scheduled meanwhile. Using pthread_create with the argument
CREATE_FORCE causes resource management to schedule the pthread next to another
pthread on the same logical processor using time-sharing. This eases the adaptation of
application software that cannot dynamically adapt the number of required threads. Thereby,
to avoid the overhead of frequent context switches, time-sharing is implemented using a
cooperative scheduling scheme rather than fixed time-slicing.

4.1.2 Architecture Overview

Now that we have shown the user interface, we explore cooperation with the processor
allocation mechanisms developed. Therefore, figure 4.1 provides a simplified overview of
the architecture and communication dependencies of the involved software components. As
mentioned previously, the application expresses its requirements of processing resources
through an extended Posix API that is implemented in a musl libc library. Musl[80] is a
C standard library and is intended to be used for operating systems that are based on the
Linux kernel. Therefore, it communicates directly with OS using the Linux system call
interface in order to access basic functionality of the OS like memory or thread management.
This contradicts the microkernel approach of MyThOS where only a minimum amount of
software is executed in kernel mode and some traditional OS functions are typically moved
to user space. Additionally, MyThOS internally uses a different abstraction for software
threads than Linux which hinders direct interactions. To overcome this issue, a compatibility
layer is introduced as a mediator between the musl libc and MyThOS. It intercepts and
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emulates necessary system calls such as mmap, clone, and exit. Furthermore, when required,
it communicates with the objects that need to be implemented in kernel mode. While
communication of user-space modules is still synchronous, communication between user-space
and kernel, as well as inside the kernel, is asynchronous to achieve high scalability.

Figure 4.1: Processor allocation architecture overview

The proposed processor resource management is implemented inside the OS kernel, because
it requires fast interaction of multiple kernel objects. Hence, a single processor allocator
kernel object maintains the topology tree where each leaf references its associative scheduling
context. When a new user processes is created, a thread team kernel object is spawned
accordingly in order to represent and manage the group of processing resources related to
this specific process. This is required due to the fact that process creation is implemented
as a user level library function and the OS is thus agnostic to those structures, but needs
knowledge about related threads to make its resource management decisions. Whenever
a process allocates a new software thread, an execution context needs to be created and
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configured. After that, the user requests its thread team to allocate a free scheduling context
and bind the execution context to it. If no free processing resources are available in the thread
team, it requests additional resources from the central processor allocator. On termination,
the execution context unbinds from the scheduling context which then notifies its assigned
thread team of being idle.

4.1.3 Thread Context Allocation

In order to process a user application, every allocated processor requires a context. A context
includes user memory for stack and TLS, as well as kernel memory to save the thread state
in case of interruption, and, depending on the OS implementation, an individual kernel
stack. As described in section 2.3, context creation and usage are handled differently in the
individual OSs.

In Linux[80, 104], for each software thread, a user context with stack and TLS and a kernel
context with its own stack are allocated one after the other. The individual kernel stack
allows blocking in kernel mode during interruptions or system calls so that the processor can
switch to other processes. Hence, dead times can be bridged using temporal multiplexing.
The disadvantages of these heavy-weight contexts are the huge memory footprint and the
high overhead for memory allocation each time a new thread is spawned.

MyThOS[71, 81, 92] does not support preemptive but only cooperative multi-threading, and
threads are not allowed to block in kernel mode because system calls are implemented in
a run-to-completion semantic. Thus, software threads do not need individual kernel stacks.
Hence, there is only a single kernel stack per logical processor owned by the associated
scheduling context. This decreases the amount of memory needed per software thread.
Despite this, a user stack, TLS, and thread state including register contents must be allocated
per software thread.

OctoPOS[85, 86, 103] uses an light-weight control-flow abstraction called i-lets. Those have
a minimal memory footprint and are typically executed using run-to-completion semantics
sharing the same execution context. However, i-lets are allowed to block and cooperatively
initiate a context switch to the next i-let using lazy context allocation. So in the best case,
each application needs to create only one execution context per processing unit it owns.

This work follows the one-thread-per-core execution model as default but supports cooperative
multi-threading in exceptional cases. Thus, a single kernel stack per logical processor is
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sufficient. Nevertheless, execution contexts for individual software threads are allocated on
demand, because they are application-specific due to address space isolation and need to be
configured anyway.

One goal of this work is the minimization of the allocation latency to encourage the user to
use dynamic thread allocation. With respect to limited resource availability due to spatial
partitioning, the question of what to allocate first, processor or context, arises. The order
depends on whether one is optimistic or pessimistic about the availability of a free processor.
Figure 4.2 illustrates the corresponding thread allocation procedures.

Pessimistic Context Allocation

A pessimistic thread creation procedure behaves skeptically toward the successful allocation of
a free processor. Consequently, it tries to minimize overhead in case of insufficient processing
resources. So, it allocates the context only if a processor is available. If, however, a free
processor can be obtained, a context needs to be allocated anyway and can be scheduled on
this processor afterward. This requires the processor to be reserved and thus idling until
a context for execution is provided. If, in turn, the context allocation fails because, e.g.,
the application runs out of memory, the allocated processor needs to be released. Due to
this structure, the processor allocation and scheduling of the context need to be done in
separate steps, which also results in individual system calls. Additionally, the reservation
of processors without context to be scheduled is prone to user faults because the processor
remains reserved and consequently blocked if the user misses the deallocation after a fault.

Optimistic Context Allocation

If being optimistic about the availability of free processors, the allocation latency can be
minimized for this case. So, the context is allocated first and the processor allocation
and scheduling of the context can be done in a single step. This reduces the number of
interactions, and thus system calls, with the resource management of the OS. In addition,
intermediate reservation of the processor is not necessary. If, on the other hand, the processor
allocation fails, the just allocated context needs to be released again, which increases the
wasted execution time for an unsuccessful thread allocation. Nevertheless, this work applies
optimistic context allocation, because processor allocation and context scheduling can be
combined into a single step.
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Figure 4.2: Comparison of pessimistic and optimistic context and processor allocation procedures

Context Recycling

Optimistic thread creation requires a context allocation regardless of the actual availability of
free processing resources. Hence, a low latency context allocation is essential. The latency of
frequent context allocation and deallocation in highly dynamic applications can be reduced
by recycling contexts. This trades the allocation latency for memory needed to retain released
contexts. So, if available, an existing context can be reconfigured, instead of creating a new
one. Since contexts contain memory for the user stack and TLS, which are mapped into the
address space of a specific application, contexts can only be reused for new threads of the
same application without costly remapping of this memory. This results in application-wise
context pools. Contexts can be organized with or without relation to the processor on
which they were last executed. On the one hand, limiting the recycling of contexts to the
previously used processor can be beneficial for performance since the caches of this processor
might still contain parts of the context. On the other hand, this potentially wastes more
memory for contexts if the processor allocation changes and it is not applicable in the case
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of optimistic context allocation, because the actual processing element is not known at the
context allocation time. Therefore, this work applies context recycling using application-wise
context pools without processor binding.

4.2 Application Profiling and Resource Redistribution

Section 3.4.1 proposed to apply the EQUAL-EFF++[15] dynamic partitioning strategy to
limit the partition size of each individual application based on the measured efficiency. It
promises high system efficiency, which is expected to also optimize energy efficiency. However,
this strategy requires parallel applications to first achieve a target efficiency in order to receive
more processors, which will introduce a certain delay in execution time until a sufficient
amount of resources becomes available to highly parallel and efficient applications. In addition,
this does not take phases with different parallelism and efficiency of an application into
account. Therefore, this work uses a different implementation. The partition size of an
application will only be limited when the measured efficiency falls below the target efficiency.
To adjust the maximum partition size accordingly to the continuously measured efficiency and
to prevent oscillations due to the resulting feedback loop, a Proportional–Integral–Derivative
controller (PID controller)[8, 47] is used. The control loop is illustrated in figure 4.3.

User applications dynamically allocate and release processing resources according to their
individual parallelism. The amount of currently assigned cores is represented as the processor
partition. A periodic timer with a 100 milliseconds interval regularly triggers the efficiency
measurement of all processors that are currently included in the partition. This interrupts
all cores, which then asynchronously gather efficiency statistics using their local performance
monitoring facilities. The average efficiency of the partition is determined and then compared
to the target efficiency. The difference between these values is passed as the input error value
to the PID controller. In order to reduce the error, this controller calculates a correction
value using proportional, integral, and derivative terms. The correction value is used to
limit the maximum partition size of the individual application, if the target efficiency is not
achieved. Regardless of the measured efficiency, each application owns at least one processing
unit to ensure successful execution. The behavior of the PID controller is configured by the
coefficients for the proportional, integral, and derivative terms: kp, ki, and kd. The actual
configuration values used in this work are described in section 5.6.1.

If the amount of processing resources assigned to an application exceeds the resource limitation
from the PID controller, surplus cores are revoked from the application. Therefore, the cores
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Figure 4.3: Control loop to limit the partition size of an application based on the measured efficiency

are interrupted, and the user execution contexts are unbound from corresponding scheduling
contexts, that represent the cores. So, the execution of user code is halted on those cores and
the thread states are saved. As examined in section 3.4.2, this work proposes to immediately
inform applications about resource revocation, giving them the opportunity to react and thus
restore functional integrity. This is implemented using a signaling mechanism that enqueues
revocation events into an event buffer and activates a specialized execution context for signal
handling. This execution context is then scheduled with high priority at the scheduling
context of the main application thread to ensure instant event processing. The signal handler
executes an application-specific revocation handler.

4.3 Dynamically Sized Worker Pools in Threading Building Blocks

As examined in section 3.5, this work proposes to employ adaptive work stealing in the runtime
system, to dynamically negotiate the resource allocation with the processor management based
on the actually available work and the system load. It promises to be a reasonable approach
to disburden the application developer from manual processing resource allocation while
still providing information about the application dynamics in parallelism to the processor
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management. Therefore, Intel Threading Building Blocks (TBB)[22, 91, 112], as an example
for a task parallel runtime system, is modified to allocate workers, including processing units,
on demand, and terminate idle workers so that the corresponding processing units are released
to the resource management again.

4.3.1 Dynamic Worker Allocation

The TBB library[22] is structured in a client layer, that is responsible for task creation
and execution, and a resource management layer, that provides worker threads to clients
according to their current amount of parallel work. By default, the resource management
layer of TBB creates, in addition to the main application thread, one worker thread less
than the number of logical cores available in the system at the beginning of the first parallel
section. This logic is mainly implemented in the tbb::internal::rml::private_server class.
The implementation of the underlying software threads is kept platform independent, but
tbb::internal::rml::thread_monitor uses Posix threads for Linux-based systems which are also
employed as an interface for thread allocation in this work. In case of unsuccessful Posix
thread creation, the whole program is terminated. When a worker thread runs out of tasks
to execute, it follows a multilevel task dispatch loop that tries to find an available task with
the highest affinity for this thread before becoming idle. Idle worker threads are registered in
a central thread list and sleep in the OS kernel using a FUTEX via sem_wait on Linux until
recursively woken up when new tasks become available or the process exits.

The dynamic partitioning approach of this work requires applications to handle limited
processing resources. Immediately terminating the process, as it is TBB’s reaction to low
availability of resources, is a suitable way to deal with this issue if this case almost never
occurs because common OSs with time sharing do not limit the number of software threads to
the actually available amount of hardware processing units. However, the developed resource
management mechanism increases the probability of unsuccessful Posix thread creation due
to limited resources. In this case, finishing the program with only the available processing
units is preferable. Therefore, TBB is modified to put uninitialized worker threads back
to the idle list and continue execution without them in case of unsuccessful Posix thread
creation due to limited resources. Putting idle worker threads to sleep until needed again
avoids the overhead of regular thread allocations, but hides the application dynamics from
the processor resource management, complicates dark-silicon management, and prohibits
the reallocation of resources to other processes. Therefore, TBB is modified to release its
worker threads when idle. TBB owns a static array of worker instances that are assigned
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to Posix threads when started. Active workers register in the tbb::internal::arena class of
TBB to enter a work stealing domain and deregister when they terminate. To comply with
the management of worker slots in this class when dynamically allocating and terminating
workers, an additional list for sleeping workers is introduced. While the original asleep list
stores all workers that are uninitialized and were never started, the new list stores workers
that became idle after they were already running. This list is the preferred source of worker
instances when new work arises. In order to prevent race conditions when terminating and
reallocating worker threads, an additional worker state is introduced. This indicates that a
worker thread terminated itself, the corresponding Posix thread is in detached mode, and the
worker instance can be reused or cleaned up.

4.3.2 Worker Suspension and Resumption

The developed dynamic resource redistribution mechanism requires all applications to be
able to handle resource revocation. As described in section 4.2, an application-specific
revocation handler is called using a signaling mechanism which provides information about
the event and which execution context was interrupted. The application-specific revocation
procedure for TBB is implemented as follows. A pointer to the interrupted worker thread
and the corresponding execution context is stored in a global queue that is regularly polled
by active workers that run out of work. This queue needs to be synchronized in a lock-free
manner, because polling workers might be interrupted during queue access, which can result in
deadlocks otherwise. The work-stealing routine of a worker needs to be modified accordingly.
When a worker runs out of tasks in its local task queue, it checks whether interrupted workers
are available before trying to steal work from remote workers. If interrupted workers are
available, the currently active worker migrates the interrupted worker to its local scheduling
context and terminates itself in favor of the previously interrupted worker. So, the interrupted
worker is restored and continues execution of its task.
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CHAPTER 5

Evaluation

The processor allocation and redistribution mechanism developed in this work aims to increase
the energy efficiency for multi- and manycore systems. It follows the one-thread-per-core
execution model to avoid the overhead of regular context switches and systematically puts
unused cores, considering the actual hardware topology, into a specific sleep state to reduce
energy consumption and accelerate active cores. The proposed processor allocation mechanism
strives to reduce the core allocation latency to motivate user applications for dynamic thread
allocation instead of using static thread pools. In addition, this work introduces a resource
revocation mechanism allowing asynchronous deprivation of cores that are already allocated to
processes but do not meet the global requirements for energy efficiency with their utilization.
So, it strives to increase the system global energy efficiency. This chapter evaluates whether
the developed concepts are suitable for achieving these goals. Therefore, arising research
questions are investigated in individual experiments, including a detailed description of the
methodology, expectations, and conclusion each.

5.1 Measuring the Idle State Power Consumption and Wakeup
Latency of a Real System

When trying to optimize the computation per watt ratio by reducing energy consumption
putting temporary unused processor cores into a sleep state, we need to know how much
energy can potentially be saved in which sleep state and what are the costs in wakeup latency
when new work becomes available. This influences the decision as to whether it is worthwhile
to put cores to sleep or keep them awake for low latency response time. Therefore, this
section evaluates the power consumption and wakeup latency depending on the idle state on
a real system.
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5.1 Measuring the Idle State Power Consumption and Wakeup Latency of a Real System

5.1.1 Evaluation System

The processor topology of the computer system used for evaluating the power consumption
and wakeup latency is illustrated in figure 5.1. It contains two Intel Xeon Gold 6238R
processors with 28 cores and 56 hardware threads each, running at 2.2GHz base frequency
and a maximum Turbo-Boost frequency of 4GHz. The TDP is specified as 165 watts per
processor[20].
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Figure 5.1: Processor topology of the evaluation system (DELL PowerEdge R740 Rack-Server
containing two Intel Xeon Gold 6238R[20] processors), generated using hwloc[11].

The CPUID instruction exposes that the system supports the MONITOR/MWAIT instruction
and its power management extension with a fixed monitoring range of 64 bytes, which equals
the size of a cache line. According to the monitor/mwait leaf of CPUID, the processors
offer only two C-states, C1 and C3, with two substates each, that can be entered using the
MWAIT instruction[18]. This corresponds to the expected available CPU idle states in the
Linux kernel. The mentioned processors belong to Second Generation Intel Xeon Scalable
Processors which are based on the Cascade Lake microarchitecture and is referred as family 6
extended model 85 by CPUID[20]. This model number is also used for Skylake X processors.
Hence, the Linux kernel expects the same idle states and lists them as C1, C1E, and C6
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but the last is configured as a C3 hint for MWAIT [104]. Additionally, individual wakeup
latencies and target residency times are specified as shown in table 5.1.

Name C-state C-substate Exit latency Target residency
C1 1 0 2 µs 2µs

C1E 1 1 10µs 20µs

C6 3 0 133µs 600µs

Table 5.1: Expected supported C-States, exit latency and target residency time for Skylake X
and Cascade Lake microarchitecture based processors for the MWAIT instruction in the Linux
Kernel[104]

5.1.2 Accurate Time Measurement on Multi-Core Processors

The measurement of wakeup latencies requires accurate time measurements, which can be
achieved by multiple methods. On the given system, the Time Stamp Counters (TSCs) can
be used to realize synchronous distributed clocks on all hardware threads, which simplifies
the latency measurement. According to CPUID, the processors support invariant TSC, which
guarantees that the TSC is counting at constant frequency on all cores regardless of the
P-state and C-state. In addition, the TSC frequency can be derived from the core crystal
clock frequency which is specified with 25MHz. Using the conversion factor, determined by
the TSC leaf of CPUID, the TSC frequency results in 2.6GHz. The invariant TSC property
does not guarantee the TSC to be synchronized on all hardware threads. Therefore, the
TSC offset between the hardware threads needs to be determined and considered in the
time measurement. This clock synchronization is done by performing a Two-Way Message
Exchange[109] via shared memory.

5.1.3 Power Measurement using RAPL

To evaluate energy efficiency, it is essential to be able to measure power consumption. Intel’s
Running Average Power Limit (RAPL)[18] offers an integrated solution to collect such
information and is implemented in recent Intel and AMD processors. Depending on the
specific processor, it supports multiple power domains which provide the current energy
status and can be configured to define power limits. The Package (PKG) RAPL domain
refers to the entire socket whereas Power Plane 0 (PP0) only concerns all processor cores
on this socket and Power Plane 1 (PP1) specific devices in the uncore. In addition, there is
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5.1 Measuring the Idle State Power Consumption and Wakeup Latency of a Real System

an extra RAPL domain monitoring the integrated memory controller that also includes the
directly attached DRAM. RAPL has been proven to provide accurate energy measurement
results compared to external devices[65, 48]. The processors in the evaluation system only
deliver values for the PKG and DRAM domains. Since it is a dual-socket machine, RAPL
has to be configured and read for each individual processor socket.

5.1.4 Experimental Measuring of Wakeup Latency

Putting unused processor cores into an idle sleep state comes at the cost of increased wakeup
latency when new work arises. This section quantifies those wakeup latencies depending on
the C-State.

Procedure After reboot, each hardware thread enters a global barrier. The first hardware
thread of the first processor socket acts as the master thread and instructs the other threads
to enter a specific C-state by executing MONITOR/MWAIT on an individual memory range.
The master thread itself does not enter a sleep state. Instead, it waits actively for one second
allowing all other threads to enter the target CC-state. This prevents the processor from
entering a package level C-state higher than PC0 which would further influence the wakeup
latency. Therefore, it is only measured on the first processor socket. For every first hardware
thread on each core of the first processor and all available C-states and substates, the wakeup
latency is determined using a one-way latency analysis, running the following sequence: The
master thread takes a local time stamp using TSC. Thereafter, it writes to the monitored
memory range of a specific slave thread and thus wakes it. The slave thread takes a second
time stamp. Afterwards, the time stamps are compared. To emphasize the extra wakeup
latency, active waiting (polling) on a shared memory variable and CC0 are measured for
comparison.

Expectations It is expected that actively polling on a shared memory region leads to
the shortest response time. Periodically checking the memory range and calling MONI-
TOR/MWAIT with CC0 as target sleep state is assumed to be only a little slower than
polling since it does not enter a real sleep state but introduces overhead to arm the address
monitoring. For every deeper idle sleep state, an increasing wakeup latency is expected. The
amount of time required is supposed to be approximately the specified time in the Linux
Kernel.
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Results Figure 5.2 visualizes the measured wakeup latencies depending on the CC -state.
Please note the logarithmic scale on the time axis. Actively polling on a shared memory
range requires a median of 161.59 nanoseconds, which equals about 137 thousand processor
instruction cycles. Calling MONITOR/MWAIT with CC0 increases the latency to 168.64
nanoseconds which meets the expectations, but the variance is bigger and the minimum is
lower compared to simple polling. The variance can be explained by the random position in
the loop of checking the memory range, setting up the monitor, and calling MWAIT when
the notification arrives. The lower best-case latency in the CC0 scenario might be caused by
decreased contention on the caches due to the overhead of setting up the address monitoring.
Under the use of CC1 with substate 0 and 1 the median latency equals 858.64 respectively
869.55 nanoseconds which is less than half the latency specified in the Linux kernel for C1.
Providing CC3_0 and CC3_1 as hint to MWAIT further increases the wakeup latency to
48.26 and 47.45 microseconds. This equals about one third of the latency specified in the
Linux kernel for this configuration.

Figure 5.2: Wakeup latency depending on core level idle state and substate using MONITOR/MWAIT
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5.1.5 Energy Consumption

In order to decide whether it is worthwhile to enter an idle sleep state, with the goal of saving
energy, the potential of energy saving needs to be known. Therefore, this section examines
the energy consumption of the processor depending on the idle state.

Procedure The current energy status is determined for the entire processor package using
the RAPL interface. The power consumption is investigated in one scenario where all cores
are asleep and thus the processor can also reach a package level idle sleep state and in a
second scenario, where one thread remains active and thus keeps the processor package in
PC0 state. Therefore, the energy status is read and the target idle sleep state is entered
using MONITOR/MWAIT. After 60 seconds, the energy status is read again. The difference
is the amount of consumed energy. The energy divided by the execution time equals the
average power consumption.

Expectations The power consumption in CC0 is expected to roughly correspond to the
processors TDP of 165 watts. When entering a deeper core level sleep state, the power is
assumed to decrease significantly. Allowing the processor to enter a package level C-state by
putting all its cores to sleep should further decrease the energy consumption compared to
the scenario where a single thread keeps the package active.

Results Figure 5.3 shows the results. In CC0 state, the power consumption equals approx-
imately the TDP which meets the expectation. In this case, both packages are in active
state but package, configured to put all cores in the desired C-state, consumes less energy
than the package where a single thread keeps polling on the TSC in order to wait on the
expire of the measurement interval, although the processors are in the same idle state C0.
This might be caused by different loads caused by polling the TSC and periodically calling
MONITOR/MWAIT. In addition, the HWP might influence the power consumption. Using
CC1_0 as target C-state reduces the power consumption from 144.97 watts to 54.88 watts for
the idle package and from 152.27 watts to 59.12 watts for the package that remains in PC0.
When applying deeper sleep states, the power consumption decreases further but only in small
extent. In CC3_1, the power consumption reaches its minimum at 45.02 watts, respectively
55.68 watts. The DRAM power consumption remains, almost unaffected from the idle state,
constant between 17.6 watts and 19.7 watts for the active processor, respectively 15.8 watts
and 15.9 watt for the idling processor.
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Figure 5.3: Processor package power consumption depending on idle state and substate. Measured
using RAPL.

5.1.6 Conclusion

The computation per watt ratio as a measure for energy efficient computing can either be
optimized by increasing the computational work or decreasing the required amount of energy.
Thereby, the power consumption arises from static and dynamic energy dissipation in CMOS
circuits, today’s processors are implemented with and which heavily depends on the supply
voltage and clock frequency. Power gating, clock gating as well as dynamic frequency and
voltage scaling are mechanisms that allow dynamic adjustment of the power consumption
according to the current performance requirements. Those hardware mechanisms are partly
controllable by the operating system by entering operational performance states (P-states)
or idle power saving states (C-states) via ACPI or using processor-specific instructions like
MONITOR/MWAIT. When a processor is currently unused, deeper C-states bring higher
energy savings but at the cost of increasing wakeup latency when needed again. Experiments
have proven those expectations and shown that using CC3 instead of CC1 sleep state offers
only a little benefit in the form of power savings but leads to a significant increase in wakeup
latency. Therefore, one can conclude that putting unused processor cores into a sleep state
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is a worthy way to dynamically decrease idle power consumption, but suffers from wakeup
latency. To compensate this and the power loss of frequent state transitions, a sophisticated
OS-level processor management is required.

5.2 Thread Allocation Latency

Due to spatial processor partitioning and exclusive resource allocation, applications are
expected to dynamically allocate and deallocate the currently required processing resources
instead of continuously keeping a private worker pool of sporadically used processors. Thus,
temporally unused processors can be reassigned to other applications or be put to sleep to
save energy and, thus, reduce overall power consumption or boost active cores. Users might
want to avoid potentially high costs of frequent resource allocation and deallocation. This
contradicts the goal of high energy efficiency due to dynamic reallocation. The proposed
processor allocation mechanism strives to reduce the core allocation latency to motivate user
applications for dynamic thread allocation instead of using static thread pools. Therefore,
this section measures the static overhead of creating, starting, and terminating software
threads using the developed processor allocation mechanism that is implemented in MyThOS,
as described in section 4.1. The results are compared with Linux, because it is one of the
most commonly used OSs for parallel computing.

5.2.1 Setup

The benchmark application measures three different latencies. At first, there are direct costs
that arise when an application tries to create an additional thread. Therefore, the time
until a pthread_create function call returns is measured. Usually, when additional threads
are requested by an application, new parallel work has been produced and the applications
performance depends on a fast start of processing by additional threads. As a consequence, a
low latency from calling pthread_create until the newly created thread starts execution of
productive application code is relevant and, therefore, measured in a second scenario. As a
last step, a full cycle from creating a posix thread until it finishes the execution of an empty
body function and its termination becomes observable using pthread_join is measured. So,
the management overhead of creating a thread and waiting until it has processed its work
can be determined. All three scenarios are repeated a hundred times to allow statistical
evaluation. The results of the proposed processor allocation mechanism implemented in
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MyThOS are compared to a stock Linux with kernel version 5.8.0-53-generic, because Linux
and its derivatives are the de facto standard operating systems on the world’s most powerful
computer systems[107].

The evaluation is performed on a DELL PowerEdge R740 server system containing two Intel
Xeon Gold 6238R processors with 28 cores and 56 hardware threads each. The system was
already introduced in section 5.1.1. This system can be classified as a dual socket, multicore
processor system, because each processor owns a single level three cache for all of its cores,
making it a single tile architecture. Experiments are performed with Intel Turbo Boost feature
enabled.

In this experiment, the processor pool balancing thresholds are configured as follows. When
the number of free resource in a thread team falls below the lower limit of one hardware
thread, more resources are requested from the central processor allocator. When a thread
team owns more than four free hardware threads, it returns, if possible, a whole core including
its two associated threads back to the central processor allocator. Thus, a thread team should
always have at least one free hardware thread in low latency sleep available and no more
than four hardware threads per team are prevented to enter a deep sleep state in the central
processor allocator. The target sleep state of all hardware threads that are owned by the
central processor allocator is CC3_1 which is the deepest available sleep state of the system.
The target sleep state in all thread teams is CC1_0, also known as halt. So, while hardware
threads owned by the central processor allocator are considered cold in terms of wakeup
latency and caches, hardware threads owned by the team provide a higher hotness. They
have a lower wakup latency and their local caches potentially contain application data from
previous assignments which predestines them to serve high frequent allocation requests.

5.2.2 Expectations

On both OSs, the latency until the pthread_create function returns is expected to be lower
than the latency until the new thread starts its actual work, because it requires waking up
another hardware thread. As measured in section 5.1.4, the wakeup latency is between 168
nanoseconds and 48 microseconds, depending on the idle sleep state. Since the thread team
is configured to always hold at least one free hardware thread ready in CC1_0, the wakeup
latency is expected to be around 858 nanoseconds. For all three scenarios, the processor
allocation mechanism implemented in MyThOS is not supposed to be slower than Linux,
because MyThOS itself consists of a comparatively lightweight structure and, due to the
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one-thread-per-core paradigm, there is no need for sophisticated scheduling algorithms like
Linux uses when posix threads need to be executed. The third scenario, where a new posix
thread is created and joined, is assumed to have the highest latency, because it contains both
other scenarios.

5.2.3 Results

Figure 5.4 presents the measured latencies in microseconds of the three scenarios for the
developed processor allocation mechanism implemented in MyThOS and compared to Linux.
For all three scenarios, the proposed processor allocation mechanism with MyThOS causes a
lower latency than Linux, which meets the expectations. The constant median latency value
of eight microseconds for all three scenarios under MyThOS can be explained by the overhead
for allocating memory and communication to the OS in order to create a new software thread
which is the major cost factor compared to the low wakeup latency of the additional hardware
thread. Linux causes median latencies of 45 microseconds for the pthread_create scenario, 46
microseconds until the thread starts executing application code, and 47 microseconds from
creating until terminating a posix thread. Hence, the measured latencies for all three scenarios
are more than five times lower using MyThOS with the developed processor management
compared to Linux.

5.2.4 Conclusion

Existing parallel runtime systems try to reduce the overhead of frequent thread allocation
by maintaining static thread pools. This behavior hides the dynamics of the application
parallelism from the OS and, thus, complicates the resource and power management of the
OS. In addition when using spatial processor partition with exclusive allocation, it prevents
dynamic reallocation which results in underutilization. The developed processor allocation
mechanism that is implemented in MyThOS reduces the allocation latency of a software
thread by more than 80 percent compared to Linux. This is not only directly beneficial
for performance and energy efficiency but also encourages applications and parallel runtime
systems to dynamically allocate and release processing resources.
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Figure 5.4: Runtime overhead of creating, creating and starting, and creating and joining a posix
thread using MyThOS with the developed processor allocation mechanism compared to Linux

5.3 Evaluation of the Energy Consumption and Execution Time on
the Example of a Mandelbrot Set Rendering Application

The last experiment examined the direct costs of using the posix thread interface that is
implemented as a user abstraction of the developed processor management mechanism and
compared it to Linux. In this part, the evaluation focuses on the execution time and energy
consumption when running a user application that makes heavy use of the processor allocation
mechanism and is highly dynamic in the resource requirements. Therefore, the execution
time of this application, that is running on MyThOS combined with the developed processor
management mechanism, which requires the application to act resource-aware, is compared
to Linux, which does not limit the number of software threads according to the physically
available resources. Additionally, the influence of Intel Dynamic Acceleration (IDA)[18] and
the target idle sleep state of currently unused cores are investigated.
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5.3 Evaluation of the Energy Consumption and Execution Time on the Example of a
Mandelbrot Set Rendering Application

5.3.1 Mandelbrot Set Benchmark Application

To evaluate the influence of the developed resource management on real applications, a
parallel Mandelbrot set benchmark is used. It applies a recursive divide and conquer pattern
trying to find sectors of same color by checking a sector’s border and splitting it in case of a
nonuniform border. Figure 5.5 shows the Mandelbrot set rendering including the frames of
the resulting image sectors due to the recursive descent of the employed algorithm.

Figure 5.5: Mandelbrot set rendering

Listing 5.1 exposes the algorithm. Based on the configuration of the target image section,
an initial image sector is created and the parallel rendering is launched by calling the
render_mandelbrot_sector function and providing the initial sector to it. If the size of the
sector is smaller than a specific lower limit, the algorithm falls back to a serial computation
and, thus, iterates over each pixel in the given mandelbrot sector and calculates its color.
Otherwise, if the size of the sector is great enough, the algorithm calculates and compares
the color of all pixels on the border of the sector. If the border has a uniform color, the
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whole sector is expected to have the same pixel color and will be plotted accordingly. In this
case, no further computation of the sector is needed. If, on the other hand, the border does
not have a uniform color, the algorithm follows a divide and conquer approach. The current
sector becomes split up into two smaller subsectors which are then recursively processed using
the same function. While one subsector will be handled by the current thread, the other one
is delegated to another thread by calling pthread_create. If, due to insufficient resources, the
creation of the posix thread fails, the current thread processes both subsectors sequentially.

Listing 5.1: Mandelbrot set parallel rendering pseudo-code

1 function render_mandelbrot_sector ( Sector s)

2 if s < MIN_SECTOR_SIZE then

3 for each pixel in s do

4 calculate color

5 plot pixel

6 else

7 for each pixel in border of s do

8 calculate color

9 if border has uniform color then

10 plot sector

11 else

12 (s0 , s1) = split_sector (s)

13 if pthread_create ( render_mandel_brot , s0) failed then

14 render_mandelbrot_sector (s0)

15 endif

16 render_mandelbrot_sector (s1)

17 endif

18 endif

5.3.2 Setup

The benchmark is configured to render the mandelbrot set in the interval {z ∈ C | Re(z) ∈
[−1, 1], Im(z) ∈ [−1, 1]} to a resolution of 4096 by 4096 pixel. Since, saving the resulting
mandelbrot set image as a multicolor bitmap would result in massive data movement to the
main memory, which would make the application memory-bound, the benchmark viewer
only counts the number of pixels inside and outside of the mandelbrot set based on their
calculated colors. Thus, the application turns compute-bound through which the influences of
processing resource management are emphasized and memory effects like placement decisions
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Mandelbrot Set Rendering Application

on NUMA machines become negligible. For each required pixel the function zn+1 = z2
n + c, if

not diverging earlier, is iterated a thousand times for the associated complex number. For
comparison, in the serial scenario, split sectors are not tried to be delegated to new threads
but directly be computed by the thread itself. Therefore, pthread_create function is not
called and no overhead for threading is introduced.

As in the previous experiment, the evaluation is performed on a DELL PowerEdge R740
server system containing two Intel Xeon Gold 6238R processors with 28 cores and 56 hardware
threads each. The combined energy consumption of both processor packages is measured
using RAPL, as described in section 5.1.3.

Power states of idling processor cores are expected to influence the performance of running
cores due to Intel Turbo Boost as an implementation of IDA[18]. Hence, experiments are
performed both with and without the IDA feature enabled. The core clock frequency of
the system ranges from 2.2 GHz base frequency to 4GHz maximum turbo boost frequency.
The serial and parallel execution time depending on the activation of IDA of the proposed
processor allocation mechanism implemented in MyThOS are compared to a stock Linux with
kernel version 5.8.0-53-generic, because Linux and its derivatives are the de facto standard
operating systems on the world’s most powerful computer systems[107].

In order to provide evidence about the execution time and energy consumption depending on
the number of employed hardware resources, the thread team is limited in multiple steps
from a single to all available 112 hardware treads for the scalability scenario. Thereby, the
target idle sleep state of cores that are currently owned by the central processor allocator
and cores that are bound to a thread team will be varied in order to inspect the influence of
different latency and energy characteristics.

5.3.3 Expectations

The serial mandelbrot set calculation, where ptread_create is not called, is assumed to
produce approximately the same execution time on MyThOS with the processor management
compared to Linux, because no OS functionality is used. Additionally, in the serial case,
activating IDA is expected to reduce the execution time at most by the ratio between the
base clock frequency and the maximum turbo boost frequency. This speedup is considered to
be significant, since the application is compute-bound and all other cores are supposed to be
in an idle sleep state, saving energy and, therefore, boosting the active core. Running the
application in parallel, trying to spawn another posix thread on each sector split, MyThOS
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in combination with the proposed processor management is expected to require less execution
time than Linux, because the resource management limits the number of posix threads that
can be spawned to the number of available resources, while Linux is confronted with the
overhead of a not directly limited number of threads. When scaling the thread limit of the
thread team, that represents the benchmark process under MyThOS, the execution time is
assumed to lower sublinearly with an increasing number of processors, but might experience
a knee in the speedup curve due to the growing management and synchronization overhead
in the runtime system. On the one hand, increasing the number of active cores also increases
the power consumption, because those cores cannot enter an idle sleep state and, therefore,
do not save energy. However, using more cores for processing the fixed sized application is
expected to shorten the execution time. So, when the application finishes execution earlier,
the increased power consumption is limited to a short interval, which still might reduce the
total energy required to execute the benchmark. Whether it is more energy efficient to use a
high or low number of processing resources to process the benchmark application is hardly
predictable but is clarified by the measurements.

Putting unused cores into deep sleep promises low energy consumption at the costs of
high wakeup latency, while low sleep states offer a lower wakeup latency but high energy
consumption. Configuring the target idle state to deep sleep state for all cores owned by
the central processor allocator combined with halt state for cores owned by a thread team
promises a good trade-off between wakeup latency and energy savings, that can be used to
boost active cores. Therefore, this is used as the default configuration and compared with
other combinations.

5.3.4 Results

This section presents and discusses the measurements of the mentioned experiments. At first,
the execution time comparison to Linux in dependence of the serial and parallel execution
and IDA feature is examined. Afterwards, the scalability with increasing number of employed
cores and multiple combinations of idle sleep states is investigated. The last part inspects the
influence on the energy consumption for the fixed application and for a fixed time interval.

Execution Time Comparison to Linux Figure 5.6 shows the execution time of the mandelbrot
set benchmark application running serial and parallel on MyThOS with the developed
processor management and with Linux. Additionally, the influence of IDA is measured.
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Figure 5.6: Mandelbrot set benchmark execution time comparison Linux versus MyThOS with the
proposed processor allocation mechanism in dependency of activated IDA

In the serial scenario without IDA enabled, the execution time of MyThOS with the processor
management and Linux are with a median of 37.87 respectively, 38.11 seconds, similar. This
meets the expectation. The slightly lower execution time on MyThOS can be explained
with the simple memory management in MyThOS user space that eagerly maps all available
memory to the address space at startup and, therefore, avoids the overhead of lazily mapping
memory pages. Additionally, Linux might interrupt the active core in order to process kernel
tasks or other user processes while MyThOS provides exclusive access to the core. With the
IDA feature enabled, the serial execution time decreases to 20.83 seconds for MyThOS and
20.95 seconds for Linux which equals a speedup by factor 1.82 in both cases. This correlates
exactly with the increased maximum core clock frequency from 2.2GHz to 4GHz due to
turbo boost. From this observation, one can derive that the application can take a maximum
benefit from the frequency scaling. This is caused by the fact that the application is designed
to be compute-bound and, thus, is not limited by memory access latency.
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When running the parallel version of the benchmark application, each time a mandelbrot
set sector becomes split, it tries to create a new pthread for the processing of one subsector.
Without IDA, on MyThOS, including the processor management, a benchmark iteration
requires a median of 1.27 seconds which results in a speedup of 29.82 compared to the serial
case. In the same scenario, the benchmark required 9.84 seconds running on Linux. This
means a speedup of 3.87 but is still 7.75 times slower than MyThOS. The deviation of the
execution time measurements is mainly caused by the resource aware approach of the proposed
processor management mechanism in MyThOS which is based on the one-thread-per-core
paradigm and, thus, prevents the application from creating more software threads than
physical processor units available. Linux, on the other hand, does not directly limit the
number of software threads. So, more and more software threads are created, regardless of
the current system state and the overhead for management and rescheduling which causes the
major part of the execution time. Enabling the IDA feature further reduces the execution time
to 1.08 seconds for MyThOS and 9.22 for Linux which leads to a speedup of 1.18, respectively
1.07 compared to the parallel execution without IDA. From that one can conclude that, for
the given scenario, IDA has less impact on execution time when all cores are active compared
to when many cores entered an deep idle sleep state.

Scalability Depending on Target Idle Sleep State The thread team kernel object, as a part
of the processor management mechanism in MyThOS, offers the functionality to configure
an upper limit of hardware threads that can be allocated by the corresponding user process.
So, it allows the user to restrict its resource footprint without keeping books itself. This
mechanism is employed to measure the application scalability at runtime. Additionally,
multiple combinations of target idle sleep states for the central processor allocator and the
thread team are evaluated. IDA is activated. The results are shown in figure 5.7.

In this scenario, limiting the number of threads to one is not equal to the serial run of the
previous experiment, because, due to the thread restriction, the application fails when trying
to create additional software threads while the serial version does not even try to create them
and directly processes all mandelbrot subsectors itself. Consequently, the execution time
required for a mandelbrot benchmark iteration increases from a median of 20.83 seconds of
the serial version to 21.44 seconds of the parallel version with the number of threads limited
to one. Therefore, continuously trying and failing to create additional software threads
increases the execution time by factor 1.03. In both cases, the target idle sleep state of the
central processor allocator is configured to deep sleep (CC3_1 ) and the thread team to halt
(CC1_0 ). Keeping all cores spinning in an active state increases the required execution
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Figure 5.7: Execution time of mandelbrot set benchmark on MyThOS with the processor allocation
mechanism depending on thread limit and target sleep modes with active IDA

time by factor 1.4 to 29.98 seconds. Since only a single hardware thread is executing the
benchmark code, all other cores are wasting energy that the benchmark thread lacks for
boosting its frequency. Similarly, using halt as a global target sleep state causes idling threads
not to save enough energy to for maximum boosting of the active thread. So, a median
execution time of 28.47 seconds is required. A global target idle state configured to deep
sleep produces the same execution time of 21.44 seconds as the default combination of deep
sleep and halt. This is caused by the fact that in both cases most cores are owned by the
central processor allocator and, therefore, entered the deep sleep state. If, on the other hand,
the thread team is configured to keep its idle core spinning, the execution time increases to
22.85 seconds due to energy wastage.

When the thread limit of the team is increased, the execution time required for the benchmark
application decreases as well as the absolute differences in execution time between the sleep
state configurations. This meets the expectation. The lowest execution time of 0.93 seconds
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is reached using all available 112 hardware threads and keeping all idle threads actively
spinning. This supports the thesis that, if the system load is high and cores are only used for
a short period of time, it is more time efficient to keep the cores active instead of putting
them into an optimized sleep state. On the other hand, using deep sleep as target idle state
leads to an 1.04 times higher execution time of 0.97 seconds in median. One can argue that
all cores are nearly permanently in use and, thus, do mostly not enter the full deep sleep
state. The default combination of deep sleep and halt produces a execution time of 1.08
seconds, which is 1.16 times slower than spinning and 1.11 times slower compared to using a
global deep sleep. Consequently, for the given scenario, using deep sleep as target idle state
for both the central processor allocator and thread team, offers the best trade-off between
energy savings and wakeup latency and, consequently, produces almost the lowest execution
time for all numbers of used threads. This phenomenon is suspected to be restricted to the
characteristics of the benchmark application where a constant group of threads is nearly
permanently occupied while all other cores remain idle and stay in their desired sleep state.
Frequent switching of the target sleep state when balancing threads between processor pools
requires the cores to be woken up and introduces runtime overhead. Moreover, one must take
into account that the provided target sleep state is only seen as a hint by the CPU and the
actually selected state may differ.

Energy Scalability Depending on Target Idle Sleep State While the previous section
only considered execution time as a measure for efficiency of the processor management
mechanism in MyThOS, the following part focuses on energy consumption. Thereby, the
same experimental setup is used and IDA is active. The total energy consumed by both
processor packages in the system for the fixed benchmark iteration is shown in figure 5.8.

Deep sleep idle states promise lower power consumption compared to lower sleep or active
states. The combination of the high power consumption and long execution time when
keeping all idle threads actively spinning, causes the highest energy consumption of 9.51
kilojoule when using only a single thread for the application. In the single thread scenario,
the lowest energy consumption of 2.37 kilojoule is reached when configuring the target idle
sleep state globally to deep sleep or to a combination of deep sleep and halt. This meets the
expectation and means an energy reduction of more than 75 percent due to less required
power of the idle threads and lower execution time due to increased performance boost.
Generally, increasing the thread limit in the team decreases the energy required to process a
benchmark iteration, but is mainly caused by the reduced execution time. The lowest energy
consumption is measured using 64 threads and deep sleep as the target sleep state for all
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Figure 5.8: Energy consumption of both processor packages for Mandelbrot set benchmark on
MyThOS with the processor allocation mechanism depending on the thread limit and target sleep
modes with activated IDA

threads. In this case, it requires a median of 0.22 kilojoule to process a benchmark iteration.
Hence, the number of threads assigned to this benchmark to reach the lowest execution time
does not provide the best energy efficiency. When using all available 112 hardware threads of
the system, the energy consumption increases slightly for all sleep state configurations.

In this experiment, only the energy consumption over the execution time of a single bench-
mark iteration, that is specific for the individual configuration, is measured. Following the
argumentation that, directly after the completion of an application, the system can start
to process other applications or be fully shut down to save energy, the energy consumption
over the execution time delivers a suitable measure for energy efficiency. When, on the
other hand, the system is supposed to stay awake in order to be available for spontaneously
arising tasks, the system can just enter a deep sleep state instead of shutting down. Since
processors in deep sleep state still consume energy, the energy consumption has to be scaled
to a fixed time interval to compare the energy efficiency of multiple configurations leading
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to individual execution times. So, one can decide whether it is more energy efficient to
quickly finish execution using many threads and then enter deep sleep mode or using less
threads for processing the application while the other threads are kept in deep sleep for a
longer execution time. Since the energy consumption over a fixed interval that includes the
benchmark execution time of each configuration is not directly measured, the fixed interval
specified to the longest execution time of about 3.02 seconds and the deep sleep power of
45.02 watts, as measured in section 5.1.5, is added for the remaining time for each individual
configuration. This scaled energy consumption is shown in figure 5.9.

Figure 5.9: Mandelbrot set benchmark energy consumption of both processor packages on MyThOS
with the processor allocation mechanism depending on the thread limit and target sleep modes
scaled to fixed execution time and with IDA activated

The adapted energy consumption that considers the measured deep sleep idle power to fill
up the execution time to the fixed time interval, emphasizes the importance of putting idle
cores to sleep. In the single threaded scenario, the energy consumption for the deep sleep
configuration, respectively, the deep sleep and halt combination, increase by a factor of 1.33
to 3.15 kilojoule. The highest energy consumption of the idle spinning configuration stays
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constant, because this is used as reference case for the fixed interval. The lowest energy
consumption over the fixed interval of 2.85 kilojoule is produced using 64 threads and the
target idle sleep state configured to either deep sleep, halt, or a combination of both. Thereby,
less than eight percent of the energy is used for actual computation while the rest is consumed
for deep sleep idle until the fixed interval ends. From this, one can derive that, for the given
scenario and application, it is generally slightly more energy efficient to employ a high number
of threads and quickly enter system wide deep sleep than using less threads over a larger
period of time, but it is most important to put unused cores into a sleep mode.

5.3.5 Conclusion

The developed resource management in MyThOS limits the number of allocated software
threads to the number of physically available hardware threads. This requires the application
to act resource-aware and thus being able to handle denied processing resource requests. In
combination with the reduced thread allocation latency, this results in more than seven times
faster execution of the parallel mandelbrot set rendering application than Linux, which does
not limit the number of parallel software threads and, therefore, causes massive overhead for
thread allocation and rescheduling.

The experiments have shown that, for the compute-bound application under study, it is more
energy efficient to process the application using a high number of active processor cores
and, thus, finish execution earlier than using only a single hardware thread and putting
others to sleep. This trend is still valid when considering a fixed time interval instead of a
fixed application size and putting all cores into a deep sleep state after termination. The
experiments also have shown that a target sleep state for all threads configured to CC3_1
(deep sleep), in generally produces the lowest execution time and the best energy efficiency.
The combination of deep sleep for all threads owned by the central processor allocator and
halt as a target sleep state for all threads of the team, is slightly less efficient in execution
time and energy but is still expected to be a good default configuration, especially when
running real world applications that do not permanently make excessive use of the resource
management mechanism. From the results, one can derive that a proper use of processor idle
sleep states has a major impact on the energy efficiency as well as the performance, especially
when dynamic performance boosting is activated and not all cores are permanently in use.
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The mandelbrot set benchmark application of the previous experiment directly uses the
extended posix thread interface to express its parallelism and is, consequently, itself responsible
for handling failed resource allocation requests and thread synchronization. Parallel runtime
systems ease the development of parallel applications, because they implement the basic
functionality of the parallel execution model, for example, taskification, synchronization,
work distribution, and work balancing. As examined in section 3.5, this work proposes to
shift the dynamic processing resource handling into the parallel runtime system as well, to
disburden the application programmer from the manual implementation. This strives to
increase the productivity by reducing the code complexity and thus susceptibility to errors.

Section 4.3 described the exemplary integration of automated processing resource allocation
into Intel Threading Building Blocks (TBB) using adaptive work stealing. Instead of directly
creating and programming software threads, TBB offers multiple mechanisms to specify fine-
grain tasks, which are in dependable work packages that are scheduled using work-stealing.
This allows for a high-level abstraction of parallel program sections. Even if using a work
stealing task scheduler potentially reduces the number of thread allocations, the required task
creation and task scheduling still introduces overhead. Hence, there is a tradeoff between
frequent thread allocation and overhead of the task-parallel runtime system, which directly
influences the application performance and energy efficiency. Thus, this experiment targets
the question of how the usage of this task-parallel runtime system with automated processing
resource allocation affects the performance and energy efficiency compared to manual thread
allocation.

5.4.1 Setup

To emphasize the costs of dynamic multi-threading or task creation and task scheduling,
this experiment uses the mandelbrot set rendering benchmark application from the previous
experiment, which is described in section 5.3.1. However, the mandelbrot set benchmark
application needs to be modified, to use the task interface of TBB instead of plain posix
threads. Thus, the call of pthread_create() and its error handling presented in line 13 to 15
of listing 5.1 are replaced by tbb::task_group::run() to create a new task in the TBB task
group. The handling of unsuccessful thread creation is no longer required, because the task
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creation cannot fail and tasks are automatically distributed to available worker threads by
the work stealing scheduler.

Equally to the previous experiment, the benchmark is configured to render the mandelbrot
set in the interval {z ∈ C | Re(z) ∈ [−1, 1], Im(z) ∈ [−1, 1]} to a resolution of 4096 by 4096
pixel. Furthermore, only the number of pixels inside and outside of the mandelbrot set
are counted, based on their calculated colors. Thus, the application turns compute-bound
through which the influences of processing resource management are emphasized and memory
effects like placement decisions on NUMA machines become negligible. For each required
pixel the function zn+1 = z2

n + c, if not diverging earlier, is iterated a thousand times for the
associated complex number.

As in the previous experiments, the evaluation is performed on a DELL PowerEdge R740
server system containing two Intel Xeon Gold 6238R processors with 28 cores and 56 hardware
threads each. The combined energy consumption of both processor packages is measured
using RAPL, as described in section 5.1.3.

The execution time and energy consumption of the TBB and posix thread mandelbrot set
rendering variants are compared to each other. Therefore, they are both executed on MyThOS
with the proposed processor allocation mechanism. The IDA feature is activated. In order
to provide evidence about the execution time and energy consumption depending on the
number of employed hardware resources, the thread team is limited in multiple steps from a
single to all available 112 hardware treads for the scalability scenario.

In this experiment, the processor pool balancing thresholds are configured as follows. When
the number of free resource in a thread team falls below the lower limit of one hardware
thread, more resources are requested from the central processor allocator. When a thread
team owns more than four free hardware threads, it returns, if possible, a whole core including
its two associated threads back to the central processor allocator. Thus, a thread team should
always have at least one free hardware thread in low latency sleep available and no more
than four hardware threads per team are prevented to enter a deep sleep state in the central
processor allocator. The target idle sleep states are configured to deep sleep for all threads
owned by the central processor allocator and halt as a target sleep state for all idle threads
assigned to a team. So, while hardware threads owned by the central processor allocator are
considered cold in terms of wakeup latency and caches, hardware threads owned by the team
provide a higher hotness. They have a lower wakup latency and their local caches potentially
contain application data from previous assignments which predestines them to serve high
frequent allocation requests.
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5.4.2 Expectations

Creating a task each time a subsector of the mandelbrot set needs to be rendered instead
of trying to create another posix thread reduces the overhead spent on thread creation.
Nevertheless, creating a task requires memory allocation and the task scheduler introduces
additional overhead. However, using the tasking framework of TBB is not expected to result
in much greater but in a slightly lower execution time, because the posix thread allocation
requires memory allocation as well. Additionally, creating a new posix thread requires
interaction with the resource management in the OS and failed thread allocation requests
may lead to work imbalances due to the recursive execution of both mandelbrot subsectors by
the current thread itself. The previous experiment has shown that the energy consumption
for a fixed sized application decreases with a lower execution time. Hence, the required energy
for the execution of the TBB mandelbrot set application variant is expected to be equal or
lower compared to the posix thread variant.

5.4.3 Results

Figure 5.10 shows the execution time for the mandelbrot set benchmark depending on the
number of hardware threads assigned for both the posix thread and the TBB implementations.
Using TBB tasks for the parallelization results in a general reduction of the execution time
compared to posix threads. This meets the expectation. For the serial case, where no
additional threads can be created, the execution time decreases by 3.2 percent to 20.794
seconds. Using a high number of hardware threads increases the execution time reduction, so
that when assigning all available 112 threads to the application, the TBB variant decreases
the execution time by 58.8 percent to 0.418 seconds compared to the posix thread variant.

The energy consumption per mandelbrot set benchmark run depending on the hardware
thread limit and the parallelization approach is presented in figure 5.11. Similar to the
execution time, using the TBB implementation generally reduces the energy consumption
compared to posix threads. This meets the expectation. Hence, when the application is limited
to a single hardware thread, the TBB implementation decreases the energy consumption by
3.8 percent to 2.305 kilojoule. Furthermore, a high number of assigned hardware threads
intensifies the differences in energy consumption. If all 112 hardware threads are available
to the application, the TBB implementation reduces the required energy by 45.4 percent to
0.141 kilojoule compared to the posix thread variant.
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Figure 5.10: Execution time of the mandelbrot set benchmark on MyThOS with the processor
allocation mechanism depending on thread limit and parallelization approach

5.4.4 Conclusion

Existing parallel runtime systems facilitate the development of parallel applications, because
they implement the basic functionality of the parallel execution model. This work proposes
to shift the dynamic processing resource handling into the parallel runtime system as well,
to disburden the application programmer from the manual implementation. This strives to
increase the productivity by reducing the code complexity and thus susceptibility to errors.
On the other hand, using a task-based runtime system instead of directly programming posix
threads affects the execution behavior and thus performance and energy efficiency because
it reduces the number of thread allocations but generates overhead for task creation and
scheduling. Since this work strives to maximize energy efficiency, it is important that the
migration from manual thread allocation to the usage of a task-parallel runtime system does
not degrade performance and energy consumption. Therefore, this experiment evaluated the
question of how the usage of this task-parallel runtime system with automated processing
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Figure 5.11: Mandelbrot set benchmark energy consumption of both processor packages on MyThOS
with the processor allocation mechanism depending on the thread limit and parallelization approach

resource allocation affects the performance and energy efficiency compared to manual thread
allocation.

The results of this experiment have shown that using TBB as a task-parallel runtime system
leads to a reduction in execution time from 3.2 percent up to 58.8 percent and a decrease of
energy consumption from 3.8 percent up to 45.4 percent depending on the number of assigned
processing units compared to the manual thread allocation. From this one can conclude
that the usage of a task-parallel runtime system is not only not harmful but beneficial for
energy efficiency and represents thus a suitable basement for automatic processing resource
handling.

The synthetic mandelbrot set benchmark application that was used in this experiment makes
excessive use of fine-grain task creation and thus emphasizes the costs for task management,
but does not allow for dynamic allocation optimizations because it operates in only a single
program phase with a high degree of parallelism until it finishes execution. Therefore,

107



5.5 Impact of Dynamic Resource Allocation in Parallel Runtime Systems on
Performance and Energy Efficiency

the following experiment focuses on the influence of dynamic thread allocation on a real
world application that runs in alternating phases with different resource requirements in the
parallelism profile.

5.5 Impact of Dynamic Resource Allocation in Parallel Runtime
Systems on Performance and Energy Efficiency

The previous experiment investigated the question of how the usage of a task-parallel
runtime system with automatic processing resource allocation affects performance and
energy consumption compared to manual thread allocation. It has shown that it leads to
a significant reduction of execution time and energy consumption. Additionally, it reduces
code complexity and thus increases productivity. Hence, it was concluded that using a
task-parallel runtime system with automated processing resource allocation is a suitable
approach to disburden the programmer from manual thread allocation. However, the previous
experiment used a synthetic mandelbrot benchmark that makes excessive use of fine-grain
tasks and thus only emphasizes the direct costs of task management, but does not allow
dynamic allocation optimizations by resource management in the OS. This is caused by the
fact that the application consists only of a single program phase with massive parallelism
due to its recursive fork-join pattern. In order to demonstrate the benefits of the developed
resource and dark silicon management, this experiment evaluates the influence of dynamic
resource allocation on a real world application that operates in multiple phases with different
parallelism.

This experiment uses One-Dimensional Turbulence Large Eddy Simulation (ODTLES)[42, 43,
64] as a benchmark application. One-Dimensional Turbulence (ODT)[63, 76] is a stochastic
turbulence model that models the transport of turbulent advection in 3D flows by stochastic
transformations of scalar 1D profiles. ODTLES is the application of ODT as a sub-grid model
to close unresolved small-scale dynamics of the Extended Large Eddy Simulation (XLES)[42].
This benchmark application is used because it represents an example for a typical scientific
numerical simulation, that is not perfectly parallelized and thus operates in phases with
different parallelism. Therefore, it is expected to offer potential for dynamic optimization of
resource allocation.
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5.5.1 Setup

The experiment is arranged as follows.

ODTLES Benchmark Application In this experiment, ODTLES[42, 43, 64] is used as a
real-world benchmark application. It implements parallelization using a combination of
Message Passing Interface (MPI)[14] and Open Multi-Processing (OpenMP)[37, 105]. This
work focuses on resource management at the level of a single shared memory node. Thus, the
parallelization using only OpenMP without MPI is sufficient, because MPI is only required
for communication between individual shared memory nodes within a cluster computer. In
addition, the dynamic resource handling developed in this work is exemplarily integrated into
TBB only, but not into OpenMP. Hence, the implementation of ODTLES has been ported
from OpenMP to TBB. ODTLES expresses its parallelism using only OpenMP parallel for
loops, which are directly replaceable by TBB, because it supports the same abstraction.

Parallelism Profile The ODTLES application is expected to operate in multiple program
phases with varying degree of parallelism which potentially allows for dynamic allocation
optimization. To prove this expectation, the parallelism profile of this application is measured
in this experiment. Therefore, the TBB runtime system is instrumentalized and extended by
a tracing component that logs the activity of the workers. So, a histogram of the parallelism
in form of worker activity is determined.

Dynamic Worker Pool As examined in section 3.5, this work proposes to employ adaptive
work stealing in the runtime system, to dynamically negotiate the allocation of resources with
the processor management based on the actual available work and the load of the system. It
promises to be a reasonable approach to disburden the application programmer from manual
processing resource allocation while still providing information about the application’s
dynamics in parallelism to the processor management. Hence, the TBB runtime system
is modified to allocate workers, including processing units, on demand, and terminate idle
workers so that the corresponding processing units are released to the resource management
again.
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Evaluation System As in the previous experiments, the evaluation is performed on a DELL
PowerEdge R740 server system containing two Intel Xeon Gold 6238R processors with 28
cores and 56 hardware threads each. The combined energy consumption of both processor
packages is measured using RAPL, as described in section 5.1.3.

The execution time and energy consumption of the ODTLES benchmark application using
TBB once with static worker pool and dynamic worker pool are compared to each other.
Therefore, both are executed at MyThOS with the proposed processor allocation mechanism.
The IDA feature is activated. To provide evidence on the execution time and energy
consumption depending on the number of employed hardware resources, the thread team is
limited in multiple steps from a single to all available 112 hardware treads for the scalability
scenario.

In this experiment, the processor pool balancing thresholds are configured as follows. When
the number of free resource in a thread team falls below the lower limit of one hardware
thread, more resources are requested from the central processor allocator. When a thread
team owns more than four free hardware threads, it returns, if possible, a whole core including
its two associated threads back to the central processor allocator. Thus, a thread team should
always have at least one free hardware thread in low latency sleep available and no more
than four hardware threads per team are prevented to enter a deep sleep state in the central
processor allocator. The target idle sleep states are configured to deep sleep for all threads
owned by the central processor allocator and halt as the target sleep state for all idle threads
assigned to a team. So, while hardware threads owned by the central processor allocator are
considered cold in terms of wakeup latency and caches, hardware threads owned by the team
provide a higher hotness. They have a lower wakup latency and their local caches potentially
contain application data from previous assignments which predestines them to serve high
frequent allocation requests.

5.5.2 Expectations

ODTLES is expected to operate in multiple program phases with varying degrees of parallelism.
This behavior should be visible in the parallelism profile.

Due to its parallelism, ODTLES is expected to benefit from multiple processing units. So,
the required execution time is supposed to decrease compared to the sequential execution.
Nevertheless, the application includes sequential parts which limit its scalability. Thus,
the speedup is expected to scale sub-linearly with the number of processing resources and
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might experience a sweet spot after which the execution time starts to increase again. As
experienced in the previous experiments, the energy consumption required for an application
mainly depends on its execution time. However, actively using a high number of processing
units leads to a high power consumption and if those processing units are not able to further
decrease execution time, caused by the limited application scalability, the energy efficiency
decreases.

When using a static worker pool, worker threads are only allocated at the first parallel
program section, put to sleep when out of work, and terminated when the program finishes.
As examined in section 2.4, this scheme is typically used to avoid the overhead of frequent
software thread allocations. The sleeping of idle workers in TBB is implemented using a
FUTEX[38] mechanism. In MyThOS, processing units that are bound to a blocked software
thread, which is the case if it is waiting on a FUTEX, are configured to enter HALT idle state,
because it is unknown for how long the software thread will be blocked. Therefore, those
processing units, that are bound on sleeping worker threads, are hindered from entering a deep
sleep idle state which decreases the energy efficiency during long sleeping intervals. In contrast
to this, the dynamic worker pool implementation releases idling worker threads, and therefore
the corresponding processing units, and reallocates them when new work is available. This
tends to increase the number of worker thread allocations during the application execution but
allows for improved dark silicon management in the OS, because in this way the dynamics in
parallelization of the application can be distinguished from short-term blocking of threads due
to synchronization using a FUTEX. Although the dynamic worker pool variant is supposed
to increase the overhead for worker thread allocation, it is expected to decrease the execution
time compared to the static worker pool, because it allows idling processing units to enter a
deep sleep idle state which again boosts the remaining active workers with the saved energy
budget.

5.5.3 Results

Figure 5.12 presents the measured parallelism profile of ODTLES using TBB with static
worker pool on MyThOS. As expected, the application operates in alternating phases with
different degree of parallelism. The sequential parts require 73.62 percent of the total
execution time in this scenario. All available 112 worker threads are only simultaneously
active for 0.16 percent of the execution time and the average parallelism is 15.03. From
this it can be derived that even in the parallel phases of the application there is not enough
parallel work to keep all available workers busy. Additionally, the application will not take
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huge advantage from additional processing resources due to the already large proportion of
sequential phases. However, at the beginning of each parallel phase, all available workers are
activated, trying to support the processing of the parallel workload. Unfortunately, after a
series of failed work stealing attempts, some of those workers go back to sleep without doing
useful work. For resource management, this means that all unallocated processing units in
the system, which may even be in a deep sleep state, are woken up and shortly thereafter
put back to sleep, resulting in a waste of energy and thus computing capacity. This behavior
is caused by the TBB task scheduler, which wakes up all available workers only for the case
of a potentially large amount of parallel work to be generated[22].

Figure 5.12: Parallelism profile of ODTLES benchmark in terms of TBB worker activity with static
worker pool on MyThOS

The scalability in execution time of the ODTLES benchmark depending on the worker thread
allocation scheme is shown in figure 5.13. The sequential execution time, where no further
processing units are assigned to the application, is 141.8 seconds and identical for both worker
allocation schemes. This meets the expectation because no dynamic worker reallocation
takes place and all unused processing units are kept in deep sleep by the processing resource
management. Using multiple worker threads reduces the execution time in both scenarios.
Up to 16 threads, their execution times are nearly identical. From 32 to 112 threads, dynamic
worker allocation causes a lower execution time compared to the static worker pool. Both
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scenarios experience a knee in the speedup curve, where the execution time increases with
more threads. The static worker pool variant has its lowest execution time with 38.35 seconds
when using 32 worker threads, which then increases to 40.67 seconds when using all 112
worker threads. The dynamic worker pool reaches its lowest execution time at 64 worker
threads with 35.07 seconds, which increases to 35.9 seconds when using all 112 threads. Thus,
the dynamic worker pool offers increased scalability. This can be explained by the deeper
target sleep state of idling hardware threads during sequential phases, which allows increased
frequency boosting of the active threads.

Figure 5.13: Execution time of the ODTLES benchmark using TBB on MyThOS with the different
processor allocation mechanisms depending on thread limit and worker allocation approach

Figure 5.14 shows the energy consumption of both processor packages required for a benchmark
iteration. As expected, the energy consumed is almost proportional to the execution time. In
both scenarios, sequential execution requires 16.1 kilojoule and decreases when using more
worker threads. Analogous to the measured execution time, the energy consumption of the
worker allocation schemes begins to differ when using more than 16 worker threads. So, the
static worker allocation scheme has its minimum at 32 threads with 5.51 kilojoule which
again increases to 6.02 kilojoule when using all 112 threads. The energy consumption of the
dynamic worker allocation scheme reaches its minimum at 64 threads with 5.12 kilojoule
which increases to 5.48 kilojoule when using all 112 threads. Still, using more threads than
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the optimal number increases the energy consumption more than the execution time. This
meets the expectation because those extra threads require extra energy, but have only little
influence on the execution time.

Figure 5.14: The ODTLES benchmark energy consumption of both processor packages using TBB
on MyThOS with the different processor allocation mechanisms depending on thread limit and
worker allocation approach

5.5.4 Conclusion

This experiment focused on the influence of dynamic worker thread allocation on a real-
world application that runs in alternating phases with different resource requirements in the
parallelism profile. Therefore, ODTLES[42, 43, 64] was used as a benchmark application.
Measurements have proven that this application runs in phases with different parallelism
and thus offers potential for dynamic optimization of resource allocation. The experiment
has shown that, in comparison to a static worker pool, the dynamic worker allocation
reduces the execution time and energy when using more than 16 threads, which equals one
eighth of the system’s processing resources, and has no disadvantages when using fewer
threads. Thus one can conclude that, for the given application, dynamic worker thread
allocation offers a suitable approach to allow for dynamic allocation optimization when
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using the developed processing resource management. In this way, the runtime system
automatically provides information about the application’s dynamics in parallelism to the
processor management which enables improved dark silicon management or reallocation of
resources to other applications. Nevertheless, the success of this mechanism still depends
on the cooperative behavior and efficient utilization of processing resources by the user. To
detect and conquer such wasteful resource occupancy, the following experiment evaluates
the developed dynamic resource redistribution mechanism based on online profiling of the
applications.

5.6 Resource Efficiency Control through Online Application
Profiling and Resource Revocation

The previous experiment concluded that, for ODTLES[42, 43, 64] with TBB as the benchmark
application, dynamic worker allocation in combination with the proposed processing resource
allocation mechanism not only does not harm performance, but is actually beneficial for
performance and energy efficiency compared to a static worker pool. Furthermore, it provides
information about the application’s dynamics in parallelism to the processor management
which enables improved dark silicon management or reallocation of resources to other
applications. However, the success of this mechanism depends on the cooperative behavior
and efficient utilization of the processing resources by the user. Therefore, if single applications
do not regularly release and reallocate their resources according to their parallelism profiles
or do not use the allocated resources efficiently, other applications might suffer from resource
deficiency and the overall system efficiency decreases. To detect and conquer such wasteful
resource occupancy, this experiment evaluates the dynamic resource redistribution mechanism
developed based on online profiling of applications.

5.6.1 Setup

As in the previous experiment, the TBB version of ODTLES[42, 43, 64] is used as a benchmark
application. The application is executed once using TBB with a static worker pool as a
wasteful and uncooperative variant and is compared to TBB with dynamic worker allocation
as a cooperative one.
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Online Profiling

As examined in section 3.4, this work proposed determining the application’s efficiency
using online profiling. Therefore, the efficiency is indirectly measured using the processor’s
performance monitoring facilities. The actual available performance monitoring events are
processor specific. As in the previous experiments, the evaluation is performed on a DELL
PowerEdge R740 server system containing two Intel Xeon Gold 6238R processors with 28
cores and 56 hardware threads each. These processors are based on the Cascade Lake
microarchitecture and support Intel’s architectural performance monitoring version 4 [18,
20]. Each hyperthread owns three fixed-function counters and four general purpose counters.
The fixed-function counters count the number of instructions retired, the number of core
cycles while the thread is not in halt state, and the number of TSC reference cycles while
the thread is not in halt state. The general purpose counters can be configured to count a
specific event from a large selection.

This work focuses on mechanisms rather than heuristics. Thus, the efficiency determination
in this experiment serves only as a proof of concept and is not expected to yield optimal
results. The number of unhalted reference cycles in relation to the measurement interval
in TSC cycles is used to determine the ratio of active cycles during which an allocated
hyperthread was not in the halt state due to synchronization using, e.g. a FUTEX. So,
the efficiency reduction caused by passive waiting can be quantified. In addition to waiting,
interference with shared hardware resources can affect efficiency. An important shared
resource in the target system is the memory subsystem that includes the caches. In order to
detect efficiency degradation caused by cache contention, the general purpose performance
counters are used to observe cache activity. More specifically, this experiment monitors the
OFFCORE_REQUESTS_OUSTANDING event with the CYCLES_WITH_DATA_RD
mask so that it “counts cycles when offcore outstanding cacheable Core Data Read transactions
are present in the super queue. A transaction is considered to be in the Offcore outstanding
state between L2 miss and transaction completion sent to requestor (SQ de-allocation) ”[79].
The efficiency value is calculated by subtracting the cycles spent on cache transactions
from the unhalted reference cycles and divided by the TSC cycles of the interval. The
performance monitoring counters are only accessible in kernel mode and by the corresponding
hardware thread itself. Hence, allocated threads that are currently in halt state due to
passive waiting need to be woken up in order to read their performance counter at the end of
each measurement interval. This causes the thread to exit the halt state, which again would
distort the efficiency measurement. Thus, the performance counters are configured to count
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only unhalted cycles and cache transaction cycles when the corresponding hardware thread
is in user mode. A side effect of this decision is that all time spent in kernel mode, which
includes system calls as well, is rated inefficient. The measurement interval is set fixed at 100
milliseconds.

Resource Revocation

If processes do not use their allocated processing resources efficiently, the resource management
can revoke resources from the processes to increase the efficiency. As described in section 4.2,
the processor management uses a PID controller to dynamically determine an upper bound
for the partition size of each application based on the measured efficiency. If the number of
allocated processing elements exceeds this limit, surplus resources are revoked and can then
be reallocated to other processes or put to sleep to conserve energy. The configuration values
of the PID controller are empirically determined and set to KP = 2.8∗10−1, KI = 3.92∗10−5,
and KD = 5.6 ∗ 10−5. They are considered tuning parameters and are not expected to deliver
optimal results but to prove the redistribution mechanism. The target efficiency is set to
80 percent. For the static worker pool variant, the revocation handler migrates interrupted
worker threads to the main thread and schedules them using time-sharing. Interrupted
workers finish their current task and terminate themselves. The revocation handler for the
dynamic worker pool enqueues interrupted workers in a global queue. Active workers regularly
poll this queue when out of work. If an interrupted worker is found by an active worker, it
migrates the interrupted worker to its hardware thread and terminates itself in favor of the
interrupted worker.

5.6.2 Expectations

After a sequential initialization phase, the benchmark application allocates additional pro-
cessing units for parallel execution. While the static worker pool keeps all allocated resources
until the end of the program, the dynamic worker pool releases its resources when not used
any longer and reallocates them when new parallel work arises. For both types, the static
worker pool and the dynamic worker pool, the efficiency of a sequential run, where the
application is manually limited to a single processor, is expected to equal one, because no
interference with other threads can happen, and it meets the definition of efficiency for a
sequential application. When multiple threads are assigned to the application, the efficiency is
expected to drop because, as measured in the previous experiment, the speedup of ODTLES
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scales sublinearly. The static worker pool is expected to cause lower efficiency compared to
the dynamic worker pool because it potentially reduces efficiency by passive waiting in phases
of low parallelism. The revocation mechanism is expected to enforce the target efficiency by
limiting the maximum number of allocated resources.

5.6.3 Results

This section presents and explains the benchmark results. At first, the measured efficiency
profiles without intervention in resource allocation are examined. Subsequently, the influence
of dynamic resource revocation on efficiency is investigated.

Online Profiling

Figure 5.15 visualizes the efficiency and thread allocation profile of the ODT benchmark
application using TBB with a static worker pool. The application starts with a sequential
phase and allocates all available 112 hardware threads at the beginning of the first parallel
phase and keeps them until the end of the program. This meets expectations. In theory,
the efficiency during the sequential phase is expected to equal one. However, the measured
efficiency is lower and even briefly drops below 25 percent. This can be explained by high cache
activity for data initialization, which results in an efficiency measurement error. After the
static worker pool is allocated, the efficiency drastically decreases, but indicates alternating
phases of sequential and parallel processing. During sequential phases the efficiency is below
one percent which is caused by passive waiting of inactive workers. In parallel phases, the
efficiency increases to approximately only 25 percent due to contention on the shared caches.
This also meets expectations. On average, the application occupies 103.08 processing units
with an efficiency of eight percent.

The influence of dynamic worker pool allocation on the efficiency profile is shown in figure
5.16. During the sequential initialization phase, it behaves like the variant with a static worker
pool. After that, the processing resources are as expected dynamically allocated and released
according to the available parallelism. It is noticeable that the profile of allocated threads
never reaches the maximum number of 112 threads. This is caused by the fact that those
are only average values during the measurement period of 100 ms in which threads are just
allocated or released and thus count only partially. A high number of active worker threads
decreases efficiency due to contention on the shared caches. On average, the application with
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Figure 5.15: Resource allocation and efficiency profile of the ODTLES benchmark using TBB with
static worker pool on MyThOS with the processor allocation mechanism

Figure 5.16: Resource allocation and efficiency profile of the ODTLES benchmark using TBB with
dynamic worker pool on MyThOS with the processor allocation mechanism
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dynamic worker pool occupies 17,61 processing units with an efficiency of 68 percent. Thus,
the dynamic worker pool allocation results in an increased efficiency compared to the static
worker pool which meets the expetation.

Figure 5.17: Average efficiency and resource allocation of the ODTLES benchmark on MyThOS with
the processor allocation mechanism depending on the manual thread limit and worker allocation
approach

Figure 5.17 shows the average processing resource allocation and efficiency for ODTLES
with both static and dynamic worker pool allocation when scaling the manual thread limit.
The static worker pool permanently occupies nearly all available processing elements so that
the number of average allocated threads scales linearly with the manual thread limit. The
dynamic worker pool, on the other hand, occupies less resources in form of processor time
because it releases its worker threads when unused. Against expectations, the measured
efficiency when using only a single hardware thread is with 90 percent less than the expected
100 percent of the definition. This can be explained by remote cache accesses, because the
data do not fit into local caches, which are interpreted as cache contention and system calls
for failing processing resource allocation attempts, which are also rated inefficient. Thus,
the implemented efficiency measurement exhibits a certain inaccuracy. As expected, the
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efficiency of the static worker pool continuously decreases with a higher number of threads
due to more wasted processor cycles of passive waiting in sequential phases. The efficiency of
the dynamic worker pool, on the other hand, overall decreases less but actually increases at
first from one to two used threads. This can be explained by less contention on the caches
due to increased available cache size when using two processing elements and by additional
parallelization overhead of the application that is not measured by the profiling and thus
rated as useful work.

Dynamic Resource Revocation

The influence of dynamic resource revocation on the efficiency and thread allocation on the
ODTLES application with static worker pool allocation is shown in figure 5.18. After a
sequential initialization phase, TBB allocates all available processing elements to build a
static worker pool. This reduces the current efficiency. Resource profiling automatically
detects inefficient resource usage, reduces the thread limit for this application, and revokes
allocated resources to enforce this limit. This results in an average of 1.63 allocated processing
units with an efficiency increased from 8 to 72 percent. Hence, resource management can
automatically detect and counteract inefficient resource usage, which meets expectations.
However, the required execution time of the application increases and becomes even greater
than that of the sequential variant, but at this point, we are not aiming for minimum execution
time of a single application. Also, if there are more processes, the total execution time of
all processes could be reduced. The increase in execution time in this case is caused by
the overhead for migrating, finishing, and terminating revoked worker threads by the main
thread. In addition, TBB reallocates new worker threads at the beginning of each parallel
program section according to the current resource limit, which reduces efficiency because they
could be revoked again. This is an issue of the current TBB implementation when using a
static worker pool and should motivate the programmer to directly develop resource-efficient
code.

Figure 5.19 shows the impact of resource revocation on the benchmark application with
TBB and dynamic worker allocation. The high number of worker threads created in the first
parallel program section reduces efficiency due to cache contention. This is detected by the
resource profiling and the thread limit becomes steadily reduced to increase efficiency. So, the
number of dynamically allocated worker threads per parallel section decreases over time. The
average number of allocated processing elements is 13.67 and the average efficiency increased
from 68 to 76 percent. The graph of the dynamic thread limit indicates a slow adaptation
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Figure 5.18: Efficiency, dynamic thread limit, and resource allocation profile of the ODTLES
benchmark using TBB with static worker pool on MyThOS with the processor allocation mechanism
and dynamic resource revocation

to the suitable partition size for this application. This can possibly be improved by further
tuning the configuration values of the PID controller or using other heuristics.

5.6.4 Conclusion

The success of energy-efficient spatial processor partitioning depends on the cooperative
behavior and efficient utilization of the processing resources by the user. Therefore, if
single applications do not regularly release and reallocate their resources according to their
parallelism profiles or do not use the allocated resources efficiently, other applications might
suffer from resource deficiency and the overall system efficiency decreases. The experiment
has shown that the developed resource management mechanism is able to automatically
detect and counteract wasteful resource occupancy. In addition, it informs user applications
about revoked resources, giving them the opportunity to handle those revocations without
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Figure 5.19: Efficiency, dynamic thread limit, and resource allocation profile of the ODTLES
benchmark using TBB with dynamic worker pool on MyThOS with the processor allocation
mechanism and dynamic resource revocation

crashing the process. The measured efficiency underlays a certain inaccuracy, but is still
suitable to indicate inefficiency. Also, the strategy of the efficiency controller to determine a
suitable maximum partition size, based on measured efficiency, causes a certain jitter and,
in some cases, slow adaptation of the control value. This can potentially be improved by
further tuning the configuration values of the PID controller or by using other heuristics.
While this experiment evaluated the efficiency control for single applications, the following
experiment examines the influence of the resource management when running multiple
processes simultaneously, which compete for processing resources.
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5.7 Optimizing Energy Efficiency using Dynamic Resource
Redistribution

The previous experiment evaluated the detection and counteraction of inefficient resource
occupancy of applications running alone on the system, without interference with other
applications. The goal of the developed dynamic resource allocation and redistribution
mechanisms is to increase the overall energy efficiency of the system and the performance for
all applications. Therefore, this experiment examines the impact of these mechanisms when
multiple processes are executed simultaneously.

5.7.1 Setup

ODTLES[42, 43, 64] with TBB and dynamic worker allocation is used as a benchmark
application with the same configuration as in the previous experiment. The efficiency
determination and configuration values of the PID controller for efficiency control remain
unchanged, as well. Two processes with the ODTLES benchmark application are created
within an initial process and the execution time and energy consumption of the processor
packages is measured from the start until both processes finished, which is repeated for
consecutive and simultaneous process execution. Both processes are identically configured,
but own an individual address space, capability space, and use memory from separate NUMA
nodes for their heaps to minimize interference.

As in the previous experiments, the processor pool balancing thresholds are configured as
follows. When the number of free resource in a thread team falls below one hardware thread
and the applications efficiency meets the target efficiency, more resources are requested from
the central processor allocator. When a thread team owns more than four free hardware
threads, it returns, if possible, a whole core including its two associated threads back to the
central processor allocator, which makes these threads available for allocation by the team
of the other process. Thus, a thread team strives to always have at least one free hardware
thread in low latency sleep available and no more than four hardware threads per team are
prevented to enter a deep sleep state in the central processor allocator. The target idle sleep
states are configured to deep sleep for all threads owned by the central processor allocator
and halt as the target sleep state for all idle threads assigned to a team. So, while hardware
threads owned by the central processor allocator are not currently assigned to a specific
process and considered cold in terms of wakeup latency and caches, hardware threads owned
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by the team provide a higher hotness. They have a lower wakup latency and their local caches
potentially contain application data from previous assignments which predestines them to
serve high frequent allocation requests of their corresponding process.

5.7.2 Expectations

The simultaneous execution of both processes is expected to result in a lower overall execution
time and energy consumption then the consecutive execution of both processes, because the
developed resource allocation and efficiency control mechanism will ensure efficient allocation
and redistribution of processing resources. Hence, greedy and inefficient resource allocation
will be prevented and each process has a change to get a suitable partition.

5.7.3 Results

Figure 5.20 presents the overall execution time and energy consumption of two processes
running ODTLES using TBB with a dynamic worker pool on MyThOS using the proposed
processing resource management and dynamic efficiency control. When running both processes
simultaneously, the median execution time was reduced by 36,52 percent from 81.38 seconds
to 51.66 seconds and the median energy consumption of the processor packages by 28,54
percent from 12.51 kilojoule to 8.94 kilojoule, compared to consecutive execution. This meets
the expectation. The scattering of the simultaneous execution time and energy consumption
is caused by the efficiency control strategy, which only limits the partition size of the local
process, based on the measured efficiency, but does not take other processes into account.
This could potentially be improved by a global balancing strategy.

5.7.4 Conclusion

The developed dynamic resource allocation and redistribution mechanisms are able to in-
crease overall energy efficiency and application progress when running multiple processes
simultaneously. The process-local efficiency control strategy could possibly be improved by
combining it with a global redistribution strategy to allocate resources more evenly among the
processes with respect to their individual efficiency. However, this work aims for mechanism
rather than strategies, which thus could be optimized in a future work. A summary about
the evaluation results in provided in the following.
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(a) Execution time (b) Energy consumption

Figure 5.20: Execution time and energy consumption of the simultaneous and consecutive execution
of two processes running ODTLES using TBB with dynamic worker pool on MyThOS with the
processor allocation mechanism and dynamic resource revocation

5.8 Summary

The processor allocation and redistribution mechanism developed in this work strives to
increase the system global energy efficiency on multi- and manycore systems. It follows the
one-thread-per-core execution model to avoid the overhead of regular context switches and
systematically puts unused cores, considering the actual hardware topology, into a specific
sleep state to reduce energy consumption and accelerate active cores.

When a processor is currently unused, deeper C-states bring higher energy savings but
at the cost of increasing wakeup latency when needed again. Experiments have proven
those expectations and shown that using CC3 instead of CC1 sleep state offers only a little
benefit in the form of power savings but leads to a significant increase in wakeup latency.
Therefore, one can conclude that putting unused processor cores into a sleep state is a worthy
way to dynamically decrease idle power consumption, but suffers from wakeup latency. To
compensate this and the power loss of frequent state transitions, a sophisticated OS-level
processor management is required.

Existing parallel runtime systems try to reduce the overhead of frequent thread allocation
by maintaining static thread pools. This behavior hides the dynamics of the application
parallelism from the OS and, thus, complicates the resource and power management of the
OS. In addition, when using spatial processor partition with exclusive allocation, it prevents
dynamic reallocation which results in underutilization. The developed processor allocation
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mechanism that is implemented in MyThOS reduces the allocation latency of a software
thread by more than 80 percent compared to Linux. This is not only directly beneficial
for performance and energy efficiency but also encourages applications and parallel runtime
systems to dynamically allocate and release processing resources.

The developed resource management in MyThOS limits the number of allocated software
threads to the number of physically available hardware threads. This requires the application
to act resource-aware and thus being able to handle denied resource allocation requests. In
combination with the reduced thread allocation latency, this results in more than seven times
faster execution of the parallel mandelbrot set rendering application than Linux, which does
not limit the number of parallel software threads and, therefore, causes massive overhead for
thread allocation and rescheduling.

The experiments have shown that it is more energy efficient to process the mandelbrot
application using a high number of active processor cores and, thus, finish execution earlier
than using only a single hardware thread and putting others to sleep. This trend is still valid
when considering a fixed time interval instead of a fixed application size and putting all cores
into a deep sleep state after termination. From the results, one can derive that a proper
use of processor idle sleep states has a major impact on the energy efficiency as well as the
performance, especially when dynamic performance boosting is activated and not all cores
are permanently in use.

Existing parallel runtime systems facilitate the development of parallel applications, because
they implement the basic functionality of the parallel execution model. This work proposes
to shift the dynamic processing resource handling into the parallel runtime system as well,
to disburden the application programmer from the manual implementation. This strives to
increase the productivity by reducing the code complexity and thus susceptibility to errors.
It has been proven that using TBB as a task-parallel runtime system leads to a reduction in
execution time from 3.2 percent up to 58.8 percent and a decrease of energy consumption from
3.8 percent up to 45.4 percent depending on the number of assigned processing units compared
to the manual thread allocation in the mandelbrot benchmark. From this one can conclude
that the usage of a task-parallel runtime system is not only not harmful but beneficial for
energy efficiency and thus represents a suitable basement for automatic processing resource
handling.

Measurements have proven that ODTLES, taken as an example for a real world scientific
application, runs in phases with different parallelism and thus offers potential for dynamic
optimization of resource allocation. The experiments have shown that, in comparison
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to a static worker pool, the dynamic worker allocation reduces the execution time and
energy consumption when using more than 16 threads and has no disadvantages when using
fewer threads. Thus one can conclude that, for this application, dynamic worker thread
allocation offers a suitable approach to allow for dynamic allocation optimization when
using the developed processing resource management. In this way, the runtime system
automatically provides information about the application’s dynamics in parallelism to the
processor management which enables improved dark silicon management or reallocation of
resources to other applications.

The success of energy-efficient spatial processor partitioning depends on the cooperative
behavior and efficient utilization of the processing resources by the user. Therefore, if
single applications do not regularly release and reallocate their resources according to
their parallelism profiles or do not use the allocated resources efficiently, other applications
might suffer from resource deficiency and the overall system efficiency decreases. The
developed efficiency control mechanism has been proven to be able to automatically detect
and counteract wasteful resource occupancy. In this case, it informs user applications
about revoked resources, giving them the opportunity to handle those revocations without
crashing the process. Additionally, it has been shown that the developed dynamic resource
allocation and redistribution mechanisms are also able to increase overall energy efficiency
and application progress when running multiple processes simultaneously.
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CHAPTER 6

Conclusion

Multi- and manycore processors are the microprocessor industry’s response to the constantly
growing demand for computational power and energy constraints of today’s CMOS technology.
Instead of increases in core sophistication and clock rate, more and more, generally simpler
processor cores are integrated into a single chip to achieve a higher overall peak performance
without increasing power consumption and complexity of each single core. In this manner,
the energy efficiency in form of computation per watt can be improved by scaling the energy
consumption linearly with the number of cores instead of exponentially with the frequency
and voltage. Thereby, the former trend of integrating a huge amount of simple in-order
cores in a manycore processor went to a smaller but increasing number of more complex and
powerful out-of-order cores. In the near future, processors will contain hundreds to thousands
of cores.

Although manycore processors provide a high peak performance, they suffer from thermal
constraints causing dark silicon. Hence, not all circuits of a processor can be operated
permanently at full frequency. Consequently, the maximum performance of those processors
is limited both by the amount of energy available and by the dissipation of power loss in the
form of thermal energy.

Traditional OSs still rely on time sharing to create the illusion of a dedicated machine for
the user and allow to run more processes pseudo-simultaneously than physical processor
cores are available. To ensure fair execution between all processes, the operating system
has to perform periodic context switches between the software threads on the processor
cores. This introduces a significant overhead to the actual productive work, wastes energy
and thus reduces computational performance. Application developers adapted to the time-
sharing abstraction and to the high costs of software thread creation on state-of the-art
OSs by maintaining static thread pools to avoid the overhead of regular thread allocations.
Unfortunately, this behavior hides the application’s dynamics from the processor resource
management and thus complicates dark silicon management in the OS.
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This work investigated mechanisms for energy-efficient processor allocation and redistribution.
In order to avoid the costs of frequent context switches, time sharing is replaced by spatial
partitioning which grants processes exclusive access to allocated processor cores, but requires
resource-aware behavior. Processing resources are hierarchically managed to scale with the
increasing number of cores in future manycore systems. Currently unused processor cores
are put to sleep in order to save energy and boost active cores. To balance the trade-off
between maximum energy savings and minimal allocation response time, idling processor cores
are organized in multiple pools with different sleep states. Hence, a fast thread allocation
has been achieved which motivates applications for dynamic thread allocation and benefits
performance as well as energy efficiency.

Spatial partitioning and the one-thread-per-core execution model limit the number of allocated
software threads to the number of physically available hardware threads. This prevents
over-subscription but requires dynamic partitioning of the system. The partitioning strategy
respects the processor topology, because it is coupled to the memory hierarchy, communication
distances, and power management domains. The efficiency control and resource revocation
mechanisms detect and prevent wasteful and inefficient resource occupation from poorly
optimized or malicious processes. In this way, the system’s global efficiency can be optimized
instead of locally seeking for the knee in the speedup curve of each individual application.
The dynamic processing resource allocation and revocation handling has been integrated
into a task parallel runtime system to disburden the application programmer from the
manual implementation. This increased productivity by reducing code complexity and thus
susceptibility to errors.

Although this work made several contributions in the field of energy-efficient resource
management, a few concerns remain. This work focused on mechanisms, but there are
multiple strategies employed to prove the concepts. This include placement of partitions in
the processor topology tree, balancing of resources between the processor pools, selection
of performance monitoring events for efficiency determination, and partition size limitation
based on the measured efficiency. Those strategies employed for this work are considered
non-optimal and replaceable. However, further research could benefit performance, energy-
efficiency, and reduce management overhead on the application side caused by fluctuating
partition limitations. Machine learning might be a suitable method to improve a subset of
those strategies.

The proposed resource management does not assume any static knowledge or an preceding
offline profiling of the application. Additionally, information from the application, respectively,
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the runtime system, is not trusted because it might be inaccurate and the information
of different processes might not be comparable. Consequently, application profiling was
performed online by the OS only using standard PMUs. However, accepting hints from the
user about future resource requirements could improve decision making. So, e.g. the placement
of software threads in the processor topology could be optimized when getting information
about the programs properties. This includes whether it is memory or computation bound,
its communication patterns with other threads, or future expansion and reduction in parallel
work. Also, this could allow preheating of cores in the mean of activating cores and loading
the working set data into the caches before the actual work becomes available.

As described in section 4.3, TBB was adapted to dynamically allocate workers at the beginning
of a parallel section and release them when out of work. Unfortunately, the client side of
TBB is programmed to always immediately request as many workers as hardware threads
available in the system, even if only a single task is created. While this behavior is beneficial
when potentially entering a program phase with massive parallelism and thus waking up all
workers in a static worker pool, it causes wasteful allocation and direct termination of worker
threads when using a dynamic worker pool due to a shortage of parallel work. Hence, an
additional modification of TBB, so that it only requests as many workers as actual work
is available, which is known as adaptive work stealing, could further reduce overhead and
improve efficiency.
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APPENDIX A

Energy Dissipation in CMOS Processors

The total power consumption in CMOS technology arises from several sources. Thereby, it
can be divided into static and dynamic components[61]:

Ptotal = Pstatic + Pdynamic

A.1 Static Power Consumption

Static power consumption occurs when all inputs of a circuit are held in some constant and
valid logic level and no charging or discharging is required. For clear illustration, figure A.1
shows the circuit of a CMOS inverter that is typically included in all input and output stages
of CMOS devices. An inverter contains a P-Channel Metal Oxid Semiconductor (PMOS)
and a N-Channel Metal Oxid Semiconductor (NMOS) that are connected at the gate and the
drain terminals. The supply voltage is connected to the source terminal of the PMOS and
ground to the source terminal of the NMOS transistor. Both gate terminals are connected
to the input voltage and the output voltage is connected to the drain terminals. If the
input voltage is at logic 1 then the NMOS transistor is ON (low resistance) and the PMOS
transistor is OFF (high resistance). Hence, the output voltage equals ground which is logic 0.
When the input level is logic 0, the states of both transistors switch and output is 1.

P-MOS

N-MOS

VCC

GND

Vinput Voutput

Figure A.1: CMOS inverter circuit
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A.2 Dynamic Power Consumption

Due to the different channels, the PMOS and NMOS transistors have an opposite switching
state at both possible logical input values. So, there is always one transistor in high resistance
state preventing a short circuit between the supply voltage and ground. This property makes
CMOS energy efficient compared to previous Transistor–Transistor Logic (TTL) circuits.
However, due to a small leakage current, the static power consumption does not equal zero.
The leakage current is caused by parasitic diodes between the N-well and the P-substrate
of the CMOS inverter. The amount of leakage current adds up from all CMOS devices and
their parasitic diodes and depends on the voltage at each parasitic diode and the temperature.
Thus, the static power consumption equals the total leakage current multiplied by the supply
voltage:

Pstatic = Ileakage ∗ Vcc

A.2 Dynamic Power Consumption

In contrast to static power consumption, dynamic power consumption only occurs when
switching between logical states in the circuit and depends on the switching frequency.
Hence, when switching at high frequency, dynamic power consumption contributes a high
portion of the overall power consumption. Charging and discharging of capacitive load at
the output increases the dynamic power consumption even further. The dynamic power
consumption of a CMOS circuit consists of transient power consumption and capacitive-load
power consumption:

Pdynamic = Ptransient + Pcapacitive_load

A.2.1 Transient Power Consumption

Transient power consumption is caused by the current that flows when switching transistors
from one logic state to another. Thereby, the internal transistors need to be charged or
discharged, moving charges in the parasitic capacitors on the CMOS gates which creates
a switching current. For dynamic power approximation, the power-dissipation capacitance
(Cpd) is specified as a measure of the equivalent capacitance of a CMOS circuit with several
gates. Additionally, in logic transition, NMOS and PMOS are both in a conductive state
for a short period of time which causes a short circuit between the supply voltage and
ground. Transient power consumption can be approximated by multiplying the dynamic
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power-consumption capacitance (Cpd), the input frequency with which the inputs of the
CMOS devices are switched, and the supply voltage squared:

Ptransient = Cpd ∗ fI ∗ V 2
cc

A.2.2 Capacitive-Load Power Consumption

The second part of dynamic power consumption is caused by the current that charges or
discharges capacitive-loads at the output of a CMOS device. Therefore, the capacitive-load
power consumption can be calculated by multiplying the load-capacitance (CL), the frequency
(fO) at which the output value is changed, and the supply voltage (Vcc) squared. This has to
be calculated and summed up for each individual bit in the CMOS circuit with respect to the
individual frequency of the output value switches. Hence, the equation for the capacitive-load
power consumption is not accurate but provides an idea about the involved factors:

Pcapacitive_load = CL ∗ fO ∗ V 2
cc
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APPENDIX B

CPU Instructions for Entering Idle States

Idle power saving states are used to shut down parts of a processor when not used. Entering
those idle states can either be done using the ACPI interface or using a set of hardware
specific instructions. Those instructions and their effect on the processor’s sleep state are
examined in in the following. Mind that they only directly affect the state of the hardware
thread they are executed on and the core level and package level C-states are only influenced
when all hardware threads of a core, respectively all cores in a package enter a sleep state.

B.1 HLT (Halt)

The HLT instruction [18] suspends the execution of the logical processor (enter the C1-state)
until an interrupt is received. This might be a hardware device interrupt or an Inter-Processor
Interrupt (IPI). If a logical processor is halted, other active logical processors within the
same package keep full access to shared resources. The remaining logical processors might
experience greater efficiency when accessing previously shared resources due to less contention.
When a halted logical processor resumes execution, previously shared resources get shared
among all active logical processors again. When using hyper-threading, long idle periods
or spin-wait loops of one thread while the other hyper-thread is doing useful work should
be avoided and the thread explicitly be halted because idling loops consume a significant
amount of the processing resources that otherwise would be used be the other thread.

B.2 MONITOR/MWAIT

The MWAIT instruction [18, 19] is used in combination with the MONITOR instruction to
suspend the calling processor’s execution until a store to a specific linear address range is
performed by another thread. The MONITOR instruction sets up the address monitoring
hardware to observe a specific memory address range that must be mapped in write-back
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B.5 PAUSE

caching mode. MWAIT sets the processor in an optimized state until a write to the monitored
memory area occurs. It has the same effect on the architectural state of the system as the
NOP instruction. Events like interrupts, TLB invalidations and others can cause a processor
to wake up from MWAIT, too. Additionally, it expects a hint for which processor-specific
(but not Advanced Programmable Interrupt Controller (APIC)-specific) C-state to be entered
as an argument. However, internal conditions may cause the processor to ignore the hint and
enter a different optimized state. This pair of instructions is only available in kernel mode.

B.3 Intel’s UMONITOR/UMWAIT

The UMONITOR and UMWAIT instructions [18, 19] are the user mode versions of MONITOR
and MWAIT and can be executed on any privilege level. They are only supported on Intel
hardware and introduced with Tremont microarchiteture. UMWAIT, in contrast to MWAIT,
allows to set up a timer which, when expired, wakes the processor if no store to the observed
memory area occurred beforehand.

B.4 AMD’s MONIORX/MWAITX

The MONITORX and MWAITX instructions [57] are the user mode versions of MONITOR
and MWAIT and can be executed on any privilege level. Therefore, they equal Intel’s
UMONITOR and UMWAIT instructions. MWAITX allows for setting up a timeout as
well.

B.5 PAUSE

The PAUSE instruction [18] does not instruct the processor to enter a C-state, but improves
power efficiency of CPUs with hyper-threading when placed in spin-wait loops.It provides a
hint to the CPU that the current hardware thread is executing a spin-wait loop which then
prevents the thread from unnecessary excessive execution resource and power consumption
while keeping resources available for other threads. This also avoids high energy overhead
and wakeup latency when entering C-states using MONTIOR or MWAIT only for short
periods.
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B.6 TPAUSE

The TPAUSE [18, 19] instruction causes a processor to enter a implementation-dependent
optimized state until the TSC reaches or exceeds a certain input value. When calling, the
user chooses from two optimized states by the input value. The performance state brings a
low wakeup latency for the price of high power consumption, whereas the low power state
improves performance for other threads on the same core but requires a longer time for
waking up. They are called C0.1 and C0.2. While in implementation-dependent sleep state,
the processors can also be woken up by incoming interrupts. This instruction is only available
on Intel hardware and was introduced with Tremont microarchitecture.

B.7 Conclusion

Modern CPUs offer software interfaces to control the power consumption. P-states are
operational performance states that allow to control the power consumption while the
processor is actively executing code. They are implemented using dynamic voltage and
frequency scaling and can either be controlled using ACPI or by activating autonomous
Hardware-Controlled Performance States (HWP) with performance hints from the OS, when
supported. C-states control the idle power consumption when the processor is not execution
anything by power gating currently unused subsystems. Core level C-states can directly be
controlled using ACPI or platform-specific instructions like MONITOR/MWAIT, HALT, or
TPAUSE while package level C-States are automatically derived from the lowest idle state of
all cores a package contains. Higher C-states offer a significant power saving potential but
bring higher wakeup latency and energy costs for state transition.
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APPENDIX C

Acronyms

ACPI Advanced Configuration and
Power Interface

API Application Programming
Interface

APIC Advanced Programmable
Interrupt Controller

CCD Core Complex Die
CCX Core Complex
CFS Completely Fair Scheduler
CGMT Coarse-grain Multithreading
CMOS Complementary Metal Oxid

Semiconductor
CPU Central Processing Unit
DRAM Dynamic

Random-Access-Memory
FGMT Fine-grain Multithreading
FIFO First-In, First-Out
FPU Floating Point Unit
FUTEX Fast Userspace Mutex
GMI Global Memory Interconnect
HPC High Performance Computing
HWP Hardware-Controlled

Performance States
IDA Intel Dynamic Acceleration
IOD I/O Die
I/O Input and Output
IoT Internet of Things

IPC Inter-Process Communication
IPI Inter-Processor Interrupt
iRTSS Invasive Run-Time Support

System
LLC Last-Level Cache
LRU Least Recently Used
MPI Message Passing Interface
MPSoC Multi-Processor Systems-on-Chip
MyThOS Many Threads Operating System
NMOS N-Channel Metal Oxid

Semiconductor
NoC Network on a Chip
NRU Not Recently Used
NUMA Non-Uniform Memory Access
NVRAM Non-volatile

Random-Access-Memory
ODTLES One-Dimensional Turbulence

Large Eddy Simulation
ODT One-Dimensional Turbulence
OpenMP Open Multi-Processing
OS Operating System
OSPM Operating System-directed

Configuration and Power
Management

PCB Process Control Block
PCID Process-Context Identifier
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PID controller
Proportional–Integral–Derivative
controller

PLL Phase-Locked Loop
PMOS P-Channel Metal Oxid

Semiconductor
PMU Performance Monitoring Unit
POSIX Portable Operating System

Interface
RAPL Running Average Power Limit
RISC Reduced Instruction Set

Computer

SMT Simultaneous Multithreading
SPMD Single Program Multiple Data
SRAM Static Random-Access Memory
TBB Intel Threading Building Blocks
TCPA Tightly-Coupled Processor Array
TDP Thermal Design Power
TLB Translation Lookaside Buffer
TLS Thread-Local Storage
TSC Time Stamp Counter
TTL Transistor–Transistor Logic
UMA Uniform Memory Access
XLES Extended Large Eddy Simulation
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