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Abstract

Surface variations are an unavoidable byproduct of any manufacturing process and may
lead to deviating part performance and even elevated part rejection rates. Because tra-
ditional computer aided-design approaches are aimed towards production of idealized,
nominal geometric shapes, the wide geometric—and statistical—variability typical for any
manufacturing process remains unrepresented and is frequently ignored during design.
Thus, the present work aims at a more realistic design approach and, therefore, develops
a collection of computer-aided design strategies for accurate representation, statistical
analysis and prospective estimation of surface deviations with validation examples on aero
engine turbine blades.

The CAD representation of real manufactured surfaces requires the ability to accurately
recreate complex geometric shapes. This is achieved by automated re-parametrization
of any CAD face of interest as B-spline surface with a rather dense control point grid.
Face matching to scanned manufactured samples is then performed by calculating control
point displacements, which successfully deliver surface representation errors below typical
measurement uncertainties on multiple matching examples from turbine shank and hot-gas
faces. Since inference of performance variability due to manufacturing is usually limited by
the amount of scanned manufactured parts, a probabilistic model is formulated based on
singular-value decomposition of control point displacements and identification of dominant
manufacturing modes. This allows generation of an infinite set of synthetic deviating
surfaces faithful to experimental deviation patterns.
Nominal geometric features may significantly differ between design iterations and

manufacturing modes may not necessarily be transferable between different designs. Thus,
deviation estimation may remain infeasible before manufacturing. To enable deviation
estimation during the design phase, the present work proposes a machine learning strategy
to identify deviation patterns explained by nominal geometric properties—such as relative
position and local orientation—and use them for deviation estimation on new designs.
This strategy is able to predict realistic stress variability induced by shank deviations of a
turbine blade design using only surface deviation information from three given designs,
which encourages machine-learning approaches as valuable tool for geometric deviation
estimation as part of robust design.
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Kurzfassung

Fertigungsabweichungen sind unvermeidbar und tragen signifikant zu unerwünschten Per-
formance-Variationen und erhöhten Ablehnungsraten bei. Konventionelle rechnergestützte
Bauteilauslegungsmethoden konzentrieren sich dagegen meist auf die Erstellung von ide-
alisierten, nominalen Geometrien und lassen statistische Fertigungsvariabilitäten in der
Auslegungsphase großenteils unberücksichtigt. Um beides besser miteinander zu verbinden,
werden in dieser Arbeit eine Reihe von rechnergestützten Konstruktions- und Model-
lierungsmethoden vorgestellt, welche eine virtuelle Rekonstruktion, robuste statistische
Analyse und prädiktive Abschätzung von Oberflächenabweichungen erlauben, und mittels
Validierungsbeispiele für Turbinenschaufeln nachgewiesen.

Die CAD Darstellung von Fertigungsabweichungen erfordert die Fähigkeit, komplexe
geometrische Formen akkurat nachzubilden, weshalb in dieser Arbeit die CAD Fläche
zunächst als B-Spline Fläche mit hoher Kontrollpunkt-Dichte re-parametrisiert wird. Die
Flächenanpassung an eingescannte, gefertigte Bauteile erfolgt dann durch Berechnung von
Kontrollpunkt-Verschiebungen. Anhand mehrerer Anpassungsbeispiele von Heißgas- und
Schaftflächen einer Turbinenschaufel wird nachgewiesen, dass Anpassungsgenauigkeiten
unterhalb typischer Messunsicherheiten möglich sind. Um statistische Abschätzungen
der geometrischen Variabilität des Fertigungsprozesses trotz einer limitierten Anzahl
an vermessenen Bauteilen zu ermöglichen, wird ein probabilistisches Modell der Ferti-
gungsstreuung auf Basis von Singulärwertzerlegung der Kontrollpunkt-Abweichungen und
Identifizierung dominanter Fertigungsmoden entwickelt. Dies ermöglicht die Generierung
unendlich vieler, synthetischer fertigungstreuer Abweichungsexemplare.
Diese Darstellung der geometrischen Variabilität ist allerdings auf eine bestimmte

Parametrisierung beschränkt, weshalb eine direkte Übertragung auf neue abweichende
geometrische Designs nicht korrekt ist. Um eine solche zu ermöglichen, wird eine Strate-
gie zur Erkennung geometrisch-bedingter Fertigungsmuster basierend auf Methoden des
maschinellen Lernens formuliert. Diese Strategie ist in der Lage, realistische Abschätzun-
gen von Oberflächen- und Spannungsvariabilität der Schaftflächen einer Turbinenschaufel
vorzunehmen, allein durch Verwendung von Oberflächenmessungen dreier bereits gefertigter
Turbinenschaufel-Entwürfe. Damit wird das große Potential des maschinellen Lernens bei
der Wissensextraktion aus Fertigungsexemplaren bestätigt und ihre Weiterentwicklung
innerhalb robuster Entwurfsprozesse ermutigt.

vii





Contents

Abstract v

Kurzfassung vii

Nomenclature, Symbols & Abbreviations xi

1 Introduction 1
1.1 The Cost of Manufacturing Variability . . . . . . . . . . . . . . . . . . . . 2
1.2 Estimating Geometric Uncertainty for Robust Design . . . . . . . . . . . . 4
1.3 Problem Statement and Thesis Outline . . . . . . . . . . . . . . . . . . . . 9

2 CAD Surface Parametrization and Measurement 11
2.1 CAD Surface Parametrization . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.2 Geometric Properties of B-Spline Surfaces . . . . . . . . . . . . . . . . . . 16
2.3 Parametric Construction of CAD Parts . . . . . . . . . . . . . . . . . . . . 19
2.4 Surface Measurement with Structured Light . . . . . . . . . . . . . . . . . 20

3 CAD Representation of Manufacturing Deviations 29
3.1 Re-Parametrization as B-Spline Surface . . . . . . . . . . . . . . . . . . . . 30
3.2 Selection of Relevant Surface Positions . . . . . . . . . . . . . . . . . . . . 32
3.3 Selection of Relevant Control Points . . . . . . . . . . . . . . . . . . . . . . 34
3.4 B-Spline Morphing to Surface Measurements . . . . . . . . . . . . . . . . . 38
3.5 Noise Elimination from Morphed Surfaces . . . . . . . . . . . . . . . . . . 41
3.6 Application to HPT Blade Casting Faces . . . . . . . . . . . . . . . . . . . 45

3.6.1 Suction-Side Shank Face . . . . . . . . . . . . . . . . . . . . . . . . 45
3.6.2 Hot-Gas Faces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

4 Probabilistic Representation of Manufacturing Deviations 51
4.1 Manufacturing Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
4.2 Coupled Manufacturing Modes . . . . . . . . . . . . . . . . . . . . . . . . . 55
4.3 Representation Capacity of Manufacturing Modes . . . . . . . . . . . . . . 58
4.4 Probabilistic Description of Surface Deviations . . . . . . . . . . . . . . . . 62

ix



4.5 Application to HPT Blade Structural Uncertainty Quantification . . . . . . 66
4.6 Application to Manufacturing Variability of Diverse Shank Designs . . . . 73

5 Deviation Estimation for New Geometric Designs 79
5.1 Strategies for Deviation Estimation . . . . . . . . . . . . . . . . . . . . . . 80
5.2 Deviation Model Using Convolution Operators . . . . . . . . . . . . . . . . 84
5.3 Learning of Deviation Laws . . . . . . . . . . . . . . . . . . . . . . . . . . 90
5.4 Minimization of Deviation Prediction Divergence . . . . . . . . . . . . . . 98
5.5 Application to Estimation of HPT Blade Casting Deviations . . . . . . . . 102
5.6 Integration of Deviation Laws into Robust Design . . . . . . . . . . . . . . 112

6 Conclusions 117

Appendix A: Convolutional Neural Networks 121
A.1 Basic Mathematical Background . . . . . . . . . . . . . . . . . . . . . . . . 121
A.2 Pooling, Interpolation and Filtering Operations . . . . . . . . . . . . . . . 124

List of Figures 125

References 129

x



Abbreviations, Nomenclature & Symbols

Abbreviations
ASTM American Society for Testing and Materials
B2P Blade to Parameter (propietary software)
BTU British Thermal Unit
CAD Computer-Aided Design
CFD Computational Fluid Dynamics
EI Enery Intensive
FE Finite Element
GPU Graphics Processing Unit
HPT High-Pressure Turbine
IGES Initial Graphics Exchange Specification
LE Leading Edge
NURBS Non-Uniform Rational B-Splines
PCA Principal Component Analysis
PS Pressure Side
RGB Red Green Blue
SS Suction Side
STEP STandard for the Exchange of Product Model Data
SVD Singular Value Decomposition
TE Trailing Edge

Typographical Convention

a scalar
a vector
A matrix
A higher-order tensor

xi



a scalar random variable
a random vector
A set

Mathematical Symbols

•̃ approximated quantity
• average
•̂ normalization
•∗ optimum
∀ for all
∈ member of
⊂ subset of
|a| absolute value of scalar a
|A| cardinality of set A
‖a‖ Euclidian norm of vector a
∆ difference
× cross product
∗ convolution operator
� element-wise multiplication (Hadamard product)
B Boolean set
N set of natural numbers
R set of real numbers
Aᵀ transpose of matrix A
A−1 inverse of matrix A
diag(a) diagonal matrix with diagonal entries a

Latin Letters

d Mahalanobis distance
dth distance threshold for relevant normalized positions
dcp distance threshold for relevant control points
eS surface measurement error
eC re-parametrization error

xii



eM morphing error
eR reconstruction error
eP process error
eth deviation threshold
e loss function between deviation tensors
I light intensity function
I set of relevant control points
M set of measured points
N set of measured normal vectors
Ni,q B-spline basis function
nsup supporting relevant normalized positions per control point
O origin of coordinate system
t number of observable manufacturing modes
U set of normalized relevant positions
u, v normalized B-spline parameters
x, y, z Cartesian coordinates

Greek Letters
α deviation scaling factor
δ prediction divergence
θth angular threshold for relevant normalized positions
κ curvature
κ̂ normalized curvature
σ singular value
τth tangential threshold for relevant control points
Φ projected phase map
Ψ captured phase map

Vectors
b mode amplitude vector
b random mode amplitude vector
n normal vector
p control point

xiii



∆p control point deviation
∆p̃ approximated control point deviation
∆p̂ normalized control point deviation
q control point deviations of entire B-spline surface
q mean control point deviations of entire B-spline surface
q probabilistic control point deviations of entire B-spline surface
s B-spline surface
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1 Introduction

It is estimated that a third of global energy consumption is destined to manufacturing, U.S.
Energy Information Administration (2021). Despite comprising production of essential
goods for human activity such as food, textiles, electronic devices and machinery, manu-
facturing processes also account for almost a quarter of global carbon dioxide emissions,
Ritchie and Roser (2020). This heavy environmental toll is likely to be further exacerbated
as global manufacturing energy consumption is projected to increase by 50% till 2050, U.S.
Energy Information Administration (2021). Such dramatic growth of energetic activity
stays in direct conflict with several national environmental initiatives, which aim at net-
zero emissions by the same year, leaving an urgent challenge for increasing energetic and
environmental efficiency of manufacturing processes in the immediate future.

Several strategies are needed. Besides massive adoption of renewable energy sources,
an increased effort has to be directed at elevating production efficiency, i.e., by reducing
rejection rates, material scrap, product defects, and consequently energy requirements per
production unit. Among several existing paths to achieve this, innovation of Computer-
Aided Design (CAD) towards better understanding of causes, quantification and mitigation
of manufacturing variability has progressively gained more attention from both academia
and industry. This interest has been largely sparked by current developments in auto-
mated surface metrology, increased computational capacity, digital transformations in
manufacturing, and most recently by accelerated rise of artificial intelligence. In this
context, the present dissertation aims at pushing current boundaries of CAD into an
increased awareness of manufacturing variability, particularly with novel ideas regarding
quantification and estimation of geometric variability in early stages of product design.

This first chapter provides an introduction to the main dissertation ideas. First, the
economic and environmental impact of manufacturing variability will be briefly addressed as
contextualization for the problem relevance. Next, a literature review concerning estimation
of geometric uncertainty will be presented, which summarizes current tendencies and
opportunities from different research sectors. Finally, the dissertation objective will be
formalized and a broad manuscript outline will be given.
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1.1 The Cost of Manufacturing Variability

According to Creese (1999), manufacturing comprises “[...] integration of product demand,
product design, material selection, manufacturing processing, product assembly and man-
agement to produce a desired product at a competitive price”. Because it involves such a
long chain of human and physical interactions, manufacturing is prone to numerous uncer-
tainty sources (e.g. variations in material properties or different operator skill-levels) which
negatively affect the originally intended production outcome (e.g. reduced batch volume or
increased machine downtime). Manufacturing variability thus carries large economic and
environmental costs, which may be studied as two distinct effects: consequences due to
inefficient manufacturing and consequences due to deviating part/component performance.

The economic burden of inefficient manufacturing has awaken such interest in engineering
and management that it drove the development of new disciplines such as Six Sigma and
Total Quality Management, van Grootel et al. (2019). Several industrial cases demonstrate
that correct implementation of such management and statistical strategies may significantly
reduce scrap rates, part rejection and rework rates, and thus provide substantial cost
savings, Gupta et al. (2018); Gijo and Scaria (2014); and Shokri (2019). In contrast,
environmental costs of manufacturing variability have gained significantly less attention,
van Grootel et al. (2020). While environmental impact is the focus of policy making, its cost
estimation usually follows a rather macroeconomic approach. For example, Egilmez et al.
(2013) compare economic output vs. environmental load of several U.S. manufacturing
sectors by introducing an eco-efficiency score as relative economic contribution of the sector
divided by its relative, normalized environmental impact. This eco-efficiency score considers
five environmental variables weighted such that a 100% score implies relative environmental
effects being balanced-out by socioeconomic benefits. Based on this framework, the authors
determine that aerospace product and part manufacturing needs to reduce energy use by
28% to achieve a 100% eco-efficiency score. Other sectors such as plastics and foundries
even require energy reductions by 57% and 83%, respectively. Despite not being exclusively
attributed to manufacturing variability, such figures clearly contextualize the role of
manufacturing efficiency on mitigating environmental impact. This role is further magnified
as current projections of global manufacturing energy consumption estimate a steady
increase in the coming decades, Fig. 1.1, U.S. Energy Information Administration (2021).
This diagram shows how both Energy Intensive (EI) manufacturing (raw goods such as
plastics, chemicals or steel) and non-EI manufacturing (assembled goods such as computers,
equipment, appliances or medicines) are expected to grow their total energy consumption
by almost 100×1015 British Thermal Units (BTU) on 2050.

Manufacturing variability may not only affect energetic efficiency and economic prof-
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itability for manufacturers, it may also induce undesired performance variations for the
costumer. In this regard, aerospace literature exposes plenty examples of induced part
variability due to geometric deviations. Högner et al. (2020) perform a comprehensive
probabilistic, thermo-mechanical analysis of manufactured high-pressure turbine blades
and reveal ±100 MPa stress variations due to geometric deviations. Similarly, Bunker
(2009) determines ±40◦C temperature fluctuations on high-pressure turbine blades after
only 10% deviation tolerance on cooling channel diameter. Regarding aero engine com-
pressor, Flassig (2011) and Luo and Liu (2018) report ±0.4% pressure loss and ±0.5%
adiabatic efficiency variations due to measured blade deviations, respectively. In addition to
disturbing nominal component performance, the effects of manufacturing variability often
propagate and interact throughout entire mechanical systems, posing a serious challenge for
engineering design. For instance, van Grootel et al. (2020) estimate in a broader life-cycle
analysis that an increase in manufacturing variability from 10% to 14% may cause up to
three million USD in excess lifetime fuel consumption per Boeing 787, where variability is
associated with safety and overdesign factors according to the technical standard ASTM
F3114-15.

2020 2025 2030 2035 2040 2045 20500

200

400

600

year

1
×

10
15

BT
U

industrial transportation
residencial commercial

a) b)

2020 2025 2030 2035 2040 2045 20500

100

200

300

year

EI manufacturing
non-EI manufacturing
non manufacturing

Figure 1.1: Global energy consumption (a) according to different sectors and (b) exclusively
industrial sector. Acronyms in the List of Abbreviations.

All previous cases highlight the urgency to better understand and control manufacturing
variability in the interest of both manufacturers and customers. Although lean management
strategies may contribute to efficiency improvements of the product life-cycle, they need
not be the only measure taken to address manufacturing variability. For instance, up to
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now manufacturing knowledge remains remarkably ignored for supporting computer-aided
design, much less influence geometry definition, Hedberg et al. (2017). This highlights
a substantial opportunity to address manufacturing variability—in particular geometric
deviations—directly in the design phase with better process understanding and modeling,
such that potential deviations may be anticipated before manufacturing, and thus overall
production output may be benefited. Current research directions regarding estimation of
geometric deviations will be, therefore, the topic of the following section.

1.2 Estimating Geometric Uncertainty for Robust Design

Consideration of manufacturing information within computer-aided design is a very broad
topic which has been approached differently depending on specific necessities of each
industry sector. In particular, modeling of geometric deviations between manufactured
and nominal design enables simulation of performance variability and thus has sparked
considerable interest in industry sectors where high shape accuracy is critical for component
performance, such as aerospace, automobile or optic industries. Despite successful geometric
quantification and performance variability simulation on several literature examples,
systematic consideration of geometric uncertainty during design is still far from becoming
industrial standard. Most of these technical challenges may be grouped in three categories:
CAD representation strategies for manufactured surfaces, probabilistic description of
geometric variability and deviation estimation of new geometries.
Virtual representation of manufactured parts has seen a notorious development over

the last decades. Motivated by the need of evaluating tolerance variability on mechanical
assemblies, initial attempts to model manufacturing effects in CAD aimed at optimizing
part tolerances using linear programming and Monte Carlo analysis to minimize assembly
violations, e.g. Turner and Wozny (1987) and Turner (1988). Later, advances in surface
metrology such as coordinate measurement machines and laser scanning facilitated access
to detailed three-dimensional measurements of manufactured parts as dense point clouds,
which inspired initial algorithms for B-spline and NURBS surface matching, e.g. Weir
et al. (1996) and Yau (1999). With further developments in computation capacity, CAD
reconstruction of complex manufactured shapes became increasingly accessible and pow-
erful, even reaching commercial CAD software. Two major paths are currently preferred
for translating point-cloud information into virtual representation: via discrete construc-
tions such as mesh morphing or via continuous constructions such as parametric surfaces,
Schleich and Wartzack (2017), Fig. 1.2. Mesh morphing essentially aims at deforming the
nominal part represented as mesh to fit a series of measurement points at the surface while
considering some type of volumetric displacement interpolation such as weighted averaging,
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Franciosa and Gerbino (2011), or radial basis functions, Bobrowski et al. (2017). Since
the manufactured geometry is directly represented as mesh, this method greatly simplifies
the interface to product simulation, e.g. FE or CFD analysis, which in turn accelerates
batch simulation by avoiding re-meshing. However, in cases where an analytical represen-
tation of manufactured surfaces is required, such as for design optimization, a continuous
construction would be rather preferred. Buonamici et al. (2018) classify continuous CAD
reconstruction methods as feature-based reconstruction strategies and free-form strategies,
where the former attempts to retrieve entire parametric relationships and constraints from
the measurement point cloud and the latter aims at fitting free-form surfaces with single
or multiple patches.

discrete construction continuous construction

mesh morphing feature-based free-form

surface
measurement

CAD
reconstruction

Figure 1.2: Examples of CAD reconstruction methods.

Commercial CAD software already offers general-purpose reconstruction capabilities,
which is why industry-specific requirements will likely shape the evolution of future
CAD reconstruction methodologies. Two canonical challenges from the aerospace industry
in this regard are restricting a fixed parametrization when reconstructing a specific
geometric feature from multiple manufacturing samples, and fully automated matching
of complex free-form surfaces with wide curvature changes. A fixed parametrization for
surface variability is a prerequisite to perform any statistical analysis such as PCA, and
stays in conflict with typical commercial CAD reconstruction routines which frequently
require additional surface rework and manual patching by the user. In the special case
of airfoils, a noteworthy response to this issue has been the deviation parametrization
developed by the TU Dresden for compressor and turbine blades, Lange et al. (2009)
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and Heinze et al. (2014), which has been intensively exploited by industry and academia
for robust blade optimization, Flassig (2011) and Kamenik et al. (2018); probabilistic
CFD and FE analysis, Lange et al. (2012) and Högner et al. (2020); modal forcing
variability quantification, Gambitta et al. (2021), etc. Reconstruction of more generic
free-form surfaces—such as shanks and hot-gas faces, Fig. 1.3—may significantly challenge
commercial CAD reconstruction capabilities due to rapid curvature gradients, which is
why interest has been given to developing morphing strategies by direct manipulation
of nominal B-spline surfaces. To obtain a CAD representation of aerospace components
undergoing thermal deformations, Gaun et al. (2014) developed a method to transfer FE
displacements to B-spline surface control points, which allows smooth manipulations of
high-curvature CAD parts such as compressor blades or exhaust mixers. Inspired by these
ideas, Urbano et al. (2019a) implemented B-spline morphing for manufactured surface
fitting. In particular, it was demonstrated that re-parametrization as B-spline surface
with a dense control point grid may significantly benefit matching accuracy especially for
complex surfaces such as turbine shanks, Urbano et al. (2019b). Therefore, such research
developments regarding automated matching of complex free-form surfaces exemplify new
possibilities for improved parametrization control and high-curvature matching, and may
thus signal potential development directions for commercial CAD software.

shank face

hot-gas
faces

Figure 1.3: Complex free-form surfaces in a high-pressure turbine blade.

The second relevant research topic on geometric uncertainty estimation for product design
deals with probabilistic representation of surface variability. This area is likely the most
mature and exhibits visible consensus on both research and industry. Since manufacturing
is a stochastic process, it is widely accepted that any rigorous robustness assessment must
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be performed on a statistical basis. However, since surface measurements are frequently
limited in quantity, an important question regards the generation of additional synthetic
manufacturing samples which mimic real deviation patterns and thus enhance statistical
estimation of performance variability. Two broad method classes appear to be dominant
for this purpose: probabilistic modeling either directly from geometric parameters or rather
from main deviation components.

Once a representative manufacturing sample has been matched as collection of CAD
models, all recorded values for any given geometric parameter may be represented as
histogram. Thus, the first approach consists of using a re-sampling scheme which con-
siders individual parameter distributions and their statistical correlation, see e.g. Flassig
(2011) and Högner et al. (2020). This is typically accomplished by an adaptative Latin
Hypercube Sampling method such as restrictive pairing, where a sample is drawn from
all geometric parameters using individually fitted probability density functions and the
resulting correlation matrix is adapted incrementally to the measured correlation matrix,
Dandekar et al. (2002).

In contrast, the second approach aims at decomposing parametric variability as linear
superposition of characteristic deviation patterns via Principal Component Analysis (also
named Singular Value Decomposition, Proper Orthogonal Decomposition or Statistical
Shape Analysis). This results in unique amplitude histograms for each deviation pattern,
e.g. Garzon and Darmofal (2003) and Lange et al. (2012). The sampling strategy then
follows similarly as the first approach although using mode amplitudes instead of parameter
histograms. As an advantage, this method illustrates the relative contribution of each
deviation pattern into overall surface variability and may even allow elimination of
non-representative deviation information, Urbano et al. (2019a). However, depending
on the specific manufacturing scenario, linear superposition of deviation patterns may
fail to capture inter-modal dependencies and may require non-parametric probabilistic
representations such as kernel-density estimation, Lamb (2005), which are computationally
intensive. Capturing complex non-linear deviation behaviors at reduced computational
cost is thus the main challenge in probabilistic representation of geometric variability.

A promising alternative involves data compression strategies from machine learning,
such as variational autoencoders, which are a type of neural network trained to retrieve
information as non-linear function of a small number of latent variables, Kingma and
Welling (2019). As these latent variables may be parametrized by any arbitrary multivariate
probability distribution (e.g. standard multivariate normal distribution), generation of
synthetic manufacturing instances becomes trivial, and thus the additional autoencoder
training time may be partially compensated by the avoided adaptative sampling strategy.
Autoencoders have successfully reduced geometric space for design optimization problems,
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D’Agostino et al. (2018), and thus may constitute a powerful alternative for compressing
non-linear geometric variability.

The third major research area deals with geometric prediction of surface deviations.
Although CAD and probabilistic representations of manufacturing variability are useful for
understanding the performance impact on a given design, they can hardly be applied to a
new design if it is parametrized differently. As a result, detailed deviation information ends
up being used mostly for performance impact assessment after the design has been fixed
rather than for active variability mitigation in new designs (with the probably exception of
airfoils). This leaves major room for opportunity, i.e., by modeling the relationship between
surface deviations with nominal geometry and manufacturing process such that deviation
estimations for new designs are enabled. In manufacturing literature, this topic is usually
addressed as deviation compensation and has seen noticeable developments across optics,
machining, and—most prominently—additive manufacturing. Initial analytical deviation
models were proposed by Huang et al. (2014) for cylindrical additive manufacturing probes.
Based on a nonlinear deviation function in cylindrical coordinates, the authors defined a
Bayesian model for manufacturing deviations, trained it on multiple cylindrical probes
of different diameters, and later used it to compensate deviations from prismatic probes.
Despite not accurately predicting radial deviation profiles, mean radial deviation was
reduced by a factor of four. An analogous research was performed by Poniatowska (2015)
for free-form surface machining, where ten 50 mm × 50 mm aluminum surfaces were
milled, measured and later fitted as NURBS surfaces. The mean deviation component
between nominal and manufactured surfaces was then used as compensation for ten new
corrected samples, which later reported a five-fold average decrease in deviation amplitude
when compared to non-compensated surfaces.

Further developments in additive manufacturing refine probabilistic deviation modeling
and introduced machine learning strategies. Zhu et al. (2019) demonstrate a comprehen-
sive approach for probabilistic modeling and deviation transfer for cylindrical additive
manufacturing probes. The authors perform a design of experiments with 18 cylindrical
samples of different radius, layer thickness and scan speed, and observe three relatively
simple dominant deviation patterns after additive manufacturing simulations. Gaussian
process regression is then implemented to model the relationship between associated
mode amplitudes and individual probe parameters, which then correctly predict deviation
behavior on two validation probes. Taking a further step, Zhu et al. (2020) enhance the
previous deviation modeling approach by generating 1200 additional synthetic deviation
samples from the Gaussian process, and use them to train a convolutional neural network
for predicting deviation fields from arbitrary parameter and geometry combinations. As
previous examples demonstrate, deviation prediction is steadily gaining ground for manu-
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facturing of relatively simple geometries. To enable deviation estimation for more complex
mechanical parts in the future, coupling of machine learning methods with manufactur-
ing simulations—such as thermo-mechanical analysis of additive, machining or casting
processes—seem to be definitely a valuable research direction.

Estimation of geometric deviations for robust design is a multidisciplinary problem which
involves accurate and scalable CAD reconstruction techniques, efficient probabilistic repre-
sentations and physics-based mathematical modeling of geometric variability. Although
progress on these areas has been fundamentally shaped by individual needs of industry
sectors, it is undeniable that huge advantages have been gained by adopting methods
from external disciplines, as exemplified by the vast appropriation of Principal Component
Analysis and—more recently—machine-learning methods. Thus, a closer cooperation and
exchange of ideas between different industry sectors, such as additive manufacturing,
aerospace, and CAD software development—may significantly propel geometric deviation
estimation to progressively gain ground as an important industrial standard in a foreseeable
future.

1.3 Problem Statement and Thesis Outline

Consideration of geometric variability within product design is indispensable for increasing
manufacturing efficiency, and thus minimize economic and environmental impact for both
manufacturer and customer. However, in contrast to product design, which comprises
mainly a coordination between CAD and simulation software, systematic inclusion of
geometric variability into product design involves surface metrology, probability, machine
learning modeling plus innovative CAD methods. Currently, some of these processes are
available only for special geometry types, such as prismatic specimens or airfoils, or require
extensive user interaction, such as CAD fitting of complex surfaces with commercial
software. Therefore, the only way to leverage geometric variability as new industrial
standard is by automating knowledge extraction from manufacturing. This involves two
major automation chains: a process for fitting surface measurements and storing them in
a database of probabilistic CAD representations, and a process for using such deviation
information for estimating deviations of new geometries.

The present dissertation aims at providing innovative solutions on both fronts. Firstly,
a generic CAD surface matching procedure will be introduced, followed by a probabilistic
representation of manufacturing variability. However, to allow automation on these areas,
several innovative strategies for mitigating measurement noise, CAD inconsistencies and
statistical outliers will be introduced. Secondly, since deviation estimation has been
largely investigated for simplified geometries, the present dissertation aims at developing a
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methodical framework for predicting stochastic geometric deviations for rather complex,
generic free-form surfaces. This will be achieved using methods of machine learning, which
allow association of surface variability with nominal geometry and identification of common
deviation patterns between distinct manufactured designs.
The remaining of the dissertation is structured in four parts. First, the mathemati-

cal background of CAD surface parametrization and measurement will be described in
Chapter 2, where special emphasis will be given to B-spline surfaces as they will lay the
foundation for CAD surface matching and deviation modeling. Subsequent sections will
be devoted to explain the subtractive CAD construction approach, which conveniently
extends surface matching capabilities from a single face to multiple faces, and to describe
the optical principles of surface metrology with structured light. The second major part
described in Chapter 3 addresses the process for accurately representing manufactured
surfaces as CAD geometry using B-spline morphing. Multiple strategies for automated
mitigation of measurement noise and CAD irregularities throughout the morphing process
will be provided. These methods will be then demonstrated in a surface matching example
considering complex free-form faces of a high-pressure turbine blade. Part three intro-
duced in Chapter 4 deals with probabilistic methods for surface variability once multiple
fitted CAD surfaces are available. A probabilistic description of geometric variability
based on linear superposition of main deviation patterns—also referred as manufacturing
modes—will be introduced. Further, a statistic-geometric criterion for identification of
observable manufacturing modes will be presented, as well as a statistical approach to
remove inconsistent CAD surface outliers from a sample. Two application sections on
turbine blades will demonstrate the high fidelity of synthetic deviation instances obtained
from this probabilistic approach and also highlight differences in statistical deviation
behavior across different turbine blade designs.

The last contribution is presented in Chapter 5 which concerns probabilistic deviation
estimation for new geometric designs. Given the technical scope of this chapter, a simplified
conceptual background will be introduced first. Then, a deviation model associating surface
variations with nominal geometry will be developed using the convolution operation. To
estimate deviations on a new geometry, the concept of recurrent deviation behavior
repeatedly observed across multiple manufactured designs will be formalized as deviation
law. Subsequent sections will describe the process of extraction and optimization of deviation
laws from different databases of manufactured geometries. An application example will
be provided, which illustrates deviation estimation for a turbine shank based on surface
measurements of previous turbine blade designs. The integration of deviation laws into
a robust design process will be briefly addressed in the last section. To conclude, a brief
summary of findings and potential research directions will be provided in Chapter 6.
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2 CAD Surface Parametrization and
Measurement

Surface deviations consist of discrepancies between design intent and manufactured result.
Nominal design intent may be usually represented as CAD geometry, which fundamentally
consists of analytical surfaces. Representation of a manufactured part, on the other
side, may differ according to the applied metrology approach, but typical examples may
include selective point measurements or dense surface point clouds. Therefore, any attempt
to quantify surface variability necessitates a thorough understanding of the underlying
mathematical description of both CAD and manufactured objects, which is the main
purpose of the present chapter. After a general description of CAD surface parametrization
approaches, where special emphasis will be given to B-spline surfaces, useful geometric
properties of B-spline surfaces such as local orientation and curvature will be derived.
Then, a brief description of subtractive parametric CAD construction approaches will be
given, and lastly an introduction to experimental surface measurement with structured
light will be provided.

2.1 CAD Surface Parametrization

The design, manufacturing and analysis of any mechanical part rely on well-defined surface
parametrization. On the most fundamental level, any CAD face may be parametrized
either as primitive or free-form face. As the name suggests, primitive faces are generated
from elementary geometric shapes such as planes, cylinders, spheres, cones or tori. They
are pretty common in mechanical design, for instance as part of firtree grooves or as
multiple cylindrical blends of an HPT blade, Fig. 2.1. Free-form faces on the other side,
exhibit complex three-dimensional shapes such as HPT airfoil, hub-endwall, fillet radius
and shank walls which, therefore, calls for more elaborate parametrization strategies.

Parametrization of free-form faces is mainly determined by design intent and, therefore,
extremely diverse. For instance, the fillet radius serves as a smooth transition between two
almost perpendicular faces (hub-endwall and airfoil) and may be best described by profile
and sweep curves. On the other hand, the airfoil dictates the aerodynamics of the HPT
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blade and may be better described by physical parameters such as stagger angle, leading
edge radius, maximum thickness, etc. The choice of parametrization also influences the
part’s optimization potential. For instance, an appropriate parametrization can rapidly
reveal high-efficiency regions in the design space. Despite of the many parametrization
possibilities for free-form surfaces, a standardized geometry format is needed to enable data
exchange between different CAD and engineering simulation software. This has led to the
development of standarized CAD formats, such as IGES, U.S. Product Data Association
(1996), and STEP, ISO (2011). These standards enable the translation of any free-form
surface, regardless of which parametrization was initially chosen, into its most fundamental
mathematical descriptions, i.e., B-spline or Non-Uniform Rational B-Spline (NURBS)
surfaces.

free-form facesprimitive faces

• airfoil

• fillet radius

• shank faces

• hub-endwall
• planes

• firtree faces

• blends

Figure 2.1: Examples of primitive and free-form faces of an HPT blade.

According to Piegl and Tiller (1995), a B-spline curve

c(u) =
n∑
i=0

Ni,q(u) pi, u ∈ [0, 1] ⊂ R, (2.1)

is a parametric curve, which weights control points pi with q−th order basis func-
tions Ni,q(u) evaluated at curve parameter u. The B-spline curve is associated with
a non-decreasing knot vector

u = [0, . . . , 0︸ ︷︷ ︸
q+1

, uq+1, . . . , ur−q−1, 1, . . . , 1︸ ︷︷ ︸
q+1

]ᵀ ∈ Rr+1, ui ≤ ui+1, r = (n+ 1) + q, (2.2)

defined according to the number n+ 1 of control points. If knot values uq, . . . , ur−q are
equally spaced, the curve is regarded as uniform, otherwise as non uniform. The basis

12



functions Ni,q(u) share the index i with control points pi and are defined recursively as

Ni,0(u) =

1 for ui ≤ u < ui+1,

0 otherwise,
(2.3)

Ni,q(u) = u− ui
ui+q − ui

Ni,q−1(u) + ui+q+1 − u
ui+q+1 − ui+1

Ni+1,q−1(u), (2.4)

where the value Ni,q(u) is interpolated from lower-order values Ni,q−1(u) and Ni+1,q−1(u)
in relation to the position of the curve parameter u.

As an example, consider a B-spline curve in the xy−plane with order q = 3 and n+1 = 6
arbitrary control points pi ∈ R2, Fig. 2.2b. The curve is associated with a uniform knot
vector

u = [0, 0, 0, 0, 1/3, 2/3, 1, 1, 1, 1]ᵀ (2.5)

having r+1 = (6+3)+1 = 10 components. To compute curve c(u) all basis functions Ni,q(u)
must be first evaluated. According to Eq. (2.3), the zero-order basis functions are non-zero
for u ∈ [ui, ui+1), i = 3, 4, 5, respectively, Fig. 2.2a. Next, first-order basis functions Ni,1(u)
are computed by weighting values Ni,0(u) and Ni+1,0(u) according to Eq. (2.4) resulting in
triangular functions. The B-spline curve c(u) in Fig. 2.2b results from multiplication of
final basis functions Ni,3(u) with respective control points pi according to Eq. (2.1).

−2 −1 0 1 2

−2

−1

0

1

2

c(u)

p1
p0

p2 p3

p4p5

x

y

a) b)

0

1
Ni,0

0

1
Ni,1

0

1
Ni,2

0 1/3 2/3 1
0

1

u

Ni,3

i = 0 i = 1 i = 2
i = 3 i = 4 i = 5

Figure 2.2: Representation of B-spline by a) basis functions Ni,q(u) resulting in b) curve
c(u) with six respective control points pi (◦).
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One may extend the concept of B-spline curve to a B-spline surface by using a tensor
product of two B-spline curves with two surface parameters u and v. Thus, the B-spline
surface

s(u, v) =
n∑
i=0

m∑
j=0

Ni,q(u)Nj,q(v) pi,j, (u, v) ∈ [0, 1]2 ⊂ R2 (2.6)

may be defined for a (n+ 1)× (m+ 1) grid of control points, which are weighted by basis
functions Ni,q(u) and Nj,q(v). Although a generic B-spline surface definition may assign
different basis function orders to parameters u and v, Piegl and Tiller (1995), the present
formulation assigns same order q for simplicity. Thus, Eqs. (2.3) and (2.4) are equally
valid for both curve parameters u and v. Furthermore, in addition to associated knot
vector (2.2), surface (2.6) requires also a knot vector v which may be defined in analogy
to Eq. (2.2) as

v = [0, . . . , 0︸ ︷︷ ︸
q+1

, vq+1, . . . , vs−q−1, 1, . . . , 1︸ ︷︷ ︸
q+1

]ᵀ ∈ Rs+1, vi ≤ vi+1, s = (m+ 1) + q. (2.7)

Although knot vectors or surface degree may be used to control the shape of B-spline
surfaces, a more efficient surface manipulation is obtained from control point number and
position. This is due to the smooth surface behavior after control point variations, which
suits design of aerodynamic faces, such as the hub-endwall of an HPT blade in Fig. 2.3.

s(u, v)
u

v

pi,j

Figure 2.3: Exemplary B-spline surface parametrization for an HPT blade hub-endwall
before trimming.

Despite the mathematical simplicity of B-spline surfaces, they are incapable of exactly
representing regular geometric shapes, such as cylinders or cones. This has led to a further
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surface generalization called Non-Uniform Rational B-Splines (NURBS):

s(u, v) =

n∑
i=0

m∑
j=0

wi,jpi,jNi,q(u)Nj,q(v)

n∑
i=0

m∑
j=0

wi,jNi,q(u)Nj,q(v)
, (u, v) ∈ [0, 1]2 ⊂ R2, (2.8)

which basically consists of a rational formulation of basis functions Ni,q(u) with additional
weight factors wi,j.

Both B-spline and NURBS surfaces have been extensively developed and efficiently
implemented in CAD software. In particular, automatic re-parametrization of any CAD
face as B-spline surface offers important capabilities. As an example, consider the re-
parametrization of a half-cylinder as B-spline surface with different numbers of control
points in Fig. 2.4. In theory, such a shape would never be possible to be exactly constructed
using B-spline surfaces. However, because an elevated number of control points is nowadays
numerically inexpensive, a high-fidelity B-spline surface approximation is possible. This
is demonstrated in Fig. 2.4, where a finer parametrization reduces surface deviations to
the cylinder from ±5 µm to below ±1 µm. For simplicity and versatility, all methods
developed in the present work are exclusively formulated for B-spline surfaces, with the
fair assumption that any CAD face may, to a great level of accuracy and with minor user
involvement, be re-parametrized in such a way.

a)

5 µm

−5 µm

b)

u

v

u

v

25 mm

100 mm

±1 µm

Figure 2.4: Error of B-spline surface re-parametrizations of half-cylinder with a) 8× 2 and
b) 13× 2 control point grids.

15



2.2 Geometric Properties of B-Spline Surfaces

Throughout this work, geometric properties such as local orientation and curvature will
repetitively arise in the formulation of B-spline morphing and geometric deviation modeling.
Depending on available information, an estimation of these properties may be derived
directly for a B-spline surface position (u, v) or alternatively for a specific control point
pi,j. To evaluate orientation and curvature for a position (u, v), consider Fig. 2.5.

u
v

n(u, v)
tv(u, v)

tu(u, v)
s(u, v)

1/κu(u, v)

1/κv(u, v)

Figure 2.5: Orientation and curvature definitions for a B-spline surface.

At position (u, v), tangential vectors of surface (2.6) are defined as directional derivatives

tu(u, v) := ∂s

∂u
(u, v) and tv(u, v) := ∂s

∂v
(u, v), (2.9)

where the expressions for B-spline derivatives may be found analytically, see Piegl and
Tiller (1995), or from numerical libraries for computational geometry, e.g. Bingol and
Krishnamurthy (2019). These tangential vectors may be then used to compute the unit
normal vector as

n(u, v) := tu(u, v)× tv(u, v)∥∥∥tu(u, v)× tv(u, v)
∥∥∥ . (2.10)

To formulate an expression for curvature, consider first an arbitrary parametric curve
p(s), s ∈ [0, 1] ⊂ R. According to Gray et al. (2006), the curvature κ at position s may be
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obtained as

κ(s) =

∥∥∥∥dpds × d2p

ds2

∥∥∥∥∥∥∥∥dpds
∥∥∥∥3 , (2.11)

which has dimension [L]−1 and in the case of a circle results in κ = 1/R. This relationship
may be also applied to B-spline surfaces in each direction independently. For example, the
directional curvature in u−direction results in

κu(u, v) =

∥∥∥∥∂s(u, v)
∂u

× ∂2s(u, v)
∂u2

∥∥∥∥∥∥∥∥∂s(u, v)
∂u

∥∥∥∥3 , (2.12)

and analogously for κv(u, v). Now, there exist several curvature formulations which combine
directional curvatures into a single representative curvature value associated with a surface
point. One possibility is the Gauß curvature defined as the product of both directional
curvatures

κ(u, v) := κu(u, v) κv(u, v) (2.13)

having dimension [L]−2. In the case of a sphere, multiplication of both directional curvatures
at any surface point yields a Gauß curvature κ = 1/R2.
When performing operations with control points such as control point selection for

B-spline morphing (Sec. 3.3) or geometric deviation laws (Sec. 5.1), estimations of local
orientation and curvature associated with a specific control point pi,j may be very useful.
In this case, above relationships are useless since control points pi,j are no surface positions.
An alternative approach consists in interpolating any discrete control point row by a
parametric curve p(s), Fig. 2.6b, and deriving orientation and curvature relationships from
this.

Let the first and second order derivatives of the parametric curve p(s) may be approxi-
mated by central finite differences as

dp

ds
≈ p(s+ h)− p(s− h)

2h and d2p

ds
≈ p(s+ h)− 2p(s) + p(s− h)

h2 , (2.14)

where h corresponds to a small parametric spacing of curve parameter s. Previous deriva-
tives may also be evaluated at fixed control point positions of a B-spline surface in Fig. 2.6a
as

dpi,j
ds
≈ pi,j+1 − pi,j−1

2h and d2pi,j
ds2 ≈

pi,j+1 − 2pi,j + pi,j−1

h2 , (2.15)

where the derivatives have been taken along the j−direction and the parametric spacing
has been assumed to be constant as h = 1/m, where m+ 1 equals the number of control

17



points along j−direction. The definition of a unit tangential vector for the v−direction at
position (i, j) may be then formulated as

tvi,j = dpi,j
ds

/∥∥∥∥dpi,jds

∥∥∥∥ ≈ pi,j+1 − pi,j−1

‖pi,j+1 − pi,j−1‖
(2.16)

being independent of the parametric spacing h. The calculation of the tangential vector tui,j
in u−direction follows by analogy. Tangential vectors may be then used to approximate
the unit normal vector (2.10) as

ni,j =
tui,j × tvi,j∥∥∥tui,j × tvi,j∥∥∥ . (2.17)

u
v

pi,j

ni,j
tvi,j

tui,j

s(u, v)

1/κvi,j

1/κui,j
1/κ(s)

s

p(s)
p(s− h) p(s+ h)

a) b)

s

Figure 2.6: Illustration of a) orientation and curvature definitions based on control point
grid and b) parametric curve p(s) from a control point row.

Lastly, the parametric curve p(s) may be used to estimate curvature from discrete
control point rows. By replacing derivative approximations (2.15) in (2.11), a directional
curvature approximation for point pi,j may be obtained as

κvi,j ≈

∥∥∥pi,j+1 − pi,j−1

∥∥∥/2h× ∥∥∥pi,j+1 − 2pi,j + pi,j−1

∥∥∥/h2∥∥∥pi,j+1 − pi,j−1

∥∥∥3
/8h3

(2.18)

= 4

∥∥∥ (pi,j+1 − pi,j−1)× (pi,j+1 − 2pi,j + pi,j−1)
∥∥∥∥∥∥pi,j+1 − pi,j−1

∥∥∥3 , (2.19)
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which is again independent of the parametric spacing h. Since this expression was derived
for a control point row in j−direction, it results in a directional curvature κvi,j . An analogous
procedure may be performed to obtain directional curvature κui,j from any control point
row in i−direction. A unified curvature associated to point pi,j may then be defined
analogously to the Gauß curvature (2.13) as

κi,j := κui,jκ
v
i,j. (2.20)

The reader is finally remarked about notation differences in orientation and curvature
quantities. Tangential, normal and curvature quantities evaluated for B-spline surface
points are distinguished by the arguments (u, v), e.g. tu(u, v), n(u, v), κ(u, v), whereas
quantities associated with control point positions carry the subindices i, j, e.g. tui,j, ni,j, κi,j .

2.3 Parametric Construction of CAD Parts

Complex CAD parts require up to hundreds of geometric parameters, many of which will be
iterated dozens of times before final geometry definition. However, due to intrinsic geometric
interactions, small parameter modifications may frequently lead to impossible geometric
constructions—e.g. conflicting body subtractions or open surfaces—thus hindering fast
CAD design explorations. Although a complete overview of parametric constraints may
be infeasible in practice, a robust parametric geometry workflow with a clear operation
hierarchy may to a great extent reduce CAD reconstruction failures.

A possible strategy consists in implementing a subtractive construction approach which
loosely mimics the real manufacturing sequence. As illustration, consider an exemplary
CAD construction workflow for an HPT blade foot shown in Fig. 2.7. While the airfoil
geometry will be typically constrained by aerodynamic requirements, the blade foot may
be entirely constructed by subtraction operations starting from a solid block attached at
the bottom (Fig. 2.7a). Each subtraction step is simply defined by a subtraction body
(Fig. 2.7b) which contains the parametrization of the faces produced by subtraction,
such that after multiple sequential subtractions the desired geometry is finally obtained
(Fig. 2.7d). In this manner, any parameter modification will automatically re-run the
entire subtraction sequence and produce the desired CAD part, provided that no conflicts
between different subtraction operations exist.
In addition, to enable fast CAD design iterations, this approach leverages a single

construction operation, i.e., body subtraction, to generate the entire geometry. This char-
acteristic may be a powerful tool for easily scaling manufacturing surface representations
throughout multiple CAD faces. As thoroughly explained in the next chapter, CAD rep-
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resentation of any manufactured surface may be conveniently accomplished by replacing
subtraction bodies with one that has been previously fitted to a surface measurement. By
replacing subtraction bodies, this approach allows CAD representation of surface variations
to any arbitrary number of faces.

a) b) c) d)

x
y

z

. . .

hw
r

resulting face

Figure 2.7: Subtractive construction approach for a blade root: a) initial geometry, b)
subtraction body with face parametrization, c) resulting face and d) final
geometry after several subtraction steps.

2.4 Surface Measurement with Structured Light
Previous sections laid the foundation of nominal geometry parametrization and construction
in CAD. To assess manufacturing accuracy and quality, surface measurements of real
manufactured samples have to be considered now. As a basis, the present section will
explore surface measurement with structured light, in particular, how manufactured
surfaces may be digitized as dense point clouds using photogrammetric models.
There exist multiple approaches to assess manufacturing accuracy based on surface

measurement. Coordinate-measurement machines are flexible regarding surface and lighting
conditions but their measurement speeds may be limited depending on part geometry, Li
and Gu (2004). When internal geometric features are of interest, such as turbine blade
cooling holes, industrial computed tomography is preferred, where a continuous volumetric
representation of the part is constructed from x−ray irradiation, Villarraga-Gómez et al.
(2019). An attractive compromise is obtained by surface measurement with structured
light, where the object surface is reconstructed as dense point cloud by projecting light
patterns from different angles and calculating reflected ray paths, Peng and Gupta (2007).
Despite requiring careful part preparation and setup, important efforts have been pursued
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in measurement automation and instrument portability. Moreover, compared to sample
points or scan volumes, surface point clouds are most useful for re-engineering CAD
surfaces.

In the most basic form, a structured light measurement setup consists of a light pattern
projector, a reference plane and a camera, Fig. 2.8. The position of projector xP , camera xC
and reference plane with reference point xR and normal vector nR are known and given
with respect to a global coordinate system {O;x, y, z}. The camera orientation is given
by a known rotation matrix R ∈ R3×3 defining the coordinate transformation between
camera coordinate system {O′;x′, y′, z′} and global coordinate system as

[x′, y′, z′]ᵀ = R [x, y, z]ᵀ. (2.21)

c

u

v

xC

xR

x
y

z

x′
y′

z′

reference plane

image plane

camera

projector plane

xP xI

uIvI

nR

O

O′O′′

x′′
y′′

z′′

ξ

η

∆y′ ∆x′

light
pattern
projector

global coord.
system

Figure 2.8: Schematic representation of the camera-projector model.

Light is projected from point xP through the projector plane onto the reference plane
and reflected towards the camera center xC to be captured on the image plane by image
coordinates (uI , vI). The uv−plane is commonly parallel to the x′y′−plane intersecting
the z′−axis at distance z′ = −c. Due to internal camera distortion, the image plane center
is typically shifted from its nominal position by displacements (∆x′,∆y′) in the camera
coordinate system, Luhmann et al. (2019). The image plane intersection (−c) and the
distortion parameters (∆x′,∆y′) are properties of the camera and may be obtained by
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calibration procedures, e.g. Brown (1971). According to the collinearity principle, the
camera center xC and a reference point xR intersect at a unique point xI in the image plane.
For a calibrated camera with identified parameters, the three-dimensional coordinates
xI of any (uI , vI) point on the image plane may be computed in the global coordinate
system O as

xI = xC +R−1


uI −∆x′

vI −∆y′

−c

 where R−1 = Rᵀ. (2.22)

The main goal of surface photogrammetry is to reconstruct object coordinates from
their (u, v) image location. For instance, consider the measurement setup shown in Fig. 2.9,
where object point xM is associated with image location (u1, v1). Even with identified
camera calibration parameters and user-defined scaling factors, additional information
is still required to compute depth from the photograph. This is the reason why fringe
patterns are used. In this method, each light ray in the fringe pattern is labeled with a
unique phase value which remains unchanged after reflection. The projected phase values
are defined on the projector plane as a function Φ(ξ, η) and, once reflected and distorted
by the object surface, they are captured one by one on the image plane as camera phase
values Ψ(u, v). Thus, identification of identical phase values on the projector plane (ξ, η)
and on the image plane (u, v) enables reconstruction of a light ray’s path, and consequently
allows computation of the reflection point as intersection of incident and reflected rays. For
instance, point xM in Fig. 2.9 is the intersection of projected light ray xP + λ (x2 − xP )
and reflected light ray xC + µ (x1 − xC).

In this sense, the goal of structured light measurement consists on identifying a map

M : (ξ, η)→ (u, v) (2.23)

which describes the re-organization of phase values between projector and image planes,
thus allowing detailed surface reconstruction of the object using geometric relationships.
The initial step consists on defining the projected phase map as a monotonic function in
at least one projector plane direction, for instance as

Φ(ξ, η) = ε η, (2.24)

where ε is arbitrary. This label is then encoded physically into each light ray by modulating
projected optical intensity IP , which measures energy per unit area normal to the direction
of light propagation, Hariharan (2007). However, to properly define a light intensity func-
tion IP (ξ, η) dependent on projected phase Φ(ξ, η) which efficiently allows reconstruction of
map (2.23) after reflection, an initial understanding of intensity modulation and distortion
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is needed first.
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Figure 2.9: Geometric relationships for surface measurement with fringe patterns.

According to Zuo et al. (2018), the light intensity IC(u, v) of a reflected ray measured
by the camera on the image plane differs from its original projected intensity IP (ξ, η) as

IC(u, v) = α(u, v) (IP (ξ, η) + β1(u, v)) + β2(u, v), (2.25)

where β1(u, v) corresponds to intensity amplification due to ambient light before reflection,
α(u, v) is the local surface reflectivity of the object and β2(u, v) quantifies intensity
distortion due to ambient light entering the camera. These three parameters may vary
substantially on space, which is why they must be evaluated individually for each ray and
thus each position (u, v) on the image plane. Therefore, using projected phase map (2.24)
directly as projected intensity function IP (ξ, η) := Φ(ξ, η) and considering the measured
intensity IC(u, v) of each photograph directly as captured phase map Ψ(u, v) := IC(u, v)
would yield

Ψ(u, v) = α(u, v) (Φ(ξ, η) + β1(u, v)) + β2(u, v)
= α(u, v)β1(u, v) + β2(u, v) + α(u, v)Φ(ξ, η)
= A(u, v) + B(u, v)Φ(ξ, η). (2.26)

However, since local parameters A(u, v) and B(u, v) are unknown and too complex to be
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measured locally with sufficient accuracy, no mapping between projected and captured
phase values is thus possible.

A smarter alternative for defining projected and measured intensities is required which
circumvents explicit calculation of parameters A(u, v) and B(u, v) for the desired phase
mapping. This may be achieved using some variation of the N -step phase shifting al-
gorithm by Srinivasan et al. (1984), which in essence, defines projected light intensity
as a cosine function of the projected phase map with an additional phase shift parame-
ter n ∈ [1 . . . N ] ⊂ N. For example, the four step phase shifting algorithm presented by
Peng and Gupta (2007) and simplified here for illustration purposes defines the projected
intensity as

IP (ξ, η;n) = Imax

2

(
1 + sin

(
Φ (ξ, η) + (n− 1)π

2

))
, n ∈ [1 . . . 4] ⊂ N. (2.27)

With previous formulation and projected phase map (2.24), the projected intensity undu-
lates periodically between 0 and the maximum projector intensity Imax along the projector
axis η. Furthermore, because intensity along the axis ξ remains constant, projected inten-
sity (2.27) corresponds to a classical fringe pattern as schematically illustrated on the
projector plane in Fig. 2.9. To examine how projected intensity (2.27) is then modulated
after reflection and captured by the camera, one may replace it in Eq. (2.25) to obtain the
measured intensity

IC(u, v; n) = α

(
Imax

2

(
1 + sin

(
Φ (ξ, η) + (n− 1)π

2

))
+ β1

)
+ β2

= α

(
Imax

2 + Imax

2 sin
(

Φ(ξ, η) + (n− 1)π
2

))
+ αβ1 + β2

= α
Imax

2 + αβ1 + β2 + α
Imax

2 sin
(

Φ(ξ, η) + (n− 1)π
2

)
, (2.28)

where the explicit dependency of parameters α, β1 and β2 on the image position (u, v)
has been omitted for brevity. Result (2.28) suggests that an appropriate model for the
measured intensity IC(u, v; n) as function of captured phase Ψ(u, v) is thus

IC (u, v;n) = A(u, v) + B(u, v) sin
(

Ψ(u, v) + (n− 1)π
2

)
(2.29)

with A(u, v) and B(u, v) to be found locally. Now, to compute the captured phase
map Ψ(u, v) without addressing parameters A(u, v) and B(u, v), four projections us-
ing different phase shift values n are performed delivering four photographs with respective
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measured intensities {IC(u, v; n)} , n = 1, 2, 3, 4. Subsequently, by using subtractions

IC(u, v, 1)− IC(u, v, 3) = B(u, v) sin Ψ(u, v)− B(u, v) sin (Ψ(u, v) + π)
= B(u, v) sin Ψ(u, v) + B(u, v) sin Ψ(u, v)
= 2B(u, v) sin Ψ(u, v) (2.30)

and

IC(u, v, 2)− IC(u, v, 4) = B(u, v) sin
(

Ψ(u, v) + π

2

)
− B(u, v) sin

(
Ψ(u, v) + 3π

2

)
= B(u, v) cos Ψ(u, v) + B(u, v) cos Ψ(u, v)
= 2B(u, v) cos Ψ(u, v) (2.31)

one may obtain the desired captured phase map from the four photographs as

Ψ(u, v) = arctan
(
IC(u, v, 1)− IC(u, v, 3)
IC(u, v, 2)− IC(u, v, 4)

)
. (2.32)

In this way, a specific light ray may be localized in the projector and image planes according
identical phase values, see for example Fig. 2.9 where Φ(ξ∗, η∗) = Ψ(u1, v1).

To demonstrate how surface measurement is performed using phase maps and geometric
relationships, consider following example simplified from Peng and Gupta (2007) and
explained using the setup shown in Fig. 2.9. First, a light-intensity function I(ξ, η;n) is
defined and projected onto the reference plane alone (i.e., without measurement object)
using four phase shift values n = 1 . . . 4. The resulting fringe patterns are photographed and
used for computation of a reference phase map ΨR(u, v) with Eq. (2.32), i.e., a captured
phase map associated with the reference plane. Then, the object of interest is placed and
the same fringe patterns are projected leading to a captured phase map ΨC(u, v), which is
associated with the measurement object and differs from the previously obtained reference
phase map ΨR(u, v). Consider the ray from camera xC through position (u1, v1) on the
image plane intersecting the measured object at xM and the reference plane at x1. Thus,
the three-dimensional object coordinates xM correspond to the image location (u1, v1) and
may be obtained from intersection of lines xP + λ (x2 − xP ) and xC + µ (x1 − xC).

Line xC + µ (x1 − xC) may be determined from the camera position xC and point x1,I ,
which also lies on the line and may be obtained using Eq. (2.22) according to the image
location (u1, v1). To obtain x2 and consequently identify line xP+λ (x2 − xP ), consider that
points xM and x2 share the same incident ray, and thus the same projected phase Φ(ξ∗, η∗).
Hence, the rays reflected from point xM onto the object phase map ΨC(u, v) and from x2

onto the reference phase map ΨR(u, v) are labeled with the same captured phase value,
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i.e.,
ΨR(u2, v2) = ΨC(u1, v1), (2.33)

where (u2, v2) corresponds to the image location associated to point x2. To facilitate com-
putation of (u2, v2), following geometric relationships are considered. Because xP ,x2,xC

and x1 lie in the same plane, x1,I and x2,I lie on its intersection line with the image plane.
This line may be identified with an additional point xT obtained from intersecting line
xC + δ (xP − xC) with the image plane (blue line in Fig. 2.9). All possible image plane
coordinates (u, v) lying on line xT + ζ(x1,I − xT ) may be then represented in a set

L =
{

(u, v) ∈ R2
∣∣∣‖(xI(u, v)− xT )× (x1,I − xT )‖ = 0

}
, (2.34)

where xI(u, v) corresponds to the Cartesian coordinates associated with position (u, v)
according to Eq. (2.22). In this manner, the desired point x2,I associated to image po-
sition (u2, v2) must belong to set L and satisfy Eq. (2.33). Conveniently, given that any
phase map is monotonic in one direction, there exists a unique image position satisfying
this condition, e.g.

(u2, v2) = (u, v) ∈ L
∣∣∣ΨR(u, v) = ΨC(u1, v1). (2.35)

Having found position (u2, v2), point x2,I may be determined with Eq. (2.22) and point x2

results from intersecting line xC + ρ (x2,I − xC) with the reference plane. Lastly, point x2

determines line xP + λ (x2 − xP ) and point xM is finally obtained from the intersection
with line xC + µ (x1 − xC).

Previous procedure delivers a point cloud representation of a single image captured by
the camera. To reconstruct the entire object surface, the process is repeated to obtain
multiple images from different camera angles and positions. All resulting point clouds may
then be aligned using multiple coded targets applied to the object surface as reference.
After manual elimination of measured points outside the object of interest, the point cloud
may be triangulated to produce a fine surface mesh, where each element is characterized by
its centroid xi and unit normal vector ni. Thus, the measured object may be represented
by sets

M = {x1, . . . ,xM}, x ∈ R3 and N = {n1, . . . ,nM}, x ∈ R3, (2.36)

of measured points and normal vectors, respectively.

Measurement accuracy of structured light depends on several physical factors like
layer thickness of reflective titan coating, surface curvature, light exposure or ground
vibrations, as well as human factors regarding infrequent calibration, unreliable part
fixation, coarse mesh triangulation, etc. Nonetheless, it is well accepted that typical
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measurement uncertainties of structured light lie below 50 µm. For example Li et al.
(2021) report a combined repeatability, reproducibility and resolution uncertainty of
11 µm for linear distances. A similar repeatability error for low curvature regions was
obtained by Backhaus et al. (2017). However, the authors showed deviations up to 27 µm
when comparing airfoil chord lengths derived from structured light and direct coordinate
measurements. Given the highly curved free-form surfaces treated in the preset work, a
rather conservative surface measurement uncertainty of eS = 25 µm will be assumed in
the following.
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3 CAD Representation of
Manufacturing Deviations

Optical measurements of manufactured parts offer a practical and precise means to assess
manufacturing quality. There are, however, multiple engineering scenarios where a CAD
representation of the manufactured part would be more useful than its corresponding
surface scan. For instance, when engineering simulations of the manufactured sample are
expected, a CAD representation may serve as a unified repository of surface deviations,
ensuring consistency for any mesh derived from it and enabling access to further CAD
post-processing tools. More importantly, because any part is first designed as CAD
model, having a CAD representation provides valuable insight into how to parametrize
manufacturing variability so that it might be modeled and recreated. This is the gateway
for robust design where, in order to identify the geometry least affected by manufacturing
deviations, multiple deviating geometries have to be simulated and analyzed. Thus, the
present chapter will describe a series of methods to transfer surface deviation information
from surface measurements into CAD models, such that manufacturing scatter is effectively
parametrized and may be later used for probabilistic analysis and robust design.

The reach and capacity of the proposed workflow relies on three edges: a structured CAD
routine to construct the mechanical part using predominantly Boolean operations (Sec. 2.3),
an automated re-parametrization strategy of any face as B-spline surface (Sec. 3.1), and
the ability to handle B-spline surfaces for deviation representation (Secs. 3.2 - 3.5). An
overview of the proposed workflow, and thus of the present chapter, is shown in Fig. 3.1.
The process starts with a B-spline re-parametrization of the nominal surface. Then, both re-
parametrized surface and scan will be associated by defining relevant surface positions and
control points. Next, control point deviations will be computed using B-spline morphing
to fit a re-parametrized surface to the scan, and finally, residual noise of the morphing
process will be removed from the resulting surface. The entire process may be repeated
for multiple iterations, until the desired fitting accuracy is achieved. To close the chapter,
application examples will be provided for the hot-gas and shank faces of an HPT blade.
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Figure 3.1: Developed workflow for CAD representation of manufacturing deviations.

3.1 Re-Parametrization as B-Spline Surface

Consider a CAD face to be reconstructed from a measured manufactured part, such as the
shank wall of an HPT blade, Fig. 3.2a. Once the surface measurement has been performed,
it must be aligned according to the desired deviation analysis intent, for instance, to
the contact faces during nominal assembly position. As an additional preparation step,
the surface scan may be segmented to the area of interest, which eliminates irrelevant
scan regions and accelerates deviation calculations. As a result, the segmented surface
measurement may be represented as point set with associated normal vectors (2.36).

As discussed in Sec. 2.3, complex CAD parts frequently require standardized construc-
tion approaches to efficiently associate up to hundreds of design parameters. Given the
already high complexity of nominal geometry generation, inefficient inclusion of additional
deviation representation procedures may lead to overly complicated construction work-
flows. Therefore, integration of deviation representation procedures should exploit already
existing nominal CAD design operations as much as possible. In particular, because a
large portion of CAD faces may be constructed using subtraction operations, workflow
efficiency and scalability may be gained by replacing nominal with morphed subtraction
bodies which would contain all deviation features of the associated CAD faces.
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Figure 3.2: Illustration of a) HPT blade surface measurement and b) associated subtraction
body for shank construction.

For example, Fig. 3.2b illustrates the CAD construction of a shank face using a subtrac-
tion body. To take advantage of the subtractive construction approach, deviation features
should be captured in the subtraction body first, and then automatically imprinted in the
final CAD part by subtraction. This implies that all CAD faces corresponding to the area
of interest should be modified to match the segmented surface measurement, which imposes
two challenges. First, assuming that the area of interest is composed of several adjacent
primitive and free-form faces, the representation capacity would differ considerably from
face to face (a planar face has less representation capacity than a free-form face). Secondly,
assuming that each face is independently fitted to the scan, a large number of boundary
continuity corrections would be required to guarantee an overall smooth body.
A more efficient alternative for deviation representation, which overcomes previous

issues, consists in a re-parametrization of the entire subtraction body as a B-spline surface
with a high number of control points, Fig. 3.3. This approach ensures surface smoothness
and high representation capacity since B-splines may be accurately fitted to any surface
measurement and, therefore, reproduce a high-fidelity CAD version of the manufactured
face. Furthermore, the B-spline re-parametrization procedure is commonly available for
simple surfaces in commercial CAD programs, and in the case of complex surfaces it may
be implemented by constructing a B-spline surface from a user-defined control point grid.
Since the re-parametrized surface s(u, v) is an approximation of the nominal B-spline

surface sN(u, v), a small re-parametrization error

eC(u, v) = ‖s(u, v)− sN(u, v)‖ (3.1)

is naturally expected. This error is automatically computed by the CAD software, and
with proper control point grid structure may be kept below 5 µm, see for example Fig. 2.4.
Once the surface measurement has been aligned and segmented and the subtraction body
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has been re-parametrized as B-spline surface, the association between measured points
and B-spline surface points may be performed.

a) b)

x

y

z

area of interest
Figure 3.3: Illustration of a) nominal subtraction body and b) associated re-parametrized

B-spline surface with a 135× 96 control point grid.

3.2 Selection of Relevant Surface Positions
There exist several approaches to construct B-spline surfaces from discrete point infor-
mation. In particular, if a nominal B-spline surface relatively close to a given point cloud
is already available, this procedure is considerably simplified. For instance, Gaun et al.
(2014) demonstrate how thermal deformations of free-form geometries may be represented
in CAD by adding control point deviations to a given B-spline surface representing the
nominal geometry. In a similar way, Urbano et al. (2019a) utilize the same approach to
accurately represent manufacturing deviations from surface measurements as morphed
B-spline surfaces. Both studies highlight the applicability of B-spline morphing with nu-
merous case studies from aero engine components. In the particular case of manufacturing
deviations, however, no special emphasis has been given to increase morphing robustness
against surface measurement noise. This is a cardinal topic, since the limiting factor for
larger statistical studies and batch CAD reconstruction is frequent user involvement to
manually handle scan noise and individual morphing imperfections. The present work
will build upon B-spline morphing as presented by Urbano et al. (2019a) and describe
additional strategies to mitigate scan and morphing irregularities.
The first phase of B-spline surface fitting consists of local association between B-

spline surface s(u, v) and the surface measurement setM in Eq. (2.36). In particular, all
normalized surface positions (u, v) in the vicinity of the area of interest have to be associated
with respective closest measured points x ∈M. For illustration, consider Fig. 3.4, where
B-spline surface s(u, v) has to be fitted to a horizontal area of interest within a segmented
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scanM. In this illustration, however, the segmented scan accidentally extends beyond the
area of interest and includes additional unwanted regions, such as a perpendicular border
of the measured object (shown as gray area). Although these undesired regions may be
easily eliminated manually, such an approach would limit automation of batch surface
fitting, which is why automatic noise removal strategies will be emphasized. To begin the
association, a fine grid

G = {u1, . . . , uµ, . . . , un′} × {v1, . . . , vν , . . . , vm′} (3.2)

of surface parameter values (u, v) is introduced, which samples the entire B-spline sur-
face s(u, v) into a dense structured mesh of points. Next, function

φ(u, v) = argmin
η: xη∈M

‖s(u, v)− xη‖, (u, v) ∈ G, φ : G → [1,M ] ⊂ N (3.3)

is defined, which provides the index η of the closest measured point xη to a specific surface
point s(u, v). In Fig. 3.4, this is sketched by the three dashed lines.

u

v

s(u, v)

xφ(u,v)segmented scanM

grid G

area of interest

Figure 3.4: B-spline surface s(u, v) (control points not shown) with associated segmented
scanM.

Because both grid G and surface scanM may contain a very large number of points, an
efficient distance minimization strategy is required to solve minimization problem (3.3).
A simple approach consists in performing a k−d tree search, Bentley (1975), where k
stands for search space dimensionality, in the present case k = 3 Cartesian dimensions.
This method recursively divides the search space into clusters. In case of point cloudM,
first according to the median value of x−coordinates of all measured points, producing
two clusters. Then, by the median value of y−coordinates producing four total clusters,
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finally division across the z−dimension delivers eight clusters. After this the process is
repeated. At each step, all median values are stored as nodes in a tree-like structure, such
that the closest measured point xφ(u,v) to a given surface point s(u, v) may be efficiently
computed by navigating across the nodes of the tree.

Having implemented function (3.3), all relevant normalized positions (u, v) in the vicinity
of the area of interest may now be identified. This is achieved by comparing distances
‖s(u, v)− xφ(u,v)‖ to a user-defined threshold dth. All normalized positions (u, v) in the
area of interest are stored in the index set

Ud =
{

(u, v) ∈ G
∣∣∣∣ ‖s(u, v)− xφ(u,v)‖ ≤ dth

}
. (3.4)

In Fig. 3.4, a clustering of different regions is shown as red, blue and green points for both
scan and B-spline surface (the respective normal vectors are also sketched). As illustrated,
the threshold-based selection may erroneously identify unwanted point pairs, such as blue
and green points, which highlights the need for refinement strategies.

A simple and useful refinement method is based on normal vector deviations, which dis-
cards all associations where measured normal vectors significantly deviate from associated
B-spline normal vectors. Since B-spline normal vectors n(u, v) are analytically available
from Eq. (2.10) and measured normal vectors nφ(u,v) can be estimated from structured
light measurement as described by Eq. (2.36), this refinement method is computationally
inexpensive. Thus, the normalized positions from the previous distance-threshold set Ud
are further reduced to the set

U =
{

(u, v) ∈ Ud
∣∣∣∣ nᵀ

φ(u,v)n(u, v) ≥ cos θth

}
, (3.5)

of relevant surface positions where only (u, v) positions with normal vector deviations below
a user-defined angle θth are accepted. For the example in Fig. 3.4, this refinement step
would eliminate all blue point associations, leaving a refined area of interest consisting of
red and green points. The algorithmic parameters dth and θth have to be defined according
to the largest expected deviations, see Sec. 3.6 with application examples.

3.3 Selection of Relevant Control Points
To simplify the fitting process of the B-spline surface, a selection step is also performed
for control points of s(u, v) having direct influence on the interesting region. Because this
selection is performed individually for each surface measurement, it is prone to errors due
to scan imperfections. Therefore, refinement strategies for exclusion of unwanted control
points are required as well.
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Consider Fig. 3.5a corresponding to a re-parametrization of the subtraction body in
Fig. 3.3a, where only control points at the intersection of a cutting plane are illustrated.
Similarly as in the previous section, the identification of control points near the surface
scan starts with a new user-defined distance threshold dcp, now defined between control
points and measured points. This criterion alone is, however, not robust for two reasons. A
selection based on a small threshold dcp would identify correctly all relevant control points
(red points at the scan boundary in Fig. 3.5b), however, it may ignore relevant control
points at the interior if large deviations are present (white points). On the other hand,
a more conservative selection would correctly identify all control points at the interior,
but would probably also include some unwanted control points at the scan boundary as
in Fig. 3.5c. Therefore, the first selection refinement shall eliminate all unwanted control
points at the scan boundary.

y
z

a)

x

b) c)

insufficient
selection

excessive
selectionsurface measurementM

d)

correct
selection

M

y

z

x

pi,j

Figure 3.5: Exemplary control point selection for a) B-spline surface section using b) a
small distance threshold dcp and c) a large distance threshold dcp, as well as d)
a large distance threshold dcp with boundary control.

To identify control points based on a distance threshold, function

ψ(i, j) = argmin
η: xη∈M

‖pi,j − xη‖, (i, j) ∈ [0, n]× [0,m] ⊂ N2
0,

ψ : [0, n]× [0,m]→ [1,M ] ⊂ N, (3.6)

similar to Eq. (3.3) is first defined, which identifies the closest measured point xη to
each control point pi,j. This function may also be evaluated using a k−d tree search.
In particular, since surface measurement M is already represented as k−d tree during
relevant surface position selection, it may be reused to query control points pi,j instead.
Now all control point positions (i, j) having a closest measured point xψ(i,j) to control
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point pi,j below a distance dcp are stored in an index set

Id =
{

(i, j) ∈ [0, n]× [0,m] ⊂ N2
0

∣∣∣∣ ‖pi,j − xψ(i,j)‖ ≤ dcp

}
, (3.7)

where threshold dcp may be conservatively defined such that all control points close to
the area of interest of the surface measurementM are correctly selected. Notice that the
closest points xψ(i,j) are not required to belong to the relevant surface positions (3.5).

The elimination of unwanted control points at the periphery of scanM is now performed
by defining a tangential deviation metric. In general, as control points are located further
away from surface measurementM, the distance to the closest measured point tends to be
more tangential to the control point grid rather than normal, Fig. 3.6. Thus, the projected
distance ‖

(
xψ(i,j) − pi,j

)ᵀ
tvi,j‖ from closest measured point xψ(i,j) to a particular control

point pi,j is useful as elimination criterion. Notice that the tangential vector tvi,j along
direction v is associated to control point position (i, j) rather than to surface position (u, v),
e.g. it must be approximated using finite differences (2.16). Since a user-defined threshold
based on tangential distance is closely dependent on control point density, it would
require manual calibration each time the control point density is adjusted. Therefore, the
elimination of unwanted boundary control points is better performed with a normalized
tangential deviation metric

τ vi,j =

∥∥∥∥ (xψ(i,j) − pi,j
)ᵀ
tvi,j

∥∥∥∥
‖pi,j+1 − pi,j‖

, (i, j) ∈ Id, (3.8)

which relates the tangential distance to the closest measured point with the distance to
the neighboring control point pi,j+1 in the grid, Fig. 3.6. Thus, the previous selection Id
based on distance threshold dcp may now be refined to exclude unwanted periphery control
points and form a new index set

Ip =
{

(i, j) ∈ Id
∣∣∣∣ max

{
τui,j, τ

v
i,j

}
< τth

}
, (3.9)

where only control point positions (i, j) with both tangential deviation metrics τui,j and τ vi,j
below a user-defined threshold τth are accepted.

During B-spline morphing, deviations between relevant B-spline surface positions
s(u, v), (u, v) ∈ U , and respective closest measured points xφ(u,v) will be minimized by
applying control point shifts to all relevant control points. Because each relevant con-
trol point may only affect a limited region in the B-spline surface, sufficient deviation
information must be available in that region to enable accurate computation of control
point displacements. If, for example, only very few relevant measured and B-spline point

36



associations exist in a particular region, the control point shift computation may be
inexact and even lead to noise in the morphed surface due to insufficient information. For
a sufficiently dense grid G and small surface deviations, such problematic cases may be
mostly located at the scan periphery rather than in the interior. Therefore, to prevent
potential morphing noise, an additional refinement strategy consisting in elimination of all
insufficiently supported control points needs to be formulated.

segmented
scanM

ni,j

tvi,j

‖pi,j+1 − pi,j‖

‖
(
xψ(i,j) − pi,j

)ᵀ
tvi,j‖

B spline surface s(u, v)

control point pi,j

closest
measured point xψ(i,j)

Figure 3.6: Calculation of tangential control point deviation dji,j.

The support of a control point pi,j may be specified as the number of relevant B-spline
surface points s(u, v), (u, v) ∈ U , located closer to control point pi,j than to any other
control point. First, the distance from a specific control point pi,j to the closest control
point neighbor is introduced as a reference distance

hi,j := min
k∈{−1,1}
l∈{−1,1}

‖pi,j − pi+k,j+l‖, (3.10)

associated to a particular control point position (i, j). Then, the number of support points
associated to a given control point position (i, j) may be defined as

ε(i, j) =
∣∣∣∣{(u, v) ∈ U

∣∣∣∣ ‖pi,j − s(u, v)‖ < hi,j

}∣∣∣∣,
(i, j) ∈ Ip ⊂ N2

0, ε : Ip →
[
0, |U|

]
⊂ N0, (3.11)

where the set collects all relevant surface grid points s(u, v) with a distance lower than
hi,j from control point pi,j , and ε(i, j) returns the corresponding set size. For illustration,
consider the example in Fig. 3.7, where all support points associated with control point pi,j
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are colored in dark blue. In this manner, the last selection refinement step isolates all
relevant control points with enough support in the index set

I =
{

(i, j) ∈ Ip
∣∣∣∣ ε(i, j) > nsup

}
, (3.12)

where the user-defined number nsup represents the minimal accepted support.

u

v

(u, v)
∣∣∣∣ ‖pi,j − s(u, v)‖ < hi,j

(u, v)
∣∣∣∣ ‖pi,j − s(u, v)‖ > hi,j

pi,j

hi,j

s(u, v)
(u, v) ∈ U

Figure 3.7: Schematic representation of control point support (dark blue).

By using present selection refinement steps, the relevant control point positions I may
be robustly identified regardless of most scan irregularities, which effectively prevents
morphing noise and facilitates automated batch reconstruction. Similar to the previous
section, the method parameters dcp, τth and nsup have to be manually adjusted according
to various scan samples to ensure a robust and consistent control point selection.

3.4 B-Spline Morphing to Surface Measurements

Once the association between re-parametrized B-spline surface s(u, v) and surface measure-
mentM has been performed and all relevant control point positions have been identified
in set I, the surface fitting may proceed. The goal of this step is to compute control point
shifts ∆pi,j which minimize differences between the B-spline surface and a given scan.
This process is denominated B-spline morphing and will be described next following the
work of Gaun et al. (2014) and Urbano et al. (2019a).

Let the re-parametrized B-spline surface s(u, v) be given by Eq. (2.6). The aim is to
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obtain a morphed surface

ŝ(u, v) =
n∑
i=0

m∑
j=0

Ni,q(u)Nj,q(v) (pi,j + ∆pi,j)

≡ s(u, v) +
n∑
i=0

m∑
j=0

Ni,q(u)Nj,q(v)∆pi,j (3.13)

which closely matches a given surface scanM. By imposing that irrelevant control points
should not carry any control point deviation, i.e., ∆pi,j = 0 ∀ (i, j) /∈ I, Eq. (3.13) may be
reduced to

ŝ(u, v) :≈ s(u, v) +
∑

(i,j)∈I
Ni,q(u)Nj,q(v) ∆pi,j. (3.14)

In order to find proper control point displacements ∆pi,j, equality between morphed
surface points ŝ(u, v) and respective closest measured points xφ(u,v) ∈M at the relevant
normalized positions (u, v) ∈ U defined by Eq. (3.5) is imposed:

s(u, v) +
∑

(i,j)∈I
Ni,q(u)Nj,q(v)∆pi,j != xφ(u,v) ∀ (u, v) ∈ U . (3.15)

This may be rearranged as

∑
(i,j)∈I

Ni,q(u)Nj,q(v)∆pi,j = xφ(u,v) − s(u, v) =: d(u,v) ∀ (u, v) ∈ U . (3.16)

Eq. (3.16) highlights how localized manufacturing deviations d(u,v) at a particular surface
position (u, v) are smoothly distributed over the control point grid according to B-spline
basis functions. Furthermore, it is a vector equation which relates vector control point
deviations ∆pi,j =

[
∆pxi,j, ∆pi,jy, ∆pi,jz

]ᵀ
to corresponding manufacturing deviations

d(u,v) =
[
dx(u,v), d

y
(u,v), d

z
(u,v)

]ᵀ
. For instance, the x−coordinate of Eq. (3.16) reads as

∑
(i,j)∈I

Ni,q(u)Nj,q(v)∆pxi,j = dx(u,v) ∀(u, v) ∈ U . (3.17)

These equations can be summarized columnwise as

NP = D (3.18)

where

N :=


...

· · · Ni,q(u)Nj,q(v) · · ·
...

 ∈ R|U|×|I|, (3.19)
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P =


... ... ...

∆pxi,j ∆pyi,j ∆pzi,j
... ... ...

 =:
[
∆px, ∆py, ∆pz

]
∈ R|I|×3, (3.20)

D =


... ... ...

dx(u,v) dy(u,v) dz(u,v)
... ... ...

 =:
[
dx, dy, dz

]
∈ R|U|×3. (3.21)

In general Eq. (3.18) it is overdetermined since the number |U | of relevant B-spline positions,
and thus equations, is larger than the number |I| of relevant control points, and thus
unknowns. The control point positions P may, therefore, be computed as least-square
regressions from

min
∆pj∈R|I|

‖N∆pj − dj‖, j ∈ {x, y, z}, (3.22)

in each coordinate direction separately, where ordinary linear regression methods may be
applied. In particular, given that matrix N is sparse, computational efficiency may be
gained by considering sparse least-squares solvers, such as LSQR, Paige and Saunders
(1982). The resulting control point shifts ∆pj may then be used in Eq. (3.14) to produce
the morphed surface ŝ(u, v).

Since control point displacements ∆pi,j are obtained from regression, they are prone to
residuals and the accuracy of B-spline morphing may be quantified by distance vectors

f(u, v) = ŝ(u, v)− xφ(u,v) (3.23)

between morphed surface points ŝ(u, v), (u, v) ∈ U and corresponding measured points
xφ(u,v), Fig. 3.8. Using Eq. (3.13) and definition (3.16), previous equation may be expanded
as

f(u, v) = s(u, v) +
∑

(i,j)∈I
N q
i (u)N q

j (v)∆pi,j − xφ(u,v)

=
∑

(i,j)∈I
N q
i (u)N q

j (v)∆pi,j +
(
s(u, v)− xφ(u,v)

)
=

∑
(i,j)∈I

N q
i (u)N q

j (v)∆pi,j − d(u,v). (3.24)

This corresponds to the difference between the left and right hand side of regression
conditions (3.16) or (3.18), respectively.
To formulate a morphing error comparable to the measurement error eS in Sec. 2.4 or

the re-parametrization error eC in Eq. (3.1), distance f(u, v) may be projected onto the
B-spline surface normal vector n(u, v) defined by Eq.(2.10). In this manner, the local
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morphing error normal to the B-spline surface for every relevant surface position (u, v) ∈ U
is given as the absolute value

eM(u, v) =
∣∣∣∣f ᵀ(u, v) n(u, v)

∣∣∣∣, (u, v) ∈ U . (3.25)

The global evaluation of morphing quality may be obtained on a statistical basis, for
example, by considering percentiles from all evaluated surface positions, see application
examples in Sec. 3.6.

measurement error ±eS

re-parametrized nominal surface s(u, v)

surface scanM

morphed surface ŝ(u, v)

s(u, v)

d(u,v)

ŝ(u, v)

n(u, v)

eM(u, v)
f(u, v)

xk(u,v)

Figure 3.8: Definition of morphing error eM .

3.5 Noise Elimination from Morphed Surfaces
After robust selection of surface positions and control points, B-spline morphing of re-
parametrized surface s(u, v) may offer an accurate CAD representation of scan M. In
the case of larger manufacturing deviations, however, abrupt surface discontinuities may
appear at the boundary between relevant and irrelevant regions. These discontinuities may
manifest as sudden peaks and undulations in control point deviations and may potentially
lead to CAD construction issues. Since control point deviations at the surface interior have
been accurately matched, any noise elimination strategy must be exclusively applied on an
individual basis. Hence, any traditional surface smoothing, such as Gaussian blur applied
over the entire morphed surface, may negatively impact the overall morphing accuracy.
For this reason, the present section illustrates an efficient approach to treat unusually
large control point deviations near the scan boundary.
The first of four total steps consists of identification of control point positions (i, j)

at the scan boundary. For this, consider a representation of the relevant control point
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region I as binary matrix

C ∈ B(n+1)×(m+1) where ci,j :=

1 if (i, j) ∈ I,
0 otherwise.

(3.26)

The boundary region may then be defined by following the concept of erosion in math-
ematical morphology, Haralick et al. (1987). Essentially, a convolution between binary
matrix C and a (2h + 1) × (2h + 1) kernel K is performed, where the convolution at
element (i, j) is defined as

(C ∗K)i,j =
h∑

µ=−h

h∑
ν=−h

ci+µ,j+ν kµ+h+1,ν+h+1. (3.27)

The kernel is centered at position (i, j) of matrix C and performs an element-wise
multiplication and addition of overlapping elements. In case of an α× α matrix

Jα :=


1 . . . 1
... . . . ...
1 . . . 1

 ∈ Rα×α (3.28)

of ones as kernel, the operation returns the total number of elements covered by the kernel,
Fig. 3.9a–b. In this manner, the boundary region may be defined as the set of relevant
positions (i, j) where the kernel is not fully covered by relevant elements. Thus, these
boundary positions may be stored in set

Ibound =
{

(i, j) ∈ I
∣∣∣∣ (C ∗ Jα)i,j < α2

}
, (3.29)

where a position (i, j) is accepted only if the number of overlapping elements with kernel Jα
is strictly less than its area α2. Thus, the user-defined kernel size α serves for width control
of the boundary region, for example in Fig. 3.9c α = 3.

The second step deals with the identification of unusually large control point deviations
in the scan boundary. Such deviation peaks may be characterized by abrupt deviation
discontinuities in the control point grid, or equivalently large partial derivatives with
respect to a given grid coordinate. Thus, a useful approximation of control point deviation
derivatives may be obtained using central-differences (2.15), e.g.

∂∆pi,j
∂u

≈ ∆pi+1,j −∆pi−1,j

2hu
and ∂∆pi,j

∂v
≈ ∆pi,j+1 −∆pi,j−1

2hv
, (3.30)

where hu = 1/n and hv = 1/m correspond to parametric spacings assuming equidistant
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control points. For fine control point grids, previous approximation is sufficient; however,
in case of significant spacing discrepancies, finite differences for unevenly spaced grids may
become more appropriate, see Fornberg (1988). Thus, the location (i, j) of peak deviations
at the scan boundary may be collected in set

Inoisy =

(i, j) ∈ Ibound

∣∣∣∣∣∣
∥∥∥∥∂∆pi,j

∂u

∥∥∥∥ > {∥∥∥∥∂∆p
∂u

∥∥∥∥}
ρ
∧

∥∥∥∥∂∆pi,j
∂v

∥∥∥∥ > {∥∥∥∥∂∆p
∂v

∥∥∥∥}
ρ

, (3.31)

where thresholds
{
‖∂∆p/∂u‖

}
ρ and

{
‖∂∆p/∂v‖

}
ρ correspond to the ρ−th percentile of

directional derivative magnitudes evaluated at all boundary locations (i, j) ∈ Ibound.
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Figure 3.9: Illustration of a) exemplary binary matrix C, b) convolution C ∗ J3 and
c) resulting boundary positions using α = 3.

In the third step, a smoothing strategy is formulated for these noisy control point devia-
tions in the scan boundary. Basically, each control point shift is replaced by a local average
of its valid neighbor deviations. This operation is best described by considering Cartesian
directions separately. For example by summarizing the x−control point deviations ∆pxi,j
in a matrix P x ∈ R(n+1)×(m+1), a local deviation average at position (i, j) may be simply
obtained as (P x ∗ Jβ)i,j /β2, where the β×β kernel Jβ corresponding to Eq. (3.28) collects
and adds all surrounding deviations, and the final sum is divided by the kernel area. This
simple approach would, however, treat any other peak covered by the kernel as a valid
deviation, including position (i, j) itself. Furthermore, this deviation average may provide
excessively low values in the case where irrelevant elements with zero deviation are covered.
To resolve these issues, a matrix E ∈ B(n+1)×(m+1) is defined as

ei,j :=

1 if (i, j) ∈ I − Inoisy,

0 otherwise.
(3.32)
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An element-wise product E � P x then discards any irrelevant or noisy element. The
sum of all surrounding valid elements covered by the kernel at position (i, j) can be
obtained as ((E � P x) ∗ Jβ)i,j −∆pxi,j and the total number of valid surrounding elements
as (E ∗ Jβ)i,j − 1. In this manner, control point deviations with corrected peaks may be
defined as new variables ∆qxi,j and a corresponding matrix representationQx ∈ R(n+1)×(m+1)

as

∆qxi,j :=


((E � P x) ∗ Jβ)i,j −∆pxi,j

(E ∗ Jβ)i,j − 1 if (i, j) ∈ Inoisy,

∆pxi,j otherwise.
(3.33)

Although previous operation heals deviation peaks, a large jump may still be present
at the interface with irrelevant control points. Therefore, the fourth and final post-
processing step consists in irrelevant control point smoothing. In this case, it suffices to
replace irrelevant control point locations with a local average from previous corrected
deviations Qx. Thus, the final smoothed deviation field ∆rxi,j with a corresponding matrix
representation Rx ∈ R(n+1)×(m+1) may be obtained as

∆rxi,j :=

(Qx ∗ Jβ)i,j/β2 if (i, j) /∈ I,
∆qxi,j otherwise,

(3.34)

where only irrelevant locations (i, j) /∈ I are changed, see Fig. 3.10 for an example. Of
course, steps three and four are repeated analogously for Cartesian coordinates y and z.
The method parameters α, ρ and β have to be chosen depending on a case study, see next
section.
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Figure 3.10: Smoothing of a) exemplary deviation matrix P x with gray relevant region
and red noisy elements by b) defining matrix Qx with smoothed relevant
region finally resulting in c) matrix Rx with smoothed irrelevant region where
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3.6 Application to HPT Blade Casting Faces
The present section will demonstrate how B-spline morphing may accurately represent
complex manufactured surfaces in CAD. For this purpose, the casting faces of an HPT
blade will be considered, Fig. 3.11. In contrast to machined primitive faces, free-form casted
faces may exhibit rather complex deviation patterns, which is why they are appropriate
for testing above morphing methods. First, the procedure will be exemplified for the
suction-side shank surface and later for the hot-gas faces.

a) b)

c)

hot-gas
faces

SS shank

PS shank y
z

x

y
z

xy
z

x

y

z

x y

z
x

≈ 70 mm

Figure 3.11: Illustration of a) HPT-blade casting faces with details of b) pressure side and
c) suction side shank faces.

3.6.1 Suction-Side Shank Face

The suction-side shank face of the HPT blade is constructed using a subtraction body,
which is first re-parametrized as B-spline surface with n×m = 135× 96 control points,
Fig. 3.3. A surface measurement of the manufactured blade is aligned to the blade root and
then segmented to the shank profile, Fig. 3.12. For B-spline surface association, a uniform
grid G of 3n × 3m = 405 × 288 surface positions is defined. The first surface position
selection is performed using a distance threshold of dth = 0.50 mm, which leads to a total
of |Ud| = 32 970 relevant surface positions (3.4). Next, a refinement using a maximum
normal deviation angle of θth = 50◦ is performed leading to a total of |U| = 31 640 relevant
surface positions (3.5), Fig. 3.12a. To select relevant control points, a first selection using
a distance threshold dcp = 0.50 mm is done, which leads to a total of |Id|= 3 500 control
points (3.7). Next, a periphery refinement with a tangential threshold τth = 2.0 is applied,
which reduces the control point selection to set (3.9) with |Ip| = 3 286 control points.
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Lastly, after considering only control points having a minimum support (3.12) of nsup = 4
measured points, the total number of relevant control points is reduced to |I| = 3 243,
Fig. 3.12b.

a)

b)

y

z

x

Figure 3.12: Segmented scan of a suction-side shank with a) relevant surface points
s(u, v), (u, v) ∈ U , and b) control points pi,j, (i, j) ∈ I.

After these association steps, B-spline morphing is performed to produce the morphed
surface shown in Fig. 3.13a. As it may be observed, considerable surface undulations
are present at the boundary of the relevant region, which may potentially corrupt CAD
subtraction. These imperfections may be significantly reduced by using boundary noise
elimination. Here, the width parameter of the boundary region (3.29) is set to α = 3,
the noise threshold (3.31) is taken from the 60th percentile and the local averaging factor
(3.33) is set to β = 3. As seen in Fig. 3.13b, the resulting post-processed surface shows a
much smoother boundary without affecting the interior region.

y

z
x

a) b)

Figure 3.13: Morphed surfaces a) without and b) with boundary noise elimination.
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To assess the morphing quality, consider Fig. 3.14 where the morphing error (3.25) is
represented as percentile of all relevant surface positions (u, v) ∈ U . The diagram shows
the effect of repeating the entire surface association and fitting procedure several times
according to Fig. 3.1. For instance, a second morphing iteration may be considered as
beneficial, since it reduces the 95th percentile morphing error from 44 µm to 30 µm (arrow
in Fig. 3.14). A third morphing iteration, however, does not seem to provide any additional
benefit. For the present validation example, each surface fitting iteration, including surface
association, morphing and post-processing, takes about 2 minutes on a personal laptop.

0 10 20 30 40 50 60 70 80 90 10010−2

10−1

100

101

102

60th percentile < 1 µm

percentile

m
or
ph

in
g
er
ro
r
e M

[µ
m

]

mit = 1
mit = 2
mit = 3

90 92 94 96 98 100

20

40

60

80

eC + eS + eM = 67 µm

Figure 3.14: Morphing error eM as percentile of all |U| = 31 640 relevant surface positions
for different morphing iterations mit.

To investigate the spatial distribution of morphing errors, consider Fig. 3.15 which
illustrates the morphing error (3.25) throughout the entire segmented surface scan after
mit = 2 morphing iterations. As it can be observed, the highest morphing errors are located
near the scan boundary, which is reasonable since considerable surface discontinuities are
expected at this area. On the contrary, all internal regions are morphed with an accuracy
well below a typical measurement error eS = 25 µm, which is a satisfactory result since
they typically are the most relevant for analysis.

50 µm

0 µm

eM
z

x
y

Figure 3.15: Morphing error eM after mit = 2 morphing iterations for the SS shank.
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3.6.2 Hot-Gas Faces

The next application example deals with the hot-gas faces of an HPT-blade typically
consisting of hub and shroud endwalls, two fillets and the airfoil, Fig. 3.16a. Due to high
airfoil curvature at the trailing edge, a scan association based on closest elements may here
be insufficient to correctly identify the real trailing edge positions. Since direct B-spline
morphing from nominal hot-gas faces may not be sufficiently robust, the fillets and airfoil
are first pre-fitted to the surface scan using the program B2P from TU Dresden, Voigt
et al. (2017). This approach is based on fitting transverse scan sections to airfoil profiles
and has been demonstrated valid for compressor airfoil reconstructions previously, Lange
et al. (2009). The resulting pre-fitted hot-gas faces, however, may be further matched
to the surface scan to construct a higher-fidelity CAD representation of the HPT blade
containing real manufacturing features.

a) b)

y

z x

airfoil

fillets

hub endwall

shroud endwall

u

v

Figure 3.16: Illustration of a) typical hot-gas faces with exemplary control point structure
and b) associated re-parametrization as four adjacent B-spline surfaces.

Because each hot-gas face may be designed differently (for instance endwalls vs airfoils),
the parametrization, and ultimately the control point structure, may significantly differ
from one to another. For deviation representation, however, an inconsistent control point
structure at face boundaries may lead to discontinuous face transitions after morphing,
Fig. 3.16a. Therefore, all pre-fitted hot-gas faces are re-parametrized as four independent
B-spline surfaces corresponding to leading and trailing edges as well as pressure and suction
side areas. For this, fine control point grids are constructed, where the number and position
of the control points is defined such that similar spacings along u and v directions are
guaranteed. Thus, each surface patch is constructed with the same number n = 246 of
control points along the shared u−direction, and a different number m of control points
along the v−direction, i.e., m = 25, 26, 81 and 76 for the leading, trailing, pressure and
suction areas, respectively, Fig. 3.16b. In this manner, a consistent and smooth control
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point structure is guaranteed from hub to shroud, resulting in only four total surface
transitions to be treated after morphing. In the present example, each B-spline surface is
associated directly to an entire scan without performing individual segmentations. Given
the higher complexity of surface deviations compared to the suction-side shank, a finer
6n× 4m gridG of surface positions is defined for each hot-gas patch, however, the selection
of relevant surface positions and control points is performed sequentially using the same
method parameters as in the previous example. The settings considered for surface position
selection are dth = 2.0 mm and θth = 50◦, for control point selection dcp = 2.0 mm,
τth = 1.0 and nmin = 3, and for noise elimination α = 3, ρ = 60 and β = 3. Finally, the
surface transitions are post-processed using the approach described by Gaun et al. (2014),
which basically computes small corrections for the two closest control point rows of any
surface transition to achieve G1 continuity. Two total morphing iterations are performed,
each one taking approximately 30 minutes on a personal laptop.
The resulting morphed surfaces in Fig. 3.17 show smooth transitions and rather small

surface undulations induced by the airfoil cooling holes. This highlights the versatility of
B-spline morphing, making it suitable to accurately capture complex, real manufacturing
features. Additionally, B-spline morphing accuracy is excellent throughout the entire
interior of hot-gas faces, where a morphing error of eM (u, v) < 10µm is observed, Fig. 3.18.
Similar to the shank face, minor surface undulations may appear at the scan boundary,
such as the endwall edges, but will not interfere in further CAD processing steps.

y

z
x

Figure 3.17: Morphed and post-processed hot-gas faces.

Both examples illustrate that accurate CAD representation of complex manufacturing
deviations is possible with B-spline re-parametrization and morphing, achieving matching
errors well below measurement uncertainty at the face interiors. Furthermore, by taking
advantage of a subtractive CAD construction approach, this method may be easily applied
to multiple faces so that all relevant deviation information from the scan is effectively
transferred to the CAD part. Since each step in the workflow can be automated, large scan
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batches may be processed, leading to multiple morphed surfaces of the same nominal CAD
face. Statistical methods may then be applied to discover common deviation patterns,
which will be the main topic of the next chapter.
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Figure 3.18: Morphing error eM after mit = 2 morphing iterations for the hot-gas faces.
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4 Probabilistic Representation of
Manufacturing Deviations

In the previous chapter, a series of methods was developed to obtain high-fidelity CAD
representations of manufactured parts. Despite allowing graphic interpretation of surface
variability, a single manufactured part constitutes only a single realization of a complex,
stochastic manufacturing process. Thus, real insight into systematic deviation patterns
will only result from using statistical methods. In particular, it is not sufficient to extract
deviation patterns directly from statistical analysis of surface measurements; since the
ultimate goal is to use deviation information for robust CAD design, an interface between
statistical deviation information and CAD representation is required. This leads to the
definition of manufacturing modes, i.e., a CAD representation of fundamental deviation
patterns associated with a manufacturing process, see Sec. 4.1. The manufacturing process
typically influences several CAD faces which is why coupled deviation behavior might
be expected, leading to the definition of coupled manufacturing modes in Sec. 4.2. These
deviation patterns extracted from measurement and B-spline morphing procedures are,
however, prone to numerous uncertainty sources. Thus, a method will be derived in Sec. 4.3
to distinguish observable manufacturing modes from non-informative deviation patterns.
An important step in Sec. 4.4 will be the generation of a probabilistic deviation model
allowing to synthetically generate realistic morphed B-spline surfaces without requiring
further surface measurements. All these methods will be validated in Sec. 4.5 using shank
and hot-gas face deviation information from high-pressure turbine blade measurements.

4.1 Manufacturing Modes

To reveal characteristic surface variability associated with a specific manufacturing process,
statistical analysis of multiple manufactured examples is required. Consider, for instance,
a CAD face with associated re-parametrized B-spline surface s(u, v) and multiple associ-
ated manufactured instances represented as surface scansM(1) . . . M(S). To construct
comparable CAD representations of the real surfaces, all scans have to be individually
processed according to Chapter 3. In particular, due to individual scan variability, the
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scan-surface association process of Secs. 3.2 - 3.3 must be performed individually on each
example, thereby leading to different sets U and I of relevant surface positions and control
points. As a result, each individual CAD representation may be condensed as a control
point displacement matrix

P =


... ... ...

∆pxi,j ∆pyi,j ∆pzi,j
... ... ...

 =:
[
∆px, ∆py, ∆pz

]
∈ RG×3, (4.1)

where G = (n+ 1) (m+ 1) corresponds to the total number of control points of the
re-parametrized B-spline surface s(u, v). To facilitate statistical treatment, each control
point deviation matrix P may be reordered as deviation vector

q =
[
(∆px)ᵀ , (∆py)ᵀ , (∆pz)ᵀ

]ᵀ
∈ R3G =

[
. . .∆pxi,j . . . |. . .∆p

y
i,j . . . |. . .∆pzi,j . . .

]ᵀ
, (4.2)

where all Cartesian deviation components of the entire B-spline surface have been concate-
nated sequentially, such that the scan populationM(1) . . . M(S) is ultimately represented
by multiple control point deviation vectors q(1) . . . q(S).

To begin a statistical analysis, all surface deviation vectors q(s) are expressed as a sum
of mean q and random deviations x(s), i.e.,

q(s) = q + x(s), (4.3)

where the first part may be estimated by the sample mean

q = 1
S

S∑
s=1
q(s) ∈ R3G (4.4)

and the remaining deviation component

x(s) := q(s) − q, (4.5)

is individual to every manufactured instance and represents the surface variability of the
manufacturing process. Due to the elevated number of control points and manufactured
samples, any graphical comparison of individual deviation vectors would provide only
limited insight into global deviation patterns. Therefore, a more efficient alternative is
needed to derive conclusions about manufacturing variability.

Since all manufactured instances arise from the same manufacturing process, it may
be expected that most surface variability is governed by a common set of independent
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deviation patterns. Hence, a useful way to analyze dynamic deviation vectors is through
identification of the dominant deviation patterns, for example by following the approach
described by Urbano et al. (2019a). By assuming that all surface variability of the
manufacturing process is contained in the measured sample, the authors propose to
represent any arbitrary dynamic deviation vector x as linear superposition

x := a1x
(1) + · · ·+ aSx

(S) =: Xa (4.6)

of all measured deviation vectors x(s) summarized in the data matrix

X =
[
x(1), . . . , x(S)

]
∈ R3G×S, (4.7)

where a ∈ RS corresponds to their individual contributions to the superposition. To discover
the main deviation patterns, data matrix X may be interpreted as a 3G−dimensional
point cloud centered around zero, and all orthogonal directions being rich in variability
may be searched. These directions correspond to an orthonormal basis for the deviation
vector set {x(1), . . . , x(S)}, which may be found by singular-value decomposition of data
matrix X, i.e.,

X = UΣV ᵀ (4.8)

where the left (U ) and right (V ) singular matrices are orthogonal and square:

U = [u1, . . . ,u3G] ∈ R3G×3G, U ᵀU = I, (4.9)
V = [v1, . . . ,vS] ∈ RS×S, V ᵀV = I. (4.10)

Further,
Σ = diag(σ1, . . . , σr, 0 . . . 0) ∈ R3G×S, σ1 ≥ · · · ≥ σr > 0, (4.11)

is a diagonal matrix of singular values σi in descending order. The number r of non-zero
singular values corresponds to the rank r = rank(X) ≤ min{3G,S} of the data matrix
and, therefore, to the maximum number of basis vectors or rank-one matrices (uivᵀi )
required to completely represent the data matrix, Golub and van Loan (2013):

X =
[
u1u2 . . .

] 
σ1

σ2
. . .



vᵀ1
vᵀ2
...

 =
S∑
i=1

σi ui v
ᵀ
i ≡

r∑
i=1

σi ui v
ᵀ
i . (4.12)
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Substitution in superposition (4.6) results in

x = (UΣV ᵀ)a =
r∑
i=1

(σiuivᵀi )a ≡
r∑
i=1

(σivᵀi a)ui

=:
r∑
i=1

biui, (4.13)

which demonstrates that any deviation vector x may be represented in a dimension-reduced
space spanned by the orthonormal basis {ui, . . . ,ur}. According to Urbano et al. (2019a),
each normalized basis vector ui may be interpreted as a control point deviation vector
of the re-parametrized B-spline surface s(u, v), and thus it represents an independent
deviation pattern considered as manufacturing mode. Specifically, Eq. (4.13) shows that the
same set of manufacturing modes may be utilized to represent any arbitrary displacement
vector sufficiently by its mode magnitudes bi.

To compute the mode magnitudes directly from the data matrix, one may collect all
manufacturing modes into a reduced left-singular matrix

Ur =
[
u1, . . . ,ur

]
∈ R3G×r, U ᵀ

rUr = I, (4.14)

which is also orthogonal. Then the superposition (4.13) may be simplified to

x = Urb where b =
[
b1, . . . , br

]ᵀ
. (4.15)

Pre-multiplication with U ᵀ
r and use of orthogonality (4.14) results in

U ᵀ
r x = U ᵀ

rUrb = Ib ≡ b (4.16)

or equivalently
bi := uᵀ

ix, i = 1 . . . r, (4.17)

which states that the mode amplitude bi of any given deviation vector x is equivalent to
its projection onto the i−th manufacturing mode ui.

With (4.13), the representation (4.3) of any particular control point deviation vector q(s)

may be specified as

q(s) = q + x(s),

= q +
r∑
i=1

b
(s)
i ui, (4.18)

where the deviation x(s) = q(s) − q has been replaced by linear superposition (4.15) using
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individual manufacturing mode amplitudes

b
(s)
i := uᵀ

ix
(s). (4.19)

In contrast to representation (4.3), Eq. (4.18) shows that any control point deviation (4.2)
results as a combination of manufacturing process properties (mean deviation component q
and manufacturing modes {ui, . . . ,ur}) and coefficients associated with the particular
manufacturing instance (mode amplitudes bi(s)). In particular, the mean deviation compo-
nent as well as any manufacturing mode may be reorganized as control point grid of the
re-parametrized B-spline surface s(u, v) which allows CAD visualization of these deviation
patterns.

4.2 Coupled Manufacturing Modes

Manufacturing of any mechanical part typically involves a sequence of various manufac-
turing steps chosen to provide different surface characteristics according to the design
intent. Some manufacturing steps, may treat a specific subset of part faces, thereby making
them vulnerable to the same sources of manufacturing uncertainty and probably inducing
common deviation patterns. In the case of an HPT blade, for instance, the geometry
of shank and hot-gas faces is largely defined by the same casting process, which is why
some sort of coupled deviation behavior may be expected. Therefore, the present section
introduces a concept of coupled manufacturing modes as deviation patterns occurring
simultaneously in multiple faces.
Consider two different CAD faces A and B of the same mechanical part sharing the

same history of production steps. As in previous section, assume that a representative
sample of S manufactured instances has been selected and measured to investigate their
surface deviation behavior. To obtain a CAD representation of the surface measurements,
both faces have to be re-parametrized as B-spline surfaces sA(u, v) and sB(u, v) and
processed according to Chapter 3 to obtain control point displacements associated with
each re-parametrized B-spline surface. For a particular surface measurement, the resulting
control point deviations at both faces may be represented as deviation matrices (4.1), i.e.,

P A =:
[
∆px,A, ∆py,A, ∆pz,A

]
∈ RG×3, (4.20)

PB =:
[
∆px,B, ∆py,B, ∆pz,B

]
∈ RH×3, (4.21)

where
G =

(
nA + 1

) (
mA + 1

)
and H =

(
nB + 1

) (
mB + 1

)
(4.22)
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correspond to the total number of control points of the re-parametrized B-spline surfaces
sA(u, v) and sB(u, v), respectively. To facilitate statistic analysis, both deviation matrices
may be joined together as a single joint deviation vector (4.2), i.e.,

q :=
[ (

∆px,A
)ᵀ
,
(
∆py,A

)ᵀ
,
(
∆pz,A

)ᵀ
,(

∆px,B
)ᵀ
,
(
∆py,B

)ᵀ
,
(
∆pz,B

)ᵀ ]ᵀ
∈ R3(G+H), (4.23)

where all columns of the deviation matrices have been joined first according to Cartesian
direction as in Eq. (4.2) and then according to face order. As a result, each joint deviation
vector (4.23) contains all deviation information of a particular manufacturing instance,
such that the entire surface variability of all measured manufactured samples is contained
in deviation vectors q(1) . . . q(S).

The statistic representation of multiple faces is analogous to that of a single-face. First,
measured joint deviation vectors q(s) are decomposed into mean and individual components
according to Eq. (4.3), however, in this case the mean component

q = 1
S

S∑
s=1
q(s) =

qA
qB

 (4.24)

summarizes mean deviation vectors

qA :=
[
q1 , . . . , q3G

]ᵀ
∈ R3G, (4.25)

qB :=
[
q3G+1 , . . . , q3(G+H)

]ᵀ
∈ R3H (4.26)

and the individual deviation components

x(s) := q(s) − q =
xA,(s)
xB,(s)

 (4.27)

summarize face-specific deviation vectors

xA,(s) :=
[
x

(s)
1 , . . . , x

(s)
3G

]ᵀ
∈ R3G, (4.28)

xB,(s) :=
[
x

(s)
3G+1 , . . . , x

(s)
3(G+H)

]ᵀ
∈ R3H . (4.29)

The collection x(1) . . . x(S) of deviation vectors represents the surface variability arising
from the manufacturing process. As explained in Sec. 4.1, these deviation components
are best interpreted as superposition of fundamental deviation patterns. Since both faces
A and B are expected to exhibit coupled deviation behavior, independent treatment of
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face-specific dynamic deviation vectors would destroy any existing correlation between
both faces, thereby eliminating valuable information. Therefore, during statistical analysis
of multiple CAD faces, each individual deviation vector (4.27) has to be considered as an
indivisible process realization, and only after identification of coupled deviation patterns
may be separated for independent CAD examination.

Hence, data matrix (4.7) may be now constructed with joint deviation vectors (4.27)
and application of singular value decomposition (4.8)−(4.13) allows representation of any
individual deviation vector x as superposition of orthonormal basis vectors

x =:
r∑
i=1

biui =
r∑
i=1

bi

uAi
uBi

 . (4.30)

In this case, each vector ui contains a characteristic deviation pattern represented as
control point deviations of both re-parametrized B-spline surfaces sA(u, v) and sB(u, v)
and consequently may be regarded as coupled manufacturing mode. The face-specific
sections of each coupled manufacturing mode may be extracted according to the face
ordering in Eq. (4.23) as

uAi :=
[
u1,i , . . . , u3G,i

]ᵀ
, (4.31)

uBi :=
[
u3G+1,i , . . . , u3(G+H),i

]ᵀ
(4.32)

and utilized for face-specific CAD visualization. It’s worth pointing out that, although each
coupled manufacturing mode ui is normalized, the face-specific sections (4.31) and (4.32)
obtained by vector partitioning do not necessarily have unitary magnitude. Furthermore,
because the deviation pattern on both faces is coupled, a single mode amplitude bi is
sufficient to describe the deviation state of both faces by Eq. (4.30).

Once the singular-value decomposition of individual deviation components x(1) . . . x(S)

has been completed, the representation of any arbitrary joint deviation vector q(s) may be
reformulated as

q(s) = q + x(s) = q +
r∑
i=1

b
(s)
i ui =

qA
qB

+
r∑
i=1

bi

uAi
uBi

 , (4.33)

where the face-specific deviation components qA, qB and manufacturing modes uAi , uBi
may be reorganized as control point deviations of re-parametrized B-spline surfaces sA(u, v)
and sB(u, v) and used for CAD visualization of coupled deviation patterns.
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4.3 Representation Capacity of Manufacturing Modes

Characterization of manufacturing variability as mean deviation plus superposition of
manufacturing modes already reveals valuable information about manufacturing uncer-
tainty. As a further step, the relative contribution of each manufacturing mode to the
overall geometric variability may be now quantified. This mode representation capacity is
crucial for understanding the statistical complexity of surface deviations, i.e., the amount
of dominant manufacturing modes responsible for surface variability. Hence, this section
will present an estimation of mode representation capacity based on the approximation
error obtained by truncating superposition (4.33) to a smaller subset of manufacturing
modes.

Until now, the representation capacity of any given manufacturing mode has been esti-
mated only for individual surface measurements using mode amplitudes (4.17). However,
since they are specifically associated to a given surface measurement, they are rather
inadequate to quantify the overall mode contribution. Instead, singular values σ1 . . . σr

in Eq. (4.11) obtained from singular-value decomposition (4.8) of data matrix X and
associated with manufacturing modes u1 . . . ur correspond somehow to a global measure
of control point variability of the measured sample. In particular, the i−th singular value σi
is associated with the statistical variance of dot products {uᵀ

ix
(1) . . . uᵀ

ix
(S)}, i.e., the

projections of all computed control point deviations x(1) . . . x(S) onto the i−th manufac-
turing mode ui as will be shown in Sec. 4.4. Unfortunately, because control points have to
be weighted by basis functions Ni,q(u)Nj,q(v) to produce surface deviations (3.14), control
point variability does not directly correspond to Cartesian variability of morphed B-spline
surfaces. Hence, singular values remain sub-optimal for estimating mode representation
capacity.
A reasonable approach consists of incrementally truncating manufacturing mode su-

perposition (4.33) and observing its impact onto the approximation accuracy of morphed
surfaces, Urbano et al. (2019a). Recall that any given surface scan may be accurately
represented in CAD by a vector q(s) of control point displacements which produce a
morphed B-spline surface ŝ(u, v) according to Eqs. (4.2) and (3.14). The same control point
displacement vector q(s) may be represented as linear superposition (4.33), where a total
number r of manufacturing modes describe all measured surface deviations completely.
To determine the representation capacity of a smaller subset consisting of the first t
manufacturing modes only, a truncated control point displacement vector (4.18) may be
defined as

q(s), t := q +
t∑
i=1

b
(s)
i ui = q +Utb

(s), t ≤ r, (4.34)
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where t corresponds to an arbitrary truncation order, r to the full number of manufacturing
modes and Ut to the first t columns of the left singular matrix (4.14). In this manner,
the difference between truncated q(s), t and precise control point displacement vector q(s)

may be considered as a measure of the representation strength of the first t manufacturing
modes. Since manufacturing modes ui are sorted according to non-increasing singular
values σi, it is expected that the difference ‖q(s) − q(s), t‖ reduces as t approaches r, such
that the mode representation capacity may be effectively analyzed incrementally.

To physically interpret the mode reconstruction capacity, the control point difference
‖q(s)−q(s), t‖ may be translated into a Cartesian difference between morphed surface ŝ(u, v)
(corresponding to the best CAD representation possible for the given surface measurement)
and a truncated B-spline surface obtained from the reduced set of t manufacturing modes.
Using reordering (4.23), the truncated control point displacements ∆p(s), t

i,j may be deduced
for a specific manufacturing instance (s) from the truncated vector (4.34) to build up the
truncated B-spline surface

ŝ(s), t(u, v) := s(u, v) +
n∑
i=0

m∑
j=0

Ni,q(u)Nj,q(v)
(
pi,j + ∆p(s), t

i,j

)
. (4.35)

The surface difference between morphed and truncated B-spline surfaces may be then
formulated locally as a reconstruction error

e
(s), t
R (u, v) :=

∣∣∣∣ (ŝ(s)(u, v)− ŝ(s), t(u, v)
)ᵀ
n(u, v)

∣∣∣∣ ∀ (u, v) ∈ U , (4.36)

as absolute value of the projected distance onto the normal vector n(u, v) taken from the
nominal surface, Fig. 4.1.

Since reconstruction error e(s), t
R (u, v) quantifies the representation capacity of the first t

manufacturing modes for an individual surface measurement at a specific surface lo-
cation (u, v), it is still not informative about overall mode participation in the whole
measured sample. Therefore, to obtain a global measure for the representation capacity,
reconstruction error (4.36) must be evaluated statistically for all S surface measurements
and r truncation orders. This results in a nested approach, where for a fixed truncation
order t, local reconstruction errors are first quantified for a single B-spline surface and
later for the entire measured sample, Fig. 4.2. The internal error quantification loop is
performed for each surface measurement by computing reconstruction errors (4.36) for all
relevant surface positions (u, v) ∈ U and a given truncation order t, resulting in a total of
|U| error values for each surface measurement. These resulting errors are then quantified
with a percentile ρ leading to a single reconstruction error metric e(s)

R for each surface
measurement. In the external error quantification loop all error values e(1)

R . . . e
(S)
R obtained
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from all surface measurements are then quantified with another percentile ρ′ to produce a
global reconstruction error eR(t) associated with a specific truncation order t. This metric
may be computed for various truncation values t ∈ [1, r] ⊂ N and may thus illustrate how
much representation capacity is gained by a growing number of manufacturing modes.

re-parametrized nominal surface

morphed surface

t = 1 manuf. mode

t = 2 manuf. modes

t = 3 manuf. modes

s(u, v)
n(u, v)

ŝ(s),1(u, v)
s(s),2(u, v)

s(s),3(u, v)

e
(s),1
R (u, v)

e
(s),2
R (u, v)

e
(s),3
R (u, v)

ŝ(s)(u, v)

process uncertainty
± eP

Figure 4.1: Reconstruction error e(s), t
R for t manufacturing modes.

Before determining which manufacturing mode contributes most to the surface variability,
it is important to recall that all morphed B-spline surfaces have been influenced by
measurement, re-parametrization and morphing uncertainties. Thus, each local position of
the morphed surface ŝ(u, v) must be associated with an uncertainty interval approximately
equivalent to the compounding uncertainties of measurement error eS discussed in Sec. 2.4,
re-parametrization error eC(u, v) defined by Eq. (3.1) and morphing error eM (u, v) given by
(3.25). However, since re-parametrization error eC(u, v) and morphing error eM (u, v) where
defined for a particular surface location (u, v) ∈ U , new representative global error metrics
eC and eM associated to both processes are required, which may be also computed via
percentiles in the same fashion as reconstruction error eR(t) in Fig. 4.2. In this manner, the
uncertainty propagation due to measurement, re-parametrization and morphing processes
may be condensed into an overall process error eP approximated by the error propagation
rule for surface metrology according to Li et al. (2021), i.e.,

eP :=
√
e2
S + e2

C + e2
M . (4.37)
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Because the global reconstruction error eR(t) resulting from manufacturing mode truncation
may be interpreted as the largest surface discrepancy when considering only tmanufacturing
modes, it may be directly compared to the process error eP . As a consequence, not every
increase in reconstruction capacity is physically relevant, since any point located below a
distance ±eP from the morphed surface belongs to the process uncertainty boundary and
is, therefore, equally valid. In Fig. 4.1, for example, this knowledge threshold is surpassed
after the first three truncation modes. This allows a definition of dominant (or observable)
manufacturing modes as the number

t∗ := min t s.t. eR(t) ≤ eP (4.38)

of manufacturing modes required to obtain a global reconstruction error below the process
uncertainty.

truncation order t = 1

surf. measurement s = 1

trunc. disp. vector q(1),1

↓
trunc. B-spline surf ŝ(1),1(u, v)
↓
local rec. errors e(1),1

R (u, v) ∈ U
↓
compute e(s)

R as ρ−th percentile

surf. measurement s = 2
surf. measurement s = S

e
(1)
R e

(2)
R . . . e

(S)
R

compute ρ′−th percentile

eR(1)

truncation order t = 2

truncation order t = r

eR(2) eR(r)
Figure 4.2: Computation of global reconstruction error eR(t) using percentiles.

61



This information reduction process effectively separates dominant deviation patterns from
any potential experimental and numerical noise leaked throughout the measurement and
morphing processes. Moreover, the number t∗ of dominant manufacturing modes serves as
an appropriate metric for statistical complexity of surface deviations between different part
populations. For instance, when comparing batches of multiple manufacturing processes,
the process least affected by mode interactions and thus with less surface variability may
be identified by the smallest number of dominant manufacturing modes.

4.4 Probabilistic Description of Surface Deviations

Aside from identifying main surface deviation patterns, understanding and quantifying
the impact of surface variability on part performance is essential for ensuring reliability.
Such an analysis may be executed statistically by selecting a large sample of manufactured
geometries, creating corresponding CAD representations and running individual perfor-
mance simulations. Quantification of performance scatter is then possible via histograms,
percentiles or statistical moments of the resulting performance distribution. This statistical
study—referred as uncertainty quantification—is the cornerstone of any robust design
process and relies heavily on sample size for accurate identification of rare events. To avoid
underestimation of performance variability due to lack of sufficient surface measurements,
the present section describes how experimental mode amplitudes may be used to obtain a
probabilistic description of surface deviations. This procedure will facilitate generation of
realistic additional manufacturing instances by sampling from the obtained probability
distributions, thus enhancing performance variability quantification without requiring
further surface measurements.

To elaborate a probabilistic description of surface deviations, it is necessary to understand
where and how specifically randomness arises in the truncated representation (4.34) of
control point deviations. Since the mean deviation component q and manufacturing
modes ui are properties of the manufacturing process, they are valid for all surface
measurements and, therefore, may be treated as constants in a probabilistic representation.
Mode amplitudes b(s)

i , on the other hand, correspond to unique realizations for every
manufacturing instance and may even exhibit correlations across different mode orders.
Thus, they may be approached by a multivariate probabilistic model.

This probabilistic modeling problem has been addressed in numerous experimental
studies, particularly involving airfoil manufacturing deviations. In their investigations,
Lamb (2005) and later Lange et al. (2012) conducted surface measurements of manufactured
airfoils and represented surface variability differently, the former using a series of physical
geometric parameters (such as chord length, leading/trailing edge thickness, chord angles,
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etc.) and the latter using three-dimensional displacements at different radial sections.
The parameter differences were then processed via Principal Component Analysis (PCA),
such that decomposition into manufacturing modes with respective mode amplitudes was
possible. In both investigations, independent sampling from experimental mode amplitudes
and subsequent airfoil reconstruction led to non-realistic airfoil shapes, despite considering
experimental correlation matrices. This raised the hypothesis that additional inter-modal
interactions might exist which have been ignored by the PCA and motivated the later
use of Parzen windows, i.e., a computationally expensive Kernel-based method to fit non-
parametric multi-dimensional probability distributions. The authors further hypothesized
that the measurement datasets might have been rather inhomogeneous, i.e., involve surface
measurements of varying manufacturing characteristics, which may possibly explain the
presence of several multi-modal amplitude distributions.

Both studies are immensely valuable as they highlight the importance of careful judgment
of dataset quality. Based on these ideas, three major considerations are formulated before
computing probabilistic mode amplitudes for B-spline surfaces: First, despite having
formulated a robust B-spline morphing process, the construction of morphed surfaces
is inevitably prone to further measurement, re-parametrization and morphing errors,
which may manifest as rare, inexact morphing surfaces within the measured sample, i.e.,
sample outliers. Second, since the main focus of probabilistic surface modeling should be a
generative manufacturing process instead of individual manufacturing realizations, any
attempt to construct a probabilistic distribution must consider the possibility of existence
of such outliers within the measurement sample. This paradigm significantly elevates
the resulting probability distribution representativeness because it avoids measurement
errors to propagate back into the probabilistic manufacturing model. Third, all surface
measurements considered in the modeling procedure should arise from exactly the same
manufacturing process, which may be interpreted as same manufacturing batch, supplier,
construction parameters, etc. If this is not the case, an inhomogeneous manufacturing
sample might lead to multi-modal or skewed mode amplitudes, which may further give
rise to additional interactions irreproducible with conventional covariance matrices.

As a consequence, an essential ingredient of the present probabilistic modeling consists
of robust quantification of mode covariance in the potential presence of morphed surface
outliers within the dataset. Since visual inspection is typically infeasible for outlier iden-
tification given a large number of morphed surfaces, a statistical method is formulated
based on the scatter produced by mode amplitude comparisons. Consider the scatter
diagram in Fig. 4.3, where exemplary first and second mode amplitudes b1 and b2 of a
sample S of |S| = 55 morphed surfaces have been represented as blue and red dots. It is
apparent that the morphed surfaces corresponding to red dots have a disproportionate
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mode participation, which may possibly indicate contaminated surface measurements. To
further quantify their discrepancy, principal directions of statistical variance may be found
using Principal Component Analysis. The first step consists of introducing estimators for
sample mean and covariance for experimental mode amplitudes b(s):

µ := 1
S

S∑
s=1
b(s), (4.39)

C := 1
S − 1

S∑
s=1

(
b(s) − µ

) (
b(s) − µ

)ᵀ
, (4.40)

where mode amplitudes b(s) ∈ Rt may be truncated to a chosen number t of truncation
modes, in the present example t = 2. According to Jolliffe (2002), the directions of
maximum variance are equivalent to the eigenvectors e1, . . . , et of covariance matrix (4.40),
and their eigenvalues λ1 . . . λt are equivalent to the sample variance along each principal
direction. As a consequence, the scatter range may be conveniently represented graphically
as an ellipse with semi-axes a1 and a2 being proportional to the sample standard deviations
along each principal axis, e.g. a1 = 3

√
λ1 and a2 = 3

√
λ2.
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Figure 4.3: Exemplary mode amplitudes with outliers marked as red.

As demonstrated by the red ellipse and red semi-axes in Fig. 4.3, if the red points are
included in the covariance estimation (4.40), they will predict an obviously erroneous
relationship between first and second modes. In contrast, disregarding these five noisy
observations will produce the blue ellipse resulting in a more concentrated scatter and a
better description of the true mode correlation.
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Therefore, the desired method for outlier elimination should identify a sample subset
S ′ ⊂ S which maximally concentrates scatter throughout all mode amplitude dimensions
given a desired robust sample size |S ′|. This may be achieved by the Minimum Covariance
Determinant method developed by Rousseeuw (1984), which may be explained using the
enclosing ellipse analogy. Since the objective of the Minimum Covariance Determinant
is to identify the subset of points which maximally concentrates scatter, this is equiv-
alent to calculating the ellipsoid with smallest semi-axes, which may be conveniently
obtained by minimizing the product of all covariance eigenvalues, i.e., the covariance
matrix determinant det(C) = λ1λ2 . . . λt−1λt. An efficient algorithm for this purpose was
presented by Rousseeuw and van Driessen (1999), where the minimization problem was
solved iteratively by drawing a random subset S ′ ⊂ S, computing its sample mean µ′

and covariance matrix C ′, and quantifying a standardized distance from all |S| original
observations to the new centroid µ′ by means of the Mahalanobis distance

d(s) :=
√

(b(s) − µ′)ᵀ (C ′)−1 (b(s) − µ′) ∀ s ∈ [1, S] ⊂ N, (4.41)

which is essentially a multivariate extension of the standard score d = (b− µ)/σ, where
µ and σ correspond to univariate sample mean and standard deviation, respectively.
After sorting all points b(s) according to increasing distance, the first S ′ observations are
considered as best cluster. The process is repeated several times and the subset S ′ with
minimum covariance determinant is finally chosen.

Once the subset S ′ of uncontaminated surface measurements has been identified, an
associated probability distribution may be fitted. For the case of deviation modeling via
B-spline control point deviations and after multiple test cases on turbine blade geometries,
it has been repeatedly verified that the vast majority of observable mode amplitudes may
be assumed to be normally distributed, see validation examples in Sec. 4.5. Thus, all mode
amplitude vectors b(s) may be represented as realizations of a random vector b with a
multivariate Gaussian distribution:

b ∼ N (µ′, C ′) , (4.42)

where the robust sample mean µ′ and robust covariance matrix C ′ have been calculated
from mode amplitudes b(s) of the subset S ′ of uncontaminated scans. Consequently, a
probabilistic representation of manufacturing variability may be obtained by replacing the
random amplitude vector (4.42) in truncated mode superposition (4.34):

q = q +Utb = q + b1u1 + · · ·+ biui + · · ·+ btut = q +
t∑
i=1

biui (4.43)
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using random mode amplitudes bi up to the desired truncation order t. In this manner, the
probabilistic surface variability for a given manufacturing process is sufficiently described
by mean deviation vector q, observable manufacturing modes Ut∗ and normally distributed
mode amplitudes b defined by robust mean vector µ′ and robust covariance matrix C ′.
The fact that mode amplitudes may be efficiently modeled as multivariate Gaussian

distribution has several advantages, particularly for statistical sampling and deviation
modeling. First, sampling from probabilistic models which involve different distribution
families requires expensive iterative correlation correction steps, such as restrictive pairing,
Dandekar et al. (2002), which may be entirely spared when sampling from traditional
multivariate Gaussian models. Second, the probability of occurrence of any surface mea-
surement given its mode amplitudes may be conveniently approximated by the probability
density

p(b; µ′,C ′) =
exp

(
−1

2 (b− µ′)ᵀ (C ′)−1 (b− µ′)
)

√
(2π)tdet(C ′)

. (4.44)

This is a useful feature when evaluating predictive deviation models, i.e., when predicting
manufacturing modes and mode distributions for new geometric designs, Chapter 5. There,
the predicted deviation model will undergo a cross-validation step by comparing estimated
and measured surface variability. Because the probability of occurrence of individual
manufacturing instances is available according to (4.44), the statistical divergence between
estimated and real manufacturing processes may be quantified, thus allowing a quantitative
stochastic deviation model validation, see Sec. 5.4.

4.5 Application to HPT Blade Structural Uncertainty
Quantification

The following demonstrates the probabilistic modeling of surface variability for hot-gas and
shank faces of the HPT blade previously analyzed in Sec.3.6, see Fig.3.11. Re-parametrized
B-spline surfaces for suction-side shank and hot-gas faces are taken from Figs. 3.3 and 3.16,
respectively, and the pressure side shank is re-parametrized similarly as the suction side
with a finer 203×163 control point grid. These three re-parametrized surfaces are then fitted
to a total of S = 56 turbine blade surface measurements leading to three morphed surfaces
for each scan. All resulting control point displacements associated to the same scan are
then joined together as a large joint deviation vector q ∈ R291 651 as defined in Eq. (4.23).
Subtraction (4.27) of mean deviation q and concatenation results in a large data matrix
X ∈ R291 651×56. Singular-value decomposition delivers the desired coupled manufacturing
modes. To assess the mode representation capacity, global reconstruction errors eR(i) are
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computed following Fig. 4.2 for several truncation orders t, using a percentile ρ = 99 for
error quantification within relevant normalized pairs (u, v) ∈ U and a percentile ρ′ = 90
for quantification within the entire measurement sample. To define the overall process
uncertainty, global metrics for measurement, re-parametrization and morphing errors
are needed. Measurement uncertainty was already estimated in Sec. 2.4 as eS = 25 µm.
Given the higher control point density of shank and hot-gas faces compared to the simple
re-parametrization example in Fig. 2.4, a global re-parametrization error can be confidently
estimated as eC = 2 µm. Lastly, the global morphing error is estimated as the 90th

morphing error percentile from the shank example in Fig. 3.14, e.g. eM = 20 µm. As a
result, process uncertainty is estimated as eP = 32 µm according to Eq. (4.37).
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Figure 4.4: Global reconstruction error eR(t) for different truncation orders t.

Although most casted surfaces typically exhibit complex surface deviations, the error
reconstruction diagram in Fig. 4.4 suggests different deviation complexities between shanks
and hot-gas faces. The suction-side shank (red curve), for instance, is rapidly described
by just 7 manufacturing modes, whereas hot-gas faces (brown) require 38 modes to
provide an appropriate CAD reconstruction below process uncertainty eP . This complexity
results from the fact that hot-gas faces account not only for airfoil but also blend-
radii and endwall deviations, Fig. 3.16, leading thus to a much larger deviation space.
To validate the reconstruction error computation, an arbitrary surface measurement is
reconstructed from Eq. (4.34) with all t∗ = 38 observable manufacturing modes, such
that local errors eR(s), t(u, v) can be computed from Eq. (4.36) for all relevant measured
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points. As shown in Fig. 4.5, the reconstruction accuracy effectively falls below the process
uncertainty eP for all major regions of the casted surfaces, such that the number t∗ = 38
of observable modes is correct.

a) b)

c)

32 µm

0 µm

e
(s,t∗)
R (u, v)

Figure 4.5: Local reconstruction error e(s), t∗
R (u, v) using t∗ = 38 observable modes for

a) hot-gas, b) suction- and c) pressure-side shank faces.

The probabilistic modeling of surface deviations starts with accurate identification of
mode correlation. By directly considering all surface measurements as noise-free process
realizations, potential correlations may be erroneously hidden by the presence of mea-
surement or morphing outliers. Consider Fig. 4.6a, where all surface measurements are
plotted as blue and red circles according to their 3rd and 8th mode amplitudes. PCA
of all measurements produces the red, large enclosing ellipse with semi-axes parallel to
the coordinate system, thus indicating no apparent mode correlation. Alternatively, the
Minimum Covariance Determinant method is utilized to identify a subset S ′ of |S ′| = 50
realizations from all 56 truncated mode amplitudes b(s) ∈ R38 which concentrates multidi-
mensional scatter best. The obtained optimal set of uncontaminated observations with
its corresponding enclosing ellipse are colored blue in Fig. 4.6a, whereas the potential
outliers are shown as red circles. The resulting principal scatter directions (shown as blue
semi-axes) indicate a more realistic estimation of mode correlation, and two evidently
outlying observations originating from surface measurement irregularities were correctly
identified. Although the remaining four noisy observations might seem mislabeled, this is
not necessarily the case since Fig.4.6a shows only a projection of the 38−dimensional space
onto two dimensions, whereas the Minimum Covariance Determinant considers scatter
along all possible mode combinations. Thus, these four realizations may possibly display a
disproportionate participation on other mode combinations.
To better illustrate relative modal dependencies between i−th mode amplitude bi(s)

and j−th mode amplitude bj(s), the covariance matrix C may be normalized according to
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variances Ci,i leading to the Pearson correlation matrix Ĉ with elements

Ĉi,j := Ci,j√
Ci,i Cj,j

. (4.45)

This quantity is a measure of linear correlation between any mode combination and may
be severely affected by the presence of outliers. For instance, uncontaminated 3rd and 8th

mode amplitudes have a Pearson correlation of Ĉ3,8 = −0.4, see blue ellipse in Fig. 4.6a
and its associated correlation value shown in Fig. 4.6b as framed square. On the other side,
consideration of outliers aligns the ellipse semi-axes to the coordinate system (red ellipse),
erroneously implying mode independence and therefore a false correlation Ĉ3,8 = 0. In
fact, the Pearson correlation matrix resulted numerically identical to the identity matrix
in case all surface measurements were considered, erroneously implying that no modal
dependencies were observed. However, after using exclusively the set S ′ of uncontaminated
observations, several mode correlations were effectively revealed. This can be verified by
the symmetric, positive-definite Pearson correlation matrix in Fig. 4.6b.
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Figure 4.6: Correlation analysis using a) scatter diagram for 8th and 3rd mode amplitudes
and b) Pearson correlation matrix for first 10 modes.

The elimination of measurement outliers not only improves correlation identification, it
typically enhances mode amplitude normality. This might be verified by testing all |S|
amplitude realizations b(s)

i of the same mode order i with a test for statistical normality.
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Here, a characteristic value (also referred as test statistic) associated to the experimental
sample is computed, which measures the strength of normality. This statistic is then used to
compute a p−value, which quantifies the probability of obtaining an equal or better statistic
from the experimental sample assuming it is normally distributed, Cooksey (2020). If the
p−value falls below a certain level of significance, e.g. 0.05, it is extremely unlikely that the
test statistic may arise from the dataset and thus the normality hypothesis must be rejected.
In the case, however, where the p−value is greater, no significant evidence for rejecting
the normality hypothesis is found. This test is performed using the statistic described by
D’Agostino (1971), first considering all mode amplitudes obtained from all 56 original
surface measurements, Fig. 4.7a, and then only with the subset of 50 uncontaminated
surface measurements, Fig. 4.7b. In the first case, six modes (represented as red dots) fail
the test for normality, whereas in the second case, only three modes below the 15th order fail
the test. A fourth failure is also present, but closer to the p−value threshold. Additionally,
the overall p−value seems increased for many mode orders, which again emphasizes the
positive impact of outlier elimination. A detailed observation of normality-test failures,
when considering uncontaminated measurements, is given in Fig. 4.7c. Despite showing
abnormal occurrences at the distribution tails, such as increased extreme observations (2nd

and 14th mode amplitudes) or reduced ones (6th mode amplitude), the distributions are
mostly uni-modal and concentrated towards their centers. This is the reason why in these
cases a Gaussian approximation (shown as black line) is accepted.
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Figure 4.7: Test for mode normality using a) original vs. b) uncontaminated surface
measurements and c) corresponding test failure histograms.
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Having justified a multivariate Gaussian model for surface variability, robust mean µ′

and covariance C ′ estimators for mode amplitudes may be obtained from Eqs. (4.39)
and (4.40) using uncontaminated observations S ′. Now, additional synthetic morphed
surfaces may be generated by sampling mode amplitudes from the multivariate Gaussian
distribution (4.42), introducing them into superposition (4.34), and using the obtained
control point displacements to generate synthetic morphed B-spline surfaces with Eq.(3.14).
A broad geometric comparison of synthetic vs. experimental surfaces is given for three
high-curvature turbine blade sections in Fig. 4.8, i.e., airfoil leading and trailing edges,
and hub fillet radius (see nomenclature in Fig. 4.9). Contrary to Lange et al. (2012)
who obtained unrealistic reconstructed airfoil geometries after truncated superposition of
principal deviation components, all synthetic airfoils in the current approach are realistic
and smooth, which validates the present mode correlation estimation and consequently
minimizes the possibility of having relevant inter-modal dependencies being ignored by
singular-value decomposition.

a) b) c)

x

y

x

y

x

z

Figure 4.8: Comparison between 20 synthetic (pink) vs. 10 real (blue) morphed surfaces
for a) airfoil leading-edge, b) airfoil trailing edge and c) hub fillet-radius.

A final validation of the probabilistic model for surface variability is obtained by
propagating manufacturing deviations into a performance model of the turbine blade.
In the present case, the impact of shank and hot-gas surface deviations on structural
integrity is investigated by means of finite-element analysis. For each measured or synthetic
manufacturing instance of hot-gas and two shank faces, the entire CAD geometry of
the turbine blade is reconstructed and meshed, where refinement zones to neck, shank
and airfoil fillets are assigned, Fig. 4.9. The mesh consists of approximately 0.7 million
second-order tetrahedral elements with average element volume of 0.19 mm3 and average
element distortion (ratio circumscribed/inscribed sphere) of 4.3. The simulation considers
maximum engine take-off conditions and starts with a thermal model of the turbine
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blade, where temperatures and mass flows of hot and cooling gas are used to compute a
detailed three-dimensional temperature field on the HPT blade by means of conductive
and convective heat transfer. Temperature-dependent material properties of nickel alloy
CMSX-4 are applied. The obtained temperature field is then considered in a second-
order elastic analysis, where additional loads caused by part deformation are considered.
Boundary conditions consist of previously calculated element-displacements of the turbine
disk applied to the blade root, gas pressures acting on hot-gas faces and cooling channels,
and rotational speed of about 16 000 rpm.
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Figure 4.9: Finite-element mesh with domain details.

A comparison of stress variability between 50 uncontaminated scans and 200 synthetic
morphed surfaces for different turbine blade positions is shown in Fig. 4.10. Each diagram
displays maximum stress/strain at selected mesh domains, see nomenclature in Fig. 4.9.
For the three cases shown—SS airfoil fillet, PS neck and SS shank—synthetic morphed
surfaces successfully refine frequency distributions of induced stress variability. In general,
the most frequent value (mode) of each stress histogram may be loosely associated with
mean deviation components of morphed and synthetic surfaces, whereas scatter amplitude
around the mode is rather associated with manufacturing modes. It may seem, therefore,
remarkable that modeling mode amplitudes as multivariate normal distribution does
not alter natural skewness of induced stress variability. It is, however, reminded that
in any complex geometry normally distributed geometric deviations may easily lead to
disproportionate stresses if unfavorably located. In case of a turbine blade, maximum
stresses at the shank walls are severely affected by sectional wall thickness. Thus, shank
deviations resulting in cross-section area reduction may induce disproportionate stress
increments. Similarly, the scatter diagram in Fig. 4.10 shows how correlated manufacturing
deviations between both shank walls also provoke correlated mechanical strains. This

72



relationship is correctly amplified using synthetic morphed surfaces and demonstrates
how adverse effects of manufacturing variability are worst in the pressure shank, where
maximum strain is typically elevated.
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Figure 4.10: Stress variability for measured and synthetic morphed surfaces.

Accurate statistical reconstructions of induced stress and strain in Fig. 4.10 successfully
validate the present probabilistic deviation modeling approach via manufacturing modes.
Consequently, this approach may be efficiently used for improved statistical quantification
of rare manufacturing events, i.e., extreme induced stress/strain values at the distribution
tail, and thus provide a better assessment of the overall manufacturing quality.

4.6 Application to Manufacturing Variability of Diverse
Shank Designs

To investigate how surface deviations vary with nominal design and manufacturing process,
the current section demonstrates manufacturing mode decompositions of three different
shank designs, Fig. 4.11. Designs A and C correspond to first stage high-pressure turbine
blades, having similar dimensions as the shank geometry studied in the previous section
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(from this point on referred as design D). Design B, on the other hand, corresponds to a
low-pressure turbine stage and is, therefore, slightly larger. Since no machining operations
are performed on shanks, their final geometry is entirely associated with the casting
process. Thus, despite potential differences in individual manufacturing settings, surface
variability across different shank designs may be effectively visualized and compared by
their manufacturing modes.
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pressure side suction side
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Figure 4.11: B-spline surfaces for various shank designs with associated relevant control
points.

Using fine control point grids, complex surface features such as sharp blends and high
curvature regions may be accurately captured with dense re-parametrized B-spline surfaces,
Fig. 4.11. To fit them to real manufactured instances, surface measurements are obtained,
aligned and segmented for each design. The scan alignment, just as for previously analyzed
design D, is based on the pressure faces of the turbine blade firtree, such that surface
deviations correspond to the state “as-mounted”. B-spline morphing of re-parametrized
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surfaces and subsequent singular-value decomposition yield coupled manufacturing modes
for pressure and suction shank walls with representation capacity illustrated as global
reconstruction errors in Fig. 4.12. This reconstruction error is computed similar to the
previous section, i.e., using a percentile ρ = 99 for error quantification within relevant
normalized pairs (u, v) ∈ U and a percentile ρ′ = 90 for quantification within the design-
specific scan sample. To compare manufacturing deviation complexity, it is essential to
consider the highly different number of available surface measurements per shank design
(|SA| = 204, |SB| = 38, |SC | = 74, |SD| = 56). Surfaces of high variability are identified
as those requiring large number of truncation modes for accurate reconstruction below
measurement and morphing uncertainties. From Fig. 4.12 it is apparent that complexity of
manufacturing variability differs tremendously across different designs: The ratio of highest
number of observable modes per design to total number of manufacturing modes results
as 41/204 ≈ 20% for design A, 24/38 ≈ 63% for design B, 48/74 ≈ 65% for design C

and 19/56 ≈ 34% for design D, which implies that design C has the highest number of
deviation patterns and design A the lowest.
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Figure 4.12: Global reconstruction error eR(i) for a) pressure and b) suction sides of
different shank designs.

A visual interpretation of static deviation component and first three manufacturing
modes is presented for each design in Fig. 4.13. Two deviation limits are plotted for each
manufacturing mode: the first one scales the manufacturing mode by the 5th percentile
of its associated mode amplitude and the second using the 95th percentile. Additionally,
the distance between manufacturing mode shape and re-parametrized surface is shown
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as color scale, where blue indicates deformation directed outwards and red inwards the
nominal surface. For better visualization, all images are scaled specifically for each design
and mode order; therefore, only qualitative comparisons are possible. Although the mean
deviation component appears to be unique for each design, Fig. 4.13 reveals that dominant
manufacturing modes tend to be rigid body motions, such as y− and z−displacements,
particularly in the case of designs A,B and D. Because all scans are aligned to the turbine
blade firtree, which is machined after the casting body has been produced, these dominant
deviations might be explained as datum offsets between casting and machining operations.
Design C, however, tends to display more independent behaviors between pressure and
suction shanks, which may rather suggest the prevalence of casting-related deviations.
It is notable, nonetheless, that no absolute correspondence between mode order across
different designs exists, e.g. z−displacement manifests as 2nd order in designs A and C,
1st order in design B and is non existent in design D. This result suggests that deviation
estimation by direct mode transfer across designs is a too general simplification of real
deviation behavior.

As Fig. 4.13 demonstrates, graphical analysis of dominant manufacturing modes enables
quick identification of potential fabrication issues within any particular design. Despite
some modes may appear rigid and coupled between pressure and suction sides, the majority
of them may still exhibit rather complex deformations, which emphasizes unavoidable
geometric variability due to the casting process. Although these higher modes are indispens-
able for accurate CAD reconstruction, great value may be still gained by automating mode
classification, at least for modes where a logical, interpretable behavior may be recognized.
This process has been previously pursued by Martin and Bestle (2018), and may further
facilitate identification and tracing of deviation sources within the manufacturing process
in the future.

76



design A design B design C design D

y−displacement z−displacement y−displacement y−displacement

z−displacement y−displacement z−displacement

x−displacement x−tilt unclassifiable unclassifiable

unclassifiable

PS SS PS SS PS SS PS SS

mean
deviation

mode 1

mode 2

mode 3

unclassifiable z−displacement unclassifiable z−tilt

Figure 4.13: Mean deviation and manufacturing mode comparison for different shank
designs.
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5 Deviation Estimation for New
Geometric Designs

The strategies presented in Chapter 4 require several manufactured instances of a nominal
B-spline surface to set up a probabilistic representation of manufacturing variability. This is
evidently possible once the geometric design has been manufactured. In the case of a robust
design process, however, it is desired to estimate manufacturing deviations for a surface
before it has been manufactured, thus limiting the strategies presented in the previous
chapter. Furthermore, because any surface of interest may undergo severe geometric changes
for different design versions, their associated surface parametrizations are not necessarily
topologically equivalent, and thus their manufacturing modes are not transferable, see
e.g., the different shank walls in Fig. 4.11 and their associated manufacturing modes in
Fig. 4.13. Thus, the required deviation estimation procedure must be able to compute
smooth displacement fields for arbitrary B-spline surfaces and—due to the randomness
inherent to any manufacturing process—deliver a probabilistic prediction of manufacturing
variability, such as manufacturing modes and amplitudes.

Given the considerable geometric and probabilistic requirements of the deviation estima-
tion problem, the present chapter describes a novel strategy based on local relationships
between surface deviation and nominal geometric properties. Rather than proposing a
definitive solution to the problem, the following strategies aim to provide a robust frame-
work coherent with the technical requirements of geometric and probabilistic surface
variability representations, while at the same time exposing governing assumptions and
limitations. In this manner, Sec.5.1 presents a first intuition behind the concept of deviation
law, i.e., a deviation-geometry relationship observed in multiple manufactured designs.
This concept is formally elaborated for B-spline surfaces using the convolution operation in
Sec. 5.2. Next, the process of extracting deviation laws from different manufactured designs
is introduced in Sec. 5.3 as a learning task, which explains why only recurrent surface
deviations may be successfully transferred to new designs. Once deviation estimates are
available for new geometries, a probabilistic error quantification is necessary to assess
prediction quality. This is achieved by defining a probabilistic divergence metric in Sec. 5.4.
Then, Sec. 5.5 offers a comprehensive example of deviation prediction for shank variability
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using different manufactured designs. Finally, Sec. 5.6 presents how deviation laws may be
integrated in a robust design process.

5.1 Strategies for Deviation Estimation

The first consideration of deviation modeling concerns the nature of information used
by the approach. Since surface deviations result from complex stochastic interaction of
physical processes, an obvious approach consists of a physics-informed deviation model,
which associates physical properties of the manufacturing process in question, such as
casting temperatures, cooling rates or cutting-tool wear, with observed surface deviations.
Despite the attractiveness of a causality relationship grounded on physical principles, this
approach may be limited by the extensive knowledge required on manufacturing process
parameters, some of which may be only available to the product supplier.
A likely less information-demanding approach arises from the insight that surface

deviations may, to some extent, be influenced by nominal geometric properties, for example
high curvature regions. If such a relationship is demonstrated repeatedly in multiple design
versions, it is then likely that it may also be responsible for surface deviations of new
designs. Thus, an alternative deviation model may be developed by identifying valid
associations between nominal geometry with surface deviations and using them to produce
predictions on new designs. Because a model of this kind does not require manufacturing
inputs, the information requirements are dramatically reduced. As a trade-off, since not
all surface deviations may successfully be associated to geometric properties, the obtained
predictions would represent only a fraction of the overall surface variability and thus lead
to a reduced, but still useful, geometric scatter. Due to the availability of several nominal
HPT blade geometries with corresponding surface measurements at the time of the present
investigation, this approach was chosen for further development.
The remaining of this section is devoted to develop a first intuition of the deviation

estimation approach, which will be fully addressed in the subsequent sections. Consider an
arbitrary CAD face which is present on different geometric designs of the same mechanical
part, for instance the hub endwall of several hypothetical HPT blade designs, Fig. 5.1.
In particular, assume that designs A,B and C have already been manufactured and
investigated according to Chapters 3 and 4, such that probabilistic descriptions of surface
variability for each of the designs are available. The ultimate goal of a deviation estimation
procedure is to provide a probabilistic representation of potential surface deviations for a
new, not-yet-manufactured design N .
As Fig 5.1 suggests, there are two paths to obtain this. The first path—shown as blue

and pink arrows—consists of deviation estimation based on process parameters, i.e., on
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constructing functional relationships for mean deviation vector qD ≈ q̃D(pDi,j), observable
manufacturing modes Ut∗

D ≈ ŨD
t∗ (pi,jD), mean mode amplitude vector µD ≈ µ̃D(pDi,j)

and mode covariance matrix CD ≈ C̃D(pDi,j) depending on their associated nominal control
point grid pDi,j for any manufactured design D ∈ {A,B,C}. Once such relationships have
been modeled, they might be used to generate deviation predictions for a new design N , for
example as qN = q̃

D(pNi,j). This approach would offer the advantage of a direct probabilistic
deviation representation for design N at the expense of three potential obstacles. First,
the enormous mismatch between process parameter size (for example q ∈ R291 651, Sec. 3.6)
vs. training data (3 nominal geometries only); second, a different number of observable
manufacturing modes between designs leading to different sizes for parameters Ut∗ ,µ

and C; and third, the orthogonality requirement of manufacturing modes Ut∗ .
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Figure 5.1: Calculation of deviation parameters according to surface measurements (blue
path) and deviation estimation for a new design N based on deviation param-
eters (pink path) vs. based on process realizations (green path).

Instead of enforcing a standard number of observable modes and actively controlling
mode orthogonality in the prediction, an alternative modeling approach consists of deviation
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estimation based on manufacturing instances, see green path in Fig. 5.1. The main idea
here is to establish functional relationships between deterministic control point deviations
∆pDi,j ≈ ∆p̃Di,j(pDi,j) with corresponding nominal geometries pDi,j for all manufactured
designs D ∈ {A,B,C}. In other words, the objective is to construct an artificial set of
morphed surfaces for design N from observed geometric relationships between control
point deviations and nominal geometry, such that all stochastic deviation parameters
may be naturally derived from singular-value decomposition of the artificial surface set.
These geometric relationships would have to be extracted from a large sample of morphed
surfaces for all manufactured designs. However, because probabilistic description of surface
variability is already available for them, realistic generation of synthetic morphed surfaces
is possible without any significant computational cost.

The extraction of these geometry-deviation relationships is further illustrated in Fig. 5.2.
The process is iterative in nature and starts with sampling one synthetic morphed surface
from each manufactured design (three in this example). Then is is tested if it is possible
to construct a functional relationship between control point deviations ∆pDi,j and nominal
geometry pDi,j, for example by finding coefficients θ of approximation functions such that

∆pDi,j ≈ ∆p̃Di,j(pDi,j;θ) :=


θ1 θ2 θ3

θ4 θ5 θ6

θ7 θ8 θ9

pDi,j ∀D ∈ {A,B,C} (5.1)

for each morphed surface on the triplet. If such a relationship can be demonstrated, then
Eq.(5.1) may be treated as deviation law and the coefficients θ may be stored in a database.
Because any deviation law (5.1) is deterministic, it will always provide the same deviation
prediction for any given nominal geometry. To reflect the intrinsic process randomness, a
new synthetic morphed surface triplet may be sampled and tested for geometric similarities
until several deviation laws with associated coefficients θ(1) . . . θ(L) have been identified.
It is important to emphasize that the functional relationship (5.1) is fixed for all deviation
laws; the only variation regards the unique coefficients θ for each surface triplet. After
collection of multiple coefficients θ, they may then be used to generate L control point
predictions on the new design as ∆pN ; (l)

i,j = ∆p̃Di,j(pNi,j;θ(l)) for l ∈ [1, L] ⊂ N, which may
then be processed via singular-value decomposition to generate the desired probabilistic
estimation of manufacturing variability.
Because recurrent geometry-deviation relationships observed across all manufactured

designs have the highest likelihood to manifest on new designs, it is expected that only a
rather small fraction of morphed surface triplets may be effectively modeled as (5.1) and
therefore yield deviation laws. This approach is, nonetheless, still preferred as modeling
each stochastic process parameter as a function, whereby the impact of not finding a valid
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relationship may entirely inhibit overall deviation estimation. Additionally, the sampling
performed in this second approach certainly allows a different number of observable
modes and, because the manufacturing modes are later computed from singular-value
decomposition, no orthogonality control is required. For real deviation estimation purposes,
a deviation model such as (5.1) is evidently simplified, thus a more appropriate functional
relationship will be formally introduced in Sec. 5.2. Similarly, a sampling procedure, where
one morphed surface triplet is tested at a time as shown in Fig. 5.2, is highly inefficient.
Therefore, a more realistic procedure will be described in Sec. 5.3.

sampling

∃ θ : ∆pDi,j ≈ ∆p̃D(pDi,j;θ) ∀D ∈ {A,B,C}? Y

N
store θ

θ1

θ2

...
θL

deviation estimates
for design N

qA,UA
t∗ ,µ

A,CA qB,UB
t∗ ,µ

B,CB qC ,UC
t∗ ,µ

C ,CC

qN ,UN
t∗ ,µ

N ,CN

4pAi,j 4pBi,j 4pCi,j

Figure 5.2: Extraction of deviation laws from manufacturing realizations with similar
deviation behavior.
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5.2 Deviation Model Using Convolution Operators

The extraction of geometry-deviation relationships from multiple designs poses the challenge
of handling different surface parametrizations. As opposed to airfoils which suitably enable
deviation transfer as parametric increments, other geometric features may exhibit wider
topological changes which hinder any standardized parametrization, see different shank
geometries in Fig. 4.11. To allow differing control point structures in a generic deviation
model, manufacturing variability may be treated as a local phenomenon, where control
point deviations ∆pi,j observed at any arbitrary control point position (i, j) may be
associated with nominal geometric properties evaluated at the surrounding control point
positions. In this manner, a local deviation model

∆pi,j ≈ ∆p̃i,j(pk,l, κk,l,nk,l), (k, l) ∈ [i− h, i+ h]× [j − h, j + h] ⊂ N2, (5.2)

is proposed, where approximated surface deviations ∆p̃i,j result from local control
point positions pk,l, curvatures κk,l and normal vectors nk,l obtained in the surrounding
(2h+ 1)× (2h+ 1) positions of (i, j) w.r.t. the nominal control point grid.

To enforce a comparable participation of control point deviation, position, curvature and
orientation in the model, a normalization procedure is required. Since synthetic morphed
surfaces from different geometric designs will serve as input for the model, it is additionally
required that relative parametric differences between designs remain unaffected by this
procedure. Thus, the desired normalization coefficients are not design-specific, but must
be quantified using all designs. Consider, e.g., the deviation transfer problem illustrated
in Fig. 5.1, where morphed surfaces from manufactured designs A,B and C are used to
predict morphed surfaces for a new design N . To normalize control point deviations of
any morphed surface, a reference deviation

∆p∞ :=
{

∆pD,k,(s)i,j ; D ∈ {A,B,C}, k ∈ {x, y, z}, s ∈ [1, S] ⊂ N
}

90
(5.3)

may be defined and calculated as follows: first a total of S synthetic morphed surfaces
from each manufactured design D ∈ {A,B,C} is constructed, e.g. four morphed surfaces
per design in Fig. 5.3. Then, all Cartesian deviation components are extracted from all 3S
surfaces and gathered in a single, large deviation set. Finally, the 90th percentile is extracted
from all deviation values and used as reference deviation ∆p∞. For normalization of control-
point deviations, a large percentile is preferred over maximum deviation values because it
avoids excessive distortion provoked by eventual deviation spikes. It is also important that
the normalization procedure preserves relative differences between Cartesian deviations,
which is why this percentile is taken combining all Cartesian directions. Additionally,
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since division of control point deviations by (5.3) may yield values greater than one, the
hyperbolic tangent function is applied leading to normalized control point deviations

∆p̂ki,j := tanh
(

∆pki,j
∆p∞

)
, −1 < ∆p̂ ki,j < 1, k ∈ {x, y, z}. (5.4)

u v

design A

u v

design B design C design N

u v u v uuuuuu vuuuuuu v uuuuuuuuuu v uuuu v

pA pB pC pN

x
y

z

maxi,j,D,k
{
pD,ki,j − pD,k

}{
κDi,j

}
90

{
∆pD,k,(s)i,j

}
90

Figure 5.3: Normalization coefficients for deviation modeling.

The remaining normalization rules concern nominal geometric properties associated with
each manufactured and new design, i.e., they are computed once for each re-parametrized
nominal B-spline surface (not morphed surfaces). To normalize control point positions, it
is first useful to define a design-specific nominal centroid

pD := 1
|ID|

∑
(i,j)∈ID

pDi,j, k ∈ {x, y, z}, (5.5)

computed as mean value of relevant control points of any design D, see the four blue
colored circles in Fig. 5.3. A reference control point value p∞ may be then defined as
largest difference of any Cartesian control point component (relevant or irrelevant) from
its corresponding nominal centroid as

p∞ := 1.10× max
i,j,D,k

{
pD,ki,j − pD,k

}
, D ∈ {A,B,C,N}, k ∈ {x, y, z}, (5.6)

where the quantification is performed by considering all manufactured designs as well as
the new design. For example, in Fig. 5.3 the largest distance from any control point to its
respective centroid is found in the new design N , where the x−component is largest. If the
new design is derived from an optimization process, the final surface dimensions may be
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still unknown. Given that the reference control point value (5.6) represents the maximum
dimension of any possible design surface, an additional factor 1.10 is introduced to consider
cases where larger re-parametrized B-spline surfaces are designed. Now, normalized control
point positions p̂i,j may be defined as

p̂i,j := pi,j − p
p∞

, −1 < p̂ ki,j < 1, k ∈ {x, y, z}. (5.7)

The Gauß curvature κi,j defined for control point positions by Eq. (2.20) serves as a good
starting point for curvature quantification. However, to prevent normalization distortion
by extreme curvature values due to unexpected surface irregularities, a reference value κ∞
may be taken as the 90th percentile of Gauß curvatures of all re-parametrized B-spline
surfaces, i.e.,

κ∞ :=
{
κDi,j; D ∈ {A,B,C,N}

}
90
, (5.8)

where all manufactured designs and the new design are considered. Since curvature κi,j
attains only positive values, a zero-centered formulation would be more consistent with
previous normalized quantities. Additionally, since it has been observed that the vast
majority of curvature values from present examples lies below κi,j < 0.5, the fourth root
is taken to enhance curvature resolution on these regions. This leads to the definition of
normalized curvature as

κ̂i,j := tanh
2 (κi,j)1/4 − (κ∞)1/4

(κ∞)1/4

 , −1 < κ̂i,j < 1, (5.9)

where the hyperbolic tangent function has been again used to enforce the desired normal-
ization limits. Lastly, the orientation of at any control point position may be obtained by
its normal vector ni,j approximated by finite differences according to Eq. (2.17), which is
already consistently normalized.

The geometry-deviation relationship may now be modeled using a convolution operation.
Consider, e.g., nominal design A and an associated synthetic morphed surface represented
by normalized control point deviations ∆p̂i,j. The first step consists of summarizing all
nominal geometric properties of design A, i.e., normalized positions p̂i,j , orientations ni,j
and curvatures κ̂i,j by a characteristic tensor C ∈ R(n+1)×(m+1)×7 where

Ci,j,0 = p̂xi,j, Ci,j,1 = p̂yi,j, Ci,j,2 = p̂zi,j,

Ci,j,3 = nxi,j, Ci,j,4 = nyi,j, Ci,j,5 = nzi,j, Ci,j,6 = κ̂i,j,
(5.10)

and the associated normalized control point deviations ∆p̂i,j are summarized as a measured
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deviation tensor P̂ ∈ R(n+1)×(m+1)×3 where

P̂i,j,0 = ∆p̂xi,j, P̂i,j,1 = ∆p̂yi,j, P̂i,j,2 = ∆p̂zi,j. (5.11)

This tensor construction is illustrated in Fig. 5.4a for a nominal control point geometry
and the corresponding control point deviations.

Next, the association between characteristic tensor C and measured deviation tensor P̂
may be performed by means of a convolution operation which is calculated independently for
each Cartesian coordinate by applying a three-dimensional kernel K ∈ R(2h+1)×(2h+1)×7 to
the characteristic tensor C. For instance, convolution along the x-coordinate at position (i, j)
yields the approximated normalized deviation

∆p̃xi,j = (C ∗Kx)i,j ≡
7∑

k=1

h∑
µ=−h

h∑
ν=−h

Ci+µ,j+ν,k Kx
µ+h+1,ν+h+1,k , (5.12)

which computes the sum-product of all overlapping elements at each (i, j) position,
Fig. 5.4b. Similar operations apply to y− and z−directions using different kernels Ky and
Kz. The resulting approximated surface deviations ∆p̃i,j may then be represented by an
approximated deviation tensor P̃ ∈ R(n+1)×(m+1)×3 where

P̃i,j,0 = ∆p̃xi,j, P̃i,j,1 = ∆p̃yi,j, P̃i,j,2 = ∆p̃zi,j. (5.13)

The kernels Kx,Ky,Kz need to be trained to minimize the differences between measured
and approximated deviation tensors P̂ and P̃, Fig. 5.4c. This minimization of model errors
requires the definition of a loss function. Since control point displacements are Cartesian
vectors, the most reasonable deviation criterion consists of squared differences along each
dimension, i.e.,

(
∆p̃ki,j −∆p̂ki,j

)
2for k ∈ {x, y, z}. This difference alone, however, is not

informative unless it is put into relation with the magnitude of targeted control point
displacements. In other words, larger differences may be expected by synthetic morphed
surfaces with larger measured control point deviations. Thus, the difference may be normal-
ized by the measured control point deviation variance ∑n

i=0
∑m
j=0

∑
k∈{x,y,z}

(
∆p̂ki,j −∆pk

)2

which is exclusively associated with the morphed surface in question and uses the mean
control point deviation vector

∆p := 1
|I|

∑
(i,j)∈I

∆p̂i,j, (5.14)

which is also computed for each morphed surface. Now, a normalized loss function may be
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defined as

e
(
P̃, P̂

)
=
∑n
i=0

∑m
j=0

∑
k∈{x,y,z}

(
∆p̃ki,j −∆p̂ki,j

)2

∑n
i=0

∑m
j=0

∑
k∈{x,y,z}

(
∆p̂ki,j −∆pk

)2 , (5.15)

which may be effectively interpreted regardless of geometric design or manufacturing
instance.
In this manner, kernels Kx,Ky and Kz are adapted to minimize error (5.15) below

a certain threshold, consequently leading to an accurate relationship between nominal
geometric properties of any design and a specific morphed surface by means of the
convolution operation (5.12). In practice, however, a single convolution operation may
be insufficient to accurately model control point deviations. This is why the next section
extends the present model and introduces a deviation learning technique implementing
convolutional neural networks.
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training to minimize
difference (5.15)
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Figure 5.4: Deviation model using convolution operation: a) construction of characteristic
and deviation tensors, b) convolution operation, and c) kernel training on the
three Cartesian dimensions.
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5.3 Learning of Deviation Laws

The process of extracting and transferring deviation information from manufactured
designs into new designs requires a manufacturing deviation model as derived in the
previous section and an optimal deviation learning strategy delivering the best possible
interpretation of surface deviations for new designs. To achieve the latter, it is first necessary
to distinguish between model regression and learning strategies. Although both approaches
are used to fit over-determined systems of equations to a set of observations, each follows
a different paradigm. Deterministic model regression, for instance, treats observations as
the totality of possible outcomes of any given process and, therefore, aims at producing a
rigid representation of the past. A learning strategy, on the other side, aims at building a
process representation which will remain truthful after new observations.
An example for model regression is B-spline morphing, where distances between mea-

surement and surface points are treated as every possible manifestation of manufacturing
variability of a particular surface measurement and, therefore, lead to unique control point
deviations obtained by linear regression (3.22). On the other hand, computation of devia-
tion laws necessitates a learning strategy because geometry-deviation relationships must
be formulated such that they are also valid for new, not yet manufactured designs. In this
sense, computation of kernels Kx,Ky and Kz by only minimizing loss function (5.15) with
respect to a unique design is wrong, because it entirely ignores how accurate the kernels
may reproduce deviations on any other nominal geometry. Therefore, to assess the ability
of a model to perform predictions on data not seen during training, i.e., its generalization
capacity, a learning strategy typically splits available observations into training and test
datasets. The training observations (roughly 70− 80% of all available observations) are
used to incrementally train the model, whereas the remaining test observations are used
to progressively assess how the model will react on new data.

To illustrate these concepts, consider the following example where a probabilistic process

y(x; z) := p(x) + z, p(x) = 1− x+ 9x2 − 3x3, z ∼ N(0, 10) (5.16)

is constructed by adding Gaussian noise z to a third-degree polynomial p(x). A deterministic
approximation model

ŷ(x; θ) :=
5∑

n=0
θn x

n, (5.17)

shall be build up by first using linear regression and then a learning strategy for adapting
model parameters θn. Assume 30 available realizations of process (5.16) to be given and
stored in a dataset

D :=
{

(x, y)(1), . . . , (x, y)(30)
}

(5.18)
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shown as blue and red dots in Fig.5.5a. Both methods require a definition of a loss function
to fit the model, where in this case the mean squared error is chosen:

L(D; θ) := 1
|D|

∑
(x,y)∈D

(y − ŷ(x;θ))2 . (5.19)

Linear regression treats available observations as all possible process outcomes and,
therefore, aims at producing a model which best fits all available information. In the
present example, linear regression of polynomial (5.17) using observations (5.18) and
loss function (5.19) may be solved explicitly producing coefficients θR and leading to
model ŷ(x; θR) shown as black line in Fig. 5.5a.
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Figure 5.5: Diagrams for a) dataset approximation and b) loss function (5.19).

The learning strategy, on the other side, assumes that further process observations
may be expected and aims at producing a model representation which best fits new data.
Therefore, the observation set D is first randomly separated into training and test datasets
Dtrain and Dtest, containing 21 and 9 observations, respectively, see blue and red dots in
Fig. 5.5a. To offer continuous assessment of model accuracy, loss function (5.19) may be
solved iteratively. Due to its simplicity, its gradient

∇L =
[
∂L

∂θ0
. . .

∂L

∂θ5

]ᵀ
(5.20)
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with respect to model parameters θ may be computed analytically as

∂L

∂θn
= − 2
|D|

∑
(x,y)∈D

(y − ŷ(x;θ)) xn, n ∈ [0, 5] ⊂ N0, (5.21)

which enables an iterative solution by gradient descent as

θi+1 = θi − ε∇L(Dtrain; θi), (5.22)

where the constant learning rate ε may be chosen arbitrarily, e.g. ε = 0.01. It is relevant
to notice that the calculation of model parameters θ is only driven by the training
dataset Dtrain. Thus, evaluation of L(Dtest; θi) remains a valid estimation of model accuracy
on new observations.

The result of this learning process is shown in Fig. 5.5b. Blue and red lines represent the
model error with respect to training and test datasets, whereas the black line corresponds
to the model error using linear regression. It is evident that an increasing number of
iterations benefits training accuracy but not necessarily generalization capacity. Here, the
model test error L(Dtest; θi) reaches its global minimum at θG corresponding to the best
performance on new observations, thus delivering optimal generalization. Continuing the
training beyond this point would improve the model accuracy w.r.t training observations,
but would increasingly damage performance on the test dataset (overfitting). In particular,
the model parameters θO would produce the best training accuracy, but almost worst
generalization. This result highlights the purpose of any learning strategy: not merely
concentrating on information retrieval but on identification of patterns useful for solving
new problems.
The present manufacturing deviation model associates nominal geometric properties

with surface deviations. The simplest architecture introduced in the previous section
corresponds to a single convolution operation, where each individual kernel reproduces
the relationship between characteristic tensor C and approximated deviation tensor P̃
along each Cartesian direction, e.g. Eq. (5.12) for x−direction. To enable extraction of
more complex geometrical relationships, this architecture may be further extended to
multiple sequential convolution operations leading to a convolutional neural network, see
Appendix A.1. Therefore, approximated normalized control point deviations P̃D from any
particular design D may be modeled as a convolutional neural network

P̃D = f
(
CD; θ

)
(5.23)

which transforms the design-specific characteristic tensor CD according to neural network
weights θ into the desired tensor. In this case, since the architecture of the convolutional
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neural network f (e.g. number of convolution operations, kernel dimensions, etc.) remains
fixed throughout the problem, notation f (C; θ) will refer to the output tensor obtained by
forward propagation of characteristic tensor C into network f using weights θ, i.e., it implies
evaluation of neural network f rather than functional dependency, see Appendix A.1.

In this manner, the objective consists on identifying a set of network weights θ(1) . . . θ(L)

which is capable of reproducing realistic control point deviations on all manufactured
designs available for training. To reproduce the random characteristics of any manufacturing
process, these deviation laws are extracted from synthetic morphed surfaces sampled from
each manufactured design, Fig. 5.2. However, in contrast to this simplified scheme, where
only one synthetic surface per design was investigated at each sampling iteration, the
present section describes a more efficient approach. This process for extracting deviation
laws will be first described for two different manufactured designs and later generalized
for multiple designs.

Because extraction of deviation patterns requires at least one manufactured design to
continuously test the learning process, the minimum number of available manufactured
designs required is two. To increase the probability of finding synthetic morphed surfaces
with similar deviation patterns, a larger number S of synthetic surfaces should be extracted
from the probabilistic representation of each design A and B leading to sets

A =
{

P̂
A, (1)

, . . . , P̂
A, (S)

}
and B =

{
P̂
B, (1)

, . . . , P̂
B, (S)

}
(5.24)

of measured deviation tensors normalized according to Eq. (5.4). The proposed method
for deviation law extraction will be described in the following by referring constantly
to Fig. 5.6, where sets A and B are shown as white columns with five instances each,
respectively.

The goal is to pair deviation tensors from both designs which share unique geometry-
deviation characteristics. Because several geometry-deviation relationships may be expected,
this paring process is performed iteratively such that in each pairing iteration only unpaired
deviation tensors are considered (in Fig. 5.6 the pairing process is complete after three
iterations, where already paired elements of sets A and B are represented as gray crosses
at the start of each pairing iteration). Each pairing iteration j starts by associating the
first unpaired deviation tensor P̂A, (1) (shown as gray square in Fig. 5.6) from the current
set Aj of unpaired deviation tensors with its characteristic tensor CA by means of the
training loss function

LA (θi) := e
(

P̃A; P̂
A, (1)

)
, P̃A = f

(
CA; θi

)
, (5.25)
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where e(P̃, P̂) corresponds to distance (5.15) and P̃A corresponds to the output of the
neural network at the training iteration i with characteristic tensor CA as input.
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B) ≤ LB
(
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)
Figure 5.6: Extraction of two deviation laws from five manufacturing instances of two

designs A and B.

Since this loss function alone may lead to model overfitting as explained in Fig. 5.5,
a test case must be defined to assess if the neural network f(C; θi) generalizes to new
geometric designs. Therefore, a generalization error may be defined by asking how accurate
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parameters θi would reproduce manufacturing deviations of design B, i.e.:

LB (θi) := min
P̂B∈Bj

e
(

P̃B; P̂
B
)
, P̃B = f

(
CB; θi

)
, (5.26)

where the estimated deviation tensor P̃B at the current state θi is compared to each mea-
sured (unpaired) deviation tensor in set Bj using distance e(P̃, P̂). Because distance e(P̃, P̂)
has been normalized according to the targeted measured deviation tensor P̂, training (5.25)
and test (5.26) losses may be effectively compared, see blue and red curves in Fig. 5.6.
Now, the neural network may be trained using stochastic gradient descent, where the
weights are incrementally corrected as

θi+1 = θi − ε∇LA(θi) (5.27)

and gradient ∇LA(θi) may be evaluated from the neural network using back-propagation,
see Appendix A.1.

Once the training has converged, existence of a deviation law between tensor P̂A, (1) and
any tensor P̂ ∈ Bj may be tested. For this, the model parameters producing optimum
generalization

θG := argmin
θ

LB(θ) (5.28)

are identified, and if at this stage both training (5.25) and test (5.26) errors fall below a
certain threshold eth (such as for first and third iterations in Fig. 5.6) the network weights
approximate realistic manufacturing deviations on both designs and, therefore, may be
accepted as first deviation law, i.e.,

θG =: θ(1) if max
D∈{A,B}

LD (θG) < eth. (5.29)

The training error LA(θ(1)) evaluated for the optimum generalization parameters corre-
sponds to the distance between deviation estimation P̃A = f(CA; θ(1)) and first deviation
tensor P̂A, (1). Because this distance may be treated as a tolerance, any other deviation
tensor in sample Aj with an associated error below LA(θ(1)) may also be explained by
this deviation law. Thus, before starting a new pairing iteration, all measured deviation
tensors covered by the current deviation law may be extracted in a design-specific set

Adel :=
{
P̂ ∈ Aj

∣∣∣ e (P̃; P̂
)
≤ LA

(
θ(1)

)}
, P̃ = f

(
CA; θ(1)

)
. (5.30)

This may also be evaluated for design B to compute Bdel (or for any other design D) by
using the correspondent tensor set Bj, error LB(θ(1)) and replacing θ(1) with the current
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deviation law (in Fig. 5.6 all deviation tensors within tolerance found in the current pairing
iteration are represented as blue crosses, those found on the previous iteration as gray
crosses).

Now, deviation tensor sets (5.24) may be contracted for the next pairing iteration j + 1
by deleting all paired deviation tensors found at iteration j, i.e.,

Aj+1 := Aj \ Adel
j and Bj+1 := Bj \ Bdel

j , (5.31)

and the process may be repeated from Eq. (5.25). In case no deviation law is found,
i.e., Eq. (5.29) does not hold, the chosen deviation tensor P̂A, (1) cannot be explained by
geometric relationships and, therefore, it must be discarded from its dataset before starting
a new iteration, i.e., Aj+1 := Aj \

{
P̂A, (1)

}
, see iteration 2 in Fig. 5.6.

In this manner, further pairing iterations may be performed until all deviation tensors
in set A have been tested. It is expected that only a small fraction of deviation tensors
effectively leads to deviation laws, which is why the entire process may be performed again
using new synthetic morphed surface samples from designs A and B (i.e. bootstrapping
from probabilistic deviation descriptions of designs A and B) until sufficient deviation
laws θ(1) . . . θ(L) have been found and stored in a database. In Fig. 5.6 for example, all
deviation tensors in dataset A were tested after three pairing iterations, first and third
leading to deviation laws explaining four total manufacturing instances of design A and
two of design B.

Extraction of deviation laws may analogously be formulated for any arbitrary number
of manufactured designs. This may be desired, for instance, when extracting coupled
deviation patterns from multiple casted surfaces, e.g. pressure- and suction-side shanks
of diverse turbine blade designs. In this case, it is again imperative to leave at least one
manufactured design for testing and the remaining designs for training. The process starts
again by creating samples of normalized measured deviation tensors for all designs of
interest, for instance A, B, C and D in case of four manufactured designs. For each pairing
iteration j, the first deviation tensor P̂A, (1) of current tensor set Aj may be used to define
loss function LA (θi) according to Eq. (5.25). However, after surpassing tolerance eth at a
parameter setting

θA := argmax
θ

LA (θi) s.t. LA (θi) < eth, (5.32)

the training process may now be extended to consider a measured deviation tensor P̂B, ∗

from design B which best matches the deviation prediction at this stage, i.e.,

P̂
B, ∗ := argmin

P̂B∈Bj
e
(

P̃B; P̂
B
)
, P̃B = f

(
CB; θA

)
. (5.33)
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Deviation tensor P̂B, ∗ constitutes, therefore, a potential candidate for a manufacturing
instance of current deviation law in design B, and thus may be used to define a second
training loss function as

LB (θi) := e
(

P̃B; P̂
B, ∗
)
, P̃B = f

(
CB; θi

)
. (5.34)

In this manner, model parameters θi should now minimize both loss functions LA(θi)
and LB(θi) associated with measured deviation tensors P̂A, (1) and P̂B, ∗, which may be
achieved by alternating gradient descent corrections, i.e.,

θa = θi − ε∇LA(θi) (5.35)
θi+1 = θa − ε∇LB(θa). (5.36)

Training may then continue until both loss functions fall below threshold eth, a point
where an additional candidate from design C may be considered in analogy to (5.33) and
consequently as an extra loss function LC (θi) leading to three sequential gradient descent
corrections per iteration, Fig. 5.7. Because all training designs have now been paired, the
testing process may initiate exactly as in the case of two designs, e.g. by constructing a
test loss function LD (θi) which returns the smallest difference between prediction and
measured deviation tensors in analogy to (5.26). As Fig. 5.7 suggests, in case of all training
and test loss functions falling below threshold eth, the parameter setting of optimum
generalization θG will be declared as deviation law θ(1) and all measured deviation tensors
explained by it may be eliminated before next pairing iteration.

The present approach for deviation law identification may be interpreted as a clustering
problem, where design-specific errors LD(θG) are used to separate deviation tensors
into two classes: “explained by current deviation law” or “not explained”. Consequently,
each pairing iteration yields a cluster of deviation tensors uniquely characterized by its
deviation law. More generally, the problem of pairing tensors may be regarded as an
unsupervised machine learning problem, because the total number of deviation laws for a
given sample size is not known a priori. Evidently, this clustering approach is dependent on
the order in which deviation tensors are drawn from first tensor set A. This is, however, an
attractive advantage, because it transfers the random nature of experimental manufacturing
variability into deviation laws. In particular, several bootstrapping iterations may increase
deviation law diversity and enable a probabilistic deviation estimation via singular value
decomposition, as initially explained in Fig. 5.2. Equally attractive is the fact that the
entire deviation learning process is driven exclusively by the deviation law threshold eth,
see Figs. 5.6 and 5.7. As expected, a small law threshold eth would result in a much more
accurate but also more demanding pairing process, which may ultimately impact the
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total number of deviation laws found. This parameter may be chosen according to the
expected manufacturing differences between designs; a larger variability may require a
higher threshold, and vice-versa, see application example in Sec. 5.5.

LD(θ(1))

eth

L(θi)

LA(θi) LB(θi)

θi

LC(θ(1))

θA

LC(θi) LD(θi)

θB θG → θ(1)

LB(θ(1))

LA(θ(1))

Adel Bdel

e(P̃A; P̂
A) ≤ LA

(
θ(1)

)

Cdel Ddel

e(P̃B; P̂
B) ≤ LB

(
θ(1)

)
e(P̃C ; P̂

C) ≤ LC
(
θ(1)

)
e(P̃D; P̂

D) ≤ LD
(
θ(1)

)
Figure 5.7: Extraction of one deviation law from five manufacturing instances of designs

A,B,C and D.

5.4 Minimization of Deviation Prediction Divergence

Having defined a deviation model and a learning procedure, two final steps are lastly
required to conclude the present deviation estimation strategy. Since deviation predictions
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computed by deviation laws are normalized, an inverse-normalization rule must be first
developed. Secondly, since deviation laws will produce numerous deterministic deviation
estimations for any new design, a probabilistic representation of surface variability may be
found via singular-value decomposition and minimum-covariance determinant as explained
in Chapter 4. This variability representation allows the formulation of a probabilistic
measure of error between measured and estimated surface variability referred to as model
divergence. This metric will provide a general assessment of deviation prediction accuracy
and thus evaluate the overall learning process. These two additional steps are performed
simultaneously, first by introducing a scaling factor α in the inverse-normalization rule,
and later by using it to minimize the deviation prediction divergence.

Deviation laws θ(1) . . . θ(L) obtained from the previous learning process may be used
to estimate normalized control point deviations of a new design N as P̃(l) = f(CN ; θ(l))
using associated characteristic tensor CN . A normalization rule may be formulated for
deviation estimates P̃ just as for measured deviations P̂ in Eq. (5.4), however, including
an additional scaling factor α, i.e.,

P̃ := tanh
(

1
α

P
∆p∞

)
, (5.37)

where the reference control point deviation ∆p∞ is the same as used in the learning process
and the hyperbolic tangent function is evaluated element-wise for the non-normalized
estimated deviation tensor P. Consequently, the desired Cartesian deviation predictions
are obtained from the inverse-normalization rule

P := α ∆p∞ tanh−1 f (C; θ) , (5.38)

where the normalized estimated deviation tensor P̃ has now been replaced by the con-
volutional neural network result f(C; θ). Because the scaling factor α does not alter
model parameters θ and applies equally to any geometric design, it may be arbitrarily
manipulated without violating any deviation law. Therefore, it constitutes uniquely a
Cartesian magnification factor which may be exploited to amplify predicted geometric
scatter without violating geometry-deviation relationships. This is an attractive feature,
since it will result in a more refined performance variability estimation due to manufac-
turing deviations, thus enhancing uncertainty quantification in robust design. However,
without any further model restrictions, this may suggest that any scaling factor is equally
justified, which is clearly wrong.

Despite not violating geometry-deviation relationships, scaling factor α does influence
deviation prediction accuracy. More precisely, since manufacturing variability is modeled
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as a probabilistic process, the impact of scaling factor α on any manufactured design
may be assessed by measuring the divergence between two probabilistic processes: the
measured manufacturing variability (obtained from surface measurements) and the learned
manufacturing variability (obtained from deviation laws). In this way, the scaling factor α
may be chosen such that prediction divergence is minimal, thus increasing amplitude and
likelihood of deviation predictions on new designs. Essentially, this prediction divergence
may be calculated for any manufactured design and given scaling factor α by generating
Cartesian deviation estimates from all deviation laws and comparing the probability of
each estimate using measured and learned process parameters, Fig. 5.8. First, each non-
normalized deviation estimate P(l) is rearranged as a column vector q(l) using Eq. (4.2). For
computation of learned probabilities (here distinguished by the tilde), the learned static
deviation vector q̃ (4.4) is first computed as mean of deviation estimates and then used to
construct individual deviation components x̃(l) = q(l) − q̃. These may then be processed
with singular-value decomposition (4.13) to obtain learned manufacturing modes Ũr (4.14)
and mode amplitudes b̃(l) (4.19). Using the minimum-covariance method, Sec. 4.4, mode
amplitudes b̃(l) may be finally approximated by a multivariate Gaussian distribution with
robust mean vector µ̃′ and covariance matrix C̃ ′, such that individual probabilities p̃(l)

are available for each deviation estimate using its learned mode amplitude vector b̃(l) in
Eq.(4.44). These values correspond to the probability with which any deviation estimate P(l)

is predicted to occur in the new geometric design.

Measured probabilities, on the other side, quantify the probability that a given deviation
estimate P(l) would occur from the real process parameters, i.e., from the measured static
deviation q, observable manufacturing modes Ut∗ , robust mean mode amplitude vector µ′

and covariance matrix C ′. In this case, each deviation estimate is first interpreted as a
manufacturing process realization, i.e., it is first centered using measured static deviation
vector q as x(l) = q(l)− q and then projected onto observable experimental manufacturing
modes as b(l) = U ᵀ

t x
(l) according to (4.16). The resulting mode amplitudes b(l) correspond

to the required values such that deviation estimates q(l) may occur as real manufacturing
instances. Due to the multivariate Gaussian approximation of manufacturing variability, it
is possible to compute an associated probability p(l) using Eq. (4.44) with the real process
parameters µ′ and C ′ estimated directly from surface measurements.

Now, prediction divergence may be initially estimated as difference between learned
and measured probabilities p̃(l) − p(l) for each deviation estimate q(l). This, however,
may cause underflow errors due to low values of the multivariate Gaussian probabilities.
Therefore, a better approach consists in taking the log-probability being always negative
and normalizing it by the measured probability. This leads to a design-specific, normalized
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prediction divergence

δ = 1
L

L∑
l=1

∣∣∣∣∣ log p̃(l) − log p(l)

log p(l)

∣∣∣∣∣, (5.39)

where the absolute value is considered to keep divergence positive. Since the manufacturing
process is not exclusively dependent on geometric relationships, the probability p that
a deviation estimate is actually observed from measured manufacturing parameters is
typically much lower than the learned probability p̃, i.e. 0 < p < p̃ < 1, or equivalently
0 > log p̃ > log p. Subtraction of log p from previous inequality reveals the probability
difference bounds as − log p > log p̃− log p > 0, and consequently the prediction divergence
bounds as 0 < δ < 1. In this manner, a collection of deviation laws with associated
divergence δ may be roughly interpreted as follows: on average, the estimated probability
of a predicted manufacturing instance deviates by δ × log p orders of magnitude from its
real probability. For example p̃ = 1× 10−8 and p = 1× 10−10 yield δ = 0.2.
Since magnitudes of multivariate Gaussian probabilities are severely influenced by

dimensionality, it is imperative to consider a rather small (≤ 5) number of truncation
modes for both measured and learned probabilistic representations. Fortunately, since
divergence calculation contains mostly singular-value decomposition operations, it is rather
numerically inexpensive, and thus may be evaluated for a dense scaling interval to provide
visual assessment of prediction divergence progression for different manufactured designs.
An optimal value α∗ may then be chosen based on individual judgment, for instance, by
minimizing prediction divergence on the training design which most closely resembles new
design’s manufacturing process, or rather by minimizing the maximum design divergence,
e.g.

α∗ = argmin
α

max
D

δD(α), α ∈ {1, 1.1, . . . , 4.9, 5}, (5.40)

where divergence δD(α) is evaluated for all manufactured designs D considered in the
learning process.
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Figure 5.8: Calculation of deviation prediction divergence.

5.5 Application to Estimation of HPT Blade Casting
Deviations

The present section will apply the proposed deviation estimation procedure to shank
wall pairs of different turbine blade designs. Particularly, the aim consists in learning
common deviation patterns from designs A,B and C in Fig. 4.11 and estimate deviations
for design D. Since there exist sufficient surface measurements for all four designs with
associated manufacturing modes and stochastic mode amplitudes (Secs. 4.5 and 4.6),
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deviation predictions for designD may be conveniently compared to the actual experimental
deviations. Each B-spline surface has a unique control point grid, which is why the
first step consists of refinement of each relevant region to a standardized grid. This
forward grid standardization is simply performed by enclosing each relevant area on
the respective (i, j)−grid by the smallest rectangle and refining all necessary geometric
quantities to a standardized size by means of bilinear interpolation (see Appendix A.2), in
this case to a 240× 213 grid, Fig. 5.9. This procedure will be then reversed once deviation
laws have been found and Cartesian control point deviations are desired.

219 163 99

240

213

240

213

240

213

145 73 123

i

j

design A design B design C

(−)

(+)

∆pyi,j

0

Figure 5.9: Forward grid standardization using bilinear interpolation of control point
displacements ∆pyi,j for three different pressure side shank designs.

Characteristic tensors may now be created for each of the eight standardized grids
(pressure- and suction-side shanks of totally four shank designs). Normalized control point
positions p̂i,j (5.7) may be represented relative to design-specific centroids pD, which
are obtained by averaging relevant control points from both pressure- and suction-side
shanks of the same design. This parametrization efficiently informs the position of any
control point relative to the shank centroid of the turbine blade, and thus may facilitate
identification of potential deviation relationships associated to individual shank sides.
Normal vectors ni,j and curvatures κi,j may then be computed directly from standardized
control point grids using Eqs. (2.17), (2.20) and (5.9). Reference quantities for control
point position p∞ and curvature κ∞ may be extracted using quantification rules (5.6)
and (5.8) considering all eight refined grids, thus enabling normalization of all nominal
geometric quantities. Finally, all irrelevant control point positions are set to zero on each
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geometric quantity to isolate the domain of interest, see characteristic tensor for pressure
shank of design D, Fig. 5.10.

−1

+1

0

p̂xi,j p̂yi,j p̂zi,j nxi,j nyi,j nzi,j κ̂i,j
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Figure 5.10: Characteristic tensor CD for pressure shank of design D.

Normalization of control point displacements needs a reference displacement ∆p∞ which
is computed with Eq. (5.3) using a sample of S = 250 synthetic morphed surfaces from all
training designs (A,B,C), and kept constant for deviation normalization throughout the
entire deviation learning procedure. The convolutional neural network architecture chosen
for deviation modeling is shown in Fig. 5.11 consisting essentially of three subsequent
convolution operations activated by the hyperbolic tangent function. The first two convolu-
tions are followed by average-pooling operations performed on each channel independently
with 2× 2 windows and stride lengths of 2 cells for the first and second tensor dimensions,
which reduces them by half, see Appendix A.2. The third convolution operation reduces
the number of channels from 20 to 3, and a subsequent bilinear interpolation is then
implemented to refine the first two dimensions to their original size 240× 213. Lastly, the
irrelevant region is set to zero and a Gaussian blur is implemented to smooth transitions
from relevant to irrelevant areas, see Appendix A.2. The resulting estimated deviation
tensor P̃ may be finally compared to the targeted experimental deviation tensor P̂ by
means of loss function (5.15), which is used to update the neural network weights with
back-propagation and the Adam optimizer with a learning rate of ε = 0.001, see Kingma
and Ba (2015).

The extraction of deviation laws is then performed according to Fig. 5.7, but only with
designs A and B for training and design C for testing. Each bootstrapping iteration samples
S = 250 manufacturing instances from the three designs, where each instance corresponds to
coupled deviating shank walls for pressure- and suction-sides. Because each manufacturing
instance consists of two surfaces, alternating gradient corrections are necessary, where
both characteristic tensor C and targeted deviation tensor P̂ are alternated in the neural
network according to shank side, Fig. 5.12. When loss function e(P̃; P̂) surpasses law
threshold eth = 0.80 on both shank sides for a given manufacturing instance of design A,
the closest manufacturing instance of design B is chosen for additional gradient corrections.
This stage is clearly identified as loss jumps in typical convergence diagrams, see iteration
steps 25 and 50 in Figs. 5.12a and 5.12b, respectively. As soon as the neural network
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describes both manufacturing instances of designs A and B—i.e. four total surfaces —with
an accuracy below eth < 0.80, testing evaluations may be performed for design C at
selected training steps.
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Figure 5.11: Convolutional neural network architecture.

Fig. 5.12a showcases a successful law extraction, where the optimal generalization is
found at a training iteration i = 199, and demonstrates how the model starts to overfit
beyond this point. On the other side, a failed law extraction is represented in Fig. 5.12b,
where the test error never reaches the deviation law threshold. The selected threshold
eth = 0.80 implies that the mean-squared difference between measurement and prediction
images must lie below 80% of the measurement image variance to consider the prediction as
valid and, therefore, it is rather high. At this value, approximately four deviation laws are
found for each bootstrapping iteration taking about seven hours on a Tesla Volta 100S GPU
server with 64 cores at 2.3 GHz. A smaller threshold eth would make the surface pairing
process more selective resulting in fewer deviation laws per bootstrapping iteration and
ultimately increasing substantially the total computation time. Such a generous threshold,
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however, does not inhibit identification of useful deviation patterns from large surface
samples, which is why it is considered acceptable in this context.
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Figure 5.12: Typical convergence diagrams for a) successful and b) failed deviation law
extraction.

The deviation learning process was repeated for 31 bootstrapping iterations, leading
to L = 112 deviation laws, stored as weight vectors of the convolutional neural network.
Deviation prediction quality on design D may be now assessed in three ways: first by calcu-
lating probabilistic divergence, second by comparing predicted vs. measured manufacturing
modes and third by comparing induced stress variability. Because surface measurements
are available for every design, learned and measured probabilities of each deviation esti-
mate can be computed using five truncation modes for a scaling interval α ∈ [1, 5] ⊂ R,
Sec. 5.4. The resulting prediction divergence is shown in Fig. 5.13a. and demonstrates
the significant influence of scaling factors on probabilistic accuracy. In general, moderate
increases in scaling are beneficial for prediction accuracy, whereas larger values tend to
exaggerate deviation predictions and thus amplify divergence. Designs A and B are directly
observed during training, and accordingly achieve the lowest divergence values, i.e., their
deviation estimates have the highest likelihood among all designs. Although its losses
are not propagated through the neural network, design C actively discriminates which
deviation laws are preserved and eliminated, and consequently also displays comparatively
low divergence values. On the other hand, design D is not seen during training and,
therefore, its prediction divergence is at least twice as large as any other training design
(for instance δD(2.5) = 0.8 vs. δC(2.5) = 0.4). This divergence implies that the deviation
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estimates for design D are in fact extremely unlikely to be observed in manufacturing.
For example, a deviation estimate with learned probability p̃ = 1 × 10−2 would have a
measured probability of p = 1× 10−10.
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Figure 5.13: Prediction divergence δ a) for different scaling factors α and b) relative to
design-specific minima δ∗.

This poor prediction accuracy may be explained by the extremely heterogeneous dataset,
i.e., large variability in both manufacturing setting and geometric complexity. Although
all turbine blade designs were casted, the specific manufacturing settings—i.e. casting
temperatures, mold setup and probably even manufacturing supplier—where different
across designs. This is why even common geometric deviation patterns may still display
large prediction divergence in new designs due to design-specific manufacturing biases.
Furthermore, each geometric design displays significant differences in shape and surface
variability (recall that the observable modes ratio for design C was 65% whereas for
design A only 20%, Fig. 4.12). It is thus not surprising that the intersection space of
surface variability only represents a tiny fraction of real design-specific deviation behavior.
However, before formulating potential areas of improvement, the second quality analysis
of present deviation prediction will be presented, i.e., manufacturing mode comparison.
Figs. 5.14 and 5.15 show mean deviation components and manufacturing modes for

all designs, where blue color indicates displacement directed outwards and red inwards,
and each manufacturing mode is weighted by 5th and 95th percentiles of associated mode
amplitudes. Mean deviation predictions across all designs show comparable displacement
fields (see blue displacements in the blue bounding boxes), which again confirms successful
extraction of a common deviation pattern, i.e., y−displacement of the pressure shank and
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Figure 5.14: Manufacturing mode comparison for designs A and B.
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Figure 5.15: Manufacturing mode comparison for designs C and D.
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z−displacement of the suction shank. This is a highly satisfactory result since it shows a
common deviation pattern smoothly transferred between different designs. In this sense,
predicted mean deviation of design D is entirely consistent with the learned deviations
from designs A,B and C, but fails at representing reality because design D is the only
one showing z−tilt as mean deviation. This result again illustrates the contrast between
expected deviation patterns and design-specific manufacturing biases.

Designs A and B are characterized by clear y− and z−displacements as first or second
measured manufacturing modes, whereas design C shows this pattern only on the suction
side. As a result, none of these patterns is effectively learned and transferred to design D,
which again reflects the original intent of extracting only recurrent deviation patterns.
Although remaining predicted manufacturing modes cannot be directly associated with
any other measured manufacturing modes, a notable resemblance is still found between
them. First predicted manufacturing mode on design D, for instance, is also seen on all
other designs (black bounding boxes) and corresponds to a mixed displacement-rotation.
A similar case is also observed on the second predicted manufacturing mode on design D
(red bounding box), which shows some type of contraction-expansion behavior. It must
be mentioned, however, that predicted manufacturing modes must be interpreted mainly
as statistical characteristics of shared surface variability rather than actual physical
processes (as opposed to measured manufacturing modes). This distinction arises from
the independence of deviation laws from individual manufacturing process, i.e., by pairing
surface measurements from different manufacturing setups, the traceability to a physical
process is lost. Nonetheless, this probabilistic representation is equally useful for uncertainty
quantification studies and robust optimization.

The third prediction quality analysis compares induced stress variability on design D
using predicted and measured manufacturing deviations. To recreate Cartesian deviations,
however, an optimum scaling factor α∗ minimizing prediction divergence must be chosen.
This selection has to be made based exclusively on prediction performance of designs A,B
and C, since any new design would not have available divergence values. By observing
Fig. 5.13a, it is clear that each design reaches minimum divergence at different scaling
factors, which forces formulation of a multi-objective optimization problem. By referencing
design-specific divergence to design-specific divergence minima δE−δ∗E, ∀E ∈ {A,B,C,D}
in Fig. 5.13b, a convenient measure of approximation cost is obtained, which may be
interpreted as sacrificed divergence given a scaling factor α. On this view, a scaling factor
of α = 2.0 equally penalizes designs B and C by a small divergence margin of 0.062 while
minimizing divergence at design A, which is why α∗ := 2.0 is chosen as optimum scaling.
Although divergence of design D shows least variability, its divergence is still notably close
to its minimum at this optimum scaling, which validates this selection criterion.

110



Using optimum scaling α∗, Cartesian deviation estimates are produced for design D

using inverse normalization rule (5.38) and then simulated in the finite-element model
described in Sec. 4.5. Maximum stress values for pressure- and suction-side shanks are
shown in Fig. 5.16, where 60 random deviation estimates are compared against 58 real
deviating geometries for scaling factors α = 1.0 and α = 2.0. These stress variability
histograms may be interpreted as estimated performance scatter in the case where common
deviation patterns of designs A,B and C are also observed in design D.
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Figure 5.16: Stress variability for design D using different scaling factors α.

Although effectively condensing all recurrent deviation patterns in the learning process,
important performance differences are seen between prediction and measurement, which
further highlights the major role of manufacturing context. Despite being consistent with
training designs, mean deviation prediction on design D significantly differs from the
measurement, which further induces different horizontal shifts in the stress histograms:
mean stress shift on pressure shank is underestimated (+71.7 MPa vs. +162.6 MPa)
while on the suction side overestimated (+46.0 MPa vs. −77.8 MPa), Table 5.1. On the
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other hand, optimization of scaling factor α not only reduces prediction divergence, it
also amplifies stress standard deviation approximately 40% more on the pressure side
(42.0 MPa vs. 29.8 MPa) and 70% more on the suction side (50.4 MPa vs. 29.9 MPa),
Table 5.1.

Table 5.1: Measured and predicted shank stress variability [MPa].
measured predicted predicted

for α = 1.0 for α = 2.0

pressure side
mean stress shift +162.6 +20.1 +71.7
stress std. deviation 29.8 13.3 42.0

suction side
mean stress shift -77.8 -13.5 +46.0
stress std. deviation 29.9 17.7 50.4

The above results highlight the high sensitivity of induced stress variability with scaling
factor α and the relative importance of mean deviation component vs. manufacturing
modes. Although most predicted manufacturing modes cannot be directly associated with
measured ones, their induced stress variability is comparable to the real one and, therefore,
they may deliver conservative approximations of variability amplitude. The mean deviation
component, on the other side, plays a larger role in overall performance variability as it
defines mean stress shift, and thus even small geometric differences may disproportionately
penalize performance prediction. These findings may guide future research in two directions.
Although it is indisputable that manufacturing context must be considered in deviation
modeling, significant value may be also gained by simplifying manufacturing and geometric
space. Similarly as in Zhu et al. (2019) and Zhu et al. (2020), isolated manufacturing
parameter modification and simplified specimen testing might better help the current
deviation strategy to underline fundamental deviation effects and increase prediction
confidence within a controlled range of manufacturing settings. Similarly, the convolutional
neural network may be enhanced by including simulated information of the manufacturing
process, such as temperatures and stress fields. Finally, because upper investigations
demonstrate the greatest effect in performance variability, the second research direction
regards a greater emphasis to mean deviation prediction. This could be achieved, for
example, by isolating static deviation component in a separated prediction strategy.

5.6 Integration of Deviation Laws into Robust Design

Previous sections describe the extraction of surface variability from different manufac-
tured designs into universal deviation laws. Application to shank variability prediction
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demonstrates that, despite their limitations, deviation laws may provide acceptable es-
timations of induced performance variability. As a consequence, they might serve as a
first approximation of manufacturing variability within a robust design process, where
the geometry is optimized iteratively with respect to its expected performance scatter.
Such a workflow is sketched in Fig. 5.17 and summarizes many of the methods described
in present dissertation.
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q̃, Ũr, µ̃

′, C̃ ′

morphed
surface

S̃R,(1)(u, v)

morphed
surface

S̃R,(1)(u, v)

morphed
surface

S̃R,(1)(u, v)

morphed
surface

S̃R,(1)(u, v)

morphed
surface
s̃(1)(u, v)

deviation
estimate

f
(
θ(1); CR

)deviation
estimate

f
(
θ(1); CR

)deviation
estimate

f
(
θ(1); CR

)deviation
estimate

f
(
θ(1); CR

)deviation
estimate

f
(
θ(1); C

)re-param.
surface
s(u, v); C

geometric
params. x

optimizer

deviation
law f

(
θ(1)

)deviation
law f

(
θ(1)

)deviation
law f

(
θ(1)

)deviation
law f

(
θ(1)

)deviation
law f

(
θ(1)

)

uncertainty
quantification

robustness
metric g95

optimal?

robust
geometric
params. x∗

yes

no

Figure 5.17: Integration of deviation laws into a robust design process.

To enable such process, it is first necessary to extract deviation laws θ(1) . . . θ(L) from
previously manufactured versions with the same geometric features and an optimized
scaling factor α∗, Sec. 5.5. Having collected sufficient deviation laws in a database of
convolutional neural network weights, the optimization strategy may be defined. For
manageable computational costs, the nominal geometry is typically parametrized with
relatively few parameters, for instance by considering only selected radial airfoil sections
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in the case of a turbine blade. The associated n geometric parameters may be stored in
a vector x ∈ Rn, such that for each optimization iteration a new nominal CAD face—
not necessarily a B-spline surface—is constructed. To represent potential manufacturing
deviations of the nominal face, it is necessary to re-parametrize it as dense B-spline
surface s(u, v), just as previously done for shank or hot-gas faces, Figs. 3.3 and 3.16,
respectively. Furthermore, to recreate possible manufacturing deviations using convolutional
neural networks, the re-parametrized surface s(u, v) has to be standardized and later
represented as normalized characteristic tensor C.

Characteristic tensor C may now serve as input for all deviation laws, each one producing
standardized, normalized deviation estimates f(θ(1); C) . . . f(θ(L); C). These may be then
interpolated back to its original control point grid and scaled using optimal factor α∗

to produce Cartesian control point deviations, which may be then considered in the re-
parametrized surface s(u, v) to produce morphed surfaces s̃(1)(u, v) . . . s̃(L)(u, v). Because a
discrete set of deviation estimates does not suffice for accurate uncertainty quantification, a
probabilistic representation may be performed, where singular-value decomposition, outlier
elimination by minimum-covariance determinant and normal distribution fitting produce
a probabilistic representation of manufacturing scatter, Chap. 4. Such a probabilistic
description, consisting of predicted mean deviation vector q̃, manufacturing modes Ũr,
robust mean amplitude vector µ̃′ and amplitude covariance matrix C̃ ′, may now allow
diverse uncertainty quantification methods, such as Monte-Carlo sampling of further
deviation estimates. To propagate manufacturing uncertainty into performance variability,
each deviation estimate may be analyzed according to the relevant physics—for instance
using aerodynamic or structural models—to obtain objective function g. This uncertainty
propagation might induce important computational costs, which is why numerical methods
such adaptative response surfaces or multi-fidelity Monte-Carlo may become necessary. As
a result of this process, a single (or multiple) robustness metrics may be extracted from
all objective function evaluations—such as the 95th percentile g95—and associated to the
nominal geometry x of current iteration. In this manner, the optimizer may use obtained
robustness metrics of the current geometry to continuously propose better geometry
candidates until a robust optimal design vector x∗ is found.

A robust design process is undoubtedly computationally expensive. The additional
computational cost of including deviation laws, however, is marginal compared to the
unavoidable uncertainty quantification process. Because deviation laws are prepared in
advance and may be re-used throughout the entire optimization, no neural network training
is further involved. Thus, the remaining associated costs involve running the neural network
repeatedly to produce deviation estimates and importing morphed surfaces as CAD files to
create the probabilistic representation. Furthermore, because deviation laws are a function
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of nominal curvature, size and orientation, deviation estimates are created differently for
each nominal geometry, which constitutes a unique feature of the proposed robust design
strategy. Specifically in design problems with large geometric freedom, deviation laws
may certainly offer more realistic representations of potential manufacturing variability
than traditional approaches, where parametric uncertainties are typically held constant
throughout the entire optimization process.
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6 Conclusions

Due to several physical and human interactions, manufacturing may be regarded a stochas-
tic process where any production output is expected to deviate at a certain degree from
the original design intent. Failure to correctly estimate and handle this manufacturing
variability has severe consequences in complex production setups, as typically seen by
elevated rejection rates, high material scrap and, therefore, increased economic and en-
vironmental costs. From all types of manufacturing variability, surface deviations have
sparked particular research interest as they—besides driving rejection rates—may propa-
gate through entire mechanical systems and severely affect overall component performance.
However, because it involves several disciplines such as metrology, CAD parametrization
and deviation modeling, current attempts to consider surface variability in product de-
sign have either been limited to very specific geometries—such as prismatic specimens
or airfoils—or rather involve extensive user interaction—such as CAD surface fitting of
complex free-form surfaces. As a response, the present dissertation proposes a collection of
methods for CAD representation, probabilistic description and prospective estimation of
geometric variability for generic free-form surfaces.

The path towards automated virtual representation of complex manufactured surfaces
requires a seamless interface with commercial CAD software representations as well as
robustness against potential surface scan irregularities. Furthermore, because geometric
complexity of manufacturing deviations may frequently be higher than associated nominal
face parametrizations, a more capable CAD representation model different from the
nominal one is needed. Therefore, with the major goals of high matching accuracy and
method generalization, the present dissertation proposes re-parametrization of any CAD
face of interest as B-spline surface with dense control point grid and subsequent matching
to measurement scans via B-spline morphing. Such dense control point re-parametrization
demonstrates high versatility to rebuild high-curvature turbine blade free-form faces and
also shows outstanding matching accuracy with corresponding surface measurements. As
downside, dense control point grids require additional strategies to prevent boundary
irregularities after B-spline morphing, which are significantly alleviated by local area-
averaging of boundary control points. Overall, B-spline re-parametrization coupled with B-
spline morphing constitutes a robust, generic and accurate approach for CAD representation
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of complex manufactured surfaces and, when paired with a subtractive CAD construction
approach, may offer extensive automation potential for geometric reconstruction of complete
parts.

Analysis of a single manufacturing instance is, however, not sufficient to derive sys-
tematic deviation information from any manufacturing process. This is why common
statistical analysis methods, such as principal component analysis, have gained consider-
able popularity among industry and academia for enabling identification of manufacturing
deviation patterns. However, because most studies use discrete geometric representations
such as meshes or point clouds, a direct interface between a probabilistic model and
continuous, commercial CAD representation formats is missing. In this context, the present
dissertation takes advantage of the established interface between surface measurement and
CAD representation and proposes probabilistic modeling directly from B-spline control
points. Specifically, this approach consists of singular value decomposition of a represen-
tative sample of morphed B-spline surfaces into manufacturing modes, computation of
statistical mode representation capacity, elimination of unobservable modes, and mod-
eling mode amplitudes as multivariate Gaussian probability distributions with robust
covariance matrix. Although probabilistic model selection is highly dependent on the
individual manufacturing dataset, synthetic high-pressure turbine blade surfaces generated
by the present probabilistic analysis demonstrate excellent resemblance with actual surface
measurements, both by deviation morphology and by induced stress variability. However,
because multi-modal amplitude distributions and nonlinear mode interactions have been
observed in manufacturing literature, the proposed strategy may be treated only as an
additional, valuable approach for probabilistic deviation modeling.

In several industrial applications, historic manufacturing deviations remain largely sub-
utilized for robust design of new parts, fundamentally due to potential geometric and
parametrization differences. Because current robust design strategies address exclusively
particular geometries, such as cylindrical specimens or airfoils, the present dissertation
aims at formulating a general approach for free-form surface deviation extraction based on
machine learning. As demonstrated by shank variability analysis of different turbine blade
models, mean deviation component and manufacturing modes may significantly differ
between designs, thereby hindering deviation modeling based on shared manufacturing
modes. Instead, deviation modeling is developed using individual manufacturing instances,
i.e., by associating a particular morphed surface with its corresponding nominal surface
via a convolutional neural network. Here, normalized curvature, orientation and position
are derived from nominal B-spline surfaces and associated with local control point dis-
placements, such that deviation modeling is possible for any free-form surface independent
of control point structure. Additionally, a learning strategy is proposed to identify and
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collect convolutional neural networks which correctly model manufacturing deviations on
different nominal designs. As a result, stochastic surface variability is captured as ensemble
of deviation laws, which may be used to estimate morphed surfaces for any new design and
consequently construct a probabilistic representation based on estimated manufacturing
modes.
Application to shank surface variability demonstrates successful extraction of over a

hundred deviation laws from three different turbine blade designs. Prediction quality
and usefulness is evaluated by comparing mean and standard deviation of induced stress
variability. Although prediction of the mean deviation component for the control shank
design is highly consistent with predictions for shank designs used in training, it fails
to reflect actual manufacturing evidence of the test design, which was consequently
manifested as representative errors in mean stress shift prediction. This result likely arises
from important differences in manufacturing settings between training and test designs.
Partially due to the same reason, stress standard deviation is overestimated. These results
highlight an important drawback of exclusive geometric deviation modeling, i.e., limited
prediction accuracy due to avoidance of manufacturing context.

Future improvements of deviation estimation strategies are certainly possible. Perhaps
a major advancement may arise in an environment where direct access and influence to
the underlying manufacturing process is facilitated. This would allow design of larger test
campaigns with simplified nominal geometries and controlled manufacturing parameters,
and thus help to refine the relationship between deviation, manufacturing and nominal
geometry. Similarly, deviation modeling may be extended to consider physical parameters
of the manufacturing process, such as temperatures, residual stresses, or displacements,
which are typically available in commercial manufacturing simulation software for casting or
additive processes. Because this information is distributed spatially, it may be conveniently
included in the convolutional neural network model by adding additional channels to the
characteristic tensor; therefore, its further integration into machine learning models is
highly encouraged. Additionally, since deviation forecasts are complex in both geometry
and probabilistic domains, further efforts may be spend in developing more intuitive
metrics for better quantification of prediction divergence. This would facilitate integration
and adoption of deviation modeling approaches into product design by a larger technical
audience.
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Appendix A
Convolutional Neural Networks

A convolutional neural network is a special mathematical model used for pattern extraction
from structured information arrays, such as B-spline surfaces. In the following, their basic
mathematical background and some relevant operations will be introduced.

A.1 Basic Mathematical Background
Artificial neural networks are mathematical models inspired by the human brain’s learning
process. Essentially, they consist of an extensive arrangement of simple mathematical rela-
tionships performed on the model input x ∈ Rm to approximate a desired output y ∈ Rn.
In a neural network, each mathematical relationship is interconnected hierarchically with
the others by means of layers, such that the model capacity is efficiently controlled by
the neural network depth. The most fundamental units of an artificial neural network are
perceptrons, see gray circles in Fig. A.1, which produce a single value h from all incoming
connections x as h = f(wᵀx + b). Here, quantities w and b correspond to perceptron
weights and biases, and an activation function f is chosen to prevent diverging network
values and also provide some model non-linearity. Typical activation function examples
include sigmoid function f(a) = 1/(1 + e−a), hyperbolic tangent function f(a) = tanh(a)
and rectified linear unit f(a) = max{0, a}.
In a feed-forward neural network, complex relationships between model input x and

output y may be mapped using multiple interconnected neuron arrays, i.e., hidden neuron
layers, such that any hidden layer h(i) is related to its predecessor layer h(i−1) by

h(i) = f
(
W (i)h(i−1) + b(i)

)
, i = 1, . . . , D, (A.1)

and the final output layer ŷ is related to the last hidden layer h(D) as

ŷ = f
(
W (D+1)h(D) + b(D+1)

)
(A.2)

where D corresponds to the network depth.
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Figure A.1: Artificial feed-forward neural network.

Training a neural network to compute predictions ŷ closely matching observations y
may seem a strenuous task considering the extensive number of network parameters
{W (1), . . . ,W (D+1), b(1) . . . , b(D+1)} summarized as θ. However, due to the hierarchical
construction of hidden layers (A.1), computation of network parameters θ is possible with
gradient-based optimization methods. Typically, a loss function L = ‖ŷ − y‖2 is defined
and network parameters θ are optimized iteratively using gradient descent, e.g.

W
(i)
j+1 = W

(i)
j − ε

∂L

∂W (i)

∣∣∣∣
θj

and b
(i)
j+1 = b

(i)
j − ε

∂L

∂b(i)

∣∣∣∣
θj

(A.3)

where the sub-index j corresponds to the iteration step, ε is a small learning rate and
∂L/W (i) and ∂L/b(i) are partial derivatives of loss function L w.r.t. weights and biases of
the i−th layer.
Because neural networks are computational graphs composed of simple mathematical

functions, propagation of model errors into network parameters may significantly benefit
from the chain rule of calculus and automatic differentiation. This procedure is also
referred as back-propagation, Goodfellow et al. (2016), and essentially traverses the network
backwards performing successive applications of the chain rule for each encountered neuron.
By computing gradients following the network paths, redundant operations and sub-
expressions are significantly reduced, which in turn minimizes total memory requirements.
Currently, gradient calculation by back-propagation is already implemented in many
computational frameworks for artificial neural networks, such as TensorFlow, Abadi et al.
(2015), or PyTorch, Paszke et al. (2019). Furthermore, pure gradient descent (A.3)—
although conceptually correct— is almost always an inefficient network update scheme
given the large dimensionality of the problem. That is why current methods for neural
network training consider robust gradient estimators by averaging gradient information
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from random mini-batches of the training sample (stochastic gradient descent) and may
also consider adaptative learning rates and refined initialization strategies.
In applications where model inputs follow a grid-like data structure—such as images

or B-spline surfaces, the convolution operation is typically used in the neural network
as it may efficiently perform image manipulations while minimizing new additional net-
work parameters, Goodfellow et al. (2016). The convolution operation between a ten-
sor C ∈ R(n+1)×(m+1)×c and a kernel K ∈ R(2h+1)×(2h+1)×c is defined for element (i, j)
as

(C ∗K)i,j ≡
c∑

k=1

h∑
µ=−h

h∑
ν=−h

Ci+µ,j+ν,k Kµ+h+1,ν+h+1,k , (A.4)

i.e. as element-wise multiplication and sum of overlapping elements, where c is the number
of channels on both tensors. An illustration is given in Fig.5.4b, where a kernel Kx operates
on a characteristic tensor C to produce estimated deviations ∆p̃xi,j.

An artificial neural network performing several sequential convolution operations on an
input tensor C is thus referred as convolutional neural network, Fig. A.2. Each convolution
operation may be treated as an individual hidden layer where each channel of the resulting
tensor is obtained by convolution with a different kernel. For example, the input tensor C
(pink) is convoluted (symbol ∗) with the green kernel to produce the green channel of
hidden layer 1. The result tensor P̃ of a convolutional neural network f may be described
using the notation P̃ = f(C; θ), which implies execution of network f on input tensor C
according to network weights θ, i.e., the collection of all kernel parameters. Similar to
multi-layer perceptrons, Fig. A.1, convolutional neural networks can be trained using
back propagation and stochastic gradient descent to optimize kernel values such that the
differences between output tensor P̃ and a reference tensor P are minimized.

input tensor C
7× 5× 2

output tensor P̃
7× 5× 1

hidden layer 1: hidden layer 2: output layer:
3 kernels 2× 2× 2

∗ ∗ ∗

2 kernels 3× 3× 3 1 kernel 2× 2× 2

weights θ

Figure A.2: Convolutional neural network.
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A.2 Pooling, Interpolation and Filtering Operations

Historically, the convolutional neural networks in Appendix A.1 have profited from tradi-
tional image processing concepts, such as compression, interpolation and filtering, which
has given place to analogous mathematical operations compatible with neural network
architectures and back-propagation. Consider the convolutional neural network in Fig. A.2,
where the first two tensor dimensions (7 × 5) remain constant throughout the entire
graph. In several applications information compression may be desired, for example to
force extraction of dominant image patterns, which is why two main alternatives are
typically considered. The first one consists of performing the convolution operation with
a custom stride length, i.e., by shifting the kernel for more than one cell at a time. This
modification substantially reduces dimensionality of the resulting tensor without adding
trainable parameters. A second alternative is using a pooling operation after the convolu-
tion, which computes moving statistics of the input array, such as maximum, minimum
or average values, and may also be defined with a custom stride length, Fig. A.3a. The
selection of stride lengths and pooling operations for any convolutional layer may differ
according to specific information contraction and array shape requirements, however, it
has become common practice to pair each convolution operation with a successive pooling
step, Goodfellow et al. (2016).

c)a)

3
2
5
1

9
8
2
3

3
7
2
4

4
5
6
2

2 7 7

4

8

3

6

1
3

9 9 7
8 8 7
5 4

9 9

6
7 8 8 7

6
6
5

× ×

× ×

+ +

+
=

b)

(x∗, y∗)

(x1, y2)

(x1, y1) (x2, y1)

(x2, y2)

Figure A.3: Illustration of a) 2× 2 pooling as maximum of elements in overlapping regions
with unitary stride length, b) schematic bilinear interpolation, and c) Gaussian
blur.
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Contrarily, in cases where image size is fixed and upsampling is required, inexpensive
resolution enhancement may be obtained by bilinear interpolation, Fig. A.3b, where
the image value at a new pixel position (x∗, y∗) may be approximated by weighting all
surrounding pixels with their relative positions, i.e.,

f(x∗, y∗) ≈ w11f(x1, y1) + w12f(x1, y2) + w21f(x2, y1) + w22f(x2, y2) (A.5)

where

w11 = (x∗ − x1)(y∗ − y1)
(x2 − x1)(y2 − y1) , w21 = (x2 − x∗)(y∗ − y1)

(x2 − x1)(y2 − y1)

w12 = (x∗ − x1)(y2 − y∗)
(x2 − x1)(y2 − y1) , w22 = (x2 − x∗)(y2 − y∗)

(x2 − x1)(y2 − y1)

correspond to the relative square area associated to each pixel. This operation may be
conveniently written using matrix algebra and thus considered in the neural network
architecture without interrupting back-propagation of errors.
In cases where a tensor has been selectively modified and, therefore, exhibits irregular

gradients, general purpose filtering such as blurring or sharpening may be useful. These
procedures have also been adapted for neural networks as convolutional layers with constant,
predefined kernels. For example, blurring is based on the kernel

K(x, y;σ) = 1
2πσ2 exp

(
−(x− x0)2 + (y − y0)2

2σ2

)
, (A.6)

derived from the bivariate normal probability distribution, parametrized by a standard
deviation σ and referenced to a center position (x0, y0). An example is given in Fig. A.3c
where a 144×144 RGB image is blurred by a 5×5 kernel with standard deviation σ = 1.0.
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