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Abstract

The transistor miniaturization to nanoscale dimensions enabled building extremely
powerful computing systems capable of executing complicated tasks very efficiently.
Processors are at the heart of almost every computing device. The usage of nanoscopic
components for processor realization opened the opportunity for placing multiple pro-
cessor cores on a single chip. Increasing the processing power means improving the
system performance significantly. However, implementation of such complex designs
introduces some serious challenges. First, scaling the technology to near-atomic di-
mensions makes the circuits prone to variabilities that might cause malfunctions and
eventually lead to failures. In other words, the modern computing systems are be-
coming less resilient. Second, putting so many transistors on such a small surface
increases the system power consumption dramatically. Hence, it is of fundamental
importance to come up with an adequate strategy for addressing these challenges.
There are many solutions which have been successful either in improving resilience
or in reducing power consumption, but a single approach that deals with both chal-
lenges appears to be missing. As a matter of fact, development of such approach is
aggravated by the inverse relationship between the two metrics. However, employ-
ing techniques which would adapt the system behaviour according to the current
application requirements or environmental conditions might be promising.

This dissertation proposes a cross-layer framework able to synergistically optimize
resilience and power consumption of processor-based systems. It is composed of three
building blocks: SWIELD multimodal flip-flop (FF), System Operation Management
Unit (SOMU) and Framework Function Library (FFL). Implementation of the build-
ing blocks is performed at circuit, architecture and software layer of the system stack
respectively. The SWIELD FF can be configured to operate as a regular flip-flop
or as an enhanced flip-flop for protection against timing/radiation-induced faults. It
is necessary to perform replacement of selected timing-critical flip-flops in a system
with SWIELD FFs during design time. When the system is active, the SWIELD FFs
operation mode is dynamically managed by the SOMU controller according to the
current requirements. Finally, the FFL contains a set of software procedures that
greatly simplify framework utilization. By relying on the framework, a system can
intelligently interchange techniques such as Adaptive Voltage/Frequency Scaling, se-
lective Triple Modular Redundancy and clock gating during operation. Additionally,
a simple and convenient strategy for integration of the framework in processor-based
systems is also presented. A key feature of the proposed strategy is to determine
the number of SWIELD FFs to be inserted in a system. Using this strategy, the
framework was successfully embedded in instances of both single- and multicore sys-
tems. Various experiments were conducted to evaluate the framework influence on
the target systems with respect to resilience and power consumption. At expense
of about 1% area overhead, the framework is able to preserve performance and to
reduce power consumption up to 15%, depending on the number of SWIELD FFs
in the system. Furthermore, it was also shown that under certain conditions, the
framework can provide failure-free system operation.
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Zusammenfassung

Die Miniaturisierung der Transistoren auf Strukturgrößen im Nanometerbereich
ermöglichte den Bau extrem leistungsfähiger Computersysteme, die komplizierte
Aufgaben sehr effizient ausführen können. Prozessoren sind das Herzstück fast aller
Datenverarbeitungssysteme. Die Verwendung von nanoskopischen Komponenten für
die Realisierung von Prozessoren eröffnete die Möglichkeit, mehrere Prozessorkerne
auf einem einzigen Chip unterzubringen. Die Erhöhung der Verarbeitungsleistung
bedeutet eine deutliche Verbesserung der Systemleistung. Die Umsetzung solch
komplexer Schaltungen bringt jedoch einige ernsthafte Herausforderungen mit sich.
Erstens macht die Skalierung der Technologie auf nahezu atomare Dimensionen die
Schaltungen anfällig für Schwankungen, die zu Fehlfunktionen und schließlich zu
Ausfällen führen können. Mit anderen Worten, die modernen Computersysteme
werden weniger resilient. Zweitens erhöht sich der Stromverbrauch des Systems
dramatisch, wenn so viele Transistoren auf einer so kleinen Fläche untergebracht
werden. Daher ist es von grundlegender Bedeutung, eine geeignete Strategie zur
Bewältigung dieser Herausforderungen zu entwickeln. Es gibt viele Lösungen, die
entweder die Resilienz verbessern oder den Stromverbrauch senken, aber ein einziger
Ansatz, der beide Probleme angeht, scheint zu fehlen. Die Entwicklung eines solchen
Konzepts wird durch die umgekehrte Beziehung zwischen den beiden Messgrößen
erschwert. Der Einsatz von Techniken, die das Systemverhalten an die aktuellen
Anwendungsanforderungen oder Umgebungsbedingungen anpassen, könnte jedoch
vielversprechend sein.

In dieser Dissertation wird ein schichtenübergreifendes Framework vorgeschlagen,
das in der Lage ist, die Resilienz und den Stromverbrauch von prozessorbasierten
Systemen synergetisch zu optimieren. Es setzt sich aus drei Bausteinen zusammen:
SWIELD Multimodal Flip-Flop (FF), System Operation Management Unit (SOMU)
und Framework Function Library (FFL). Die Implementierung der Bausteine erfolgt
jeweils auf der Schaltkreis-, Architektur- und Softwareebene. Das SWIELD FF kann
so konfiguriert werden, dass es als normales Flipflop oder als erweitertes Flipflop
zum Schutz vor zeit- und strahlungsbedingten Fehlern arbeitet. Während der En-
twurfszeit müssen ausgewählte zeitkritische Flipflops im System durch SWIELD FFs
ersetzt werden. Wenn das System aktiv ist, wird der Betriebsmodus der SWIELD FFs
vom SOMU-Controller entsprechend den aktuellen Anforderungen dynamisch verwal-
tet. Schließlich enthält das FFL eine Reihe von Softwareverfahren, die die Nutzung
des Frameworks erheblich vereinfachen. Durch den Einsatz des Frameworks kann das
System Techniken wie Adaptive Voltage/Frequency Scaling, selektive Triple Modular
Redundancy und Clock Gating während des Betriebs intelligent austauschen. Außer-
dem wird eine einfache und komfortable Strategie zur Integration des Frameworks in
prozessorbasierte Systeme vorgestellt. Eine wesentliche Eigenschaft der vorgeschlage-
nen Strategie besteht darin, die Anzahl der SWIELD FFs zu bestimmen, die in das
System eingefügt werden sollen. Mit dieser Strategie wurde das Framework erfolgreich
in Instanzen von Single- und Multicore-Systemen integriert. Es wurden verschiedene
Experimente durchgeführt, um den Einfluss des Frameworks auf die Zielsysteme im
Hinblick auf Resilienz und Stromverbrauch zu bewerten. Auf Kosten von ca. 1%
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Flächen-Overhead ist das Framework in der Lage, die Verarbeitungsleistung zu erhal-
ten und den Stromverbrauch, abhängig von der Anzahl der SWIELD FFs im System
bis 15% zu reduzieren. Darüber hinaus wurde gezeigt, dass das Framework unter
bestimmten Bedingungen einen ausfallfreien Systembetrieb gewährleisten kann.
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[VHKK21b] Mitko Veleski, Michael Hübner, Milos Krstic, and Rolf Kraemer. To-
wards error resilient and power-efficient adaptive multiprocessor system
using highly configurable and flexible cross-layer framework. In 2021
IEEE 27th International Symposium on On-Line Testing and Robust
System Design (IOLTS), pages 1–7. IEEE, 2021.

[VKK17] Mitko Veleski, Rolf Kraemer, and Milos Krstic. An overview of cross-
layer resilience design methods. In 2017 Workshop on Reliability, Secu-
rity and Quality RESCUE - ETS’17 Fringe Workshop, 2017.

[VKK18] Mitko Veleski, Rolf Kraemer, and Milos Krstic. The effects of voltage
scaling on reliability and power consumption in multiprocessor systems.
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Chapter 1

Introduction

1.1 Problem Statement

Today’s most powerful computing chips accommodate several billion transistors lying
on a surface with an area of a fingernail. This amazing accomplishment is a result
of the continuous transistor miniaturization process referred to as technology scaling.
Indeed, approximately every two years over the last few decades, new transistor gen-
erations have been developed. Thereby, the feature sizes of each successive generation
were reduced by about 30% in comparison to the previous one [25, 26]. An illustration
of the technology scaling process is shown in Figure 1.1.

Figure 1.1: Feature size scaling trends for Intel technologies. (Source: Bohr
and Young [25])

The benefits from the technology scaling are well known: every successive tran-
sistor generation was aiming to [26]:

• improve the performance by increasing operating frequencies and reducing the
gate delay;

1



• reduce the power consumption per transistor or per gate;

• double the number of transistors that could be integrated per chip area (tran-
sistor density).

Of course, higher transistor densities allowed implementation of more functions per
chip. Putting it all together, every new transistor generation enabled developing more
powerful computing devices.

A great majority of the computing systems are centered around processors (single-
or multicore). Table 1.1 shows how the technology scaling affected some key design
parameters for processors produced by Intel. The table lists 19 different processor
generations starting from the oldest.

Table 1.1: Evolution of the processors over the years. The supply voltage lev-
els of the processors from more recent generations are not fixed,
rather they can be dynamically scaled within strictly defined in-
tervals. TDP stands for Thermal Design Power. It refers to the
maximal power that the processor can consume when executing
typical programs. The peak power consumption can exceed the
TDP. Intel processors used only for illustration purposes. Sources:
Intel and Rupp et al. [107].

Production Processor Feature Transistor Maximum Supply TDP Technology Area Number
Year Name Size Count Frequency Voltage (V) (W) (mm2) of Cores

1971 4004 10 µm 2.3k 108 kHz 15 0.5 PMOS 12 1
1974 8080 6 µm 6k 2 MHz 5/-5/12 0.8 NMOS 20 1
1976 8085 3 µm 6.5k 3 MHz 5 0.9 NMOS 20 1
1978 8086 3 µm 29k 10 MHz 5 1.8 NMOS 33 1
1982 80286 1.5 µm 134k 12 MHz 5 3.3 NMOS 47 1
1985 i386 DX 1.5 µm 275k 33 MHz 5 2 CMOS 103 1
1989 i486 DX 1 µm 1.2M 50 MHz 5 4.5 CMOS 173 1
1993 Pentium 0.8 µm 3.1M 66 MHz 5 13 BiCMOS 294 1
1995 Pentium Pro 0.6 µm 5.5M 200 MHz 3.3 35 BiCMOS 307 1
1997 Pentium II 0.35 µm 7.5M 300 MHz 2.8 21.5 CMOS 203 1
2000 Pentium III 0.18 µm 28M 1 GHz 1.7 22 CMOS 90 1
2002 Pentium 4 Northwood 0.13 µm 55M 2.8 GHz 1.475-1.525 69.7 CMOS 145 1
2004 Pentium 4 Prescott 90 nm 125M 3.8 GHz 1.2-1.4 115 CMOS 112 1
2006 Core 2 Duo 65 nm 291M 2.66GHz 0.85-1.5 65 CMOS 143 2
2008 Core i7 940 45 nm 731M 2.9 GHz 0.8-1.375 130 HKMG CMOS 263 4
2010 Core i7 Gulftown 32 nm 1170M 3.6 GHz 0.8-1.375 130 HKMG CMOS 248 6
2012 Core i7 Ivy Bridge 22 nm 1400M 3.5 GHz N/A 77 3D Tri-Gate FinFET 160 4
2014 Core i7 Haswell E 22 nm 2600M 3.3 GHz N/A 140 3D Tri-Gate FinFET 355 6
2016 Core i7 Broadwell E 14 nm 3200M 3 GHz N/A 140 FinFET 246 10

The technology scaling goals were defined by the Moore’s law and the Dennard
scaling rules more than four decades ago [95, 45]. In fact, the processor design has been
conforming to these two statements for approximately 30 years, but they are no longer
valid [61]. One can draw such conclusion simply by observing the data in Table 1.1.
For example, the processor produced in 2014 contains 2600M transistors. The next
generation processor, produced in 2016, according to the Moore’s law, should have
contained approximately 5200M transistors. 1 Instead, its transistor count is ”only”
3200M. Furthermore, note that starting from 2006, the minimal supply voltage levels
of the processors are no longer reduced. The operating frequencies have also stopped

1Given that it occupies the same area as its predecessor.
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increasing and have been maintaining steady level of around 3 GHz to 3.5 GHz for
more than 10 years. Therefore, the main factors that imposed serious challenges to
the technology scaling process and discontinuation of Moore’s law/Dennard scaling
rules can be summarized as follows:

• The transistor sizes were reduced to near-atomic dimensions, close to the bound-
aries of quantum mechanics principles [34]. Such devices are difficult to control
and highly prone to variabilities. Unstable transistors with unpredictable be-
haviour may easily cause malfunctions or even failures. Therefore, maintaining
the device resilience began to draw increased attention.

• Placing such enormous number of transistors on a single chip die causes power
dissipation and heating so excessive, that it became too expensive and un-
profitable to employ adequate cooling technologies [60, 100]. This prevented
transistors integration with the pace projected by the Moore’s law.

• The reduction of the transistors supply and threshold voltages according to
the Dennard scaling rules reached a point where even an inactive transistor
consumed power [76]. This phenomenon is caused by the leakage currents whose
impact on the power consumption was negligible in the earlier technologies, and
therefore, disregarded by Dennard et al. However, with the further technology
minimization, the share of the leakage currents in the overall power consumption
increased substantially [27]. Consequently, the power density also started to
grow instead of remaining constant as postulated by the Dennard scaling rules.

The listed factors had a serious impact on the processor design. In that sense,
two major challenges required prompt reaction - the extremely high power dissipation
and the deteriorating device resilience.

Resilience is a superset of dependability. Avizienis et al. define dependabil-
ity of a computing system as ”the ability to deliver service that can be justifiably
trusted” [14]. In general, dependability should be perceived as a broad concept char-
acterized with specific attributes, threats and means. The threats refer to factors that
could cause dependability deterioration (fault, error, failure), whereas the means
specify ways to maintain high level of dependability (e.g fault tolerance). Finally, the
attributes serve for dependability assessment. Resilience is an even wider concept
defined by Laprie as ”the persistence of dependability when facing changes” [82].
Hence, a resilient system needs to preserve its dependability in a presence of possi-
bly unexpected changes. They might appear in a form of disturbances caused either
by internal or external factors. Typical representatives of changes with detrimental
influence on computing systems include:

• static and dynamic variations - in the literature also known as PVTA (pro-
cess, voltage, temperature and aging) variations [137, 69]. The ultimate effects
of PVTA variations are timing errors [136, 118, 52, 123, 83] which could easily
result in system failure if not properly handled.
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• radiation effects or Single Event Effects (SEEs) - most commonly man-
ifested as transient faults like Single Event Upsets (SEUs) which may lead to
critical soft errors. Although soft errors do not physically damage the device,
they could cause data corruption, system malfunction or even a failure.

Formerly, only a small segment of the processor market was concerned with de-
pendability - mainly processors from the embedded domain for mission- or safety-
critical applications. Over time, as the processor-based systems became more sus-
ceptible to variabilities, the resilience has become almost equally important for all
processor-based systems regardless of their domain [91]. The concepts of dependabil-
ity and resilience are thoroughly discussed in Section 2.3.

On the other hand, the problem of excessive power consumption was strongly felt
in the entire processor-based systems market. This huge handicap, widely known
as the power wall led to adoption of a new processor design paradigm. Concretely,
instead of one power-inefficient processor, the designers switched to building two or
more efficient processors or processor cores on a single chip [100, 61]. The advantages
of such approach were multifold - the high operating frequencies used before switching
to multiprocessors could be lowered (to prevent breaking the power wall) while the
performance could still go up due to the parallelism offered as an inherent feature
of using multiple processors. 2 Therefore, without impacting the performance, the
power consumption problem has been overcome, but only temporarily. Before too
long, many-core systems encompassing hundreds of cores on a single die emerged as a
preferred platform for high performance computing applications. It is anticipated for
the next-generation of many-core chips to incorporate thousands of processor cores
[115]. The already gigantic number of transistors on a single chip has continued to
increase, although with a lot slower pace than the Moore’s projections. Regardless,
the power density has reached a point where significant part of the chip components
have to be turned off or operated in some low power mode during runtime to avoid
overheating and potential system failure. This phenomenon known as dark or dim sil-
icon has a strong influence on all contemporary multi-/many-core computing systems.
Its emergence was a clear indication that the high power consumption is becoming
a major problem again. Along with the deteriorated resilience, it is still one of the
biggest challenges in the field of processor-based system design.

As suggested by the title, this dissertation proposes a solution for resilient and
power-efficient processor-based systems. In the main focus are embedded safety-
/mission-critical processor-based systems due to their ”natural” requirements for high
degree of resilience and power efficiency. However, the proposed approach can be
applied to any type of processor-based system. Next section discusses the relationship
between the resilience and power consumption in more details. Section 1.3 presents
the current trends in processor-based system design. Finally, short overview to the
thesis proposal is given in Section 1.4.

2Of course, adequately written software is necessary to maximize the concurrent code execution.
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1.2 The Interplay Between Resilience and Power

One of the key factors that decide whether a soft or timing error will cause a failure is
the presence of redundancy in the system [14, 13]. Many systems contain redundant
components as an intrinsic part of their structure. However, from the aspect of
dependable design, most of the times this is not sufficient. In fact, for implementation
of a dependable or resilient system, one must intentionally and explicitly incorporate
redundancies [12].

Redundancy can come in four distinct forms: hardware, software, information and
time. Depending on the nature of faults to be mitigated, different forms of redundancy
can be used. For example, against faults in hardware, usually hardware, information
or time redundancy is used, while software redundancy is utilized against faults in
software. Hardware redundancy is widely used in computing systems that require
some form of fault tolerance. Actually, fault tolerance based on hardware redundancy,
i.e. hardware fault tolerance is considered as the most mature area in the broad
field of fault-tolerant and dependable computing [79]. Generally speaking, hardware
redundancy is employed by addition of extra hardware component(s) in the system
whose purpose is to detect, mask, correct and if applicable, predict faults. The obvious
drawback of such approach is the inevitable overhead in terms of increased area
and power consumption introduced by the additional hardware. Indeed, it has been
reported by multiple authors that depending on the number of employed redundant
modules, the area and power overheads can exceed 300% [103, 110].

On the other hand, utilization of techniques like voltage scaling in order to reduce
the power consumption has shown to negatively affect the resilience in two ways.
First, reducing the supply voltage slows down the switching speed of transistors which
may result in timing errors [123, 58]. Failing to meet the timing constrains is often
unacceptable and may cause serious to catastrophic consequences depending on the
system purpose. Second, if voltage is scaled, transistors have lower noise margins
that make the circuit more prone to electromagnetic interference and noise, while the
conductivity of the metal conductors is lowered [46, 133]. Additionally, it has been
also shown that the susceptibility to soft errors increases substantially with voltage
reduction [33]. In fact, a previously proposed model in literature states that the Soft
Error Rate (SER) increases exponentially with supply voltage scaling [141, 48]. The
model assumes that the interarrival time of soft errors follows a Poisson distribution
with rate λ0 while the system operates at its nominal voltage level Vmax. Furthermore,
it is assumed that the supply voltage of the system can be scaled between Vmax and
Vmin, thereby the SER corresponding to Vmin would be λ010d. In such conditions, the
SER of a system operating at supply voltage level V can be expressed as:

λ(V ) = λ010
d(Vmax−V )
Vmax−Vmin (1.1)

where where d > 0 is a technology-dependent constant that reflects the variations of
the SER with the voltage scaling and Vmin < V < Vmax.

In essence, resilience and power consumption typically have inverse relationship
and improving both metrics simultaneously is difficult. Their interplay is illustrated
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Figure 1.2: Relationship between resilience and power consumption.

in Figure 1.2. Hence, it is important to investigate methods that can optimize the
trade-off between resilience and power consumption in a synergistic way.

1.3 Current Trends in Processor System Design

The emergence of the dark silicon phenomenon, as discussed in Section 1.1, was a clear
sign that further system performance improvement only by increasing the number of
processor cores on a single chip is not possible without hitting the power wall. In
order to preserve the performance enhancement trends under tight power budgets,
the processor-based systems design principles had to be fundamentally revised. The
fact that mechanisms such as Instruction Level Parallelism (ILP) and multiprocessing
have been already fully exploited, leaving no obvious solutions in sight, forced radical
changes in the way of designing processor-based systems. The new design paradigm is
slowly moving away from homogeneous multiprocessor systems towards heterogeneous
Domain Specific Arcitectures (DSA). Despite general-purpose processors, DSAs also
contain special-purpose cores able to perform only limited set of tasks, but very
efficiently in terms of both performance and power. Nevertheless, the general-purpose
cores are going to remain basic building blocks of every processor-based computer and
will be responsible for execution of essential software such as operating systems.

1.3.1 Power Consumption Trends

Today, in the era of artificial intelligence, big data and ubiquitous computing in gen-
eral, when tremendous processing power is required, the energy consumption emerged
as a first-class optimization metric for design of processor-based computing systems.
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In this regard, Figure 1.3 shows some intriguing trends. According to the latest IRDS
3 report [1], the number of CPU and GPU cores in a single System-On-Chip (SoC) die
is expected to increase almost exponentially in the period 2020-2034 (Figure 1.3(a)).
Such vertiginous growth would inevitably lead to explosion in demands for power.
Especially concerning are the projections illustrated in Figure 1.3(b) stating that the
energy required for computing could possibly exceed the world’s estimated energy
production by 2040 [9, 104]. Therefore, employing efficient methods for power-aware
computing is more than urgent and of critical priority.

(a) Number of CPU and GPU cores in a single
SoC die. (Source: IRDS report 2020 edition [1])

(b) Computing energy requirements estimation.
(Source: Raj et al. [104])

Figure 1.3: Projected trends of computing power and energy demands.

The chip level power consumption trends for SoCs projected by earlier ITRS 4

report [2] are shown in Figure 1.4. Two key observations can be drawn from the
figure. First, a SoC produced in 2026 will consume approximately twice more power
than a SoC manufactured in 2021/2022. Second, although the leakage power (in
both logic and memory) accounts for a substantial fraction of the total chip power
consumption, it is expected that the dynamic power consumption in logic remains
the dominant component at least until 2026. Hence, it is crucial to include adequate
techniques for switching power reduction in logic as an integral part of processor-
based systems, as well as to investigate approaches for further improvement of those
techniques.

1.3.2 Resilience Trends

The negative impact of the technology scaling on the resilience results in shortened
computing system lifetime. A widely used model that illustrates the dependence of
the failure rate on the system age is the so-called bathtub curve [79] (see Figure 2.3 on
page 25). Using a bathtub-like shape as an analogy, this curve divides a computing
system lifetime into three periods or phases: early life, useful life and wear out phase.
During both early life and wear out phase, the failure rate is high. However, the useful

3International Roadmap for Devices and Systems (https://irds.ieee.org)
4International Technology Roadmap for Semiconductors
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Figure 1.4: Chip-level power consumption trends for SoCs. (Source: ITRS
report 2015 edition [2])

life phase is characterized by lower and fairly constant failure rate. As elaborated
further in this section, the impaired resilience leads to increased failure rates during
all three phases of the system lifetime. First, during production of such miniature
devices, manufacturing defects are practically unavoidable. Consequently, the rate of
early life failures is rising [32].

Second, reducing the transistor sizes increases the sensitivity of individual tran-
sistors to radiation-induced particles because even a lower energy particle strike can
result in soft error [39]. On the other hand, smaller transistor implies smaller sensi-
tive area. Hence, depending on the specific process, the SER at device-level either
monotonically decreases or remains approximately constant with the technology scal-
ing due to the reduced probability of a radiation event affecting an individual device.
However, as technology scaling allows extremely high number of transistors to be
integrated in a single chip, it has been shown that the system-level SER increases
dramatically with each new transistor generation [24, 85] (Figure 1.5(a)).

Historically, Static Random Access Memories (SRAMs) accounted for the highest
fraction of the overall SER in processors [77, 85]. In the most advanced technologies,
however, the SER in logic largely exceeds the SER in SRAM (Figure 1.5(b)) due to
the fact that SRAMs are regular structures which can be efficiently protected using
well-established and relatively straightforward techniques such as error correction
codes. In contrast, hardening the logic typically requires more complex approaches.
Depending on the soft error type(s) to be addressed, the implementation of adequate
techniques might be quite challenging and costly. SEUs are considered the dominant
contributor to the SER in logic [77, 97]. Table 1.2 shows a raw SEU rate per processor
manufactured in different technology. The rate is normalized relative to the 45 nm
node.
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(a) SER rates at flip-flop, IC and system levels.
(Source: Bhuva [24])

(b) Relative increase of error rates. (Source: Daly
et al. [41])

Figure 1.5: Trends in error rates as a function of a process technology.

Table 1.2: Raw SEU rate per processor in different technology. The values are
normalized relative to the 45 nm node. (Source: Kim et al. [77])

Technology Normalized SEU rate
(nm) per processor

45 1X
32 1.38X
22 1.59X

As can be seen, the SEU rates per processor keep increasing with the technology
scaling. Based on data from the Table 1.2 as well as from Figure 1.5, it is to expect
that the SEUs and soft errors in general will remain critical resilience issue for future
technologies. Once considered a threat primarily to the systems used in space appli-
cations, soft errors have lately become a great concern even for commercial electronic
products at ground level [97]. If not adequately addressed, soft errors can potentially
produce a higher failure rate compared to all other dependability threats combined
[21]. As a result, soft error mitigation has been widely investigated topic in the last
few decades.

Third, the continuous technology scaling aggravates the sensitivity of modern
computing systems to dynamic variations. Along with soft errors, dynamic variations
comprise a major threat to systems during their normal operation phase (useful life-
time) [32]. Last but not least, computing systems implemented in the most advanced
technologies experience early aging effects [32, 128]. As stated previously, both aging
effects and dynamic variations manifest themselves as timing errors. Thus, timing er-
rors have become another great resilience concern, especially in modern technologies
[52, 128].

To summarize, as a result of rapid technology scaling, the early life failure rate
rises, systems are becoming more prone to errors and variations during their useful
lifetime and the wear out phase starts sooner than expected. These trends lead to
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significant shortening of systems’ lifetime, i.e. shrinking of the bathtub curve as
illustrated in Figure 1.6.

Figure 1.6: Shrinking of the bathtub curve. (Adapted from: Chandra [32])

Recently, approaches for so-called cross-layer resilience have become prominent.
These methods are utilizing the fact that every computing system can be viewed
as a stack composed of several layers. In essence, the goal is combining multiple
techniques for resilience implemented at different layers across the system stack to
work together. Cross-layer approaches are considered to have the potential to deliver
high performance resilient systems at lower costs by distributing the responsibility
for mitigating errors/addressing variations across multiple layers. It is believed that
the cross-layer paradigm can contribute to building systems that will maintain the
desired resilience level while utilizing the benefits of technology scaling.

1.4 Thesis Proposal

Processors’ speed and efficiency have been steeply increasing for decades. However,
the price of performance improvement is usually paid by degradation of other param-
eters. The major challenges and trends in processor-based system design dictated
by the technology scaling were thoroughly elaborated in Section 1.1 and Section 1.3,
respectively. This Section discusses the motivation behind the thesis and briefly in-
troduces the proposed solution.

1.4.1 Motivation

The work presented in this dissertation is strongly motivated by the current challenges
and trends in processor-based system design with regards to resilience and power
consumption. A short summary of the main motivation points follows below:
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• Challenge: the excessive power consumption has become the greatest concern
not only for the modern processor-based systems, but for all the computing
devices of today, regardless of their type or class.

– Trend: the power demands will continue to increase tremendously in the
next 10-15 years since it is expected the number of cores on a single chip
to grow almost exponentially.

– Trend: dynamic power in logic will remain dominant source of the chip-
level power consumption.

• Challenge: the resilience of the contemporary processor-based systems to
faults and variabilities is sharply declining.

– Trend: the system-level SER increases dramatically, mostly due to soft
errors in logic. The dominant contributor to the SER in logic are the SEUs.

– Trend: growing dynamic variations and early aging effects lead to more
frequent occurrence and higher rate of timing errors.

– Trend: the cross-layer resilience methods are considered more efficient in
comparison to the traditional ”single-layer” approaches.

• Challenge: the conflicting relationship between the power consumption and
the resilience hinders simultaneous optimization of the both metrics.

To address the listed challenges as well as to conform to the current trends, ideally
a solution which focuses primarily on reducing both the dynamic power consumption
and the SEUs in logic is required. Thereby, an adaptive adjustment of the sup-
ply voltage is preferable for optimal power consumption [30, 51, 136]. However, as
a consequence of the contradicting trade off between the resilience and the power
consumption, the supply voltage reduction increases the sensitivity of the system to
SEUs and timing errors. Both SEUs and timing errors can be efficiently mitigated by
introducing some type of redundancy [17, 97, 37, 38]. Since the timing errors are pre-
dictable [22, 136], protecting only the timing-critical flip-flops (against timing errors)
in logic would possibly suffice. On the other hand, the SEUs are totally random and
thus, only full-scale protection of the flip-flops in logic could ”guarantee” SEU-free
operation. In that scenario, using Triple Modular Redundancy (TMR) or any other
form of redundancy for SEU tolerance would unavoidably lead to drastic power over-
head which is exactly the opposite of the intended goal. Hence, implementation of
such ideally conceptualized processor-based system - simultaneously power efficient
and completely resilient is obviously not feasible.

Fortunately, most systems don’t have to be completely resilient and power efficient
at once and all the time. In fact, a system might often be expected to accommodate
a broad spectrum of applications, sometimes with distinct demands. The applica-
tions themselves are dynamically changing their requirements with respect to the
current needs as well as according to the current internal and environmental condi-
tions. Moreover, an optimal trade-off between non-trivial and non-complementary
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parameters such as resilience and power consumption might frequently be required.
To provide all this, a system capable to adjust itself to variations and to operate op-
timally in all conditions [32] is necessary. Such a system is called adaptive system.

Adaptivity is an important feature of every system intended to be resilient [82].
Implementing adaptive processor-based system requires utilization of innovative de-
sign techniques at circuit, architecture and system level [32], that is, a cross-layer
approach. However, besides being resilient, the system of interest needs also to be
power efficient. A convenient way to build such a system is to add high degree of
configurability to its components, especially to the ones responsible for providing the
resilience and power management.

1.4.2 Proposed Framework and Thesis Contributions

Inspired by the facts and tendencies elaborated in the previous Subsection, this dis-
sertation introduces a highly configurable cross-layer framework which enables
smooth adaptation of a processor-based system to the current conditions and appli-
cation requirements with respect to both resilience and power consumption without
affecting the performance.

The proposed framework is composed of three building blocks:

• SWIELD multimodal flip-flop (in further text denoted as SWIELD FF);

• System Operation Management Unit (SOMU);

• Framework Function Library (FFL).

Figure 1.7 shows general implementation concept of the framework in a processor-
based system. The SWIELD FF and the SOMU are implemented in hardware. Con-
cretely, the SWIELD FF is implemented at circuit layer, whereas the SOMU belongs
to the architecture layer. On the other hand, the FFL is implemented in software.

A brief description of the individual building blocks and their role in the framework
is given in the following paragraphs.

The SWIELD FF can be configured to operate in three distinct modes:

1. Regular FF mode. A SWIELD FF can conveniently replace a standard flip-
flop. This should be done during design time;

2. In situ monitor (ISM) FF 5 mode for implementation of voltage scaling
scheme and timing errors prediction. While in this mode, the SWIELD FF acts
as a delay monitor and sends feedback to the SOMU;

3. TMR FF mode for protection against soft errors;

Switching between the operation modes can be done dynamically, while the system is
online, on demand by applications or some other system components such as sensors.

5In situ is a latin phrase that can be translated literally as ”on site” or ”in the natural/original
position/place”. (Source: Merriam-Webster Dictionary)
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Figure 1.7: General implementation concept of the proposed framework in a
processor-based system. Both the system (left) and the framework
(right) are abstracted as stacks composed of several layers. Every
building block of the framework is connected via dashed lines to
its corresponding layer of implementation.

This concept is crucial for providing adaptivity and flexibility to the system. Of
course, some extra circuitry is necessary for implementing the enhanced SWIELD FF
functionalities.

As the name itself suggests, the SOMU has several important system operation
management functions including:

• driving the system clock generation logic (for implementation of clock-gating
and frequency scaling);

• driving the prospective voltage regulator(s) (for implementation of supply volt-
age scaling);

• driving the SWIELD FFs and managing their operation modes.

Most of the SOMU functions are performed on request by the FFL.

Finally, the FFL contains functions/procedures that enable simple manipulation
of the framework. A programmer can configure the framework or retrieve the status
of various framework-related parameters by calling an adequate FFL function without
having to worry about the hardware implementation details.

A possible operation scenario of a system encompassing the proposed framework
could be the following: during the system initialization phase, to ensure high perfor-
mance, the default operation mode of the SWIELD FFs is set to Regular FF. When a
non-critical application is executed, to save power, the user calls an FFL function that
will instruct the SOMU to put the SWIELD FFs into ISM FF mode. In this way, the
framework gradually reduces the supply voltage of the system to the lowest possible
level that won’t cause timing errors. If protection against soft errors is required, the
appropriate FFL function that switches the SWIELD FFs operation mode to TMR
FF can be called.
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For full utilization of the benefits offered by the framework, its building blocks
have to be appropriately interfaced with the processor-based system. Furthermore,
as shown in Figure 1.7, the communication between the framework building blocks
within the system has to be performed in a closed-loop manner. This calls for some
modifications in the traditional system design flow. Another contribution of the thesis
is a proposition of simple and convenient strategy for integration of the framework in
processor-based systems that fits well to the standard design flow.

1.4.3 Objectives and Scope of the Thesis

The main objective of this thesis is to investigate a synergistic approach to building
adaptable processor-based systems regarding resilience and power consumption. Hav-
ing in mind their conflicting relationship, the aim is to provide an optimal trade-off
between the two metrics by integration of the proposed framework in processor-based
systems. Note that the focus of the thesis is on general-purpose processors.

The framework is applicable to both single- and multiprocessor systems. This
is important because after hitting the power wall, most of today’s computing sys-
tems (whether used in the desktop, server or embedded domain) are heavily based
on multiprocessors. Multiprocessing is very powerful concept that offers flexibility as
an inherent feature. On the other hand, the proposed framework encompasses tech-
niques such adaptive voltage/frequency scaling, clock-gating and circuit-level TMR
which can be interchanged in an intelligent way while the system is on-line. Putting
all together, the framework should drive the multiprocessor to optimally utilize the
intrinsic flexibility and the incorporated techniques depending on the current needs.
In this direction, the publication [VKK18] investigates theoretical models for imple-
mentation of adaptive and flexible multiprocessor system able to provide reasonable
trade-off between reliability and power consumption.

Regardless of whether the framework is integrated into single- or multiprocessor
system, the goal is to optimize power consumption while preserving acceptable level
of resilience by dynamically switching between the provided SWIELD FF operation
modes. It should be emphasized that this thesis deals mainly with SEUs as most crit-
ical soft errors. Furthermore, it is expected the system performance to be preserved
due to the framework’s capability to predict and avoid timing errors.

Finally, the proposed framework integration strategy should provide implementa-
tion of adaptable processor-based system for resilient and power-efficient operation at
minimal area overhead. Therefore, the logical question arises: how many and which
flip-flops in the system should be replaced with SWIELD FFs during design time?
The SWIELD FF is augmented with additional circuitry and, as previously pointed
out, replacing every flip-flop with SWIELD FF would be counterproductive in terms
of power efficiency. On the other hand, the critical flip-flops with respect to timing
account for only a small portion of the overall number of the flip-flops in the system.
Thus, an important question to which this dissertation is about to answer is ”how
much the power consumption and the resilience of a (multi)processor-based system
to both timing and soft errors can be improved by utilizing the proposed framework
if only timing critical flip-flops are replaced with SWIELD FFs?”
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1.4.4 Thesis Structure

The remainder of this dissertation is organized as follows. Chapter 2 presents the
necessary background information, crucial for understanding the thesis.

Chapter 3 gives a comprehensive overview of the related works in this area. A spe-
cial attention is paid to the state-of-the-art solutions to the problems and challenges
introduced in Chapter 1. Thereby, the works are classified according to relevant crite-
ria (e.g. approaches for improving resilience, power consumption or both). The final
section of the chapter elaborates the contribution of this thesis that go beyond the
existing state-of-the-art approaches.

Chapter 4 introduces the proposed cross-layer framework. The structure and the
features of each framework building block (SWIELD FF, SOMU, FFL) are described
in details. Furthermore, the three SWIELD FF operation modes (ISM FF, TMR FF,
regular) are thoroughly explained. A dedicated section discusses how to select the
right SWIELD FF operation mode and the potential factors that might affect this
decision.

Chapter 5 elaborates the strategy for integration of the framework in processor-
based systems. Additionally, the architectures of the processor systems (both single-
and multicore) used as test vehicles for concept evaluation are also presented. The
chapter is wrapped up with implementation results of the framework integration in
the considered processor-based systems.

Chapter 6 is devoted to evaluation of the proposed approach. The methodologies
and tools used for this purpose are demonstrated at the beginning of the chapter.
Next, the influence of the framework on the processor-based systems operation in
terms of power consumption, resilience, area and performance is investigated through
experiments. The parameters of interest are assessed in three distinct scenarios: mini-
mal single-core system, multiprocessor for high performance as well as multiprocessor
for prolonged system lifetime. Individual sections present the experimental results
for each scenario. The final section in this chapter discusses the obtained results and
analyses how the proposed concept compares to related works from Chapter 3.

At last, Chapter 7 summarizes the main points of this work, argues whether the
challenges as well as the objectives stated in Chapter 1 are met and finally, it concludes
the dissertation. A short outline of the future work that stems from the conducted
research is also given.

For distinction of the own publications from regular references, different citation
styles are used. Concretely, works from the literature are cited using plain style,
whereas alpha style is used for citing an own publication. The complete bibliography
can be found on page 119, while the own publications are listed on page xv.
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Chapter 2

Background

The dissertation topic brings together several broad fields. This chapter reviews basics
that are essential for comprehension of the proposed approach. Section 2.1 discusses
the importance of the technology scaling process. The types and characteristics of
processor-based systems are presented in Section 2.2. In Section 2.3 the concepts of
dependability and resilience are reviewed. Section 2.4 elaborates on the sources of
power consumption. Finally, Section 2.5 focuses on the potential origins of failures.

2.1 Importance of the Technology Scaling

Ever since the invention of the Integrated Circuit (IC) in the late 1950s, the
semiconductor-based electronics has been the main technological driving force in the
world. Today, cutting-edge computing devices are widely used in almost every aspect
of the everyday life and the modern human society is unimaginable without them.
This is a result of a tremendous and permanent cost-performance improvement of
the IC technology throughout the years starting with the processor emergence in
the 1970s. For more than four decades now, the processor-centric digital computing
devices have been mass-produced. The IC technology advancements in combination
with innovative design techniques resulted in each processor generation to be faster,
more efficient and richer in functions than the preceding one. Such impressive
growth, (in terms of both performance and scale of integration) has been facilitated
by continuous size reduction of the most-widely used semiconductor device and basic
building block of the electronic industry - the transistor abbreviated as MOSFET.
The size of a MOSFET is commonly expressed through metric called feature size. 1

Gordon E. Moore in 1965 famously stated that the number of transistors per chip
would increase at a rate of roughly factor of two per year for at least a decade [94].
Ten years later, he revised his earlier statement and formulated what is today known
as the Moore’s law : the number of transistors per chip would double every two years
[95].

Another critical observation that goes in line with the Moore’s law was published
by Robert Dennard et al. in 1974. This postulate, referred to as the Dennard scaling

1The minimum distance between the source and drain regions in a MOSFET.
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rules, proposed a methodology for scaling the dimensions (channel length, width...)
and characteristics (doping concentration, operating frequency, supply/threshold volt-
ages...) of MOSFETs to build faster transistors that occupy less area and consume
less power. Under such circumstances, according to the Dennard scaling rules, the
power density of a given chip area remains constant [45]. In other words, integrating
larger number of smaller, faster and more power-efficient transistors on a given chip
area will not increase the overall power consumption of that chip area.

Both Moore’s law and Dennard scaling rules are of fundamental importance and
have been shaping the vertiginous advancement of the semiconductor industry for
decades.

2.2 Processor-Based Computing Systems

Depending on the specification, intended purpose and application(s) to be executed,
the processor-based computing systems are divided into three well-known distinct
classes: desktop or personal computers (PCs), servers and embedded computers [100].
Although systems from different classes, unsurprisingly, have different requirements
and are designed using different hardware technologies, the power consumption prob-
lem affects every modern processor-based system, regardless to which class it belongs.
Therefore, employing some kind of low power technique is nowadays a standard part
of the processor-based system design flow.

On the other hand, desktop, server and embedded systems, clearly, have still dif-
ferent requirements regarding dependability/resilience, in spite of the fact that these
two concepts are becoming more and more relevant with the technology miniatur-
ization. For example, the processors intended to be used in the desktop domain are
primarily designed to optimize the cost-performance ratio. Employing dependabil-
ity/resilience mechanisms has obviously lower priority here and it comes down to
usage of relatively simple techniques for memory protection.

In the server domain, availability is the top concern. Since the servers are expected
to be reachable non-stop, their downtime is extremely costly. Depending on the ap-
plication, a server downtime might cost from approximately $50,000 per hour (e.g.
media companies) to $4,000,000 per hour (brokerage services) [61]. Thus, maintain-
ing availability is a crucial task for the servers. Regarding dependability/resilience,
typically techniques for memory protection and storage-/processor-level redundancies
are employed.

Finally, embedded systems as the largest class of computers encompasses a broad
spectrum of diverse applications starting from consumer electronics used in everyday
life (mobile phones, tablets, TV sets, gaming consoles...) to critical systems such as
ships, aeroplanes and spacecrafts. A failure of a processor-based system embedded
in a plane or satellite communication controller would cause far more serious conse-
quences (possibly disastrous) in comparison to a tablet application crash. Therefore,
dependability/resilience are crucial requirements for a critical system. During the de-
sign of a critical system, special attention must be paid to selection of adequate (set of)
techniques that will provide the necessary level of dependability/resilience. Of course,
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different type of critical system demands different level of dependability/resilience.
According to the possible consequences of a potential failure, the critical systems can
be categorized as:

• Safety-critical - where a failure is a serious threat to human health or natural
environment, i.e. may cause injuries or even loss of lives (e.g. medical, aviation,
automotive systems etc.).

• Mission-critical - where a failure may prevent the system to successfully com-
plete its projected objectives or goals (e.g. Unmanned Aircraft System (UAS)
such as satellite or drone).

• Business-critical - where a failure may lead to substantial financial losses or
serious reputation damage (e.g. stock trading).

• Security-critical - where a failure may result in an unauthorized access and
theft of sensitive information (e.g. banks).

It is worth mentioning that these categories are overlapping to some extent, that is,
for example, a system can be at the same time business-critical and security-critical
etc [63].

Additionally, the systems operating in environments where human intervention
for maintenance is not possible (such as space), are usually powered by batteries or
photovoltaic cells. Hence, besides dependability/resilience, power efficiency is another
key requirement here.

2.3 Dependability and Resilience Fundamentals

This section gives a brief overview of the fundamental dependability and resilience
concepts. Widely cited papers by Avizienis et al. [14, 13] and Laprie [82] whose
acclaimed contribution towards definition of the terms dependability and resilience
respectively are used as references.

2.3.1 Dependability

In one of the earlier papers focusing on the taxonomy of dependable computing, the
authors argue that the term reliability might be etymologically more appropriate
[12]. However, the term dependability seemed to be better fit as it reflects ”our soci-
ety’s ever increasing dependence upon sophisticated systems in general and especially
upon computing systems”. Reliability is instead used as a dependability attribute or
mathematical measure of the continuous delivery of proper service.

Dependability is considered as a more general concept that encompasses:

• attributes of dependability;

• threats to dependability;
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• means to attain dependability.

The complete dependability taxonomy shown in a form of a tree structure is shown
in Figure 2.1.

Figure 2.1: The dependability tree. (Adapted from: Avizienis et al. [14])

Dependability Attributes

A computing system delivers a correct service when it implements the intended
function defined by a system specification. In this regard, there are five primary
dependability attributes defined as:

• availability: readiness for correct service;

• reliability: continuity of correct service;

• safety: absence of catastrophic consequences on the users and the environment;

• integrity: absence of improper system alterations;

• maintainability: ability to undergo modifications and repairs.

In addition to the listed primary attributes, there are also secondary attributes
which can be inferred by specializing some of the primary attributes. For example,
robustness is an important and widely investigated secondary attribute defined as
dependability with respect to external faults.

It is important to note that the threats to dependability cannot be completely
avoided, that is, a system will inevitably experience a fault at some point. Therefore,
it is pointless to expect from a system to be entirely reliable, safe, available etc.
Instead, its dependability attribute(s) can be evaluated only by using probabilistic
approaches.
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Dependability Threats

When the system implements a function that differs from the specification, it delivers
an incorrect service. The event that caused a transition from correct to incorrect
service is called a failure.

An error is a deviation from the correct service within the system that may or
may not lead to failure. In order to cause a failure, an error needs to propagate to
the system output. Fortunately, not all errors cause failures. Two key factors decide
whether an error will actually lead to failure:

1. The structure of the system, concretely, the type of redundancy that it contains:

• protective redundancy - intentionally integrated into the system in order
to prevent errors from causing failures;

• unintentional redundancy - intrinsic part of the system that sometimes
has the same effect as the protective redundancy.

2. The behaviour of the system - the part of the system that contains the error
might be overwritten, or simply, never used.

The presence of an error in the system can be reported by error message or signal.
In such case, the error is detected. A latent error is undetected error which exists
in the system.

The hypothesized or adjudged cause of an error is called a fault. A fault is
an abnormal condition in the system that can be caused by internal factors (e.g.
design/production flaw, wear out...) or external factors (e.g radiation, malicious
attack...). The faults that lead to errors are referred to as active faults, whereas
dormant faults do not result in errors.

There are several ways for faults classification. One of the most commonly used is
the classification according to the fault duration or persistence which divides the faults
into three distinct classes: transient, intermittent and permanent. Transient faults
have short duration and usually occur as a result of electromagnetic interference or
noise. Permanent faults are caused by physical defects in the hardware due to
design/manufacturing problems, overheating or wear out and typically remain in the
system until repair is performed. Finally, intermittent faults reappear from time
to time and are usually caused by voltage or temperature fluctuations.

Essentially, an error occurs through fault activation. 2 A propagation of an error
to the system output results in failure. Finally, a failed system might cause a fault to
another system which receives its service(s). Figure 2.2 illustrates the complete chain
sequence of threats to dependability.

2A fault can be activated either by some external source or internally as a result of some com-
putation processes/environmental conditions.
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Figure 2.2: The fundamental chain of dependability threats. (Adapted from:
Avizienis et al. [13])

Dependability Means

In order to attain the dependability attributes, or equivalently, to prevent the depend-
ability threats, adequate dependability means are necessary. Dependability means is
actually a set of techniques which can be categorized into four subsets:

1. Fault prevention - includes general engineering techniques whose goal is pre-
venting occurrence or introduction of faults. Examples of such techniques are
shielding, radiation hardening, following rigorous design rules and maintenance
protocols, etc.

2. Fault tolerance - aims to keep delivering correct service, i.e. to avoid failures in
a presence of faults. In general, it is implemented using error detection followed
by recovery. The error detection can be accomplished in two ways: during
normal system operation (concurrent detection) or while system operation is
temporarily suspended for fault/error checking (preemptive detection). After an
error detection message has been signalled by the system, recovery is performed.
The goal is to transform the system state that contains errors and potential
faults, into an error-/fault-free state. Recovery from errors is conducted by
error handling which can be done in three ways:

• rollback - restoring a previously saved error-free state in the system;

• rollforward - bringing the system to a new, error-free state;

• compensation - eliminating the errors from the system by relying on redun-
dant components. If there is enough redundancy in the system, explicit
error detection doesn’t have to be performed since the correct state will be
provided by the redundant components. This type of recovery is known
as fault masking. A fault will be masked only if the majority of the
redundant components contain the correct system state.

Fault handling is a type of recovery that prevents reactivation of known faults.
It is typically done in four steps:

• fault diagnosis - identification of error causes, types and locations;

• fault isolation - exclusion (logical or physical) of the faulty components
from the system operation;

• system reconfiguration - activation of spare components or task reassign-
ment to failure-free components;
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• system reinitialization - system update with the new configuration.

3. Fault removal - can be performed during both development and use phases
of the system. While a system is being developed, the fault removal is usually
conducted in three possible steps: verification, diagnosis and correction. First,
the system needs to go through the verification process which checks whether
given properties defined as verification conditions are met. If that’s not the
case, the remaining two steps have to be taken: fault diagnosis to determine
why the verification failed followed by adequate corrections. Ultimately, the
system needs to pass through the verification once again. This is necessary to
check whether the fault removal was successful. During the system usage, fault
removal is performed through corrective or preventive maintenance. The goal
of the corrective maintenance is to remove faults that caused errors reported
by the system, whereas the preventive maintenance aims at eliminating faults
before they lead to errors during normal operation. In summary, fault removal
can be seen as a means to reduce the number and severity of faults.

4. Fault forecasting - estimates the current number, the future rate and the
possible consequences of faults. It is done by qualitative and quantitative eval-
uation of the system behaviour with respect to fault activation or occurrence.
A well-established and widely used method for fault forecasting is fault injec-
tion (FI). By employing fault injection, the behaviour of the system containing
faults can be observed and adequate actions regarding fault prevention/fault
tolerance/fault removal can be planned.

Common Dependability Measures

As previously pointed out, dependability attributes of a system can be evaluated only
by using probabilistic approaches. Logically, quantitative dependability measures are
expressed through concepts of probability theory.

Let the continuous random variable T denote the lifetime of a computing system
(the time until it fails). Furthermore, let the probability density function (PDF)
and the cumulative distribution function (CDF) of T be denoted by f(t) and F (t),
respectively. Since the lifetime cannot be negative, the functions are defined for t ≥ 0
only. The relationship between f(t) and F (t) is given by

f(t) =
dF (t)

dt
(2.1)

As a PDF, f(t) has to fulfill the condition f(t) ≥ 0 as well as

∞∫
0

f(t)dt = 1 (2.2)
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for t ≥ 0 [16]. Next, let F (t) be the probability that a system failure will occur before
time t

F (t) = P (T ≤ t) =

t∫
0

f(x)dx (2.3)

Thus, the reliability of a system can be expressed as the probability that the system
will survive until time t, given that it was operating correctly at time 0

R(t) = P (T ≥ t) = 1− F (t) = 1−
t∫

0

f(x)dx =

∞∫
t

f(x)dx (2.4)

Equation 2.4 indicates the reliability of a system starting operation at time 0 and
expected to fail at future time t. However, it is of particular interest to determine the
probability that an actively used system will fail during the time interval [t, t + ∆t],
given that no failures occurred before time t. This measure represents the system
failure rate (sometimes called the hazard rate), usually denoted by λ(t) and can
be mathematically expressed as

λ(t) =

t+∆t∫
t

f(x)dx

[(t+ ∆t)− t]R(t)
=

∞∫
t

f(x)dx−
∞∫

t+∆t

f(x)dx

(t+ ∆t− t)R(t)
=
R(t)−R(t+ ∆t)

∆tR(t)
(2.5)

Note that Equation 2.5 represents a conditional probability, the condition being the
system experienced no failure prior t. That’s why the denominator contains R(t).
If the observed time interval is infinitesimally small, the failure rate turns into the
instantaneous failure rate. It can be calculated as the limit of λ(t) as ∆t approaches
zero:

h(t) = lim
∆t→0

R(t)−R(t+ ∆t)

∆tR(t)
(2.6)

where h(t) is the hazard function.
The failure rate λ(t) is defined as the frequency with which a system fails, i.e. the

number of failures per unit time. While any measure of time can be used, it is most
commonly expressed in Failures In Time (FIT) which represents the number of
failures in one billion (109) hours of system operation. Figure 2.3 shows the bathtub
curve which, as said, depicts the evolution of the failure rate over a system lifetime.

The bathtub curve is a sum of three components: early life (infant mortality)
failures, constant (random) failures and wear out failures. It can be divided into
three characteristic phases or regions:

• Region I (infant mortality) - the early life of a system characterizes with high
failure rate that sharply decreases. Defects related to the manufacturing process
are the most common cause for the high failure rate during this phase.

• Region II (useful life) - following the infant mortality period, the failure rate
stabilizes and remains constant during the most part of the system operational
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Figure 2.3: The bathtub curve.

life. The failures characteristic for this phase are random, usually caused by
soft errors and dynamic variations (See Section 2.5).

• Region III (wear out phase) - as the system ages, the failure rate starts to
increase. During this final phase of the system lifetime, components tend to fail
due to exhaustion and fatigue.

Since the failure rate is constant during the useful life phase of the system (λ(t) =
const.), it can be safely assumed that the random variable T (system lifetime) has
an exponential distribution with parameter λ over this interval [47]. Therefore, the
PDF of T would be f(t) = λe−λt and Equation 2.4 can be rewritten as

R(t) =

∞∫
t

f(x)dx =

∞∫
t

λe−λxdx = e−λt (2.7)

The expected value E[T ] is the weighted average of all possible values of T and it is
given by

E[T ] =

∞∫
0

tf(t)dt =

∞∫
0

tλe−λtdt (2.8)

Integrating by parts results in

E[T ] = −[te−λt
∣∣∣∣∞
0

] +

∞∫
0

e−λtdt (2.9)
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By applying L’Hôpital’s rule, the first addend from Equation 2.9 evaluates to 0 since
lim
t→∞

t
eλt

= lim
t→∞

t′

(eλt)′
= lim

t→∞
1

λeλt
= 0 and lim

t→0
te−λt = 0 whereas e−λt = R(t) (see

Equation 2.7). Therefore,

E[T ] =

∞∫
0

R(t)dt (2.10)

Alternatively, the second addend from Equation 2.9 can be easily transformed into

1
λ

∞∫
0

λe−λtdt. Recall that
∞∫
0

λe−λtdt is the integral of the PDF of T which must integrate

to 1 (see Equation 2.2). Thus,

E[T ] =
1

λ
(2.11)

Equation 2.10 and Equation 2.11 represent what is known as Mean Time To
Failure (MTTF). It is a widely used dependability measure defined as the expected
time of the occurrence of the first system failure [47]. For repairable systems, the
measure Mean Time To Repair (MTTR) is commonly used to specify the average
downtime, that is, the time period from the moment of failure to the restoration of
the correct service. MTTR is usually expressed through the repair rate µ which
represents the expected number of repairs per unit time. The relationship between
MTTR and the repair rate is similar to the relationship between MTTF and the
failure rate (MTTR = 1/µ). MTTR reflects the maintainability of the system which
is defined as the probability that a failed system will be repaired before time t [56].

Another frequently used dependability measure for repairable systems is the Mean
Time Between Failures (MTBF). It is defined as the average time of system
operation between failures [64].

MTBF =
Correct operation time

Number of failures
(2.12)

Assuming that a previously failed system is ideally repaired, the relationship between
MTTF and MTBF can be approximated as follows:

MTBF = MTTF +MTTR (2.13)

Sometimes the MTBF is misused as MTTF since MTTR is much shorter than MTTF
(MTTR << MTTF ). Indeed, the correct system operation is usually expected to
last for years, whereas the repair time should not exceed few hours [64].

Reliability and maintainability are related through the concept of availability.
Availability is defined as the probability that a system is operating correctly at any
given time. It can be calculated as

A =
MTTF

MTTF +MTTR
=
MTTF

MTBF
(2.14)

For non-repairable systems, the availability is equal to the reliability.
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2.3.2 Resilience

With regard to computing systems, the term resilience has been commonly used for
a long time as a synonym of fault tolerance. Unlike dependable computing, which is
well-established and well-documented concept, resilient computing began to attract
attention only quite recently. Although younger as a discipline, resilience is considered
to be broader field than dependability by introducing awareness of changes.

A change can be classified according to its:

• nature into functional. environmental or technological;

• prospect into foreseen, foreseeable or unforeseen;

• timing into short term, medium term or long term.

It is very important to note that the changes can affect or modify the dependability
threats either directly - by occurring in the system itself or indirectly - by occurring
in its environment. Furthermore, it is possible that the changes themselves can be
transformed into threats. In this regard, a change can be interpreted as a fault since
it may lead to a deviation from the correct service (error). As previously stated, an
error could result in a system failure. Therefore, the common thread binding the
changes and the threats is the fact that both could be an initial cause for a failure.
Section 2.5 discusses the potential failure origins in electronic systems.

Similar to the dependability means, Laprie in his paper [82] presents so-called
technologies for resilience:

• evolvability - ability to successfully accommodate to changes;

• assessability - ability to retain the conception of justified confidence;

• usability - ability to utilize the ubiquitous character of the computing systems;

• diversity - ability to prevent vulnerabilities to become single points of failure.

Especially important for resilient computing systems is the capability to evolve, or
to adapt to changes during operation time. A resilient system, which needs to be de-
pendable in the first place, normally accommodates adequate dependability means.
As descibed in Section 2.3.1, fault tolerance (and to some extent fault removal) is
performed during execution time, whereas fault prevention and fault forecasting are
mainly performed before the system launch. When facing a change, a resilient system
needs to appropriately cope with it. Obviously, foreseen and foreseeable changes are
easier to deal with than the unforeseeable ones. It is to anticipate that employed
fault tolerance techniques of a dependable computing system would effectively tackle
the expected faults (foreseen and foreseeable changes). However, during runtime, the
system may also experience unexpected faults (unforeseeable changes) which would
result in failure if not properly addressed. Therefore, by introducing an aspect of
adaptivity to a dependable system, or more specifically, to its fault tolerance mecha-
nisms, such system would have the ability to evolve, i.e. to retain its dependability
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despite the changes. A convenient way to achieve this is to add a high degree of
configurability to the components constituting the system, especially to the ones that
implement the fault tolerance techniques.

2.4 Power Consumption Fundamentals

Historically, power consumption has been a deciding factor influencing the choice of
technology for ICs production. Complementary Metal-Oxide-Semiconductor (CMOS)
technology has been dominating the IC market without any serious competitors for
more than three decades. However, as the MOSFET feature sizes entered the sub-
micron region, power consumption has become a problem for CMOS circuits as well.

Generally speaking, the sources of power dissipation in CMOS circuits belong to
one of the two major classes: dynamic dissipation Pdynamic and static dissipation
Pstatic. The total power dissipation of a circuit is equal to the sum of these two
components:

Ptotal = Pdynamic + Pstatic (2.15)

A circuit, or a circuit component consumes instantaneous power which can be
calculated as the product of the current that flows through the component and the
voltage across the component:

P (t) = I(t)V (t) (2.16)

The energy consumed or stored by the component over time interval T can be derived
by integrating the instantaneous power over T :

E =

T∫
0

P (t)dt (2.17)

Hence, the average power dissipated by the component over the considered interval
is given by:

Pavg =
E

T
=

1

T

T∫
0

P (t)dt (2.18)

2.4.1 Dynamic Power

When a circuit operates actively, it dissipates dynamic power. The greatest contribut-
ing factor to the dynamic power is the switching power, that is, the power necessary
to change the logic states of a circuit component. Figure 2.4 shows a simple CMOS
inverter driving a capacitive load. When the inverter input transitions from logical
’1’ to logical ’0’, the PMOS transistor turns ON and charges the output capacitance
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to VDD (Figure 2.4(a)). The energy stored in the capacitor is

ECL =

∞∫
0

IVDD(t)VOUTdt =

∞∫
0

CL
dVOUT
dt

VOUTdt = CL

VDD∫
0

VOUTdVOUT =
1

2
CLV

2
DD

(2.19)
whereas the energy pulled from the power supply is

EVDD =

∞∫
0

IVDD(t)VDDdt = VDD

∞∫
0

C
dVOUT
dt

dt = CVDD

VDD∫
0

dVOUT = CV 2
DD (2.20)

which means that the output capacitance stores only half of the energy from the
power supply. The other half is dissipated by the PMOS transistor in the form of
heat. When the inverter input switches from logical ’0’ to logical ’1’, the PMOS
transistor turns OFF while the NMOS transistor turns ON (Figure 2.4(b)). Such
transition discharges the capacitor and the energy previously stored in the capacitor
is dissipated by the NMOS transistor. The observed behaviour of the CMOS inverter
can be generalized to any CMOS gate that drives an output capacitive load.

(a) Transition from logical ’1’ to logical ’0’. (b) Transition from logical ’0’ logical ’1’.

Figure 2.4: Switching power.

If a gate switches at a frequency fsw during time interval T , its output capacitive
load will be charged and discharged fswT times. Therefore, the average switching
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power consumed by the gate can be calculated according to Equation 2.18:

Psw =
1

T
=
fswTCV

2
DD

T
= fswCV

2
DD (2.21)

Since the switching activities of most gates are less intensive compared to the switch-
ing activity of a clock signal, fsw can be replaced with αf where α is the activity
factor and f is the clock frequency. Thus, Equation 2.21 can be rewritten as

Psw = αfCV 2
DD (2.22)

The activity factor α actually represents the probability that a gate node changes
its state between logical ’0’ and logical ’1’. The value of α depends on the logical
function implemented by the gate. For example, the activity factor of a clock is α = 1
as it changes states every cycle. It has been empirically determined that the average
activity factor of static CMOS gates is approximately 0.1 [135].

Despite the switching power, another component that contributes to the overall
dynamic power is the short-circuit power. As illustrated in Figure 2.5, it is a power
dissipated due to the the short-circuit current that flows during a brief time interval
when both the PMOS and NMOS transistors are partially ON.

Figure 2.5: Short-circuit power.

The short-circuit power is directly proportional to the transition speed of the input
signal. Therefore, unless the transition speed of the input is much slower compared
to the output transition speed, the short-circuit power is only a small fraction (less
than 10%) of the whole [135]. In such cases, the overall dynamic power comes down
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to the switching power [53]

Pdynamic = Psw = αfCV 2
DD (2.23)

There are several different approaches for dynamic power reduction. Most of them
consider the voltage and frequency terms of the Equation 2.23. Since the supply volt-
age has quadratic relation with the dynamic power, it is preferred to choose minimal
value of VDD in order to reduce the power consumption. For example, the system can
be divided into multiple voltage domains where each domain will operate at its prefer-
able supply voltage level. Furthermore, the supply voltage can be dynamically scaled
according to the current operation mode - for example, a smart phone may operate at
high supply voltage level while the user is working with a contactless payment appli-
cation. On the other hand, if the smart phone is not actively used, the supply voltage
can be lowered to a level that is optimized for receiving calls/messages/notifications
only. In addition, if the frequency is adjusted proportionally to the supply voltage, a
cubic power reduction can be achieved. Finally, since the clock characterizes with an
extremely high activity factor, it would be greatly beneficial to prevent the unused
components/blocks from switching in order to reduce dynamic power. This can be
realized by employing an approach called clock gating, i.e. cutting off the clock when
it is not required. Section 3.2 gives an overview of some proven techniques used for
dynamic power reduction.

The low power techniques based on voltage and/or frequency scaling are highly
efficient, especially regarding dynamic power savings [53]. However, lowering the
supply voltage can have a negative impact on the system performance. Namely, the
act of supply voltage falling below certain critical value may result in incorrect system
operation due to slowing down of the transistor switching speed which leads to timing
errors [123, 58]. A timing error occurs when a destination flip-flop fails to capture
the correct data from a source flip-flop. Therefore, it is of key importance for systems
that utilize such low power techniques to enable some form of timing error protection.
A more detailed introduction to the timing errors is given in Section 2.5.3.

2.4.2 Static Power

In contrast to the dynamic power dissipation, static power is consumed even if there
are no switching activities. It is, therefore, enough for a CMOS gate to be connected to
a power supply in order to dissipate static power. Among several contributing factors
to static power consumption, the most important is the subthreshold leakage current
[15]. It is a drain-source current that ”leaks” even when a transistor is supposed to
be OFF. The value of the subthreshold leakage current can be approximated by the
following equation [53]:

Isub = µCoxV
2
θ

W

L
e
VGS−VTh

nVθ (2.24)

where µ is the carrier mobility, Cox is the gate capacitance, Vθ is the thermal voltage
kT/q (25.9 mV at room temperature), W and L are the dimensions (width and length)
of the transistor, VGS is the gate-source voltage, VTh is the threshold voltage and the
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parameter n is a function of the device fabrication process that ranges from 1.0 to
2.5.

Equation 2.24 states that the subthreshold leakage current increases exponentially
with the difference between the gate-source voltage and the threshold voltage. Thus,
in order to minimize the subthreshold leakage current and hence, the static power
consumption, the difference VGS−VTh should be kept as low as possible. Theoretically,
this can be achieved by decreasing VGS and/or by increasing VTh. In practice, scaling
of the supply voltage VDD (and hence VGS) has been performed to reduce the dynamic
power consumption and to follow the Dennard scaling rules. Table 1.1 shows how the
Intel processors supply voltages have been scaled across the processor generations.
However, the threshold voltage VTh had to be scaled at the same rate in order to
maintain the performance improvement of at least 30% per technology generation
[27]. In other words, increasing or keeping the threshold voltage constant while scaling
the supply voltage would lead to significant performance loss. Therefore, voltage
scaling achieves a trade-off between power consumption and performance: dynamic
power is reduced by lowering VDD, whereas VTh is lowered to maintain performance
which results in exponentially increased subthreshold leakage current. Unfortunately,
CMOS design reached a point where supply and threshold voltages can no longer be
reduced: VDD must be kept above 0.5 V, otherwise the logic state consistency cannot
be maintained; additionally, further VTh reduction prevents complete switching-off of
the transistors [60, 65].

In comparison to the dynamic power, static power was negligible in earlier tech-
nologies. However, starting from the 90 nm node, subthreshold leakage current, and
hence, static power has been gradually turning into considerable source of power
dissipation accounting for one-third [135] to one-half [27] of the overall chip power.

Subthreshold leakage current and static power in general are not frequency de-
pendent (see Equation 2.24), and thus cannot be reduced by lowering the clock speed
or by clock gating. While supply voltage scaling can reduce static power to some
extent, power shut-off or power gating of the idle components/blocks can completely
eliminate it.

2.5 Origins of Failures

There are numerous factors that can cause a computing system to fail. As previously
stated, a failure occurs as a result of an error propagation to the system output,
whereas the error itself is caused by activation of a fault. On the other hand, a
change, or a variation in a form of disturbance within a system or in its environment
may also lead to a failure. A question that naturally arises is: where do such changes
and faults originate and what causes them? While the answer mostly depends on the
fabrication process, it turns out that for the CMOS technology, the failure origins can
be categorized into spatial and temporal effects on the one hand, and dynamic
variations on the other hand [90, 32]. Figure 2.6 shows a categorization tree for the
CMOS technology failure origins which are more comprehensively described in the
following subsections.
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Figure 2.6: Failure origins categorization tree.

2.5.1 Spatial Effects

Also known as process variations or defects, the spatial effects are directly related
to the design and manufacturing processes. They depend on factors like circuit layout,
production environment and conditions, lithography variations etc. As the CMOS
devices scale towards atomistic dimensions, the complexity of the fabrication process
increases significantly. Consequently, the problem with the spatial effects gets worse.
Typically, the spatial effects are visible immediately after the manufacturing process
is finished and do not vary with time. Depending on the distance or the space between
the observed defects, the spatial effects can be divided into global or inter-die and
local or intra-die variations.

In general, global variations affect all transistors equally even if the distance that
separates them is ”long”. The effect of a global variation is the same regardless of
whether the transistors are located on the same or on a different die. In contrast, the
effect of a local variation differs among identically designed transistors even if they are
located on a same die. Most of the spatial effects occur as a result of local variations
which can be further classified as systematic or random. Systematic effects are related
to both the design and the manufacturing processes and may arise, for instance,
due to layout characteristics or apparatus imperfections. Random effects manifest
themselves as a mismatch between closely located identically designed transistors
and occur as a result of an inherent randomness in the process.

Spatial effects lead to fixed changes in physical parameters of the device which, in
turn, result in variations of its electrical parameters (e.g. threshold voltage or gate
capacitance) [136]. As a consequence, the circuit performance is deteriorated. The
spatial effects as such are out of the scope of this dissertation. However, protection
against timing errors as an indirect effect of the process variations is thoroughly
discussed later in the thesis.
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2.5.2 Temporal Effects

In contrast to the spatial effects, the temporal effects vary over time and become
visible when the circuit operates in a particular environment, under a given workload
and over a certain period of time. Depending on how they impact the circuit, the
temporal effects can be divided into permanent and transient.

Permanent effects inflict persistent damage to the circuit which usually leads to
degraded performance, malfunction or failure. Aging effects are typical represen-
tatives of this category. The circuit gradually degrades as it gets older. Conse-
quently, it usually experiences a permanent damage which in fact results in perfor-
mance degradation followed by malfunction and eventually, a failure due to timing
errors [118, 52]. As a result of the aggressive transistor scaling and the increasing
electrical fields strength, the aging effects have become a serious problem in mod-
ern technologies. Some of the most commonly observed aging effects include: hot
carrier injection (HCI), bias temperature instability (BTI), time-dependent dielectric
breakdown (TDDB) and electromigration.

Unlike permanent effects, the transient effects disturb the circuit operation only
temporarily. As soon as the source of the transient effect is eliminated, the circuit
returns to its normal operation. There are two types of transient effects: noise and
electromagnetic interference (EMI). Noise is an undesired and random perturbation
of a signal that originates from the circuit itself. In contrast, EMI is defined as the
influence on a circuit that originates from external signals. The external signals are
known as source signals, whereas the affected circuit is referred to as the victim circuit.
The source signals can be man-made (deterministic) or natural (random). Man-made
interference can be further categorized as functional 3 or accidental. For example, mo-
bile devices or microwave ovens may produce accidental EMI, while on-chip crosstalk
and simultaneous switching noise (SSN) are considered the most frequent sources of
functional EMI. Finally, the most common sources of natural EMI are atmospheric
noise (e.g. generated by lightnings during thunderstorms) and cosmic noise.

The ionizing radiation can be classified as a special type of EMI since it may
originate from both natural and man-made sources. Semiconductor electronic circuits
and systems are extremely vulnerable to ionizing radiation [17, 97]. During the last
four decades, numerous reports on radiation-related problems of different type and
severity have been published. Short retrospectives of some more significant incidents
due to ionizing radiation can be found in [97, 127]. The next subsection discusses the
effects of the radiation on the electronic devices in more detail.

Radiation Effects on Electronic Devices

The ionizing radiation environments contain subatomic particles or electromagnetic
waves that can disrupt the electronic device operation. Indeed, phenomena such as
Galactic Cosmic Rays (GCR) and Solar Particle Events (SPE) have sufficient energy
to ionize the semiconductor material and to potentially cause an unwanted, non-
destructive state change of the devices or even permanent circuit damage [17, 20].

3Occurs during normal operation of the circuits that generate the source signals.
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From that aspect, the space environment is the most hostile for semiconductor tech-
nology. For example, the GCRs (coming from all directions outside the solar system)
are composed of particles 4 and waves (gamma-, X-rays) that may reach extremely
high energies (up to 1011 GeV) [17]. Furthermore, the SPEs contain protons, heavy
ions and X-rays with energies of up to several GeV. Finally, the Earth’s magnetic
field has ability to trap charged particles in its magnetosphere 5 that possess energies
between several tens to several hundreds MeV. These particles form the inner and
outer Van Allen radiation belts around the Earth. In summary, the space environ-
ment is a serious threat to the electronic circuits embedded into satellites, spacecrafts
and high-altitude aircrafts.

Of course, ionizing radiation is also present on the Earth itself. Alpha parti-
cles produced by radioactive contaminants in some chip packaging materials and the
atmospheric neutrons are considered as major sources of terrestrial radiation. The
atmospheric neutrons are created as a result of a collision between GCR particles and
oxygen/nitrogen nuclei present in the Earth’s atmosphere. Other sources of radiation
at ground level include nuclear reactors, particle accelerators and specific industrial,
research and medical applications.

In order to avoid radiation-induced faults, the electronic devices, especially those
intended to operate in harsh environments, are usually designed using specific meth-
ods for radiation hardening. Such designed systems are referred to as radiation-
hardened or simply rad-hard systems.

The electrical disturbances that disrupt the normal circuit operation as a result of
a radiation event 6 are called Single Event Effects (SEE). This is a general term
that encompasses a whole class of destructive and non-destructive radiation-induced
faults in electronic devices. SEEs can cause both transient and permanent errors.
The transient errors, also known as soft errors are events which corrupt the data,
but do not permanently damage the device. On the other hand, the hard errors are
permanent and non-recoverable errors. Resilience to SEEs, especially to soft errors is
a widely investigated topic. Since this dissertation deals with error resilient processor-
based systems, a more detailed discussion with respect to soft errors is given in the
next subsection.

Soft Errors

A soft error is actually an unpredictable, random error that occurs as a result of a
single event effect. The error as such typically does not result in permanent damage
of the device. Nevertheless, soft errors could be the reason for serious unwanted out-
comes such as data corruption, malfunction or even a system crash. Both sequential
and combinational logic are impacted by soft errors. Depending on the affected circuit
type, different radiation hardening techniques are used for error detection, masking
or correction. Recovery is possible by reset, power cycle (turning the device off and
on) or by rewriting the storage element(s) if affected. The metric Soft Error Rate

4Mostly protons, but also alpha particles, heavy ions.
5Mainly electrons and protons.
6For example, strike of a highly energetic particle or electromagnetic wave.
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(SER) is used for quantification of the influence of the soft errors on an electronic
device. SER reflects the number of soft errors per unit time and is expressed in FITs.

Figure 2.7: MOSFET hit by a highly energetic particle.

The impact of a highly energetic particle on a MOSFET in its source/drain region
is illustrated in Figure 2.7. As a result of the ionization, electron-hole pairs are created
along the particle track through the oxide and the semiconductor materials. Many of
these charge carriers will recombine instantly. However, under influence of the electric
field, the intensity of the drift current will increase. Hence, certain amount of charge
will be collected in the depletion region which is one of the most sensitive segments
of the MOSFET. Due to the impact, the depletion region is deformed into funnel-like
shape. Several types of soft errors may arise if the collected charge in such sensitive
circuit node exceeds a threshold level known as critical charge (Qcrit):

• Single Event Upset (SEU) occurs when the SEE results in an undesired
state change (bit flip) of a storage element (e.g. a flip-flop or a SRAM cell). An
upset of two or more storage elements is called Multiple Cell Upset (MCU).
If two or more bits of the same word are affected, the upset is referred to as
Multiple Bit Upset (MBU).

• Single Event Transient (SET) is a voltage or a current glitch observed at
the output of a combinational logic gate. If a SET propagates and gets captured
by a storage element, it turns into a SEU.

• Single Event Functional Interrupt (SEFI) causes termination of the nor-
mal device operation due to a bit flip in a control register or disturbance of
other vital signals such as clocks or resets.

• Single Event Latch-up (SEL) occurs when a parasitic structure is formed in
the device that creates a conducting path between the power supply source and
the ground. Extremely high current will then flow between these two terminals
which may permanently damage the device due to local overheating.

One of the most significant and most widely-used approaches for mitigation of soft
errors is the Triple Modular Redundancy (TMR). TMR is a straightforward,
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efficient and very old technique first proposed by Von Neumann in the 1950s [131]. It
is implemented by simple triplication and majority voting. The apparent downside of
the TMR is the high overhead in terms of power, area and/or performance depending
on the used redundancy type.

It is important to emphasize that not every soft error affects the system behaviour.
Namely, there are several mechanisms that may impose a masking effect on an error.
For example, if a SEU occurs late in the clock cycle, the corrupted value might not
have enough time to reach the next stage flip-flops, especially if the path through
the combinational logic is long. This is known as temporal masking. Furthermore, a
corrupted value caused by an upset can be logically masked if it is, for example, OR-
ed with logical ’1’ or AND-ed with logical ’0’. Finally, in large and complex designs
such as processors, functional masking is quite common due to the fact that not all
functional units are used simultaneously. For instance, a SEU in a floating-point unit
logic will not affect the result of an integer instruction etc.

2.5.3 Dynamic Variations

There are two types of dynamic variations: voltage and temperature fluctuations. The
primary source of voltage fluctuations is referred to as power supply noise (PSN). PSN
is defined as the fluctuation in the power supply signals, correlated to the current flow
rate in a circuit under an influence of parasitic resistances and inductance of the power
delivery network (PDN) [23]. In other words, the intensity of the PSN depends on
the instantaneous current that flows through the PDN in the circuit. As it flows, this
current passes through resistive and inductive parasitics in the circuit power grid and
packaging that cause voltage drop (IR drop) and inductive noise (di/dt noise) [136].
The voltage ripple ∆VIRdrop due to IR drop can be calculated by using Ohm’s law:

∆VIRdrop = Rparasitic · i(t) (2.25)

where Rparasitic is the parasitic resistance and i(t) is the instantaneous current. Fur-
thermore, the current flow through the parasitic inductance Lparasitic produces voltage
ripple given by the following relationship:

∆Vdi/dt = Lparasitic ·
di

dt
(2.26)

Equations 2.25 and 2.26 suggest that the voltage ripples due to IR drop and inductive
noise are directly proportional to the current fluctuations which, in fact, are caused
by rapid changes of the system switching activities. PSN actually occurs as a result
of the combined impact of the both effects (∆VIRdrop + ∆Vdi/dt) and has a negative
influence on the functional and timing system performance. Concretely, the PSN
causes voltage variations which may slow down the circuit and induce timing errors
[123, 83].

The chip temperature is heavily influenced by the dissipated power. During nor-
mal operation, the chip dissipates heat that causes global, but also local temperature
variations in the regions where the switching activities are more intensive. Such
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regions are called hot spots. Furthermore, any changes of the environmental temper-
ature also result in global chip temperature fluctuations. Similarly to process and
voltage variations as well as aging effects, the temperature variations may lead to
timing errors due to reduced carrier mobility and increased interconnect resistance
[136]. Since this thesis considers error resilience in processor-based systems, the next
sub-subsection introduces the timing errors in more details.

Timing Errors

A typical computing system performs elementary operations on arbitrary data in the
time period between two active clock edges. An illustration of this concept is shown
in Figure 2.8(a). The process starts when the register REG A stores the incoming
data on an active clock edge and immediately forwards it to the combinational logic.
All operations to be performed in the combinational logic block between REG A and
REG B on the data should finish before the next active clock edge. At this point,
REG B stores the resultant data and forwards it to the next combinational logic
block. If the clock edge fires before the resultant data stabilizes to the correct value,
a timing error may occur (see Figure 2.8(b)).

(a) Data propagation between registers through combinational logic.

(b) Delayed data sampling by a register results in timing error.

Figure 2.8: Timing error due to slow data propagation.

Traditionally, a static approach known as guard-banding was the standardly used
method for avoiding timing errors. Guard-banding consists of inserting additional
safety voltage margins which guarantee correct operation under worst case conditions.
As the worst case scenario occurs rather rarely, this approach led to unnecessarily high
power consumption and significant energy waste. Therefore, it became preferable to
optimize the power consumption adaptively, that is, by adjusting the supply voltage
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according to the current operating/environmental conditions. However, as already
pointed out in Subsection 2.4.1, utilization of techniques for low power operation
based on supply voltage reduction may also lead to timing errors in case of voltage
overscaling.

To prevent timing errors that occur as a result of voltage overscaling, dynamic
approaches for protection against timing errors can be employed. Such techniques
typically require support of additional hardware which clearly incurs power and area
overheads. On the one hand, similarly to soft errors, timing errors can be detected or
masked [37, 38]. On the other hand, unlike soft errors which are uniformly distributed
in space and time, timing errors are easier to predict [22, 37].
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Chapter 3

Related Work

The relevant research and industry communities have been actively working on re-
ducing power consumption and increasing resilience for years. Indeed, the literature
abounds with contributions that focus on resilience and power optimization, mainly as
on two completely separate problematics. A plethora of diverse solutions at all layers
of the system stack have been proposed: improved device materials, new technologies,
design of hardened/fault-tolerant circuits and components, as well as development of
power-aware architectures and software. However, due to the conflicting trade-off
between the two metrics (explained in Section 1.2), closely-related works which con-
sider joint power minimization and resilience improvement are quite difficult to find.
A special issue on Low-Power Dependable Computing by IEEE in 2018 stresses out
the criticality of developing such approaches in general [142].

This chapter reviews noteworthy publications which aim at improving power ef-
ficiency, 1 resilience 2 or both. Thereby, the focus is put on standard and adaptive
techniques implemented at circuit and/or architecture level(s) in both single- and
multiprocessor-based systems. Special attention is paid to solutions that use en-
hanced latches/flip-flops for those purposes. Such circuits are intended to be replaced
with certain flip-flops/registers in the system during design time. An overview of
strategies for integration and replacement of enhanced circuits in processor-based
systems is also given.

The main points of the reviewed publications are briefly summarized. Addition-
ally, the advantages and disadvantages of each approach are adequately underlined.
Where applicable, the related works are compared against the solutions proposed in
this dissertation. Finally, the contributions of the thesis that go beyond the state-of-
the-art are recapitulated.

3.1 Improving Resilience

It was stated in Section 1.2 that increasing resilience requires intentional incorpora-
tion of redundancy in the system as well as that the hardware redundancy is widely

1Mainly regarding dynamic power.
2With respect to SEUs as well as to timing errors.
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utilized for this purpose. Depending on the errors to be mitigated, different hard-
ware redundancy schemes can be employed. For example, timing errors are mainly
addressed by integration of redundant hardware that serves as a delay monitor able
to perform either error detection/correction or error prediction. There are two
major ways to realize delay monitors: as replica circuits or as in situ monitors
(ISMs). While the replica circuits are easier to implement, they are limited to ad-
dressing only timing errors which resulted from global variations. In contrast, the
ISMs are capable to deal with both global as well as local variations. Furthermore,
combining ISMs with structures able to mitigate e.g. soft errors could further in-
crease the system resilience significantly. As a result, using ISMs is preferred over
using replica circuits. Related works that rely on ISMs for resilience improvement are
discussed in Subsection 3.1.1.

As previously explained, the timing errors occurrence is tightly connected to the
supply voltage reduction. Therefore, quite often the techniques for low power based
on voltage scaling need to be implemented along with techniques for timing error
resilience. Section 3.3 elaborates on this in more detail.

The hardware redundancy for soft error mitigation is typically implemented as an
M-of-N system, that is, as a system composed of N identical components in which
at least M have to deliver correct service. All M components in the system share
the same input(s). As a result of faults or variations however, the components may
produce different outputs. Hence, the output of an M-of-N system is determined by
a majority voter. This is a circuit which receives N inputs x1, x2, ..., xN and checks
whether a majority M of them are equal. In such case, the value shared by the
majority components is forwarded to the output. To avoid ambiguity, usually N is
an odd number and M = dN/2e [79].

The M-of-N systems in the literature are also known as N-Modular Redundant
(NMR) systems. Subsection 3.1.2 focuses on the fundamentals of NMR systems as
well as on related works which utilize NMR structures as resilience mechanism.

3.1.1 In Situ Monitors (ISMs)

ISMs are intended to replace timing critical registers in the system during design
time. Typically, ISMs are realized by augmenting regular registers with redundant
latch/flip-flop-like structures. Functionality-wise, the ISMs are usually designed ei-
ther to detect or to predict timing errors. The error detection approach usually
requires less complexity, area and power. However, it introduces performance penal-
ties as some error recovery mechanisms have to be employed to correct the detected
errors. Often, such performance degradation is not acceptable. On the other hand,
the error prediction approach requires more hardware per ISM, but is able to warn the
system before the occurrence of a timing error and therefore, performance penalties
are avoided.

A paper by Bowman et al. [28] proposed two latch-based ISM circuits for timing
error detection: dynamic transition detector with a time-borrowing datapath latch
(TDTB) and double-sampling static design with a time-borrowing datapath latch
(DSTB). TDTB occupies smaller area and consumes less power in comparison to
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DSTB, but requires higher design effort. On the other hand, DSTB is easier to
implement and despite timing errors, it is also able to detect soft errors. The ISMs
are evaluated on a test chip imitating a processor produced in 65 nm technology.
When an error is detected, the system enters into recovery mode based on instruction
replay at lower frequency. According to the authors, such designed system could save
between 31% and 37% power at a cost of degraded performance.

Lin et al. introduced a self-checking ISM design for complete pipeline protection
referred to as SETTOFF (Soft Error and Timing Error Tolerant Flip-Flop) [86, 87].
SETTOFF is capable of detecting timing errors, SEUs and SETs. Thereby, it is
possible to correct a SEU on the fly by inverting the state of the flip-flop immediately
after the error detection. For recovery from a timing error or from a SET, a pipeline
replay at the architecture level is performed. The proposed approach was implemented
in a 65 nm OpenRISC processor. It is reported by the authors that compared to
traditional error protection techniques such as TMR, SETTOFF occupies over 30%
less area and consumes 80% less power.

Soft error mitigation (SEM) as well as soft and timing error mitigation (STEM) are
two ISM-based designs proposed by Avirneni et al. that rely on multiple data clocking
[11, 10]. As suggested by the names of the ISMs, SEM tackles soft errors, while
STEM addresses both soft and timing errors by means of error detection. SEM and
STEM are both composed of three flip-flops where each flip-flop uses a different clock.
The clocks operate at the same frequency but have different phases. Such approach
could potentially put the flip-flops into a metastable state and thus, requires extra
circuitry to deal with metastability. Additional buffers are also necessary to control
the phase difference between the clock signals. Of course, insertion of additional
circuitry results in larger area and power overheads. In a case of an error, SEM is
able to restore correct operation without performance loss, whereas STEM requires
invocation of error recovery procedure. Evaluation of the proposed ISMs is performed
on a DLX processor implemented in 45 nm. No data regarding the cost of the ISMs
in terms of area and power is provided by the authors.

A bit flipping ISM for timing error tolerance was presented by Valadimas et al.
[130, 129]. When a timing error is detected, the ISM inverts its output value to
perform error correction. It takes only one clock cycle to correct the timing error.
During this period, to avoid state corruption, the system is stalled by means of
clock gating. Since the approach suffers from metastability issues, incorporation
of appropriate circuits to prevent the ISM from entering into metastable state is
necessary. As to be expected, every insertion of extra hardware leads to increased
area and power consumption. The proposed ISM was implemented into 65 nm MIPS
processor for evaluation. In comparison to the non-ISM MIPS processor equivalent,
the authors reported 4.5% higher power consumption and 2% area increase.

3.1.2 NMR Structures

The NMR structures perform fault masking rather than fault detection and cor-
rection. Such feature is of key importance for systems with tight timing constraints
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where performance degradation due to error recovery is not acceptable. In general,
an NMR system is able to mask n = bN/2c faults.

Assuming that the components in an NMR structure fail independently and per-
manently, i.e., if no component repair takes place, one can calculate the reliability
of an NMR system RNMR as the probability that at least M components function
correctly at time t. If R(t) denotes the reliability of a single component, then RNMR

can be calculated using the binomial distribution formula [79]:

RNMR(t) =
N∑
i=M

(
N

i

)
R(t)i(1−R(t))N−i (3.1)

Alternatively, if n is the maximum number of faults that an NMR system is able to
mask, then RNMR can be calculated as:

RNMR(t) =
n∑
j=0

(
N

j

)
R(t)N−j(1−R(t))j (3.2)

In contrast to the delay monitors which are typically implemented at circuit level,
NMR structures (especially TMR), can be realized also at architecture as well as at
system level.

Triple Modular Redundancy (TMR)

TMR is the most popular M-of-N (NMR) system which is composed of three identical
components and at least one voter (Figure 3.1(a)). To put it formally, TMR is a 2-
of-3 system where N = 3 and M = 2. Therefore, it requires a majority of two or
three components with equal outputs that will be selected by the voter(s) as system
outputs. If the TMR contains only one voter, then the voter becomes a single point
of failure in the structure.

(a) Block diagram of a TMR structure. (b) Reliability of a TMR structure compared to
the reliability of a single component.

Figure 3.1: TMR structure.

44



Assuming an ideal voter, the reliability of a TMR system RTMR can be easily
calculated by replacing N = 3 and M = 2 in Equation 3.1 or N = 3 and n = 1 in
Equation 3.2 respectively:

RTMR(t) =
3∑
i=2

(
3

i

)
R(t)i(1−R(t))3−i =

1∑
j=0

(
3

j

)
R(t)3−j(1−R(t))j = 3R(t)2−2R(t)3

(3.3)
For an exponentially distributed lifetime of a TMR system with constant failure rate
λ(t) = const., Equation 3.3 can be rewritten as

RTMR(t) = 3e−2λt − 2e−3λt (3.4)

whereas the MTTF for a TMR system MTTFTMR can be calculated based on Equa-
tion 2.10 as

MTTFTMR =

∞∫
0

RTMR(t) =

∞∫
0

(3e−2λt − 2e−3λt)dt =
5

6λ
(3.5)

Figure 3.1(b) shows a graphical comparison between the reliabilities of a single
component and a TMR structure for λ = 1. The graph gives an impression that a
TMR system is more reliable than a single component only up to a specific point in
time - the intersection between the two curves. Additionally, Equation 3.5 suggests
that even with an ideal voter, the MTTF of a TMR system is lower than the MTTF
of a single component (see Equation 2.11). However, recall that Equations 3.4 and
3.5 were derived under assumption of independent and permanent faults. Of course,
in reality this is not always the case. Quite frequently, due to transient faults, the
components may experience temporal functionality disruption following which they
continue normal operation. Hence, the reliability and the MTTF of a TMR system are
significantly higher if transient faults are taken into account. Finally, while the voter
in reality is never ideal and represents a single point of failure in a TMR structure,
the probability of voter fault is quite low due to its low complexity and small area
occupation.

TMR is the most widely used fault-tolerant technique and as previously empha-
sized, there are abundance of approaches in the literature which utilize some form of
TMR at a certain layer of the system stack. While some works propose triplicated
registers in the processor [54, 57], others introduce triplication of entire pipelines
[126, 139]. Formation of core-level TMR or even NMR groups in multiprocessors sys-
tems containing more than two cores has been also a topic of investigation [119, 74].

3.1.3 Cross-Layer Approaches

Every computing system can be abstracted as a stack consisting of multiple layers. It
turns out that such systems are susceptible to faults at every abstraction layer, even
though it was formerly assumed that the underlying hardware of the most computing
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devices 3 delivers correct service throughout the entire system lifetime [92, 91]. As
a result of the aggressive technology miniaturization, this assumption does not hold
anymore. An error produced at a lower layer could indeed propagate to the highest
layer and cause a failure if not properly handled. A classic fault tolerant design
approach would be to implement the error handling mechanisms on the same layer
where the error was detected [31]. However, some studies [31, 44] argue that such
approach introduces more drawbacks than advantages. Even though concentrating
resilience mechanisms in the circuit and/or architecture layer simplifies the design of
the higher layers, it also imposes high costs in terms of performance, area and power.

On the other hand, the systems that utilize cross-layer resilience techniques dis-
tribute the error handling responsibilities across the system stack. Such systems are
considered capable to save power and chip area by handling less critical resilience
threats at the higher layers. This is possible by activating/deactivating resilience
mechanisms based on information provided at each layer of the system stack. A
crucial prerequisite for cross-layer cooperation is considered the flow of some critical
information between the layers. The right side of Figure 3.2 shows how the so-called
resilience tasks [31] might be distributed among the layers. In the figure, the dots de-
note participation of the layers in a task, while the arrowed lines indicate the direction
of the information flow.

Figure 3.2: System stack and distribution of the resilience tasks across the
layers. (Adapted from: Carter et al. [31])

Cross-layer data flow is illustrated by Mitra et al. [92, 91] with a simple ex-
periment. The experiment is defined as follows: how to identify an optimal subset
of a given flip-flop set in a particular design to be protected from soft errors using
Built-in Soft Error Resilience (BISER)? BISER is a special flip-flop design technique
which enables soft error correction with minimal area and power overheads [93]. The
remaining flip-flops from the given set are to be protected using architecture level
technique, concretely, single parity bit. Thereby, two sets of 50% and 90% respec-
tively of all the flip-flops are randomly chosen to be protected against soft errors.

3Excluding safety- and mission-critical systems.
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From the formed sets, subsets of 0%, 20%, 40%, 60%, 80% and 100% flip-flops are
randomly chosen to be protected using single parity bit, whereas the remaining are
protected using BISER. The reported results from the experiments show that for each
case, the optimal design in terms of both area and power overheads, uses a mix of
BISER and single parity bit. It is, however, assumed that the area and power costs
of a BISER flip-flop are 2.3 times higher than the corresponding costs of an unpro-
tected flip-flop. Despite focusing only on two layers, this experiment demonstrates
the effectiveness of the cross-layer resilience approach. However, it addresses only one
resilience mechanism - soft errors.

Cheng et al. presented CLEAR (Cross-Layer Exploration for Architecting Re-
silience) [35, 36] - the first cross-layer framework that spans across three or more
layers. Radiation induced soft errors in processor cores are in the main focus of this
work. The specific soft error types addressed are Silent Data Corruption (SDC) and
Detected but Uncorrected Error (DUE). CLEAR is able to automatically explore nu-
merous resilience techniques and to combine them across the system stack. Thereby,
798 technique combinations are reported in the paper [35]. From all combinations,
the framework selects only those able to achieve required resilience level at minimal
costs. CLEAR is evaluated on two different processor architectures: one simple in-
order core and one complex out-of-order core. Each core executed 18 application
benchmarks in their entirety.

One of the 798 combinations that were explored by CLEAR is reported as a
highly promising approach. Concretely, this particular combination consists of selec-
tive circuit level hardening using LEAP-DICE [75] 4, logic layer parity checking and
microarchitectural recovery. As an example, for SDC improvement of 50 times, this
combination delivers 1.5 times and 1.2 times energy savings for the out-of-order and
the in-order cores respectively compared to using LEAP-DICE only.

CLEAR is a very complex and extensive framework that sets new standards for
development of future cross-layer resilience approaches. However, it concentrates
solely on soft errors and observes their effects only on general-purpose processors.

Although showing encouraging results regarding resilience, 5 in general, the exist-
ing cross-layer approaches are often costly in terms of performance, area and power.
A more detailed overview of the cross-layer resilience design methods is given in the
publication [VKK17].

3.2 Improving Power Efficiency

Reducing power consumption, especially in mobile, handheld and battery-operated
computing devices, has always been an important research topic. Nowadays, as a
result of the challenges and trends discussed in Chapter 1, its relevance increased
even further, making power optimization one of the most-widely investigated areas in
modern computing. The extensive research conducted over the years led to develop-
ment of numerous methods for reduction of both dynamic and static power. Some of

4Layout Design through Error-Aware Transistor Positioning-Dual Interlocked Storage Cell
5Mainly to soft errors.
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the most commonly used techniques for dynamic power reduction in processor-based
systems are clock gating and dynamic voltage and frequency scaling (DVFS).
The next subsections discuss these techniques in more details. While clock gating re-
duces exclusively dynamic power, DVFS is able to decrease also static power to some
extent [99].

3.2.1 Clock Gating

Clock gating is one of the simplest and most mature low power techniques. It con-
sists of deactivating the clock signals that synchronize registers within temporarily
unused system components or blocks. Such action would actually prevent switch-
ing activities in the clock-gated registers, but also in the downstream combinational
logic. Therefore, clock gating could be extremely effective in reducing dynamic power
consumption. Recall that exactly the clock characterizes with the highest possible
activity factor (see Section 2.4.1).

The implementation of clock gating is quite straightforward. In theory, logically
ANDing the clock with an enable signal would be sufficient. In practice, however, the
AND gate may produce glitches if the enable signal is not stable while the clock is
active. A latch is typically used to avoid glitching (Figure 3.3).

Figure 3.3: Typical clock gating implementation.

A study by Pokhrel [102] compares the power consumption of a chip with clock
gating to an almost identical chip without clock gating. Thereby, power savings be-
tween 34% and 43% are reported, depending on the operation mode. Due to its
implementation simplicity and high effectiveness, this technique is massively used in
modern processor-based systems, regardless of their class or domain. However, utiliz-
ing clock gating makes sense only if there is a substantial quantity of idle components
that can be disconnected from the clock for considerable time period. 6

3.2.2 Dynamic Voltage and Frequency Scaling (DVFS)

DVFS is a well-established power reduction technique based on pre-characterized pairs
of operating frequencies and corresponding supply voltage levels. Depending on the

6For example, it doesn’t make sense to implement clock gating for a 1-bit register which is idle
for several cycles only.
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system workload or performance requirements, an adequate pair of voltage/frequency
values is dynamically selected during runtime.

Processor-based systems started to utilize DVFS as a standard low power tech-
nique shortly after it was first proposed by Weiser et al [134]. As a matter of fact, most
of the commercial processors manufactured in the last two decades have the ability to
scale the supply voltage level within a strictly defined range. Note that, to avoid tim-
ing errors, frequency should be also adjusted accordingly together with voltage. For
example, DVFS in Intel processors has been implemented through Enhanced Speed-
Step technology [73]. It is a software-controlled technology that enables processors to
select among multiple voltage and frequency pairs by writing into a special-purpose
register [89]. As a result, supply voltage specifications for these processors are given in
ranges instead of absolute numbers (see Table 1.1). Table 3.1 shows voltage/frequency
pairs for the Intel Pentium M processor with Enhanced SpeedStep technology.

Table 3.1: Voltage/frequency pairs for implementation of DVFS in the Pen-
tium M processor. (Source: Intel [89])

Voltage Frequency
(V) (GHz)

0.956 0.6
1.004 0.8
1.116 1.0
1.228 1.2
1.308 1.4
1.484 1.7

Utilizing DVFS is extremely practical when there are no demands for high per-
formance computing or when a battery-operated processor-based system aims at sav-
ing energy. In such cases, the processor can select an appropriate pair of lower
voltage/frequency operating points. Plenty of DVFS implementations for differ-
ent processor-based systems can be found in the literature. Some of the reported
power savings range from 12% in mixed criticality systems [68] to 34% in commercial
processor-based systems [84].

Voltage/frequency pairs for DVFS are pre-characterized by worst-case guard-
banding during design time. Therefore, DVFS is unable to adapt the system to
dynamic variations in the environment nor the chip itself. This is especially rele-
vant for contemporary processor-based systems implemented in most recent nanoscale
technologies which are known to be highly susceptible to dynamic variations.

3.3 Improving Resilience and Power Efficiency

In Subsection 2.5.3 it was pointed out that dynamic variations may lead to timing
errors as well as that the basic precondition for addressing timing errors is to con-
stantly observe the system performance. For this purpose, usually hardware delay
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monitors are used. Such circuits can be also practical when utilizing low power tech-
niques based on voltage scaling, since reducing the supply voltage may as well result
in timing errors.

The next subsection discusses adaptive voltage/frequency scaling (AVFS)
- an advanced low power technique that strongly relies on hardware delay monitors.
By tackling timing errors, delay monitors in AVFS-based systems have the potential
to provide both power efficiency and a certain degree of resilience.

3.3.1 Adaptive Voltage/Frequency Scaling (AVFS)

Unlike DVFS, AVFS has a capability to dynamically adjust voltage/frequency levels in
a system according to the current operating conditions. This is achieved by formation
of a closed loop between the AVFS building blocks whose function is to observe
the system performance and to act accordingly [132, 5]. Concretely, a closed AVFS
loop is formed between four key components: performance or delay monitor, AVFS
controller, voltage regulator and clock divider.

The performance or delay monitor is a specially-designed circuit with two
functions. First, it constantly observes system performance in terms of timing. By
monitoring circuits delay, 7 it detects/predicts timing errors. Second, it feeds the
AVFS controller with information regarding the performance. Based on the feedback
from the delay monitor, the AVFS controller decides whether it should decrease, in-
crease or keep the same voltage/frequency levels. Finally, the voltage regulator and
the clock divider driven by the AVFS controller simply set supply voltage/operating
frequency respectively to the adequate values. In case of detected timing errors, the
AVFS controller invokes appropriate recovery procedure.

Another notable difference between DVFS and AVFS is the fact that when using
DVFS, frequency is always scaled together with voltage, which doesn’t have to be the
case if AVFS is used. Within such closed-loop scheme, timing errors are dynamically
tackled. 8 Therefore, it is possible to simultaneously save power and preserve system
performance by scaling only the voltage and keeping the frequency constant. This
approach is known as Adaptive Voltage Scaling (AVS). Of course, some perfor-
mance penalties have to be paid for error recovery if the approach is implemented to
detect timing errors. On the other hand, the prediction approach allows the system
to avoid timing errors by dynamically increasing supply voltage level when necessary.

There are two main approaches for practical implementation of AVFS classified
according to the performance monitor type. As previously stated, delay monitors can
rely either on replica circuits or on in situ monitors.

AVFS with Replica Circuits

This approach uses replica circuits as delay monitors which operate under the same
conditions as the actual circuits in order to mimic the most critical paths within
the system (Figure 3.4). Adjustment of supply voltage/operating frequency is, thus,

7Delay may vary depending on several factors - dynamic, PVTA variations, faults etc.
8Either detected or predicted.
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performed by measuring speed of the replica path instead of the real critical path [30,
49]. However, reproducing the exact layouts of critical paths is difficult. Therefore,
simple and idealized circuits like inverter chains are used as replicas.

Figure 3.4: The replica path between registers RA and RB mimics the actual
critical path between registers A and B.

Implementing AVFS using this approach is convenient because integrating a
replica circuit does not require large design effort. Furthermore, it is suitable for
detecting global variations within the core. To avoid timing errors, the replica circuit
is usually designed to be slower (or longer) than the actual critical path. On the
other hand, this approach is unable to deal with local variations. The impact of local
variations on replica circuits differs from the impact on actual system components.
Such inconsistency would eventually lead to inappropriate voltage/frequency man-
agement. Therefore, an approach that will be able to handle both global and local
variations is preferred.

AVFS with In Situ Monitors

Since ISMs are located within the actual circuit, they have ability to keep track also of
local variations. This is achieved either by timing error detection/correction or timing
error prediction. The prediction-based approach is more practical because it allows
timing error avoidance and uninterrupted system operation. Namely, after reception
of a warning signal for a potential timing error, the system could take adequate action
through an AVFS controller to prevent the error from occurring. 9

One of the first and most significant works which rely on ISM-based AVS is Razor
[51, 50]. It consists of replacing flip-flops which lie on critical paths with so-called
Razor flip-flops. A Razor flip-flop is actually an ISM composed of a main (regular) flip-
flop augmented with a shadow latch connected in parallel (Figure 3.5). The outputs
of the regular flip-flop and the shadow latch are compared by a comparator. While
the regular flip-flop samples data input signals on an active clock edge, the latch is

9For example, it can increase the supply voltage level.
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transparent during the entire clock duty cycle. Therefore, if an input data transition
arrives early enough to meet the flip-flop setup time, both the regular flip-flop and
the shadow latch hold the same value which indicates correct operation. However,
if an input data transition arrives late to meet the regular flip-flop setup time, the
shadow latch still captures the correct data value. In this case, the compared output
values differ and as a result, a timing error is signalled by the comparator. The Razor
flip-flop then performs circuit-level error correction by restoring the correct data value
from the shadow latch into the main flip-flop. After occurrence of a timing error, the
system state is corrupted and recovery has to be invoked. Power saving in systems
using Razor is achieved by adjusting the supply voltage level according to the timing
error rate.

Figure 3.5: Schematic diagram of the Razor flip-flop. (Adapted from: Ersnt
et al. [51])

The Razor concept made a major breakthrough towards dealing with both global
and local variations as well as towards optimizing power consumption using ISM-based
AVS. It was evaluated on a 64-bit Alpha processor produced in 180 nm technology.
Thereby, the authors report energy savings from 12% to 38% in comparison to a
system using fully-margined DVFS without Razor support. However, Razor suffers
from several drawbacks: since it relies only on timing error detection, it requires
recovery mechanisms which introduce performance degradation as well as power and
complexity overheads. Furthermore, during longer periods without detected timing
errors, the supply voltage could be overscaled which might lead to increased timing
error rate later on. Additional problems related to Razor are metastability and short-
path constraint. The short-path problem occurs when the Razor flip-flop cannot
distinguish between a late transition from the previous clock cycle and a fast transition
from the current clock cycle. In such case, the Razor flip-flop alerts a false timing
error that triggers unnecessary recovery computations. This results in significantly
reduced performance and increased power consumption. Additionally, a recovery
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computation after a false error will result in signalization of false error again, thus
causing the system to enter into an infinite loop. To handle the short-path constraint,
buffers are inserted as a workaround. However, inserting buffers further increases area
and power consumption which, in fact, conflicts with the primary goal of this work.

The potential of ISMs was recognized promptly and a substantial amount of re-
search work has been conducted to improve the Razor design as well as to overcome
its limitations. In this direction, Das et al. introduced RazorII [43] - a simplified
ISM implementation which eliminates the metastability problem and performs error
detection exclusively on circuit level. The error recovery process is left to be handled
by the architectural layer using checkpointing and instruction replay. Similarly to Ra-
zor, the supply voltage level is dynamically adjusted according to the rate of detected
timing errors. In addition, RazorII is capable of detecting also SEUs. Evaluation and
testing of the proposed approach is performed on a 64-bit Alpha processor manufac-
tured in 130 nm technology. The authors report energy savings of approximately 33%
compared to a fully-margined non-RazorII DVFS system. Although RazorII can be
considered a big step forward with respect to Razor, it still suffers from disadvantages
specific to its predecessor - power and complexity overhead caused by buffers neces-
sary to overcome the short-path constraint and performance degradation resulting
from the error recovery process.

Bowman et al. [29] proposed an ISM-based approach for implementation of a
processor system that is resilient to dynamic variations and hence, to timing errors.
The approach relies on an ISM referred to as Error Detection Sequential design (EDS)
and utilizes adaptive frequency scaling (AFS) as a low power technique. Besides
reducing clock speed when necessary to avoid timing errors as well as to save power,
the system is also capable to dynamically increase frequency to maximize throughput.
When the EDS ISM detects a timing error, the system performs recovery process
based on instruction replay at half of the operating frequency. Evaluation of the
approach is performed on a LEON3 general-purpose core manufactured in 45 nm
technology. The main advantage of this work in comparison to Razor is the drastic
alleviation of the metastability problem. In comparison to a conventional, non-EDS
system, energy reduction of 22% at equal throughput or 41% greater throughput at
equal energy are reported.

Wirnshofer introduced a timing error predicting ISM for AVS implementation re-
ferred to as Pre-Error Flip-Flop (PEFF) [136]. Unlike the previously discussed error
detection-oriented, Razor-like designs, the Pre-Error approach is able to detect late,
but still non-erroneous data transitions (pre-errors). The PEFF issues a warning
signal to alert the system when a pre-error is detected (Figure 3.6). Hence, addi-
tional hardware overhead and performance penalties introduced by error recovery
computations are avoided. This makes the PEFF suitable for real-time applications.

A data transition is considered a pre-error if it occurs during a period called pre-
error detection window. This is a time interval before the active clock edge. It is
crucial to pick a length for the pre-error detection window as accurate and as robust
as possible. The author provides a comprehensive analysis regarding the choice of a
detection window length and how it affects the entire approach. In essence, longer
detection windows result in higher pre-error rates and lower power savings, while
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Figure 3.6: Schematic diagram of the Pre-Error flip-flop. (Adapted from:
Wirnshofer [136])

shorter detection windows increase power savings, but also increase the probability
of getting a timing error. 10 To define detection window length, the author exploits
the clock duty cycle which means that a detection window starts with the alternative
clock edge. Changing duty cycle is, however, possible only if the alternative clock
edge does not trigger logic events in the system. In this direction, Shan et al. [116]
proposed a timing error predicting ISM for near-threshold AVS with tunable pre-
error detection window (Figure 3.7). The approach has been evaluated on a SoC chip
implemented in 40 nm CMOS process.

Figure 3.7: Tunable pre-error detection window circuit. (Adapted from: Shan
et al. [116])

Voltage scaling in a system containing PEFF is performed based on pre-error
rate. When a pre-error rate is zero or near-zero, the AVS controller can reduce the

10Since the number of detected pre-errors decreases.
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supply voltage. On the other hand, high pre-error rate requires increasing of the
voltage level. If the pre-error rate keeps some medium value, the voltage can be held
constant. However, since voltage tuning is performed while the system is in operation,
idle or low-activity periods might lead to excessive voltage decrease. This would most
likely result in increased timing error rate later when the system activity intensifies.
To prevent the voltage overscaling problem from occurring, 11 a so called transition
detector is designed to observe the circuit activity. The transition detector is an
integral part of the Pre-Error Flip-Flop and plays an important role in the voltage
scaling process.

As shown in Figure 3.6, besides the Regular flip-flop, the proposed design contains
three additional D flip-flops (Inverted Clk FF, Transition FF and Pre-Error FF). The
Inverted Clk FF is a negative edge-triggered flip-flop and it is crucial for providing
pre-error detection window. The Transition FF monitors the input data activity and
observes whether a state change has occurred during the last clock cycle. If yes,
the Transition output is set to logical ’1’. Finally, the Pre-Error FF is responsible
for checking if a transition took place during the pre-error detection window. In
such case, the Pre-Error output is set to logical ’1’. Figure 3.8 illustrates how the
Transition and Pre-Error outputs are generated.

Figure 3.8: Generation of Transition and Pre-Error Outputs. DW designates
the pre-error detection window.

Unfortunately, the PEFF design has not been evaluated on complex systems such
as processors or SoCs. Instead, implementation and testing has been performed on
pipelined multiplier and discrete cosine transform (DCT) circuits. Up to 36% power
savings are reported at the expense of minimal overhead due to additional hardware
necessary to build the ISM and the AVS controller. Moreover, performance is pre-
served as timing errors are avoided. However, the PEFF, as proposed by Wirnshofer
is able to deal only with timing errors.

11This problem is specific to Razor-like approaches.
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3.3.2 Combinations of Techniques

Very often a combination of two or more techniques is necessary in order to get
resilience and power efficiency improvement. For example, systems intended to oper-
ate in hostile environments such as space are designed with error resilience in mind
and fault tolerance is crucial requirement here. However, power efficiency needs to
be addressed as well since such systems have to be powered by batteries or photo-
voltaic cells. It is interesting to note that high performance requirements of mod-
ern applications has ”forced” the otherwise conservative space industry to switch
to multiprocessor systems. For example, the dual-core GR712RC system has been
used by the European Space Agency (ESA) for high reliability space applications
[6]. Recently, the more advanced quad-core GR740 system has been introduced as an
archetype of the European Next Generation Microprocessor (NGMP) [62]. Protection
against radiation-induced soft errors in these designs comes down to register triplica-
tion and/or to using ECC codes on all on-chip RAM blocks which often significantly
increases the area and power overheads. To reduce power consumption, clock-gating
units are implemented, thus idle cores can be put to sleep mode. However, use of
advanced techniques such as AVFS and ability of the design to adapt to the actual
conditions in general seem to be missing.

A great deal of works are addressing resilience and power efficiency by combining
DVFS and application task mapping [114, 42, 111, 18]. A comprehensive overview of
such works is given by Yari-Karin et al. [140].

An approach which combines chip-level AVS and timing error-predicting flip-flops
in a quadcore multiprocessor was presented by Sato et al. [112]. While notable power
savings are reported by the authors, regarding error resilience, only timing errors are
taken into account.

Srinivasan et al. consider dynamic core reconfiguration in Asymmetric Multicore
Processors (AMPs) from perspectives of both susceptibility to soft errors and power
efficiency [122]. The idea is to find the optimal configuration of a specific core which
would result in best trade-off between soft error vulnerability and power consump-
tion for the application executing on that core. Along with soft error-aware core
reconfiguration, DVFS and power gating are used as low power techniques.

A power-robust quad-core multiprocessor system for space applications is intro-
duced by Simevski et al. [121]. The system is centered around a multiprocessor
framework that enables multimodal operation for dynamic adaptation to the require-
ments regarding resilience, lifetime and power consumption. Besides a default mul-
tiprocessor operation mode in which the cores operate independently, the framework
implements two additional operation modes: de-stress and fault-tolerant mode. In
de-stress mode only one core is active while the others are idle. This mode en-
ables reduced power consumption and increased system lifetime. The authors report
core-level AVS as a major power optimization technique despite the fact that the
implementation presented in this work lacks a typical AVS loop. Instead, the control
is transferred to the software layers. System resilience is provided by switching into
fault-tolerant mode and forming core-level DMR, TMR or QMR groups. However,
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error protection is missing in scenarios where the system is operating in default or in
de-stress mode.

3.4 Design and Implementation Strategies

In order to produce more resilient chips, it became necessary for the conventional
ASIC to undergo specific modifications. For example, the systems for space appli-
cations include standard fault-tolerant techniques known as Radiation Hardening By
Design (RHBD) in the design flow [113]. RHBD usually consists of making registers
robust to radiation by employing TMR and/or making power grids stronger [121].
This approach, however, results in dramatically increased overheads w.r.t. both area
and power consumption.

On the other hand, power optimization is traditionally considered at RTL level,
where most architectural decisions have already been made 12 [96]. Nevertheless, it
is frequently necessary to specify power-related implementation details requiring se-
mantics unsupported by hardware description languages (HDLs). Such power-related
specifications are referred to as power intents - often included in power-aware design
flows. Power intents are used to describe power domains, voltages, power cells 13

and power rail connections within the design [99]. On the downside, implementation
of some advanced low power techniques such as AVFS is not possible using power
intents only, as AVFS requires realization of closed control loop in hardware.

The previously-published works related to modified ASIC design flow regarding
resilience or power efficiency move generally in two distinct directions: towards mit-
igation of soft errors or towards mitigation of timing errors (due to supply voltage
scaling). However, the common thread of all works is the usage of particular ”en-
hanced circuitry” that needs to be placed in the system, or more often, replaced with
some of the system’s flip-flop/registers in order to achieve the desired goal. In the
former case, TMR flip-flops are used as soft error protection circuits, whereas in the
latter case, timing errors are addressed by employing ISMs. An overview of related
works for both TMR- and ISM-oriented approaches is given in Subsection 3.4.1 and
3.4.2 respectively.

3.4.1 TMR-Oriented Approaches

A method for improving design robustness to soft errors without deviating from stan-
dard ASIC design flow was proposed by Petrovic et al. [101]. The method relies on
specially designed TMR flip-flops that use standard, non-hardened flip-flops from a
technology library as building blocks. Evaluation is performed on a test chip contain-
ing shift registers. As radiation hardness is the main concern in this work, no data
regarding power/area overhead is available.

Ruano et al. [106] introduced a methodology for automatic, selective TMR flip-
flop insertion to reduce circuit complexity while meeting the specified reliability level.

12For example, usage of clock gating.
13For example switches, isolation, level shifters, etc.
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By analysing circuit’s topology and by using an iterative optimization algorithm, a
balance is maintained between two main design constraints - the reliability level and
the area cost. Unfortunately, the circuit type used for evaluation of the proposed
methodology is not revealed.

A similar approach is published by Torvi et al. [125]. Namely, a framework for se-
lective hardening to improve FIT rate is formulated as a linear optimization problem.
An unspecified IP core used extensively in safety-critical automotive microcontrollers
serves as a test vehicle for experiments. The authors report a soft error robustness
improvement of 32% at a price of 2% area increase.

Finally, a paper by Polian et al. [103] gives a comprehensive overview of techniques
for selective hardening. The obvious drawback of all these approaches is not taking
the power consumption into account.

3.4.2 ISM-Oriented Approaches

ISMs can be placed at intermediate points or at end points of critical paths. To
mitigate variation- or aging-induced timing errors more efficiently, ISMs are frequently
placed at intermediate points. The internal nodes are shared between more critical
paths, thus experience more transitions and higher activity compared to the end
nodes. Therefore, delay degradation can be detected faster [108]. On the other hand,
works that aim at employing some sort of adaptive regulation management in the
system usually place monitors at the end of critical paths.

ISMs at Intermediate Points

Insertion of ISMs at intermediate points was first proposed by Lai et al. [81]. The
goal is to reduce the number of ISMs in a design while efficient system health tracking
can still be performed. Linear Programming (LP) is used to solve the ISM location
selection problem. The ISM insertion is performed after the place and route phase. An
evaluation using benchmarks for commercial processors showed that the total number
of ISMs can be reduced by almost an order of magnitude if inserted at intermediate
nodes. This comes at a price of additional 6% to 14% power overhead in comparison
to the baseline designs.

Balef et al. [3, 19] propose an insertion flow for in situ monitoring of delay degrada-
tion based on dynamic monitor excitation. Thus, graph-based Static Timing Analysis
(STA) is performed to determine the most critical paths. Similarly to the approach
proposed by Lai et al. [81], ISMs are inserted at intermediate points along those
paths. The number of ISMs is determined during synthesis, but the actual insertion
is performed after place and route. The evaluation results performed on ARM Cortex
M0 processor showed that the number of ISMs can be decreased elevenfold compared
to end point approaches. On the downside, power and area overheads compared to
the baseline designs can exceed 10% and 11% respectively.
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ISMs at End Points

Of course, aging-/variation induced delay degradation monitoring can be successfully
implemented also by placing ISMs at the end of critical paths. A netlist-level sensor
insertion flow for in situ monitoring of timing slacks in SoCs presented by Sadi et al.
[109] confirms the efficiency of such approach. However, the proposed method is not
evaluated on entire system, rather individual processor units are used instead.

Obviously, just like TMR flip-flops, ISMs induce significant area and power over-
head in the design unless a proper strategy for insertion is not followed. In this regard,
a selective replacement method for timing error predicting flip-flops named Canary
FFs is introduced by Kunitake et al. [80]. To reduce area overhead, all flip-flops at
the end of critical paths that violate pre-defined timing constraints are replaced with
Canary FFs following synthesis and STA. An evaluation of the method on commer-
cial processors showed area overhead between 2% and 12% in comparison to baseline
designs.

A power-aware, better-than-worst-case ISM insertion flow based on timing spec-
ulation is published by Londoño et al. [88]. ISMs are inserted at end points in a
design following post-layout STA and critical path extraction. Although evaluated
on a 32-bit multiplier only, power savings of 49% at a price of 5% performance loss
has been achieved.

Another ISM insertion flow that aims at reducing power overhead caused by ISMs
is presented by Huang et al. [67]. This approach also suggests that ISMs are to be
placed at end points. Evaluation is performed on LEON3 processor and by replacing
only 20% of critical flip-flops in the processor’s Integer Unit (IU), power reduction
of 7% to 18% is reported. The performance degradation in this case is 16%. Details
regarding the ISM insertion flow are omitted.

3.5 Progress Beyond the State-of-the-Art

The thesis contributions were already briefly highlighted in Subsection 1.4.2. This
section elaborates what makes the presented contributions go a step further beyond
the current state-of-the-art.

As opposed to existing cross-layer approaches which focus exclusively on soft er-
ror resilience optimization, this dissertation proposes a cross-layer framework capable
also of saving power on top of providing resilience to both soft and timing errors in
processor-based systems. Several key features related to the structure of the frame-
work or to its practical implementation may be pinpointed as original thesis contri-
butions (see also the List of Own Publications on page xv):

• at the heart of the proposed framework lies the SWIELD multimodal flip-flop
implemented at circuit layer of the system stack. Complete description of the
SWIELD FF can be found in Section 4.1 as well as in the publication [VKK19].
Unlike solutions proposed in previously published related works, the SWIELD
FF can be used as both ISM and TMR flip-flop. Structure-wise, a baseline
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for the SWIELD FF design is an ISM concept similar to the Pre-Error Flip-
Flop [136]. The potential of the redundant hardware within the ISM is fully
utilized in order to build a configurable flip-flop with improved and enhanced
functionalities. Such a design enables the cross-layer framework to synergisti-
cally combine resilience- and power-aware techniques such as AVFS, selective
circuit level TMR and clock gating while the system is active. Metaphorically
speaking, the SWIELD FF cuts the additional voltage safety margins like a
SWord and protects against errors like a shIELD, and hence the inspiration for
its name;

• a flexible framework controller enables simple and centralized management of
the system operation regarding resilience and power consumption optimization.
Logically, the SOMU is located at architectural layer and it serves as a bridge
between SWIELD FFs and the higher layers of the system stack. Thus, all
framework-related actions in hardware required by the running applications or
the OS are performed fast and efficiently. Whenever necessary, the SOMU
can easily switch between SWIELD FFs operation modes and if needed, take
additional measures such as enabling/disabling frequency scaling or clock gat-
ing. Detailed description of the SOMU can be found in Section 4.2 and in the
publications [VKK19, VHKK20].

• the library of functions and procedures FFL is the only part of the cross-layer
framework implemented in software. FFL allows extremely easy manipulation
of the framework functionalities. Namely, by simple call of an appropriate
function or procedure, the programmer is able to set a plethora of configurable
parameters, get their current status or adequately switch between SWIELD
FFs operation modes. An FFL function/procedure call actually instructs the
SOMU to take necessary framework-related actions in hardware. Depending on
the function/procedure type, the action may be performed either at architecture
or at circuit layer of the system stack. The FFL is presented in Section 4.3 and
in the publication [VHKK21b].

• a simple and convenient strategy for integration of the cross-layer framework
in processor-based systems is presented in Section 5.1 and in the publication
[VHKK21a]. The integration strategy fits well to the standard ASIC design
flow and obviously refers only to the hardware constituents of the framework
(SWIELD FFs and SOMU). In contrast to the approaches discussed in Section
3.4 which are either ISM- or TMR-oriented and often evaluated only on individ-
ual hardware components rather than on entire systems, the proposed strategy
can be easily applied to any complex processor-based system, both single- and
multicore.

A key advantage of the proposed cross-layer framework is its complete indepen-
dence on type or architecture of the ”host” processor-based system. In other words, by
following the integration strategy, it is possible to implement the cross-layer frame-
work in any processor-based system that contains general-purpose core(s). Com-
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mercial processors can be also utilized. The only precondition is availability of the
processor’s RTL code.

Finally, it is important to note that the number of cores in a multiprocessor sys-
tem does not make the framework integration process more complicated. A successful
integration procedure for a single core is simply mirrored on each core in a multipro-
cessor. Hence, the number of cores in a system is completely irrelevant.
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Chapter 4

Cross-Layer Framework for Error
Resilience and Power Efficiency

As already mentioned, this thesis proposes a cross-layer framework for processor-
based systems. A key framework feature is the high configurability which allows
dynamic adaptation of the system to current conditions and requirements regarding
both resilience and power consumption. Moreover, the framework does not affect
the system performance and it can be implemented at negligible area overhead of
approximately 1.1% or less (see Section 5.3). The target system may be a single-core
as well as a multicore processor.

The general concept for implementation of the framework was shown in Figure
1.7 on page 13. Thereby, both the framework and the target system are depicted as
stacks composed of several layers. The figure only hints how the building blocks of
the proposed framework should be implemented at the corresponding layers of the
target system:

• the SWIELD FFs at circuit layer;

• the SOMU at architecture layer;

• the FFL at application/OS layers.

A more detailed overview of the cross-layer framework is given in Figure 4.1.
The figure presents a simplified block-diagram of a layered processor-based system
in which the framework has been already integrated. The rectangles surrounded by
the T-like shape denote the framework’s basic building blocks. It can be seen that
the entities in the figure are centered around the SOMU. SOMU is the framework
component which allows the processor to orchestrate the entire system operation.
For example, the SOMU is responsible for clock signal distribution to the remaining
system modules, thus frequency scaling and clock gating can be activated. By calling
the appropriate FFL procedure, these techniques can be easily enabled/disabled.
Also, dynamic supply voltage adjustment is managed by the SOMU which generates
and forwards adequate voltage control words to the voltage regulator.

System adaptation for boosting resilience and power efficiency would not be pos-
sible without the multimodal SWIELD FFs. In general, the SWIELD FFs have to
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Figure 4.1: Simplified block-diagram of the proposed cross-layer framework
implemented in a processor-based system.

be replaced with the timing-critical flip-flops in the system during design time. By
default, a SWIELD FF is set to operate as an ISM FF which allows prediction and
prevention of timing errors and hence, proper adaptive voltage/frequency scaling im-
plementation. Thereby, the system is able to save a substantial amount of power.
Changing the SWIELD FFs operation mode is a straightforward process that can be
realized by a single FFL procedure call. For example, if protection against soft errors
is required, the SWIELD FFs can be immediately transformed into TMR flip-flops.
Alternatively, all additional SWIELD FF functionalities can be turned off which al-
lows them to operate as conventional flip-flops.

From the previous discussion, it follows that the operation mode of the SWIELD
FFs determines the operation mode of the entire system. Section 4.1 presents the
SWIELD FF architecture along with a detailed description of each operation mode.
Choosing the right operation mode in accordance with relevant factors is discussed
in Subection 4.1.4. The remaining two framework components, the SOMU and the
FFL are introduced in Section 4.2 and Section 4.3 respectively.

It is important to note that in a case of a multiprocessor system, SWIELD FFs
need to replace the timing-critical flip-flops in all cores. In contrast, only one SOMU
component is sufficient to manage the system operation regardless of the number of
processor cores.

The entire RTL description and verification code for the hardware portion of the
framework is written in VHDL.
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4.1 SWIELD FF - A Multimodal Flip-Flop

One of the main contributions of this dissertation is the SWIELD configurable and
multimodal flip-flop which was published in the paper [VKK19]. A schematic diagram
of the SWIELD FF is presented in Figure 4.2.

Figure 4.2: The SWIELD multimodal flip-flop.

As shown in the figure, the SWIELD FF is composed of four D flip-flops: one
Main FF and three additional FFs necessary to implement timing error prediction
functionality. The configurability and multimodality features of the SWIELD FF are
provided by introducing two special control inputs (TMR and Gated Clk) as well
as some extra combinational logic (multiplexers/demultiplexers and voter). Note
that the TMR and Gated Clk inputs originate from the SOMU component which is
responsible for driving these signals (See Section 4.2).

The Data input to the SWIELD FF is actually the adequate input signal to the
Main FF. On the other hand, the SWIELD FF output Q could reflect either the
output of the Main FF or the output of the voter depending on the current operation
mode. While the Main FF is clocked by an ”always-on” clock, the Inverted Clk FF,
the Transition FF as well as the Pre-Error FF are synchronized by the Gated Clk.
This clock is in phase with the main clock as they both originate from the same clock
generator (see Figure 4.1). However, the Gated Clk goes through a clock gating logic
which allows the framework to turn this clock off whenever necessary. Thus, the
Gated Clk can be used to clock-gate the redundant flip-flops within the SWIELD FF,
idle components or even entire inactive cores (in a case of a multiprocessor system).
The roles of the remaining SWIELD FF input/output signals and subcomponents
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are explained in the next subsections which are dedicated to the individual operation
modes.

4.1.1 Operation as ISM FF

If the processor-based system executes a program or a task which is not critical in
terms of error resilience or even in terms of performance (e.g. managing a passenger
entertainment unit in a plane), the SWIELD FF can be put into ISM FF operation
mode. By doing so, as suggested by the mode name itself, the SWIELD FF acts as
an ISM capable to prevent timing errors. At the same time, a power saving AVFS
scheme is realized, possibly without affecting the system performance. This can be
achieved only if frequency scaling is turned off.

When the ISM FF operation mode is active, the Q output of the SWIELD FF
reflects the output of the Main FF, whereas the TMR input is assigned logical ’0’
by the SOMU. Under such configuration, the schematic diagram of the SWIELD
FF can be equivalently represented as shown in Figure 4.3. Here, the multiplex-
ers/demultiplexers behave as small delay buffers which, as confirmed by the performed
simulations, do not disrupt the intended functionality and the overall operation of the
SWIELD FF. It should be also noted that the voter from Figure 4.2 does not play a
role in this scenario.

Figure 4.3: Equivalent representation of the SWIELD FF as an ISM FF.

As an ISM, the SWIELD FF monitors the corresponding critical path delay and
sends feedback to the AVFS controller. Concretely, by observing its input data tran-
sitions, the SWIELD FF predicts potential timing errors and adequately warns the
SOMU through the Transition and Pre-Error outputs. The generation of Transition
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and Pre-Error signals is similar to the concept described in Section 3.3.1 and illus-
trated in Figure 3.8 on page 55. Hence, if an input data transition occurs during the
pre-error detection window, a timing pre-error warning signal is issued.

Note that the Transition and Pre-Error outputs from each SWIELD FF in the
system should be logically OR-ed together before connecting to the SOMU (Figure
4.4). Thereby, the overall Transition and Pre-Error rates are provided.

Figure 4.4: Obtaining the overall Transition and Pre-Error rates.

Based on the intensity of the pre-error warnings, the SOMU instructs the voltage
regulator/frequency scaling logic to adequately adjust the supply voltage/operating
frequency respectively in order to save power and prevent timing errors. During an
observation interval of Ntr input data transitions, the number of pre-errors npe is
counted and a decision is made whether the voltage/frequency should be adjusted or
not (see Figure 4.5). If npe is less than some previously defined lower bound, that is,
less than the minimal number of allowed pre-errors npe↓, the voltage is reduced by a
step of ∆VDD. For a pre-error count above a previously defined upper threshold value,
i.e., above the maximal number of allowed pre-errors npe↑, the voltage is adequately
increased by ∆VDD. If the number of pre-errors npe lies within the interval [npe↓, npe↑],
the supply voltage level is not changed. The operating frequency can, but doesn’t
have to be scaled together with the supply voltage. When found useful, the frequency
scaling can be enabled by calling the appropriate FFL procedure. Alternatively,
the framework can be configured to automatically turn on frequency scaling if, for
example, the supply voltage level drops below some predefined threshold value VTL.

The voltage/frequency scaling and therefore, the amount of saved power depend
directly on the implemented AVFS scheme, which relies on the pre-error count npe.
The pre-error count can be viewed as a random variable. Namely, a SWIELD FF input
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Figure 4.5: AVFS scheme for supply voltage regulation.

data may or may not cause pre-error warning. This is dependent on the propagation
delay of the signal. On the other hand, the signal propagation delay depends on
more factors. For example, despite on the path length to the SWIELD FF, it also
depends on the current operating conditions (temperature, voltage) as well as on
the executing instruction/instruction operands. Hence, an occurrence of a pre-error
can be understood as a stochastic process. Consequently, the voltage/frequency are
increased or decreased only with a certain probability.

Other important factors that have influence on the pre-error count are the follow-
ing:

• the pre-error detection window length Tdw;

• the number of input data transitions per observation interval Ntr;

• the minimal number of allowed pre-errors npe↓;

• the maximal number of allowed pre-errors npe↑;

• the number of SWIELD FFs in the system NSFF .

In order to maximize the amount of saved power, certain trade-offs between these
parameters need to be investigated. For example, the number of SWIELD FFs NSFF

in the system is strongly correlated to the pre-error detection window length Tdw. In
addition, there is a relationship between the number of transitions per observation
interval Ntr and the number of minimal/maximal allowed pre-errors npe↓/npe↑ which
can be expressed by using the binomial distribution formula [105, 136]. For instance,
the probability that the pre-error count npe is lower than the minimal number of
allowed pre-errors npe↓ during an observation interval of Ntr input data transitions
can be calculated as

P (npe < npe↓) = PVDD↓ =

npe↓−1∑
npe=0

(
Ntr

npe

)
· (Ppe)npe · (1− Ppe)Ntr−npe (4.1)

which is exactly the probability PVDD↓ that the SOMU instructs the voltage regula-
tor to reduce the supply voltage by ∆VDD. Each addend in Equation 4.1 represents
the probability of getting precisely npe pre-errors during the defined observation in-
terval. Summing all addends from npe = 0 to npe = npe↓−1 gives the probability
P (npe < npe↓). Ppe designates the probability of a pre-error occurrence when the
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system is operating at supply voltage level VDD. As previously mentioned, the pre-
error occurrence depends on many factors and thus, determining Ppe is extremely
challenging process that requires very long simulation time. Concretely, it would be
necessary to observe the timing behaviour of the system and check whether pre-errors
are produced for all possible input patterns under given pre-error detection window
Tdw and observation interval Ntr. The same process has to be repeated for every
applicable supply voltage level. In a case of a complex processor-based system, per-
forming such procedure is practically infeasible due to the tremendously high number
of valid inputs (all instructions combined with all possible operands).

However, by running simulations on multiple computing systems in parallel, Wirn-
shofer et al. [138] were able to extract the Ppe values for a relatively simple ISM-
equipped circuit (16-bit multiplier). The authors replaced the three most timing-
critical flip-flops in the design with Pre-Error Flip-Flops and simulated the delays
of 100,000 random input patterns. An observation interval of Ntr = 1000 clock cy-
cles (rather than transitions) was chosen, whereas the pre-error detection window
length Tdw was set to be 30% of the clock period Tclk. Using the extracted values
for Ppe, the authors managed to calculate the probability P (npe < npe↓) = PVDD↓.
The experimental results confirmed several expected outcomes, for example, that
the probability of reducing the supply voltage level is directly proportional to the
timing slacks. However, some other interesting considerations are presented as well.
Namely, it was shown that the probability PVDD↓ decreases if the observation interval
Ntr and/or the pre-error detection window length Tdw are increased. Moreover, since
the pre-error occurrence is a stochastic process, a possibility of voltage overscaling
that leads to timing errors cannot be entirely eliminated. In this direction, the au-
thors concluded that an observation interval of approximately Ntr = 1000 clock cycles
results in favourable trade-off between power saving and timing error prevention. Al-
legedly, larger values of Ntr only slightly improve the mentioned trade-off. On top of
that, longer observation intervals would slow down the system reaction if internal or
external operating conditions change. Furthermore, the authors claim to have deter-
mined that the optimal detection window length Tdw should be between 20% and 30%
of the clock period Tclk (see Figure 4.6). When the multiplier is put into operation
under such settings, power savings between 31% (corresponding to timing error rate
of 1 · 10−13) and 43% (corresponding to timing error rate of 1 · 10−2) are reported.
According to the authors, it is possible to save similar amount of power by combining
different values of Tdw, npe↓ and npe↑. Finally, the published results confirm that the
probability PVDD↓ increases for higher values of the minimum allowed pre-errors npe↓
which is also expected.

So far, only the case for supply voltage reduction was considered as an example.
However, the same approach can be applied to determine the probabilities that the
supply voltage is increased (PVDD↑) or maintained (PVDD↔). Therefore, PVDD↑ =
P (npe > npe↑) and accordingly PVDD↔ = P (npe↓ ≤ npe ≤ npe↑) can be calculated by
adequate reformulation of Equation 4.1 with respect to npe and npe↓.

It is worth mentioning that, for every supply voltage level, exactly one of the three
potential outcomes is possible, that is, the voltage level is either increased, preserved
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Figure 4.6: Pre-error detection window. The shaded regions designate the
optimal Tdw lengths. (Adapted from Wirnshofer et al. [138])

or decreased. Hence, the following equation has to be satisfied:

PVDD↓ + PVDD↑ + PVDD↔ = 1 (4.2)

From the previous discussion, it can be concluded that the pre-error count npe is an
appropriate metric for implementation of efficient AVFS scheme. The AVFS scheme
may be modified by tuning parameters such as the observation interval (Ntr), the
minimum/maximum allowed pre-errors (npe↓/npe↑) or the pre-error detection window
length (Tdw). Thus, an optimal trade-off between power efficiency and acceptable
timing error rate can be achieved.

One of the biggest advantages of the proposed framework is the fact that it allows
dynamic adjustment of the AVFS-relevant parameters (pre-error observation interval
and minimum/maximum allowed pre-errors) by calling appropriate FFL procedures.
This provides the programmer an ability to modify the implemented AVFS scheme
according to the current application requirements/operating conditions while the sys-
tem is in operation.

Putting the SWIELD FF into ISM FF operation mode results in significant power
savings as elaborated further in Chapter 6. Typically, AVFS is employed as a main
low power technique. However, it is possible to use it in combination with other
techniques such as clock- or power gating of idle components or even entire cores (in
case of multiprocessor systems) to further boost the power efficiency.

4.1.2 Operation as TMR FF

Flip-flop triplication is a widely used approach for providing fault tolerance, especially
to radiation-induced faults (SEEs). SEEs are considered as one of the most critical
threats to the resilience of computing systems.

The fact that the SWIELD FF contains several redundant flip-flops is used to en-
able on-demand reconfiguration of its internal components. As a result, the SWIELD
FF can be dynamically transformed into a TMR FF. This means that besides against
timing errors, the proposed framework is capable to protect against SEEs too, con-
cretely against SEUs.
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In order to switch the SWIELD FF into TMR FF operation mode, the framework
needs to set the value of the TMR input to logical ’1’. By doing so, a TMR structure
composed of the Main FF, the Transition FF and the Pre-Error FF is formed. Note
that the Inverted Clk FF cannot be considered for this purpose as it is a falling
edge-triggered flip-flop. Actually, the Inverted Clk FF is entirely irrelevant while this
operation mode is active. The equivalent schematic representation of the SWIELD
FF as a TMR FF is illustrated in Figure 4.7.

Figure 4.7: Equivalent representation of the SWIELD FF as a TMR FF.

As can be seen in the figure, the Q output of the SWIELD FF in TMR FF mode is
driven by the voter. Every clock cycle, the voter propagates the majority value to the
output without interrupting operation. Similarly to the case when the SWIELD FF
acts as an ISM FF, the multiplexers/demultiplexers can be treated as delay elements
which do not disturb the intended functionality. However, in TMR FF mode, the
voters impose overhead to the SWIELD FFs in terms of increased delay on paths
which are already considered timing-critical.1 It turns out that this overhead puts an
upper limit to the number of SWIELD FFs which can be placed in the system. One
obvious reason is that a higher number of SWIELD FFs increases the probability of
a timing error occurrence due to dynamic variations. Furthermore, the probability
that two (or more) SWIELD FFs share the same critical path (either directly or via
a feedback loop in the processor pipelines) increases with the number of SWIELD
FFs. Prolonging critical paths in this manner may also lead to timing violations. A
simple and practical algorithm for determining the optimal number of SWIELD FFs
to be placed in the system [VHKK21a] is presented in Section 5.1. Additionally, the
proposed algorithm is able to find an optimal Tdw.

While TMR FF operation mode is in force, the values of the Transition and Pre-
Error outputs are irrelevant and therefore neglected by the SOMU. Thus, voltage

1Recall that the SWIELD FFs are replaced with timing-critical flip-flops.
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scaling cannot be performed and as a result the framework has to fix the supply
voltage to a constant level (not necessarily the nominal level). However, frequency
scaling can be used if necessary.

Switching to TMR FF mode is useful whenever the system is (expecting to be)
exposed to higher soft error rates. In fact, SER can be monitored in real time by
employing specially-designed radiation particle detectors [7]. Based on the informa-
tion provided by such detectors, the system can decide to put the SWIELD FFs into
TMR FF mode.

Unfortunately, the SWIELD FF is not able to behave as a TMR FF and as an ISM
FF at the same time. Thus, simultaneous protection against both timing and soft
errors cannot be provided. However, one of these two distinct operation modes can
be well used in combination with other techniques for error resilience and/or power
consumption improvement. Having in mind that only a selected subset of flip-flops
in the system is replaced with SWIELD FFs, it might be beneficial to combine the
TMR FF operation mode with additional fault tolerance technique(s). Depending on
the actual system and its purpose, techniques like ECC or full triplication of register
files [6]) can be employed.

4.1.3 Operation as Regular FF

The SWIELD FF can be configured to work as any other conventional flip-flop. This
is referred to as Regular FF operation mode. In order to put the SWIELD FF into
Regular FF mode, the framework needs to turn off Gated Clk and to set TMR to
logical ’0’. Thereby, the equivalent schematic diagram of the SWIELD FF can be
presented as shown in Figure 4.8.

Figure 4.8: Equivalent representation of the SWIELD FF as a Regular FF.

In this operation mode, the Q output of the SWIELD FF reflects the output of
the Main FF since the path through the voter is avoided. The Transition and the
Pre-Error flip-flops are switched off and thus, not considered by the framework.

One might wonder what is the benefit of the SWIELD FF acting as a standard flip-
flop. In fact, the Regular FF operation mode would be the most logical choice when
high performance operation is required. The supply voltage might be kept at nominal
level in this case. Additionally, this mode could be favourable in scenarios where the
system reduces the supply voltage to some near-optimal level 2 by exploiting AVFS
scheme. At that point, the framework could simply switch off the voltage scaling.

2An optimal supply voltage level would be a level low enough to save power and high enough not
to induce faults.
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This would prevent the Inverted Clk FF, the Transition FF, the Pre-Error FF as
well as the additional combinational logic within the SWIELD FF from switching. A
substantial amount of power could be saved in this way. However, operation at sub-
nominal supply voltage level makes the system vulnerable, especially to timing errors.
Potential dynamic variations would increase its vulnerability even further. Therefore,
to avoid errors, it might be useful to combine the Regular FF operation mode with
frequency scaling. Of course, this scenario is applicable only if the currently running
application is not performance-critical.

4.1.4 Selecting the Right Operation Mode

The framework is able to dynamically switch between the SWIELD FF operation
modes. This raises the question: which operation mode should be selected in a
specific situation? It turns out that there are several factors influencing the mode
selection. Assuming a safety- or a mission-critical embedded system, the decision-
making factors can include the following:

• system type (e.g. autonomously-driving vehicle, plane, submarine, satellite...);

• current application running on the system (e.g. pedestrian detection, instru-
ment landing system (ILS), image processing...);

• power supply type (e.g. rechargeable batteries, generators, photovoltaics...);

• current power budget and available power management techniques;

• system environment (ground, water, air, space);

• current radiation levels in the environment;

• system state (current age, time spent in active operation, correct functionality
of individual components...);

• system structure (contains redundancy or not and if yes, which type...).

For example, let’s consider a processor-based system intended to manage the com-
munication between internal hardware components of a satellite [VPS12]. The pri-
mary function of such system is to connect the existing hardware to the on-board
computer. When a gyroscope or a magnetorquer require an access to the computer
regarding attitude control, the system must perform the processing in a precise way.
Hence, the framework could activate TMR FF operation mode in order to reduce the
probability of a SEU occurrence. On the other hand, when data from light sensors or
cameras needs to be processed for non-critical purposes like weather forecasting, the
framework could put the system into ISM FF mode. Finally, for high performance
computations, the operation mode could be switched to Regular FF mode.
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4.2 System Operation Management Unit (SOMU)

This section explains in details how the SOMU performs the intended functions from
a technical point of view.

Figure 4.9 shows a simplified block diagram of the SOMU. The main system
clock Clk enters the SOMU from where it branches into at least two clock signals
for different domains. As suggested by its name, the Always-on Clk is continuously
active and cannot be stopped. It is used to synchronize essential components such
as processor core in a single-core system, memory/interrupt controllers, bus arbiters
etc.

At least one Gated Clk signal is generated as an output intended to clock-gate
the redundant flip-flops within the SWIELD FF. In case of a multiprocessor system,
Gated Clk signals for clock gating idle cores and/or memories could be also generated.
Note that these signal(s) originate from the CLOCK GATING LOGIC block.

Figure 4.9: Simplified block diagram of the SOMU.

The Transition and Pre-Error inputs represent the corresponding logically OR-ed
outputs from the SWIELD FFs (see Figure 4.4). The SOMU contains a set of registers
which can be written or read-out via the system internal data bus. Table 4.1 shortly
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describes the function of every SOMU register. The values stored in the registers to-
gether with the Transition and Pre-Error inputs provide the necessary information for
driving the CLOCK GATING, VOLTAGE SCALING and FREQUENCY SCALING
logic blocks.

Table 4.1: SOMU registers.

Register Description Type

MODE Operation mode of the SWIELD FFs Read/Write
MAX TRANSITIONS Number of transitions per observation interval Ntr Read/Write
MIN PRE-ERRORS Minimal number of allowed pre-errors npe↓ Read/Write
MAX PRE-ERRORS Maximal number of allowed pre-errors npe↑ Read/Write
NUM TRANSITIONS Current number of transitions Read only
NUM PRE-ERRORS Current number of pre-errors Read only
CLOCK DIVIDER ENABLE Enable/disable frequency scaling (FS) Read/Write
CLOCK DIVIDER DATA Value that determines the scaled clock period Tclk Read/Write
THRESHOLD VOLTAGE LEVEL Automatically activate FS at the specified voltage level VTL Read/Write

The operation mode of the SWIELD FFs is set by writing appropriate value in
the MODE register. Table 4.2 shows how the operation modes are encoded by a
2-bit binary code. Based on the current operation mode, the TMR as well as the
appropriate Gated Clk outputs are adequately generated.

Table 4.2: MODE register. The difference between the two ISM FF modes is
in the FS activation method (see explanation in the text below).

Binary code SWIELD FF Operation mode

00 Regular FF
01 ISM FF (Manual FS activation)
10 TMR FF
11 ISM FF (Automatic FS activation)

By writing the MAX TRANSITIONS, MIN PRE-ERRORS and MAX PRE-
ERRORS registers, the parameters required by the VOLTAGE SCALING LOGIC
block are defined. The NUM TRANSITIONS and NUM PRE-ERRORS are read-only
registers that contain the current cumulative numbers of transitions and pre-errors
respectively. Thus, when the SWIELD FFs operate in ISM FF mode, the Transition
and Pre-Error inputs are observed during an observation interval MAX TRANSI-
TIONS = Ntr. Then, the VOLTAGE SCALING LOGIC compares the current num-
ber of pre-errors to the values npe↓ and npe↑ stored in the MIN PRE-ERRORS and
MAX PRE-ERRORS registers respectively. An appropriate VCW (Voltage Control
Word) output is generated depending on the comparison result. The VCW output
instructs the voltage regulator(s) to adjust the supply voltage level according to the
implemented AVFS scheme as described in Subsection 4.1.1.

The system is clocked by the Always-on Clk. Driver of this signal is the FRE-
QUENCY SCALING LOGIC block. Implementation of frequency scaling is allowed
by manipulating with the CLOCK DIVIDER ENABLE and CLOCK DIVIDER
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DATA registers. When storing a non-zero value into the CLOCK DIVIDER EN-
ABLE register, the frequency scaling is enabled independently of the current supply
voltage level. However, this doesn’t activate frequency scaling by default. In order
to actually activate frequency scaling, a non-zero value needs to be written into the
CLOCK DIVIDER DATA register. This value should be an exponent of 2 which
determines by how much the clock period Tclk is prolonged. For example, writing 1
in this register would double the clock period, whereas 2 would increase it fourfold
and so on. The default value of the CLOCK DIVIDER DATA register is 0, which
implies system operation at maximum frequency even if frequency scaling is enabled
in the CLOCK DIVIDER ENABLE register.

At last, scaling the frequency in dependence on the current supply voltage level
is also possible. Namely, the user can store a voltage control word that corresponds
to a pre-defined, critically low voltage level VTL in the THRESHOLD VOLTAGE
LEVEL register. If the SWIELD FFs are set to operate as ISM FFs with automatic
FS activation (see Table 4.2), the frequency scaling will be activated as soon as the
supply voltage level drops below VTL.

Note that faults, especially SEUs, might affect the SOMU as well. To prevent
SEU-induced errors and potential data corruption, the SOMU registers could be
triplicated. Thereby, to avoid area and power overheads, the triplication may be
performed only partially, by protecting exclusively the used register bits. For example,
recall that the MODE register utilizes only two bits.

4.3 Framework Function Library (FFL)

This section elaborates on the software part of the cross-layer framework in more de-
tails. The FFL is actually a set of procedures whose role is to simplify the management
of the framework blocks implemented in hardware. By running an appropriate FFL
procedure, the programmer is able to easily configure framework-related parameters
or to retrieve their current status.

Generally, the FFL procedures are realized in a similar manner to set() and get()

functions. Using setters and getters is a conventional software development approach
for updating and retrieving variable values. Additionally, by introducing constructs
like enumeration, typical for high-level programming languages, the framework ma-
nipulation becomes even more intuitive. For example, Figure 4.10 shows how one of
the essential FFL procedures, setSWIELDMode(MODE) is realized using pseudocode:

Hence, writing an adequate value in the MODE register sets the SWIELD FFs
operation mode. The other framework registers can be written in a similar way as
shown in Figure 4.10. For instance, the statement storestorestore 1000, [SOMU MAXTR REG]

means storing the value 1000 in the MAX TRANSITION register. Alternatively, the
statement can be encapsulated within a set() procedure and the execution would be
simplified to calling e.g. setMaxTrans(1000);.

Quite often it is practical to check the current status of certain parameters in the
framework. Figure 4.11 shows the getNumPE() procedure which retrieves the current
cumulative number of pre-errors during the present observation interval.
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typetypetype MODE TYPE = (REGULAR FF, ISM FF-MAN FS, TMR FF, ISM FF-AUTO FS);

voidvoidvoid setSWIELDMode(MODE TYPE MODE) {
casecasecase MODE ofofof

REGULAR FF: storestorestore REGULAR FF, [SOMU MODE REG]; //write in MODE reg.

ISM FF-MAN FS: storestorestore ISM FF-MAN FS, [SOMU MODE REG];

TMR FF: storestorestore TMR FF, [SOMU MODE REG];

ISM FF-AUTO FS: storestorestore ISM FF-AUTO FS, [SOMU MODE REG];

others:others:others: storestorestore ISM FF-AUTO FS, [SOMU MODE REG];

}

Figure 4.10: Procedure that sets the SWIELD FF operation mode.

voidvoidvoid getNumPE() {
loadloadload NR PE, [SOMU NUM PRE-ERRORS REG]; //read the register contents

printprintprint NR PE;

}

Figure 4.11: Retrieving the current number of pre-errors. The load statement
copies the contents from the NUM PRE-ERRORS register into
the variable NR PE.

In order to switch the SWIELD FFs operation mode to REGULAR FF or to TMR
FF, it is sufficient to call the corresponding procedure with the adequate argument,
i.e. setSWIELDMode(REGULAR FF) or setSWIELDMode(TMR FF). On the other hand,
switching to ISM FF operation mode might require calling more than one FFL pro-
cedures. For example, if the user needs to modify the AVFS-related parameters (Ntr,
npe↓ and npe↑), in total four procedures need to be invoked. Figure 4.12 shows a code
sequence that puts the SWIELD FFs into ISM FF operation mode and sets values
for the AVFS parameters.

setSWIELDMode(ISM FF-MAN FS); //switch to ISM FF operation mode

setMaxTrans(1000); //store 1000 in MAX TRANSITIONS register

setMinPreErrors(1); //store 1 in MIN PRE-ERRORS register

setMaxPreErrors(20); //store 20 in MAX PRE-ERRORS register

Figure 4.12: Switching to ISM FF mode and setting AVFS parameters.

Furthermore, depending on whether frequency scaling is required and how it is to
be activated (manually or automatically), there are two possible scenarios to realize
the AVFS scheme. The corresponding code sequences are shown in Figure 4.13 and
Figure 4.14 respectively.

The FFL is extremely practical because it hides all the tiny details of the actual
framework operation from the programmer. Such approach enables the higher levels
of the system stack (OS or application) to only specify the name of the procedure
and the adequate argument (if required) instead of memory addresses or bit positions
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setSWIELDMode(ISM FF-MAN FS);

setFSEnable(TRUETRUETRUE); //enable frequency scaling

setClkDivider(1); //double the clock period

Figure 4.13: Manual frequency scaling activation. The clock period will be
doubled following the execution of the shown code sequence.

setSWIELDMode(ISM FF-AUTO FS);

setFSEnable(TRUETRUETRUE);

setClkDivider(1);

setThresholdVL(0x"FFFC0"); //set threshold voltage level codeword

Figure 4.14: Automatic frequency scaling activation. The clock period will be
automatically doubled when the supply voltage level falls below,
e.g 1.08 V encoded as the codeword 0x”FFFC0”.

within a register. It is, therefore enough for the user to know the procedure signatures
within the FFL in order to manipulate with the framework.

Finally, the FFL, like any other software might be subject to cyberattacks with
malicious intent. Although software protection is out of the scope of this dissertation,
the literature might offer appropriate mechanism against FFL corruption.
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Chapter 5

Implementation and Integration of
the Framework

Chapter 4 provided a comprehensive presentation of the cross-layer framework by
describing its building blocks in details. This chapter elaborates thoroughly on inte-
gration of the proposed framework in actual processor-based systems.

First, a strategy for integration of the cross-layer framework in complex systems
is introduced in Section 5.1. Then, the architectures of both single- and multicore
processor systems encompassing the proposed framework are demonstrated in Section
5.2. Finally, Section 5.3 presents the implementation results.

5.1 Framework Integration Strategy

It was previously emphasized that realization of AVFS scheme requires interconnect-
ing the hardware-implemented framework components in a closed-loop fashion. This
fact calls for certain modifications in the traditional system design flow. In the further
text, a strategy for integrating the hardware portion of the framework into complex
processor-based systems is described in details.

As depicted in Figure 5.1, the proposed strategy consists of adding two extra steps
to the conventional design flow:

1. Interfacing the SOMU to the processor-based system. It is performed on RT
level in a similar manner to connecting any other system component;

2. Insertion of the SWIELD FFs in the processor-based system. It is achieved
by replacing SWIELD FFs with timing-critical flop-flops. This step requires a
modification of the synthesized gate-level netlist.

The SOMU is designed to be flexible, portable and scalable in order to mini-
mize the effort for interfacing to the target processor-based system. As a result, the
interfacing process comes down to:

• instantiation of the SOMU entity in the top-level RTL module of the processor-
based system design;

79



Figure 5.1: Framework integration flowchart. The blocks enclosed by solid
lines (in blue) denote the classical design flow phases, while the
internal blocks enclosed by dashed lines (in red) designate the
additional steps in the proposed strategy. The location of the
internal blocks indicates the phases during which the additional
steps need to be taken.

• proper connection of its input/output signals to the rest of the components that
need to be in direct communication with the SOMU.

Recall that the SOMU contains internal registers which should be accessible to
the processor(s) through the system data bus. Therefore, adequate address decoding
needs to be performed. Eventually, the SOMU in a processor-based system acts as a
peripheral unit with memory-mapped registers.

On the other hand, the procedure for inserting SWIELD FFs in the system is a bit
more complicated and demanding. Additionally, a careful analysis is required before
making the decision regarding the number and the location of the SWIELD FFs to
be inserted. Figure 5.2 illustrates all steps that need to be taken during the insertion
procedure. Note that some of these steps have to be repeated.

After the SOMU is successfully interfaced to the system, a synthesis is performed.
In this phase, the gate-level netlist and the STA reports are obtained. The generated
reports help to identify the timing-critical flip-flops, that is, the flip-flops which are
candidates for replacement with SWIELD FFs. To determine whether a given flip-
flop will be classified as critical, the pre-error detection window (Tdw) is used as a
metric. Algorithm 1 shows how Tdw is determined. Ultimately, all flip-flops with slack
shorter than the pre-error detection window are considered critical.
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Figure 5.2: A flowchart providing detailed display of the SWIELD FFs in-
sertion procedure as part of the system design flow. The blocks
surrounded by the red dashed line denote the necessary individual
steps of the procedure.

The initial value of the pre-error detection window is set to half clock cycle -
line 1 in Algorithm 1. However, assigning such high value to Tdw has several non-
negligible drawbacks. Namely, setting too long pre-error detection window implies
more critical flip-flops to be replaced with SWIELD FFs. This results in higher
area overheads, often too high to be considered. Furthermore, the SWIELD FF
voters, as emphasized in Subsection 4.1.2, contribute to prolonging the critical paths
while TMR FF operation mode is active. Hence, too many SWIELD FFs acting as
TMR flip-flops may cause system crash due to timing errors. Finally, too long pre-
error detection window results in more timing pre-error warnings. Increased number
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Algorithm 1: Find Tdw and identify the critical FFs.

1 Set the default value of Tdw to Tdw = Tclk/2;
2 while T dw > 0 do
3 Identify the critical flip-flops and their number;
4 Perform replacement;
5 Check timing;
6 Run simulation;
7 if mode(SWIELD FF)==TMR FF ∧ no timing violations then
8 break;

9 else
10 Gradually reduce Tdw (E.g. for 5% or 10%);

11 Report Tdw;
12 Report critical flip-flops;

of timing pre-error warnings leads to reduced power savings provided by the AVFS
scheme. Therefore, the value for the pre-error detection window is gradually decreased
until a correct system operation under SWIELD FFs in TMR FF mode is assured
(line 10). As soon as a value for Tdw that meets the condition in line 7 is found, a list
and the number of critical flip-flops that satisfy the defined criteria can be obtained
(lines 11 and 12). However, this is not necessarily the final set of critical flip-flops to
be replaced. For example, if so many SWIELD FFs in the system introduce higher
area overhead than some predefined constraint, the number of critical flip-flops (and
SWIELD FFs) can be further reduced by decreasing Tdw until an acceptable value is
reached.

Identification of critical flip-flops in the system (line 3) and their replacement
with SWIELD FFs (line 4) is automated by using specially developed scripts. A
script that parses STA reports according to the determined value of Tdw is used
to find the number and the identifiers of the critical flip-flops in the system. The
list of the retrieved critical flip-flops together with the synthesized gate-level netlist
are inputs to the script for automatic flip-flop replacement. This script locates the
specified critical flip-flops in the system and adequately rewires SWIELD FFs to their
inputs and outputs. The script output is a modified gate-level netlist that contains
SWIELD FFs instead of the identified critical flip-flops which can, but doesn’t have
to be located at the end of the critical paths. Figure 5.3 illustrates the process of
automatic critical flip-flop identification and replacement.

Finally, the newly-generated netlist is used for synthesis of the modified system
and hereby a timing check is performed. If the timing constraints are met, a post-
synthesis gate-level timing simulation is run to confirm the correct system operation.
Afterwards, the system design flow can proceed towards the next stage. In case of
timing violations, one can always reduce the pre-error detection window, the clock
frequency or both. However, note that frequency reduction will result in performance
degradation.
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Figure 5.3: Automatic critical flip-flop identification and replacement.

5.2 Integration in Processor-Based Systems

The cross-layer framework introduced in Chapter 4 is designed to be integrable in any
typical general-purpose processor. Of particular interest is integration in complex
processor-based systems that include at least one general-purpose processing core.
By leveraging the framework, the systems become easily adaptable, which is a crucial
feature for providing power efficiency and error resilience.

5.2.1 Architecture of the Processor-Based Systems

In all thesis-related implementations, the systems are based on the LEON2 processor
core [55]. However, it is important to note that any other general-purpose processor
can be used as well. The LEON line of processor cores has been used by ESA in
space missions for more than 20 years [6]. LEON2 is an open-source VHDL model
of a 32-bit processor that conforms to the SPARC V8 instruction set architecture
(ISA) [72]. The model is highly configurable and specifically designed for embedded
applications. It features a single instruction issuing, classic RISC pipeline with five
stages. By default, LEON2 includes hardware multiplier and divider, separate in-
struction and data caches as well as interfaces to a floating-point unit (FPU) and
mathematical co-processors. Communication with the external world is performed
via an Advanced Microcontroller Bus Architecture (AMBA) bus [8]. Throughout
this work it is assumed that the cores and the peripheral components are already
verified and functionally correct.

As a proof of concept, the strategy presented in Section 5.1 was followed to embed
the framework in both single- and multicore LEON2-based systems. Implementation-
specific details of the realized systems are given in the further text.

Single-core Processor-Based System

The single-core implementation represents a minimal system that serves as a proof-
of-concept test vehicle. Figure 5.4 depicts a block diagram of the system.
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Figure 5.4: Single-core LEON2 processor-based system.

A memory controller provides access to an off-chip memory. Every word loaded
from or stored to the memory is protected against SEUs by additional Single Error
Correction - Double Error Detection (SEC-DED) Hsiao code [66].

Using caches may lead to reduction of the program execution time determinism
[121] which is crucial for safety-/mission-critical systems. Therefore, the cache memo-
ries were replaced with local scratchpad SRAM memory. If, for example, the program
is stored in a scratchpad SRAM, the memory requests are not forwarded to the off-
chip memory. This leads to a significant reduction of the main memory requests. As
a result, the system performance can be drastically improved since instructions are
provided by the local SRAM. Note that the scratchpad SRAM can be clock-gated.
In such case, the memory request is forwarded by the processor to the off-chip mem-
ory at the same address. Thus, the programmer is able to reconfigure the system
and switch off the local SRAM to save power. In that case, however, performance
penalties might have to be paid.

The system contains several standard on-chip peripheral components such as in-
terrupt controller and programmable GPIO ports. Furthermore, to enable interfacing
of the SOMU with the system, its RTL code is adapted according to the AMBA spec-
ification. Hereby, appropriate address decoding is performed and thus the internal
SOMU registers are easily accessible by the processor core.

Finally, the power supply of the system is provided by a voltage regulator 1 able
to dynamically adjust the supply voltage. Incorporation of a voltage regulator in the
system is of key importance for implementation of AVFS scheme. However, design
and implementation of the voltage regulator is out of the scope of this work.

1The voltage regulator in this thesis is presented as a behaviour model only.
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Multicore Processor-Based System

Following a successful integration in a minimal, single-core system, it is important to
investigate how the proposed framework scales with more powerful and more com-
plex multiprocessor-based systems. For this purpose, a homogeneous multiprocessor
LEON2-based system with four identical cores has been implemented (Figure 5.5).

Figure 5.5: Multicore LEON2 processor-based system.

The multiprocessor may be viewed as a superset of the single-core system since it
is composed of the same components in addition to some extra hardware which is not
part of the minimal implementation. Concretely, the multiprocessor system contains:

• 4x LEON2 cores;

• 4x interrupt controllers;

• 4x timers;

• 4x UARTs;

• 4x voltage regulators;

• 1x multiprocessor controller.

The four processor cores are granted fair access to the memory or peripheral
components through bus arbiter. Here, the off-chip memory is distributed among the
cores. In a case of multiprocessor-based safety-/mission critical systems, it makes
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even more sense to replace the caches with internal scratchpad SRAM because of two
reasons. First, the complexity is significantly smaller since implementation of cache
coherence mechanisms is not necessary. Second, when the local SRAM is accessed,
the memory request is not forwarded to the off-chip memory, which reduces the bus
contention. Therefore, each core is equipped with internal scratchpad SRAM.

In order to leverage the intrinsic flexibility offered by the multicore system and
to enhance the adaptability provided by the framework, a multiprocessor controller
similar to the one proposed by Simevski et al. [117, 121] is incorporated. Basically,
such controller is able to put the multiprocessor in one of the following sub-modes: 2

1. De-stress sub-mode (DSSM);

2. Fault-tolerant sub-mode (FTSM);

3. High performance sub-mode (HPSM).

During DSSM only one core is active at a time while the remaining are clock-
gated. The goal is to interchange an active core according to some pattern (e.g.
round robin), so the difference between the core ages would be as small as possible.
In other words, the DSSM is supposed to reduce aging effects and to extend system
lifetime. Keeping some of the cores idle also increases power efficiency.

FTSM is realized by formation of core-level NMR group where N ∈ {2, 3, 4} is
the number of cores. The NMR group is tightly synchronized to run the same task.
That means, the N cores execute the same instructions simultaneously in redundant
fashion to enhance the fault-tolerance. Each clock cycle, the outputs from the N cores
are compared by a voter able to initiate appropriate action (interrupt or reset) if a
mismatch is detected.

The HPSM implies regular multiprocessor operation where the cores operate inde-
pendently of each other. There are no fault-tolerant or power-/aging-aware techniques
employed while the HPSM is active.

Note that in a case of multiprocessor system, the AVFS scheme is implemented on
a core level, i.e., each core is powered by its own voltage regulator. As a consequence,
slight modifications of the SOMU structure and FFL procedures are required to ac-
commodate the framework. Concretely, the SOMU registers must reflect the number
of cores in the system, thus each core would be able to read and write its own AVFS-
related parameters. For a multiprocessor with N cores, every SOMU register needs
to have N instances. The only exception is the MODE register because the SWIELD
FF operation mode is global and defined on system level. Similarly, the related FFL
procedures have to explicitly state which core should take the corresponding action.
For example, the getNumPE(2) will return the number of pre-errors registered in the
core number two, whereas setFSEnable(3, TRUETRUETRUE) will enable the frequency scaling
for the core number three.

Finally, it should be mentioned that if the framework is to be used in FTSM, a
special attention must be paid when activating AVFS. Core-level voltage/frequency

2The term ”sub-mode” is chosen to avoid mistaking for the framework operation modes.
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scaling might affect the processing speed of each core. As voting needs to performed
on every clock cycle, it is crucial that the cores remain in constant synchronization.

5.3 Implementation Results

This section presents the results acquired after synthesizing the framework com-
ponents implemented in hardware, (the SWIELD FF and the SOMU) as well as
the processor-based systems described previously. Comprehensive evaluation of the
framework regarding power consumption and error resilience with respect to different
system operation scenarios is given in Chapter 6.

Synthesizing of the designs is done by translation of the RTL code into structural,
gate-level description based on the IHP 130 nm technology library. The translation is
performed using the tool Design Compiler by Synopsys. Due to the specific method-
ology for design and implementation of the framework in processor-based systems, a
non-standard, bottom-up approach was used to perform the synthesis. Concretely,
the processor cores and the internal scratchpad memories were synthesized first and
afterwards consecutively interfaced at higher hierarchical levels until the top level was
reached. Special TCL scripts were created for this purpose. The clock period for all
considered designs is set to Tclk = 21 ns.

All framework-containing systems are synthesized under the same, worst-case con-
ditions which imply traditional guard-banding and slow process corner. In such sce-
nario, the temperature is set to T = 125 °C and the supply voltage level to VDD = 1.08
V. The presented results show relevant data regarding the structure of the synthe-
sized designs, the occupied area and the estimated power consumption. However,
it is crucial to emphasize that, in this case, the synthesis tool estimates the power
consumption statically, i.e. without considering the switching activities of the logic
gates.

Table 5.1: Synthesis reports for the SWIELD FF and comparison of the results
against the Pre-Error Flip-Flop [136] and a classic TMR flip-flop.

SWIELD FF Pre-Error FF [136] TMR FF

Number of Combinational Cells 16 11 11
Number of Sequential Cells 4 4 3
Number of Nets 26 35 29
Combinational Area (µm2) 149.31 85.05 69.93
Non-combinational Area (µm2) 120.96 120.96 90.72
Overall Design Area (µm2) 284.71 214.11 167.88
Estimated Power Consumption (µW ) 3.25 2.83 1.98

Table 5.1 shows the data obtained from the synthesis reports for the SWIELD FF.
In addition, the corresponding synthesis results of the Pre-Error Flip-Flop [136] and a
conventional TMR flip-flop are included for the purpose of comparison. The decision
to compare exactly against these architectures was made based on their similarities
to the SWIELD FF in terms of both structure and features. As expected, due to its
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higher complexity, the SWIELD FF occupies more area and is estimated to consume
more power compared to the both Pre-Error Flip-Flop and TMR flip-flop. Concretely,
one SWIELD FF is approximately 25% larger in area than a Pre-Error Flip-Flop and
around 41% larger than a TMR flip-flop. Additionally, the power consumed by a
SWIELD FF is approximated to be almost 13% and 39% higher than the power
consumption of a Pre-Error Flip-Flop and a TMR flip-flop respectively. However, as
it will be shown in the next chapter, this does not mean that a processor-based system
relying on Pre-Error Flip-Flops or on TMR flip-flops is more power-efficient than an
identical system based on SWIELD FFs. On the contrary, the ability provided by the
framework to dynamically switch between the SWIELD FF operation modes allows
a system not only to work in power-aware manner, but also to achieve a trade-off
between power consumption and error resilience (see Section 6.2).

Table 5.2: Synthesis report data for the SOMU. Implementations suitable for
both single- and multicore processor-based systems are considered.

SOMU (single-core) SOMU (quad-core)

Number of Cells 1966 13217
Number of Nets 2154 15431
Combinational Area (mm2) 0.014 0.087
Non-combinational Area (mm2) 0.008 0.040
Overall Area (mm2) 0.023 0.136
Estimated Power Consumption (mW ) 0.137 0.729

The synthesis results for the SOMU are given in Table 5.2. Thereby, two different
instances are considered: one suitable for a single-core system and the other for a
quad-core multiprocessor implementation. Although the latter is almost six times
larger in area than the former, it accounts only for 0.9% of the entire quad-core
system area (Table 5.4). In the case of the singe-core implementation, it turns out
that the SOMU occupies only 0.5% of the system area (Table 5.3).

Table 5.3: Synthesis report data for the single-core processor-based system.
The column NSFF = 0 designates a baseline design, that is, a
system without framework.

Number of SWIELD FFs (NSFF ) 0 55 115 135 150

Number of Cells 55744 56840 57453 57931 58385
Number of Nets 59547 59874 61736 62374 62948
Overall Area (mm2) 4.508 4.515 4.524 4.529 4.533
Estimated Power Consumption (mW ) 4.228 4.618 4.709 4.738 4.761

The framework with varying number of SWIELD FFs was embedded into several
instances of single- and quad-core processor-based systems. Tables 5.3 and 5.4 show
how the area and the estimated power consumption of the different instances are
affected by the framework components depending on the SWIELD FF count. For all
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Table 5.4: Synthesis report data for the multicore processor-based system.
The column NSFF = 0 designates a baseline design, that is, a
system without framework.

NSFF per core 0 55 115 135 150

Number of Cells 240355 237369 244874 246372 248535
Number of Nets 250824 251809 261234 263372 266015
Overall Area (mm2) 11.938 11.941 12.017 12.037 12.057
Estimated Power Consumption (mW ) 14.226 15.018 15.379 15.487 15.586

instances comprising the framework, it was determined that the critical flip-flops to
be replaced reside in the Integer Units (IUs) 3 of the processor cores.

The critical flip-flop replacement was performed according to the procedure de-
scribed in Section 5.1. Under the specified synthesis conditions, the while loop in
Algorithm 1 could only be exited after reducing Tdw to 40% of the default Tdw value.
This corresponds to 150 critical flip-flops or around 13% of the flip-flops in the IU.
To observe potential trends, the Tdw was further reduced to 30%, 20% and 10% of
the default Tdw. The processor system instances implemented to reflect these values
of Tdw were determined to contain 135, 115 and 55 critical IU flip-flops respectively.
Expressed in percentages, 12%, 10% and 5% of the flip-flops in each core IU were
replaced with SWIELD FFs.

Instances of processor-based systems without the cross-layer framework, otherwise
identical were used as baseline designs. The baseline designs are actually reference
points for quantification of the framework influence on processor-based systems. In
total, two baseline designs were implemented: one single-core and one quad-core
system.

Furthermore, the presented integration strategy was utilized for insertion of Pre-
Error and TMR flip-flops into both single-/quad-core system instances. The goal was
to implement similar systems that rely on different enhanced flip-flop architectures.
By doing so, it is possible to expand the comparison beyond the baseline designs, pri-
marily regarding the power consumption. Comparing error resilience to such systems
does not make much sense because the Pre-Error Flip-Flops prevent exclusively timing
errors, whereas TMR flip-flops are expected to yield similar results as the SWIELD
FFs. Note that for each system instance with framework relying on SWIELD FFs,
there are two corresponding instances with equal number of Pre-Error/TMR flip-flops
respectively.

By observing the data from Tables 5.3 and 5.4, it can be noticed that the overall
area of processor-based systems containing the framework increases with the number
of inserted SWIELD FFs. However, for both the single- and multicore implemen-
tations, the framework-imposed area overhead is significantly low. In the case of
single-core systems, even when NSFF = 150, the framework accounts only for 0.5%
area increase compared to the baseline design. Insertion of a framework with 150

3The IU actually contains the processor pipeline, the register file as well as the hardware multiplier
and divider.
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SWIELD FFs per core in a quad-core system results in 1.1% larger area than the
corresponding baseline design.

Regarding power consumption, the synthesis tool estimates up to 12.6% and 9.6%
increases compared to the baseline designs for the single-core and quad-core systems
respectively. These estimations refer to frameworks with NSFF = 150. However, the
synthesis tool does not provide realistic data with respect to the power consumption
of systems comprising the framework. As it will be explained in Chapter 6, the
framework utilization does not lead to increased power consumption.
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Chapter 6

Evaluation

In order to determine whether the projected dissertation goals are accomplished, the
proposed approach must be properly evaluated. To recap, the main hypothesis of
this work states that the cross-layer framework is able to synergistically improve
both power consumption and error resilience in processor-based systems by providing
adaptability. Hence, it is necessary to observe system operation while the framework
is being actively used and to appropriately assess the parameters of interest. At
the same time, the influence of the framework on other important factors such as
performance and area needs to be taken into account too. Evaluating approaches
that rely on complex designs like processors is quite challenging and may take a lot of
time. Nevertheless, conducting experiments and investigating their outcome could be
helpful in drawing conclusions necessary to prove or disregard the main hypothesis.

This chapter thoroughly elaborates on the experimental setup and the conducted
experiments. Thereby, the obtained results are used for quantitative evaluation of
the proposed concept in distinct scenarios. Section 6.1 gives a general overview of
the used evaluation methodologies and tools. The results are given in Section 6.2.
Individual subsections present the findings for different scenarios. Both single- and
quad-core LEON2-based systems are utilized as test vehicles. Section 6.3 wraps up
this chapter with a results-related discussion.

6.1 Methodologies and Tools

Following a successful framework integration in processor-based systems, the next
step is to investigate how the systems’ operation is affected, especially regarding the
parameters important for this work. Numerous experiments were performed for that
purpose. In general, the conducted experiments can be classified in two groups:

• experiments for power consumption estimation;

• experiments for error resilience evaluation.

All experiments were performed as post-synthesis gate-level timing simulations on
single- and quad-core systems. Wherever applicable, the same set of experiments were
conducted also on baseline/Pre-Error-/TMR-based designs for comparison purposes.
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Prior to performing the experiments, it is of utmost significance to ensure that
the processor-based systems are functioning correctly. LEON2 is supplied as a com-
pletely verified, ready-to-use model. Nevertheless, it is still necessary to confirm the
system correctness following the insertion of the framework. Therefore, an exhaustive
testbench is prepared and run. On top of the default test programs included in the
LEON2 IP core package, the testbench is augmented with the FFL procedures and
some extra test functions. The additional test functions are simple but practical as
they generate various instruction types. This is extremely important because voltage
reduction through AVFS depends directly on the input patterns to the ISMs [136],
i.e., the SWIELD FFs. A short description of the additional test functions is given
below:

• *int mulTest(*int, *int) - returns the element-wise product of two integer
arrays. The main purpose of this function is to test the hardware multiplier by
generating multiply instructions.

• *int divTest(*int, *int) - function intended to test the hardware divider
by generating mainly division instructions. It performs an element-by-element
division of two integer arrays.

• *int addArrays(*int, *int) - computes the element-wise algebraic sum of
two integer arrays by generating mostly addition/subtraction instructions.

• *int qSort(*int) - recursive function that returns a sorted array of integers
according to the QuickSort algorithm. It generates logical and control transfer
instructions among others.

Figure 6.1 shows a wrapper function that serves as a system test program used
for realization of the planned experiments. It takes an input parameter that reflects
the SWIELD FF operation mode to be experimented on. When the wrapper function
is called, the actual operation mode is automatically passed to the FFL procedure
setSWIELDMode(mode) as an argument. Hereby, the SWIELD FFs in the system are
effectively put to the adequate operation mode.

voidvoidvoid sysTestProgram(MODE TYPE mode) {
intintint N = 5000; //number of array elements

intintint a[N], b[N], c[N], d[N], z[N]; //declare integer arrays

setSWIELDMode(mode); //set the adequate SWIELD FF mode

c = mulTest(a,b); //test the hardware multiplier

d = divTest(a,b); //test the hardware divider

z = addArrays(c,d); //compute the resultant array

qSort(z); //sort the resultant array

}

Figure 6.1: A wrapper function serving as a simple system test program. The
execution time can be controlled by changing the N parameter.
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The wrapper function loads two integer arrays from memory and calls the addi-
tional test functions which perform the previously described operations on the arrays.
To ensure diversity of input patterns for the SWIELD FFs, the arrays are filled by
alternating positive, negative, small and large numbers as inputs. The resultant array
is stored back to memory. Note that the program execution time is defined by the
number of elements in the arrays.

6.1.1 Power Consumption Estimation

If the wrapper system test function is called with argument mode=ISM FF-MAN FS or
mode=ISM FF-AUTO FS, the framework will adjust the system supply voltage according
to an AVFS scheme. The voltage scaling algorithm has been already described in
Subsection 4.1.1 and the actual AVFS parameters are stored in the corresponding
SOMU registers. For quantification of the power saved by the AVFS scheme, the same
set of experiments was conducted also on baseline/Pre-Error-/TMR-based systems.
Then, a comparative analysis of the results was performed.

A post-synthesis simulation relying on conventionally-characterized standard cell
library is unable to precisely calculate power consumption if the supply voltage is
adaptively scaled. Therefore, to come up with reasonable power estimations, several
assumptions based on real-world data are made:

• the operation begins at nominal supply voltage level VDD = Vmax = 1.2 V for
all considered systems;

• a baseline/TMR-based system maintains the nominal supply voltage level
throughout the entire operation;

• the supply voltage of a system relying either on the cross-layer framework or
on Pre-Error flip-flops is gradually reduced by a voltage regulator from nominal
1.2 V at the operation start (tstart), to the lowest possible value Vopt that will
not cause timing errors;

• the scaled supply voltage settles at level Vopt = 1.08 V at time tsettle and main-
tains the same value until the execution of the test program is finished (tend);

• a voltage regulator is able to scale the supply voltage from the nominal value
of 1.2 V down to a minimal value Vmin = 0.8 V by 20 discrete steps of 20 mV
each;

• the voltage regulator has settling time of approximately 500 ns, i.e. it takes
around 500 ns for the voltage regulator to shift from one voltage level to the
next [120, 136].

Given that a processor-based system operates under the assumed conditions, its
power consumption can be calculated as:

Psys =
n∑
i=1

Pi

∣∣∣∣tend
tstart

=
n∑
i=1

(Pi

∣∣∣∣tsettle
tstart

+ Pi

∣∣∣∣tend
tsettle+∆t

) (6.1)
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where Pi denotes an active processor core in an n-core system, i = n = 1 for a
single-core system while i ∈ {1, 2, 3, 4} and n = 4 in case of a quad-core system. For
simplicity, the dissipation of the voltage regulator and the additional AVFS-related
components is not considered. Furthermore, it is assumed that the power consumed
by the remaining, non-core system components is included in Pi.

Equation 6.1 can be applied to both baseline/Pre-Error-/TMR-based systems and
systems with integrated framework. Note that for a system relying on the framework
or on Pre-Error flip-flops, the first addend in the equation will always have lesser
value than the corresponding baseline/TMR-based system. This is because the supply
voltage in the former case scales from VDD to Vopt during the interval [tstart, tsettle],
whereas in the latter case it stays fixed at VDD. To determine the value of the second
addend in Equation 6.1, a dynamic time-based calculation is performed. This method
takes into account the switching activities of all gates in the design during simulation
time. It was practically implemented using the commercial tool PrimePower from
Synopsys [124]. The tool requires switching activity file (usually .vcd or .saif) as
an input to perform the calculation. For the purpose of this work, such files were
generated within the environment of the simulator Xcelium from Cadence [71].

In order to mimic behaviour of a voltage regulator as well as supply voltage re-
duction, the synthesis of baseline/TMR-based systems was performed under different
conditions compared to systems relying on the framework or on Pre-Error flip-flops.
While the latter were synthesized under worst case conditions (see Section 5.3), the
former were synthesized under typical case conditions which implies supply voltage
level of VDD = 1.2 V and temperature of T = 25 °C.

Essentially, the power estimation tool starts calculating at simulation time
tsettle+∆t and stops at tend. This is applied to all considered systems, despite the
fact that baseline/TMR-based designs do not perform AVFS. To ensure results
consistency, the time tsettle+∆t valid for the corresponding AVFS-capable sys-
tems 1 is mapped as a starting point for power consumption calculation also for
baseline/TMR-based systems. Finally, the obtained results for every simulation
scenario are compared against each other.

Table 6.1: Default values of the AVFS scheme parameters.

Parameter/SOMU register Default Value

MODE 01 (ISM FF - Manual FS activation)
MAX TRANSITIONS 1000
MIN PRE-ERRORS 1
MAX PRE-ERRORS 20
CLOCK DIVIDER ENABLE 0 (FS disabled)

Table 6.1 shows the default values of the framework parameters related to the
implemented AVFS scheme. It is possible to modify these values at any time while
the system is active by calling the appropriate FFL procedures. However, an AVFS-

1Systems with equivalent number of Pre-Error/SWIELD FFs.
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based operation is always initiated with the default parameter values because they are
written into the corresponding SOMU registers immediately following system reset.

6.1.2 Error Resilience Evaluation

As pointed out in Subsection 2.3.1, fault injection is a widely-used method for fault
forecasting. It is accomplished by deliberate insertion of faults in a system with fault
protection mechanisms. Thereby, the system behaviour in a presence of faults is mon-
itored. Quantification of the system error resilience can be performed by observing
how many faults resulted in errors. Finally, the effectiveness of the used fault-tolerant
mechanisms is evaluated based on the FI results.

FI can be performed in several ways and at different system levels. Generally, the
FI techniques may be divided into the following categories [143, 78]:

• hardware-based fault injection - realized at physical level, that is, faults are
injected into the actual hardware of the target system. Some of the methods
utilized for hardware FI include: heavy-ion radiation, electromagnetic interfer-
ence, laser fault injection, introduction of power supply disturbances, modifi-
cation of the circuit pin values etc. Although hardware FI provides the most
realistic scenario for exposing the system to faults, the practical realization of
this technique is very expensive and it has potential to damage the system under
test.

• simulation-based fault injection - unlike the hardware-based FI, the simulation-
based FI uses modelled systems and faults. System modelling can be done at
different abstraction levels (behavioural, RTL, gate), whereas fault injection and
monitoring of the consequent system behaviour are performed using dedicated
software tools. Simulation-based FI is cheaper and does not pose a risk of
damaging the target system. It also allows evaluation of the error resilience early
during the system design flow. However, using models reduces the accuracy of
the entire process and may drastically increase the simulation time depending
on the model abstraction level.

• emulation-based fault injection - relies on Field Programmable Gate Arrays
(FPGAs) for system emulation and speeding-up of the fault simulation. It has
been introduced as an alternative approach that reduces the execution time in
comparison to the simulation-based FI.

In this work, the Xcelium Fault Simulator (XFS) from Cadence is used for error
resilience evaluation. XFS is a commercial tool that is part of an end-to-end flow for
system design and verification [70]. By using XFS it is possible to perform simulation-
based fault injection which consists of several phases:

• fault instrumentation - selecting the potential fault nodes in the system and
specifying the fault models to be injected. Fault node can be a signal, a gate
or an entire module. Supported fault models are: Stuck-at-0, Stuck-at-1, SEU
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and SET. One or more fault models may be specified for each fault node by
writing appropriate commands in a fault specification file.

• good simulation - generating reference values for the fault simulation. During
this phase, so-called strobe points are defined. The strobe points allow moni-
toring of specific signals in the system whose values are recorded and used for
comparison in the next phase. There are two types of strobe points:

– functional - usually the system primary outputs should be specified as
functional strobe points.

– checker - certain internal system nodes that are of particular interest for
observation during the FI campaign may be selected as checkers.

• fault simulation - injecting of faults is performed. The FI campaign may be:

– random - XFS relies on the contents in the fault specification file. The
fault nodes, fault types and the injection times are randomly selected.

– targeted - dedicated command is used to specify the fault nodes, fault
types and injection times. The contents of the fault specification file are
ignored.

The strobe point values in this phase are compared to the ones recorded during
the good simulation.

• fault reporting - generation of post-simulation reports which help determine the
status of the injected faults. An injected fault can be either:

– detected - different values have been recorded on the strobe points during
good and fault simulations;

– undetected - equal values have been recorded on the strobe points during
good and fault simulations.

Depending on the status recorded on the functional and checker strobe points,
a fault can be further classified as:

– dangerous detected - fault is detected on both functional and checker strobe
points;

– dangerous undetected - faults are detected only on functional strobe points;

– unobserved detected - faults are detected only on checker strobe points;

– unobserved undetected - faults are undetected on both functional and
checker strobe points.

Note that if a fault is detected at a functional strobe point, it means that an
error propagated to the system outputs and potentially caused a failure. On
the other hand, if a checker detects a fault, the system should be able to take
action and prevent failure from occurring. Based on this information, the status
of an injected fault in a system can be defined as follows:
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– detected and tolerated by a SWIELD FF - if XFS classified it as
unobserved detected;

– logically masked - if XFS classified it as unobserved undetected;

– propagated - if XFS classified it either as dangerous detected or as dan-
gerous undetected.

The XFS fault injection flow is illustrated in Figure 6.2. As can be seen, to
run FI campaigns, it is necessary to feed the XFS environment with specific data
that describes the system structure as well as its functional and timing behaviour. A
gate-level netlist provides information regarding the structure, whereas the functional
behaviour is defined in a testbench. The timing behaviour can be derived from a post
synthesis-generated file 2 that contains the delays of all gates and interconnects in
the considered system.

Figure 6.2: Fault injection flow of the Xcelium Fault Simulator.

When the wrapper system test function from Figure 6.1 is called with argument
mode=TMR, the framework enables protection against SEUs. To evaluate system er-
ror resilience provided by the SWIELD FFs in TMR operation mode, numerous FI
campaigns are performed. The base FI scenario is defined as follows:

• all injected faults are of type SEU;

• all faults are injected into the IU(s); 3

• all faults are injected at random times;

2Typically, the Standard Delay Format (SDF) is used for this purpose.
3Recall that all SWIELD FFs are located in the IU(s).
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• all primary outputs of the system are selected as functional strobe points;

• all SWIELD FFs are selected as checker strobe points.

The number of injected faults is correlated to the system test execution time using
a metric called mean fault injection rate (FIr). This metric is introduced in order to
ensure that the faults are injected in reasonable quantities. For each FI campaign, the
mean fault injection rate can be calculated according to the following relationship:

FIr ≈
1 fault ·Nclk cycles/sim length

4000 clk cycles
(6.2)

XFS does not take supply voltage into account and hence, lacks a built-in func-
tionality for correlation of FI rates to supply voltage. To overcome this limitation,
having in mind the model discussed in Section 1.2 which states that SER increases
exponentially with supply voltage reduction, voltage-dependent FI rates can be cal-
culated according to Equation 1.1. Let the mean fault injection rate correspond to
the nominal supply voltage level VDD = Vmax. By replacing λ0 with FIr and setting
d = 1 for simplicity, the equation can be rewritten as:

FIr(V ) = FIr10
Vmax−V

Vmax−Vmin (6.3)

Assuming that the supply voltage level of the considered system was previously re-
duced by an AVFS scheme from VDD = Vmax to Vopt (see Subsection 6.1.1), the
corresponding voltage-dependent fault injection rate can be expressed as:

FIr(Vopt) = FIr10
Vmax−Vopt
Vmax−Vmin (6.4)

If the actual values for Vmax, Vopt and Vmin from Subsection 6.1.1 are replaced in
Equation 6.4, then it simplifies to:

FIr(Vopt) = FIr100.3 ≈ 2 · FIr (6.5)

which means that when the system operates at supply voltage level Vopt, it should
expect approximately twice more faults compared to the case when it operates at
nominal level Vmax = VDD. For observation of possible trends, additional FI rates
can be obtained by halving/quartering the mean FI rate and doubling the voltage-
dependent FI rate.

As it will be shown in next sections, the actual system execution times and there-
fore, the FI rates differ from scenario to scenario.

6.2 Results

This section presents the experimental results and the corresponding analyses regard-
ing error resilience and power consumption of the processor-based systems in which
the proposed framework was integrated. The results are organized according to the
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number of processor cores in each considered system and the corresponding operation
scenario.

The first scenario deals with a minimal, single-core system (see Section 5.2.1).
Such a design can plausibly demonstrate fundamental processor system operation and
thus, it was considered suitable for providing preliminary evaluation of the framework.
On the other hand, both the second and the third scenario involve much more com-
plex, quad-core system. As pointed out, despite standard, high performance-oriented
operation, the multiprocessor allows advanced functionalities such as switching to
aging-aware mode. Therfore, Scenario II investigates how the framework influences
the operation of a quad-core system in HPSM, whereas Scenario III deals with a
multiprocessor switched to operate in DSSM.

The complete results regarding Scenario I have been published in the papers
[VHKK20, VHKK21a], whereas the paper [VHKK21b] presents the findings regarding
Scenarios II and III.

6.2.1 Scenario I: Single-Core Processor System

The single-core systems have not been completely abandoned. In fact, they are still
being used today, mainly in the domain of low-power microcontroller design. For
example, it has been shown that parallel architectures are not suitable for energy-
constrained systems like nano-size drones due to their specific requirements in terms
of energy, peak-power and predictability [40, 98]. Therefore, it is to expect that the
single-core processors will continue to be relevant at least for the next decade [4].

Power Consumption

Table 6.2 summarizes the power consumption results for all single-core processor
system instances. The results are organized according to the number of enhanced
flip-flops (NEFF ) in each instance. Of course, a baseline design does not contain
any enhanced flip-flops. On the other hand, the number of enhanced flip-flops in Pre-
Error/TMR-based instances is determined by the number of SWIELD FFs (NSFF )
in each considered system that incorporates the cross-layer framework.

Table 6.2: Power consumption results (in mW) for single-core systems.

Instance (NEFF = NSFF )
0 55 115 135 150

Type of system

Baseline 6.06 N/A N/A N/A N/A
Pre-Error FF-based N/A 5.08 5.19 5.24 5.3
TMR FF-based N/A 5.99 6.07 6.1 6.12
SWIELD FF-based N/A 5.13 5.2 5.26 5.29

It is easily noticeable that the systems able to perform AVFS are more power-
efficient than the baseline design. Concretely, the cross-layer framework-based in-
stances can save between 15% (NSFF = 55) and 13% (NSFF = 150) power, whereas
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the instances relying on Pre-Error flip-flops consume from 16% (NEFF = 55) to 13%
(NEFF = 150) less power in comparison to the baseline design. Hence, if the only goal
is to reduce the power consumption as much as possible, the obvious solution would
be to implement a system based on Pre-Error Flip-Flops replacing approximately 5%
of the timing-critical flip-flops. However, lower NEFF means shorter Tdw which, in
fact, increases the risk of timing errors (see Subsection 3.3.1). On the other hand, if
error resilience is required in addition to power efficiency, a system with integrated
cross-layer framework would be a better choice since the Pre-Error Flip-Flops protect
exclusively against timing errors. An interesting feature to observe in Table 6.2 is
that the power-efficiency difference between the framework-based systems and the
instances relying on Pre-Error flip-flops decreases as the NEFF increases. Note that
when NEFF = NSFF = 150, the framework-based system relying on SWIELD FFs
saves more power than the corresponding instance relying on Pre-Error flip-flops.

Figure 6.3 illustrates how a framework integration affects the area and the power
consumption of a single-core system depending on NSFF . The graphs are based on
data from Table 5.3 regarding area and Table 6.2 regarding power consumption.

Figure 6.3: Area and power consumption as functions of the number of in-
serted SWIELD FFs in a single-core system. The dashed lines
indicate area and power consumption of the baseline design.

As expected, the results in Table 6.2 confirm that the TMR-based instances are
the most power-hungry of all considered systems. Just like the baseline design, the
instances relying on TMR flip-flops are incapable of voltage scaling. The fact that
such systems maintain supply voltage at nominal level (VDD = Vmax) during the entire
operation, makes them unsuitable for low power computing.

Finally, it should be emphasized that all processor system instances relying on
enhanced flip-flops have gone through synthesis and thus, through an optimization
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process twice. This is in accordance with the presented framework integration strat-
egy, or more precisely, with the SWIELD FF insertion procedure (see Section 5.1 on
page 81). In contrast, the baseline design is implemented according to conventional
design flow and therefore, it is synthesized only once. As a result, the power calcu-
lation tool estimated that the TMR-based instance from Table 6.2 with NEFF = 55
consumes less power than the baseline design. In practice, unfortunately, every system
that relies on TMR will be consuming more power than its corresponding baseline
design no matter how many times it goes through an optimization process. The
Pre-Error/SWIELD FF-based systems however, save power due to their capability to
perform AVFS. As explained previously, the amount of saved power by AVFS depends
on many factors.

Error Resilience

It was stated in Subsection 6.1.2 that the mean fault injection rate FIr for error
resilience evaluation experiments is correlated to the test program execution (simula-
tion) time of each scenario. In the case of single-core processor system, the simulation
is about 371,028 ns long, which corresponds to approximately N = 17, 670 clock cy-
cles. By replacing the value for N in Equation 6.2, the mean fault injection rate for
this scenario can be fixed to FIr = 5 faults/execution time.

Table 6.3 shows the fault injection results for a single-core system that contains
the proposed cross-layer framework. As already pointed out, the faults which are
randomly injected directly into one of the constituent flip-flops within the SWIELD
FF are considered detected because the SWIELD TMR structure outvotes such faults.
On the other hand, all faults observed at the primary outputs of the system are
classified as propagated faults.

Table 6.3: Fault injection results for a single-core system. The status of the in-
jected faults is denoted as: D - detected and tolerated by SWIELD
FF in TMR mode; M - logically masked; P - propagated.

Fault injection rate
FIr/4 ≈ 1 FIr/2 ≈ 3 FIr = 5 2 · FIr = 10 4 · FIr = 20

Status
NSFF D M P D M P D M P D M P D M P

55 1 0 0 0 3 0 1 3 1 3 6 1 5 14 1
115 1 0 0 1 1 1 2 3 0 6 3 1 8 11 1
135 1 0 0 1 1 1 2 3 0 2 7 1 7 11 2
150 1 0 0 1 2 0 2 3 0 5 5 0 11 7 2

One tendency is rather obvious in Table 6.3: NSFF is directly proportional to
the probability that a SWIELD FF will be target of a fault. In other words, higher
number of SWIELD FFs in the system increases the chances that a fault will be
detected and outvoted. That being said, it is of key importance to note that the
detected faults are in fact potentially propagated and failure causing faults for a
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baseline design. This is a clear indication that the framework significantly increases
the system error resilience.

Another interesting observation that arises from the results in Table 6.3 is the
following: during some fault injection campaigns, the system experienced no prop-
agated faults to the primary outputs, that is, the test program execution finished
failure free. The shaded cells in the table denote those FI campaigns. For example,
such outcomes are observed during the campaigns with FI rate FIr/4 in all cases of
NSFF . It means that the proposed framework might be sufficient for system protec-
tion against SEUs in environments where lower SERs are expected. Additionally, it
is crucial to emphasize that the test program finished without failures also following
more intensive FI campaigns, mainly when NSFF = 150. Especially significant are
the cases of fault injection rates FIr and 2·FIr. Recall that the former corresponds to
a system operating at supply voltage VDD = Vmax, whereas the latter designates a FI
rate that the system can expect when its voltage level is reduced to Vopt. Therefore,
the framework is capable to keep a system error resilient while it operates at lower
supply voltage level for power efficiency.

6.2.2 Scenario II: Multicore System for High Performance

The fundamental idea behind the concept of multiprocessing was to increase the
computation speed. To avoid overheating and potential system breakdown, operating
frequencies and supply voltages were reduced, whereas performance was boosted by
leveraging core-level parallelism. Nevertheless, keeping all available cores active for
high-speed processing is expensive in terms of power. In addition, more active cores
imply larger area susceptible to faults.

To investigate how the proposed framework influences the power consumption and
the error resilience of a high performance multiprocessor, the same experiments were
performed on a quad-core system operating in HPSM. This subsection presents the
obtained results.

Power Consumption

The experimental results regarding power consumption of the implemented quad-core
processor system instances operating in HPSM are shown in Table 6.4. Similar trends
to those elaborated in Scenario I can also be observed here. Namely, the instances
which leverage AVFS are able to save notable amount of power with respect to the
baseline design: the systems that perform supply voltage scaling using Pre-Error Flip-
Flops are between 15% (NEFF = 150) and 17% (NEFF = 55) more power-efficient
while the instances relying on the proposed framework and SWIELD FFs can reduce
the power consumption from 12% (NSFF = 150) to 15% (NSFF = 55). Once again, a
system employing TMR flip-flops, even only in selected locations, cannot contribute
to power saving, despite the simulation results shown in Table 6.4 indicating between
0.5% (NEFF = 150) and 2% (NEFF = 55) power reduction. As emphasized in the
previous subsection, such outcome is due to the multiple optimization cycles applied
to the TMR-based instances.
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Table 6.4: Power consumption results (in mW) for a quad-core multiprocessor
system operating in HPSM.

Instance (NEFF = NSFF )
0 55 115 135 150

Type of system

Baseline 21.3 N/A N/A N/A N/A
Pre-Error FF-based N/A 17.6 18.0 18.1 18.2
TMR FF-based N/A 20.8 21.1 21.2 21.3
SWIELD FF-based N/A 18.1 18.4 18.7 18.8

The influence of the cross-layer framework on a quad-core multiprocessor for high
performance operation regarding area and power consumption is pictorially shown
in Figure 6.4. The graphs are constructed using data from Tables 5.4 and Table
6.4 respectively. Note that the x-axis reflects the number of inserted SWIELD FFs
in each processor core. By comparing the graph shapes in Figures 6.3 and 6.4, one
can easily conclude that there is an obvious consistency between the results from
Scenarios I and II, especially regarding power consumption.

Figure 6.4: Area and power consumption as functions of the number of in-
serted SWIELD FFs in each core of a quad-core system for high
performance operation. The dashed lines indicate area and power
consumption of the baseline design.

Error Resilience

When a quad-core multiprocessor system is actively using all of its cores for high
performance operation, the test program runs for 817,026 ns or equivalently, around
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N = 38, 906 clock cycles. Therefore, according to Equation 6.2, the mean fault
injection rate for this scenario would correspond to FIr = 10 faults/execution time.

Table 6.5 presents the results from the fault injection campaigns performed on
a quad-core multiprocessor operating in HPSM. As can be seen, the percentage of
detected faults is rather high. Actually, it reaches 50% for the campaigns with FI
rates FIr, 2 · FIr and 4 · FIr in the case when the number of SWIELD FFs per
core is NSFF = 150. Moreover, for the same NSFF value, the test program finishes
successfully without propagated faults following most of the FI campaigns. Identically
to Table 6.3, this is true for the campaigns with FI rates FIr and 2 · FIr (see the
shaded cells in Table 6.5). Hence, the capability of the cross-layer framework to
provide error resilient and power-efficient processor system operation is once again
reaffirmed in this Scenario.

Table 6.5: Fault injection results for a quad-core multiprocessor system op-
erating in HPSM. The status of the injected faults is denoted as:
D - detected and tolerated by SWIELD FF in TMR mode; M -
logically masked; P - propagated.

Fault injection rate
FIr/4 ≈ 3 FIr/2 = 5 FIr = 10 2 · FIr = 20 4 · FIr = 40

Status
NSFF D M P D M P D M P D M P D M P

55 0 3 0 1 4 0 2 8 0 2 15 2 7 27 4
115 1 1 1 2 3 0 5 4 1 7 12 1 15 21 3
135 1 1 1 2 3 0 5 1 1 7 10 3 16 21 3
150 1 2 0 2 3 0 5 5 0 10 10 0 20 18 1

6.2.3 Scenario III: Multicore System for Prolonged Lifetime

If the current application does not require high performance processing, the system
may rely only on one active core, while the rest could be deactivated. Generally,
it might be necessary to use more than one, i.e., minimum required active cores to
successfully run the application. Of course, the exact number of active cores should
be determined according to the application requirements. In this scenario, only one
active core at a time is considered.

Core deactivation can be realized by cutting off its clock or power supply. Thus,
the workload is handled by the currently active core for a defined time period. After-
wards, a previously idle core is activated and the workload is transferred to it. Finally,
the most recently active core is deactivated. The core activation/deactivation scheme
can be systematically repeated according to some algorithm such as round robin.
Offloading processing tasks from cores relaxes their activities and hence, slows down
their aging. As a result, the useful system lifetime is considerably increased [117].

The third and final evaluation scenario explores the effects of the proposed frame-
work on a quad-core system that is set to operate in DSSM. By activating only one
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core at a time, DSSM automatically reduces power consumption. Nevertheless, it
may be useful to investigate how the framework can broaden the system applicability
by introducing error resilience and power-aware processing. Such features might be of
special interest for mission-critical and long life systems like satellites or space crafts.

Power Consumption

Summary of the power consumption evaluation results for quad-core system instances
that operate in DSSM is given in Table 6.6. It is interesting to note that here, in
contrast to Scenarios I and II, the instances that rely on the cross-layer framework
performing AVFS, do not contribute to significant power reduction. For example,
the instance with NSFF = 55 consumes only 6.5% less power than the baseline de-
sign, whereas the one containing NSFF = 150 requires 0.5% more power. Even the
instances that rely on Pre-Error Flip-Flops for AVFS only slightly reduce the power
consumption compared to the baseline design: 7% in the case when NEFF = 150 and
9% for the instance that contains NEFF = 55. The systems based on TMR flip-flops
in this scenario perform worse regarding power compared to the baseline design. This
is true almost for all instances using TMR flip-flops, although the difference is not so
large due to the multiple optimization cycles.

Table 6.6: Power consumption results (in mW) for a quad-core multiprocessor
system operating in DSSM.

Instance (NEFF = NSFF )
0 55 115 135 150

Type of system

Baseline 8.67 N/A N/A N/A N/A
Pre-Error FF-based N/A 7.89 7.99 8.03 8.06
TMR FF-based N/A 8.6 8.68 8.71 8.73
SWIELD FF-based N/A 8.11 8.47 8.61 8.71

Figure 6.5 depicts the framework effects on the power consumption of a quad-core
system put in DSSM for prolonged lifetime. Note that the area graph is identical to
Scenario II simply because the occupied area does not depend on the multiproces-
sor operation mode/sub-mode. On the other hand, the graph reflecting the power
consumptions of the implemented instances demonstrates quite different trends in
comparison to the first two scenarios. Such outcome suggests that the framework
has limited potential to enhance the power efficiency of a multiprocessor in DSSM.
Keeping only one active core already reduces the power consumption of a multicore
system significantly. Instead, providing error resilience can be the main focus when
utilizing the framework.

Error Resilience

In this scenario, the test program is executed in 1,337,280 ns or in N = 63, 680 clock
cycles. Based on Equation 6.2, the corresponding mean fault injection rate can be
set to FIr = 15.
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Figure 6.5: Area and power consumption as functions of the number of in-
serted SWIELD FFs in each core of a quad-core system for pro-
longed lifetime. The dashed lines indicate area and power con-
sumption of the baseline design.

The fault injection results are shown in Table 6.7. When a system is put in DSSM,
only one core operates at a time, whereas faults are scattered throughout the entire
multiprocessor. Therefore, a large fraction of the injected faults ends up in an inactive
area, which is exactly why the percentages of both detected and propagated faults
for this case is lower. Nonetheless, the detected faults percentage may reach almost
30% when NSFF = 150.

Table 6.7: Fault injection results for a quad-core multiprocessor system op-
erating in DSSM. The status of the injected faults is denoted as:
D - detected and tolerated by SWIELD FF in TMR mode; M -
logically masked; P - propagated.

Fault injection rate
FIr/4 ≈ 4 FIr/2 ≈ 8 FIr = 15 2 · FIr = 30 4 · FIr = 60

Status
NSFF D M P D M P D M P D M P D M P

55 0 0 0 0 2 1 0 2 1 0 7 1 1 11 4
115 1 1 0 0 1 0 3 2 0 5 3 0 7 3 2
135 1 1 0 0 2 0 2 3 0 6 6 0 7 10 0
150 1 1 0 2 2 0 3 3 0 9 6 0 11 9 1

Obviously, the framework managed to protect the systems against faults during
the most of the FI campaigns. However, as the FI rate increases or equivalently, as
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the supply voltage would presumably decrease beyond Vopt, propagated faults start
to appear. To avoid failures, during higher FI rates, additional online error pro-
tection mechanisms are required. For example, recall that the multiprocessor can
be dynamically put into FTSM. It is of particular interest to determine under what
circumstances such step(s) should be taken. Hence, the relationship between a FI
rate and the time of the first propagated fault from the corresponding FI rate is in-
vestigated. For illustration, let’s take as an example the case from Table 6.5 when
NSFF = 150 and the FI rate is equal to FIr = 4 · FIr = 40. Furthermore, let the oc-
currence time of the first (and in this case, the only) propagated fault to be recorded
during the 28,044 clock cycle. Then, a simple graph which delimits execution times
and FI rates without propagated faults can be constructed by drawing a straight line
in a log-log plot between two points M1(t, 1) and M2(1, F Ir(t)). Here, t denotes the
time stamp of the first propagated fault and FIr is the current FI rate. The graph is
presented in Figure 6.6.

Figure 6.6: Relationship between fault injection rate and a failure-free pro-
gram execution. The red line delimits whether activation of ad-
ditional error protection mechanisms is necessary. Logarithmic
scale is used on both axes.

An equation of a straight line in the form logy = mlogx+ logb between the points
M1 and M2 can be inferred by applying log to the both sides of the template y = bxm

where logb is the intercept of the line with the logy axis and m is the slope of the
line. In the concrete case, the two points are defined as follows: M1(28044, 1) and
M2(1, 40). After calculating m and logb, the equation of the line between M1 and
M2 is:
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logy = −0.36logx+ 1.60 (6.6)

If a point lies on the area above this line, the system would require activation of
extra online error protection mechanisms in order to finish program execution without
failures. For example, a multiprocessor could be put into FTSM, whereas a single-core
system might consider using AVFS more conservatively or disabling it completely to
reduce the risks of soft errors. A point Mp(xp, yp) is above the line Ax+By +C = 0
if yp − y > 0, that is, if yp > y. Concretely, a point Mp on the graph from Figure 6.6
is above the line from Equation 6.6 if

logyp > 1.60− 0.36logxp (6.7)

Therefore, if the program execution time and the system operation environment 4

are known, one can estimate whether the SEU protection provided by the SWIELD
FFs, i.e. the cross-layer framework suffices and if not, when additional online error
protection mechanisms are required. As already stated in Subsection 4.1.2, SER may
be monitored in real time using special particle detectors, thus the system can manage
its error protection mechanisms according to the SER intensity.

6.3 Discussion

The experimental results unequivocally showed the advantages of the proposed ap-
proach. It was demonstrated in all three scenarios that the cross-layer framework
makes the considered processor-based systems more power-efficient and more error-
resilient by adaptation to the current application needs and environmental conditions.
Indeed, when the SWIELD FFs are put into ISM FF mode, the framework is able to
reduce power consumption up to 15%, depending on the NSFF in the system. The
amount of saved power is inversely proportional to the number of inserted SWIELD
FFs.

By switching the SWIELD FFs to operate in TMR FF mode, the framework
significantly increases the system resilience to SEUs. Namely, from each of the many
FI campaigns, up to 55% injected faults were tolerated by the SWIELD FFs. Thereby,
note that the FI campaigns performed as part of the evaluation experiments are far
more intensive than the most severe radiation events. According to Hansen et al. [59],
during one of the most extreme SPEs, up to 5 upsets per day have been recorded. 5

For comparison, the highest FI rates in this work can be approximated to ≈ 45, 000
faults per second. In contrast to the experiments for power consumption estimation, it
is clear that higher NSFF in the system provides better error resilience. Nevertheless,
when at most 13% of the critical flip-flops in the core IU were replaced with SWIELD
FFs, the majority FI campaigns finished without failures, including those intended to
mimic conditions with lower supply voltages and higher fault rates. However, there is

4The expected SER heavily depends on the system operation environment.
5The authors presented SEU rate measurements that relied on 4Kx32-bit CMOS SRAMs as

particle detectors.
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no guarantee that a fault will not propagate to cause a failure, especially if the system
is operating under conditions of increased radiation. To avoid failures, a relationship
between the execution time and the fault rate is established, thus proper planning
for dynamic activation of additional error protection mechanisms can be done in a
timely manner.

Table 6.8: Comparison of this work against related works from Chapter 3.
The cells marked with * indicate that the location of the enhanced
flip-flop depends on the solution of the replacement algorithm.

Reference Type of Error Mitigation Timing Error Mitigation Method Location of TMR flip-flop/ISM

[101] Soft errors N.A. Everywhere
[106] Soft errors N.A. *
[125] Soft errors N.A. *
[81] Timing errors Prediction Intermediate points
[3, 19] Timing errors Prediction Intermediate points
[80] Timing errors Prediction End points
[88] Timing errors Prediction End points
[67] Timing errors Detection End points
[130, 129] Timing Errors Detection End points
[51, 50] Timing Errors Detection DE and EX pipeline stages
[43] SEUs and Timing errors Detection FE, DE, EX and MEM pipeline stages
[136] Timing errors Prediction End points
This work SEUs and Timing errors Prediction *

Table 6.9: Comparison of this work against related works from Chapter 3. The
minus sign preceding some of the values in the cells from the column
Power Overhead, actually indicates power saving. The cells marked
with ** indicate that no explicit area overhead is specified, however,
some area reduction compared to other approaches is reported.

Reference Area Overhead Power Overhead Performance Degradation Test Vehicle

[101] N.A. N.A. N.A. Shift registers
[106] ** N.A. N.A. N.A
[125] 2% N.A N.A. Unspecified IP Core
[81] N.A. 6% - 14% N.A. Commercial processors
[3, 19] 11% 10% N.A. ARM Cortex M0
[80] 2% to 12% N.A. N.A. Toshiba MeP & Renesas M32R
[88] ** -49% 5% 32-bit multiplier
[67] N.A. -7% to -18% 16% LEON3 IU
[130, 129] 2% 4.5% One clock cycle MIPS
[51, 50] N.A. -12% to -38% Less than 3% Alpha
[43] N.A. -33% N.A. Alpha
[136] 5% -30% No DCT
This work 0.5% to 1.1% -6.5% to -15% No LEON2-based systems

At last, let’s analyse where does this work stand with respect to several comparable
publications reviewed in Chapter 3. A comparison criteria that relies on standard
metrics was established (performance, power and area) as well as on certain features
which are considered important from aspect of this dissertation, e.g., the error types
targeted for mitigation, test vehicle and so on.

The comparison data gathered from related works is summarized in Tables 6.8 and
6.9. It is easily noticeable that the work conducted in this dissertation outperforms
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the related works in almost every aspect: at cost of negligible area overhead, the pro-
posed approach enables implementation of adaptable processor-based systems able to
significantly reduce power consumption and improve SEU resilience while preserving
the performance. The solutions presented in the related works achieve favourable
results in some segments of the comparison criteria, but none managed to implement
an entire system capable to synergistically tackle all of the considered critical metrics.
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Chapter 7

Conclusion

Processors play central role in virtually every computing device. As a consequence of
the aggressive technology scaling, the contemporary computing systems are facing two
major challenges: excessive power consumption and increased susceptibility to faults.
These two metrics are not complementary to each other and addressing both at the
same time is difficult. Hence, adaptivity is becoming increasingly important feature
for the modern computing systems. This dissertation presents a cross-layer framework
for reducing power consumption and improving resilience of processor-based systems
in a synergistic way. Once embedded in the system, the framework can dynamically
switch between low power and error resilient operation modes according to the current
needs.

The proposed framework is constituted of three building blocks deployed at cir-
cuit, architecture and software layer of the system stack respectively. At the very
basis of the framework lies the SWIELD multimodal flip-flop. Depending on the cur-
rent application requirements and environmental conditions, the SWIELD FF can be
configured to operate either as an in situ monitor or as a TMR flip-flop. Of course,
operation as a conventional flip-flop is also possible. When a system runs a non-
critical task in terms of performance or resilience, the SWIELD FF may be switched
to in situ monitor mode. This allows close observation of the system performance and
prevention of timing errors. Simultaneously, an adaptive voltage/frequency scaling
scheme is realized for power saving, potentially without performance degradation. If
protection against radiation-induced faults is required, the SWIELD FF can be put
into TMR FF mode. Finally, when high performance is the sole requirement, the
system can use the SWIELD FF as a regular flip-flop. Management of the SWIELD
FF operation modes is done by the SOMU - the framework component implemented
at architecture level. In fact, the SOMU is responsible for orchestrating the entire
system operation: it distributes the clock signal to the remaining system components
and initiates clock gating as well as voltage/frequency scaling when necessary. At
last, the FFL is the only framework component implemented in software. It can be
understood as a procedure library that allows easy and intuitive manipulation of the
features offered by the framework.

A strategy for integration of the framework in processor-based systems is an-
other contribution of this work. Insertion of SWIELD FFs in a target system is a
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crucial phase of the integration process. Namely, the SWIELD FFs are intended
to replace certain timing-critical flip-flops in the system. The proposed strategy is
able to conveniently determine how many and which critical flip-flops are candidates
for replacement. Eventually, the SWIELD FF insertion is performed automatically.
By following this strategy, the cross-layer framework was successfully integrated in
several instances of both single-core and multicore processor systems.

The approach proposed in this dissertation covers several broad topics and con-
sequently, it demands large effort in terms of investigation and experimenting for
proper evaluation. Therefore, three distinct scenarios involving either single- or mul-
ticore processor system instances for specific application were created. The considered
instances differ in the number of inserted SWIELD FFs. Numerous simulation-based
experiments were conducted in order to credibly assess the influence of the framework
on the systems’ operation with respect to the parameters of interest. The experi-
mental results presented in Section 6.2 showed similar trends in all three scenarios.
Depending on the number of SWIELD FFs, the framework has potential to reduce
systems power consumption up to 15% in comparison to the baseline designs. Fur-
thermore, while occurrence of timing errors is prevented, a significant improvement of
the system resilience with respect to SEUs has also been observed. Concretely, replac-
ing only 13% of the timing-critical flip-flops in the processor cores with SWIELD FFs
can typically provide failure-free operation. This is true for most of the performed
FI campaigns, including some of those that mimic harsher conditions. However, as
failure-free execution cannot be guaranteed, a correlation between the execution time
and the fault rate in a form of mathematical model was inferred based on the FI
results. Using this model, one can appropriately plan the system mission and prepare
for dynamic activation of additional resilience mechanisms, given that the protection
provided by the framework is not enough. Finally, it is of key importance to em-
phasize that the framework can achieve such results without performance impact at
negligible area overhead.

From the previous discussion, it can be concluded that the dissertation objectives
postulated in Subsection 1.4.3 have been met. To sum up, by utilizing the proposed
cross-layer framework, a balanced level between resilience and power efficiency in
processor-based systems is indeed achievable. The final section of this thesis discusses
the potential approach improvements that can be performed in future.

7.1 Future Work

Along with the features of the cross-layer framework that were already investigated
and thoroughly presented in the previous chapters, there are several opportunities
stemming from the conducted research which could be explored as part of a follow-up
work. The first logical step would be physical design and production of a chip that
would implement processor-based system supported by the proposed framework. This
would open possibilities to asses the framework contribution towards system power
efficiency by chip measurements. In addition, performing irradiation tests on the chip
could help evaluate the system resilience to SEUs.

112



Although the SWIELD FF, as such, already offers several distinct functionalities,
further improvement of its architecture and features is still possible. For example, by
appropriate incorporation of transient filters, the SWIELD FF could make the system
resilient also to SETs. Moreover, if suitable mechanism for identifying permanent
faults is to be included in its structure, the SWIELD FF could become the first flip-
flop to provide practically total resilience. Of course, inclusion of extra hardware
would make the SWIELD FF even more complex and power-hungry. Therefore,
another aspect to consider is the possibility to reorganize or redesign the SWIELD FF
constituent components 1 in order to reduce its complexity. An expertise in transistor-
level design might be required for this purpose. Finally, it should be noted that both
SOMU and FFL need to be adequately extended to reflect any new functionalities
introduced to the SWIELD FF.

1For example, instead of the traditional AND-OR voter, simpler architectures like NAND-only
could be used.
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tracking using dynamic in-situ delay monitoring. In 2019 Design, Automation &
Test in Europe Conference & Exhibition (DATE), pages 304–307. IEEE, 2019.

[20] Janet L. Barth, C.S. Dyer, and E.G. Stassinopoulos. Space, atmospheric,
and terrestrial radiation environments. IEEE Transactions on nuclear science,
50(3):466–482, 2003.

[21] Robert C. Baumann. Radiation-induced soft errors in advanced semiconductor
technologies. IEEE Transactions on Device and materials reliability, 5(3):305–
316, 2005.

[22] Mikel Anton Bezdek. Utilizing timing error detection and recovery to dynami-
cally improve superscalar processor performance. 2006.

[23] Pritam Bhattacharjee, Prerna Rana, and Alak Majumder. Understanding of on-
chip power supply noise: Suppression methodologies and challenges. In Recent
Trends in Communication Networks. IntechOpen, 2019.

120



[24] B. Bhuva. Soft error trends in advanced silicon technology nodes. In 2018 IEEE
International Electron Devices Meeting (IEDM), pages 34–4. IEEE, 2018.

[25] Mark T. Bohr and Ian A. Young. CMOS scaling trends and beyond. IEEE
Micro, 37(6):20–29, 2017.

[26] Shekhar Borkar. Design challenges of technology scaling. IEEE micro, 19(4):23–
29, 1999.

[27] Shekhar Borkar. Low power design challenges for the decade (invited talk). In
Proceedings of the 2001 Asia and South Pacific Design Automation Conference,
pages 293–296, 2001.

[28] Keith A. Bowman, James W. Tschanz, Nam Sung Kim, Janice C. Lee, Chris B.
Wilkerson, Shih-Lien L. Lu, Tanay Karnik, and Vivek K. De. Energy-efficient
and metastability-immune resilient circuits for dynamic variation tolerance.
IEEE Journal of Solid-State Circuits, 44(1):49–63, 2008.

[29] Keith A. Bowman, James W. Tschanz, Shih-Lien L. Lu, Paolo A. Aseron,
Muhammad M. Khellah, Arijit Raychowdhury, Bibiche M. Geuskens, Carlos
Tokunaga, Chris B. Wilkerson, Tanay Karnik, et al. A 45 nm resilient micro-
processor core for dynamic variation tolerance. IEEE Journal of Solid-State
Circuits, 46(1):194–208, 2010.

[30] Thomas D. Burd, Trevor A. Pering, Anthony J. Stratakos, and Robert W.
Brodersen. A dynamic voltage scaled microprocessor system. IEEE Journal of
solid-state circuits, 35(11):1571–1580, 2000.

[31] Nicholas P. Carter, Helia Naeimi, and Donald S. Gardner. Design techniques for
cross-layer resilience. In 2010 Design, Automation & Test in Europe Conference
& Exhibition (DATE 2010), pages 1023–1028. IEEE, 2010.

[32] V. Chandra. Dependable design in nanoscale CMOS technologies: challenges
and solutions. In Workshop on Dependable and Secure Nanocomputing, 2009.

[33] Vikas Chandra and Robert Aitken. Impact of technology and voltage scaling on
the soft error susceptibility in nanoscale CMOS. In 2008 IEEE International
Symposium on Defect and Fault Tolerance of VLSI Systems, pages 114–122.
IEEE, 2008.

[34] Tze-Chiang Chen. Overcoming research challenges for CMOS scaling: Industry
directions. In 2006 8th International Conference on Solid-State and Integrated
Circuit Technology Proceedings, pages 4–7. IEEE, 2006.

[35] Eric Cheng, Shahrzad Mirkhani, Lukasz G. Szafaryn, Chen-Yong Cher, Hyung-
min Cho, Kevin Skadron, Mircea R. Stan, Klas Lilja, Jacob A. Abraham, Pradip
Bose, et al. CLEAR: Cross-layer exploration for architecting resilience: Combin-
ing hardware and software techniques to tolerate soft errors in processor cores.

121



In 2016 53nd ACM/EDAC/IEEE Design Automation Conference (DAC), pages
1–6. IEEE, 2016.

[36] Eric Cheng, Shahrzad Mirkhani, Lukasz G. Szafaryn, Chen-Yong Cher, Hyung-
min Cho, Kevin Skadron, Mircea R. Stan, Klas Lilja, Jacob A. Abraham, Pradip
Bose, et al. Tolerating soft errors in processor cores using clear (cross-layer ex-
ploration for architecting resilience). IEEE Transactions on Computer-Aided
Design of Integrated Circuits and Systems, 37(9):1839–1852, 2017.

[37] Mihir Choudhury, Vikas Chandra, Kartik Mohanram, and Robert Aitken. TIM-
BER: Time borrowing and error relaying for online timing error resilience. In
2010 Design, Automation & Test in Europe Conference & Exhibition (DATE
2010), pages 1554–1559. IEEE, 2010.

[38] Mihir R. Choudhury and Kartik Mohanram. Masking timing errors on speed-
paths in logic circuits. In 2009 Design, Automation & Test in Europe Conference
& Exhibition, pages 87–92. IEEE, 2009.

[39] Cristian Constantinescu. Impact of deep submicron technology on dependabil-
ity of VLSI circuits. In Proceedings International Conference on Dependable
Systems and Networks, pages 205–209. IEEE, 2002.

[40] Francesco Conti, Daniele Palossi, Andrea Marongiu, Davide Rossi, and Luca
Benini. Enabling the heterogeneous accelerator model on ultra-low power micro-
controller platforms. In 2016 Design, Automation & Test in Europe Conference
& Exhibition (DATE), pages 1201–1206. IEEE, 2016.

[41] John Daly, Bill Harrod, Thuc Hoang, Lucy Nowell, Bob Adolf, Shekhar Borkar,
Nathan DeBardeleben, Mootaz Elnozahy, Mike Heroux, David Rogers, et al.
Inter-agency workshop on hpc resilience at extreme scale. National Security
Agency Advanced Computing Systems, 2012.

[42] Anup Das, Akash Kumar, Bharadwaj Veeravalli, Cristiana Bolchini, and Anto-
nio Miele. Combined DVFS and mapping exploration for lifetime and soft-error
susceptibility improvement in MPSoCs. In 2014 Design, Automation & Test in
Europe Conference & Exhibition (DATE), pages 1–6. IEEE, 2014.

[43] Shidhartha Das, Carlos Tokunaga, Sanjay Pant, Wei-Hsiang Ma, Sudherssen
Kalaiselvan, Kevin Lai, David M. Bull, and David T. Blaauw. RazorII: In situ
error detection and correction for PVT and SER tolerance. IEEE Journal of
Solid-State Circuits, 44(1):32–48, 2008.
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