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Zusammenfassung
Bei militärischen Operationen und Auslandseinsätzen ist es notwendig, die verwendete
Infrastruktur sowie militärische Objekte, wie beispielsweise Militärflugplätze oder Feld-
lager vor feindlichem Beschuss durch Raketen, Artillerie oder Mörsergranaten zu schützen.
Derartige Angriffe können aus verschiedenen Richtungen kommen. Laserwaffen sind eine
Möglichkeit diese Bedrohungen abzuwehren. Durch den gerichteten Beschuss können
feindliche Geschosse (Ziele) in Sekundenschnelle neutralisiert werden. Daher werden
mehrere Laserwaffen um oder auf dem zu schützenden Gebiet verteilt. Zur Abwehr
eines Zieles wird derjenige Laser ausgewählt, der die Zerstörung des feindlichen Zieles
mit geringster Bewegung der Strahlführungseinheit des Lasers ermöglicht. Ziel ist es,
den Schaden der Angriffe zu minimieren. Demzufolge sollen möglichst alle Ziele zer-
stört werden und vorzugsweise mit den kleinstmöglichen Bewegungen der Laser. Diese
Anwendung ist in der Professur für Mess- und Informationstechnik an der Helmut-Schmidt-
Universität/Universität der Bundeswehr Hamburg untersucht worden, siehe dazu auch
Knapp und Rothe [Kna12]. In der Veröffentlichung wird eine vollständige Enumeration
aller Möglichkeiten beschrieben und daraus eine Zuordnung der Laserwaffen zu den Zielen
bestimmt.

Die vorliegende Arbeit widmet sich dem Problem der Zuordnung mit Mitteln der
Optimierung. Hierzu nutzen wir eine Beschreibung als Multiple-Traveling-Salesperson-
Problem mit sich bewegenden Zielen, wobei die Laser als Verfolger (salespersons) fungieren,
welche die sich bewegenden Ziele besuchen/neutralisieren müssen. Die Ziele bewegen sich
kontinuierlich über der Zeit auf sogenannten Trajektorien (Flugbahnen). Zu jedem Ziel
gibt es ein Zeitfenster, in dem das Ziel sichtbar ist und innerhalb dessen es besucht werden
muss. Die Aufgabe besteht darin, Routen für die Verfolger zu finden, so dass jedes Ziel
genau einmal besucht wird und die Summe der zurückgelegten Entfernungen minimal ist.

Zu dem hier vorliegenden Problem gibt es nur begrenzte Beiträge in der Literatur. Oft
ist in den Forschungarbeiten die Bewegung der Ziele eingeschränkt oder nicht kontinuierlich,
und Testinstanzen werden mit heuristischen Verfahren gelöst. Die Herausforderung in dieser
Arbeit besteht darin, zu untersuchen, ob exakte Verfahren in der Lage sind reale Instanzen
adäquat schnell zu lösen. Dazu betrachten wir das Problem von zwei Seiten, offline und
online. Bei der Offline-Betrachtung liegt die gesamte Information der Ziele (Trajektorien
und Zeitfenster) zu Beginn der Optimierung vor. Im realen Online-Fall hingegen werden
diese Daten erst nach und nach mit Erscheinen der jeweiligen Ziele verfügbar.

Ein zentraler Aspekt dieser Arbeit ist es, ein geeignetes Model zur Beschreibung des
Multiple-Traveling-Salesperson-Problems mit sich bewegenden Zielen zu entwickeln. Wir
stellen fünf verschiedene Modellansätze vor, wobei der Zeitaspekt auf verschiedene Arten
modelliert wird. Zum einen unterscheiden wir in zeitdiskretisierte und zeitkontinuierliche
Modelle und zusätzlich unterteilen wir diese in einstufige und zweistufige Modelle. Während
die einstufigen Modelle die gesamte Information in einem einzigen Mixed-Integer-Linear-
Programm zusammenfassen, werden bei den zweistufigen Modellen in einer ersten Stufe die
Zeitrestriktionen vollständig relaxiert, und anschließend durch Unterprogramme (zweite
Stufe) wieder hergestellt. Wir entwickeln ein exaktes Lösungsverfahren für die zweistufigen
Modelle, das die Callback-Funktionalität von cplex nutzt. Als fünftes Modell verwenden
wir einen Set-Partitioning-Ansatz.

Bei der Abwehr von Geschossen handelt es sich um ein Echtzeit-Problem, das bedeutet,
dass Lösungsalgorithmen einen bestimmten zeitlichen Rahmen für die Generierung von
Lösungen einhalten müssen. Ein Ziel dieser Arbeit ist es, zu untersuchen welches Modell
hinsichtlich der Laufzeit am besten performt. Dafür werden zufällig generierte Testinstanzen
mit 6 bis 20 Zielen, 1 bis 6 Verfolgern und 3 verschiedenen Zeitdiskretisierungen erstellt.

Durchgeführte Tests mit linearen Trajektorien zeigen, dass bei Instanzen mit 1 oder 2
Verfolgern, bis zu 8 Zielen und der höchsten Diskretisierung das zeitdiskretisierte Zweistufen-



modell die besten Laufzeiten erreicht. Mit dem zeitdiskretisierten Einstufenmodell lassen
sich sogar Instanzen mit bis zu 10 Zielen innerhalb von 3 Sekunden lösen. Die Modelle mit
kontinuierlichen Zeitvariablen haben insgesamt schlechtere Laufzeiten. Die vorgestellten
Varianten sind jedoch nicht auf lineare Trajektorien beschränkt. Wir untersuchen den Ein-
satz von nichtlinearen Flugbahnen mit den beiden Einstufenmodellen. Das zeitdiskretisierte
Modell erreicht Laufzeiten von unter 3 Sekunden, während das zeitkontinuierliche Modell
nicht einmal in der Lage ist, kleine Instanzen in angemessener Zeit zu lösen.

Anschließend testen wir mit dem zeitdiskretisierten Einstufenmodell einen realen Einsatz
anhand des Online-Multiple-Traveling-Salesperson-Problems mit sich bewegenden Zielen.
Hierbei bleiben die Verfolger solange auf ihren aktuellen Routen, bis ein oder mehrere neue
Ziele erscheinen. An dieser Stelle muss entschieden werden, wie die aktuellen Routen gemäß
der neuen Information angepasst werden. Hier kommen bekannte Verfahren wie replan
und ignore zum Einsatz. Für unsere Onlineexperimente verwenden wir Testinstanzen mit
8 bis 20 Zielen und nutzen zusätzlich sehr kurze Trajektorien. Dadurch können nicht alle
Ziele besucht werden, wodurch sich jedoch die eingesetzten Verfahren besser beurteilen
lassen. Für vier Verfolger, die gleichmäßig verteilt starten, lassen sich mehr als 76% der
Testinstanzen lösen ohne ein Ziel auszulassen. Dieser Wert kann noch auf über 78%
erhöht werden, in dem wir die Summe der frühestmöglichen Ankunftzeiten an den Zielen
minimieren.

Ein weiterer wichtiger Teil dieser Arbeit ist unser Beitrag zur Kompetitivitätsanalyse,
einer Methode zur Bewertung von Online-Algorithmen. Dazu beschränken wir uns auf einen
Verfolger und betrachten das Online-Traveling-Salesperson-Problem mit sich bewegenden
Zielen auf der reellen Zahlengeraden. Hier werden keine Zeitfenster betrachtet, die Ziele
bewegen sich solange bis sie besucht werden. Zu diesem Problem beweisen wir eine untere
Schranke für den Kompetitivitätsfaktor. Außerdem liefern wir einen Online-Algorithmus
und beweisen seinen Kompetitivitätsfaktor. Anschließend vergleichen wir unseren Algorith-
mus mit einem Online-Algorithmus, den wir für das Online-Traveling-Salesperson-Problem
mit sich bewegenden Zielen auf der reellen Zahlengeraden adaptiert haben und der auf
Ausiello et al. [Aus01] basiert. Hierfür beweisen wir ebenfalls den Kompetitivitätsfaktor.
Beide Kompetitivitätsfaktoren sind abhängig vom Geschwindigkeitsverhältnis von Verfolger
und Zielen und je nach Geschwindigkeitsverhältnis ist der Kompetitivitätsfaktor des einen
oder anderen Online-Algorithmus besser. Für unsere verwendeten Online-Instanzen ergibt
sich damit ein analytisch bestimmter Kompetitivitätsfaktor von 3,47 und experimentell
erhalten wir 1,55.

Zusammenfassend halten wir fest, dass die Art der Modellierung des Multiple-Traveling-
Salesperson-Problems mit sich bewegenden Zielen die Laufzeit der Optimierung beeinflusst.
Basierend auf den durchgeführten Tests, erscheint das zeitdiskretisierte Einstufenmodell als
am geeignetsten für einen realen Einsatz. Die erzielten theoretischen Resultate zum Online-
Traveling-Salesperson-Problem mit sich bewegenden Zielen auf der reellen Zahlengeraden
stellen neue Ergebnisse in diesem Bereich dar.



Abstract
Military installations and objects in out-of-area missions, e.g., an air base or a field camp,
must be protected from incoming hostile rockets, artillery or mortar fire. Simultaneous
attacks from different firing positions are considered. Lasers as directed energy weapons
are able to destroy those targets within seconds. Thus, several lasers are deployed over
or nearby the protective area to be selected for the countermeasure. Generally, the laser
is assigned to a target, that applies the smallest movement of its direction unit to aim
at it. The goal is to minimize the damage and thus, to destroy all incoming targets,
preferably with the smallest possible movements of the direction units. This application has
been investigated at the professorship of Measurement and Information Technology at the
Helmut Schmidt University/University of the Federal Armed Forces Hamburg, see Knapp
and Rothe [Kna12]. Here, the decision for the countermeasure is based on complete
enumeration.

We focus on the assignment of lasers to targets by means of optimization. We model
the problem as a multiple traveling salesperson problem with moving targets, where the
salespersons correspond to the lasers. The targets move over time on continuous trajectories.
Additionally, each target is given a visibility time window. The task is to find routes for
multiple salespersons such that each target is reached exactly once within its visibility time
window and the sum of all traveled distances of all salespersons is minimal.

There is few literature about a generalization with moving targets and multiple salesper-
sons. Often research articles focus on targets, whose movement is restricted or based on a
stochastic process. Due to the high computational burden mainly heuristic approaches are
used to solve test instances. We investigate if exact methods are able to solve real-world
instances in reasonable time. On that account, we address the problem from two sides,
offline and online. Considering the offline case, all input data is given in advance. In the
online case, input information is revealed step-by-step during executing the algorithm. The
information about trajectories and time windows is available from the moment the targets
get visible.

One essential aspect studied in this work is to find an appropriate model formulation
to solve instances of the multiple traveling salesperson problem with moving targets in
reasonable time. We present five different modeling approaches, where the time requirements
are handled in different ways. The approaches are classified in time-discrete and time-
continuous models and further in one-stage and two-stage models. While for a one-stage
model all information is included in a single mixed integer program, we formulate the
problem without time constraints and ensure time feasibility by solving a number of sub-
problems for a two-stage model. We present a solution procedure based on the Callback
functionality of cplex to solve the two-stage models. The fifth model applies a set
partitioning approach.

From the mathematical point of view, we are faced with a real-time problem – an
algorithm has to provide a solution within prescribed time requirements. Our goal is
to examine what formulation is most suitable in terms of runtime to solve the multiple
traveling salesperson problem with moving targets with exact solution methods. Due to
the lack of real input data, we randomly generate test instances with 6 to 20 targets, 1 to
6 salespersons and 3 different discretization levels.

Computational tests with linear trajectories show that for instances with 1 or 2 salesper-
sons, up to 8 targets, and with the finest discretization level the time-discrete two-stage
model performs best. The time-discrete one-stage model can even solve instances up to 10
targets within 3 seconds. Models with a continuous time handling produce poor runtimes.
However, the proposed models are not restricted to linear trajectories. We analyze the
handling of non-linear trajectories with both one-stage models. Computational experiments
show that the time-continuous model cannot even solve small test instances with non-linear



trajectories in reasonable time. The runtimes for the time-discrete model are below 3
seconds for the coarse discretization level.

Finally, we investigate the real case and address the online multiple traveling salesperson
problem with moving targets with the time-discrete one-stage model. Here, salespersons
follow current tours until one or more new targets arrive. This new target information
has to be incorporated into the current tours. Therefor, we use the two familiar strategies
replan and ignore. We carry out experiments on randomly generated test instances
with 8 to 20 targets, medium discretization level, and very short trajectory lengths. Short
trajectories lead to instances, where it is often not possible to visit all targets, however,
that way we get distinguishable and descriptive results for the applied strategies. The
computational results show that for 4 salespersons equally distributed over the considered
space over 76% of all instances can be solved without any misses. This value can slightly
be increased to over 78% by an objective function that minimizes the sum of earliest
interceptions.

Another important aspect of this work is our contribution to competitive analysis,
a method to evaluate the quality of online algorithms. Here, we restrict the problem
considered so far to one salesperson and address the online moving targets traveling
salesperson problem on the real line. There are no time windows. At first, we prove a
lower bound for the competitive ratio regarding this problem. Then, we develop an online
algorithm and present its competitive ratio with the corresponding proof. For the static
case, we show that this ratio is tight. Furthermore, we compare our algorithm to an online
algorithm based on Ausiello et al. [Aus01] and adapted to moving targets. Therefor, we
also prove a competitive ratio. The decision which algorithm has a better competitive ratio
depends on the speed ratio of salespersons and targets. Applying the speed ratio of our
test instances we obtain an analytical competitive ratio of 3.47, and a practical one of 1.55.

Finally, we can conclude, that the choice of modeling has an influence on the solution
time of real-world instances of the multiple traveling salesperson problem with moving
targets. Due to the experiments carried out in this work the time-discrete one-stage model
is our model of choice. The theoretical results obtained for the online moving target
traveling salesperson problem on the real line are new in this research area.
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1 The Multiple Traveling Salespersons Problem with Moving Targets

The classical traveling salesperson problem (TSP) is a combinatorial optimization problem.
The task for a salesperson starting from a depot is to visit a number of fixed targets (cities,
points) each exactly once and afterwards to end the tour at the depot. The TSP is an
ordering problem. The first mathematical problem definition of the TSP was formulated
1930 in Vienna by Karl Menger [Men30]:

Wir bezeichnen als Botenproblem (weil diese Frage in der Praxis von jedem Postboten,
übrigens auch von vielen Reisenden zu lösen ist) die Aufgabe, für endlich viele Punkte,
deren paarweise Abstände bekannt sind, den kürzesten die Punkte verbindenden Weg zu
finden. Dieses Problem ist natürlich stets durch endlich viele Versuche lösbar. Regeln,
welche die Anzahl der Versuche unter die Anzahl der Permutationen der gegebenen
Punkte herunterdrücken würden, sind nicht bekannt. Die Regel, man solle vom
Ausgangspunkt erst zum nächstgelegenen Punkt, dann zu dem diesem nächstgelegenen
Punkt gehen usw., liefert im allgemeinen nicht den kürzesten Weg. (Karl Menger,
1930)

While it is relatively easy to understand the problem and to find a good solution, it is
computationally difficult to find a proven optimal solution. In 1972 Richard Karp
showed, that the Hamiltonian cycle problem is NP-complete [Kar72], which implies the
NP-hardness of the TSP, see also Garey and Johnson [Gar79]. For a survey on TSP we
refer to Lawler et al. [Law85] or Reinelt [Rei94].
There are different variants of the TSP. This research focuses on a dynamic variant with
multiple salespersons and time windows. The dynamic behavior arises from the targets,
which are not fixed as in the classical case. The targets move continuously on trajectories
in a certain space. All targets have got a determined speed value and each one is assigned a
visibility time window. Thus, a salesperson can only intercept a target within its respective
time interval. This dynamic TSP generalization is called multiple traveling salespersons
problem with moving targets (MTSPMT).

1.1 Application

The MTSPMT as a dynamical generalization of the TSP is suitable for real-world problems.
A possible application of the MTSPMT can be found in the defense sector. Military
installations and objects in out-of-area missions, e.g., an air base or a field camp, must
be protected from incoming hostile rockets, artillery or mortar (RAM) fire. Simultaneous
attacks from different firing positions can be considered. The flight time of RAM is
approximately 30 seconds, whereas the first 5-10 seconds are needed to radar-detect the
threat by the surveillance radar and estimate its trajectory. Based on the estimated impact
point a decision must be taken whether it needs to be destroyed. Lasers as directed energy
weapons are capable of destroying a RAM target within seconds. With a battery of lasers
deployed over or nearby the protective area decisions have to be taken, which available
laser to select for the countermeasure. The selected laser then aims at the incoming target
in the air for a certain period of time to destroy it. The further away a target is, the longer
a laser has to fire at the target to safely destroy it. For reasons of simplification we assume
that all targets can be destroyed with the same amount of energy, each laser fires the same
period of time, and this period of time is set to one unit. Every laser has its own limited
energy storage, e.g., a capacitor or a battery. It is assumed, that a laser intercepts only
one RAM target at a certain point of time and dead zones of the laser weapons are not
considered.
Generally, the closest laser is assigned to a target, where “close” does not refer to the
physical distance, but to the angle the laser needs to traverse for aiming at the RAM target.
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Furthermore, due to safety requirements, a laser should not shoot across the protected area.
However, this rule will be neglected, if the destruction of the RAM target is impossible
otherwise. The goal is to minimize the damage of the field camp and thus, to destroy
all incoming targets, preferably with the smallest possible movements of the lasers. The
closest laser is used instead of the laser destroying the RAM in minimum time, to prefer
small angle movements over large angle movements. Since, in case of a failure (target could
not be destroyed) an adjustment of the laser is then more likely to succeed. The goal is to
destroy all incoming RAM threats.

This application was investigated at the professorship of Measurement and Information
Technology at the Helmut Schmidt University/University of the Federal Armed Forces
Hamburg, see Knapp and Rothe [Kna12]. The authors present ideas of analysing targets
according to their level of threat and provide a schematic system to engage targets by
lasers. Iterating all possibilities between lasers and targets is proposed to decide which
laser to take for the engagement of a certain target.

1.2 Problem Description

The application described above is modeled as an MTSPMT. In this context, the lasers
correspond to the salespersons and the incoming RAM entities are the moving vertices,
which we call moving targets. Every moving target has a certain visibility time window.
The time window starts at that moment at which the target is radar-detected, its trajectory
is computed and reachability by all lasers is guaranteed. The visibility time window ends at
the latest point in time where a destruction of the target is possible, which is before impact.
The trajectory of a target can be described by a function over time. It is assumed, that
every target has the same constant speed value. Every salesperson starts its tour from an
initial depot, which can be located in the center of the considered space. Alternatively, the
depots may be evenly distributed over the area or the salespersons start from an arbitrary
position (e.g., the last used positions). Accordingly, it is not required for the salespersons to
finish their tours at the depot. We assume, that all salespersons have the same maximum
speed value.

Every target must be visited once by exactly one salesperson within its visibility time
window. The objective function is to minimize all traveled distances of all salespersons.
Usually, the optimization goal for a dynamic TSP is to minimize travel times. However,
the concept of intercepting a target as early as possible can cause a laser to traverse a long
distance to catch that target earliest possible. To save traveling time and be ready for next
upcomming targets we minimize the distances. Moreover, it is most important to safely
destroy a target than to adjust for a second shot in case of a miss. Destruction of a target
is more likely conducted when lasers traverse small angles. In our test instances we assume
destruction of a target in the first try. The restriction that each target has to be destroyed
is above all and will be modeled as the demand constraints.

From the mathematical point of view, this application is an online optimization problem,
where the complete data of the problem instance is not given in advance and a decision has
to be made immediately. In our study we initially solve it as an offline problem. Having
developed a solution algorithm for the offline problem, it can be adapted to solve the
online problem by a moving horizon approach, that is, the data is integrated to the (offline)
algorithm at runtime, which most likely leads to a (partial) reversion of the current solution.
Practically speaking, the targets, that are visible first, are optimized and the salespersons
start their tours to intercept these targets accordingly, until new targets arise. When
new targets arise, the algorithm has to decide how to insert the new data to the already
constructed solution. One possibility is to finish unfinished tours and to optimally integrate
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the new targets afterwards. Another possibility is to update current tours directly when
new targets become visible, which may lead to aborting current tours and heading for
other targets instead.

The first part of this thesis deals with the MTSPMT as an offline problem. In the second
part (Section 5.5 and Chapter 6) the online variant, different versions of updating the
current solution, and theoretical results regarding competitive analysis are addressed.

1.3 Related Problems and Applications

If we restrict the number of salespersons to one, the position of all cities to be fixed over
time and extend all visibility windows to the whole time horizon, we obtain the classical
TSP. Here, related problems and applications of the MTSPMT and TSP are addressed.
The first problem is the Moving-Target TSP, which is the MTSPMT restricted to one
salesperson. It was addressed by Helvig et al. [Hel98], who also mentioned some possible
applications for the Moving-Target TSP: a supply ship, that resupplies patrolling boats or
an airplane that must intercept a number of mobile ground units. They also addressed the
Multi-Pursuer Moving-Target TSP with Resupply, where multiple pursuers are considered
and each pursuer must return to the origin for resupply after intercepting a target.

Many practical applications such as routing and scheduling of vehicles have a time-dynamic
component inherent. In the last two decades logistic distributions were faced with an
increasing traffic load, traffic congestion and uncertainty in travel times caused by bad
weather conditions or other random incidences. In this context Vehicle Routing Problems
(VRPs) with time-dependent traveling times became more and more important. Here,
the VRP with time-dependent traveling times and time windows is very similar to the
MTSPMT, because traveling times for the MTSPMT are also time-dependent, due to the
movement of the targets. However, the movement of a target does not only influence the
length of a certain arc and thus the travel time to a certain target, but to all other targets
as well. Since all targets are moving simultaneously and constantly the length of an arc
has two degrees of freedom, i.e., the length of an arc is determined by the time the arc is
entered and the time the arc is left. Both these times exactly correspond to two spatial
positions of the incident targets.

Thus, the MTSPMT has varying distances and varying travel times between 2 targets
and both of these do not correspond to each other since waiting is permitted. Assuming
a target approaching a salesperson, the salesperson moves the smallest distance to the
trajectory of the target with maximum speed and possibly waits there to catch the target,
this results in a smaller average speed of the salesperson. The other case is, when the
target is heading away from the salesperson, then it is better to catch the target as early as
possible and without waiting, here the average speed is the maximum speed. The change in
distances between targets is different compared to time-dependent VRP (TDVRP). For the
MTSPMT minimizing the travel time is different from minimizing the distance traveled.

1.4 Literature

This thesis addresses a generalization of the classical traveling salesperson problem by
considering multiple salespersons and moving targets with time windows. For a survey on
the classical TSP we refer to Reinelt [Rei94].

There are a number of articles in the literature that deal with dynamical TSP generaliza-
tions. However, the TSP literature concerning moving targets is less developed [Eng13;
Hel03; Jia05]. The first articles addressing the traveling salesperson problem with moving
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targets (TSPMT) are Helvig et al. [Hel98; Hel03]. The authors present an exact and
an approximation algorithm for the one-dimensional case, where targets and salespersons
move on a straight line. The targets have unique speeds and all move simultaneously
right from the beginning. The exact algorithm is based on dynamic programming and
performs in Op𝑛2q, where 𝑛 is the number of targets. Other specific variants of the TSPMT
with restrictions for target speed, movement and the number of targets are also addressed,
e.g., the targets move towards the origin (starting point of the salesperson), never reach
the origin, or the TSPMT with resupply, where the pursuer must return to the origin
after intercepting a target. The proposed algorithms are not applicable to the general
case of the TSPMT. Specific variants of the TSPMT and the TSPMT with resupply are
also addressed by Jiang et al. [Jia05], Jindal et al. [Jin11], and Englot et al. [Eng13].
Solution approaches are mainly heuristics such as genetic algorithms.

A very recent article by Hassoun et al. [Has20] considers the TSPMT variant, where the
targets do not start their movement simultaneously, instead the targets enter the system
over time. Thus, each target cannot be intercepted earlier than its release times. The
authors study the problem on the real line with the assumption, that all targets move with
the same constant speed. The authors provide a Op𝑛5q time algorithm based on dynamic
programming, where 𝑛 is the number of targets. However, this variant is different from the
one dimensional case in Helvig et al. [Hel03].

Some articles address a stochastic variant of the dynamic traveling salesperson problem.
Here, locations of the targets change over time caused by stochastic processes. For example,
problem instances in Ahrens [Ahr15] were generated from static TSP datasets originated
from a published and standardized library. The movement of each target is modeled by
a Gaussian-distributed random distance vector that is added to its location. Time is
integrated in a way that the movement from one target to another can be done in one
time step and the targets localized in the 2-dimensional space move at each time step.
The instances were solved by heuristics in an online calculation. The author examined the
applicability of standard (static) TSP solvers to the dynamic instances. Computational
experiments were carried out with the Tour Construction Framework which combines
global and local heuristics and the TSP tour construction heuristic “nearest neighbor”.

Another TSP variant is the generalized TSP (GTSP) also known as set TSP or group
TSP. Here, the targets are organized in subsets (groups, clusters) and at least one element
per subset has to be visited. In case exactly one element per subset has to be visited the
problem is called equality GTSP (E-GTSP). For an asymmetrical E-GTSP the costs of
anti-parallel arcs do not have to be equal. We assume, that the MTSPMT is modeled
with discrete time steps. Then, we obtain a copy of each target for each time step in the
respective time window. Let us consider the copies of each target as a subset (or cluster).
To this end, we have a set of clusters and the task is still that each cluster has to be
visited once by exactly one salesperson. In case of considering one salesperson, this gives
us an E-GTSP. Moreover, the discrete target copies describe the discretized trajectory of
the target. Any such trajectory position is characterized by the target number and the
time step. Considering two positions of different targets as two nodes then there is an arc
between these nodes, if and only if a salesperson is able to travel the Euclidean distance of
the nodes within the time difference. That means, the salesperson is not allowed to exceed
its maximum speed value. An instance of a MTSPMT generally contains no anti-parallel
arc due to the progression of time. However, this can be interpreted as anti-parallel arcs
with infinite costs. In this context an instance of the TSPMT can be formulated as an
instance of the asymmetrical E-GTSP.

The asymmetrical GTSP and E-GTSP have been investigated in Laporte et al. [Lap87].
Noon and Bean [Noo93] showed, that any problem that can be modeled as a GTSP,
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can be transformed into an asymmetrical TSP. The equivalent problem with multiple
salespersons is the generalized vehicle routing problem (GVRP), see Ghiani and Improta
[Ghi00]. For the symmetrical case there is a contribution by Sundar and Rathinam
[Sun16]. The authors addressed the generalized multiple depot TSP (GMDTSP) and
provide a polyhedral study for this problem class. They presented a branch-and-bound
approach that was realized by the callback functionality of ibm ilog cplex Optimizer
(short cplex). Computational experiments were carried out for 14 to 105 targets (which
correspond to the number of target copies in our notation) and a maximum number of 21
clusters (which correspond to the number of targets in our notation).
In Picard and Queyranne [Pic78] a similar problem is considered: the time dependent
traveling salesperson problem (TDTSP). Here, a complete graph is considered and the cost
values (or the travel times) depend on the position of the target in the tour. Thus, there are
number of targets many discrete time steps and only a discrete number of cost values. The
authors use shortest paths in a multipartite network for the solution with branch-and-bound
and relaxation methods. Abeledo et al. [Abe13] is based on the formulation given by
Picard and Queyranne [Pic78] and provides a study of the TDTSP polytope. The
authors present several facet defining inequalities and perform computational experiments
with their branch-and-cut-and-price algorithm.
A generalization of the TDTSP is the time dependent vehicle routing problem (TDVRP).
Here, more than one salesperson (vehicle) is considered and capacity restrictions as well
as time windows are imposed. Malandraki and Daskin first formulated the TDVRP
[Mal92] as a mixed-integer linear program. They used step functions to model the travel
times depending on the distance between the nodes and the time of the day. Furthermore, a
nearest-neighbor heuristic was presented. Due to the computational complexity of TDVRP
scientific contributions mainly focus on heuristic approaches. Some exemplary articles
follow.
Ichoua et al. [Ich03] integrated the time dependency in the travel speed instead of in
the travel time. The travel speeds were modeled by step-functions of the time of the day,
leading to piece-wise linear functions of the travel times. They report on a tabu search
algorithm, that was adapted to the time-dependent model and experiments were conducted
in a static and dynamic environment.
With regard to better reliability in scheduling and routing problems, Fleischmann et al.
[Fle04] used time-varying continuous travel times and retrieved the information from a
traffic information system that was tested in the city of Berlin. Computational results
were reported for several VRP heuristics.
Haghani and Jung [Hag05] and Jung and Haghani [Jun01] also applied continuous
travel time functions and gave a MILP formulation of the TDVRP with discrete time steps.
A genetic algorithm was presented and the results were compared with an exact solution
method for small and mid-sized instances and for bigger instances a lower-bound procedure
was used. Instances with 5 to 30 nodes and 10, 15 and 30 time steps were considered.
Another article deals with a more realistic modeling of the time-dependent travel times.
Mancini [Man14] models the travel times by a polynomial instead of linear functions,
computational results were carried out by a heuristic method.
Very few literature is published concerning exact methods, some of them are e.g., Albiach
et al. [Alb08] and Soler et al. [Sol09]. Based on the work of Noon and Bean [Noo93] they
provide a theoretical work of transforming an instance of the asymmetric TDTSP with
time windows or the TDVRP with time windows into an instance of the Asymmetric TSP
(ATSP) or VRP (AVRP) respectively. Soler et al. [Sol09] is a generalization of the first one,
because it deals with multiple salespersons. The conversions are carried out by transforming
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the underlying graph into an instance of the GTSP or the GVRP respectively, and then
into the ATSP and the AVRP. Albiach et al. [Alb08] also performed computational
experiments using an exact algorithm for the Mixed General Routing Problem. Instances
with up to 222 vertices and one salesperson were considered, where the number of arcs is
between 5 and 20% of the arcs of a complete graph.

Van Woensel et al. [Van07] introduced a new approach to model potential traffic
congestion. This model is based on a queueing approach to traffic flows. Computational
experiments were carried out for small instances with 10 cities using explicit enumeration
and for up to 100 cities with an ant colony heuristic.

In summary there are only few research contributions to the MTSPMT. Articles on the
MTSPMT or the TSPMT mainly consider specific problems or impose restrictions on the
movement of the targets. The MTSPMT in general is closely related to the time dependent
TSP and VRP; the MTSPMT with discrete time steps is especially similar to the E-GTSP
with multiple depots. The challenge of the MTSPMT is the continuous movement of all
targets. An arc distance is not only dependent on the time the arc is entered but also
on the time the arc is left. Both these times are related to the positions of the incident
targets.

Since solving time-dependent problems is very time-consuming, most research articles
do not concentrate on exact procedures. In our research we confront different modeling
approaches and examine their computation times on randomly generated test instances.
At first, we concentrate on an offline approach for solving MTSPMT instances to global
optimality. Then, we use the most efficient model for an online consideration and compare
online and offline results.

1.5 Contribution

In this thesis we investigate the time aspect of the MTSPMT in modeling when minimizing
the traveled distances. Based on different ways of integrating time into the model formu-
lation, five different model variants are presented and compared regarding performance.
Two model approaches have already been published by Stieber et al. [Sti14], that is the
time-discrete (TD) model and the time-continuous (TC) model. In addition, we generate
time-free models. For these models we completely relax the time requirements in a first
stage and use subprograms to check and create time feasibility in a second stage. These
feasibility checker are based on discrete time steps on one hand and on the other hand
we use a continuous time formulation such that not all but necessary time restrictions are
integrated. These two resulting modeling variants are called time-free model with time-
discrete feasibility checking (TFTD) and time-free model with time-continuous feasibility
checking (TFTC). The optimal solutions of the two-stage models (TFTD and TFTC) are
computed using a branch-and-bound framework. We present an algorithm, that makes use
of a callback function (an advanced feature of cplex). As the last approach we embed the
described models in a set partitioning approach. Computational experiments are carried
out using randomly generated test instances with a varying number of targets, salespersons
and time steps. The aim is to find a formulation to solve MTSPMT instances with the
best performance in terms of CPU time.

In the second part of this thesis we use the obtained results to simulate a real-world
application by considering the online case of the MTSPMT. That means, that the in-
formation of the targets is not given in advance instead it is revealed step-by-step and
thus, a re-optimization is needed, which most likely cause a reversion and update of the
current solution. Furthermore, we focus on online algorithms and methods to measure their
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performance. The main part deals with the online TSPMT on the real line. Here, only
one salesperson is considered and the targets are moving on the real line. Visibility time
windows are replaced by release times. We develop an online algorithm for this problem
and prove its competitive ratio, which is a measure for the quality of online algorithms.
Furthermore, we compare our results to an online algorithm from the literature, which
we adapt to moving targets. For this algorithm we also prove its competitive ratio. The
decision which algorithm has a better competitive ratio depends on the speed ratio of
salespersons and targets.

1.6 Structure

The remainder of this thesis is organized as follows. The basic definitions and concepts used
in this work are given in Chapter 2. We present the different model formulations for the
MTSPMT in Chapter 3 as well as some model adaptations for certain situations. Chapter 4
focuses on the solution procedures for the different models. Conducted experiments and
obtained results are described in Chapter 5. Main topics of Chapter 6 are competitive
analysis and the online MTSPMT with variants. Finally, concluding remarks in Chapter 7
complete this thesis.
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2 Basic Definitions and Concepts

In this chapter we introduce the main concepts of linear, integer, and mixed integer
programming as well as second-order cone programming. We provide the basics in graph
and network theory and introduce selected concepts of computational complexity theory.
Finally, an overview of interval arithmetic is given together with a concept of interval
propagation adapted to a sequence of moving vertices.

A concise presentation is provided, which is not meant to be self-supporting. We assume
basic knowledge in combinatorial optimization, linear and (mixed) integer programming as
well as graph and network theory. Regarding combinatorial optimization and linear pro-
gramming we recommend the books Grötschel, Lovász, and Schrijver [Grö88], Cook,
Cunningham, Pulleyblank, and Schrijver [Coo97], Papadimitriou and Steiglitz
[Pap17], Korte and Vygen [Kor00], and Chvátal [Chv83]. Standard references for linear
and integer programming as well as cutting planes are Nemhauser and Wolsey [Nem88]
and Schrijver [Sch98]. For complexity theory and the definition of NP-hard problems
we refer to Garey and Johnson [Gar79]. An introduction to convex optimization and
especially to second order cone programming can be found in Boyd and Vandenberghe
[Boy04].

2.1 Basic Definitions

We denote by R, Q, and Z the sets of real, rational, and integral numbers, respectively.
The exclusion of negative numbers is indicated by R`, Q` and Z`. Whole numbers are
defined by N :“ Z z̀t0u. Given a set 𝐸, we denote by 2𝐸 the power set of 𝐸, which is the
set of all subsets of 𝐸, including the empty set and 𝐸 itself.

Any given vector 𝑐 P R𝑛, 𝑛 P N, is regarded as a column vector, the corresponding row
vector is 𝑐𝑇 . Given a matrix 𝐴 P R𝑚ˆ𝑛, we use t1, . . . ,𝑚u to indicate the set of row
indices of 𝐴 and t1, . . . , 𝑛u to indicate the set of column indices, respectively. Furthermore,
the submatrix 𝐴𝐼𝐽 of 𝐴 with 𝐼 Ď t1, . . . ,𝑚u and 𝐽 Ď t1, . . . , 𝑛u is generated from 𝐴 by
removing all rows of the index set t1, . . . ,𝑚uz𝐼 and all columns of the index set t1, . . . , 𝑛uz𝐽 .
If we only restrict the column index set, we write 𝐴¨𝐽 and if we restrict the row index set
𝐴𝐼¨, respectively. If it is clear from the context, we omit the point and simply write 𝐴𝐼 or
𝐴𝐽 .

A metric space 𝑀 is an ordered pair 𝑀 “ p𝑋, 𝑑q where 𝑋 is a nonempty set and 𝑑 :
𝑋 ˆ 𝑋 Ñ R` is a metric or distance function on 𝑋, such that for any 𝑥, 𝑦, 𝑧 P 𝑋 the
following conditions are satisfies:

(i) 𝑑 p𝑥, 𝑦q “ 0 ðñ 𝑥 “ 𝑦

(ii) 𝑑 p𝑥, 𝑦q “ 𝑑 p𝑦, 𝑥q

(iii) 𝑑 p𝑥, 𝑦q ď 𝑑 p𝑥, 𝑧q ` 𝑑 p𝑧, 𝑦q.

A set 𝑆 Ď R𝑛 is convex, if for any two elements 𝑥, 𝑦 P 𝑆 the line segment t𝜆𝑥` p1´𝜆q𝑦 :
0 ď 𝜆 ď 1u is contained in 𝑆.

A combinatorial optimization problem is defined as follows. Let 𝐸 be a finite set, I be a
subset of 2𝐸 , where each element of I is denoted as a feasible set or a feasible solution.
In addition, there is a function 𝑐 : 𝐸 Ñ R` such that for any set 𝐹 Ď 𝐸 the value of the
function is defined as 𝑐p𝐹 q :“

ř

𝑒P𝐹 𝑐p𝑒q. The task is to find a set 𝐼˚ P I with 𝑐p𝐼˚q is
minimal (maximal), that is, 𝑐p𝐼˚q ď 𝑐p𝐽q for all 𝐽 P I (𝑐p𝐼˚q ě 𝑐p𝐽q for all 𝐽 P I).
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Given 𝑚,𝑛 P N, 𝑏 P R𝑚, 𝑐 P R𝑛 and a matrix 𝐴 P R𝑚ˆ𝑛. The task to find a vector 𝑥 P R𝑛,
which has the smallest (greatest) possible value 𝑐𝑇𝑥 among all vectors holding 𝐴𝑥 ď 𝑏 is
called linear program (LP). We write shortly

min 𝑐𝑇𝑥 max 𝑐𝑇𝑥

subject to 𝐴𝑥 ď 𝑏 subject to 𝐴𝑥 ď 𝑏

𝑥 P R𝑛, 𝑥 P R𝑛.

We call min 𝑐𝑇𝑥 the objective function (or cost function) and 𝐴𝑥 ď 𝑏 the constraints of
the LP. Any vector 𝑥 P R𝑛, that meets all constraints is a feasible solution of the LP. The
set of all feasible solutions is given by

𝑃 :“ t𝑥 P R𝑛 : 𝐴𝑥 ď 𝑏u.

The coefficients of 𝑥 are called variables.

Considering an LP with the additional restriction 𝑥 P Z𝑛, then we speak of an integer
program (IP). In case only a part of the variables has to be integral it is called mixed
integer program (MIP). This problem is of the form

min 𝑐𝑇𝑥` ℎ𝑇 𝑦

subject to 𝐴𝑥`𝐺𝑦 ď 𝑏

𝑥 ě 0 (1)
𝑦 ě 0
𝑥 P Z𝑛

𝑦 P R𝑝

where the matrix 𝐴 P Q𝑚ˆ𝑛, the matrix 𝐺 P Q𝑚ˆ𝑝 and the vectors 𝑐 P Q𝑛, ℎ P Q𝑝 and
𝑏 P Q𝑚. IPs and MIPs in this thesis are solved with the Simplex algorithm (see Section 2.2),
thus, rational data is used. In addition, we can also assume integral data, since rational
equations or inequalities can be scaled appropriately to obtain integral data with the same
set of feasible solutions. The set of all feasible solutions to (1) is

𝑆 :“ tp𝑥, 𝑦q P Z𝑛
` ˆR

𝑝
` : 𝐴𝑥`𝐺𝑦 ď 𝑏u (2)

and called mixed integer set. A linear relaxation of this mixed integer set, which discards
the integrality requirement is denoted by

𝑃 0 :“ tp𝑥, 𝑦q P R𝑛
` ˆR

𝑝
` : 𝐴𝑥`𝐺𝑦 ď 𝑏u, (3)

referring to a relaxation of the solution space. Then, a linear programming relaxation of
(1), referring to a relaxation of the problem, is

mint𝑐𝑇𝑥` ℎ𝑇 𝑦 : p𝑥, 𝑦q P 𝑃 0u. (4)

2.2 The Simplex Algorithm

The simplex algorithm is a popular algorithm for solving linear programs and was developed
by George Dantzig in 1947, see [Dan90] for its history of origins. The idea of this
method is to move on the polyhedron underlying a linear program from vertex to vertex
along edges until an optimal vertex is found. This idea is formalized in the following and
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starts with some definitions. The two references Grötschel [Grö09] and Papadimitriou
and Steiglitz [Pap17] were used for this section.

Definition 2.1. Given 𝑚,𝑛 P N, 𝑏 P R𝑚, 𝑐 P R𝑛 and a matrix 𝐴 P R𝑚ˆ𝑛. A linear
program in the form of (5) is said to be in standard form,

min 𝑐𝑇𝑥

subject to 𝐴𝑥 “ 𝑏 (5)
𝑥 ě 0.

The underlying polyhedron of (5) is

𝑃“p𝐴, 𝑏q :“ t𝑥 P R𝑛 : 𝐴𝑥 “ 𝑏, 𝑥 ě 0u. (6)

In general, a subset 𝑃 Ď R𝑛 is called a polyhedron if there is an 𝑚 P Z`, a matrix
𝐴 P R𝑚ˆ𝑛 and a vector 𝑏 P R𝑚, such that

𝑃 “ 𝑃 p𝐴, 𝑏q :“ t𝑥 P R𝑛 : 𝐴𝑥 ď 𝑏u. (7)

We note, that the description (6) can be transformed into an description (7) by writing
the equation 𝐴𝑥 “ 𝑏 as 𝐴𝑥 ď 𝑏 and ´𝐴𝑥 ď ´𝑏 as well as 𝑥 ě 0 as ´𝑥 ď 0.
A subset 𝐺 Ď R𝑛 is called hyperplane, if there is an 𝑎 P R𝑛zt0u and 𝛽 P R, such that

𝐺 “ t𝑥 P R𝑛 : 𝑎𝑇𝑥 “ 𝛽u.

Then, the corresponding halfspace 𝐻 Ď R𝑛 is defined as

𝐻 “ t𝑥 P R𝑛 : 𝑎𝑇𝑥 ď 𝛽u. (8)

Obviously halfspaces are polyhedra and convex sets. Thus, every polyhedron 𝑃 ‰ R𝑛 is
a finite intersection of halfspaces and thus, convex. A bounded polyhedron is called a
polytope.
Let 𝑃 Ď R𝑛 be a polyhedron of the form (7). Then, a subset 𝐹 Ď 𝑃 is called a face of 𝑃 ,
if there is an inequality 𝑐𝑇𝑥 ď 𝛾, which is valid for 𝑃 and holds

𝐹 “ 𝑃 X t𝑥 : 𝑐𝑇𝑥 “ 𝛾u.

If there is an 𝑥 P R𝑛 and 𝐹 “ t𝑥u, we call 𝐹 vertex of 𝑃 . Additionally, also 𝑥 is called
vertex of 𝑃 .
In the following we consider 𝐵 “ p𝑝1, . . . , 𝑝𝑚q P t1, . . . , 𝑛u𝑚 and 𝑁 “ p𝑞1, . . . , 𝑞𝑛´𝑚q P

t1, . . . , 𝑛u𝑛´𝑚. Any index contained in 𝐵 cannot be in 𝑁 and vice versa. We use 𝐵 and
𝑁 as row vectors and additionally as sets, in case the order of the indices are irrelevant.
The following should hold for 𝐵 and 𝑁 : 𝐵 X 𝑁 “ H, 𝐵 Y 𝑁 “ t1, . . . , 𝑛u and 𝑞𝑖 ă

𝑞𝑗 when 𝑖 ă 𝑗.
In the following Definition 2.2 the basic notation for linear programming is given.

Definition 2.2. Given a system of equations 𝐴𝑥 “ 𝑏, where 𝐴 P R𝑚ˆ𝑛, 𝑏 P R𝑚 and
rankp𝐴q “ 𝑚. The index vectors 𝐵 and 𝑁 are given as defined above.

(i) If 𝐴¨𝐵 is a regular matrix, then 𝐴¨𝐵 is called basis of 𝐴 and 𝐴¨𝑁 is called nonbasis
of 𝐴. The basic solution corresponding to 𝐴¨𝐵 is a vector 𝑥 P R𝑛 with 𝑥𝑁 “ 0 and
𝑥𝐵 “ 𝐴´1

¨𝐵 𝑏.
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(ii) Let 𝐴¨𝐵 be a basis of 𝐴 and the corresponding basic solution 𝑥 P 𝑃“p𝐴, 𝑏q, then 𝐴¨𝐵
is called feasible and 𝑥 is called basic feasible solution. In this case 𝑥𝐵 ě 0.

(iii) A basic feasible solution 𝑥, that corresponds to the basis 𝐴¨𝐵 is called nondegenerate
if and only if 𝑥𝐵 “ 𝐴´1

¨𝐵 𝑏 ą 0. In the other case 𝑥 is degenerate.

Then, a first connection to the geometry of linear programs is built. Let 𝑃 be a polyhedron
𝑃 “ 𝑃“p𝐴, 𝑏q Ď R𝑛 with rankp𝐴q “ 𝑚 ă 𝑛 and 𝑥 P 𝑃 . Then, the following statements are
equivalent.

(i) The point 𝑥 is a vertex of 𝑃 .
(ii) The vector 𝑥 is a basic feasible solution, such that there is a basis 𝐴¨𝐵 of 𝐴 with

𝑥𝐵 “ 𝐴´1
¨𝐵 𝑏 ě 0 and 𝑥𝑁 “ 0.

A vertex of 𝑃“p𝐴, 𝑏q is uniquely connected to a basic feasible solution of 𝐴𝑥 “ 𝑏, 𝑥 ě 0.
However, a basic feasible solution 𝑥 can correspond to more than one basis. In this case 𝑥
is degenerate. Reasons for degenerations are

• a redundant variable,
• a redundant inequality, or
• geometric reasons.

Degeneration caused by one of the first two reasons result from a redundant description
of the polyhedron and can be fixed by deleting the corresponding variable or inequality.
However, there are polyhedrons 𝑃 where the degeneration is inherent in the geometry.
See for example the top vertex of a pyramid over a square in R3, here, more than three
hyperplanes meet at that vertex and thus cause a degeneration. An approach to deal with
general degeneration is the 𝜀-perturbation method, where the LP is expanded with a small
perturbation. However, this approach is complicated in practice and thus not applied very
often.

The idea of the simplex algorithm is to start from a basic feasible solution and determine
a new basic feasible solution with a better objective function value. This step is called
pivoting and changes the current basis and thus the current basic feasible solution.

Given an LP in standard form (2.1) with rankp𝐴q “ 𝑚 and basis 𝐴¨𝐵 of 𝐴. Then, �̂� fulfills
the system 𝐴𝑥 “ 𝑏 is equivalent to �̂�𝐵 “ 𝐴´1

¨𝐵 𝑏 ´ 𝐴´1
¨𝐵 𝐴¨𝑁 �̂�𝑁 . This term can be used to

write the objective function value as

𝑐𝑇 �̂� “ 𝑐𝑇
𝐵𝐴

´1
¨𝐵 𝑏` p𝑐

𝑇
𝑁 ´ 𝑐

𝑇
𝐵𝐴

´1
¨𝐵 𝐴¨𝑁 q�̂�𝑁 ,

where the term in parenthesis is called relative cost of �̂�. Having this, the optimality
criterion of the simplex algorithm is described as follows: Given an LP in standard form
(2.1) and a feasible basis 𝐴¨𝐵 of 𝐴, then, if the relative cost holds

𝑐𝑇 “ 𝑐𝑇
𝑁 ´ 𝑐

𝑇
𝐵𝐴

´1
¨𝐵 𝐴¨𝑁 ě 0,

the corresponding basic feasible solution 𝑥, with 𝑥𝐵 “ 𝐴´1
¨𝐵 𝑏 and 𝑥𝑁 “ 0 is optimal.

Finally, the pivoting step is formalized. Given an LP in standard form (2.1), a feasible
basis 𝐴¨𝐵 of 𝐴 and the corresponding basic feasible solution 𝑥. We denote 𝐴 :“ 𝐴´1

¨𝐵 𝐴¨𝑁 ,
�̄� :“ 𝐴´1

¨𝐵 𝑏, and the relative cost 𝑐𝑇 :“ 𝑐𝑇
𝑁 ´ 𝑐

𝑇
𝐵𝐴

´1
¨𝐵 𝐴¨𝑁 . Let 𝑞𝑠 P 𝑁 be an index such that

𝑐𝑠 ă 0, then the following hold

(i) If 𝐴¨𝑠 ď 0, then the LP is unbounded.
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(ii) If 𝐴¨𝑠 ę 0, then 𝐴¨𝐵1 determined by

𝜆0 :“ min
𝑖“1,...,𝑚

"

�̄�𝑖

�̄�𝑖𝑠
: �̄�𝑖𝑠 ą 0

*

,

𝑟 P

"

𝑖 P t1, . . . ,𝑚u : �̄�𝑖

�̄�𝑖𝑠
“ 𝜆0

*

,

𝐵1 “ p𝑝1, . . . , 𝑝𝑟´1, 𝑞𝑠, 𝑝𝑟`1, . . . , 𝑝𝑚q,

is a feasible basis with the corresponding basic feasible solution 𝑥1, such that 𝑐𝑇𝑥1 ď
𝑐𝑇𝑥. In case 𝐴¨𝐵 is not degenerate, we have 𝑐𝑇𝑥1 ă 𝑐𝑇𝑥.

Note, that 𝐴´1
¨𝐵1 can be obtained from 𝐴´1

¨𝐵 by elementary row operations. Formally, this
means 𝐴´1

¨𝐵1 “ 𝐸𝐴´1
¨𝐵 , where 𝐸 is the p𝑚 ˆ 𝑚q elementary matrix, that comprises the

necessary elementary row operations and is defined as:

𝐸 “

¨

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˝

1 𝜂1
. . . ...

1 𝜂𝑟´1
𝜂𝑟

𝜂𝑟`1 1
... . . .
𝜂𝑚 1

˛

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‚

,

with

𝜂𝑟 :“ 1
𝑎𝑟𝑠

𝜂𝑖 :“ 𝑎𝑖𝑠

𝑎𝑟𝑠
𝑖 P t1, . . . ,𝑚uzt𝑟u.

The matrix element 𝑎𝑟𝑠 is called pivot element.

Putting everything together, the basic version of the simplex algorithm can be realized, see
Algorithm 1 for a formal description. For an LP with a nonempty underlying polyhedron
and only nondegenerate bases, the simplex algorithm terminates after a finite number
of steps. Each basis has a better objective function value than the one before and the
polyhedron has a finite amount of vertices, thus the sequence of bases is finite. At the last
generated basis the optimum is found or unboundedness is determined.

To complete the simplex algorithm we formalize phase I, which gets an initial feasible
basis and the corresponding basic feasible solution. For the given system of equations
𝐴𝑥 “ 𝑏, 𝑥 ě 0, we multiply every row 𝑖 P t1, . . . ,𝑚u, where 𝑏𝑖 ă 0 by ´1, this does not
change the underlying polyhedron. Hence, we can assume 𝑏 ě 0 in the following. Phase I
introduces artificial variables 𝑦 to the LP (5) to constitute a basic feasible solution. That
means, the following auxiliary program is considered. We set 𝐷 :“ p𝐴,Iq, where I is the
identity matrix, then the auxiliary program is

max 1𝑇𝐴𝑥

s.t. 𝐷
ˆ

𝑥
𝑦

˙

“ 𝑏 (9)

𝑥, 𝑦 ě 0.

Obviously, 𝐵 “ p𝑛` 1, . . . , 𝑛`𝑚q is a feasible basis of 𝐷 and we can directly apply the
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basic simplex version with the aim to obtain a feasible basis to the original problem (5).
This phase I simplex algorithm is given by Algorithm 2. Having a feasible basis for (5) the
basic simplex version is called a second time. This time the original objective function is
used. Thus, the basic simplex version is called phase II. Then, the final two-phase simplex
algorithm is given by Algorithm 2 and Algorithm 1. Even though the two-phase simplex
is very efficient, it is not a polynomial time algorithm, since there are polyhedra with an
exponential number of vertices in the problem size and all of them have to be enumerated.
Nevertheless, Khachiyan proved that linear programming is in class P (see Section 2.7)
by introducing the ellipsoid method in 1979, see Khachiyan [Kha79].

Algorithm 1: The basic version of the simplex algorithm.

Input :𝐴 P R𝑚ˆ𝑛, 𝑏 P R𝑚, 𝑐 P R𝑛 with 𝑚 ă 𝑛, rankp𝐴q “ 𝑚, column index
vectors 𝐵 “ p𝑝1, . . . ,𝑝𝑚q P t1, . . . ,𝑛u𝑚, such that 𝐴¨𝐵 is a feasible basis of
𝐴 and 𝑁 “ p𝑞1, . . . ,𝑞𝑛´𝑚q with 𝐵 X𝑁 “ H, 𝐵 Y𝑁 “ t1, . . . ,𝑛u.

Output : An optimal solution of the LP (5) if it exists or the statement, that the
problem is unbounded.

1 if it has not been initialized then
2 compute 𝐴´1

¨𝐵 ,

3 𝐴 “ 𝐴´1
¨𝐵 𝐴¨𝑁 ,

4 �̄� “ 𝐴´1
¨𝐵 𝑏,

5 𝑐𝑇 “ 𝑐𝑇
𝑁 ´ 𝑐

𝑇
𝐵𝐴

´1
¨𝐵 𝐴¨𝑁 ,

6 𝑐0 “ 𝑐𝑇
𝐵 �̄�;

7 opt :“ 𝑓𝑎𝑙𝑠𝑒, unbounded :“ 𝑓𝑎𝑙𝑠𝑒;
8 while  opt and  unbounded do
9 if 𝑐𝑖 ě 0 @𝑖 “ 1, . . . , 𝑛´𝑚 then

10 opt :“ 𝑡𝑟𝑢𝑒;
11 print 𝑥 with 𝑥𝐵 “ �̄�, 𝑥𝑁 “ 0 and 𝑧0 “ 𝑐𝑇𝑥 “ 𝑐𝑇

𝐵 �̄�;
12 STOP;
13 else

//Determination of a pivot column
14 choose any 𝑠 P t1, . . . , 𝑛´𝑚u with 𝑐𝑠 ă 0;
15 if �̄�𝑖𝑠 ď 0 @𝑖 P t1, . . . ,𝑚u then
16 unbounded :“ 𝑡𝑟𝑢𝑒;
17 STOP;
18 else

19 find 𝜆0 :“ min
"

�̄�𝑖

�̄�𝑖𝑠
: �̄�𝑖𝑠 ą 0, 𝑖 “ 1, . . . ,𝑚

*

“
�̄�𝑟

�̄�𝑟𝑠
;

//pivot on �̄�𝑟𝑠

20 𝐵1 :“ p𝑝1, . . . , 𝑝𝑟´1, 𝑞𝑠, 𝑝𝑟`1, . . . , 𝑝𝑚q;
21 𝑁 1 :“ p𝑞1, . . . , 𝑞𝑠´1, 𝑝𝑟, 𝑞𝑠`1, . . . , 𝑞𝑛´𝑚q;
22 𝐴´1

¨𝐵1
:“ 𝐸𝐴´1

¨𝐵 ;
23 update 𝐴, �̄�, 𝑐, and 𝑐0;

Two final notes on the simplex algorithm. Firstly, there are different variants of how to
choose the column to enter the basis and how to resolve ties in line 19 of Algorithm 1,
which determines the row and thus the variable to leave the basis. For those pivot selection
strategies we refer to [Grö09] and [Pap17].
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Secondly, in case of degeneration a sequence of degenerate bases can repeat during execution
of the simplex algorithm. This process is called cycling. Even if degeneration occasionally
occurs in practice it usually does not cause cycling, thus anticycling strategies are often
not implemented [Grö09].

Algorithm 2: The phase I simplex algorithm.

Input :𝐴 P R𝑚ˆ𝑛, 𝑏 P R𝑚, 𝑏 ě 0.

Output :
(a) 𝑃“p𝐴, 𝑏q “ H or
(b) 𝑃“p𝐴, 𝑏q “ t𝑥u, or
(c) Return 𝐼 Ď t1, . . . ,𝑚u, 𝐵 “ p𝑝1, . . . , 𝑝𝑘q, where it holds: With 𝐴1 :“ 𝐴𝐼¨, 𝑏

1 :“ 𝑏𝐼 , we
have 𝑃“p𝐴1, 𝑏1q ‰ H, rankp𝐴1q “ |𝐼| “ 𝑘, 𝑘 ă 𝑛, 𝑃“p𝐴1, 𝑏1q “ 𝑃“p𝐴, 𝑏q and 𝐴1𝐵 is a
feasible basis of 𝐴1.

1 introduce an artificial basis as described in (9);
2 call Simplex Algorithm 1 with (9);
3 if 1𝑇𝐴𝑥 ă 1𝑇 𝑏 then
4 print case (a);
5 STOP;
6 else

//1𝑇𝐴𝑥 “ 1𝑇 𝑏
7 if 𝐵 X t𝑛`1, . . . , 𝑛`𝑚u “ H then
8 if 𝑁 X t1, . . . , 𝑛u “ H then
9 print case (b); /* 𝑚 “ 𝑛 */

10 STOP;
11 else
12 𝐼 “ t1, . . . ,𝑚u;
13 print case (c); /* 𝑚 ă 𝑛, 𝑘 “ 𝑚 */
14 STOP;
15 else

//basis contains artificial variables
16 if artificial variables can be driven out of the basis then
17 drive out the artificial variables and goto line 7;
18 else
19 𝐵 X t𝑛`1, . . . , 𝑛`𝑚u “ t𝑝1, . . . , 𝑝𝑡u;
20 omit the rows 𝐷1¨, . . . , 𝐷𝑡¨;
21 𝐼 “ t𝑡` 1, . . . ,𝑚u;
22 𝐵 “ t𝑝𝑡`1, . . . , 𝑝𝑚u;
23 𝑘 :“ 𝑚´ 𝑡;
24 if 𝑘 “ 𝑛 then
25 print case (b);
26 STOP;
27 else
28 print case (c) STOP;
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2.3 Branch-and-Cut

The two algorithmic principles for solving MIPs in practice are currently the LP based
branch-and-bound and the cutting plane method. The idea of the branch-and-bound
method goes back to Land and Doig [Lan60]. A few years later Dakin [Dak65] proposed
an algorithm adapted from this idea. The branch-and-bound method is a systematic
enumeration of candidate solutions following the divide-and-conquer paradigm. The
branching step splits the problem and the solution space into smaller sub-problems, which
can be solved more efficiently. By recursively applying this step to the sub-problems a
branching tree (or search tree) is created. Each node corresponds to a created sub-problem,
while the root node stands for the original (LP relaxed) problem. To deal with fractional
variables when solving a MIP of the form (1) we basically use variable branching of the
form

𝑃1 :“ 𝑃 0 X tp𝑥, 𝑦q : 𝑥𝑗 ď 𝑧u and 𝑃2 :“ 𝑃 0 X tp𝑥, 𝑦q : 𝑥𝑗 ě 𝑧 ` 1u,

where 𝑃1 and 𝑃2 denote the linear relaxation of the solution spaces of the new created
sub-problems, 𝑗 P t1, . . . , 𝑛u and 𝑧 P Z. The corresponding integer sets to 𝑃1 and 𝑃2
are denoted by 𝑆1 and 𝑆2. Note, that we have 𝑆1 Y 𝑆2 “ 𝑆, where 𝑆 is the integer
set corresponding to 𝑃 0 (the solution space of the parent node). For further branching
strategies we refer to Conforti et al. [Con14].

Before enumerating the candidate solutions of a branch, the branch is checked against
estimated lower and upper bounds on the optimal solution. In case the branch cannot
produce a better solution than the best one found so far, the whole branch is discarded.
This step is called bounding step and prevents a complete enumeration of the search tree.
Upper bounds are given by integral feasible solutions of sub-problems or provided by
heuristics. Let p𝑥𝑖, 𝑦𝑖q be an optimal solution of a sub-problem and 𝑧𝑖 its objective function
value with 𝑖 P t1,2u. If 𝑥𝑖 is integral (p𝑥𝑖, 𝑦𝑖q P 𝑆𝑖), p𝑥𝑖, 𝑦𝑖q is an optimal solution of the
corresponding MIP of the sub-problem and a feasible solution to the original MIP. Since
𝑆𝑖 Ď 𝑆, if follows

mint𝑐𝑇𝑥` ℎ𝑇 𝑦 : p𝑥, 𝑦q P 𝑆u ď 𝑧𝑖.

Lower bounds are provided by optimal solutions of LP relaxations. For the root node,
which represents the LP relaxation of the original MIP, let p𝑥0, 𝑦0q be the optimal solution,
then we have

𝑐𝑇𝑥0 ` ℎ𝑇 𝑦0 ď mint𝑐𝑇𝑥` ℎ𝑇 𝑦 : p𝑥, 𝑦q P 𝑆u.

Thus, for any other node, if the current LP objective value is not smaller than the global
upper bound found so far, neither the current node with its solution sub-space nor any
possible child node to the current node can contain an optimal solution. Thus, the node in
the branching tree can be pruned.

There are choices in the branch-and-bound method, that are left open, as branching strategy,
node selection strategy, heuristics to produce good upper bounds and the formulation
aspect to get good lower bounds. The formulation aspect deals with formulating the MIP
in such a way that the objective value of the MIP and the one of its LP relaxation are
in close proximity and hence, produce tight lower bounds. Since mint𝑐𝑇𝑥` ℎ𝑇 𝑦 : p𝑥, 𝑦q P
𝑆u “ mint𝑐𝑇𝑥 ` ℎ𝑇 𝑦 : p𝑥, 𝑦q P convp𝑆qu, where convp𝑆q denotes the convex hull of the
mixed integer set 𝑆, it is obvious, that there is an LP with the same objective function
value as the given MIP. Thus, an LP solver can produce the optimal solution to the given
MIP, when applied to the linear description of convp𝑆q. Usually, this description is not
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given. For more details on the mentioned aspects we refer to Conforti et al. [Con14].

One way to produce tight lower bounds is by generating cutting planes or simply cuts.
A cutting plane is an inequality 𝛼𝑇𝑥 ` 𝛾𝑇 𝑦 ě 𝛽 that is satisfied by every point in the
mixed integer set 𝑆, but there are points p�̂�, 𝑦q in the linear relaxation 𝑃 0 such that
𝛼𝑇 �̂�`𝛾𝑇 𝑦 ă 𝛽. We say that the cutting plane is separating p�̂�, 𝑦q from 𝑃 0. Thus, a cutting
plane can be used to separate an infeasible fractional portion from the LP relaxation of a
MIP. We define

𝑃 1 :“ 𝑃 0 X tp𝑥, 𝑦q : 𝛼𝑇𝑥` 𝛾𝑇 𝑦 ě 𝛽u.

Since 𝑆 Ď 𝑃 1 Ă 𝑃 0, the LP relaxation of MIP (1) based on 𝑃 1 is stronger than the LP
relaxation (4), in the sense that its objective value is at least as good a lower bound as the
objective value of (4).

The cutting plane method dates back to the 1950s, where Dantzig, Fulkerson and
Johnson [Dan54] discussed the loop conditions of a 49-city traveling salesperson problem
instance, which are nowadays known as the subtour elimination constraints. Without
knowing this work, Gomory developed the first all-purpose cutting plane algorithm using
fractional cuts [Gom58], the birth of the famous Gomory fractional cuts (short Gomory
cuts). He proved that his algorithm converges after a finite number of steps in case of a
pure integer program with rational data.

The tightness of the lower bound is important for pruning the branching tree. Hence,
the generation of cutting planes is combined with the branch-and-bound approach to
tighten the lower bounds of the sub-problems. This leads to the branch-and-cut method.
In the 1980s there was the beginning of combining branch-and-bound and cutting planes
to branch-and-cut, see for example Padberg and Rinaldi [Pad87] and Padberg and
Rinaldi [Pad91]. Nowadays it is a state-of-the-art method for solving mixed integer
programs and implemented in modern commercial MIP solvers such as cplex [IBM17],
gurobi [Gur21], xpress [FIC21] and minos, as well as academic and open source codes
such as scip [Zus21] and glpk [GNU21]. In practice, not only one cut, but a bundle of
cuts is added in rounds to the LP relaxation. Depending on their validity, cuts can be
added globally to all nodes of the branch-and-bound tree or locally to a specific node and
its descendants to tighten their LP relaxation. Over the years, several classes of general
cutting planes have been developed in addition to Gomory cuts, as well as cuts that only
serve for a specific problem class e.g., subtour elimination constraints. For more details we
refer to overviews given by Marchand et al. [Mar02] and Cornuéjols [Cor08].

When implementing a branch-and-cut algorithm, the following issues need special attention:

• Preprocessing (tighten and simplifying the formulation of the root LP before diving
into the branch-and-cut, can also be applied to sub-problems)

• Heuristics (finding good upper bounds)
• Cutting plane generation (improving the lower bounds)
• Branching (there are different branching strategies and different ways to choose a

variable or variable set for branching)
• Node selection (strategies can rely on the bound or on the position of the node in

the tree)

It is not only the question of which procedure to choose concerning one of the above
issues, but also which of the above issues to address first, in order to produce an efficient
branch-and-bound algorithm. Suppose for example p𝑥0, 𝑦0q is the optimal solution of the
LP relaxation of a given MIP. In case 𝑥0 contains fractional variables, it is not easy to
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decide what is the best next step in the algorithm, e.g., generating cuts or branching, and on
which variable? Clearly, all listed components are connected in any way and implementing
an efficient branch-and-cut algorithm is a challenging task. For further details we again
refer to Conforti et al. [Con14].

2.4 Second-Order Cone Programming

A second-order cone program is an optimization problem with linear constraints and the
restriction, that the solution is contained in a cone, the second-order cone, which is also
called Lorentz or ice-cream cone. The norm, that is associated with the second-order cone
is the Euclidean norm.

The unit second-order cone of dimension 𝑘 is defined as:

C𝑘 “ tp𝑥,𝑡q P R
𝑘 : 𝑥 P R𝑘´1, 𝑡 P R, }𝑥}2 ď 𝑡u. (10)

Figure 1 visualizes the second-order cone in R3. The second-order cone program (SOCP)
is defined as:

min 𝑓𝑇𝑥

subject to }𝐴𝑖𝑥` 𝑏𝑖}2 ď 𝑐𝑇
𝑖 𝑥` 𝑑𝑖, 𝑖 “ 1, . . . ,𝑚 (11)

𝐹𝑥 “ 𝑔,

where 𝑥 P R𝑛 is the optimization variable, 𝑓 P R𝑛, 𝐴𝑖 P R
𝑛𝑖ˆ𝑛, 𝑏𝑖 P R

𝑛𝑖 , 𝑐𝑖 P R
𝑛, 𝑑𝑖 P R,

𝐹 P R𝑝ˆ𝑛, and 𝑔 P R𝑝. The constraint

}𝐴𝑖𝑥` 𝑏𝑖}2 ď 𝑐𝑇
𝑖 𝑥` 𝑑𝑖

is called second-order cone constraint of dimension 𝑛𝑖 and is an affine mapping of the
unit second-order cone (10). The SOCP (11) is a convex optimization problem, since
the objective function is convex and the constraints define a convex set of feasible solu-
tions. SOCP can be solved very efficiently by interior-point methods also referred to as
barrier methods. The optimization software cplex is used in this thesis. In cplex a
SOCP has to be formulated in the following form (extracted from the cplex example
ilosocpex1.cpp [IBM17])

min 𝑐𝑇
1 𝑥1 ` ¨ ¨ ¨ ` 𝑐

𝑇
𝑟 𝑥𝑟

subject to 𝐴1𝑥1 ` ¨ ¨ ¨ ` 𝐴𝑟𝑥𝑟 “ 𝑏 (12)
𝑥𝑖 P C𝑛𝑖 , 𝑖 “ 1, . . . , 𝑟,

where 𝑥𝑖 is a vector of length 𝑛𝑖 (𝑥𝑖 “ p𝑥𝑖r1s, . . . , 𝑥𝑖r𝑛𝑖s)). The last constraint has to be
written as

´𝑥𝑖r1s2 ` 𝑥𝑖r2s2 ` ¨ ¨ ¨ ` 𝑥𝑖r𝑛𝑖s
2 ď 0,

𝑥𝑖r1s ě 0,
𝑥𝑖r2s, . . . , 𝑥𝑖r𝑛𝑖s free variables.

This SOCP is solved by the barrier optimizer of cplex, see Section 2.5 for more details on
barrier methods.

For more information about SOCP and convex optimization, we refer to Boyd and
Vandenberghe [Boy04], Lobo et al. [Lob98], and Nemirovski [Nem05].
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Figure 1: The boundary of the second-order cone in R3.

2.5 Interior Point Methods

Interior point methods (also called barrier methods) are a class of algorithms to solve linear
and nonlinear convex optimization problems.
In 1984 Karmarkar developed a new method to solve linear programs called Karmarkar’s
algorithm [Kar84]. This algorithm runs in polynomial time and is also efficient in practice.
The idea is to traverse the interior of the underlying polyhedron to reach the optimal
solution. Karmarkar’s algorithm stimulated the development of interior point methods in
the 90s. The resulting algorithms are competitive with the simplex algorithm [Grö09].
Interior point methods can solve convex optimization problems with twice differentiable
objective and constraint functions of the following form:

min 𝑓0p𝑥q

subject to 𝑓𝑖p𝑥q ď 0, 𝑖 “ 1, . . . ,𝑚, (13)
𝐴𝑥 “ 𝑏,

where 𝑓0, . . . , 𝑓𝑚 : R𝑛 Ñ R are convex functions, and 𝐴 P R𝑝ˆ𝑛 with rank𝐴 “ 𝑝 ă 𝑛. We
assume, that there is an optimal solution 𝑥˚ with the corresponding objective function
value 𝑝˚.
Some problems, which do not fulfill the form (13) and the assumption of differentiability,
can be reformulated in the required form. Other convex optimization problems, such
as SOCPs have to be handled by extensions of the barrier methods to problems with
generalized inequalities. Generalized inequalities provide a paritial order in the R𝑛 based
on a cone. Given a proper cone K in R𝑛 and 𝑥, 𝑦 P R𝑛, the partial order is defined as
𝑥 ĺK 𝑦 if and only if 𝑦 ´ 𝑥 P K.
According to Boyd and Vandenberghe [Boy04], we present the idea of the barrier method
for solving SOCPs of the following form:

min 𝑓𝑇𝑥

subject to }𝐴𝑖𝑥` 𝑏𝑖}2 ď 𝑐𝑇
𝑖 𝑥` 𝑑𝑖, 𝑖 “ 1, . . . ,𝑚, (14)

where 𝐴𝑖 P R
𝑛𝑖ˆ𝑛, 𝑓 P R𝑛, 𝑏𝑖 P R

𝑛𝑖 , 𝑐𝑖 P R
𝑛, and 𝑑𝑖 P R.

At first a generalization of the logarithm function, which applies to the second-order cone,
is needed. Having this, a logarithmic barrier function for (14) is defined as well as the
central path, which leads through the interior of the cone to the optimal solution. The
central path results from solving a sequence of unconstrained (or linear constrained in case
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of (13)) minimization problems using Newton’s method, see [Boy04] Section 9.5. A simple
version of the iterative barrier method is given by Algorithm 3.

Given a proper cone K Ď R𝑞, we denote by intK its interior. Then the function 𝜓 : R𝑞 Ñ R

is a generalized logarithm for K if 𝜓 is concave, closed, twice continuously differentiable, its
domain dom𝜓 “ intK, and ∇2𝜓p𝑦q ă 0, 𝑦 P intK. Additionally, there is a constant 𝜃 ą 0,
such that for all 𝑦 ąK 0, and all 𝑠 ą 0 the equation 𝜓p𝑠𝑦q “ 𝜓p𝑦q ` 𝜃 log 𝑠 holds. For the
second-order cone in R𝑛`1 we use the following generalized logarithm:

𝜓p𝑦q :“ log
˜

𝑦2
𝑛`1 ´

𝑛
ÿ

𝑖“1
𝑦2

𝑖

¸

.

It behaves like a logarithm along any ray in the cone.

Then, the logarithmic barrier function is defined as

𝜑p𝑥q :“ ´
𝑚
ÿ

𝑖“1
𝜓𝑖p´𝑓𝑖p𝑥qq, with domain dom𝜑 “ t𝑥 : 𝑓𝑖p𝑥q ăK𝑖

0, 𝑖 “ 1, . . . ,𝑚u.

Thus, the corresponding logarithmic barrier function for (14) is given by

𝜑p𝑥q :“ ´
𝑚
ÿ

𝑖“1
logpp𝑐𝑇

𝑖 𝑥` 𝑑𝑖q
2 ´ }𝐴𝑖𝑥` 𝑏𝑖}

2
2q, (15)

with the domain dom𝜑 “ t𝑥 : }𝐴𝑖𝑥` 𝑏𝑖}2 ă 𝑐𝑇
𝑖 𝑥` 𝑑𝑖, 𝑖 “ 1, . . . ,𝑚u.

Then, the minimization of 𝑡𝑓𝑇𝑥` 𝜑p𝑥q is an approximation of (14):

min 𝑡𝑓𝑇𝑥´
𝑚
ÿ

𝑖“1
logpp𝑐𝑇

𝑖 𝑥` 𝑑𝑖q
2 ´ }𝐴𝑖𝑥` 𝑏𝑖}

2
2q. (16)

The accuracy of the approximation depends on 𝑡, that means the quality of the approxima-
tion improves as 𝑡 grows. We can use Newton’s method to solve (16). The solutions 𝑥˚p𝑡q,
for 𝑡 ě 0 are called central points assuming the minimum exists and is unique. The central
points form the central path, which leads to the optimal solution of (14). Points on the
central path are characterized by the optimality condition 𝑡𝑓 `∇𝜑p𝑥˚p𝑡qq “ 0, with

∇𝜑p𝑥q “ ´2
𝑚
ÿ

𝑖“1

1
p𝑐𝑇

𝑖 𝑥` 𝑑𝑖q
2 ´ }𝐴𝑖𝑥` 𝑏𝑖}

2
2

`

p𝑐𝑇
𝑖 𝑥` 𝑑𝑖q𝑐𝑖 ´𝐴

𝑇
𝑖 p𝐴𝑖𝑥` 𝑏𝑖q

˘

.

Geometrically speaking, the optimality condition is a tanget to the contour line of 𝜑 at the
point 𝑥˚p𝑡q. Then it follows, that the point

𝑧˚𝑖 p𝑡q “ ´
2
𝑡𝛼𝑖
p𝐴𝑖𝑥

˚p𝑡q ` 𝑏𝑖q, 𝑤˚𝑖 p𝑡q “
2
𝑡𝛼𝑖
p𝑐𝑇

𝑖 𝑥
˚p𝑡q ` 𝑑𝑖q, 𝑖 “ 1, . . . ,𝑚,

with 𝛼𝑖 “ p𝑐
𝑇𝑥˚p𝑡q ` 𝑑𝑖q

2 ´ }𝐴𝑖𝑥
˚p𝑡q ` 𝑏𝑖}

2
2, is strictly feasible in the dual (regarding (14))
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problem:

max ´

𝑚
ÿ

𝑖“1
p𝑏𝑇

𝑖 𝑧𝑖 ` 𝑑𝑖𝑤𝑖q

subject to
𝑚
ÿ

𝑖“1
p𝐴𝑇

𝑖 𝑧𝑖 ` 𝑐𝑖𝑤𝑖q “ 𝑓

}𝑧𝑖}2 ď 𝑤𝑖, 𝑖 “ 1, . . . ,𝑚.

In particular, the duality gap (difference between primal und dual objective function value)
can be computed as

𝑚
ÿ

𝑖“1

`

p𝐴𝑖𝑥
˚p𝑡q ` 𝑏𝑖q

𝑇 𝑧˚𝑖 p𝑡q ` p𝑐
𝑇
𝑖 𝑥
˚p𝑡q ` 𝑑𝑖q𝑤

˚
𝑖 p𝑡q

˘

“
2𝑚
𝑡
. (17)

This result confirms, that 𝑥˚p𝑡q converges to an optimal point as 𝑡 Ñ 8. The iterative
barrier algorithm is described in Algorithm 3.

Algorithm 3: A basic version of the barrier method.

Input : A SOCP of the form (14), 𝑥 P R𝑛 strictly feasible, 𝑡 :“ 𝑡p0q ą 0, 𝜇 ą 1, a
tolerance 𝜀 ą 0.

1 repeat
//Centering step

2 Compute 𝑥˚p𝑡q by minimizing 𝑡𝑓𝑇 �̂�` 𝜑p�̂�q, starting at 𝑥;
//Update

3 𝑥 :“ 𝑥˚p𝑡q;
//Stopping criterion

4 if 2𝑚
𝑡
ă 𝜀 then

5 print 𝑥;
6 STOP;
7 else
8 continue;

//Increase 𝑡
9 𝑡 :“ 𝜇 𝑡;

10 until;

The barrier method is an iterative algorithm, where the parameter 𝑡 is increased in every
iteration, since simply setting 𝑡 “ 2𝑚

𝜀 (see duality gap (17)) for a given accuracy 𝜀 and
solving the unconstrained problem

min p
2𝑚
𝜀
q𝑓𝑇 �̂�` 𝜑p�̂�q,

using Newton’s method, only works well for small problems, good starting points 𝑥 and 𝜀
not too small. Thus, a sequence of unconstrained minimization problems is solved (see
line 2) in the way that the last solution point found serves as the starting point for the
next problem (see line 3). The values of 𝑡 increase (see line 9) until 𝑡 ą 2𝑚

𝜀 (see line 4),
which guarantees that the solution found is 𝜀-suboptimal.
The parameter 𝜇 is the factor by which 𝑡 is increased in each iteration. The choice of 𝜇 is
a trade-off in the number of barrier iterations (line 2) and in the number of Newton steps
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(number of Newton iterations for solving one unconstrained minimization problem). Small
values of 𝜇 (i.e., near one) result in many barrier iterations and only few Newton steps per
iteration, because in this case 𝑥 is a very good starting point. For large values we have the
opposite situation. However, for values of 𝜇 from around 3 to 100 the two effects nearly
cancel and the total number of Newton steps is more or less constant. Thus, values from
around 10 to 20 seem to work well in practice.

The choice of 𝑡p0q (the initial value of 𝑡) is another important issue. If 𝑡p0q is too large the
first barrier iteration will require to many Newton iterations. If 𝑡p0q is too small, this will
result in extra barrier iterations and possibly too many Newton steps in the first iteration.
An appropriate choice is to choose 𝑡p0q such that 2𝑚

𝑡p0q
is of the same order as 𝑓𝑇𝑥p0q ´ 𝑝˚,

since 2𝑚
𝑡p0q

is the duality gap in the first barrier iteration.

At the beginning, the barrier algorithm requires a strictly feasible starting point 𝑥p0q. In
case such a point is not known, there is a basic phase I method, that computes the required
point (or detects infeasibility). The subsequent barrier method is called phase II. For the
basic phase I method a set of inequalities and equalities are considered:

𝑓𝑖p𝑥q ď 0, 𝑖 “ 1, . . . ,𝑚 and 𝐴𝑥 “ 𝑏, 𝑥 P R𝑛, (18)

where 𝑓𝑖 : R𝑛 Ñ R are convex functions with continuous second derivatives. To find a
strictly feasible solution to (18) the following auxilary problem is solved:

min 𝑠

subject to 𝑓𝑖p𝑥q ď 𝑠, 𝑖 “ 1, . . . ,𝑚 (19)
𝐴𝑥 “ 𝑏

𝑥 P R𝑛, 𝑠 P R.

We assume, that we can find a solution 𝑥p0q, with 𝐴𝑥p0q “ 𝑏 and 𝑥p0q P dom 𝑓1 X ¨ ¨ ¨ X 𝑓𝑚

(e.g., with a solver for linear equations). For 𝑠 we can choose any value larger than
max𝑖“1,...,𝑚 𝑓𝑖p𝑥

p0qq. Thus, we obtain a strictly feasible starting point p𝑥p0q, 𝑠q for (19) and
can apply the barrier method as phase I. Then, we distinguish between the following three
cases. Let 𝑝˚ be the optimal value.

1. 𝑝˚ ă 0: For a feasible solution p𝑥, 𝑠q, with 𝑠 ă 0 we have, that 𝑥 is strictly feasible
(𝑓𝑖p𝑥q ă 0) for (18). Thus, there is no need for a high accuracy in optimization, as
soon as 𝑠 ă 0 the optimization procedure can be aborted and the corresponding 𝑥
serves as the required starting point 𝑥p0q.

2. 𝑝˚ ą 0: Here, (18) is infeasible. Again, the optimization can be terminated, when
a dual feasible point with positive objective function value is found, which proves
𝑝˚ ą 0.

3. 𝑝˚ “ 0: In case, the minimum is achieved in 𝑥˚ and 𝑠˚ “ 0, then (18) is feasible,
but not strictly feasible. Otherwise, (18) is infeasible. However, in practice the
optimization procedure terminates with the conclusion |𝑝˚| ă 𝜀, for some small
positive 𝜀. Thus, we have either feasibility (𝑓𝑖p𝑥q ď ´𝜀) or infeasibility (𝑓𝑖p𝑥q ď 𝜀) of
(18).

There are variations on the basic phase I method and there are other phase I methods as
well. For more information about phase I methods, interior point methods in general and
convex optimization we refer to Boyd and Vandenberghe [Boy04]. This reference also
includes the polynomial worst case complexity bound, see [Boy04], Section 11.5.
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2.6 The Basics of Graph Theory

The basic concepts of graph theory are provided according to Grötschel et al. [Grö93].
An undirected graph 𝐺 is defined as an ordered tuple 𝐺 “ p𝑉,𝐸q, where 𝑉 is a finite
nonempty set of vertices (nodes) and 𝐸 is a finite nonempty family of unordered pairs
from 𝑉 , which we call edges. Given an edge 𝑒, we call 𝑖, 𝑗 P 𝑉 the endpoints of 𝑒 and write
𝑒 “ 𝑖, 𝑗 instead of 𝑒 “ t𝑖, 𝑗u. The edge is said to be incident to its endpoints. We assume
that the two endpoints of an edge are distinct. Two vertices that are joined by an edge
are called adjacent or neighbors. The set of edges having a vertex 𝑣 P 𝑉 as one of their
endpoints is denoted as 𝛿p𝑣q. Thus, |𝛿p𝑣q| is the degree of 𝑣 P 𝑉 . Two edges are called
parallel if they have the same endpoints. A graph that contains no parallel edges is called
simple. We only consider simple graphs.

The order of 𝐺 is the number of vertices |𝑉 | and the size of 𝐺 is the number of edges |𝐸|.
A simple graph is called complete if every two of its vertices are endpoints of an edge. The
complete graph of order 𝑛 is denoted by 𝐾𝑛.

If 𝑊 is a set of vertices in 𝐺 “ p𝑉,𝐸q, then the subgraph of 𝐺 induced by a vertex set
𝑊 Ď 𝑉 is called 𝐺r𝑊 s. The subgraph 𝐺r𝑊 s contains only vertices from 𝑊 and edges,
where both endpoints are in 𝑊 .

A directed graph or digraph is a graph where the edges have orientations. A digraph
𝐷 “ p𝑉,𝐴q consists of a finite nonempty set 𝑉 of vertices (nodes) and a finite nonempty
family 𝐴 of arcs. Every arc 𝑎 consists of an ordered pair 𝑎 “ p𝑖, 𝑗q of vertices called
endpoints; 𝑖 is the starting endpoint (or tail) and 𝑗 is the terminal endpoint (or head). For
an arc 𝑎 “ p𝑖, 𝑗q we also say that 𝑎 leaves 𝑖 and enters 𝑗 and that 𝑖 is a predecessor of 𝑗
and that 𝑗 is a successor of 𝑖. Parallel arcs share the same head and tail. Two arcs are
anti-parallel if they have the same endpoints, but a different direction (head and tail are
interchanged). We do not allow parallel arcs in digraphs.

Given a digraph 𝐷 “ p𝑉,𝐴q, then the (undirected) graph 𝐺 “ p𝑉,𝐸q having an edge 𝑖, 𝑗
where 𝐷 has an arc p𝑖, 𝑗q or p𝑗, 𝑖q is called the underlying graph of 𝐷. For 𝑣 P 𝑉 the
set of arcs having 𝑣 as starting (terminal) endpoint is denoted as 𝛿`p𝑣q (𝛿´p𝑣q). With
𝛿p𝑣q :“ 𝛿`p𝑣q Y 𝛿´p𝑣q the numbers |𝛿`p𝑣q|, |𝛿´p𝑣q|, and |𝛿p𝑣q| are called the outdegree,
indegree, and degree of 𝑣, respectively.

Walks, Paths, Tours, Cycles

Given a graph or digraph, a walk (directed walk or diwalk) 𝑊 is a finite sequence of vertices
of the following form 𝑊 “ 𝑣0, 𝑣1, 𝑣2, . . . 𝑣𝑘, 𝑘 ě 0, such that for each 𝑣𝑖, 𝑖 “ 1, 2, . . . , 𝑘
there is an edge (arc) 𝑒𝑖 “ 𝑣𝑖´1, 𝑣𝑖 (𝑎𝑖 “ p𝑣𝑖´1, 𝑣𝑖q). The vertices 𝑣0 and 𝑣𝑘 are called origin
and destination, respectively. The length of the walk is 𝑘.

A walk (diwalk) in which all vertices are distinct is called a path (directed path or dipath).
Given a walk (diwalk) 𝑊 , the origin 𝑠 P 𝑉 , and the destination 𝑡 P 𝑉 of 𝑊 , then 𝑊 is
called 𝑠, 𝑡-walk (p𝑠, 𝑡q-diwalk). A closed walk (diwalk) has identical origin and destination
and nonzero length. A closed path (dipath) is called a cycle (directed cycle or dicycle, when
there is no confusion we also call it a cycle).

A walk (diwalk) that traverses every edge (arc) of a graph (digraph) exactly once is said to
be an Eulerian path (allowing for revisiting vertices). A closed Eulerian path is an Eulerian
cycle or Eulerian tour.

A path (dipath) that visits every vertex of a graph (digraph) exactly once is called a
Hamiltonian path. The closed version is a Hamiltonian cycle or dicycle, which is often
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called Hamiltonian tour. A graph (digraph) that contains a Hamiltonian cycle (dicycle)
is Hamiltonian. The Hamiltonian path problem and the Hamiltonian cycle problem are
problems of determining whether a given graph or digraph contains a Hamiltonian path or
cycle.

Further references for graph theory are for instance Korte and Vygen [Kor00] and
Diestel [Die17].

The Basics of Network Flow Theory

A transportation network (or simply network) is a digraph with additional properties. Here,
the arcs carry some kind of flow like water, gas, electricity, data, et cetera. To model such
situations a network 𝑁 is defined as the quadruple 𝑁 “ p𝐺, 𝑠, 𝑡, 𝑢q, where 𝐺 “ p𝑉,𝐴q is a
digraph, 𝑠, 𝑡 P 𝑉 are two fixed vertices and 𝑢 : 𝐴Ñ R` is a capacity function on 𝐺. The
vertex 𝑠 is called source, at this node flow can enter the network. The vertex 𝑡 is called
target or sink, at this node flow can leave the network. A flow is a function 𝑓 : 𝐴Ñ R`,
that fulfills the following conditions.

(i) Capacity constraints: For every arc the amount of flow on that arc cannot exceed
the given capacity:

𝑓p𝑒q ď 𝑢p𝑒q, @𝑒 P 𝐴.

(ii) Flow conservation constraints: For every vertex 𝑣 P 𝑉 , except for 𝑠, 𝑡, the amount of
flow that enters 𝑣 has to be equal to the amount that leaves 𝑣:

ÿ

𝑒P𝛿´p𝑣q

𝑓p𝑒q “
ÿ

𝑒P𝛿`p𝑣q

𝑓p𝑒q, @𝑣 P 𝑉 zt𝑠, 𝑡u.

This flow is called an 𝑠, 𝑡-flow and the total value of 𝑓 denoted by |𝑓 | is defined as the net
flow into the sink:

|𝑓 | “
ÿ

𝑒P𝛿´p𝑡q

𝑓p𝑒q ´
ÿ

𝑒P𝛿`p𝑡q

𝑓p𝑒q.

So far we considered a flow of a single commodity. However, real-world problems often
involve multi-commodity flows, that are flows of multiple, often differentiated commodities,
that are simultaneously shipped through the same resource network. Given a network
𝑁 “ p𝐺,𝑢q with a digraph 𝐺 “ p𝑉,𝐴q and a capacity function 𝑢 : 𝐴Ñ R`. There are 𝑘
commodities, defined by triples p𝑠𝑖, 𝑡𝑖, 𝑑𝑖q, 𝑖 “ 1, . . . , 𝑘, where 𝑠𝑖 and 𝑡𝑖 are the source and
the sink of the 𝑖-th commodity and 𝑑𝑖 is its demand. For each commodity there is a flow
𝑓𝑖 : 𝐴Ñ t0, 1u, that has to satisfy the following constraints.

(i) Capacity constraints: For every arc the sum of all flows routed over that arc cannot
exceed its capacity:

𝑘
ÿ

𝑖“1
𝑓𝑖p𝑒q ¨ 𝑑𝑖 ď 𝑢p𝑒q, @𝑒 P 𝐴.

(ii) Flow conservation constraints on intermediate nodes: For every commodity the
amount of flow entering an intermediate (regarding the 𝑖-th commodity) node 𝑣 P 𝑉
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is the same that leaves 𝑣:
ÿ

𝑒P𝛿`p𝑣q

𝑓𝑖p𝑒q ´
ÿ

𝑒P𝛿´p𝑣q

𝑓𝑖p𝑒q “ 0, @𝑣 P 𝑉 zt𝑠𝑖, 𝑡𝑖u, 𝑖 “ 1, . . . , 𝑘.

(iii) Flow conservation at the source: Each flow starts at its source node:
ÿ

𝑣P𝑉

𝑓𝑖p𝑠𝑖, 𝑣q ´
ÿ

𝑤P𝑉

𝑓𝑖p𝑤, 𝑠𝑖q “ 1, 𝑖 “ 1, . . . , 𝑘.

(iv) Flow conservation at the target: Each flow ends at its target node:
ÿ

𝑣P𝑉

𝑓𝑖p𝑣, 𝑡𝑖q ´
ÿ

𝑤P𝑉

𝑓𝑖p𝑡𝑖, 𝑤q “ 1, 𝑖 “ 1, . . . , 𝑘.

In case there is a cost function 𝑐 : 𝐴Ñ R` the additional objective function

min
ÿ

𝑒P𝐴

˜

𝑐p𝑒q
𝑘
ÿ

𝑖“1
𝑓𝑖p𝑒q 𝑑𝑖

¸

leads to the minimum cost multi-commodity flow problem. In the definitions above we used
real-valued data, however, solving the problem and thus, describing it on the computer,
requires the data to be rational.
There are applications, where multi-commodity flow problems are extended by time-
dynamic components, e.g., time windows, time dependent arcs or flow variation over time.
Then, the problem including the underlying network is dynamic, see for example time
windows - a vertex can only be visited in a certain time interval. Considering the underlying
network this can be seen as vertices that enter the network at a specific time and then
leave the network at a specific time. To deal with the new temporal dimension classic
static network flow models are no longer satisfactory, instead the concept of network flows
over time (also called dynamic flows) is addressed, see Skutella [Sku09] for an overview.
In the following, we describe the time-expanded network as a tool from the dynamic flows
concept. The idea of a time-expanded network is that the dynamic flow problem can be
reduced to a static one. We provide the definition from [Sku09] and then present a version
for moving vertices, that is suitable for the application described in Section 1.1.

Definition 2.3. Given a network 𝑁 “ p𝐺, 𝑢, 𝑐q with a digraph 𝐺 “ p𝑉,𝐴q, capacities 𝑢,
non-negative integral transit times 𝜏 , and arc costs 𝑐. Let 𝑇 P N be the time horizon,
then the corresponding time-expanded network 𝑁𝑇 “ p𝐺𝑇 , 𝑢𝑇 , 𝑐𝑇 q with 𝐺𝑇 “ p𝑉 𝑇 , 𝐴𝑇 q

is defined as follows. For every vertex 𝑣 P 𝑉 a number of 𝑇 copies are generated:
𝑣0, 𝑣1, . . . , 𝑣𝑇´1, thus,

𝑉 𝑇 :“ t𝑣𝜃 : 𝑣 P 𝑉, 𝜃 “ 0, 1, . . . , 𝑇´1u.

For every arc 𝑒 “ p𝑣, 𝑤q P 𝐴, we create 𝑇´𝜏𝑒 copies: 𝑒0, 𝑒1, . . . , 𝑒𝑇´1´𝜏𝑒 , where 𝑒𝜃 “

p𝑣𝜃, 𝑤𝜃`𝜏𝑒q with capacity 𝑢𝑇
𝑒𝜃

:“ 𝑢𝑒 and cost 𝑐𝑒𝜃
:“ 𝑐𝑒. Additionally, 𝐴𝑇 contains holdover

arcs p𝑣𝜃, 𝑣𝜃`1q for all 𝑣 P 𝑉 and 𝜃 “ 0, 1, . . . , 𝑇´2. Holdover arcs get infinite capacity and
zero cost. Finally, 𝐴𝑇 is summarized as

𝐴𝑇 :“ t𝑒𝜃 “ p𝑣𝜃, 𝑤𝜃`𝜏𝑒q : 𝑒 “ p𝑣, 𝑤q P 𝐴, 𝜃 “ 0, 1, . . . , 𝑇´1´𝜏𝑒u

Y tp𝑣𝜃, 𝑣𝜃`1q : 𝑣 P 𝑉, 𝜃 “ 0, 1, . . . , 𝑇´2u.

Further references about network flows are Ford and Fulkerson [For62], Ahuja et al.
[Ahu93] and Grötschel et al. [Grö93].
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2.7 Computational Complexity Theory

This section addresses the complexity of problems and describes the classes P and NP. It
is based on the specifications provided by Grötschel et al. [Grö93].

To formalize the size of a problem instance an encoding scheme is needed. An encoding
scheme represents each instance of a problem and each solution by a string of symbols.
The instance string is also called input and the solution string output, respectively. The
encoding length or input size of a problem instance is defined as the length of the input
string. Most of the standard encoding schemes are equivalent regarding our purposes.
Thus, to present general results about time complexity it is not necessary to decide for a
particular encoding scheme.

Given an encoding scheme and an algorithmic model (e.g., Turing machine), then the time
complexity function 𝑓 : NÑ N of an algorithm describes the maximum time 𝑓p𝑛q needed
to solve any instance of a problem with an input size of at most 𝑛 P N. A polynomial time
algorithm is defined as an algorithm, that satisfies 𝑓p𝑛q ď 𝑝p𝑛q for all 𝑛 P N, and some
polynomial 𝑝.

The big-O notation is used to classify algorithms. It describes how the run time of an
algorithm grows as the input size of the problem grows. More formally, given two time
complexity functions 𝑓, 𝑔, then 𝑓p𝑛q is Op𝑔p𝑛qq, if there are positive integer constants 𝑐
and 𝑁 such that

𝑓p𝑛q ď 𝑐 𝑔p𝑛q for all 𝑛 ě 𝑁.

In order to decide if a problem is hard or not, it is convenient to only analyze decision
problems. A decision problem is a problem that can be defined as a yes-no question of
the input values. The Hamiltonian cycle problem is a decision problem. The class of
all decision problems that can be solved by a deterministic polynomial time algorithm is
called the class P. A deterministic algorithm always generates the same output and the
underlying machine performs the same sequence of states when invoked with the same input.
The class NP contains all decision problems that can be solved by a non-deterministic
polynomial time algorithm. These are algorithms, which allow guesses and the correctness
of the guess can be verified in polynomial time. Obviously, the class P is contained in NP,
since if a problem can be solved in polynomial time, then its solution can also be verified
in polynomial time, simply by solving the problem.

The hardest problems in NP are called NP-complete problems. The Hamiltonian cycle
problem is NP-complete, see Garey and Johnson [Gar79]. Formally, a decision problem
is NP-complete if it is in NP and if every other problem in NP can be polynomially
transformed to it. Given two decision problems 𝑃 and 𝑃 1 and a fixed encoding scheme,
then a polynomial transformation is an algorithm that generates an encoded instance of
𝑃 1 from an encoded instance of 𝑃 , such that: For every instance 𝑝 of 𝑃 , the answer to 𝑝
is ’yes’ if and only if the answer to 𝑝1 is ’yes’, where 𝑝1 P 𝑃 1 is the transformation of 𝑝. It
can be seen, that if there is a polynomial algorithm, that can solve 𝑃 1, then also 𝑃 can
be solved in polynomial time by transforming any instance of 𝑃 to an instance of 𝑃 1 and
applying its polynomial solution algorithm. Thus, if any NP-complete problem can be
solved in polynomial time, then all NP-complete problems can be solved in polynomial
time, which will conclude to P “ NP. However, there is no known algorithm to solve an
NP-complete problem in polynomial time. The question about the existence of such an
algorithm is called the P versus NP problem. This is still one of the major open problems
at the boundary of mathematics and computer sciences.
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Usually, optimization problems are not decision problems, however, they can be associated
with decision problems in a natural way. Assume for instance a maximization (minimization)
linear program. For the associated decision problem an additional input 𝑄 P Q is introduced
and one asks if there is a feasible solution with an objective function value of at least (at
most) 𝑄. We call a problem NP-hard, if the associated decision problem is NP-complete.

2.8 Interval Arithmetic

Interval arithmetic is a technique to deal with numerical errors. According to Hayes
[Hay03] it does not improve the accuracy of a calculation, but it provides a certificate
of accuracy for every result. A result of an ordinary computation is a single number, a
point on the real line lying at some unknown distance from the true answer. An interval
computation provides upper and lower bounds of the solution, which are guaranteed to
enclose the exact true answer. Basic arithmetic operations can be performed on intervals.
Let ˝ be any of the operations `, ´, ˆ, and ÷, then the corresponding interval operation
for two intervals r𝑥, 𝑥s and r𝑦, 𝑦s is defined as follows:

r𝑥, 𝑥s ˝ r𝑦, 𝑦s “ rminp𝑥 ˝ 𝑦, 𝑥 ˝ 𝑦, 𝑥 ˝ 𝑦, 𝑥 ˝ 𝑦q,maxp𝑥 ˝ 𝑦, 𝑥 ˝ 𝑦, 𝑥 ˝ 𝑦, 𝑥 ˝ 𝑦qs.

A further reference to interval arithmetic is Jaulin et al. [Jau01].
As a feasibility checking method embedded in a branch-and-bound framework we use
interval constraint propagation (ICP), which is a subarea of interval arithmetic. The basic
idea of ICP is described according to Jaulin et al. [Jau02]. Consider the variables 𝑎, 𝑑,
and 𝑡 with their prior feasible domains (intervals)

𝑎 P r𝑎, 𝑎s “ r1, 6s,
𝑑 P r𝑑, 𝑑s “ r1, 5s,
𝑡 P r𝑡, 𝑡s “ r3, 8s.

Assume that all three variables are linked by the constraint 𝑎 “ 𝑑` 𝑡. More formally this
constraint is defined as

𝐴𝐷𝐷 “ tp𝑎, 𝑑, 𝑡q P R3 : 𝑎 “ 𝑑` 𝑡u.

𝐴𝐷𝐷 is the contraction of the prior feasible intervals for the three variables by removing
inconsistent values. Thus, the contracted feasible domains for the variables can be obtained
by

r𝑎s :“ r𝑎s X pr𝑑s ` r𝑡sq “ r1, 6s X pr1, 5s ` r3, 8sq “ r4, 6s,
r𝑑s :“ r𝑑s X pr𝑎s ´ r𝑡sq “ r1, 5s X pr1, 6s ´ r3, 8sq “ r1, 3s,
r𝑡s :“ r𝑡s X pr𝑎s ´ r𝑑sq “ r3, 8s X pr1, 6s ´ r1, 5sq “ r3, 5s.

Other constraints can be defined as well, e.g., 𝑀𝑈𝐿𝑇 : 𝑧 “ 𝑥ˆ 𝑦 or 𝐸𝑋𝑃 : 𝑦 “ expp𝑥q.
Assume two fixed targets 𝑇1 and 𝑇2 with domain intervals (visibility window) r𝑡1,𝑡1s and
r𝑡2,𝑡2s, respectively and a salesperson, that is moving from 𝑇1 to 𝑇2. Further assume
the above described variable 𝑑 being the departure time of the salesperson in 𝑇1 and the
variable 𝑎 the arrival time in 𝑇2. The variable 𝑡 is the travel time from 𝑇1 to 𝑇2. The travel
time includes moving from the position of 𝑇1 to the position of 𝑇2 plus possible waiting
time, such that 𝑎 “ 𝑑 ` 𝑡. Then, the time feasibility can be checked by contracting the
feasible domains of the variables. Given an ordered sequence of fixed targets, we can decide
by recursively executing the proposed procedure, if there is a possible arrival interval at
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the last target of the sequence, then the sequence is time feasible and thus, a feasible tour,
otherwise not. Then, the time feasibility of a predefined sequence of targets can be checked
by recursively applying the described steps.
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3 Mathematical Models with Time

In this chapter we introduce five different model approaches and present two model
adaptations for infeasible instances and non-linear trajectories. Some basic notation is
provided to formulate the MTSPMT as a mixed-integer optimization problem. We assume
a finite time horizon r0, 𝑇 s. The operating space is a square in the R2 with a side length
𝑆 P R`, but the following models may also be extended to the R3. Let W :“ t1, . . . , 𝑤u
be a set of salespersons. To simplify matters, all salespersons start their tour at the same
depot location 𝑜, but the model can easily be extended to different depot locations. Let
V :“ t1, . . . , 𝑛u be a set of targets (customers), then V𝑜 :“ V Y t𝑜u and A Ď V𝑜 ˆ V be
a set of arcs. The length of an arc depends on the time the arc is traversed and varies
over time, since the targets are moving. Thus, the distance for salesperson 𝑘 traveling
from target 𝑖 to target 𝑗 starting at a time in 𝑖 and arriving at a time in 𝑗 is given by the
function 𝑐𝑖,𝑗,𝑘 : r0, 𝑇 s ˆ r0, 𝑇 s Ñ R` Y t8u. Since each target 𝑖 P V is assigned a visibility
time window r𝑡𝑖, 𝑡𝑖s, we have

𝑐𝑖,𝑗,𝑘p𝑠, 𝑡q :“

$

’

’

’

&

’

’

’

%

8, if and only if 𝑠 R r𝑡𝑖, 𝑡𝑖s or 𝑡 R r𝑡𝑗 , 𝑡𝑗s or
p𝑡´ 𝑠q 𝑣 ă

›

›𝑝𝑗p𝑡q ´ 𝑝𝑖p𝑠q
›

›

2
›

›𝑝𝑗p𝑡q ´ 𝑝𝑖p𝑠q
›

›

2 , otherwise,

(20)

where 𝑝𝑖p𝑠q and 𝑝𝑗p𝑡q are the respective locations of the targets at the times 𝑠 and 𝑡 and 𝑣
is the maximum speed value of all salespersons. Waiting times are included in the traveling
times, thus, the arrival time of a salesperson at a target is equal to its departure time at
the same target. The visibility window of the depot 𝑜 is the entire time horizon. All arcs
with a finite length can be traveled with maximum speed 𝑣 plus potential waiting time.
The goal is to reach each target from V by exactly one salesperson such that the sum of all
traveled distances of all salespersons is minimized.

3.1 A Time-Discrete Model

A time-discrete MILP formulation is presented in the sequel. The model consists of a multi-
commodity flow formulation embedded in a time expanded network (see Definition 2.3, on
page 24). Here, we have discretized the whole time horizon in time steps. For each time
step there is a time layer with a copy of each target that is visible in this time step. The
target copies are called snapshot targets. Let 𝑚 be an integral number. The step size is
defined by 𝛥 :“ 𝑇 {𝑚. Then the set of all time steps is T :“ t0, . . . ,𝑚u. Given a time step
𝜃 P T, the corresponding time 𝑡𝜃 is given as 𝑡𝜃 “ 𝛥𝜃. For a vertex 𝑣 P V𝑜 its visibility time
window is given by an interval of time steps r𝜏 𝑣, 𝜏 𝑣s Ď T.

Then, the time-expanded network �̃� :“ pṼ, Ãq is defined as follows. For every moving
target 𝑣 we create 𝜏 𝑣 ´ 𝜏 𝑣 ` 1 many snapshot targets: 𝑣𝜏𝑣

, 𝑣𝜏𝑣`1, . . . , 𝑣𝜏𝑣 , thus,

Ṽ :“ t𝑣𝜃 : 𝑣 P V𝑜, 𝜃 “ 𝜏 𝑣, 𝜏 𝑣`1, . . . , 𝜏 𝑣u.

The set of arcs in the time-expanded network is given by Ã Ď AˆT2. An arc 𝑎 “ p𝑖, 𝑗, 𝜃, 𝜆q
in the time-expanded network only exists, if the position of 𝑗 P V at time step 𝜆 can be
reached from the position of 𝑖 P V𝑜 at time step 𝜃 with a speed of at most 𝑣, thus,

𝐴 :“ tp𝑖, 𝑗, 𝜃, 𝜆q : p𝑖, 𝑗q P A, 𝜃 P r𝜏 𝑖, 𝜏 𝑖s, 𝜆 P r𝜏 𝑗 , 𝜏 𝑗s, 𝜆 ě 𝜃, (21)
›

›𝑝𝑖p𝑡𝜃q ´ 𝑝
𝑗p𝑡𝜆q

›

›

2 p𝑡𝜆 ´ 𝑡𝜃q
´1 ď 𝑣u. (22)
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There are no capacity restrictions and no flow costs on the arcs. Additionally, no holdover
arcs are considered, since waiting is allowed and included in the way, that waiting combined
with traveling at maximum speed can be equal to not wait and travel with reduced speed.
See Figure 2 for a visualization of a time-expanded network with six moving targets, for
the sake of clearity only a part of the arcs set is shown.

Figure 2: Visualization of six moving tar-
gets in a time-expanded network. The pic-
ture shows snapshot targets for different
time steps and a part of the arcs set for
the purple target.

0

2

4

6

8

10

12

14

16

18

20

tim
e 

st
ep

s

For each salesperson the arrival time at any node in V is equal to the departure time at
the same node, since waiting time is included in the traveling time. Having discrete time
steps 𝜃, 𝜆 P T we are able to evaluate the distance function for arcs at these times:

𝑐𝜃,𝜆
𝑖,𝑗,𝑘 :“ 𝑐𝑖,𝑗,𝑘p𝑡𝜃,𝑡𝜆q.

Then, we introduce a family of binary decision variables 𝑥𝜃,𝜆
𝑖,𝑗,𝑘 P t0, 1u. Here, 𝑥𝜃,𝜆

𝑖,𝑗,𝑘 “ 1
represents the decision of sending salesperson 𝑘 from 𝑖 to 𝑗, departing at time step 𝜃 in 𝑖
and arriving in 𝑗 at time step 𝜆. The objective function is to minimize the total traveled
distances of all salespersons:

min
ÿ

𝑘PW

ÿ

p𝑖,𝑗,𝜃,𝜆qPÃ

𝑐𝜃,𝜆
𝑖,𝑗,𝑘 𝑥

𝜃,𝜆
𝑖,𝑗,𝑘. (23)

The demand constraint requires, that each node 𝑗 P V must be visited once by exactly one
salesperson:

ÿ

𝑘PW

ÿ

p𝑖,𝜃,𝜆q:p𝑖,𝑗,𝜃,𝜆qPÃ

𝑥𝜃,𝜆
𝑖,𝑗,𝑘 “ 1, @ 𝑗 P V. (24)

Each salesperson 𝑘 PW can only start once from the depot:
ÿ

p𝑗,𝜃,𝜆q:p𝑜,𝑗,𝜃,𝜆qPÃ

𝑥𝜃,𝜆
𝑜,𝑗,𝑘 ď 1, @ 𝑘 PW. (25)

The following flow constraints ensure the feasibility of time. Conservation is ensured at
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each target of the salesperson tour except for the last one, this can be regarded as the sink
of the flow:

ÿ

p𝑖,𝜃q:p𝑖,𝑗,𝜃,𝜆qPÃ

𝑥𝜃,𝜆
𝑖,𝑗,𝑘 ě

ÿ

p𝑖,𝜃q:p𝑗,𝑖,𝜆,𝜃qPÃ

𝑥𝜆,𝜃
𝑗,𝑖,𝑘, @ 𝑗 P V, 𝜆 P T, 𝑘 PW. (26)

Summing up, we solve the following optimization problem:

min t(23) | (24), (25), (26), 𝑥 P t0, 1uÃˆWu. (27)

This formulation is called the time-discrete model or short TD model.

The restrictions of the visibility time windows are embedded in the modeling of the arcs.
Usually TSP have to incorporate subtour elimination constraints. In fact, this is included
by the inherent time dependency. Since time evolves, there is no cycle in the underlying
time expanded network and consequently subtour elimination constraints are not needed.
Furthermore, the presented model (27) is not restricted to special shapes of the target
trajectories. It can handle an arbitrary non-linear trajectory, see for example Stieber
and Fügenschuh [Sti18] and Section 5.4. Likewise, there is no need to restrict the speed
of the targets, the model can be adapted to deal with varying target speeds. An adverse
effect of the above formulation is the use of discrete time steps. In case a better accuracy
of the objective function is needed, the level of discretization has to be increased, resulting
in more layers of the time expanded graph and thus in more copies of the targets. As a
consequence, the number of arcs and the number of variables and constraints will increase
leading to a higher computational burden.

In case all salespersons are identical and start from the same depot, we have a symmetric
problem. Considering the symmetric problem the proposed formulation can be simplified
by removing the index 𝑘 in (27) and replacing (25) by a single constraint ensuring the
degree of the depot node to be at most |W|:

ÿ

p𝑗,𝜃,𝜆q:p𝑜,𝑗,𝜃,𝜆qPÃ

𝑥𝜃,𝜆
𝑜,𝑗 ď |W|.

If energy consumption is an issue, we can restrict the number of targets, that can be
intercepted within a certain period of time. We denote the maximum number of targets by
𝐿𝑘 and the number of consecutive time steps by ℎ𝑘, for 𝑘 PW. The index 𝑘 is used, when
different kinds of lasers are used, with different battery capacities. Then, the following
energy consumption constraints can be integrated in the model formulation:

𝑢`ℎ𝑘
ÿ

𝜆“𝑢

ÿ

p𝑖,𝑗,𝜃,𝜆qPÃ

𝑥𝜃,𝜆
𝑖,𝑗,𝑘 ď 𝐿𝑘, @ 𝑘 PW, 𝑢 P T, 𝑢 ď 𝑚´ ℎ𝑘.

Finally, we discuss a remark on the objective function. For the described reasons we
minimize the sum of traveled distances as in the classical TSP. However, it is also possible
to minimize the traveled time:

min
ÿ

𝑘PW

ÿ

p𝑖,𝑗,𝜃,𝜆qPÃ

p𝜆´ 𝜃q 𝑥𝜃,𝜆
𝑖,𝑗,𝑘.

Since a salesperson cannot exceed its maximum speed, we have p𝜆´𝜃q ě 𝑣´1 𝑐𝜃,𝜆
𝑖,𝑗,𝑘. Thus, no

matter which objective function is used, traveled time or traveled distance, both resulting
integer programs are equal in the way that the same optimal solution is found. In an
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online consideration, where the information about targets is not given in advance, another
intuitive objective function is to intercept each target as early as possible. This case is
addressed in Section 5.5.

3.2 A Time-Continuous Model

For this model variant the salespersons may intercept targets at any point of their trajec-
tories, thus, the time restrictions have to be modeled by continuous variables. As opposed
to the discrete model, the decision if a certain point on a trajectory can be reached from a
point on another trajectory in the corresponding time interval, has to be modeled differently.
Here, it is integrated into the model formulation. Recall, in the discrete case the length
of a time-dependent arc and the decision if it is valid (finite arc length) is calculated in
advance. For the time-continuous model, this is realized by applying big-𝑀 constraints
(similar to the Miller-Tucker-Zemlin constraints for the TSP, see Miller et al. [Mil60]).
These constraints contain continuous time variables and time restrictions. Here this means,
that a big-𝑀 constant is used to ensure an inequality with continuous time variables for
the case, that the corresponding binary decision variable takes on the value of one. In case
the decision variable is zero, the inequality is deactivated by the big-𝑀 constant. Hence,
𝑀 needs to be sufficiently large. A simple example is

𝑥 ď 105𝑦

𝑥 ě 0
𝑦 P t0, 1u,

where 105 is the big-𝑀 constant. An obvious consequence of this time-continuous approach
is the fact, that we obtain an optimal feasible solution with best accuracy.

We introduce a family of binary decision variables 𝑥𝑖,𝑗,𝑘 P t0,1u, where 𝑥𝑖,𝑗,𝑘 “ 1 represents
the decision of sending salesperson 𝑘 from 𝑖 to 𝑗 (independently of the time). Moreover,
continuous time variables 𝑡𝑖,𝑘 P R are defined to describe the arrival time of salesperson
𝑘 at target 𝑖. The set of arcs is A Ď V𝑜 ˆ V, and the length of an arc is defined by the
function 𝑐𝑖,𝑗,𝑘, see (20). Now, we formulate the continuous model.

The objective function is to minimize the total traveled distances of all salespersons:

min
ÿ

𝑘PW

ÿ

p𝑖,𝑗qPA

𝑐𝑖,𝑗,𝑘p𝑡𝑖,𝑘,𝑡𝑗,𝑘q𝑥𝑖,𝑗,𝑘. (28)

Each node 𝑗 P V must be visited once by exactly one salesperson:
ÿ

𝑘PW

ÿ

𝑖:p𝑖,𝑗qPA
𝑥𝑖,𝑗,𝑘 “ 1, @ 𝑗 P V. (29)

Each salesperson 𝑘 PW can only start once from the depot:
ÿ

𝑗PV

𝑥𝑜,𝑗,𝑘 ď 1, @ 𝑘 PW. (30)

Flow conservation is ensured at each target of each salesperson tour except for the last one
(sink):

ÿ

𝑖:p𝑖,𝑗qPA
𝑥𝑖,𝑗,𝑘 ě

ÿ

𝑖:p𝑗,𝑖qPA

𝑥𝑗,𝑖,𝑘, @ 𝑗 P V, 𝑘 PW. (31)
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The following big-𝑀 constraints guarantee time-feasibility, that means, if salesperson 𝑘
moves from 𝑖 to 𝑗 and arrives at 𝑡𝑖,𝑘 in 𝑖, he cannot be earlier in 𝑗 than 𝑡𝑖,𝑘 plus the time
he needs to travel from the position of 𝑖 at 𝑡𝑖,𝑘 to the position of 𝑗 at 𝑡𝑗,𝑘 using maximum
speed 𝑣. The time horizon 𝑇 is the so called big-𝑀 constant in the big-𝑀 constraints

𝑡𝑖,𝑘 `
𝑐𝑖,𝑗,𝑘p𝑡𝑖,𝑘,𝑡𝑗,𝑘q

𝑣
ď 𝑡𝑗,𝑘 ` 𝑇 ¨ p1´ 𝑥𝑖,𝑗,𝑘q , @ p𝑖,𝑗q P A, 𝑘 PW. (32)

For the visibility time windows, the time variables have to satisfy the following bounds:

𝑡𝑗 ď 𝑡𝑗,𝑘 ď 𝑡𝑗 , @ 𝑗 P V𝑜, 𝑘 PW. (33)

Summarized, we aim to solve the following optimization problem:

min t (28) | (29), (30), (31), (32), (33), 𝑥 P t0,1uAˆW, 𝑡 P RV𝑜ˆWu. (34)

The presented formulation is called time-continuous model or short TC model of the
MTSPMT. It is based on an arbitrary nonlinear continuous function 𝑐𝑖,𝑗,𝑘 for the distance
between two points of distinct moving targets. In order to get a linear objective function
and to apply a standard MILP solver such as cplex, we have to restrict the movement of
the targets. To this end, we assume the trajectories to be straight lines and the speed of
each target to be constant. To simplify matters, we use the same constant speed 𝑣𝑇 for
all targets throughout this thesis. Additionally, it is assumed that 𝑣 " 𝑣𝑇 , such that the
salespersons are able to catch targets in reasonable short time.

Then, 𝑐𝑖,𝑗,𝑘 represents the Euclidean distance between two points on two straight lines.
With this, the above presented optimization problem (34) can be handled as a SOCP. The
constraints (32) define the cones and make the set of feasible solutions to be convex. In
the sequel we present the adjusted SOCP formulation that we use for cplex.

We introduce the real auxiliary variables 𝑐𝑥
𝑖,𝑗,𝑘 and 𝑐𝑦

𝑖,𝑗,𝑘 for the 𝑥- and 𝑦-components of
the directional vector, that goes from point 𝑝𝑖p𝑡𝑖,𝑘q to point 𝑝𝑗p𝑡𝑗,𝑘q with the Euclidean
distance 𝑐𝑖,𝑗,𝑘p𝑡𝑖,𝑘,𝑡𝑗,𝑘q and 𝑎𝑖,𝑗,𝑘 for the integral over the time horizon for departure and
arrival time:

𝑎𝑖,𝑗,𝑘 “

ż

𝑡𝑖,𝑘Pr0,𝑇 s

ż

𝑡𝑗,𝑘Pr0,𝑇 s
𝑐𝑖,𝑗,𝑘p𝑡𝑖,𝑘,𝑡𝑗,𝑘q𝑥𝑖,𝑗,𝑘.

Finally, 𝑎𝑖,𝑗,𝑘 is used for the right hand side of the cone definition. Hence, we formulate
the following SOCP. The objective function is

min
ÿ

𝑘PW

ÿ

p𝑖,𝑗qPA

𝑎𝑖,𝑗,𝑘. (35)

The constraints (29), (30), (31) and (33) remain unchanged. The constraints (32), that
contain quadratic terms, are transformed into the following family of auxiliary conditions,
where the trajectory of a target is represented by the convex combination of its start p𝑥𝑖,𝑦𝑖

q

and end point p𝑥𝑖,𝑦𝑖q, see equations (36)–(39). We define 𝛥𝑥𝑖 “ 𝑥𝑖´ 𝑥𝑖, 𝛥𝑦𝑖 “ 𝑦𝑖´ 𝑦𝑖
and

𝛥𝑡𝑖 “ 𝑡𝑖 ´ 𝑡𝑖.

𝑐𝑥
𝑖,𝑗,𝑘 ´

ˆˆ

𝑥𝑗 ` 𝑡𝑗,𝑘
𝛥𝑥𝑗

𝛥𝑡𝑗
´ 𝑡𝑗

𝛥𝑥𝑗

𝛥𝑡𝑗

˙

´

ˆ

𝑥𝑖 ` 𝑡𝑖,𝑘
𝛥𝑥𝑖

𝛥𝑡𝑖
´ 𝑡𝑖

𝛥𝑥𝑖

𝛥𝑡𝑖

˙˙

“ 0, (36)

@ p𝑖,𝑗q P A, 𝑖 ‰ 𝑜, 𝑘 PW.
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𝑐𝑥
𝑜,𝑗,𝑘 ´

ˆˆ

𝑥𝑗 ` 𝑡𝑗,𝑘
𝛥𝑥𝑗

𝛥𝑡𝑗
´ 𝑡𝑗

𝛥𝑥𝑗

𝛥𝑡𝑗

˙

´ 𝑜𝑥

˙

“ 0, @ 𝑗 P V, 𝑘 PW. (37)

𝑐𝑦
𝑖,𝑗,𝑘 ´

ˆˆ

𝑦
𝑗
` 𝑡𝑗,𝑘

𝛥𝑦𝑗

𝛥𝑡𝑗
´ 𝑡𝑗

𝛥𝑦𝑗

𝛥𝑡𝑗

˙

´

ˆ

𝑦
𝑖
` 𝑡𝑖,𝑘

𝛥𝑦𝑖

𝛥𝑡𝑖
´ 𝑡𝑖

𝛥𝑦𝑖

𝛥𝑡𝑖

˙˙

“ 0, (38)

@ p𝑖,𝑗q P A, 𝑖 ‰ 𝑜, 𝑘 PW.

𝑐𝑦
𝑜,𝑗,𝑘 ´

ˆˆ

𝑦
𝑗
` 𝑡𝑗,𝑘

𝛥𝑦𝑗

𝛥𝑡𝑗
´ 𝑡𝑗

𝛥𝑦𝑗

𝛥𝑡𝑗

˙

´ 𝑜𝑦

˙

“ 0, @ 𝑗 P V, 𝑘 PW. (39)

The following constraints describe the condition of the uniform movement of the targets:

𝑎𝑖,𝑗,𝑘 ď 𝑣 p𝑡𝑗,𝑘 ´ 𝑡𝑖,𝑘 ` 𝑇 p1´ 𝑥𝑖,𝑗,𝑘qq , @ p𝑖,𝑗q P A, 𝑘 PW. (40)

The next conditions are needed to formulate the cone constraints:

𝑎𝑖,𝑗,𝑘 “ 𝑎𝑖,𝑗,𝑘 `𝑅 p1´ 𝑥𝑖,𝑗,𝑘q, @ p𝑖,𝑗q P A, 𝑘 PW, (41)

where 𝑅 is the longest possible distance. For a square the diagonal can be used 𝑅 “ r
?

2𝑆s

(with 𝑆 being the edge length).
Finally, the cone constraints are given as:

p𝑐𝑥
𝑖,𝑗,𝑘q

2 ` p𝑐𝑦
𝑖,𝑗,𝑘q

2 ď p𝑎𝑖,𝑗,𝑘q
2, @ p𝑖,𝑗q P A, 𝑘 PW. (42)

Summarized, the transformed SOCP reads the following:

min t (35) | (29), (30), (31), (33), (36), (37),
(38), (39), (40), (41), (42),
𝑥 P t0,1uAˆW, 𝑡 P RV𝑜ˆW, 𝑐𝑥, 𝑐𝑦, 𝑎, 𝑎 P RAˆWu. (43)

Having this TC model formulation, a salesperson is able to intercept a moving target at any
point on its trajectory. In general, the objective function value of (43) is less than or equal
to the objective function value of (27) for the same instance. However, the assumptions we
had to made are severe, the model is only applicable to linear trajectories with constant
speeds. In contrast to this, the time-discrete model can handle trajectories of any shape
and speed. Moreover, model formulations based on big-𝑀 constraints usually have a
weak linear programming relaxation and thus, more nodes in the branch-and-bound tree
have to be examined, slowing down the solution process Codato and Fischetti [Cod04].
Additionally, due to the big-𝑀 constants numerical instabilities can occur in the solution
procedure if the constants are not tight enough. In (43) there are two of such constants, see
constraints (40) and (41). Obviously, a comparison of both modeling approaches, discrete
and continuous, is difficult because of the different time modeling. The consequence for a
runtime comparison of these formulations is, that our test instances have to be based on
linear trajectories with a constant speed for all targets.

3.3 Time Relaxations

For the next model formulations we implement the time restrictions in a different way.
We focus on the so-called time-free model. This means, in a first phase we relax the time
completely and later in a second phase we reintegrate parts of the time restrictions. The
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technique was first introduced by Fügenschuh et al. [Füg13]. The authors successfully
applied the method to the scheduling and routing of planes and tourist travel requests
during fly-in safaris, which essentially is a VRP with time windows and pickup and delivery.

First of all, the discrete case is considered and a projection of (27) is performed from
the time-discrete variable space Ã ˆW to A ˆW (i.e., from V𝑜 ˆ V ˆ T ˆ T ˆW to
V0 ˆ V ˆW). The time-free counterpart of the variables 𝑥𝑝,𝑞

𝑖,𝑗,𝑘 is simply 𝑥𝑖,𝑗,𝑘. While
reducing all time-discrete arcs between two different targets to only one time-free arc, we
have to attach an appropriate length for this arc. To preserve the set of feasible solutions,
the minimum length over all time-discrete arcs between 2 targets is used as the required
length for the new time-free arc. That means, given a salesperson 𝑘 and 2 different targets
𝑖 P V𝑜 and 𝑗 P V, 𝑖 ‰ 𝑗 the distance 𝑐𝑖,𝑗,𝑘 is defined as

𝑐𝑖,𝑗,𝑘 “ min t𝑐𝜃,𝜆
𝑖,𝑗,𝑘 | 𝜃, 𝜆 P Tu. (44)

With this, the time-discrete model (27) reduces to the following model in the time-free
space:

min
ÿ

𝑘PW

ÿ

p𝑖,𝑗qPA

𝑐𝑖,𝑗,𝑘 𝑥𝑖,𝑗,𝑘 (45)

s.t.
ÿ

𝑘PW

ÿ

𝑖:p𝑖,𝑗qPA
𝑥𝑖,𝑗,𝑘 “ 1, @ 𝑗 P V

ÿ

𝑗:p𝑜,𝑗qPA

𝑥𝑜,𝑗,𝑘 ď 1, @ 𝑘 PW

ÿ

𝑖:p𝑖,𝑗qPA
𝑥𝑖,𝑗,𝑘 ´

ÿ

𝑖:p𝑗,𝑖qPA

𝑥𝑗,𝑖,𝑘 ě 0, @ 𝑗 P V, 𝑘 PW

𝑥 P t0,1uAˆW.

This is a classical multi-commodity flow problem, which is easy to solve by standard MILP
solvers. Obviously, the optimal value of the time-free model (45) is a lower bound to
(27), because the distance coefficients are computed by minimization over time-discrete
arcs. However, the reconstruction of a time-feasible solution from a time-free solution
is not straightforward and not every time-free solution yields a time-feasible solution.
For this purpose we have to test every time-free solution, that we encounter during the
solution process, for time-feasibility. This examination is embedded in a branch-and-bound
framework in order to benefit from pruning nodes whose lower bounds exceed the current
best solution value.

Given an optimal solution of (45), then, we generate feasible times at which the salespersons
intercept the targets according to the time-free solution. Assuming the objective function
value of the constructed time-feasible solution is equal to the objective function value of the
time-free solution, then the constructed solution is proven global optimal for (27). However,
this rarely happens. It is likely, that a time-free solution is infeasible with respect to the
time constraints. Thus, besides the optimal time-free solution, we also have to investigate
the other feasible time-free solutions in a branch-and-bound process. That means (45)
serves as the master problem in the branch-and-bound framework. For any feasible solution
of the master problem, we try to construct a feasible counterpart with respect to the given
time constraints. If the objective function value of this time-feasible solution is better
than previously found ones, it is stored. Then, the current time-free solution is treated as
infeasible and cut off in the branch-and-bound process to prevent a repetition. Obviously,
the generated cuts should also take into account all salesperson permutations in case the
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salespersons are homogeneous. If there is no time-feasible counterpart for a time-free
solution, we also have to cut off the time-free solution as well. In this way we are able to
check all time-free solutions. Additionally, the branch-and-bound tree can be pruned by
exploiting lower bounds. This solution method is realized using the callback functionality
of cplex. Analyzing the time-free solution before the construction phase also leads to an
advantage in processing. For this we refer to the Chapter 4. For now, we concentrate on
the construction of a time-feasible solution from a time-free solution.

Given a time-free solution, we call the sequence of targets, that is defined by all decision
variables that are set to one, a pretour. Note, a pretour may be disconnected and there
may be salespersons with an empty pretour. A salesperson is called active, if its pretour is
not empty. The pretours of all active salespersons are tested for feasibility. A pretour is
called feasible if it starts at the depot 𝑜 and is a Hamiltonian path in the induced subgraph.
For each feasible pretour a time-feasible tour is required.

A Time Relaxation with Discrete Time Feasibility Checking

Assuming we have a non-empty pretour. The construction of a time-feasible tour is done by
setting up a checking sub-MILP. For the sub-MILP we consider all time restrictions, that
are connected with the pretour. In detail this means, we include only those time-dependent
arcs, that have a time-free counterpart in the given pretour (the corresponding solution
variable is nonzero). In case the checking sub-MILP provides for each active salesperson a
time-feasible tour, a feasible solution to (27) is found. The best time-feasible solution is
stored.

The time-feasibility checking MILP is set up as a minimum-cost flow problem from a source
to a sink for each active salesperson separately. Given an active salesperson 𝑘, then its
pretour defines the sequence of targets, 𝑘 has to visit. Let us assume 𝑛𝑘 is the number
of targets 𝑘 has to visit and p𝑣1, 𝑣2, . . . , 𝑣𝑛𝑘

q is the ordered sequence. Additionally, depot
position 𝑜 is considered as the source of the flow and we extend the sequence by a node
𝑑, which serves as the sink. Thus, P𝑘 “ t𝑜 “ 𝑣0, 𝑣1, 𝑣2, . . . , 𝑣𝑛𝑘

, 𝑣𝑛𝑘`1 “ 𝑑u denotes the
sequence of targets (pretour) considered for the minimum-cost flow problem of 𝑘.

Since we have to consider only those time-expanded arcs, that correspond to an arc
of the pretour, the checking MILP includes all arcs, that go from depot position 𝑜 to
discrete positions of 𝑣1, from discrete positions of 𝑣1 to discrete positions of 𝑣2, and so on.
Additionally, artificial time-discrete arcs from discrete positions of 𝑣𝑛𝑘

to the sink 𝑑 have
to be generated. That means, for each arc, that enters 𝑣𝑛𝑘

at time step 𝜃 an arc is created,
that leaves 𝑣𝑛𝑘

at time step 𝜃 and enters 𝑑 at 𝜃 ` 1. The distance of all arcs between 𝑣𝑛𝑘

and 𝑑 is set to zero. We denote this set of arcs for salesperson 𝑘 as A𝑘. According to the
time-discrete model (27), we introduce binary decision variables 𝑥𝜃,𝜆

𝑣𝑖,𝑣𝑖`1 describing the
decision of sending salesperson 𝑘 from target 𝑣𝑖 to its successor 𝑣𝑖`1 leaving at time step 𝜃
and arriving at time step 𝜆. The time-feasibility checking MILP for an active salesperson
𝑘 is formulated as follows:

min
𝑛𝑘
ÿ

𝑖“0

ÿ

p𝜃,𝜆q:p𝑣𝑖,𝑣𝑖`1,𝜃,𝜆qPA𝑘

𝑐𝜃,𝜆
𝑣𝑖,𝑣𝑖`1 𝑥

𝜃,𝜆
𝑣𝑖,𝑣𝑖`1 (46)

s.t.
ÿ

p𝜃,𝜆q:p𝑜,𝑣1,𝜃,𝜆qPA𝑘

𝑥𝜃,𝜆
𝑜,𝑣1 “ 1

ÿ

p𝜃,𝜆q:p𝑣𝑛𝑘
,𝑑,𝜃,𝜆qPA𝑘

𝑥𝜃,𝜆
𝑣𝑛𝑘

,𝑑 “ 1
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ÿ

𝜃:p𝑣𝑗´1,𝑣𝑗 ,𝜃,𝜆qPA𝑘

𝑥𝜃,𝜆
𝑣𝑗´1,𝑣𝑗

´
ÿ

𝜃:p𝑣𝑗 ,𝑣𝑗`1,𝜆,𝜃qPA𝑘

𝑥𝜆,𝜃
𝑣𝑗 ,𝑣𝑗`1 “ 0, @ 𝑗 P t1, . . . , 𝑛𝑘u, 𝜆 P T

𝑥 P t0, 1uA𝑘
.

The optimization problem (46) aims to find the shortest path from 𝑜 to 𝑑. This kind of
optimization problem can be solved in polynomial time by, e.g., Dijkstra’s algorithm [Dij59].
If the checking MILP (46) results in a time-feasible tour for every active salesperson,
we have a total time-feasible solution for (27). If for any of the active salespersons, the
checking MILP is infeasible, then it is not possible to construct a time-feasible tour out
of its pretour. In this case, the construction process is aborted and the current time-free
solution (with all its pretours) is cut off.
In summary, the model (45) with distances defined in (44) and the sub-MILP formulation
(46) is called the time-free model with a time-discrete feasibility checking or short TFTD
model. Just as the TD model, the TFTD model can be applied to non-linear shaped
trajectories.

A Time Relaxation with Continuous Time Feasibility Checking

According to our time-continuous model (34), a time-free master problem can also be
combined with a continuous time-feasibility checking sub-MILP. For this variant we cannot
use (45) as the master problem, since its distance coefficients 𝑐𝑖,𝑗,𝑘 in the objective function
are dependent on a discretization and on time-discrete arcs, see (44). Here, these coefficients
are not valid. We have to replace the minimal time-expanded arclength by the real minimum
length between 2 trajectories. Thus, the distance coefficients 𝑐𝑖,𝑗,𝑘 are computed as follows:
For a given trajectory 𝑗 we compute the time interval r𝑡𝑖1, 𝑡𝑖2s for trajectory 𝑖, from which 𝑗
can be reached:

𝑡𝑖1 :“ min t𝑡 P r𝑡𝑖, 𝑡𝑖s :
›

›𝑝𝑗p𝑞q ´ 𝑝𝑖p𝑡q
›

›

2 ď 𝑣p𝑞 ´ 𝑡q, 𝑞 ě 𝑡, 𝑞 P r𝑡𝑗 , 𝑡𝑗su,

𝑡𝑖2 :“ max t𝑡 P r𝑡𝑖, 𝑡𝑖s :
›

›𝑝𝑗p𝑞q ´ 𝑝𝑖p𝑡q
›

›

2 ď 𝑣p𝑞 ´ 𝑡q, 𝑞 ě 𝑡, 𝑞 P r𝑡𝑗 , 𝑡𝑗su.

Then we compute the minimum distance between the trajectory of 𝑖 reduced to the interval
𝐼 :“ r𝑡𝑖1, 𝑡𝑖2s and trajectory of 𝑗 with 𝐽 :“ r𝑡𝑗 , 𝑡𝑗s:

𝑐𝑖,𝑗,𝑘 “

#

8, if 𝐼 “ H
min t𝑐𝑖,𝑗,𝑘p𝑡, 𝑞q : 𝑡 P 𝐼, 𝑞 P 𝐽u, otherwise.

(47)

Then the time-relaxed master model is the model (45) combined with the distance coeffi-
cients defined in (47). Having this, we can formulate the feasibility checking sub-MILP
for the time-continuous case. As for the continuous model (43), the assumption of linear
trajectories and constant target speed is made. Then, the checking sub-MILP for a feasible
pretour of an active salesperson 𝑘 can be modeled as a quadratic program. We again use
continuous time variables 𝑡𝑣𝑖 to define the arrival time of 𝑘 in 𝑣𝑖. For a given pretour
sequence t𝑜 “ 𝑣0, 𝑣1, . . . , 𝑣𝑛𝑘

u, we obtain the checking MILP as follows:

min
𝑛𝑘´1
ÿ

𝑖“0
𝑐𝑣𝑖,𝑣𝑖`1p𝑡𝑣𝑖 ,𝑡𝑣𝑖`1q 𝑥𝑣𝑖,𝑣𝑖`1 (48)

s.t. 𝑐𝑣𝑖,𝑣𝑖`1p𝑡𝑣𝑖 ,𝑡𝑣𝑖`1q ď 𝑣 p𝑡𝑣𝑖`1 ´ 𝑡𝑣𝑖q, @ 𝑖 “ 0, 1, . . . , 𝑛𝑘 ´ 1,

𝑡𝑣𝑖 P r𝑡𝑖, 𝑡𝑖s, @ 𝑖 “ 1, . . . , 𝑛𝑘,
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𝑥 P t0, 1uV𝑜ˆV.

Here, the function 𝑐𝑣𝑖,𝑣𝑖`1p𝑡𝑣𝑖 ,𝑡𝑣𝑖`1q again denotes the Euclidean distance between the
position of target 𝑣𝑖 at time step 𝑡𝑣𝑖 and the position of target 𝑣𝑖`1 at time step 𝑡𝑣𝑖`1 ,
see (20). In the objective function all traveled distances are summed up, while in the
restrictions time-feasibility is checked. That means, the travel speed, that 𝑘 uses to traverse
a distance of 𝑐𝑣𝑖,𝑣𝑖`1p𝑡𝑣𝑖 ,𝑡𝑣𝑖`1q in a time difference of p𝑡𝑣𝑖`1 ´ 𝑡𝑣𝑖q, has to be at most 𝑣, the
maximum speed. The bounds restriction ensures that each target is reached within its
specified visibility window.

The model (45) with continuous distances (47) and the feasibility checking MILP (48)
is called time-free model with a time-continuous feasibility checking or in short TFTC
model. In contrast to the proposed TC model (34), the TFTC does not contain any big-𝑀
constraints.

3.4 A Set Partitioning Approach

This paragraph focuses on a set partitioning approach. Here, we consider a sequence 𝑆 of
all possible subsets of 𝑛 targets, we have |𝑆| “ 2|V| ´ 1 “ 2𝑛 ´ 1. Then, let 𝐼 be the index
set 𝐼 “ t1, 2, . . . , 2𝑛´ 1u such that 𝑠𝑖 is the 𝑖-th subset. We define 𝑎𝑖, 𝑖 P 𝐼 as the incidence
vector of 𝑠𝑖. The incidence vectors build up a matrix 𝐴 :“ p𝑎𝑖q𝑖P𝐼 . We assume, that every
subset provides a valid tour with a finite length. Thus, we can assume, that for every 𝑠𝑖

there is a tour with minimal length among all valid tours. This minimal tour length is
called 𝑑𝑖 P R`, 𝑖 P 𝐼. The task is to find at most 𝑤 P W of these tours, such that each
target is in exactly one tour and the aggregated lengths is minimized. The optimization
problem is called set partitioning problem (SPP) and defined as

min 𝑑𝑇𝑥 (49)

s.t. 𝐴𝑥 “ 1,
ÿ

𝑖P𝐼

𝑥𝑖 ď 𝑤

𝑥𝑖 P t0, 1u @ 𝑖 P 𝐼,

where the dimension of matrix 𝐴 is 𝑛ˆ 2𝑛 ´ 1. The set partitioning constraints 𝐴𝑥 “ 1
ensure, that each target is reached by a salesperson, where 𝑥𝑖 “ 1 if and only if the optimal
tour of subset 𝐴p.,𝑖q is chosen. The inequality in (49) constitutes that at most 𝑤 many
salespersons are required.

In order to solve (49) we have to compute each of the 2𝑛 ´ 1 many optimal tours for all
possible subsets of 𝑉 in advance. Hence, for each subset we have to solve a MTSPMT with
one salesperson, which is a TSPMT. For solving the TSPMT any of the before mentioned
model variant can be applied, i.e., TD, TFTD, TC and TFTC. Once all optimal tours have
been computed, we can easily solve (49), we can even solve it several times with different
values of 𝑤.

3.5 Adaptations to the Formulations Regarding Infeasibility

So far, the described models find an optimal solution for feasible instances of MTSPMT.
Here, we also focus on a model, that can handle infeasible instances. In case it is not
possible to intercept all targets within their visibility time windows, due to the limited
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amount of salespersons, we speak of infeasible instances. Instead of an output that just
states: “infeasible”, we are interested in a solution that incorporates as many targets as
possible for interception and minimizes the traveled distances for all salespersons.

To adapt the models TD and TC we introduce a penalty constant 𝐷 P R` with a value
of the longest possible distance of the underlying space. For a squared space it is the
length of its diagonal. Furthermore, binary slack variables 𝑠𝑖, 𝑖 P V are used to model the
targets, that are not intercepted. Then, TD model (27) is adjusted in the following way.
The objective function is extended by a penalty term for each missing target. The demand
constraints of each target is also adjusted by the corresponding slack variable in case it is
not intercepted. Finally, the domain definition of the slack variables is given:

min
ÿ

𝑘PW

ÿ

p𝑖,𝑗,𝜃,𝜆qPÃ

𝑐𝜃,𝜆
𝑖,𝑗,𝑘𝑥

𝜃,𝜆
𝑖,𝑗,𝑘 ` 𝐷

ÿ

𝑗PV

𝑠𝑗` 𝐷
ÿ

𝑗PV

𝑠𝑗` 𝐷
ÿ

𝑗PV

𝑠𝑗

ÿ

𝑘PW

ÿ

p𝑖,𝜃,𝜆q:p𝑖,𝑗,𝜃,𝜆qPÃ

𝑥𝜃,𝜆
𝑖,𝑗,𝑘 ` 𝑠𝑗` 𝑠𝑗` 𝑠𝑗 “ 1, @ 𝑗 P V

𝑠𝑗𝑠𝑗𝑠𝑗 P t0, 1uVP t0, 1uVP t0, 1uV .

All other constraints remain unchanged.

The same modifications can be applied to the time-continuous model TC:

min
ÿ

𝑘PW

ÿ

p𝑖,𝑗qPA

𝑐𝑖,𝑗,𝑘p𝑡𝑖,𝑘, 𝑡𝑗,𝑘q𝑥𝑖,𝑗,𝑘 ` 𝐷
ÿ

𝑗PV

𝑠𝑗` 𝐷
ÿ

𝑗PV

𝑠𝑗` 𝐷
ÿ

𝑗PV

𝑠𝑗

ÿ

𝑘PW

ÿ

𝑖:p𝑖,𝑗qPA
𝑥𝑖,𝑗,𝑘 ` 𝑠𝑗` 𝑠𝑗` 𝑠𝑗 “ 1, @ 𝑗 P V

𝑠𝑗𝑠𝑗𝑠𝑗 P t0, 1uVP t0, 1uVP t0, 1uV .

3.6 Adaptations to the Formulations Regarding Non-Linear Trajectories

This section focuses on non-linear continuous trajectories. For time-discrete models the
handling is straightforward, the non-linear trajectories are discretized by time and every
time step is associated with a point in the Euclidean space. The set of feasible arcs of the
time-expanded network is computed accordingly to (21) and in advance. Then, the model
TD (27) can be applied to the non-linear data, see for example Stieber and Fügenschuh
[Sti18].

Concerning continuous models non-linear trajectories can only be addressed when the
non-linear trajectories are approximated by piece-wise linear functions. A piece-wise
linear approximation is a method to fit a curve (here a trajectory) by piece-wise linear
segments (line segments). The approximation can be produced by sampling the curve and
interpolating linearly between the obtained sampling points.

To apply the time continuous model TC to piece-wise linear trajectories some adjustments
are needed. We introduce additional variables 𝑑𝑖,𝑗,𝑘 to model distances between the targets
𝑖 P V𝑜 and 𝑗 P V. Furthermore, 𝑑𝑥

𝑗,𝑘 and 𝑑𝑦
𝑗,𝑘 denote the 𝑥- and 𝑦-coordinate of the position

of target 𝑗 at time 𝑡𝑗,𝑘. We also introduce cost variables, which are called 𝑐𝑖,𝑗,𝑘, for p𝑖, 𝑗q P A
and 𝑘 PW. Then, the objective function reads as follows:

min
ÿ

𝑘PW

ÿ

p𝑖,𝑗qPA

𝑐𝑖,𝑗,𝑘. (50)
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The cost variables are connected to the traveled distances by a big-𝑀 formulation:

𝑐𝑖,𝑗,𝑘 “ 𝑑𝑖,𝑗,𝑘 ´ p1´ 𝑥𝑖,𝑗,𝑘q ¨𝑅, @ p𝑖,𝑗q P A, 𝑘 PW. (51)

Having these constraints, the objective function serves as an upper bound on the distances,
that are traveled by the salespersons. Here, the big-𝑀 constant 𝑅 is again the longest
possible distance among all pairs of nodes, for a squared area it is the length of its diagonal.

The time-free part of the TC model remains unchanged, that are the constraints (29),
(30) and (31). The same holds for the visibility time window constraints (33) and the
time-feasibility constraints . We repeat the constraints for the sake of completeness:

ÿ

𝑘PW

ÿ

𝑖:p𝑖,𝑗qPA
𝑥𝑖,𝑗,𝑘 “ 1, @ 𝑗 P V, (52)

ÿ

𝑗PV

𝑥𝑜,𝑗,𝑘 ď 1, @ 𝑘 PW, (53)

ÿ

𝑖:p𝑖,𝑗qPA
𝑥𝑖,𝑗,𝑘 ě

ÿ

𝑖:p𝑗,𝑖qPA

𝑥𝑗,𝑖,𝑘, @ 𝑗 P V, 𝑘 PW, (54)

𝑡𝑗 ď 𝑡𝑗,𝑘 ď 𝑡𝑗 , @ 𝑗 P V𝑜, 𝑘 PW. (55)

The trajectories of the targets are given by piece-wise linear functions (𝑃𝑊𝐿𝑥,𝑃𝑊𝐿𝑦 :
r0, 𝑇 s Ñ R), which are parametrized by the time. Then, the 𝑥- and 𝑦-coordinates of the
position of target 𝑗 P V are given by:

𝑑𝑥
𝑗,𝑘 “ 𝑃𝑊𝐿𝑥p𝑡𝑗,𝑘q, 𝑑𝑦

𝑗,𝑘 “ 𝑃𝑊𝐿𝑦p𝑡𝑗,𝑘q, @ 𝑗 P V, 𝑘 PW. (56)

The following quadratic constraints connect the trajectory positions with the Euclidean
distance 𝑑𝑖,𝑗,𝑘:

𝑑2
𝑖,𝑗,𝑘 ě p𝑑

𝑥
𝑗,𝑘 ´ 𝑑

𝑥
𝑖,𝑘q

2 ` p𝑑𝑦
𝑗,𝑘 ´ 𝑑

𝑦
𝑖,𝑘q

2, @ p𝑖,𝑗q P A, 𝑘 PW. (57)

Finally, the time-feasibility constraints remain unchanged, but technically, the distance
functions 𝑐𝑖,𝑗,𝑘p𝑡𝑖,𝑘,𝑡𝑗,𝑘q in (32) are replaced by the cost variables 𝑐𝑖,𝑗,𝑘. The meaning of both
entities are the same, however in this case we are faced with linear constraints compared
to (32):

𝑐𝑖,𝑗,𝑘 ď 𝑣 p𝑡𝑗,𝑘 ´ 𝑡𝑖,𝑘q ` 𝑇 ¨ p1´ 𝑥𝑖,𝑗,𝑘q , @ p𝑖,𝑗q P A, 𝑘 PW. (58)

Summarized, we aim to solve the following optimization problem:

mint (50) | (51)´ (58),

𝑥 P t0,1uAˆW, 𝑡 P RV𝑜ˆW
` , 𝑑𝑥, 𝑑𝑦 P RV 0ˆW

` , 𝑐, 𝑑 P RAˆW
` u, (59)

which is a SOCP, where the non-linear trajectories are approximated by piece-wise linear
functions. The solver cplex, that we use for our test instances provides algorithmic
structures to simply define piece-wise linear functions.

3.7 Summary

The MTSPMT should be treated as an online optimization problem, that is, the targets
are not known before the optimization starts, instead they occur afterwards and often step
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by step. Still, a fast routine to solve the offline variant could serve as the backbone of an
online solver with a moving horizon approach. Here new data is integrated into the offline
algorithm at run-time, and a fast offline algorithm can be used to get a tentative decision
to the online problem that is re-optimized anytime new targets emerge.

To find fast offline algorithms we investigate different model approaches. The main focus is
on the time aspect and the different model formulations can be characterized accordingly.
The presented model approaches are the TD model, where the targets are embedded in a
time-expanded network, the TC model, which includes the check of feasibility of the arcs
in the model, the two-phase time-free models with discrete and continuous time feasibility
checking and a set partitioning model, where the best tours of all possible subsets of targets
have to be computed in advance. In the end adaptations for the models are provided, which
deal with infeasible instances and for the time-discrete models with non-linear trajectories
of the targets. The generated test instances live in the R2, nevertheless all presented
models are not restricted to the two-dimensional space, they can also be applied to the R3.
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4 Implementational Details

The presented models in Chapter 3 are implemented by the programming language C++
using Eclipse as an integrated development environment. The optimization software
cplex is used to model and solve randomly generated problem instances. More precisely,
the Concert Technology provided by cplex is integrated, which includes an application
programming interface for C++ programs.
While problem instances modeled as TD and TC can be solved directly by invoking the
solver, the solution procedure for the time-free models TFTD and TFTC is a lot more
complex. A branch-and-bound framework is used to solve the time-relaxed master problem,
then, for a feasible solution of the master problem a time feasibility checking sub-MILP is
constructed. This solution procedure is described in more detail in Section 4.1. The course
of action for the set partitioning approach is discussed in Section 4.2.

4.1 Solution Procedures for the Time-Relaxed Models

This section focuses on the time-relaxed master problem (45). While in the discrete case,
the distance coefficients 𝑐𝑖,𝑗,𝑘 are calculated as the minimal arclength between 2 targets
as given in (44), in the continuous case the distance coefficients for a pair of targets, that
can be intercepted sequentially by a salesperson, are computed by minimizing the distance
function over two continuous time intervals as stated in (47).
The model (45) (with either (44) or (47)) is called master problem and the solution
procedure is embedded in a branch-and-bound framework. To check the solutions of
the master problem and to produce time-feasible solutions we use the callback utilities
of cplex. We implement an instance of the BranchCallback and an instance of the
LazyConstraintCallback. The latter one is a user-written callback to solve mixed-integer
linear programs. Each time a candidate feasible solution of the master problem (called
pretour) is found at a node in the branch-and-bound tree the LazyConstraintCallback is
invoked and violated constraints are applied. Those constraints are applied in a “lazy”
fashion, i.e., only if they are violated, what makes the name of the callback.
In the LazyConstraintCallback a validation check of the pretour is performed as well as
the construction of feasible times according to the sub-MILPs (46) and (48). The callback
algorithm is presented in Algorithm 4. A more detailed description of individual steps is
given in the sequel. In lines 1-3 the objective function value of the current solution of the
master problem is checked. The objective function value of the master problem serves as a
lower bound for the MTSPMT. If this lower bound at the current node is greater or equal
to the best objective function value “with time” found so far, we cannot improve. Thus,
the callback terminates and the current node is pruned in the BranchCallback, which is
invoked afterwards. Since the objective function value of the master problem is checked
against the current best objective function value of the problem “with time”, that means
two different problems are considered, thus, pruning is not executed automatically. The
BranchCallback is only used for pruning, branching is performed the default way of cplex.
The lines 4-11 perform prechecks to the pretours in order to sort out infeasible ones. The
first precheck is a cycle detection, which is described in Section 35, the second precheck
is a time-feasibility check using interval propagation of the visibility time windows, see
Section 35 for more details. After prechecking is executed one of the MILPs (46) or (48) is
set up to compute the corresponding tours with times.
Each pretour and its counterpart “with time” are stored in a solution pool in order to
prevent setting up and solving the same sub-MILP more than once for repeating pretours
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Algorithm 4: LazyConstraintCallback: Pretour validation check and construction
of times.
Data: Time-relaxed solution variables 𝑥, best objective function value found so far

𝑏𝑒𝑠𝑡_𝑜𝑏𝑗_𝑣𝑎𝑙.
Result: If exist, time-feasible tours for all salespersons.

1 #Bounds exploitation
2 if current objective function value 𝑐𝑢𝑟𝑟_𝑜𝑏𝑗_𝑣𝑎𝑙 ě 𝑏𝑒𝑠𝑡_𝑜𝑏𝑗_𝑣𝑎𝑙 then
3 return;

4 #Cycle detection
5 if the pretour of an active salesperson 𝑠 contains a cycle then
6 add a global cut for all salespersons;
7 return;

8 #Validation check by interval propagation
9 if the pretour of an active salesperson 𝑠 is identified as time-infeasible then

10 add a global cut for all salespersons;
11 return;

12 #Construction of feasible times
13 initialize current solution 𝑐𝑢𝑟𝑟_𝑡𝑜𝑢𝑟 ÐH; 𝑎𝑙𝑙_𝑠𝑎𝑙𝑒𝑠𝑝𝑒𝑟𝑠𝑜𝑛𝑠_𝑓𝑒𝑎𝑠𝑖𝑏𝑙𝑒Ð 𝑡𝑟𝑢𝑒;
14 initialize objective function value for time-feasible solution 𝑡𝑜𝑢𝑟_𝑣𝑎𝑙Ð 0;
15 for each active salesperson 𝑠 PW do
16 if all_salespersons_feasible ‰ true then
17 break;
18 if pretour of 𝑠 is already in solution pool then
19 get time-feasible tour 𝑟 for 𝑠 from solution pool;
20 if r is infeasible then
21 𝑎𝑙𝑙_𝑠𝑎𝑙𝑒𝑠𝑝𝑒𝑟𝑠𝑜𝑛𝑠_𝑓𝑒𝑎𝑠𝑖𝑏𝑙𝑒Ð false;
22 else
23 set up MILP to compute time-feasible tour 𝑟 for 𝑠;
24 solve MILP;
25 #𝑟 is a time-feasible tour of 𝑠;
26 𝑡𝑜𝑢𝑟_𝑣𝑎𝑙Ð objective function value of MILP;
27 𝑐𝑢𝑟𝑟_𝑡𝑜𝑢𝑟 “ 𝑐𝑢𝑟𝑟_𝑡𝑜𝑢𝑟 Y 𝑟;
28 add pretour of 𝑠 and time-feasible tour 𝑟 to solution pool;

29 if 𝑎𝑙𝑙_𝑠𝑎𝑙𝑒𝑠𝑝𝑒𝑟𝑠𝑜𝑛𝑠_𝑓𝑒𝑎𝑠𝑖𝑏𝑙𝑒 “ 𝑡𝑟𝑢𝑒 then
30 add global cut to prevent solution to be repeated by another salespersons permutation;
31 if 𝑡𝑜𝑢𝑟_𝑣𝑎𝑙 ă 𝑏𝑒𝑠𝑡_𝑜𝑏𝑗_𝑣𝑎𝑙 then
32 best_obj_val = tour_val;
33 save curr_tour;
34 return;

35 return;

in different solutions. This is realized in the lines 19 and 28 of Algorithm 4. To this
end, we use a single-threaded optimization instead of a multi-threaded one. In multi-
threaded mode it is only allowed to access local data, that is data only related to the
current node in the branch-and-bound tree. However, a solution pool contains data from
different nodes and thus, cannot satisfy the restriction of local data. Another reason
for the single-threaded mode is, that cplex is not deterministic in the order of callback
invocation. For multiple runs of the same instance with the same parameter setting on the
same platform cplex cannot guarantee the same order of callback invocations, this may
lead to a non-deterministic variability in running times.
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A time-feasible solution is found, when there is a time-feasible tour for each active salesman.
This solution has to be returned to the master problem to possibly replace the best objective
function value found so far and its corresponding solution. Then a global cut is added to
the master problem in order to prevent the repetition of the current time-free solution by
another salesperson permutation.

Summing up, we have the time-discrete model (TD) (27), the time-continuous model
(TC) (34), the time-free master (45) with time-discrete feasibility checking (TFTD) (46)
and the time-free master (45) with time-continuous feasibility checking (TFTC) (48).
TFTD and TFTC can be solved using Algorithm 4.

Pretour Checking: Cycle Detection

Since (45) is a multi-commodity flow formulation, any solution presents a feasible flow
but not necessarily a feasible tour due to the lack of subtour elimination constraints in
the master problem. In lines 4-7 of Algorithm 4 we extract the pretours of all active
salespersons and test whether one of these pretours contains a cycle. If a cycle C Ă A is
found, it will be cut off by the following constraints:

ÿ

p𝑖,𝑗qPC

𝑥𝑖,𝑗,𝑘 ď |C| ´ 1, @ 𝑘 PW. (60)

We have also extended this cut by all arcs within the cycle. We define the targets of the
cycle as VpCq, then the extended cut reads as follows

ÿ

p𝑖,𝑗qPA:𝑖,𝑗PVpCq
𝑥𝑖,𝑗,𝑘 ď |C| ´ 1, @ 𝑘 PW.

Experiments showed, that this extended cut could not improve the runtimes compared to
the cut (60). There are other cut formulations as well. We tested a variant, that considers
the arcs between the cycle targets and the remaining targets. We define the remaining
targets as VpCq :“ V𝑜zVpCq. Then, the following cut was considered

ÿ

p𝑖,𝑗qPÃ

𝑥𝑖,𝑗,𝑘 ě 1, @ 𝑘 PW,

where Ã :“ A X
`

tp𝑖,𝑗q : 𝑖 P VpCq, 𝑗 P VpCqu Y tp𝑖,𝑗q : 𝑖 P VpCq, 𝑗 P VpCqu
˘

. However, this
cut also did not have any positive effect on the runtime compared to (60). Thus, the cut
defined in (60) is used.

Pretour Checking: Interval Propagation

Here, a time-feasibility check for a pretour is addressed. This method of checking exploits
the visibility time windows of a pretour to get the information whether a corresponding
time-feasible tour exists or not. It is located in the lines 8-11 of Algorithm 4. The visibility
time windows (intervals) are propagated sequentially from one target of a pretour to its
successor. For moving targets the interval propagation to test time-feasibility is a lot more
complicated than for fixed targets as stated in Section 2.8. Since the distance that has to
be traveled is dependent on the position of the targets at the departure and the arrival
time.

At first, we address the case of discrete time steps. Given a pretour 𝑣1, 𝑣2, . . . , 𝑣𝑞 of an
active salesman, we start at the first node 𝑣1. Here we check, if there are time steps in the
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visibility time window of 𝑣1, which can be used to arrive from the depot 𝑜 and to leave for
𝑣2. All those time steps are combined by intersecting both, the possible arrival and the
possible departure interval in 𝑣1. This generated interval serves as the new visibility time
window for 𝑣1 and it is propagated to the following node the same way. Note, that for
the depot node 𝑜 the whole time horizon is considered as visibility time window, thus, the
whole visibility time window of 𝑣1 can be used as the arrival interval. With respect to the
visibility time window of 𝑣2 we compute a possible departure interval for 𝑣1 with feasible
time steps for a departure to 𝑣2. The next step is to generate a cut set from both interval,
the arrival interval and the departure interval of 𝑣1. This procedure is continued to the
last target of the pretour. The case that an intersection interval at a certain target of the
pretour is empty, indicates that the pretour, we started with, is not time-feasible and the
interval propagation procedure is aborted. The case, that a non-empty arrival interval is
found for the last target of the pretour indicates, that this pretour is time-feasible. An
example of the first steps of this procedure is visualized in Figure 3. The arrival interval of
target 𝑣1 is the discrete interval r2, 5s, which is the whole visibility time interval of 𝑣1. The
interval to leave for 𝑣2 with a speed of at most 𝑣 is r2, 3s and the corresponding arrival
interval of 𝑣2 is r3, 4s. If the salesperson leaves 𝑣1 later than at time step 3, target 𝑣2 cannot
be reached within its visibility window of r0, 4s. An earlier departure is not possible due to
the visibility time interval of 𝑣1. Then the intersection of the arrival interval r2, 5s and the
departure interval of r2, 3s in 𝑣1 results in the new interval r2, 3s. This procedure of time
interval propagation has to be continued to the following nodes of the current pretour and
their visibility time windows.

In case there is an empty cut set, we have an infeasible interval and thus, an infeasible
pretour and also the corresponding time-free solution is infeasible, which is rejected then.
The time-free solution is cut off by adding the following global cut to the master problem.
Let 𝑜 “ 𝑣0, . . . , 𝑣𝑛𝑠 be an infeasible pretour of the current solution. Then, P Ă A denotes
the set of consecutive target pairs of the pretour. We formulate the following constraint
for every salesperson to cut off this pretour:

ÿ

p𝑖,𝑗qPP

𝑥𝑖,𝑗,𝑘 ď |P| ´ 1, @ 𝑘 PW. (61)

For any pair of anti-parallel arcs p𝑖,𝑗q and p𝑗,𝑖q in the time-free master problem, we know,
that only one of these arcs can be traversed by a salesperson. If both arcs were traveled,
then there would be a target visited twice, which is against the demand constraint. Hence,
we have

𝑥𝑖,𝑗,𝑘 ` 𝑥𝑗,𝑖,𝑘 ď 1, @ 𝑘 PW. (62)

Lifting |𝑃 | ´ 1 anti-parallel arcs into the cut (61), it extends to:
ÿ

p𝑖,𝑗qPP

𝑥𝑖,𝑗,𝑘 `
ÿ

p𝑖,𝑗qPPzp𝑣𝑛𝑠´1,𝑣𝑛𝑠 q

𝑥𝑗,𝑖,𝑘 ď |P| ´ 1, @𝑘 PW. (63)

Then, we address the case of continuous times. Interval propagation for the time-feasibility
checking with continuous times is done in a similar way as for the discrete case. In general,
the resulting arrival and departure intervals are slightly larger, see Figure 4, due to an
exact calculation of the travel time. Figure 4 presents a pretour consisting of the target
sequence 𝑜, 𝑣1, 𝑣2, where 𝑜 is the depot. Each target is visualized by its trajectory and
corresponding discrete time steps (black numbers). However, a salesperson can intercept a
target at any time on the visualized trajectory. Here, the arrival and departure time is not
rounded to the next time step, its exact value is computed using the Euclidean distance
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Figure 3: Interval propagation for discrete time steps. This figure presents the depot position
𝑜 and the first 2 targets of a given pretour: 𝑜, 𝑣1, 𝑣2. Each target is visualized by its trajectory
and the corresponding discrete time steps, which are indicated by numbers. The green area
describes the discrete arrival and departure interval between the 3 consecutive targets.

o

2

3

4

5

0

1

2

3

4v1

v2

discrete 
arrival 
interval

continuous
arrival
interval

tdepmin

tdepmax
tarrmin

tarrmax

Figure 4: Interval propagation for continuous times. The dark green area describes the
discrete departure and arrival interval between consecutive targets. The light green area is an
extension of the departure and arrival interval when continuous times are considered.

between the corresponding positions of the targets. With this a salesperson is able to arrive
earlier and to depart later compared to the case of discrete time steps.

The computation of the exact arrival interval depends on the departure interval of the
predecessor target and is obtained by finding earliest and latest arrival. An example is
visualized in Figure 4. Here, the arrival interval of 𝑣1, which is called r𝑎𝑣1s, is the whole
visibility time window of 𝑣1, since the predecessor node (depot 𝑜) has the whole time
horizon as departure interval. Hence, the arrival interval of 𝑣1 is

r𝑎𝑣1s :“ r𝑡𝑣1 , 𝑡𝑣1s “ r2, 5s.

For the departure interval of a target the visibility time window of the successor target
has to be considered, see for instance 𝑣1 in Figure 4. Here, the departure interval r𝑑𝑣1s “

r𝑡𝑑𝑒𝑝
𝑚𝑖𝑛, 𝑡

𝑑𝑒𝑝
𝑚𝑎𝑥s has to be identified based on the visibility time window of 𝑣2, which is r𝑡𝑣2 , 𝑡𝑣2s “

r0, 4s and the previously determined arrival interval r𝑎𝑣1s. The departure interval r𝑑𝑣1s is
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computed as follows:

r𝑑𝑣1s :“ r 𝑡𝑣1 , maxt𝑧 P r𝑎𝑣1s : }𝑝𝑣2p𝑧q ´ 𝑝𝑣1p𝑧q}2 ď 𝑣 p𝑧 ´ 𝑧q, 𝑧 P r𝑡𝑣2 , 𝑡𝑣2su s. (64)

In case the maximum in (64) does not exists, we have r𝑑𝑣1s “ H. Then, the sequence of
targets 𝑜, 𝑣1, 𝑣2 is not time feasible. This means, that a salesperson is not able to travel
from the depot to 𝑣1 and then to 𝑣2 and visit every target within its visibility time window.
If the resulting interval r𝑑𝑣1s is feasible, it serves as the new visibility time window of 𝑣1 for
an arrival in 𝑣2. The arrival interval of 𝑣2 is called r𝑎𝑣2s “ r𝑡

𝑎𝑟𝑟
𝑚𝑖𝑛, 𝑡

𝑎𝑟𝑟
𝑚𝑎𝑥s and is calculated as

r𝑎𝑣2s :“ rmint𝑧 P r𝑡𝑣2 , 𝑡𝑣2s : }𝑝𝑣2p𝑧q ´ 𝑝𝑣1p𝑧q}2 ď 𝑣 p𝑧 ´ 𝑧q, 𝑧 P r𝑑𝑣1su, 𝑡𝑣2 s. (65)

If the minimum in (65) does not exist, then r𝑎𝑣2s “ H and time-feasibility is not ensured
for a travel sequence of 𝑜, 𝑣1, 𝑣2.

Given a predefined sequence of moving targets (pretour), this procedure is continued to the
first detection of an empty interval (time-infeasibility) or to a non-empty arrival interval at
the last target of the sequence (time-feasibility).

The optimization problems stated in (64) and (65) can be handled by squaring the constraint
and thus formulating a SOCP to get the correct departure or arrival interval.

If for a pretour time-infeasibility is detected by interval propagation, then, the corresponding
pretour is cut off for any salesperson permutation. In the other case the pretour is time-
feasible and in the following step the MILP (48) is set up to compute the corresponding
times.

Finally, every pair of pretour and corresponding tour “with times” is stored in a solution
pool in order to prevent setting up and solving the same sub-MILP more than once for
pretours, re-occurring in other master solutions. The solution pool is used in the discrete
and in the continuous case. It is realized in Algorithm 4 in the lines 18, 19, and 28.

4.2 Solution Procedure for the Set-Partitioning Approach

Each subset of 𝑛 targets is binary coded, which results in 2𝑛 ´ 1 many different subsets.
Then, for each subset the corresponding TSPMT (with one salesperson) is modeled via the
TD formulation and solved. For each subset its objective function value and its runtime is
stored. Having this information, the different subsets are combined optimally according to
the SPP formulation (49), to ensure, that every target is in exactly one subset and thus,
visited exactly once. The number of how many subsets are combined at most corresponds
to the number of salespersons, since each subset is a tour of one salesperson. Once, all
subsets are solved as TSPMT, the SPP can be solved several times with different numbers
of salespersons.

To formulate the TSPMT any of the proposed model formulations from Chapter 3 can be
applied. However, with respect to computation times, we decided to only use models with
discretized time steps (TD and TFTD).
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5 Computational Results

The presented models have either a discrete or a continuous handling of time. Generally, it
depends on the application or on the computational complexity which approach to choose.
Due to the specific characteristics of discrete and continuous models as the handling of
time and the handling of arcs with the decision if a salesperson can move the arc length
(distance) with a speed of at most 𝑣, a mutual comparison is not easy. Another issue
is the shape of the trajectories. The time-continuous models are restricted to straight
lines and constant target speed to be solvable, while the time-discrete models are not.
Furthermore, there is a difference in accuracy between a discrete and continuous handling
of time. Obviously, the objective function value of an instance modeled with continuous
times is always less than or equal to the objective function value of the same instance
modeled with discrete times.
Due to the described reasons, we compare the runtimes of the two discrete modeling
approaches and the runtimes of the two continuous modeling approaches. We use instances
with randomly generated linear target trajectories for all modeling approaches and a
constant speed value for all targets.

5.1 Instance Generation

We use a set of randomly generated test instances. A test instance is specified by a number
of salespersons, a number of moving targets and a step size as the accuracy of discretization.
The operating space is a square of size 500 length units and the trajectories are created with
random lengths between 100 and 400 length units. For reasons of clarity and simplicity
in visualization of the instances we prohibit any pairwise intersections of the trajectories.
The targets are assigned a constant speed value of 32 length units per time unit, while the
salespersons can travel at most 200 length units in a time unit. In Stieber et al. [Sti14]
we observed, that instances have a higher complexity, if the difference between target speed
and salesperson speed is high. Here, the number of possible tours of the salespersons rises
when the speed difference increases.
Obviously, a power of two for the target speed is required to be able to create finer
time-discretizations of the trajectories by introducing new time steps right in the middle
of two existing ones. Following this, we create three different levels of time discretization.
In particular, for the first discretization level, called D32, a step size of 32 length units is
used for the trajectories. Then, the same instances are generated with a two times finer
discretization (D16). Here, the step size between two consecutive time steps is 16 length
units and for the four times finer discretization (D8) time steps are included every 8 length
units. Obviously, the size of the instances in terms of number of variables and constraints
is increased with a higher number of time steps.
For the comparison of runtimes the generated test instances are solvable instances, that
means no target will reach its upper time limit before being visited by a salesman. This
is achieved by assigning the visibility time windows to the targets in such a way that
one salesperson is able to intercept all targets one after another. In all the instances
salespersons start their tour at the depot position 𝑜, an initial position located in the
center of the operating space. In total, instances are created, where the number of targets
is 6, 8, 10, 12, 14, 16, 18 and 20, the number of salespersons is 1, 2, 3, 4, 5 and 6 and the
discretization levels are D32, D16 and D8. An example of an instance with 12 targets, 2
salespersons starting from the depot in the middle and medium discretization level D16 is
visualized in Figure 5. The visibility time windows are given by the numbers at the end
points of the trajectories.
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Figure 5: An instance of the MTSPMT with 12 targets, 2 salespersons, and medium
discretization level (D16). Trajectories are visualized by black lines, the numbers at the
endpoints of the trajectories correspond to their visibility time windows. The solid green line
segments and the dashed red line segments describe the tours of the 2 salespersons.

The computational experiments were carried out on an Apple Mac Pro computer running
the MacOS 10.12.6 operating system with an Intel Xeon E5 running at 3.5 GHz on 6 cores,
12 MB L3 cache, and 128 GB 1066 MHz DDR3 RAM. The version of cplex we used
was 12.10 [IBM17]. Our aim is to evaluate the presented models with respect to their
computational times for solving the generated instances. The runtime of an instance is
defined by the time required by cplex to compute the global proven optimal solution,
including the time needed for the callbacks.

5.2 Runtime Comparison

All optimization problems are solved with cplex. While the solution procedure of the
time-free models TFTD and TFTC is customized by a LazyConstraintCallback and a
BranchCallback of cplex, the instances modeled with TD and TC are solved without
callbacks and directly by cplex’ MILP or Barrier algorithms. The cplex parameters used
for the optimization of the generated instances are listed in Table 1. For the time-free
models, the node heuristic (HeurFreq) is turned off in order to save runtime, otherwise
cplex would permanently check time-free solutions that are usually infeasible. Furthermore,
we set the MIPEmphasis parameter to moving best bounds for the time-free models. For
TD this setting would extremely slow down the computation, thus, to be fair we leave
the MIPEmphasis parameter at its default value. Moreover, for the time-free master
models, the cuts created by cplex are also turned off, since our LazyConstraintCallback is
producing cuts, when checking pretours. Since cplex’ callbacks are not compatible with
dynamic search, it is turned off for all branch-and-bound models. For several reasons we
cannot use parallel optimization. It is not compatible with the solution pool, since it makes
our callbacks non-deterministic. Another reason is, that cplex starts several callbacks
concurrently and even if the solution is already found, optimization terminates after
finishing all callbacks and their synchronization. Furthermore, cplex cannot guarantee
the same order of callback invocation for multiple runs of the same instance and with the
same parameter setting, in this sense parallel optimization may lead to slightly different
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runtimes. We use the sequential optimization mode instead. For each instance a time limit
of one hour is imposed for its solution. All other cplex parameters are left at their default
values.

In order to compare runtimes with a time limit, we compute a comparable score 𝑠𝑐. It
takes into account the runtime, which is at most 3,600 sec and the remaining gap

𝑔𝑎𝑝 :“ |𝑏𝑒𝑠𝑡𝑏𝑜𝑢𝑛𝑑´ 𝑏𝑒𝑠𝑡𝑖𝑛𝑡𝑒𝑔𝑒𝑟|
1𝑒´10` |𝑏𝑒𝑠𝑡𝑖𝑛𝑡𝑒𝑔𝑒𝑟|

,

where 𝑏𝑒𝑠𝑡𝑏𝑜𝑢𝑛𝑑 is the objective function value of the best node remaining in the branch-
and-bound tree and 𝑏𝑒𝑠𝑡𝑖𝑛𝑡𝑒𝑔𝑒𝑟 is the best integer objective function value found so far.
The value of 𝑔𝑎𝑝 is at most 1. The score is defined as

𝑠𝑐 “
runtime

3600 ` 𝑔𝑎𝑝. (66)

Obviously, we have 𝑠𝑐 P r0, 2s. In case the score is less than 1, the optimization has finished
within an hour and the gap is 0. In case the score is above 1, the optimization has aborted
with a gap equal to p𝑠𝑐´ 1q ¨ 100%.

In the first experimental set we fix the number of salespersons to a value of 3, the
discretization level to D16 and vary the number of targets from 6 to 20. For each number
of targets 21 instances are randomly generated. The runtimes and gaps as well as the
arithmetic means are visualized in Figure 6. The results for the models TD and TFTD are
shown in the left picture, while the values for TC and TFTC are displayed in the right
picture. Note, that for reasons of better comparability the TD and TC values are shifted
to the left by 0.2 on the horizontal axis and the TFTD and TFTC values are shifted to the
right by 0.2 of the respective target number. Technically, the values belong to one single
number of targets, however without shifting the values would overlap, which would lead to
a worse readability and comparability. We also use this kind of shifting in the following
visualizations.

The problem addressed here is a real-time problem. This means the time to produce a
solution is restricted to a prescribed limit. Due to the lack of real input data, we set this
real-time limit to 3 sec. The obtained results show that with model TD instances with up
to 10 targets can be solved within the real-time limit of 3 sec. Furthermore, the results over
all four models show, that for 6 to 20 targets, the best averaged scores are obtained with
the TD model. Concerning the averaged runtimes of the other three models TFTD, TC
and TFTC only instances with 6 targets can be solved in less than 3 sec. However, there
are six instances, that can be solved faster with TFTD than with TD. From an amount of
10 targets onward the runtimes of TFTD increases significantly, from 14 targets and above
no instance can be solved within the time limit of 3,600 sec. Regarding the continuous
cases, TC and TFTC are very similar up to 10 targets, but above 10 targets, where most
of the instances cannot be solved within the time limit, TFTC has got much better gaps
than TC (only half of it).

For the second experimental set we fix the number of targets to 10, the discretization
level to D16, and the number of salespersons varies from 1 to 6. The respective runtimes
and gap values of all four models are visualized in Figure 7. The best scores over all
salespersons are also obtained for the TD model. The runtime of TFTD is sensitive to the
number of salespersons, the higher the number of salespersons, the more instances cannot
be solved within the time limit. A similar behavior can be observed for TC and TFTC,
while the arithmetic mean of the scores again is smaller for TFTC than for TC regarding 4
salespersons and more.

49



Table 1: cplex parameter settings.

Models cplex parameter Parameter value

TD, TC, TFTD and TFTC master: EpGap 0.0
WorkMem 12288.0
Param::Threads 1
Param::TimeLimit 3600

TFTD and TFTC master: HeurFreq -1
MIPEmphasis 3
CutsFactor 1.0

TFTD subMILP: EpGap 0.0
TFTC subMILP: EpGap 0.0
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Figure 6: Visualization of the runtimes and gaps of the models TD and TFTD as well
as TC and TFTC for instances with an increasing number of targets, 3 salespersons, and a
discretization level D16. For instances, that are solved within the time limit of 3,600 sec, the
corresponding colored points indicate the exact runtime on the vertical axis. In the other cases,
the colored points indicate the gap after a processing time of 3,600 sec. The mean score values
of the models are shown as solid and dashed lines.

In the third experimental set the number of targets is fixed to 10 and the number of
salespersons to 3, while the discretization level varies from D32 (low) via D16 (medium) to
D8 (high). Here, only discrete models are considered, because the other ones are based on
continuous time variables. The runtimes and gap values for the models TD and TFTD are
visualized in the left picture of Figure 8, the right picture is a zoomed visualization of the
runtimes for TD. One can see, that the runtimes for TD increases for a higher number of
time steps. This is opposed to the values of TFTD, where the mean is nearly the same for
all three discretization levels. For D8 there are 3 out of 21 instances, that can be solved
faster with TFTD than with TD.

In the last setting the time limit is set to the real-time limit of 3 sec. The scores adapted
to the new time limit are computed for a varying number of salespersons. Here, we set the
number of targets to 8 and use the high discretization level D8. The number of salespersons
varies from 1 to 6. The obtained results are visualized in Figure 9. Considering TD and
TFTD, we observe, that for 1 and 2 salespersons the arithmetic mean of the scores is
better for TFTD than for TD. This behavior changes when the number of targets is 3 and
more, here, the arithmetic mean of the scores is better for TD. In the continuous case TC
has a lower mean for 1 salesperson, for 2 and more salespersons the mean for TFTC is
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Figure 7: Visualization of the runtimes and gaps of the models TD and TFTD as well as
TC and TFTC for instances with an increasing number of salespersons, 10 targets, and a
discretization level D16. For instances, that are solved within the time limit of 3600 sec, the
corresponding colored points indicate the exact runtime on the vertical axis. In the other cases,
the colored points indicate the gap after a processing time of 3600 sec. The mean score values
of the models are shown as solid and dashed lines.
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Figure 8: Visualization of the runtimes and gaps of the models TD and TFTD for instances
with an increasing discretization levels, 10 targets, and 3 salespersons. For instances, that
are solved within the time limit of 3600 sec, the corresponding colored points indicate the
exact runtime on the vertical axis. In the other cases, the colored points indicate the gap after
a processing time of 3600 sec. The mean score values of the models are shown as solid and
dashed lines. The right graphic only shows the runtime on the vertical axis.

better. For 3 and more salespersons TC is not able to solve any of the generated instances
to optimality within 3 sec, where TFTC is able to solve some instances to optimality for 3
and 4 salespersons. The averaged scores and runtimes of all four experimental settings are
reported in Table 5 and Table 6 in Apendix A.1 on page 101.

Concluding, the results suggest that the continuous problems are more difficult to solve
than the discrete ones. Comparing TD and TFTD, the time-free variant can outperform
TD only for instances with a small number of targets combined with a small number of
salespersons and for the highest discretization. In the continuous case the time-free variant
is better than TC for large instances with multiple salespersons. Here, the dual bounds
for TFTC are usually better than for TC, which also gives a better gap and thus a better
score. The gap value can be obtained from the score by taking 𝑔𝑎𝑝 “ p𝑠𝑐´ 1q ¨ 100%.
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5.3 Computational Results of the Set Partitioning Approach

Here, we have to compute an optimal tour for every possible target subset and one
salesperson (TSPMT). We call this step subset tour generation. Each of the presented
models TD, TFTD, TC and TFTC can be applied to the subset tour generation. Once
all subset tours are optimized, their tour lengths are given by the corresponding objective
function values. The tour lengths are used as cost coefficients and for a certain number of
salesperson the SPP model (49) is solved to obtain the best combination of subset tours.
Each model TD, TFTD, TC, and TFTC is used to compute all optimal subset tours. The
reported runtime values include the runtime to generate all optimal tours to all subsets
as well as the solution of (49). Since the runtime for optimizing the SPP is negligible, we
obey the time limit of 3,600 sec to the subset tour generation. That means, when the time
limit is reached, generation is aborted. Note that this may lead to an incomplete set of
subset tours, which then, may result in a worse objective function value or an infeasible
SPP (49). The cplex parameters we use for solving (49) are given in Table 2.

Table 2: cplex parameter settings.

Models cplex parameter Parameter value

Set partitioning model: EpGap 0.0
WorkMem 12288.0
Param::Threads 1
Param::MIP::Strategy::File 2

For the experiments we create instances with 6, 8, 10 and 12 targets. The number of subsets
grows exponentially with the number of targets, thus, instances with at most 12 targets are
created. For every target number five different randomly generated instances are produced.
For the comparison of the runtimes, the number of salespersons is irrelevant, because
solving (49) is very fast and can thus, be repeated for different numbers of salespersons.
The highest difference in runtime resulting from solving (49) for different numbers of
salespersons over all created instances is at most 0.07 sec. Thus, we only report the results
for 2 salespersons . The modeling as a set partitioning (SP) approach requires to solve a
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Figure 9: Visualization of the runtimes and gaps of the models TD and TFTD as well as TC
and TFTC for a time limit of 3 sec and an increasing number of salespersons. For instances,
that are solved within the time limit of 3 sec, the corresponding colored points indicate the
exact runtime on the vertical axis. In the other cases, the colored points indicate the gap after
a processing time of 3 sec. The mean score values of the models are shown as solid and dashed
lines.
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sequence of independent optimization problems, thus, there is no final overall gap value.
That means, in case the optimal result cannot be computed within the time limit of 3,600
sec, there is no gap value provided and hence, we compare the plain runtimes instead of
the scores calculated by runtime and gap.

The arithmetic means of the runtimes for the SP approach with all four models over all
discretization levels are reported in Table 7 in Apendix A.1. A comparison of the runtimes
between the SP approach with the TD model (TD SP) and with the TFTD model (TFTD
SP) is shown in the left picture of Figure 10. The SP approach together with the continuous
models (TC SP and TFTC SP) are displayed in the right picture. In both pictures the
medium discretization level (D16) is used and the best performance is obtained with TFTD
SP. This is similar regarding the other discretization levels. In the right picture it can
be seen, that up to 10 targets TFTC SP has lower runtimes than TC SP, however, this
changes for 12 targets.
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Figure 10: Visualization of runtimes and corresponding arithmetic means for an increasing
number of targets modeled with the SP approach. Instances with 6, 8, 10, and 12 targets are
considered and the medium discretization level D16 is used. For each number of targets five
randomly generated instances are used. The left picture shows results for the models TD with
SP and TFTD with SP and the right picture for TC with SP and TFTC with SP, respectively.
For a better visualization the results for TD with SP and TC with SP are shifted to the left by
a small distance and for TFTD with SP and TFTC with SP to the right, nonetheless they
belong to the indicated number of targets given on the horizontal axis.

All generated instances can be solved within the time limit with all four models, except for
the instances with 12 targets and discretization level D8. Here, the subset tour generation
for TD SP cannot be finished within the time limit of 3,600 sec for 4 out of 5 instances. In
each case an incomplete set of subset tours leads to an infeasible SPP (49). The infeasibility
is caused, because the incomplete subset tour generation has not considered the last target
in any subset within the time limit, which causes an infeasible demand constraint in the
SPP 49.

The objective function values obtained in the experiments for D16 are visualized in Figure 11.
Since the objective function values for TD SP and TFTD SP are equal as well as for TC SP
and TFTC SP, thus, only the values for TD SP and TC SP are shown. The graphic shows,
how the values behave, when the number of salespersons is increased. As long as it is
advantageous in aggregated tour lengths to apply a new salesperson from the center of the
considered space, the objective function value decreases. However, from 4 to 6 salespersons
this improvement is very low. Thus, a number of 4 salespersons seems as a good choice.

Comparing the SP results with the results obtained by plain TD, TFTD, TC and TFTC
(see Figure 6 in Section 5.2), we can conclude, that the average runtime for TD is better
than TD SP. However, this is not the case for TFTD. Since TFTD is fast for 1 salesperson,

53



1 2 3 4 5 6
number of salespersons

600

900

1200

ob
je

ct
iv

e 
fu

nc
tio

n 
va

lu
es

TD SP and TC SP
TD
TD: mean
TC
TC: mean

Figure 11: Visualization of the objective function values for the models TD with SP and
TC with SP when the number of salespersons increases. We use 2 to 6 salespersons and the
discretization level D16 for the time-discrete model TD.

the averaged runtimes for TFTD SP, where the number of salespersons is 1 in the subset
tour generation, are much better than for TFTD. This is similar for TC and TFTC, both
perform better in the set partitioning approach.
However, TFTD SP cannot outperform TD. Moreover, the SP approach is not applicable
for real-time use, due to possible infeasibilities of the SPP, when the subset tour generation
cannot be processed completely.

5.4 Computational Results for Non-Linear Trajectories

For the non-linear trajectories we use polynomial functions and trigonometric functions and
a combination of both by sum and product. We create 16 non-linear trajectories. Then,
instances for 4, 6, 8, 10, 12, 14, and 16 targets are created in a way, that we start with 4
trajectories and gradually add 2 more until we have 16. See Figure 12 for the visualization
of all 16 trajectories with a medium discretization. For all generated trajectories, the
time steps are distributed in a way that all instances are solvable instances. We use an
equidistant sampling of the time steps to apply a time-discrete model variant.
The computations are performed on a single thread, the cplex parameter for the MIP
gap is set to 0.0. All other cplex parameters are used with their default values. In the
experiments 2, 4, and 6 salespersons are used and the discretization level varies from D32
to D8. The aim of this examination is to show, that time-discrete models are capable to
handle instances with non-linear trajectories. We choose the TD model as a time-discrete
model for our experiments, because it is able to cope with instances with a high number of
targets and the solution times are reasonable low. All generated non-linear instances are
modeled with TD and solved with cplex. The obtained runtimes and objective function
values are reported in Table 8 in Appendix A.1. The runtime values show, that with TD
modeling, the instances can be solved in a reasonable time. For D32 the longest runtime
over all instances is below 2.5 sec (this is achieved for 16 non-linear trajectories and 2
salespersons). For the finer discretization levels runtimes up to 409.59 sec are achieved,
however, the instance with 16 targets and 6 salespersons can be solved for D16 in 4.21
sec. Moreover, the values show, that instances with a high number of targets and a low
number of salespersons are more difficult so solve (in terms of runtimes) than with a high
number of salespersons. Considering D16 and D8 and instances with 10 targets and more,
the highest runtimes are obtained with 2 salespersons. An optimal solution of the instance
with 16 non-linear trajectories in D16 is visualized in Figure 13 with an objective function
value of 994.689.
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Figure 12: Visualization of an instance with 16 non-linear trajectories. The number of the
trajectory is given in blue and the visibility time windows of the trajectories are given in grey
numbers. The visualized instance has a discretization level of D16.

Next to discrete models also continuous models can be applied to instances with non-linear
trajectories. However in this case, the trajectories have to be approximated by piece-
wise linear segments. We use an adaptive sampling and create instances with the same
trajectories as for the TD model. The Figure 14 visualizes an instance with 6 targets and
4 salespersons and its optimal solution. The optimal tours of the salespersons are shown
by red lines, here, only three tours are needed for the optimal solution.

For the experiments the time-continuous model TC is used. The cplex parameter reported
in Table 1 on page 50 for TC are used. Instances with 4 and 6 targets and 2 and 4
salespersons are solved with a time limit of 3,600 sec. The results are reported in Table 9
and clearly show, that the computations with the TC model are much more harder and
thus need longer runtimes than with the TD model. Only small instances with 4 targets
and 2 salespersons can be optimized within the time limit and the runtimes lie in the range
of 3 to 35 sec. All other instances exceed the given time limit of 3,600 sec. Although we
applied a handover of a MIP start computed with the time-discrete modeling of TD as
an attempt to reduce the runtime. The decision variables of the TD solution is given to
cplex as a MIP start, when optimizing an instance with the TC model. Usually, applying
a MIP start reduces the reported gap value. Whether a committed MIP start can be used
as an incumbent is reported in the last column of Table 9.

The applicability of the TC model to non-linear trajectories is modest. Another attempt
to reduce the problem complexity would be to coarsen the approximation of piece-wise
linear segments. However, in our application, this means that the laser would aim at
a target with displacement, which might not result in a safe destruction of the threat.
Depending on the application parameters as what is an acceptable displacement for the
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Figure 13: Visualization of an instance with 16 non-linear trajectories and optimal tours (red
lines) for 6 salespersons starting in the center. The results are based on the TD model and a
discretization level of D16.

laser, the approximation can be computed. However, based on the reported runtimes
and the underlying displacement accuracy the TC model is not applicable for real-world
instances. The TD model is only applicable with discretization level D32 and some instances
also with D16 regarding a possible runtime of at most 3 sec for real-world scenarios. Note,
that in the time-discrete case an interception is only possible at the time steps, which
coincide with the exact trajectory, while in the time-continuous case an interception is also
possible at any interpolated point between two points, where consecutive line segments
join.

5.5 Computational Results of the Online MTSPMT

In this section, we regard the MTSPMT as an online problem with a moving horizon
approach. That means information about targets is not given in advance, it is revealed
step by step. The point of time, where information (trajectory and visibility time window)
about a target becomes available, is the moment the target gets visible and thus, enters
the considered space. In this online consideration an optimal solution computed at a time
𝑡, is based on information about all targets, that are revealed up to time 𝑡. When new
targets arrive (at a later point in time), a decision has to be taken, how to integrate the
new information at runtime. As a consequence, current tours may be canceled in favor of
new ones resulting from a re-optimization with the new input data. Thus, the considered
time horizon is moving along the time line such that it starts at the point in time, when
the (re-)optimization is performed and it end at the last visibility time window endpoint of
all not yet visited targets.

In the context of our application (see Section 1.1) a fast optimization algorithm is needed.
According to the obtained results for the different modeling approaches in Section 5.2 (see
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Figure 14: Visualization of an instance with 6 non-linear trajectories, where the target number
is given in blue and the endpoints of the piece-wise linear segments are given by black points
and grey numbers. A salesperson number of 4 is used, but only 3 salespersons are sufficient
and their optimal tours (red lines) start in the center.

also Table 5), the time-discrete model TD combined with the MILP solver cplex is used
to solve the MTSPMT in an online consideration with a moving horizon, because it is a
fast variant for small (ă 10 targets) and mid-sized (10 to 16 targets) instances and the
fastest variant for large (ą 16 targets) instances.
In an optimization step only targets that are visible and have not yet been visited are
considered. An important difference to all previously computed instances, is that the
salespersons start from different locations in each optimization step. At the point of time,
where one or more new targets get visible and a new optimization has to be processed, the
current local position of each salesperson is used as their starting (depot) location in this
optimization step. After deciding how to integrate the new optimal solution to the current
tours of the salespersons, the salespersons move along the updated tours, and thus, their
starting locations for the next optimization step change, except for those, who do not have
to move. This case, where all the salespersons do not start from the same depot is called
asymmetric.
Another issue in this context is, that we are faced with infeasible instances. However, if it is
not possible at an optimization step to intercept all visible not yet visited targets, we want
as the first goal the salespersons to intercept as many as possible. Then, the second goal is
to intercept this number of targets by minimizing the total traveled distances. Both these
goals have been addressed in Section 3.5, where adaptations to the TD model regarding
infeasible instances are presented. We use this adapted TD model as the model for the
optimization steps in the moving horizon approach. For the asymmetrical case the model
is called asymmetric adapted TD model (aaTD).
Given a point in time, where one or more targets are revealed, there are different ways
of updating the current tours: either by a heuristic approach or by re-optimization and
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integrating the new optimal solution into the current tours. Regarding the latter one, a
natural approach for the design of online algorithms is the replan strategy. This strategy
is more a general principle than an algorithm for this particular problem, see Grötschel
et al. [Grö01a; Grö01b].

Strategy replan: Follow the current tours. Whenever a new target becomes available,
a re-optimization (aaTD model) is performed based on the current positions of the
salespersons and including all not yet intercepted targets. Then, all salespersons follow
the new tours.

For salespersons, who are moving towards a target, this may mean, that they have to
immediately abort their current tour, turn, and head to another target. At any point in
time replan tries to be as close as possible to the global offline optimum. We also want
to present another strategy, which is similar to the replan strategy. It is called ignore
strategy and presented in [Grö01b] for problems as the online TSP: a salesperson completes
its current tour, if it is performing one, and upcoming targets are temporarily ignored
and stored in a buffer for re-optimization afterwards. An adapted version for the online
MTSPMT is given in the following.

Strategy ignore: Whenever a new target becomes available, all salespersons follow their
current tours until a salesperson reaches a target, the upcoming targets are temporarily
ignored and stored in a buffer. At that moment, where one of the salespersons reaches a
target, re-optimization starts with all not yet visited targets and based on the current
positions of the salespersons.

In case a new target becomes visible and there is a non-active salesperson (with no tour)
or a salesperson, who just arrived at a target re-optimization starts right away. Then, the
ignore strategy acts like the replan strategy.
We use both promising strategies replan and ignore for our computational experiments.
Randomly generated instances with 8 to 20 targets, 2 and 4 salespersons, and medium
discretization level D16 are created. The parameters for TD reported in Table 1 are used for
the computations. We want to examine the performance of the online strategies in terms of
how many targets could not be intercepted at all, which is called the number of misses. To
obtain distinguishable and descriptive results we use very short trajectory lengths: 50-150
length units. Hence, with very short trajectories it is challenging to intercept all targets.
For instances with 2 salespersons (lasers), the center of the area r250, 250s is used as the
depot for both salespersons. Having 4 salespersons, regarding the application of protecting
an area we assume the salespersons to be spread over the whole area and thus, we divide
the area in four equal squares and put a salesperson in each center of the squares. Hence,
the following positions are given as the four different depots of the salespersons: r125, 125s,
r375, 125s, r125, 375s, and r375, 375s.
The results of the computations are visualized in Figure 15 for 2 salespersons and Figure 16
for 4 salespersons. The values show that nearly 12% of all instances with 2 salespersons
can be solved without missing any targets with the replan strategy, only slightly over 8%
can be solved with the ignore strategy, respectively. However, using 4 salespersons the
replan strategy can solve over 76% of the instances without missing any targets and the
ignore strategy over 73%. While for instances with 4 salespersons the number of misses is
very similar for both online strategies, the replan strategy performs better than ignore
regarding instances with 2 salespersons. The reason is, that with 4 salespersons ignore
often acts like replan. The complete results are listed in Table 10 in Apendix A.2.
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Figure 15: Visualization of the number of misses and its arithmetic mean for the online
strategies replan (left) and ignore (right). The arithmetic mean is calculated over 21
randomly generated instances with 2 salespersons and discretization level D16. The optimization
problem is modeled with the TD approach. The moving horizon approach is used to simulate
the online consideration of the MTSPMT.
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Figure 16: Visualization of the number of misses and the arithmetic mean for the online
strategies replan (left) and ignore (right). The arithmetic mean is calculated over 21
randomly generated instances with 4 salespersons and discretization level D16. The optimization
problem is modeled with the TD approach. The moving horizon approach is used to simulate
the online consideration of the MTSPMT.

For a comparison of the objective function values between the online strategy replan/ignore
and the offline optimization, we use all instances with 2 salespersons, where the number of
misses is zero. In case of misses in the online computation the objective function values are
not comparable to the offline ones even if the penalty term is neglected. For the replan
strategy we have 17 instances and for the ignore strategy 12 instances, respectively. These
instances are additionally optimized in an offline fashion, where all input information is
given in advance. Then, the ratio of online objective function value and offline objective
function value is computed. For replan we obtain a worst ratio of 1.55 and an averaged
ratio of 1.19 (both rounded to the second position after decimal point). For ignore we
have a worst ratio of 1.55 and an averaged ratio of 1.20 (both rounded to the second
position after decimal point). All computed objective function values are visualized in
Figure 17, left for the replan strategy and right for the ignore strategy. For a better
visualization, the instances are arranged according to the offline objective function value
from low to high. All computational results are reported in Table 11 and Table 12 in the
Apendix A.2.

Concerning the averaged and worst case ratio of the online/offline objective function
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Figure 17: Visualization of the objective function values (ofv) for instances optimized in an
offline consideration and in an online consideration with the replan strategy (left) and the
ignore strategy (right). The instances with 8-16 targets for replan and with 8-12 targets for
ignore, 2 salespersons, and discretization level D16 can be solved without any misses. The
optimization problems are modeled with the TD approach.

values the quality of the strategies replan and ignore seems to be equal. A theoretical
overview about online optimization and the methods of how to measure the quality of
online strategies is given in Section 6.

Online MTSPMT with Min-Time

For the last computational experiments we investigate the influence on the number of
misses when the objective function is changed from minimize total traveled distances, which
we call min-dist in the following, to minimize earliest possible interception, which is called
min-time, respectively. Here, also the TD model (27) is used for modeling, however, the
objective function is replaced by the min-time objective function given as

min
ÿ

𝑘PW

ÿ

p𝑖,𝑗,𝜃,𝜆qPÃ

𝜆 𝑥𝜃,𝜆
𝑖,𝑗,𝑘. (67)

Thus, we minimize the sum of all earliest possible interceptions. Each time a re-optimization
is performed, the TD model 27 with the objective function (67) is used and the current
positions of the salespersons serve as their depots for this particular re-optimization step.

Here, we used the same test instances with 8 to 20 targets and 2 and 4 salespersons as
before. Again, for instances with 2 salespersons both pursuers start from the center of the
protected area (depots). In the other case, the depots of 4 salespersons are located at the
positions r125, 125s, r375, 125s, r125, 375s, and r375, 375s, note that we consider a square
with 500 length units. For each target number we have 21 test instances and optimization
is performed with the online strategies replan and ignore. The resulting numbers of
misses are visualized in Figure 18 for 2 salespersons and in Figure 19 for 4 salespersons.

The computational results show that nearly 15% of all instances with 2 salespersons can
be solved without missing any targets with the replan strategy, over 12% can be solved
with the ignore strategy, respectively. However, using 4 salespersons the replan and the
ignore strategy can solve over 78% of the instances without missing any targets. For 2
salespersons, the averaged values of the misses for the ignore strategy are slightly higher
than for the replan strategy, while with 4 salespersons the arithmetic means of the misses
are equal in the exact same manner for both online strategies. The computational results
are reported in Table 13 in Apendix A.2.
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Figure 18: Visualization of the number of misses and the corresponding arithmetic mean for
the online strategies replan (left) and ignore (right) with 2 salespersons. The arithmetic
mean is calculated over 21 randomly generated instances with 2 salespersons and discretization
level D16. The optimization problem is modeled with the TD approach and the min-time
objective function.
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Figure 19: Visualization of the number of misses and the corresponding arithmetic mean for
the online strategies replan (left) and ignore (right) with 4 salespersons. The arithmetic
mean is calculated over 21 randomly generated instances with 4 salespersons and discretization
level D16. The optimization problem is modeled with the TD approach and the min-time
objective function.

If we compare the number of misses with the results obtained with the objective function
min-dist (see Figure 15 and Figure 16), we can conclude, that there are less misses with
objective function min-time. While for a small number of targets (8 to 12) the results are
very similar, for more than 12 targets, the min-time objective function causes a smaller
arithmetic mean of misses than the min-dist objective function no matter what online
strategy is used. In a real world online situation it is advantageous to use the min-time
objective function to catch as most targets as possible. Obviously, if the traveled distance
of all lasers is an issue the min-dist objective function shall be used.
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6 Online MTSPMT

In this chapter we will give a deeper insight into the MTSPMT from the perspective of the
real application, which describes an online situation. In contrast to the former offline point
of view, where the entire input sequence of the targets is given beforehand, the information
is now revealed over time, in an online fashion. Regarding the application of the MTSPMT,
targets become known, when they are close enough in order to be detected by the radar
system. In this sense multiple targets can occur to the radar detection simultaneously and
in successive steps. We remind, that a defense decision has to be taken immediately, which
means before complete information about the targets is available. In fact, it is necessary to
produce a part of the solution with an online algorithm as soon as a new target becomes
known. According to Grötschel et al. [Grö01b] an algorithm runs online “if it makes a
decision (computes a partial solution) whenever a new piece of data requests an action”.

A general online routing problem is given by a sequence of requests (points in a metric
space combined with release times) and a server with the task of serving each request at
their release time or later. Additional restrictions may be defined. In the notation of the
MTSPMT, a salesperson corresponds to a server and a target to a request. We call the
online variant of the MTSPMT the online multiple traveling salespersons problem with
moving targets (OLMTSPMT).

For online problems there are several modeling approaches, which describe the way in which
the input information becomes available to an online algorithm. The two most common
online paradigms are the sequence model and the time-stamp model, see for example
[Grö01b]. In the sequence model, a finite and ordered requests sequence is presented
one-by-one to an online algorithm. The requests must be served in the order of their
occurrence. When serving a request, an online algorithm does not have any knowledge
about future requests, not even if there are future requests. An action made by the online
algorithm of how to serve the request is irrevocable. Only after serving a request, the
next request in the sequence becomes available. The well-known k-server problem, see
for example Koutsoupias [Kou09], is an example of an online problem in the sequence
model. Here, an online algorithm must control the movement of a set of 𝑘 servers, located
at points in a metric space, and handle requests in the order of their presentation also at
points in a metric space. At revelation of a request, the algorithm has to decide which
server to send immediately to the requested point with the goal to keep the total distance
of all servers as small as possible.

In the time-stamp model requests are presented over time at certain arrival or release
times. An online algorithm must determine an action at a time 𝑡 based on all requests,
that have been released up to time 𝑡 and have not yet been served. Future requests are
unknown as well as if there will be any. A request can arrive at any time. The difference
to the sequence model is, that the online algorithm is allowed to wait, to postpone and to
revoke decisions as long as they have not been executed. Time advances while decisions
are made and executed. The time-stamp model is very natural for online routing and
scheduling problems, because waiting and revoking decisions is allowed and requests can be
served in an order different from the order of their release (Lipmann [Lip03]). The online
machine scheduling problem, where jobs arriving over time are distributed to a number
of machines, is formulated in the time-stamp model since concepts like postponing and
execution in an order different to the release order are essential. Another example for the
time-stamp model is the online traveling salesperson problem, which is discussed in more
detail in Section 6.2.

62



6.1 Competitive Analysis

Competitive Analysis is the most widely accepted systematic to measure the performance
of online algorithms. Alternative measures are addressed at the end of this section.
The first theoretical investigations in this context started when Sleator and Tarjan
[Sle85] suggested to compare an online algorithm with an optimal offline algorithm. In
standard competitive analysis, see Borodin and El-Yaniv [Bor98], the competitive ratio
is calculated as the worst case ratio over all possible sequences of requests by the objective
function value of an online algorithm and the objective function value produced by an
optimal offline algorithm using the same input sequence. Here, we stick to deterministic
algorithms (actions of the algorithm are uniquely determined by the input of the instance).
Let 𝐴𝐿𝐺 be a deterministic online algorithm and 𝜎 a sequence of requests. Denote by
𝑍𝐴𝐿𝐺p𝜎q the cost incurred by 𝐴𝐿𝐺 on 𝜎 and denote by 𝑍𝑂𝑃 𝑇 p𝜎q the cost of an optimal
offline algorithm 𝑂𝑃𝑇 on 𝜎. The optimal offline algorithm 𝑂𝑃𝑇 knows the complete
request sequence in advance and thus, can serve it with minimal cost.

Definition 6.1. Competitive Algorithm.
Let 𝜚 ě 1 be a real number. The deterministic online algorithm 𝐴𝐿𝐺 is said to be
𝜚-competitive, if

𝑍𝐴𝐿𝐺p𝜎q ď 𝜚 𝑍𝑂𝑃 𝑇 p𝜎q (68)

for all request sequences 𝜎. The competitive ratio of 𝐴𝐿𝐺 is the infimum value over all
such 𝜚 that 𝐴𝐿𝐺 is 𝜚-competitive.

Competitive analysis of online algorithms can also be interpreted as a two-player game
between an online player and a malicious offline adversary, see for example [Bor98] and
[Lip03]. The adversary generates a request sequence, that both players have to process. The
online player uses an online algorithm to determine the actions for the requests presented
step by step by the adversary. Here, we only concentrate on deterministic online algorithms.
The adversary based on the knowledge of the online strategy used by the online player,
generates the input so as to maximize the competitive ratio. At any point in time the
online player only knows requests presented so far. After the last request is presented, the
adversary has to process the same sequence of requests, however, he knows the complete
sequence in advance and uses an optimal offline algorithm. The aim of the adversary is to
increase the costs of the online player compared to his own costs.
Even though competitive analysis is a standard tool in measuring online algorithms, it has
also been criticized as being too pessimistic. We should be careful to compare two online
algorithms for the same problem only based on their competitive ratio. The competitive
ratio is defined as a worst case ratio. An algorithm that performs well in practice is only
judged on his bad performance on a typical worst case input sequence. Another reason why
this measurement can be viewed as not realistic, is the enormous power of the adversary.
To overcome the pessimistic view of competitive analysis various extensions and alternatives
have been proposed in the literature. Some of these concepts are introduced in the following.
In comparative analysis the adversary is only allowed to choose from a restricted class of
algorithms as in Koutsoupias and Papadimitriou [Kou94]. Blom et al. [Blo00] introduce
the concept of a fair adversary, where the movement of the adversary is restricted. In
this approach it is no longer possible for an adversary to move to a point, where it knows
a request will appear without revealing it to the online player before reaching the point
themselves. Thus, the movements of a fair adversary is restricted to the convex hull of
former presented requests. The authors show that a fair adversary is weaker and thus, lower
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competitive ratios for the online traveling salesperson problem can be obtained. Another
approach is to give more power to the online player than to the adversary as in the concept of
resource augmentation, see for example Kalyanasundaram and Pruhs [Kal00], Phillips
et al. [Phi02], and Roughgarden [Rou20]. For example the online player is given more or
faster processors than the adversary. Depending on the considered problem another resource
can be the capacity of the server or the cache size. A mechanism to directly compare
two online algorithms is the Relative Worst Order Ratio, see Boyar and Favrholdt
[Boy07]. Here, a worst case request sequence is considered and the performances of the
two algorithms on their worst permutation of this sequence is compared.

It could be proven, that all extensions and alternatives to competitive analysis are useful
for some specific problem and obtain significant results. However, none of these alternatives
could replace competitive analysis as the standard tool for evaluating and analysing online
algorithms [Grö01b]. In this thesis, we use competitive analysis as the standard tool of
measuring the performance of online algorithms.

6.2 The Online Traveling Salesperson Problem

The online traveling salesperson problem (OLTSP) is a problem, that is well known in
online optimization and to which the time-stamp model is applied to. The requests (cities
in the classical TSP) are presented as points in a metric space over time, the time a request
pops up is called its release time. There is one server (salesperson in the classical TSP)
starting from the origin and following a tour to visit the presented requests at a time after
their release. While the server is moving, new requests may arrive and the tour of the
server may be adjusted. After the last request is visited the server has to move to the
depot or not. In case the server has to return to the depot the problem variant is called
closed OLTSP or homing-OLTSP. In the other case there is no such requirement and the
tour can have a free end, this variant is called open OLTSP or nomadic-OLTSP. Usually,
the server has unit speed and the objective is to minimize the time until all requests have
been served. In case of the closed variant it is the time when the server, after having served
all requests, has returned to the origin. This objective function is called the makespan.

The OLTSP is well studied in the literature, see for example [Apr09; Aus01; Bje17; Lip03].
There is also research about generalizations of the OLTSP like flexible service with penalty,
and deadlines [Gut06; Jai11; Wen15]. Gutiérrez et al. [Gut06] address the whack-a-mole
computer game, where moles (requests) appear at certain locations and must be whacked
(served) by a hammer before they disappear under ground. The goal is to serve as many
requests as possible, while all requests have the same visibility time window. The problem
is studied on the real line and on the uniform metric space. The OLTSP with service
flexibility is the main focus in Jaillet and Lu [Jai11]. Here, the server can decide which
request to serve and has to visit all accepted requests. The objective is to minimize the
completion time to serve all accepted requests plus the sum of the penalties of all rejected
requests. Wen et al. [Wen15] address the OLTSP with deadlines and service flexibility
and different objectives. They show, that no deterministic or randomized online algorithm
can achieve a constant competitive ratio for this problem on general metric spaces, not
even on the half line. The competitive ratio is unbounded in the number of requests.

The OLMTSPMT is very similar to the OLTSP. With the following conversions an instance
of the OLMTSPMT can be transformed into an instance of the open OLTSP. We set
the speed of the targets to zero, extend all deadlines (second value of the visibility time
intervals) to the considered time horizon, use only one salesperson, and minimize the
makespan, thus, we obtain an instance of the open OLTSP.
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Definition of the OLTSP

First, we define the considered problem in the time-stamp model. An instance of the
online traveling salesperson problem is given by a metric space 𝑀 “ p𝑋, 𝑑q, a special point
𝑂 P 𝑋 (origin), and a sequence of requests 𝜎 “ 𝑟1, . . . ,𝑟𝑛 with 𝑛 P N. Each request is
a pair 𝑟𝑖 “ p𝑥𝑖,𝑡𝑖q, where 𝑥𝑖 P 𝑋 is the point in the metric space, where the request has
to be served and 𝑡𝑖 ě 0 is the time at which the request is presented. We assume, that
the sequence is ordered such that 𝑡𝑖 ď 𝑡𝑗 , if 𝑖 ď 𝑗. A server, starting at the origin 𝑂 at
time 0, moves at unit speed and has to serve all requests, where each request cannot be
served earlier than the time it is released. Such a tour of the server is called a feasible
online/offline solution. In case of the open OLTSP the cost of the tour is the time the
server served the last request. For the closed OLTSP the cost of the tour is the time the
server has returned to the origin after having served the last request.

Online Algorithms

An online algorithm of the OLTSP has to decide on the behavior of the server at any
moment 𝑡 in time based on requests presented until 𝑡 only. Future requests are unknown,
the algorithm does not even know, if there are future requests. This can lead to a difficult
situation in algorithm design for the closed variant. Assume, that the online server has
served the last presented request, then the server can immediately return to the origin or
wait for a certain period of time. If the server directly moves back to the origin, a new
request may arrive and his way back to the origin was in vain. Otherwise, waiting a long
time and then returning to the origin leads to an unnecessary expense. How long should a
server wait?
The algorithm also determines the order in which the requests are to be served, this is
opposed to problems, which are modeled in the sequence model (e.g., 𝑘-server problem).
We note, that the objective of the OLTSP is to minimize the makespan, which is different
from the objective in the classical TSP and in the MTSPMT, where the length of the tour
(tours) are to be minimized. Generally the makespan can be computed from the traveled
distance with unit speed plus the time the server was idle.
We confine ourselves to using deterministic online algorithms. An algorithm is said to be
deterministic if its actions uniquely depend on the input. An online player that rather
uses a randomized strategy can apply random moves, e.g., every time a decision has to be
made, he can make a random choice out of a set of algorithms.
A deterministic online server can move at a speed ranging from zero to unit speed. He can
change direction and speed at every time and every place. Especially, the server can be
idle and wait while there are requests yet to be served. Blom et al. [Blo00] introduced a
particular class of deterministic online algorithms for the OLTSP, which is called zealous
algorithms. Intuitively, a zealous server, a server operated by a zealous algorithm, never
waits, when there are yet unserved requests and he has to move directly to an unserved
request without any detour.

The OLTSP on the Real Line

The OLTSP on the real line is not a trivial problem and comes up in one dimensional
collection or delivery problems, as for example robotic welding/screwing/depositing material
or in horizontal or vertical item delivery systems. The server is initially located at the
origin. It can move either to the negative or to the positive direction or it can wait at its
current position.
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The OLTSP on the line has been studied over the last two decades [Apr09; Aus95; Aus01;
Blo00; Jai11; Lip03; Wen15]. However, quite recently a tight analysis in terms of competitive
ratio of the OLTSP on the line was presented by Bjelde et al. [Bje21]. These latest results
and the former bounds found in the literature are summarized in Table 3.

Table 3: Results for the OLTSP.

OLTSP open closed
on the line lower bound upper bound lower bound upper bound

latest results 2.04 2.04 1.64
former results 2 2.33 1.64 1.75

The former results of Table 3 were presented by Ausiello et al. [Aus95; Aus01]. For the
closed variant the gap between lower and upper bound could be closed by providing an
upper bound of 1.64 by Bjelde et al. [Bje21]. For the open OLTSP [Bje21] presented a
lower and an upper bound of 2.04 and thus provided a tight analysis.
Note, that the bounds for the closed variant are smaller than the bounds for the open
variant. The reason for this, is the additional information in the closed OLTSP for the
server to finish its tour at the depot (origin). This information can be used in the way
that certain requests can be left for serving to the server, when the server is moving to the
origin. Then it can intercept all requests, that lay between server and origin on its return.
The lower bounds achieved on the real line for the open and closed OLTSP also apply
to general metric spaces. For the open OLTSP Ausiello et al. [Aus01] present a 2.5-
competitive algorithm and for the closed variant they introduce a 2-competitive algorithm.
Jaillet and Wagner [Jai08] also address the closed OLTSP and present a 2-competitive
online algorithm, where general precedence and capacity constraints can be added to
the problem. Another 2-competitive online algorithm for the multiple closed OLTSP is
presented. Both algorithm are generalizations from the Plan-At-Home algorithm [Aus01].
An online algorithm for the non-negative part of the line is proposed by Blom et al. [Blo00]
and achieves a competitive ratio of 1.5. However, their main focus is on the presentation
of a fair adversary. In this setting the optimal offline algorithm is not allowed to travel
outside the convex hull of the requests known so far. The authors give a 1.28-competitive
online algorithm for the non-negative real line and a fair setting.

6.3 The Online Moving Target Traveling Salesperson Problem

We generalize the OLTSP by assigning a constant speed to the requests, which are called
targets in this context. The targets continuously move in a metric space and the server
(pursuer) has to catch them in any order. Obviously, the maximum speed of the server
needs to be greater than the speed of the targets, otherwise there is no chance for the
pursuer to catch a target, that is heading away from the server. The server can change
direction anytime and on any place. We call this problem the online moving target traveling
salesperson problem (OLMTTSP).
The differences of this problem to the OLMTSPMT are, that we use only one server
(instead of multiple) and the visibility of any target is only determined by its release time
and the end of the considered time horizon, there is no deadline.
In the following, we concentrate on the OLMTTSP on the real line (R). Similar to the
theoretical study in terms of competitive ratio of the OLTSP on the line in Table 3, we
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address the OLMTTSP on the line and provide some new results on competitive ratios.
We provide a lower bound of 2 ` 1

𝑎´1 for the competitive ratio, where 𝑎 is the ratio of
the maximum speed of the server and the constant speed of the targets. Additionally, an
algorithm for the OLMTTSP on the line is presented and another known algorithm for the
OLTSP on the line is adapted to moving targets. The competitive ratios of both algorithms
provide upper bounds for the OLMTTSP on the line. However, the quality of the bounds
depends on the value of 𝑎. This means, that for 𝑎 ď 15 the bound from the new algorithm
is best and for 𝑎 ą 15 the bound derived from the adjusted algorithm is best.

After a literature overview of the OLMTTSP on the line the definition of the OLMTTSP
is given followed by the theoretical study of competitive analysis. The Moving Target
TSP was already considered by Helvig et al. [Hel03], however, not as an online problem.
Targets, present right from the beginning, move with different speed values. A server
chasing the targets has to return to the origin afterwards. The authors present an exact
algorithm, which runs in 𝑂p𝑛2q time, where 𝑛 is the number of targets.

The Model of the OLMTTSP on the Real Line

An instance of the OLMTTSP is given by the real line R, a special point 𝑂 P R (origin),
and a sequence of targets 𝜎 “ 𝑟1, . . . ,𝑟𝑛 with 𝑛 P N. Each target is a tuple 𝑟𝑖 “ p𝑥𝑖, 𝑡𝑖, 𝑑𝑖q,
where 𝑥𝑖 P R is the point, where the target appears, 𝑡𝑖 ě 0 is the time at which the target
is presented and 𝑑𝑖 P t´1,1u is the direction in which the target is moving on the line.
Throughout, we refer to the negative direction (´1) as left or left-hand side and to the
positive direction (1) as right or right-hand side. A server starting at the origin 𝑂 at time
0 moves at most with unit speed and has to catch all targets, where each target cannot be
intercepted earlier than the time it is released. The ratio between the maximum speed of
the server and the constant speed of the targets is defined as 𝑎, where 𝑎 P R and 𝑎 ą 1.
Thus, the constant speed of the targets is given by 1{𝑎. Having this, the pursuer has a
greater maximum speed and is thus able to catch the targets. The objective is to minimize
the makespan. The concept of the open and closed variant equally applies here as for the
OLTSP. However, the open variant, where the server does not need to return to the origin
is more related to the OLMTSPMT and thus, is solely used hereinafter.

A Lower Bound for the Open OLMTTSP on the Real Line

The first result provides a lower bound for the open OLMTTSP. We show, that no online
algorithm can have a competitive ratio smaller than 2` 1

𝑎´1 on the real line, where the
constant speed of the targets is 1

𝑎 , 𝑎 ą 1. Provided is a sequence of targets, that also
Ausiello et al. [Aus01] used for a lower bound of 2 for the open OLTSP on the real line.

Lemma 6.2. A server at position 𝑥 moves with unit speed towards a target, that is at the
same time at position 𝑦 on the real line. The target is moving away from the server with
a constant speed of 1

𝑎 , 𝑎 ą 1. Then the target has moved a distance of 𝑧 “ |𝑦´𝑥|
𝑎´1 at the

moment the server intercepts the target.

Proof. Since server and target meet at the same time, we have, that the distance traveled
by the server divided by his speed is equal to the distance traveled by the target divided
by the speed of the target:

|𝑦 ´ 𝑥|` 𝑧
1 “

𝑧
1
𝑎

ô
|𝑦 ´ 𝑥|
𝑎´1 “ 𝑧.
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Theorem 6.3. Any 𝜌-competitive online algorithm for the open OLMTTSP has 𝜌 ě 2` 1
𝑎´1 .

This lower bound is tight on the real line.

Proof. The completion times for the online server and the offline adversary are called 𝑍𝑂𝐿

and 𝑍˚ respectively. Consider the problem on the real line with 0 as the origin. At time
𝑡 “ 1 a target 𝑟1 is released, depending on the position of the server. If the server is on
the negative side the target is presented at position 1 and moving away from the server
𝑟1 “ p1, 1, 1q. In the other case the target is given at position ´1 and heading away from
the server 𝑟1 “ p´1, 1,´1q. Without loss of generality we assume the first case. The server
starts moving towards the target at time 1. Since the server is moving with unit speed,
it is not earlier than at time 2 at the release position of the target. Then, to reach the
interception point the server needs additionally at least a distance of 1

𝑎´1 (see Lemma 6.2).
Thus, the total time the online server needs is at least 𝑍𝑂𝐿 ě 2` 1

𝑎´1 . When the server is
at the origin at time 1, it is exactly 2` 1

𝑎´1 . With the previous knowledge of all targets
the optimal offline adversary completes at time 𝑍˚ “ 1, exactly when the target is released.
Thus,

𝜌 ě
𝑍𝑂𝐿

𝑍˚
ě 2` 1

𝑎´1 .

Note, that if the release of the target at position 1 is earlier or later than 1 the competitive
ratio is decreased.

Consider the case for 𝑎Ñ8, then the targets do not move at all and the limit of our lower
bound lim𝑎Ñ8

´

2` 1
𝑎´1

¯

“ 2 matches the lower bound proven by Ausiello et al. [Aus01].
Although, we restricted ourselves to a deterministic algorithm, the above theorem 6.3 also
holds for randomized online algorithms.

The NEF Algorithm for the Open OLMTTSP on the Real Line

In this section we propose and analyze an intuitive algorithm for the open OLMTTSP on
the real line. As we will see, the algorithm belongs to the class of zealous algorithms, the
server keeps moving as long as there are yet unvisited targets. At any moment in time we
denote by leftmost extreme, the target, whose current position is furthest away on the left
side of the server and by rightmost extreme, the target, whose position is furthest away
on the right side of the server. There are two things to note. Firstly, targets, that move
towards the server are not complicated, the server could simply stay where he is to catch
them. Secondly, the targets that are moving away from the server have to be caught first,
otherwise the distance between server and target increases. Considering both rays of the
line from the location of the server, the server has to move to the nearest extreme first.

The algorithm is called Nearest Extreme First (NEF) and performs as follows.

NEF: Let 𝑆𝐴 be the set of unvisited targets, that are moving away from the server and 𝑆𝑇

be the set of unvisited targets, that are moving towards the server. At the beginning,
the online server is located at the origin 0. Since targets, that are moving towards
the server, can be caught simply by doing nothing, the server moves to intercept
targets traveling away from him first. Thus, the leftmost and rightmost extreme
targets of 𝑆𝐴 are determined. The server catches the nearest extreme first. The
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nearest extreme is the extreme (either leftmost or rightmost one), whose current
distance to the server is smallest. After intercepting the nearest extreme NEF moves
to catch the other one. All targets in between (no matter what direction they move)
are intercepted on the fly. If there are no more targets moving away (𝑆𝐴 “ H), then
the targets moving towards NEF have to be caught. This can simply be done by
waiting. However, to reduce completion time the server first moves to the nearest
extreme of 𝑆𝑇 and afterwards to the other extreme. Each time a new target enters
the system, it must be checked if the current tour has to be updated. Cases, which
force an update of the tour:

a) The new target is moving away from the server and is an extreme target of 𝑆𝐴.
b) The new target is moving towards the server, 𝑆𝐴 “ H, and the new target is

an extreme target of 𝑆𝑇 .
In all other cases (target is moving away, but is not an extreme target; target is
moving towards NEF and 𝑆𝐴 ‰ H; target is moving towards NEF, 𝑆𝐴 “ H and
target is not an extreme target) the server can continue his tour as before. Targets
on his way can be caught on the fly.

This algorithm achieves a competitive ratio, that depends on the speed ratio of the server
and the targets. The competitive ratio is shown in Theorem 6.5. Here, we consider 0 as
the origin, where the online server and its adversary (offline server) are located at time
𝑡 “ 0. Both server move with unit speed while the targets move at a speed of 1

𝑎 , 𝑎 ą 1.
For convenience we use distances traveled by servers also as times and vice versa. The
following Theorem 6.5 is related to Theorem 6.1 from Ausiello et al. [Aus01], which gives
a 7{3 competitive ratio for the algorithm “serve Extreme Nearest to the Origin first (ENO)”
for the open OLTSP on the line. This algorithm relates the extreme requests to the origin,
as opposed to the NEF algorithm, which relates the extreme targets to the current position
of the server. As it turns out for the static case of the open OLTSP on the real line, ENO
is slightly better than NEF.

Before the presentation of Theorem 6.5, a relevant lemma is mentioned. It is needed to
simplify the lower bound of the completion time of the offline adversary within the proof
of the theorem.

Lemma 6.4. Let 𝑟𝑦 be a target and 𝑠 be any server that moves with at most unit speed.
At any time 𝜏 ą 0, we denote the position of 𝑟𝑦 by 𝑝𝑦p𝜏q and its distance to the server 𝑠

by 𝑦p𝜏q. If |𝑝𝑦p𝜏q| ď 𝜏 , we have 𝜏 ě 𝑦p𝜏q

2 .

Proof. For the server 𝑠 starting in the origin at time 0 we have at time 𝜏 , that |𝑝𝑠p𝜏q| ď 𝜏 .
Then, the worst case for the distance between server and target is, when both are on
different sides of the origin. Thus, 𝑦p𝜏q ď 2𝜏 .

Theorem 6.5. Algorithm NEF achieves a competitive ratio of

5
2 `

3𝑎´1
p𝑎´1q2 `

$

’

’

&

’

’

%

3𝑎´1
2p𝑎´1q2 , if 𝑎 ě 2

3𝑎´1
2p𝑎´1q , if 𝑎 ă 2.

Proof. We assume that the last target is presented at time 𝑡. Let 𝑝NEFp𝑡q be the position of
the online server at time 𝑡 and 𝑆 be the set of yet unvisited targets. Then, we consider the
leftmost and rightmost target from 𝑝NEFp𝑡q in 𝑆. We assume, that both these targets are
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moving away from the server, cases regarding targets, which move towards the server are
addressed later. Without loss of generality we suppose the leftmost target is nearer to the
server than the rightmost target and the rightmost one has a positive abscissa. Having this,
the leftmost target, which is nearer to the server is called 𝑟𝑥 and the rightmost target is
called 𝑟𝑋 , respectively. Let the positions of the leftmost and rightmost targets at time 𝑡 be
𝑝𝑥p𝑡q and 𝑝𝑋p𝑡q, with their distances from the online server as 𝑥p𝑡q and 𝑋p𝑡q respectively.
Hence, 𝑥p𝑡q ď 𝑋p𝑡q and we have 𝑝𝑋p𝑡q ą 0. In addition, let ´𝐿 be the leftmost release
position of the entire sequence of targets and 𝑅 the rightmost release position, respectively.
In case there is no target released on the left side of the origin, we set 𝐿 “ 0 and if there is
no target released on the right side of the origin 𝑅 “ 0, respectively. Then, at time 𝑡 the
targets presented at ´𝐿 and 𝑅 are at most 𝐿` 𝑡

𝑎 and 𝑅` 𝑡
𝑎 units away from the origin

and all other targets are within this interval of
“

´𝐿´ 𝑡
𝑎 ,𝑅`

𝑡
𝑎

‰

as well.

We denote the objective function value of the online server by 𝑍NEF and the optimal offline
cost by 𝑍˚. Obviously, the offline server cannot finish before the last request is presented,
hence 𝑍˚ ě 𝑡. Moreover, the following inequalities hold: ´𝐿´ 𝑡

𝑎 ď 𝑝𝑥p𝑡q, 𝑝𝑋p𝑡q ď 𝑅` 𝑡
𝑎 ,

and ´𝐿´ 𝑡
𝑎 ď 𝑝NEFp𝑡q ď 𝑅` 𝑡

𝑎 . We estimate the competitive ratio 𝑍NEF{𝑍˚ depending
on the position 𝑝NEFp𝑡q of the NEF online server:

1. 𝑝NEFp𝑡q ď 𝑝𝑥p𝑡q.
In this case the leftmost not yet visited target is to the right of the NEF online
server. Thus, to complete the task the server has to catch the rightmost target,
which is located at 𝑝𝑋p𝑡q, the other one is visited on the fly. The worst position
the NEF server can be at time 𝑡 in this case is ´𝐿´ 𝑡

𝑎 , hence, the target to catch

cannot exceed the position 𝑝𝑋p𝑡q `
𝐿` 𝑡

𝑎 ` 𝑝𝑋p𝑡q

𝑎´1 (see Lemma 6.2) at the time of
interception. Thus, we have

𝑍NEF ď 𝑡` 𝐿`
𝑡

𝑎
` 𝑝𝑋p𝑡q `

𝐿`
𝑡

𝑎
` 𝑝𝑋p𝑡q

𝑎´1 .

Applying 𝑝𝑋p𝑡q ď 𝑅` 𝑡
𝑎 and the triangle inequality we have

𝑍NEF ď 𝑡` 𝐿`𝑅`
2𝑡
𝑎
`

𝐿`𝑅`
2𝑡
𝑎

𝑎´1 .

There are two lower bounds for the offline server 𝑍˚ ě 𝑡 and 𝑍˚ ě 𝐿`𝑅. Having
this, the competitive ratio can be obtained as

𝑍NEF

𝑍˚
ď

𝑡

𝑍˚
`
𝐿`𝑅

𝑍˚
`

2𝑡
𝑎𝑍˚

`
𝐿`𝑅

p𝑎´1q𝑍˚ `
2𝑡

𝑎p𝑎´1q𝑍˚

ď 1` 1` 2
𝑎
`

1
𝑎´1 `

2
𝑎p𝑎´1q

“ 2` 3
𝑎´1 .

Note that with 𝑎 Ñ 8 we obtain the static case, where the targets do not move.
Here, we have a competitive ratio of 2, when 𝑎Ñ8, which matches the result given
by Ausiello et al. [Aus01] in this case.

2. 𝑝𝑥p𝑡q ă 𝑝NEFp𝑡q
We distinguish between two different cases: In the first one the optimal offline server
visits 𝑟𝑋 after 𝑟𝑥 and in the second one it visits 𝑟𝑥 after 𝑟𝑋 .

• 𝑟𝑥 Ñ 𝑟𝑋
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We assume that the offline server intercepts 𝑟𝑥 in 𝑝𝑥p𝑑q at time 𝑑 and this
is the last visit at this position. Then, the adversary has to move from its
current position 𝑝𝑥p𝑑q at least to the interception point with target 𝑟𝑋 to finish.
Consider the case, where 𝑑 ě 𝑡. We obtain a lower bound for the objective
function value of the offline adversary for 𝑑 “ 𝑡. Since at time 𝑡 the online server
is located between 𝑝𝑥p𝑡q and 𝑝𝑋p𝑡q we can use the distances 𝑥p𝑡q and 𝑋p𝑡q to
formulate the lower bound of the adversary:

𝑍˚ ě 𝑡` 𝑥p𝑡q `𝑋p𝑡q `
𝑥p𝑡q `𝑋p𝑡q

𝑎´1 . (69)

At time 𝑡 the online server is between 𝑝𝑥p𝑡q and 𝑝𝑋p𝑡q with the distances
𝑥p𝑡q ď 𝑋p𝑡q. Thus, it has to catch 𝑟𝑥 first with cost of 𝑥p𝑡q ` 𝑥p𝑡q

𝑎´1 . Then, the
server moves back, the return to the previous position costs again a time of
𝑥p𝑡q ` 𝑥p𝑡q

𝑎´1 . The online server moves further to intercept 𝑟𝑋 , which has moved
in the meantime by 2𝑥p𝑡q

𝑎 `
2𝑥p𝑡q

𝑎p𝑎´1q . Then, the cost of intercepting 𝑟𝑋 is:

𝑋p𝑡q `
2𝑥p𝑡q
𝑎

`
2𝑥p𝑡q
𝑎p𝑎´1q `

𝑋p𝑡q `
2𝑥p𝑡q
𝑎

`
2𝑥p𝑡q
𝑎p𝑎´1q

𝑎´1 .

In total we have

𝑍NEF ď 𝑡` 2𝑥p𝑡q ` 2𝑥p𝑡q
𝑎´1

looooooomooooooon

`𝑋p𝑡q `
2𝑥p𝑡q
𝑎

`
2𝑥p𝑡q
𝑎p𝑎´1q

looooooooomooooooooon

catch 𝑟𝑥 and return 𝑟𝑋 moved, while NEF
caugth 𝑟𝑥 and returned

`

𝑋p𝑡q `
2𝑥p𝑡q
𝑎

`
2𝑥p𝑡q
𝑎p𝑎´1q

𝑎´1
looooooooooooooomooooooooooooooon

see Lemma 6.2

“ 𝑡` 2𝑥p𝑡q `𝑋p𝑡q ` 2𝑥p𝑡q `𝑋p𝑡q
𝑎´1 `

2𝑥p𝑡q𝑎
p𝑎´1q2 . (70)

With the lower bound from (69) and 𝑥p𝑡q ď 𝑋p𝑡q we obtain for the competitive
ratio

𝑍NEF

𝑍˚
ď

𝑡` 2𝑥p𝑡q `𝑋p𝑡q ` 2𝑥p𝑡q `𝑋p𝑡q
𝑎´1

𝑡` 𝑥p𝑡q `𝑋p𝑡q `
𝑥p𝑡q `𝑋p𝑡q

𝑎´1

`
2𝑥p𝑡q 𝑎
p𝑎´1q2 𝑍˚ .

For 𝑍˚ we can use either the lower bound 𝑍˚ ě 2𝑥p𝑡q or 𝑍˚ ě 2𝑥p𝑡q
𝑎´1 , both results

follow from (69) with 𝑥p𝑡q ď 𝑋p𝑡q. For each bound we obtain a different result.
These results are combined on the interval 𝑎 ą 1, to obtain the best competitive
ration, which is

𝑍NEF

𝑍˚
ď 2`

$

&

%

𝑎

p𝑎´1q2 , if 𝑎 ě 2
𝑎

𝑎´1 , if 𝑎 ă 2.
(71)
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Now, we consider the case, where the last visit of position 𝑝𝑥p𝑑q is at 𝑑 ă 𝑡. It
is not guaranteed, that 𝑟𝑋 is visible at time 𝑑, but if it was visible its position
would be at 𝑝𝑋p𝑑q in order to be at time 𝑡 in 𝑝𝑋p𝑡q. In this setting at time 𝑑
there are three different positions for the online NEF server:
A) NEF is between 𝑝𝑥p𝑑q and 𝑝𝑋p𝑑q and has moved left at time 𝑡,
B) NEF is between 𝑝𝑥p𝑑q and 𝑝𝑋p𝑑q and has moved right at time 𝑡, and
C) NEF is to the right of 𝑝𝑋p𝑑q and has moved left at time 𝑡.
Note, that in case C) it is not possible for the online server to be at the right-
hand side of 𝑝NEFp𝑑q at time 𝑡, because 𝑋p𝑡q would be less than 𝑥p𝑡q, which is
a contradiction to our assumption 𝑥p𝑡q ď 𝑋p𝑡q. Furthermore, the NEF server
cannot be left of 𝑝𝑥p𝑑q at time 𝑑, because it is to the right of 𝑝𝑥p𝑡q at time 𝑡,
which means then, that 𝑟𝑥 has already been visited at time 𝑡.
At time 𝑑 the optimal offline adversary is located in 𝑝𝑥p𝑑q and has to catch 𝑟𝑋 .
Thus, it needs at least a time of

𝑍˚ ě 𝑑` 𝑥p𝑑q `𝑋p𝑑q `
𝑥p𝑑q `𝑋p𝑑q

𝑎´1 (72)

to finish. Since the last target is presented at time 𝑡, the adversary cannot finish
before 𝑡

𝑍˚ ě 𝑡. (73)

Both these bounds hold for all coming cases.
A) 𝑝𝑥p𝑑q ă 𝑝NEFp𝑑q ď 𝑝𝑋p𝑑q and 𝑝NEFp𝑡q ď 𝑝NEFp𝑑q

The online server is located between 𝑟𝑥 and 𝑟𝑋 at time 𝑑 and has moved to
the left at time 𝑡. This distance is called 𝛥𝑙𝑒 and it is defined as:

𝛥𝑙𝑒 :“ 𝑝NEFp𝑑q ´ 𝑝NEFp𝑡q.

Obviously, 𝛥𝑙𝑒 ě 0. Relations between the distances of targets and online
server at times 𝑑 and 𝑡 can be formulated as follows:

𝑥p𝑡q “ 𝑥p𝑑q `
𝑡´𝑑

𝑎
´𝛥𝑙𝑒, 𝑋p𝑡q “ 𝑋p𝑑q `

𝑡´𝑑

𝑎
`𝛥𝑙𝑒.

These relations transform the upper bound of 𝑍NEF provided in (70) to:

𝑍NEF ď 𝑡` 2𝑥p𝑑q `𝑋p𝑑q ´𝛥𝑙𝑒 `
2𝑥p𝑑q `𝑋p𝑑q ´𝛥𝑙𝑒

𝑎´1

`
𝑎
`

2𝑥p𝑑q ´ 2𝛥𝑙𝑒
˘

p𝑎´1q2 `
p𝑡´𝑑q p3𝑎´1q
p𝑎´1q2 . (74)

NEF is between 𝑟𝑥 and 𝑟𝑋 , but it can either be closer to 𝑟𝑥, then we
have 𝑥p𝑑q ď 𝑋p𝑑q or closer to 𝑟𝑋 , then we have 𝑥p𝑑q ą 𝑋p𝑑q. Obviously,
the cases have an effect on the lower bound of 𝑍˚. At first, we consider
𝑥p𝑑q ď 𝑋p𝑑q. Here, the lower bound in (72) can be transformed with
𝑑 ě 𝑥p𝑑q

2 (see Lemma 6.4) into the following bounds

𝑍˚ ě
3
2𝑥p𝑑q `𝑋p𝑑q `

𝑥p𝑑q `𝑋p𝑑q

𝑎´1 ,

𝑍˚ ě
5
2𝑥p𝑑q, (75)

72



𝑍˚ ě
2𝑥p𝑑q
𝑎´1 .

Since ´𝛥𝑙𝑒 ď 0, the upper bound for 𝑍NEF can be further evaluated to

𝑍NEF ď 𝑡` 2𝑥p𝑑q `𝑋p𝑑q ` 2𝑥p𝑑q `𝑋p𝑑q
𝑎´1 `

𝑎 p2𝑥p𝑑qq
p𝑎´1q2

`
p𝑡´𝑑q p3𝑎´1q
p𝑎´1q2 . (76)

Then, the competitive ratio can be computed as

𝑍NEF

𝑍˚
ď
𝑡

𝑡
`

2𝑥p𝑑q `𝑋p𝑑q ` 2𝑥p𝑑q `𝑋p𝑑q
𝑎´1

3
2𝑥p𝑑q `𝑋p𝑑q `

𝑥p𝑑q `𝑋p𝑑q

𝑎´1

`
𝑎p2𝑥p𝑑qq
p𝑎´1q2 𝑍˚

`
p𝑡´𝑑qp3𝑎´1q
𝑡 p𝑎´1q2

ď 1` 1`
1
2𝑥p𝑑q
5
2𝑥p𝑑q

`
𝑥p𝑑q

p𝑎´1q𝑍˚ `
𝑎 2𝑥p𝑑q
p𝑎´1q2 𝑍˚ `

3𝑎´1
p𝑎´1q2 .

Here, we apply the different bounds from (75), depending on the bounds
we obtain different results, which are best combined with regard to 𝑎:

𝑍NEF

𝑍˚
ď 2` 1

5 `

$

’

&

’

%

2
5p𝑎´1q , if 𝑎 ě 9

5

1
2 , if 𝑎 ă 9

5

`

$

’

&

’

%

4𝑎
5p𝑎´1q2 , if 𝑎 ě 9

5

𝑎

𝑎´1 , if 𝑎 ă 9
5

`
3𝑎´1
p𝑎´1q2

“
11
5 `

3𝑎´1
p𝑎´1q2 `

$

’

’

&

’

’

%

2p3𝑎´1q
5p𝑎´1q2 , if 𝑎 ě 9

5

3𝑎´1
2p𝑎´1q , if 𝑎 ă 9

5 .

(77)

In the case 𝑥p𝑑q ą 𝑋p𝑑q, the online server is closer to 𝑟𝑋 and has to move
to the left at time 𝑡. The movement to the left goes at least to the center
between 𝑟𝑥 and 𝑟𝑋 :

𝛥𝑙𝑒 ě
𝑥p𝑑q

2 ´
𝑋p𝑑q

2 . (78)

We apply this to the upper bound of 𝑍NEF in (74), thus, we have

𝑍NEF ď 𝑡`
3
2𝑥p𝑑q `

3
2𝑋p𝑑q `

3
2𝑥p𝑑q `

3
2𝑋p𝑑q

𝑎´1 `
𝑎 p𝑥p𝑑q `𝑋p𝑑qq

p𝑎´1q2

`
p𝑡´𝑑q p3𝑎´1q
p𝑎´1q2 .
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In this case, we obtain slightly different lower bounds for 𝑍˚:

𝑍˚ ě
3
2𝑥p𝑑q `𝑋p𝑑q `

𝑥p𝑑q `𝑋p𝑑q

𝑎´1 ,

𝑍˚ ě
5
2𝑋p𝑑q,

𝑍˚ ě
𝑥p𝑑q `𝑋p𝑑q

𝑎´1 .

Having this, the competitive ratio is calculated as

𝑍NEF

𝑍˚
ď
𝑡

𝑡
`

3
2𝑥p𝑑q `

3
2𝑋p𝑑q `

3
2𝑥p𝑑q `

3
2𝑋p𝑑q

𝑎´1
3
2𝑥p𝑑q `𝑋p𝑑q `

𝑥p𝑑q `𝑋p𝑑q

𝑎´1

`
𝑎 p𝑥p𝑑q `𝑋p𝑑qq

p𝑎´1q2𝑍˚

`
p𝑡´𝑑q p3𝑎´1q
𝑡 p𝑎´1q2

ď 1` 1`
1
2𝑋p𝑑q
5
2𝑋p𝑑q

`

1
2𝑥p𝑑q `

1
2𝑋p𝑑q

p𝑎´1q𝑍˚ `
𝑎 p𝑥p𝑑q `𝑋p𝑑qq

p𝑎´1q2𝑍˚

`
3𝑎´1
p𝑎´1q2

ď 2` 1
5 `

$

’

&

’

%

1
2p𝑎´1q , if 𝑎 ě 2

1
2 , if 𝑎 ă 2

`

$

’

&

’

%

𝑎

p𝑎´1q2 , if 𝑎 ě 2
𝑎

𝑎´1 , if 𝑎 ă 2

`
3𝑎´1
p𝑎´1q2

“
11
5 `

3𝑎´1
p𝑎´1q2 `

$

’

’

&

’

’

%

3𝑎´1
2p𝑎´1q2 , if 𝑎 ě 2

3𝑎´1
2p𝑎´1q , if 𝑎 ă 2.

(79)

Concluding this case, we have that the result in (77) cannot be greater than
the result in (79).

B) 𝑝𝑥p𝑑q ă 𝑝NEFp𝑑q ď 𝑝𝑋p𝑑q and 𝑝NEFp𝑡q ą 𝑝NEFp𝑑q
This case is similar to the one before, however, the position of the online
server at time 𝑡 is to the right of 𝑝NEFp𝑑q. Hence, the distance 𝛥𝑟𝑖 is defined
as:

𝛥𝑟𝑖 :“ 𝑝NEFp𝑑q ´ 𝑝NEFp𝑡q, 𝛥𝑟𝑖 ě 0.

Obviously, at time 𝑑 the server is closer to 𝑟𝑥 than to 𝑟𝑋 , which means
𝑥p𝑑q ď 𝑋p𝑑q. Thus, the distance 𝛥𝑟𝑖 is bounded by the center between 𝑟𝑥

and 𝑟𝑋 :

𝛥𝑟𝑖 ă
𝑋p𝑑q

2 ´
𝑥p𝑑q

2 . (80)

Finally, we need the relations between the target-server distances at time 𝑑
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and 𝑡

𝑥p𝑡q “ 𝑥p𝑑q `
𝑡´𝑑

𝑎
`𝛥𝑟𝑖, 𝑋p𝑡q “ 𝑋p𝑑q `

𝑡´𝑑

𝑎
´𝛥𝑟𝑖, (81)

which are used with (70) to obtain the following upper bound for NEF:

𝑍NEF ď 𝑡` 2𝑥p𝑑q `𝑋p𝑑q `𝛥𝑟𝑖 `
2𝑥p𝑑q `𝑋p𝑑q `𝛥𝑟𝑖

𝑎´1

`
𝑎
`

2𝑥p𝑑q ` 2𝛥𝑟𝑖
˘

p𝑎´1q2 `
p𝑡´𝑑qp3𝑎´1q
p𝑎´1q2

apply p80q

ď 𝑡`
3
2𝑥p𝑑q `

3
2𝑋p𝑑q `

3
2𝑥p𝑑q `

3
2𝑋p𝑑q

𝑎´1 `
𝑎 p𝑥p𝑑q `𝑋p𝑑qq

p𝑎´1q2

`
p𝑡´𝑑q p3𝑎´1q
p𝑎´1q2

The offline adversary located in 𝑝𝑥p𝑑q has to intercept 𝑟𝑋 . Next to the
bounds (72) and (73) the following equations hold with 𝑑 ě 𝑥p𝑑q

2 (Lemma 6.4):

𝑍˚ ě
3
2𝑥p𝑑q `𝑋p𝑑q `

𝑥p𝑑q `𝑋p𝑑q

𝑎´1 ,

𝑍˚ ě 𝑥p𝑑q `𝑋p𝑑q and 𝑍˚ ě
𝑥p𝑑q `𝑋p𝑑q

𝑎´1 .

Having this, the competitive ratio is computed as

𝑍NEF

𝑍˚
ď
𝑡

𝑡
`

3
2𝑥p𝑑q `

3
2𝑋p𝑑q `

3
2𝑥p𝑑q `

3
2𝑋p𝑑q

𝑎´1
3
2𝑥p𝑑q `𝑋p𝑑q `

𝑥p𝑑q `𝑋p𝑑q

𝑎´1

`
𝑎 p𝑥p𝑑q `𝑋p𝑑qq

p𝑎´1q2 𝑍˚

`
p𝑡´𝑑q p3𝑎´1q
𝑡 p𝑎´1q2

ď 2`
1
2𝑋p𝑑q

𝑋p𝑑q
`

1
2𝑥p𝑑q `

1
2𝑋p𝑑q

p𝑎´1q𝑍˚ `
𝑎 p𝑥p𝑑q `𝑋p𝑑qq

p𝑎´1q2 𝑍˚ `
3𝑎´1
p𝑎´1q2

ď
5
2 `

$

’

&

’

%

1
2p𝑎´1q , if 𝑎 ě 2

1
2 , if 𝑎 ă 2.

`

$

’

&

’

%

𝑎

p𝑎´1q2 , if 𝑎 ě 2
𝑎

𝑎´1 , if 𝑎 ă 2.
`

3𝑎´1
p𝑎´1q2

“
5
2 `

3𝑎´1
p𝑎´1q2 `

$

’

’

&

’

’

%

3𝑎´1
2p𝑎´1q2 , if 𝑎 ě 2

3𝑎´1
2p𝑎´1q , if 𝑎 ă 2.

(82)

C) 𝑝𝑋p𝑑q ă 𝑝NEFp𝑑q
This can only be the case, when 𝑟𝑋 is not visible at time 𝑑 and it must
be that 𝑝NEFp𝑡q ď 𝑝NEFp𝑑q, otherwise the assumption 𝑥p𝑡q ď 𝑋p𝑡q would be
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violated. Hence we obtain the following distance definition and relations:

𝛥𝑙𝑒 :“ 𝑝NEFp𝑑q ´ 𝑝NEFp𝑡q, 𝛥𝑙𝑒 ě 0,

𝑥p𝑡q “ 𝑥p𝑑q `
𝑡´𝑑

𝑎
´𝛥𝑙𝑒, (83)

𝑋p𝑡q “
𝑡´𝑑

𝑎
´𝑋p𝑑q `𝛥𝑙𝑒. (84)

The online server has to move left within the time from 𝑑 to 𝑡, at least to
the center between 𝑝𝑥p𝑑q and 𝑝𝑋p𝑑q:

𝑥p𝑑q `𝑋p𝑑q

2 ď 𝛥𝑙𝑒. (85)

We apply (83) and (84) to the upper bound of NEF (70) and obtain

𝑍NEF ď 𝑡` 2𝑥p𝑑q ´𝑋p𝑑q ´𝛥𝑙𝑒 `
3p𝑡´𝑑q
𝑎

`
2𝑥p𝑑q ´𝑋p𝑑q ´𝛥𝑙𝑒 `

3p𝑡´𝑑q
𝑎

𝑎´1 `
𝑎
´

2𝑥p𝑑q ´ 2𝛥𝑙𝑒 `
2p𝑡´𝑑q

𝑎

¯

p𝑎´1q2

apply p85q

ď 𝑡`
3
2𝑥p𝑑q ´

3
2𝑋p𝑑q `

3
2𝑥p𝑑q ´

3
2𝑋p𝑑q

𝑎´1 `
𝑎 p𝑥p𝑑q ´𝑋p𝑑qq

p𝑎´1q2

`
p𝑡´𝑑q p3𝑎´1q
p𝑎´1q2 .

With 𝑑 ě 𝑥p𝑑q
2 (see Lemma 6.4), the lower bounds of 𝑍˚ (72) and (73) are

extended by

𝑍˚ ě
3
2𝑥p𝑑q ´𝑋p𝑑q `

𝑥p𝑑q ´𝑋p𝑑q

𝑎´1 ě 𝑥p𝑑q ´𝑋p𝑑q,

𝑍˚ ě
𝑥p𝑑q ´𝑋p𝑑q

𝑎´1 .

Then, the competitive ratio results in

𝑍NEF

𝑍˚
ď
𝑡

𝑡
`

3
2𝑥p𝑑q ´

3
2𝑋p𝑑q `

3
2𝑥p𝑑q ´

3
2𝑋p𝑑q

𝑎´1
3
2𝑥p𝑑q ´𝑋p𝑑q `

𝑥p𝑑q ´𝑋p𝑑q

𝑎´1

`
𝑎 p𝑥p𝑑q ´𝑋p𝑑qq

𝑍˚p𝑎´1q2

`
p𝑡´𝑑q p3𝑎´1q
𝑡 p𝑎´1q2

ď 2`
1
2𝑥p𝑑q ´

1
2𝑋p𝑑q

p𝑎´1q𝑍˚ `
𝑎 p𝑥p𝑑q ´𝑋p𝑑qq

p𝑎´1q2𝑍˚ `
3𝑎´1
p𝑎´1q2

ď 2`

$

’

&

’

%

1
3p𝑎´1q , if 𝑎 ě 5

3

1
2 , if 𝑎 ă 5

3

`

$

’

&

’

%

2𝑎
3p𝑎´1q2 , if 𝑎 ě 5

3

𝑎

𝑎´1 , if 𝑎 ă 5
3

`
3𝑎´1
p𝑎´1q2
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“ 2` 3𝑎´1
p𝑎´1q2 `

$

’

’

’

&

’

’

’

%

3𝑎´1
3p𝑎´1q2 , if 𝑎 ě 5

3

3𝑎´1
2p𝑎´1q , if 𝑎 ă 5

3

. (86)

• 𝑟𝑋 Ñ 𝑟𝑥

In this case the optimal offline server intercepts 𝑟𝑋 first and then 𝑟𝑥. We assume,
that the offline server visits 𝑟𝑋 at time 𝑑 in position 𝑝𝑋p𝑑q and this is the last
visit at this position. Being at 𝑝𝑋p𝑑q, the adversary has at least to intercept 𝑟𝑥

to finish. At first the case 𝑑 ě 𝑡 is considered. However, in this case the lower
bound for 𝑍˚ and the upper bound for 𝑍NEF is exactly the same as in the case
𝑥Ñ 𝑋 and the same competitive ratio as in (71) is achieved. Hence, the case
𝑑 ă 𝑡 is left for examination. Here, it is not guaranteed, that 𝑟𝑥 is visible, due
to this, we use again the virtual point 𝑝𝑥p𝑑q, which is the location where 𝑟𝑥

would be, if it was visible at time 𝑑 and reaches 𝑝𝑥p𝑡q at time 𝑡. Then, there are
four different cases for the position of the online server at time 𝑑:
a) NEF is to the left of 𝑝𝑥p𝑑q and has moved left at time 𝑡,
b) NEF is to the left of 𝑝𝑥p𝑑q and has moved right at time 𝑡,
c) NEF is between 𝑝𝑥p𝑑q and 𝑝𝑋p𝑑q and has moved right at time 𝑡, and
d) NEF is between 𝑝𝑥p𝑑q and 𝑝𝑋p𝑑q and has moved left at time 𝑡.
a) 𝑝NEFp𝑑q ď 𝑝𝑥p𝑑q and 𝑝NEFp𝑡q ď 𝑝NEFp𝑑q

Here, target 𝑟𝑥 cannot be visible at time 𝑑, otherwise it would already be
caught at time 𝑡. Thus, a possible scenario is, that NEF moves to the right
(𝑟𝑋) and between time 𝑑 and 𝑡 a target 𝑟𝑧 is presented to the left of NEF.
This target is nearer to NEF than 𝑟𝑋 and forces the online server to move
left. If 𝑟𝑧 “ 𝑟𝑥, NEF must not intercept it until time 𝑡. In the case 𝑟𝑧 ‰ 𝑟𝑥,
NEF has caught 𝑟𝑧 at time 𝑡 or 𝑟𝑧 is closer to NEF than 𝑟𝑥 and can be
caught on the way to 𝑟𝑥. The left movement of the NEF server is bounded
by 𝑟𝑥 to the left side. As an abbreviation we set

𝛥𝑙𝑒 :“ 𝑝NEFp𝑑q ´ 𝑝NEFp𝑡q.

The following constraints describe the distances at time 𝑑 and 𝑡:

𝑥p𝑡q “
𝑡´𝑑

𝑎
´ 𝑥p𝑑q ´𝛥𝑙𝑒 (87)

𝑋p𝑡q “ 𝑋p𝑑q `
𝑡´𝑑

𝑎
`𝛥𝑙𝑒. (88)

Obviously, we have

𝛥𝑙𝑒 ă
𝑡´𝑑

𝑎
´ 𝑥p𝑑q, (89)

otherwise NEF would be at or to the left of 𝑟𝑥 at time 𝑡, which is a
contradiction to our assumption, that 𝑟𝑥 is the leftmost target at time 𝑡.
With the constraints (87) and (88) the upper bound for NEF (70) can be
transformed to

𝑍NEF ď 𝑡`𝑋p𝑑q ´ 2𝑥p𝑑q ´𝛥𝑙𝑒 `
𝑋p𝑑q ´ 2𝑥p𝑑q ´𝛥𝑙𝑒

𝑎´1

`
𝑎
`

´2𝑥p𝑑q ´ 2𝛥𝑙𝑒
˘

p𝑎´1q2 `
p𝑡´𝑑q p3𝑎´1q
p𝑎´1q2 .

77



Since 𝛥𝑙𝑒 ě 0, 𝑥p𝑑q ě 0 and 𝑎 ą 1 we can increase the bound to

𝑍NEF ď 𝑡`𝑋p𝑑q ´ 𝑥p𝑑q `
𝑋p𝑑q ´ 𝑥p𝑑q

𝑎´1 `
p𝑡´𝑑q p3𝑎´1q
p𝑎´1q2 .

As lower bounds for the offline adversary we have in this case:

𝑍˚ ě 𝑑`𝑋p𝑑q ´ 𝑥p𝑑q `
𝑋p𝑑q ´ 𝑥p𝑑q

𝑎´1

ě 𝑋p𝑑q ´ 𝑥p𝑑q `
𝑋p𝑑q ´ 𝑥p𝑑q

𝑎´1 and

𝑍˚ ě 𝑡.

Hence, the competitive ratio results in

𝑍NEF

𝑍˚
ď
𝑡

𝑡
`

𝑋p𝑑q ´ 𝑥p𝑑q `
𝑋p𝑑q ´ 𝑥p𝑑q

𝑎´1

𝑋p𝑑q ´ 𝑥p𝑑q `
𝑋p𝑑q ´ 𝑥p𝑑q

𝑎´1

`
p𝑡´𝑑q p3𝑎´1q
𝑡 p𝑎´1q2

“ 2` 3𝑎´1
p𝑎´1q2 . (90)

b) 𝑝NEFp𝑑q ď 𝑝𝑥p𝑑q and 𝑝NEFp𝑡q ą 𝑝NEFp𝑑q
This case is the same as the one before, except that the position of NEF at
time 𝑡 is to the right of its position at time 𝑑. At first, we set

𝛥𝑟𝑖 :“ 𝑝NEFp𝑡q ´ 𝑝NEFp𝑑q

and then we describe the necessary bounds:

𝑥p𝑑q ď 𝑋p𝑑q,

𝑥p𝑡q “
𝑡´𝑑

𝑎
´ 𝑥p𝑑q `𝛥𝑟𝑖, (91)

𝑋p𝑡q “ 𝑋p𝑑q `
𝑡´𝑑

𝑎
´𝛥𝑟𝑖, (92)

𝛥𝑟𝑖 ď
𝑋p𝑑q ` 𝑥p𝑑q

2 (93)

𝑑 ě
𝑋p𝑑q ´ 𝑥p𝑑q

2 . (94)

Constraint (93) results from the fact, that the furthest to the right NEF
can move is to the center between 𝑝𝑥p𝑑q and 𝑝𝑋p𝑑q (which is equal to the
center between 𝑝𝑥p𝑡q and 𝑝𝑋p𝑡q), otherwise the assumption 𝑥p𝑡q ď 𝑋p𝑡q is
hurt. The last constraint (94) follows from 𝑋p𝑑q

2 ď 𝑑 stated in Lemma 6.4.
Applying (91) and (92) to (70), we can write the upper bound for the NEF
server as

𝑍NEF ď 𝑡`𝑋p𝑑q ´ 2𝑥p𝑑q `𝛥𝑟𝑖 `
𝑥p𝑑q ´ 2𝑥p𝑑q `𝛥𝑟𝑖

𝑎´1

`
2𝛥𝑟𝑖 ´ 2𝑥p𝑑q
p𝑎´1q2 `

p𝑡´𝑑qp3𝑎´1q
p𝑎´1q2

apply p93q
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ď 𝑡`
3
2𝑋p𝑑q ´

3
2𝑥p𝑑q `

3
2𝑋p𝑑q ´

3
2𝑥p𝑑q

𝑎´1 `
𝑎 p𝑋p𝑑q ´ 𝑥p𝑑qq

p𝑎´1q2

`
p𝑡´𝑑q p3𝑎´1q
p𝑎´1q2 .

The lower bounds of the optimal offline server

𝑍˚ ě 𝑑`𝑋p𝑑q ´ 𝑥p𝑑q `
𝑋p𝑑q ´ 𝑥p𝑑q

𝑎´1 , 𝑍˚ ě 𝑡,

can be transformed with (94) to

𝑍˚ ě
3
2𝑋p𝑑q ´

3
2𝑥p𝑑q `

𝑋p𝑑q ´ 𝑥p𝑑q

𝑎´1 ě
3
2𝑋p𝑑q ´

3
2𝑥p𝑑q,

𝑍˚ ě
𝑋p𝑑q ´ 𝑥p𝑑q

𝑎´1 .

Thus, we can compute the competitive ratio as

𝑍NEF

𝑍˚
ď
𝑡

𝑡
`

3
2𝑋p𝑑q ´

3
2𝑥p𝑑q `

3
2𝑋p𝑑q ´

3
2𝑥p𝑑q

𝑎´1
3
2𝑋p𝑑q ´

3
2𝑥p𝑑q `

𝑋p𝑑q ´ 𝑥p𝑑q

𝑎´1

`
𝑎 p𝑋p𝑑q ´ 𝑥p𝑑qq

p𝑎´1q2 𝑍˚

`
p𝑡´𝑑qp3𝑎´1q
𝑡 p𝑎´1q2

ď 2`
1
2𝑋p𝑑q ´

1
2𝑥p𝑑q

p𝑎´1q𝑍˚ `

$

’

’

&

’

’

%

2𝑎
3p𝑎´1q2 , if 𝑎 ě 5

3
𝑎

p𝑎´1q , if 𝑎 ă 5
3

`
3𝑎´1
p𝑎´1q2

ď 2` 3𝑎´1
p𝑎´1q2 `

$

’

’

&

’

’

%

3𝑎´1
3p𝑎´1q2 , if 𝑎 ě 5

3
3𝑎´1

2p𝑎´1q , if 𝑎 ă 5
3

(95)

This competitive ratio is equal to the one in case C), because it is the
symmetrical case.

c) 𝑝𝑥p𝑑q ă 𝑝NEFp𝑑q ă 𝑝𝑋p𝑑q and 𝑝NEFp𝑡q ą 𝑝NEFp𝑑q
Considering position and movement of the NEF server, this case is identical
to the case B), where the optimal offline server is catching 𝑟𝑥 first. Thus,
we use the upper bound for NEF as computed in case B), which is

𝑍NEF ď 𝑡`
3
2𝑥p𝑑q `

3
2𝑋p𝑑q `

3
2𝑥p𝑑q `

3
2𝑋p𝑑q

𝑎´1 `
𝑎 p𝑥p𝑑q `𝑋p𝑑qq

p𝑎´1q2

`
p𝑡´𝑑q p3𝑎´1q
p𝑎´1q2 .

The standard lower bound (72) for the movement of the offline server to
catch 𝑟𝑥 can be extended by 𝑑 ě 𝑋p𝑑q

2 (see Lemma 6.4) and 𝑥p𝑑q ď 𝑋p𝑑q to

𝑍˚ ě 𝑥p𝑑q `
3
2𝑋p𝑑q `

𝑥p𝑑q `𝑋p𝑑q

𝑎´1 ě
5
2𝑥p𝑑q,

79



𝑍˚ ě 𝑥p𝑑q `𝑋p𝑑q, and

𝑍˚ ě
𝑥p𝑑q `𝑋p𝑑q

𝑎´1 .

Thus, the competitive ratio can be calculated as:

𝑍NEF

𝑍˚
ď
𝑡

𝑡
`

3
2𝑥p𝑑q `

3
2𝑋p𝑑q `

3
2𝑥p𝑑q `

3
2𝑋p𝑑q

𝑎´1

𝑥` 3
2𝑋p𝑑q `

𝑥p𝑑q `𝑋p𝑑q

𝑎´1

`
𝑎 p𝑥p𝑑q `𝑋p𝑑qq

p𝑎´1q2𝑍˚

`
p𝑡´𝑑qp3𝑎´1q
𝑡p𝑎´1q2

ď 2`
1
2𝑥p𝑑q
5
2𝑥p𝑑q

`

1
2𝑥p𝑑q `

1
2𝑋p𝑑q

p𝑎´1q𝑍˚ `
𝑎 p𝑥p𝑑q `𝑋p𝑑qq

p𝑎´1q2𝑍˚ `
3𝑎´1
p𝑎´1q2

ď
11
5 `

3𝑎´1
p𝑎´1q2 `

$

’

’

&

’

’

%

3𝑎´1
2p𝑎´1q2 , if 𝑎 ě 2

3𝑎´1
2p𝑎´1q , if 𝑎 ă 2.

(96)

d) 𝑝𝑥p𝑑q ă 𝑝NEFp𝑑q ă 𝑝𝑋p𝑑q and 𝑝NEFp𝑡q ď 𝑝NEFp𝑑q
This last case corresponds to case A). In the same manner as in case A) we
have to differentiate between 𝑥p𝑑q ď 𝑋p𝑑q and 𝑥p𝑑q ą 𝑋p𝑑q. In the first
case, the upper bound for NEF (76) can be used here. Since 𝑑 ě 𝑋p𝑑q

2 ě
𝑥p𝑑q

2
the lower bounds for 𝑍˚ (75) can be used here as well. Thus, we obtain the
same competitive ratio as in (77), which is recalled here

𝑍NEF

𝑍˚
ď

11
5 `

3𝑎´1
p𝑎´1q2 `

$

’

’

&

’

’

%

2p3𝑎´1q
5p𝑎´1q2 , if 𝑎 ě 9

5

3𝑎´1
2p𝑎´1q , if 𝑎 ă 9

5 .

(97)

In the second case 𝑥p𝑑q ą 𝑋p𝑑q, a detailed look at the possible distances of
NEF is needed. We provide the following familiar abbreviation

𝛥𝑙𝑒 :“ 𝑝NEFp𝑑q ´ 𝑝NEFp𝑡q

as well as related bounds for the distances at time 𝑑 and 𝑡

𝑥p𝑡q “ 𝑥p𝑑q `
𝑡´𝑑

𝑎
´𝛥𝑙𝑒, (98)

𝑋p𝑡q “ 𝑋p𝑑q `
𝑡´𝑑

𝑎
`𝛥𝑙𝑒, (99)

𝛥𝑙𝑒 ě
𝑥p𝑑q ´𝑋p𝑑q

2 , (100)

𝑑 ě
𝑋p𝑑q

2 , psee Lemma 6.4q. (101)

Constraint (100) results from the fact, that the movement to the left has to
go at least to the center between 𝑟𝑥 and 𝑟𝑋 at time 𝑡, which is obviously
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the same at time 𝑑. Then, we have as upper bound for NEF:

𝑍NEF ď 𝑡` 2𝑥p𝑡q `𝑋p𝑡q ` 2𝑥p𝑡q `𝑋p𝑡q
𝑎´1 `

2𝑥p𝑡q𝑎
p𝑎´1q2

apply p98q and p99q

ď 𝑡` 2𝑥p𝑑q `𝑋p𝑑q ´𝛥𝑙𝑒 `
2𝑥p𝑑q `𝑋p𝑑q ´𝛥𝑙𝑒

𝑎´1

`
𝑎
`

2𝑥p𝑑q ´ 2𝛥𝑙𝑒
˘

p𝑎´1q2 `
p𝑡´𝑑qp3𝑎´1q
p𝑎´1q2

apply p100q

ď 𝑡`
3
2𝑥p𝑑q `

3
2𝑋p𝑑q `

3
2𝑥p𝑑q `

3
2𝑋p𝑑q

𝑎´1 `
𝑎 p𝑥p𝑑q `𝑋p𝑑qq

p𝑎´1q2

`
p𝑡´𝑑qp3𝑎´1q
p𝑎´1q2 .

With (101) and 𝑥p𝑑q ą 𝑋p𝑑q the bounds for the optimal offline server are
given by (72), (73) and:

𝑍˚ ě 𝑥p𝑑q `
3
2𝑋p𝑑q `

𝑥p𝑑q `𝑋p𝑑q

𝑎´1

𝑍˚ ě
𝑥p𝑑q `𝑋p𝑑q

𝑎´1
𝑍˚ ě 𝑥p𝑑q `𝑋p𝑑q ě 𝑥p𝑑q.

The competitive ratio can be computed as

𝑍NEF

𝑍˚
ď
𝑡

𝑡
`

3
2𝑥p𝑑q`

3
2𝑋p𝑑q `

3
2𝑥p𝑑q`

3
2𝑋p𝑑q

𝑎´1

𝑥p𝑑q`3
2𝑋p𝑑q `

𝑥p𝑑q`𝑋p𝑑q

𝑎´1

`
𝑎 p𝑥p𝑑q`𝑋p𝑑qq

p𝑎´1q2𝑍˚

`
p𝑡´𝑑qp3𝑎´1q
𝑡 p𝑎´1q2

ď 2`
1
2𝑥p𝑑q

𝑥p𝑑q
`

1
2𝑥p𝑑q`

1
2𝑋p𝑑q

p𝑎´1q𝑍˚ `

$

’

&

’

%

𝑎

p𝑎´1q2 , if 𝑎 ě 2
𝑎

𝑎´1 , if 𝑎 ă 2

`
3𝑎´1
p𝑎´1q2

ď
5
2 `

3𝑎´1
p𝑎´1q2 `

$

’

’

&

’

’

%

3𝑎´1
2p𝑎´1q2 , if 𝑎 ě 2

3𝑎´1
2p𝑎´1q , if 𝑎 ă 2.

(102)

The competitive ratio in case B), which is given in (82) is equal to the competitive ratio of
the second case in d) (102) and this ratio is the biggest value of all computed ratios in this
proof.

So far only targets moving away from the online server have been considered. Now, we
are addressing the case of targets moving towards the online server. At first, the distance
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between target and server is shrinking while the server is waiting. Thus, the time to catch a
coming target cannot be greater than the time to catch a target that is moving away from
the server provided both targets have the same distance to the server. If the algorithm
NEF does not distinguish between the movement directions of the targets and determines
the leftmost and rightmost extreme targets of all target no matter of their moving direction,
the competitive ratio of NEF cannot be more than what has been computed. Thus, for the
worst case consideration only those targets are essential, that move away from the server.
Assume the two cases: NEF how it is defined and NEF not distinguishing between moving
direction of the targets. Then, it is obvious that in the first case the makespan is always
smaller or equal to the latter case. However, the worst case consideration as is done with
the competitive ratio is equal for both cases. Assume NEF at the origin and on one side a
target is moving away from it and on the other side a target that is moving towards it.
Then, smallest makespan is reached by first caching the target that is moving away and
then the other.

Note, that for 𝑎Ñ8 we have the static case (OLTSP), where the targets do not move over
time. NEF can also be applied to the OLTSP on the real line, in this case the competitive
ratio is

lim
𝑎Ñ8

¨

˚

˚

˝

5
2 `

3𝑎´1
p𝑎´1q2 `

$

’

’

&

’

’

%

3𝑎´1
2p𝑎´1q2 , if 𝑎 ě 2

3𝑎´1
2p𝑎´1q , if 𝑎 ă 2.

˛

‹

‹

‚

“
5
2 .

In fact, for the OLTSP on the line the competitive ratio of NEF is slightly worse than the
result of Ausiello et al. [Aus01] in Theorem 6.1, which is 7

3 . Moreover, the algorithm
used in [Aus01], Theorem 6.1, can also be applied to the OLMTTSP on the real line. We
provide the competitive ratio of ENO for the open OLMTTSP in Section 6.3.

Theorem 6.6. The ratio in Theorem 6.5 is tight.

Proof. We consider the static case, where the targets do not move. Here, we construct the
following sequence of targets as visualized in Figure 20.

-1 0 1

time
online server
offline server

Figure 20: Worst case example for the open OLTSP on the real line.

At time 𝑡 “ 1 two targets in ´1 and 1 are presented. NEF leaves the origin without loss
of generality towards 1 and arrives in 1 at time 𝑡 “ 2. Then NEF turns round towards
the left target. The offline server starts at time 𝑡 “ 0 and intercepts the left target at
time 𝑡 “ 1, afterwards it moves to the right side to catch the other one at time 𝑡 “ 3. At
𝑡 “ 3, where NEF is at the origin (in the middle between left target and offline server), the
adversary presents a new target at position 1, which is caught by the offline server at the
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moment of release 𝑡 “ 3. Then, the adversary continues to move to the right side, while
NEF moves right to catch the new target, which is equally distant as the left one and then
turns round. Again, at the moment, where NEF is in the middle between the left target
and the adversary, a new target at the position of the adversary is presented and so on.
Let us look at the objective function value for NEF and the offline adversary in each
iteration (after a new target is presented). The number of iteration is called 𝑛 P N. We
start with 𝑛 “ 0 when 3 targets have been presented. Then, we have the next iteration
when a new target is presented. For each iteration we compute the objective function value
as if no more target would be revealed, see Table 4, where ’nbt’ denotes the number of
presented targets.

Table 4: Objective function values for iterations 𝑛 “ 0, . . . , 4.

𝑛 nbt NEF offline adversary

0 3 6 “ 4` 2 3 “ 3

1 4 28
3 “ 4` 2` 2 5

3
13
3 “ 3` 4

3

2 5 134
9 “ 4` 2` 2 5

3 ` 2
ˆ

5
3

˙2 59
9 “ 3` 4

3 `
4
3

5
3

3 6 652
27 “ 4` 2` 2 5

3 ` 2
ˆ

5
3

˙2
` 2

ˆ

5
3

˙3 277
27 “ 3` 4

3 `
4
3

5
3 `

4
3

ˆ

5
3

˙2

4 7 3206
81 “ 4` 2

4
ř

𝑖“0

ˆ

5
3

˙𝑖 1331
81 “ 3` 4

3
4
ř

𝑖“1

ˆ

5
3

˙𝑖´1

Thus, for iteration 𝑛 we have

𝑍NEF “ 4` 2
𝑛
ÿ

𝑖“0

ˆ

5
3

˙𝑖

and

𝑍˚ “ 3` 4
3

𝑛
ÿ

𝑖“1

ˆ

5
3

˙𝑖´1
“

11
5 `

4
5

𝑛
ÿ

𝑖“0

ˆ

5
3

˙𝑖

.

Then, the competitive ratio can be computed as

𝑍NEF

𝑍˚
“

4` 2
𝑛
ř

𝑖“0

ˆ

5
3

˙𝑖

11
5 `

4
5

𝑛
ř

𝑖“0

ˆ

5
3

˙𝑖
“

2
˜

2`
𝑛
ř

𝑖“0

ˆ

5
3

˙𝑖
¸

4
5

˜

11
4 `

𝑛
ř

𝑖“0

ˆ

5
3

˙𝑖
¸ ÝÑ

𝑛Ñ8

5
2 .

The ENO Algorithm for the Open OLMTTSP on the Real Line

The algorithm ENO (short for serve Extreme Nearest to the Origin first) has been defined
in Ausiello et al. [Aus01] for the open OLTSP on the line. We adapt ENO to the case
of targets moving over time and provide the competitive ratio with regard to the speed
ratio 𝑎. The essential difference of ENO to NEF is that it serves the target with the least
distance to the origin first.
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ENO: At the beginning, the online server is located at the origin 0. Let 𝑆𝐴 be the set of
presented targets not yet visited, that are moving away from the server and 𝑆𝑇 be
the set of presented targets not yet visited, that are moving towards the server. The
leftmost and rightmost extreme targets of 𝑆𝐴 are determined and the server starts
with the extreme, that is nearer to the origin and then catches the other extreme.
If 𝑆𝐴 “ H, the online server intercepts the extreme target of 𝑆𝑇 that is nearer to
the origin and then the other. Each time a new target enters the system, it must be
checked if the current tour has to be updated.

Theorem 6.7. Algorithm ENO achieves a competitive ratio of

7
3 `

20𝑎´ 4
3p𝑎´1q2 .

Proof. We assume that time 𝑡 is the time, where the last target is presented. Let 𝑝ENOp𝑡q
be the position of the ENO server at time 𝑡 and 𝑆 be the set of not yet visited targets.
Then, we assume, that the leftmost and rightmost targets from 𝑝ENOp𝑡q in 𝑆 are moving
away from the server, which is the worst case with the same argumentation as for NEF.
Without loss of generality we suppose the leftmost target is nearer to the origin than the
rightmost target and the rightmost one has been presented with positive abscissa. We
call the leftmost target 𝑟𝑥 and the rightmost target 𝑟𝑋 , respectively. Let the positions at
which 𝑟𝑥 and 𝑟𝑋 are presented be 𝑝𝑥 and 𝑝𝑋 and their positions at time 𝑡 be 𝑝𝑥p𝑡q and
𝑝𝑋p𝑡q. Then, we have 𝑝𝑋p𝑡q ą 0 and |𝑝𝑥p𝑡q| ď 𝑝𝑋p𝑡q. Let 𝑅 be rightmost point, where a
target moving in the positive direction was presented until time 𝑡 and let ´𝐿 be either the
leftmost revelation point of a target moving in the negative direction until time 𝑡 or 0 in
case the leftmost target was presented on the non-negative side of the line. With 𝑍˚ being
the completion time of the optimal offline server and 𝑍𝐸𝑁𝑂 the completion time of ENO
the following constraints hold:

𝑍˚ ě 𝑡

´𝐿´
𝑡

𝑎
ď 𝑝𝑥p𝑡q

𝑝𝑋p𝑡q ď 𝑅`
𝑡

𝑎

´𝐿´
𝑡

𝑎
ď 𝑝ENOp𝑡q ď 𝑅`

𝑡

𝑎
.

Three different cases are considered depending on the position of ENO 𝑝ENOp𝑡q:

1. ´𝐿´ 𝑡

𝑎
ď 𝑝ENOp𝑡q ď 𝑝𝑥p𝑡q

This case is exactly the same as the case 1 for algorithm NEF on page 70, thus we
simply recall the result for the competitive ratio

𝑍ENO

𝑍˚
ď 2` 3

𝑎´1 . (103)

2. 𝑝𝑥p𝑡q ď 𝑝ENOp𝑡q ď |𝑝𝑥p𝑡q|
Note, that if 𝑝𝑥p𝑡q ě 0 this case reduces to 𝑝ENOp𝑡q ď 𝑝𝑥p𝑡q, which is exactly the
previous case. Thus, we consider 𝑝𝑥p𝑡q ă 0. The worst case for ENO is when
𝑝ENOp𝑡q “ |𝑝𝑥p𝑡q|. Then, ENO has to move to the origin, visit the leftmost extreme,

84



return to the origin and then catch the rightmost extreme. Thus, we obtain

𝑍ENO ď 𝑡` 3|𝑝𝑥p𝑡q|`
4|𝑝𝑥p𝑡q|
𝑎´1

loooooooooomoooooooooon

intercepting 𝑟𝑥 and back to the origin

` 𝑝𝑋p𝑡q `
3|𝑝𝑥p𝑡q|`

4|𝑝𝑥p𝑡q|
𝑎´1

𝑎
`

𝑝𝑋p𝑡q `
3|𝑝𝑥p𝑡q|` 4|𝑝𝑥p𝑡q|

𝑎´1
𝑎

𝑎´1
looooooooooooooooooooooooooooooooooooomooooooooooooooooooooooooooooooooooooon

intercepting 𝑟𝑋 , which has moved during catching 𝑟𝑥

and in compact form:

𝑍ENO ď 𝑡` 3|𝑝𝑥p𝑡q|`𝑝𝑋p𝑡q `
4|𝑝𝑥p𝑡q|`𝑝𝑋p𝑡q

𝑎´1 ` |𝑝𝑥p𝑡q|
3𝑎`1
p𝑎´1q2 .

The offline server needs at least a completion time of

𝑍˚ ě 2|𝑝𝑥|`𝑅, if 𝑝𝑥 ă 0 and
𝑍˚ ě 𝑅, if 𝑝𝑥 ě 0.

Note, that in the latter case we have 𝑝𝑥 ď 𝑝𝑋 ď 𝑅, it is not possible that 𝑝𝑥 ą 𝑝𝑋 ,
because at time 𝑡 either 𝑟𝑥 or 𝑟𝑋 is already visited or is not an extreme target that
is moving away from ENO anymore, which is a contradiction in either case. At first,
we consider 𝑝𝑥 ă 0. Here, we apply |𝑝𝑥p𝑡q| ď |𝑝𝑥|` 𝑡

𝑎 and 𝑝𝑋p𝑡q ď 𝑝𝑋`
𝑡
𝑎 ď 𝑅` 𝑡

𝑎 and
obtain for 𝑍ENO:

𝑍ENO ď 𝑡` 3|𝑝𝑥|`𝑅` 4|𝑝𝑥|`𝑅
𝑎´1 ` |𝑝𝑥|

ˆ

3𝑎`1
p𝑎´1q2

˙

`
4𝑡𝑎

p𝑎´1q2 .

Thus, we have the following competitive ratio:

𝑍ENO

𝑍˚
ď
𝑡

𝑡
`

3|𝑝𝑥|`𝑅
2|𝑝𝑥|`𝑅

`
4|𝑝𝑥|`𝑅

p2|𝑝𝑥|`𝑅qp𝑎´1q `
|𝑝𝑥|
3|𝑝𝑥|

ˆ

3𝑎`1
p𝑎´1q2

˙

`
4𝑡𝑎

p𝑎´1q2

ď 1` 4
3 `

1
𝑎´1 `

2
3p𝑎´1q `

3𝑎`1
3p𝑎´1q2 `

4𝑎
p𝑎´1q2

“
7
3 `

20𝑎´4
3p𝑎´1q2 . (104)

In the other case 𝑝𝑥 ě 0, we apply |𝑝𝑥p𝑡q| ď ´𝑝𝑥`
𝑡
𝑎 and also 𝑝𝑋p𝑡q ď 𝑅` 𝑡

𝑎 to the
upper bound of 𝑍ENO:

𝑍ENO ď 𝑡`𝑅´3𝑝𝑥 `
𝑅´4𝑝𝑥

𝑎´1 ´ 𝑝𝑥

ˆ

3𝑎`1
p𝑎´1q2

˙

`
4𝑡𝑎

p𝑎´1q2 .

Then, we have the competitive ratio

𝑍ENO

𝑍˚
ď
𝑡

𝑡
`
𝑅´3𝑝𝑥

𝑅
`
𝑅´4𝑝𝑥

𝑅p𝑎´1q `
4𝑡𝑎

𝑡p𝑎´1q2

ď 1` 1` 1
𝑎´1 `

4𝑎
p𝑎´1q2

“ 2` 5𝑎´1
p𝑎´1q2 . (105)
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3. |𝑝𝑥p𝑡q| ă 𝑝ENOp𝑡q ď 𝑅`
𝑡

𝑎
We consider two different cases: a) in the optimal offline solution 𝑟𝑥 is visited after
𝑅, b) in the optimal offline solution 𝑅 is visited after 𝑟𝑥.

a) 𝑅Ñ 𝑟𝑥

Then, we have 𝑍˚ ě 2𝑅´𝑝𝑥 and 𝑝𝑥 can be on the right or on the left half-line.
At time 𝑡, the worst case for ENO is, when it is close to the rightmost extreme
𝑝𝑋p𝑡q and 𝑝𝑋p𝑡q ď 𝑅` 𝑡

𝑎 . Then, ENO has to move to 𝑟𝑥 and back to the
rightmost extreme. The upper bound is

𝑍ENO ď 𝑡` 2𝑅`2𝑡
𝑎
´2𝑝𝑥p𝑡q `

2𝑅`2𝑡
𝑎 ´2𝑝𝑥p𝑡q

𝑎´1 `
2𝑅`2𝑡

𝑎 ´2𝑝𝑥p𝑡q

𝑎

`
4𝑅`4𝑡

𝑎 ´4𝑝𝑥p𝑡q

𝑎p𝑎´1q `
2𝑅`2𝑡

𝑎 ´2𝑝𝑥p𝑡q

𝑎p𝑎´1q2

ď 𝑡` 2𝑅´2𝑝𝑥p𝑡q `
2𝑅´2𝑝𝑥p𝑡q

𝑎´1 ` p2𝑅´2𝑝𝑥p𝑡qq
𝑎

p𝑎´1q2 `
2𝑡𝑎

p𝑎´1q2 .

Next, we apply ´𝑝𝑥p𝑡q ď
𝑡
𝑎´𝑝𝑥 (this holds no matter if 𝑝𝑥p𝑡q is negative or not).

Thus, we have

𝑍ENO ď 𝑡` 2𝑅´2𝑝𝑥 `
2𝑅´2𝑝𝑥

𝑎´1 ` p2𝑅´2𝑝𝑥q
𝑎

p𝑎´1q2 `
4𝑡𝑎

p𝑎´1q2 . (106)

Then, the competitive ratio results in

𝑍ENO

𝑍˚
ď
𝑡

𝑡
`

2𝑅´2𝑝𝑥

2𝑅´𝑝𝑥
`

2𝑅´2𝑝𝑥

p2𝑅´𝑝𝑥qp𝑎´1q `
p2𝑅´2𝑝𝑥q𝑎

p2𝑅´𝑝𝑥qp𝑎´1q2 `
4𝑡𝑎

𝑡p𝑎´1q2

ď 1` 4
3 `

4
3p𝑎´1q `

4𝑎
3p𝑎´1q2 `

4𝑎
p𝑎´1q2

“
7
3 `

20𝑎´4
3p𝑎´1q2 . (107)

b) 𝑟𝑥 Ñ 𝑅
The optimal offline server visits 𝑟𝑥 at time 𝑑 and it is the last time the server is
at this position, note that 𝑑 ě |𝑝𝑥|. Then, the offline adversary needs to travel
at least from 𝑝𝑥 to 𝑅. Thus, 𝑍˚ ě 𝑑 ` 𝑅 ´ 𝑝𝑥. For 𝑑 ě 𝑡 and with (106), we
obtain

𝑍ENO

𝑍˚
ď
𝑑` 2𝑅´2𝑝𝑥

𝑑`𝑅´𝑝𝑥
`

2𝑅´2𝑝𝑥

p𝑅´𝑝𝑥qp𝑎´1q `
p2𝑅´2𝑝𝑥q𝑎

p𝑅´𝑝𝑥qp𝑎´1q2 `
4𝑑𝑎

𝑑p𝑎´1q2

ď 2` 8𝑎´2
p𝑎´1q2 (108)

Otherwise, if 𝑑 ă 𝑡, then 𝑟𝑥 is already presented at time 𝑑 and the following
claim holds:
Claim. At every time 𝑡1, 𝑑 ď 𝑡1 ď 𝑡, we have 𝑝ENOp𝑡1q ě |𝑝𝑥p𝑡

1q|.

Proof of the Claim. The target 𝑟𝑥 is presented at time 𝑑 or earlier. Suppose
𝑝ENOp𝑡1q ă 𝑝𝑥p𝑡

1q, then 𝑟𝑥 is already visited at time 𝑡, because at time 𝑡 ENO is
to the right-hand side of 𝑟𝑥. This is a contradiction and proves the claim for
𝑝𝑥p𝑡

1q ě 0. For 𝑝𝑥p𝑡
1q ă 0, we suppose 𝑝ENOp𝑡1q ă |𝑝𝑥p𝑡

1q|. Note, that 𝑟𝑥 is the
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leftmost unvisited target at time 𝑡 and it must have been so at time 𝑑. Thus, to
arrive at the right-hand side of |𝑝𝑥p𝑡q| at time 𝑡, ENO should travel away from 𝑟𝑥.
However, this is only possible, when the rightmost target at time 𝑡1 is less or equal
to |𝑝𝑥p𝑡

1q|, which contradicts to |𝑝𝑥p𝑡q| ă 𝑝ENOp𝑡q as we are assuming in this case.

Now, the proof of Theorem 6.7 continues. Since ENO is to the right of |𝑝𝑥p𝑑q|
at time 𝑑 and it is constantly moving left towards 𝑟𝑥 from time 𝑑 on at least
until time 𝑡. Note, that any target, that is presented between 𝑟𝑥 and ENO and
is nearer to the origin than 𝑟𝑥 does not force ENO to change its current tour,
because 𝑟𝑥 is the leftmost not yet served target from time 𝑑 to time 𝑡. Thus, we
can use (106) with the time 𝑑 instead of time 𝑡 as the upper bound for ENO.
Then, the competitive ratio is

𝑍ENO

𝑍˚
ď
𝑑` 2𝑅´2𝑝𝑥

𝑑`𝑅´𝑝𝑥
`

2𝑅´2𝑝𝑥

p𝑅´𝑝𝑥qp𝑎´1q `
p2𝑅´2𝑝𝑥q𝑎

p𝑅´𝑝𝑥qp𝑎´1q2 `
4𝑑𝑎

𝑑p𝑎´1q2

ď 2` 8𝑎´2
p𝑎´1q2 (109)

Over all considered cases ENO has a competitive ratio of

7
3 `

20𝑎´4
3p𝑎´1q2 .

Note, that for 𝑎Ñ8 the competitive ratio reduces to 7
3 for the static case (OLTSP). This

matches the result, presented by Ausiello et al. [Aus01].

Discussion of the Results

The online algorithms NEF and ENO have different competitive ratios regarding the static
case. ENO with 7

3 is slightly better than NEF with 5
2 . However, in the case of catching

moving targets the situation is more complex. The competitive ratios as functions of the
speed ratio 𝑎 of both algorithms are displayed in Figure 21. The result, which algorithm is
better, depends on the speed ratio 𝑎. The visualization shows and this can also be verified
analytically, that for 1 ă 𝑎 ď 15 the competitive ratio of NEF is better than that of ENO.
However, for 𝑎 ą 15 the situation changes and the competitive ratio of ENO is better.
Since the concept of competitive ratio is a worst case consideration, we cannot decide
which algorithm is better in general or in practice. It is only possible to compare the worst
case situations of both algorithm and therewith the competitive ratios. This means, that
for fast targets (𝑎 ď 15) NEF can handle its worst case better than ENO. Comparing both
worst cases with slow targets (𝑎 ą 15) ENO defeats NEF.

We can use the speed ratio, that is used in our test instances to calculate a corresponding
competitive ratio. For all test instances a speed ratio of 𝑎 “ 6.25 was applied. With
discretization level D16 the speed of the salespersons is 100 length units per time step and
the speed of the targets is 16 length units per time step. Thus, we obtain a competitive
ratio of 3.47.

Comparing the competitive ratios of NEF and ENO with the lower bound of 2 ` 1
𝑎´1

(see Theorem 6.3), it is obvious that there is still a gap between lower and upper bounds
for the open OLMTTSP on the real line. For the static case, which is the open OLTSP
on the real line, the very recent literature contribution Bjelde et al. [Bje21] closed the
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Figure 21: Comparison of the competitive ratios of NEF and ENO for the OLMTTSP on the
line.

gap between the lower bound of 2 and the upper bound of 2.33 (see Table 3). The
authors provided a lower bound of 2.04 which is the second-largest root of the polynomial
9𝜌4 ´ 18𝜌3 ´ 78𝜌2 ` 210𝜌´ 107. Throughout their article the assumption 𝑡 ě |𝑥| is made,
for all requests 𝑟 “ p𝑥, 𝑡q. This is not a restriction, since a server cannot serve a request
earlier than its release time and an early release only supports the online algorithm. The
proof of the lower bound is about an adversarial strategy, that forces the makespan of
the online algorithm to be larger than the makespan of the optimal offline algorithm by a
factor of at least 2.04. The idea is to present alternatingly leftmost and rightmost extreme
requests until a pair of critical (with certain conditions) requests appear. Then, it is
shown that additional requests can be released such that the resulting competitive ratio
is at least 2.04. Waiting is allowed, however, only for a while to be competitive. Thus,
different cases depending on the possible behavior of the online algorithm are analysed
and the termination of the procedure is shown. Moreover, the authors also present an
online algorithm with a competitive ratio of 2.04, which matches their lower bound. The
strategy of the algorithm is to move to the origin and to wait there whenever possible, and
to serve the extreme requests as late as possible that the competitive ratio of 2.04 is still
guaranteed. The concept behind this, is to wait for more information and to delay the
decision in which order to serve the extreme requests as long as possible. With this, at any
time the ratio defined by the distance between server and origin and the time is bounded
below 1 and this is important for the analysis of the algorithm. Depending on this bound,
on distances of the extreme requests, and thus on possible waiting the decision is taken,
which of the extreme requests to serve first. The proof is very technical and it analyses a
comprehensive set of possible situations and cases.

To close the gap for the open OLMTTSP an approach similar to the one presented by
Bjelde et al. [Bje21] might be possible. We suppose the beneficial concept of waiting is
much more advanced in analysing with regard to mainly two points. Firstly, the targets
are moving. Thus simply waiting increases the distance between server and target and thus
increases the makespan bidirectionally. The second point is the ratio between maximal
server speed and target speed: 𝑎. It might be necessary to change the strategy of the
online algorithm based on 𝑎. Closing or improving the gap for the open OLMTTSP on the
line is a challenge for future research.
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7 Conclusion

At first, we have investigated the MTSPMT as an offline problem. The main difference to
the classical TSP is, that the targets are moving continuously on trajectories, resulting
in continuously varying travel times and distances between any two targets. Different
modeling approaches have been provided and we have investigated the impact of the
modeling variant on the optimization time for randomly generated test instances.

The best runtimes over nearly all instances could be obtained with the time-discrete model
TD, where feasible arcs with travel lengths and times are modeled in a time-expanded
network. However, the time-discrete model TFTD is the best choice for small instances
(8 targets, 1 or 2 salespersons and discretization level D8). This could also be used by
embedding the model into a set partitioning approach, since here, a sequence of TSPMT
(1 salesperson) has to be solved.

Models, which use continuous time variables, have turned out to be harder to solve than
discrete ones and thus, have required more computational time. One thing, that contributes
to a higher complexity is, that the decision, whether an arc is feasible (a salesperson can
use it with at most maximum speed) is inserted into the model. Comparing TC and TFTC,
it can bee seen, that for small instances (up to 10 targets and up to 3 salespersons) better
scores could be achieved with TC than with TFTC. This changes for instances with more
than 10 targets or more than 3 salespersons. Usually, these instances could not be solved
within the time limit with none of the time-continuous models. However, relative gaps are
lower with TFTC than with TC for those instances.

Furthermore, the computational experiments have shown, that the discrete model TD can
easily handle non-linear trajectories, while the continuous model TC not. For the TC model
not only the computational burden resulting from the piece-wise linear approximation of
the trajectories has been an issue, but also the displacement between the interpolated
interception point and the real target position.

To process real-world test instances, we have adapted our models to handle different depot
positions and infeasible instances. From the mathematical point of view, the MTSPMT
is an online problem, thus, we have solved test instances in an online consideration. We
have choosen TD for modeling, due to its offline result, the TD model was able to solve
instances up to 10 targets within 3 sec in average. The two online strategies replan and
ignore have been adapted to multiple salespersons and moving targets and applied to
our test instances. We have investigated the number of misses in intercepting the targets.
Although, the ignore strategy has resulted in slightly more misses than the replan
strategy, we have computed a worst case ratio of the obtained online and offline objective
function values of 1.55 for both strategies. This value can be seen as a practically obtained
competitive ratio.

We also addressed the OLMTTSP on the real line without time windows from the theoretical
point of view of competitive analysis. Here, we have proven a lower bound for the
competitive ratio. Furthermore, we developed an online algorithm and adapted another
one from the literature. We have proven competitive ratios for both online algorithms.
The decision which algorithm has a better competitive ratio depends on the speed ratio
of salespersons and targets. We have applied the speed ratio of our test instances and
obtained an analytical competitive ratio of 3.47 for the OLMTTSP.

If we consider the OLMTTSP on the real line with all targets moving away from the server
and apply the replan strategy with the min-dist objective function as the online algorithm
on the real line, then this online strategy behaves equally to the presented NEF online
algorithm. On the real line the salesperson has to move with maximum speed no matter if
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replan or NEF is used, thus, for the competitive ratio it does not matter if we use min-dist
or min-time as objective function. We can compare the practically obtained competitive
ratio 1.55 and the analytically determined one 3.47. Obviously, the competitive ratio
obtained in practice is much better than the theoretically obtained competitive ratio. Even
though the competitive ratio obtained in practice is a worst case value and the number of
instances is small, this result underscores the criticism about competitive analysis regarding
its overly pessimistic evaluation.

Our theoretical results in competitive analysis obtained for the open OLMTTSP on the real
line are new to this area. Closing or improving the gap is a challenge for future research.
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A Appendix

A.1 Computational Offline Results

Table 5: Arithmetic means of the scores for the models TD, TFTD, TC, and TFTC. Instances
are characterized by the parameters ’nbt’ (number of targets), ’nbs’ (number of salespersons),
’dl’ (discretization level), and ’tl’ (time limit). The arithmetic means of the scores are taken
over 21 different randomly generated instances and are reported in columns five to eight for
the different models TD, TFTD, TC, and TFTC.

instance parameter arithmetic mean of the score for

nbt nbs dl tl TD TFTD TC TFTC

6 3 D16 3,600 0.0000 0.0001 0.0007 0.0006

8 3 D16 3,600 0.0001 0.0035 0.0194 0.0275

10 1 D16 3,600 0.0003 0.0160 0.0198 0.1081

10 2 D16 3,600 0.0011 0.0345 0.1064 0.3770

10 3 D32 3,600 0.0001 0.2388 | |

10 3 D16 3,600 0.0006 0.2960 0.4271 0.6320

10 3 D8 3,600 0.0027 0.2637 | |

10 4 D16 3,600 0.0004 0.6436 0.9040 0.8756

10 5 D16 3,600 0.0004 0.9362 1.2330 1.1248

10 6 D16 3,600 0.0004 1.0649 1.4294 1.1998

12 3 D16 3,600 0.0020 0.9627 1.4619 1.1600

14 3 D16 3,600 0.0082 1.2276 1.7290 1.2919

16 3 D16 3,600 0.0306 1.3152 1.8519 1.3838

18 3 D16 3,600 0.0442 1.3710 1.9219 1.4348

20 3 D16 3,600 0.0704 1.4181 1.9514 1.4719

8 1 D8 3 0.9985 0.4162 0.8797 1.2375
8 2 D8 3 0.5838 0.5290 1.5333 1.0998
8 3 D8 3 0.5020 0.7187 1.7650 1.1147
8 4 D8 3 0.5385 0.9823 1.8446 1.1980
8 5 D8 3 0.6320 1.1341 1.9137 1.2613
8 6 D8 3 0.7526 1.2168 1.9585 1.2952
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Table 6: Arithmetic means of the runtimes in r𝑠s for the models TD, TFTD, TC, and TFTC.
Instances are characterized by the parameters ’nbt’ (number of targets), ’nbs’ (number of
salespersons), ’dl’ (discretization level), and ’tl’ (time limit). The arithmetic means of the
runtimes are taken over 21 different randomly generated instances and are reported in columns
five to eight for the different models TD, TFTD, TC, and TFTC.

instance parameter arithmetic means of the runtimes for

nbt nbs dl tl TD TFTD TC TFTC

6 3 D16 3,600 0.11 0.23 2.40 2.12

8 3 D16 3,600 0.38 12.42 69.86 99.16

10 1 D16 3,600 1.22 57.52 71.15 389.04

10 2 D16 3,600 4.02 124.32 383.12 1312.78

10 3 D32 3,600 0.19 842.57 | |

10 3 D16 3,600 2.28 1,026.25 1,535.85 2,076.31

10 3 D8 3,600 9.72 920.15 | |

10 4 D16 3,600 1.61 2,104.25 2,813.97 2,739.07

10 5 D16 3,600 1.43 2,929.89 3,357.13 3,401.13

10 6 D16 3,600 1.50 3,202.84 3,565.23 3,489.64

12 3 D16 3,600 7.26 3,038.77 3,600.00 3,439.02

14 3 D16 3,600 29.43 3,600.02 3,600.00 3,600.04

16 3 D16 3,600 110.11 3,600.02 3,600.02 3,600.04

18 3 D16 3,600 159.07 3,600.01 3,600.01 3,600.02

20 3 D16 3,600 253.42 3,600.02 3,600.01 3,600.03

8 1 D8 3 2.37 1.20 2.26 2.97
8 2 D8 3 1.62 1.52 2.86 2.73
8 3 D8 3 1.46 2.00 3.00 2.72
8 4 D8 3 1.57 2.54 3.00 2.90
8 5 D8 3 1.79 2.84 3.00 3.01
8 6 D8 3 2.10 2.98 3.00 3.01

Table 7: Arithmetic means of the runtimes [s] for the set partitioning approach. The subset
tour generation is computed using the models TD, TFTD, TC, and TFTC. Instances are
characterized by the parameters ’nbt’ (number of targets), ’nbs’ (number of salespersons), ’dl’
(discretization level), and ’tl’ (time limit). The arithmetic means of the runtimes are reported
in columns five to eight for the different models and are taken over five different instances. For
the instances with 12 targets and D8, four out of five instances are infeasible in the column of
TD, all other instances are solved to optimality.

instance parameter arithmetic mean of the runtimes [s]

nbt nbs dl tl TD TFTD TC TFTC

6 2-6 D32 3,600 0.37 0.38 | |

6 2-6 D16 3,600 1.39 0.45 2.48 1.25

continued on next page . . .
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nbt nbs dl tl TD TFTD TC TFTC

6 2-6 D8 3,600 5.37 0.81 | |

8 2-6 D32 3,600 3.12 2.97 | |

8 2-6 D16 3,600 15.17 3.99 21.56 10.28

8 2-6 D8 3,600 91.62 8.33 | |

10 2-6 D32 3,600 21.92 21.94 | |

10 2-6 D16 3,600 133.85 33.61 138.82 87.58

10 2-6 D8 3,600 1,279.67 78.43 | |

12 2-6 D32 3,600 135.94 244.98 | |

12 2-6 D16 3,600 923.87 418.68 930.03 1,949.92

12 2-6 D8 3,600 3,137.54 1,053.75 | |

Table 8: Runtimes and objective function values for the TD model and non-linear trajectories.
Instances are characterized by the parameters ’nbt’ (number of targets), and ’nbs’ (number
of salespersons). The runtimes [s] for the model TD are reported in columns three to five for
the different discretization levels. The objective function values for the TD model are given in
columns six to eight for the different discretization levels.

instance param. runtimes [s] objective function values

nbt nbs D32 D16 D8 D32 D16 D8
4 2 0.02 0.04 0.13 295.4 294.1 291.2
4 4 0.03 0.07 0.27 292.7 284.2 282.0
6 2 0.05 0.23 0.95 449.2 434.6 431.1
6 4 0.08 0.44 1.26 437.6 423.4 422.0
6 6 0.12 0.77 2.31 437.6 423.4 422.0
8 2 0.21 1.85 3.76 584.3 531.6 521.9
8 4 0.09 0.88 2.95 531.6 492.9 484.0
8 6 0.13 1.28 4.51 531.6 492.9 484.0

10 2 0.27 8.26 143.83 849.3 819.2 818.3
10 4 0.24 1.32 4.24 716.1 678.3 666.2
10 6 0.40 1.61 7.40 716.1 678.3 666.2
12 2 0.29 3.41 33.73 998.2 967.6 965.5
12 4 0.33 2.06 7.86 865.1 826.7 813.2
12 6 0.51 1.69 10.98 865.1 826.7 813.2
14 2 0.77 10.35 151.66 1,187.3 1,139.8 1,136.9

14 4 0.51 2.55 10.69 955.1 924.8 911.8
14 6 0.36 2.74 17.59 948.6 910.8 898.3
16 2 2.48 15.40 409.59 1,321.4 1,281.0 1,276.7

16 4 1.33 6.91 60.10 1,071.8 1,034.3 1,022.0

16 6 1.00 4.21 38.96 1,039.1 994.7 982.5
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Table 9: Results for the TC model and non-linear trajectories. Instances are characterized by
the parameters ’nbt’ (number of targets), and ’nbs’ (number of salespersons). The column ’dl’
(discretization level) is related to the model TD, which is applied to provide a mip start to the
continuous optimization. The columns four to seven report runtimes, objective function values
(ofv), gaps, and whether a mip start could be used or not. Runtime values for the TD model
are given in parenthesis. A time limit of 3,600 sec is used.

instance parameter runtimes [s] and results mip start

nbt nbs dl runtime TC (TD) ofv TC (TD) gap TC used

4 2 D32 34.76 (0.02) 292.7 (295.4) 0.00 yes

4 2 D16 3.22 (0.04) 292.7 (294.1) 0.00 no

4 2 D8 4.01 (0.13) 292.7 (291.2) 0.00 yes

4 4 D32 3,600.00 (0.03) 334.7 (292.7) 0.68 no

4 4 D16 3,600.00 (0.07) 340.7 (284.2) 0.76 no

4 4 D8 3,600.00 (0.27) 283.3 (282.0) 0.71 yes

6 2 D32 3,600.00 (0.05) 433.1 (449.2) 0.44 yes

6 2 D16 3,600.00 (0.22) 436.7 (434.6) 0.56 yes

6 2 D8 3,600.00 (0.96) 453.5 (431.1) 0.35 yes

6 4 D32 3,600.00 (0.08) 428.5 (437.6) 0.88 yes

6 4 D16 3,600.00 (0.44) 443.6 (423.4) 0.88 yes

6 4 D8 3,600.00 (1.26) 425.2 (422.0) 0.88 yes

A.2 Computational Online Results

Table 10: Averaged number of online instances without misses and the sum of all targets,
that could not be intercepted for the online strategies replan and ignore. Instances are
characterized by the parameters ’nbt’ (number of targets), ’nbs’ (number of salespersons), and
’dl’ (discretization level). For each number of targets ’nbt’ 21 instances are generated. The
columns with title ’nbiwm’ contains the number of instances without any misses, while the
columns with title ’nbm’ show the sum of misses (targets that could not be intercepted) over
all 21 instances.

instance parameter replan ignore

nbt nbs dl nbiwm nbm nbiwm nbm

8 2 D16 8 17 6 20
10 2 D16 5 30 5 34
12 2 D16 2 37 1 51
14 2 D16 1 50 0 62
16 2 D16 1 72 0 95
18 2 D16 0 100 0 132
20 2 D16 0 113 0 141
8 4 D16 20 1 20 1

continued on next page . . .
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nbt nbs dl nbiwm nbm nbiwm nbm

10 4 D16 18 3 18 3
12 4 D16 18 3 18 3
14 4 D16 19 3 19 3
16 4 D16 13 9 12 10
18 4 D16 11 13 10 15
20 4 D16 13 9 11 11

Table 11: Objective function values online (replan) and offline based on the same instances
are listed. Instances are characterized by the parameters ’nbt’ (number of targets), ’nbs’
(number of salespersons), and ’dl’ (discretization level). The online objective function values
are given in column ’online’ and the corresponding offline objective function values in column
’offline’. The ratio of both values (online divided by offline) is given in column ’ratio’.

instance parameter objective function values

nbt nbs dl online offline ratio

8 2 D16 1,058.00 774.91 1,37

8 2 D16 1,170.66 1,067.48 1.10

8 2 D16 1,031.53 792.37 1.30

8 2 D16 1,331.65 1,057.79 1.26

8 2 D16 912.77 759.26 1.20
8 2 D16 1,198.52 1,076.56 1.11

8 2 D16 820.73 804.58 1.02
8 2 D16 967.37 889.50 1,09

10 2 D16 865.29 771.48 1.12
10 2 D16 1,383.33 1,164.77 1.19

10 2 D16 1,240.95 798.23 1.55

10 2 D16 1,302.55 1,254.52 1.04

10 2 D16 1,338.47 1,144.37 1.17

12 2 D16 1,114.89 916.38 1.22

12 2 D16 1,153.22 1,056.80 1.09

14 2 D16 1,554.49 1,312.45 1.18

16 2 D16 1,564.87 1,296.85 1.21
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Table 12: Objective function values online (ignore) and offline based on the same instances
are listed. Instances are characterized by the parameters ’nbt’ (number of targets), ’nbs’
(number of salespersons), and ’dl’ (discretization level). The online objective function values
are given in column ’online’ and the corresponding offline objective function values in column
’offline’. The ratio of both values (online divided by offline) is given in column ’ratio’.

instance parameter objective function values

nbt nbs dl online offline ratio

8 2 D16 1,055.22 774.91 1.36

8 2 D16 1,170.66 1,067.48 1.10

8 2 D16 1,331.65 1,057.79 1.26

8 2 D16 908.44 759.26 1.20
8 2 D16 1,198.52 1,076.56 1.11

8 2 D16 967.37 889.50 1.09
10 2 D16 865.29 771.48 1.12
10 2 D16 1,383.33 1,164.77 1.19

10 2 D16 1,240.95 798.23 1.55

10 2 D16 1,326.33 1,254.52 1.06

10 2 D16 1,244.90 1,144.37 1.09

12 2 D16 1,114.89 916.38 1.22

Table 13: Averaged number of online instances without misses and the sum of all targets,
that could not be intercepted for the online strategies replan and ignore. Instances are
characterized by the parameters ’nbt’ (number of targets), ’nbs’ (number of salespersons), and
’dl’ (discretization level). For each number of targets ’nbt’ 21 instances are generated. The
columns with title ’nbiwm’ contains the number of instances without any misses, while the
columns with title ’nbm’ show the sum of misses (targets that could not be intercepted) over
all 21 instances.

instance parameter replan ignore

nbt nbs dl nbiwm nbm nbiwm nbm

8 2 D16 10 16 9 17
10 2 D16 5 26 4 30
12 2 D16 5 29 4 33
14 2 D16 1 38 0 47
16 2 D16 1 61 1 74
18 2 D16 0 85 0 108
20 2 D16 0 93 0 113
8 4 D16 18 3 18 3

10 4 D16 19 2 19 2
12 4 D16 18 3 18 3
14 4 D16 16 5 16 5
16 4 D16 16 6 16 6

continued on next page . . .
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nbt nbs dl nbiwm nbm nbiwm nbm

18 4 D16 15 7 15 7
20 4 D16 13 9 13 9
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